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Abstract

The discovery of new materials and their functions have always been a

fundamental component of technological progress. Nowadays, the quest for

new materials is stronger than ever: sustainability, medicine, robotics and

electronics are all key assets which depend on the ability to create specifically

tailored materials.

However, designing materials with desired properties is a difficult task, and

the complexity of the discipline makes it difficult to identify general criteria.

While scientists developed a set of best practices (often based on experience

and expertise), this is still a trial-and-error process.

This becomes even more complex when dealing with advanced functional ma-

terials. Their properties depend on structural and morphological features,

which in turn depend on fabrication procedures and environment, and subtle

alterations leads to dramatically different results.

Because of this, materials modeling and design is one of the most prolific

research fields. Many techniques and instruments are continuously devel-

oped to enable new possibilities, both in the experimental and computational

realms. Scientists strive to enforce cutting-edge technologies in order to make

progress. However, the field is strongly affected by unorganized file manage-

ment, proliferation of custom data formats and storage procedures, both in

experimental and computational research. Results are difficult to find, in-

terpret and re-use, and a huge amount of time is spent interpreting and

re-organizing data. This also strongly limit the application of data-driven

and machine learning techniques.
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ii Abstract

This work introduces possible solutions to the problems described above.

Specifically, it talks about developing features for specific classes of advanced

materials and use them to train machine learning models and accelerate com-

putational predictions for molecular compounds; developing method for or-

ganizing non homogeneous materials data; automate the process of using

devices simulations to train machine learning models; dealing with scattered

experimental data and use them to discover new patterns.
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Introduction

Materials have always been the main engine of innovation: from tackling

completely new problems to optimizing existing devices, discovering new ma-

terials is the main way to boost technological progress[29]. Our time, marked

by the quest for green energy, is probably the pinnacle of this historical need

for advanced materials; as a result, we now need to go beyond materials with

just specifically tailored properties but we also need to engineer the life cycle

of the same materials including the fabrication procedure.

Materials science, historically, has been one of the fields that has seen the

strongest utilization of computational techniques and the best integration

with experimental lines, taking advantage of the respective strengths of these

two paradigms to propel discovery. However, this also led to more complex-

ity, and in particular in the difficulty of merging information and data coming

from the two realms to one another. Moreover, due to a lack of a motiva-

tion to unify and standardize data formats and processing procedures, this

problem is further aggravated by the proliferation of different file formats,

which are often specifically thought for a precise software and used for specific

computational workflows or for collecting data coming from an experiment

performed with a specific instrumentation.

For these reasons, we need to provide researchers with powerful tools for de-

veloping and pursuing their scientific questions without worrying about the

way data is stored or imposing a way to format data that is dependent on the

choice of a specific software or instrument stack. These tools are needed both

for experimental and computational research, and the most crucial common

1



2 Introduction

trait is the need for suitable data management and storage platforms that

also empower the re-usability of the data produced in previous research as

the starting ground for new activities.

This thesis targets applications based on specific classes of advanced ma-

terials, where structural features, morphology and functional properties are

spread across a very broad range of dimensional scales. Despite the resulting

multi-scale complexity, this variability is at the basis of several technological

applications of advanced functional materials. This is for example the case of

nanotechnology, where the peculiar properties of materials at the nanoscale

are exploited in order to engineer advanced functionalities. In this work, we

will address different research topics related to the field, from the develop-

ment of innovative materials to their applications in advanced devices. The

complexity of the relationship between morphology and composition of basic

structural units, materials processing and fabrication conditions and environ-

ments, and resulting functional properties across broad dimensional ranges,

however, introduces additional difficulties. As a result, the design and engi-

neering of new materials targeted to specific functionalities and applications

still constitutes a very challenging task. As stated previously, data-driven

approaches can potentially boost research in the field, providing the sci-

entific and technological basis for the development of predictive platforms

and for the automation of complex processes. While this situation has been

partially mitigated in some cases through the development of curated data

platforms[65], the development of structured, data-driven approaches for spe-

cific classes of functional, multi-scale materials is still at the early stage. In

the work discussed in this thesis, we considered both computational and ex-

perimental approaches to materials development as enablers of workflows for

generating information, knowledge and data on materials. The integration

between simulations and experiments is indeed a key element to advance the

research on materials for applications in technology. Accordingly, we focused

on three main aspects related to advanced and functional materials: materi-

als multiscale structure and properties, materials fabrication and processing,
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and materials applications. While these aspects involve different concepts

and procedures depending on the specific investigation and/or development

tools used (for example, materials modelling or materials characterization

tools) many of the underline ideas, basic conceptual frameworks and issues

are similar if not identical. We will elaborate more on their similarities and

differences in the next chapters; in the rest of this introduction, we introduce

the main ideas and methodologies that we faced during this work both for

the computational and experimental realms.

In the following, we discuss a broad range of applications and demonstrators

developed during the PhD research work, introducing potential solutions for

addressing the issues mentioned above. We will also show examples of how

putting the individual pieces together enables the automation of entire com-

plex procedures, thus improving the overall throughput of research efforts.

Along the thesis, we are going to tackle different specific problems:

Multi-scale materials features We show how to develop more general

features for specific advanced functional materials, and in particular for

molecular and nanoscale materials. In particular, we show how to deal with

complex materials morphologies, developing features that are deeply linked

to the knowledge about a scientific question. These features should be easily

understandable for researchers, which could then enforce their existing knowl-

edge of the physical problem in order to build the best solution possible; at

the same time, those features must be easily processable by machines, lead-

ing to efficient computations, easier training of the actual machine learning

models and more efficient predictions. This approach can for example lead

to the development of lightweight software that is able to predict materials

properties with accuracy comparable to that of computational simulations

and at a fraction of the computational cost.

Data management We discuss about how to deal with data related to

specific advanced materials classes in order to gather information about com-
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plex materials applications (e.g., devices) and organizing data in the field,

giving the fundamental pillars for the creation of a fully featured database

for the field. This last endeavor has been pursued enforcing the power of

semantic technologies, and in particular ontologies. To this end, we devel-

oped a domain ontology targeting molecular materials, a specific class of ad-

vanced materials. We introduced possible procedures to convert the existing

plethora of data formats to a single, standardized one. The expressiveness of

the resulting format is grounded on the knowledge representation resulting

from ontology development. We also introduced a possible framework for

automating different procedures related to materials R&D activities. This

is based on the application of Problem Solving Methods, and the interplay

between those methods and ontologies is a key asset in the creation of a com-

mon platform for the storage of results and the workflows that led to those

results.

Simulation of devices based on advanced materials and automation

We discuss about how to use the results of simulations of devices based on

advanced materials, to train machine learning models. This leads again to

huge performance improvements. However, dealing with phenomena and

entities that arise at devices scales leads to a manifold of issues, which we

tackled using solutions that are similar to those enforced in the study of

materials properties at lower dimensional scales. Moreover, we used this work

as a test-bed for developing automation tools for computational workflows,

and we introduce tools used to automate the whole pipeline that goes from

the definition of the scientific question to the actual trained model and the

predicted properties.

Experimental materials data and pattern recognition We show to

deal with scattered experimental data on advanced materials applications,

how to process them and how to use them to train learning algorithms ca-

pable of qualitatively predict significant performance indicators.
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The aforementioned activities shows prototypes of possible solutions for the

limitations introduced above, and are meant to be the basics of future de-

velopment aimed at integrating all those techniques into a unified set of

tools. Other than standardization and re-usability, we hope that the integra-

tion of these different steps can help to overcome the difficulty of developing

multiscale computational and experimental workflows. Moreover, we strove

to develop software that are easy to use and to integrate into pre-existing

solutions, in order to make data-driven technologies more attractive to re-

searchers. We will show examples of that ease-of-use approach along the

thesis.

The thesis is structured as follows: in chapter 1 we are going to introduce the

whole scientific and technological context needed for understanding our work

and contribution together with the state of the art regarding the application

of ML and data science in general to the field of advanced materials develop-

ment. In chapter 2, we introduce the work done on using machine learning

techniques to automatically predict materials properties from computational

data. In chapter 3, we go through the work done to create a domain ontol-

ogy specifically tailored for molecular materials, also putting the emphasis

on general data quality and, in particular, on the integration between data

stemming from computational activities and those coming from real-world

experiments. In chapter 4 we are going to illustrate the work done on exam-

ples of applications of advanced materials in electronic devices. In particular,

we considered transistors based on organic electronic semiconductor mate-

rials, using computational data to train machine learning models that are

able to extract hidden properties of devices. Future developments of this

work include the realization of models that are able to predict properties

that are difficult to access experimentally from devices. In chapter 5 we

show an example of how we can use data on technological applications of ad-

vanced materials originating from historical and publicly available knowledge

to develop a model for predicting and optimizing application performances.
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Finally, chapter 6 will be devoted to the conclusions and possible future

works.



Chapter 1

Scientific and technological

context

Before going deeper into the analysis of the experimental and computa-

tional methods with whom we interacted, we have to introduce the general

context and notions needed to describe the physics and chemistry that reg-

ulates the entities and phenomena at hand.

Historically, materials have always been a key enabler of new and revolu-

tionary technologies, and now more than ever the ability to tailor materials

for specific functions is the main driver for innovation and improvement[26].

Advanced materials are crucial for many of the most impacting social sec-

tors like health, energy, mobility and housing. Moreover, they also come in

contact with the general public through consumer goods like construction

materials, cleaning and hygiene-related products, cosmetics and many more.

In figure1.1 we can see an infographic showing in more detail the sectors that

strongly rely on the development of advanced materials.

To cite the Materials 2030 Manifesto[29]:

Materials, especially advanced materials, are the backbone and

source of prosperity of an industrial society. In the context of the

7



8 Scientific and technological context

Figure 1.1: An infographic, showing nine crucial sectors for which advanced

materials are a key enabler. Adapted from [29]

radical transformational changes of the 21st century, it is precisely

these advanced materials that will play a decisive role.

One of the key challenges for the future is the digitalisation of materi-

als science research, and in particular the creation of a Common Digital

Ecosystem[1]. Specific efforts are going to be made in stepping up the level

of the data management technologies employed in the field in order to ensure

availability, transparency and horizontal access to data, and this will lead

to easier access to data-driven technologies[1] applied to the discovery and

design of new materials and their applications.

The work done during these three years fit in this bigger scheme, as we

strove to give researchers new tools to accelerate their work, to improve their

ability to better understand the properties of the materials at hand and, ulti-

mately, leading to the design of novel materials with improved functionality

and properties.

One of the most interesting classes of materials for advanced applications

in technologies is that of molecular and organic materials. This class of ma-
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terials exhibit a broad range of structural and physico-chemical properties

across a wide range of dimensional scales, from the molecular level to the

bulk. As a result, molecular materials have found applications in several

fields of technology and nanotechnology, where the peculiar behavior of ma-

terials at the nanoscale enables specific functionalities. In this chapter, we

introduce the generalities of organic and molecular materials (and in par-

ticular their properties as semiconductors) and of the applications based on

them, for example in the realization of advanced devices. Particular care will

be given to advanced functional devices, such as transistors and solar cells,

two macro-classes of devices that are the main focus of two of the following

chapters, namely chapter 4 and chapter 5 respectively. We introduce fabri-

cation techniques and experimental methods in general and computational

methods. Then, we also discuss how the data are currently produces and

stored in the materials science domain.

1.1 Molecular materials and organic semicon-

ductors

Molecular materials constitute one of the most interesting classes of ma-

terials for the development of applications in technology. As such, molecular

materials enable innovation in a very broad range of fields, including na-

noelectronics, photoelectronics and photonics, quantum computing, energy

and information storage, and several others. The basic building blocks of

molecular materials are typically constituted by molecular units or sub-units.

Consequently, one of the most typical features of molecular materials is the

complex relationship between structure and morphology across a broad range

of scales, from molecular structure to the nanoscale, and the resulting mate-

rials properties. Among molecular materials, organic semiconductors (OSs)

are carbon-based materials usually based on molecular units or sub-units

(small molecules or polymers), which exhibit properties suitable for being

used in electronics as semiconductors. To fully understand the physical rea-
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son for these properties it is important to analyse the electronic structure of

the carbon atom and, in particular, the kind and number of bonds that it

can form. Carbon has four electrons in the outer energy level (i.e., it can

form four bonds with other atoms) and, more importantly, the carbon atom

can hybridize in several forms. The concept of hybridization, introduced in

1931 by Linus Pauling, describes the linear combination between different

atomic orbitals. In particular, carbon can form three different kinds of hy-

brid orbitals named sp, sp2 and sp3. These represent the combination of s

(that are the ones that have a spherical symmetry) and p (that are the ones

with symmetry shaped like two distinct spheres) orbitals. Let us consider as

an example the sp2 hybridization shown in Figure 1.2.

Figure 1.2: A figure depicting the geometry of the sp2, and sp3 orbital struc-

tures in (a) and (b). (c) shows the electron density probability surface cal-

culated for the components of the sp2 orbital together with one lobe of the

hybrid orbital itself. This figure is adapted from [84]
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This scenario gives birth two main type of (covalent) bonds:

• The two p orbitals (one on the x axis, one on the y axis), overlapping,

form a bond called σ-bond

• The partial overlap of the two p orbitals on the axis z form the so called

π-bond

Energetically speaking, the much larger overlap between the two sp2 orbitals

if compared with the two unhybridized 2pz orbitals leads to a difference

in strength between these two: the σ-bond is a stronger bond than the π-

bond[84].

These two bonds give very different electronic properties to the material

based on carbon atoms involving these kinds of bonding patterns: in the

σ-bond, the involved electrons (called σ-electrons) are more localized, and

because of this they do not have much freedom of movement; on the other

hand, the π-bond leaves more freedom to its electrons (called π-electrons).

For these reasons, π-bonds usually lend to better electric and electronic prop-

erties, while σ-bonds have stronger structural properties.

Usually, organic materials with semiconductor properties are formed by dis-

tinguishable units, linked one to another by π-bonds. Depending on the

length of the chain formed by these bonds, we can classify materials into two

groups, namely those made of small molecules (Fig 1.3) and polymers (Figure

1.4). The first have a very well-defined molecular characteristics (like molec-

ular weight), while the latter are made of long-chain molecules, built with an

indeterminate number of repeating building blocks1. Despite this intrinsic

difference, these classes of compounds share many traits and similarities, in

particular regarding their optical and electrical/electronic properties[38, 18].

Besides this qualitative description, we can also have a quantitative knowl-

edge of these materials and phenomena through the theory of Molecular

Orbitals (MOs)[37]. It states that we can describe the orbitals of complex

1Which are smaller molecular units themself.
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Figure 1.3: Chemical structure of some of the most studied organic small

molecules. Adapted from [28]

molecules using linear combinations of the atomic orbitals of the single el-

ements of the molecule itself. This method provides specific mathematical

equations for describing the energetic structures of a molecular system, iden-

tifying two categories of energy levels. These are called bonding (π) and

anti-bonding (π∗) orbitals.

Another important pair of concepts is that of HOMO (Highest Occupied

Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital). These

are, respectively, the outer occupied orbital and the lowest unoccupied one,

which we can see as analogous to the valence band and the conduction band

of a traditional silicon-based semiconductor. Moreover, the energy difference

between HOMO and LUMO represents the energy gap of the semiconductor.

It must be noted that, within the description provided by the aforementioned

MOs theory, in most OSs the HOMO corresponds to the occupied π levels,
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Figure 1.4: Chemical structure of some of the most studied polymers semi-

conductors. Adapted from [28]

while the LUMO corresponds to the unoccupied π∗ levels.

To accurately describe the charge transport mechanism in organic semicon-

ductors, we have to acknowledge the fact that, while the atoms of traditional

inorganic semiconductors are linked by covalent bonds, organic molecules

aggregates are kept together by the weaker Van der Waals force. For these

reasons, this class of materials has lower conductivity, and we need a new

model to describe their completely different charge transport mechanism.

1.1.1 Charge transport in Organic Semiconductors

In the previous section, we discussed that, while inorganic semiconductors

usually exhibit a band transport mechanism (due to the delocalized states of

the electrons), organic materials rely instead on Van der Waals interactions,

with charge transport occurring between localized states. In particular, or-
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ganic materials transport mechanism relies on the overlap between π orbitals;

this implies that the electronic transport performance is strongly dependent

on the structural characteristic of the organic material, and in particular on

how molecular units are arranged in space one with regard to another. It

follows that the degree of order at the molecular level in OS materials plays

a fundamental role in determining the charge transport properties. Accord-

ingly, charge transport in OSs can be described using the band formalism for

very ordered materials morphologies (like organic single crystals, that tend to

be very ordered systems with long-range chains) or using the hopping model

otherwise. Amorphous OSs fall into this second, less-ordered class and will

be discussed in the next chapters.

Even if the full details of the hopping mechanism in amorphous materials are

still partially unknown, several formalisms are already presented in various

pieces of literature, as those illustrated in [28, 39, 165, 59, 156]. The following

section will introduce the most used ones.

Charge Hopping

Firstly introduced in [119] and [27], and then revisited in [116], this model

takes in consideration the difference between an ordered system (where the

electrons can move freely between delocalized states) and disordered or amor-

phous solids, where charge transport occurs through hopping between local-

ized states. To find the best suited model, we need to observe the relation be-

tween the mobility and the temperature, looking at their mutual variations.

It is known that, when using the band-like model, increasing temperature

leads to a drop in mobility. This relation is visible in the plot in figure 1.5.

On the other hand, materials relying on hopping for charge transport

experience an increase in mobility when temperature rises. More specifically,

a model based on hopping sees mobility as proportional to the transition rate

between different states.
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Figure 1.5: Mobility of holes and electron mobility in an organic single crystal

against Temperature. The shape of the µ curve proves the band-like trans-

port mechanism, such as that observed in organic ordered systems. Adapted

from [174]

Electronic coupling

In particular, we have to introduce a new materials property called Elec-

tronic Coupling. This is a key quantity for the evaluation of charge trans-

port in organic semiconductors. The electronic coupling in charge transport,

in a nutshell, can be described as the interaction of the two Molecular Orbitals

(MOs) where the electron occupancy is changed. More specifically, it the

arises from the overlap of the electronic orbitals of the neighboring molecules,

leading to the formation of hybrid orbitals with delocalized electrons. These

delocalized electrons can then move freely between the molecules, enabling

charge and energy transfer. This gives a strong indication of how easily
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electrons can move between different states, and higher electronic couplings

correspond to higher mobility and higher current flow.

1.1.2 Charge carrier traps in Organic Semiconductors

As it has been introduced in the previous section (section 1.1.1), charge

transport in organic semiconductors is mainly based on the Van der Waals

forces, which results in lower flow of current when compared to silicon-based

semiconductors. Moreover, the reliance on these small forces also make them

very susceptible to defect formation, and this can result in the formation

of localized states in the band gap that can act as traps for the charge

carriers[50]. Strongly influencing the transport mechanism, they can deeply

alter the electrical and optoelectronic properties of the devices using these

materials, significantly reducing their performance.

Based on the energetic distance between bands, we can distinguish two kind

of traps:

• Shallow traps, closer to the HOMO/LUMO edge

• Deep traps, which are more distant from the HOMO/LUMO edge

Figure 1.6 visually shows this distinction. It is worth noting that shallow

traps can be activated by thermal variations, and can play an important role

in transport; deep traps, instead, do not suffer from thermal conditions and

are usually a source of recombination.

In the next section, possible sources of traps will be introduced, together

with a brief explanation of how they affect the transport in organic semicon-

ductors.

Sources of traps in organic semiconductors

We can preliminarily divide sources of traps into two macro categories:

intrinsic and extrinsic. Intrinsic sources are those that are independent from
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Figure 1.6: Spatial diagram of shallow and deep traps in organic semicon-

ductors. Adapted from [50].

external factors, while extrinsic sources are those whose effect is influenced

by elements of the context, external from the actual device.

Main sources are:

• Disorder: it can be of two types: dynamic and static. Dynamic dis-

order involves the entire molecular system and is the consequence of

the thermal motions of the molecules, meaning that it is time depen-

dent. Static disorder is instead caused by structural defects and chem-

ical impurities (and is, consequently, time-independent) and its effects

are local, affecting only the portion of the molecular aggregate where

the defects are actually present. Structural defects are usually conse-

quences of the deposition procedures (which will be introduced in the

next section) and to the fabrication process in general. The spatial de-

formation induced by disorder induces the formations of localized trap

states.

• Interfacial Effects: since OS devices are generally built by combining

together many active layers, usually made with different materials, it
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is important to consider the interactions that arise at the interface, i.e.

where the organic materials come to contact with another material (be-

ing it organic or inorganic). These interfaces can be a source of traps

due to non uniform local topology, energy variation, chemical interac-

tions between the two materials, roughness of the materials surfaces and

even the absorption of impurities like water, oxygen, etc. Particular at-

tention should be paid to the interfaces between the semiconductor and

the metal contacts; these can be the cause of the formation of many

traps, affecting the injection or the collection of carriers and leading to

high contact resistance[122].

• Environmental Effects: these can happen during fabrication, char-

acterization and even when handling the device. Factors like temper-

ature, environmental moisture, the presence of gases, radiation and

humidity can all be sources of impurities and disorder, leading to the

formation of traps[50].

1.1.3 Limitations

There are several challenges that need to be overcome in the development

of organic materials in general and of organic semiconductors in particular.

The main challenge is the intrinsic inefficiency of their charge transport mech-

anism when compared to the band transport typical of the silicon-based ma-

terials2.

However, there are several parameters (like the degree of structural order, or

the actual active molecular unit, and so on) that can be improved in order to

obtain a better conducting material, leaving space for future optimizations

and improvements. Particularly relevant are the potential effects of the in-

troduction of dopant elements in the material, which can lead to a better

flow of the electrons and to a more band-like transport.

2Silicon has a high electron mobility, which refers to the speed at which electrons can

move through a material.
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Another key challenge is the stability and lifetime of these materials, since

organic materials tend to degrade over time due to factors such as the pres-

ence of moisture or oxygen, which can limit the lifetime of the devices that

use them.

1.2 Electronic devices

With the term electronic device we intend a component used for control-

ling the flow of electrical currents for purposes like information processing,

system control or energy production and storage.

There are many classes of electronic devices based on advanced and functional

materials, each of which with its peculiarities, applications, functioning and

active research lines. The common trait they share is that their quality de-

pends on the materials used to build them, how they are fabricated and how

the different components of the device interact with each other. Moreover,

the environment in which they are built and used plays a fundamental role

in their efficiency and longevity.

In this section introduce two generic classes of electronic devices based on

traditional silicon-based materials, namely transistors and photovoltaic cells,

showing their general features and working mechanisms. The description of

traditional device architectures will serve as a general introduction for com-

parison with organic electronic electronic devices. The peculiar properties

of the corresponding devices based on OS materials, which are at the basis

of organic electronics, will be discussed in the description of specific appli-

cations (e.g., organic light-emitting diodes, organic field effect transistors,

organic and hybrid solar cells) provided in the next chapters.

1.2.1 Transistors

Transistors are semiconductor devices that can be used to amplify or

switch electronic signals. The most common type of transistor is the bipolar

junction transistor (BJT), which consists of three layers of semiconductor
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material: a base, a collector, and an emitter. When a small electrical current

is applied to the gate, it modulates the electrons density (and, consequently,

the flow of current3) between the collector and the emitter. This ability to

control the flow of current with a small input current is the basis for the

amplification and switching capabilities of transistors. Indeed, the main role

of transistors is to be used as current amplifiers. When a small current is

applied to the gate of a transistor, it allows a larger current to flow through

the source and drain. The ratio of the drain current to the gate current is

called the current gain of the transistor. The current gain can be used to

amplify weak signals, such as those from a microphone or a radio receiver.

Transistors can also be used as switches: when the gate current is removed,

the source-drain current stops flowing. This on-off switching action can be

used to control the flow of electrical power to a load, such as a light bulb or

a motor.

There are two main types of bipolar transistors: NPN and PNP. In an NPN

transistor, the base and collector are made of n-type semiconductor material

(i.e. a material which has a surplus of electrons in the outer energy levels),

while the emitter is made of p-type material (which, in contrast, is a material

with fewer electrons in the outer energy levels). In a PNP transistor, the base

and collector are made of p-type material, and the emitter is made of n-type

material. The direction of current flow through the transistor is reversed in

PNP transistors compared to NPN transistors.

The Field Effect Transistor

While BJTs are the most basic and fundamental example of transistors

used in the real world, in this thesis we focus more on field-effect transistors

(FETs). The main difference between FETs and BJTs is that FETs do not

use a base terminal to control the flow of current. Instead, they use an elec-

tric field to control the flow of charge carriers between the source and drain

terminals. This makes FETs well suited for applications that require high

3It is important to note that this can be much larger than the one applied to the gate
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input impedance and low noise.

Like a BJT, The FET is made up of three regions, which have different roles

(and then names). These regions are called source, drain and gate. The

source and drain terminals are made of n-type or p-type semiconductor ma-

terial, depending on the type of FET. The gate terminal is separated from

the source and drain by a thin insulating layer, such as silicon dioxide. The

gate terminal is used to control the flow of charge carriers between the source

and drain by applying a voltage to the gate-source terminals to create a po-

tential barrier that modulates the flow of carriers.

There are two main types of FETs: the junction field-effect transistor (JFET)

and the metal-oxide-semiconductor field-effect transistor (MOSFET). The

JFET is the simplest type of FET and is made by reverse-biasing a pn-

junction, which creates a depletion region that acts as the gate. The MOS-

FET is a more complex type of FET that uses a metal gate electrode instead

of a depletion region. MOSFETs are widely used in digital and analog cir-

cuits because they have high input impedance, low noise, and low power

consumption.

FETs are used in a wide variety of applications, including digital logic cir-

cuits, power electronics, and radio-frequency communication systems. They

are also widely used as voltage-controlled resistors in analog circuits, where

they are used to control the gain of amplifiers and the frequency response of

filters.

1.2.2 Solar cells

A solar cell is an electronic device that directly converts sunlight into elec-

tricity. Light hitting the solar cell produces both a current and a voltage to

generate electricity. This process requires a material in which the absorption

of light moves an electron to a higher energy state; then this higher energy

electron moves from the solar cell into an external circuit. The electron then

dissipates its energy in the external circuit and returns to the solar cell.

The operation of a solar cell can then be summarized with the following



22 Scientific and technological context

steps:

• Through exposition to light, the cell generates energy carriers

• The collected light-induced carries generate a current

• The current generates a voltage across the solar cell

• The power generated is dissipated into the external circuit

Architecture and operation of a solar cell

A classic solar cell is made of two layers, each made of a different type of

silicon-based semiconductors:

• The p-type: this layer is made of silicon with added atoms of different

elements. These elements are chosen between those that have one less

electron in their outer energy level than silicon, like boron or gallium.

This ”missing” electron makes it impossible to create bonds with all

the surrounding silicon atoms, giving birth to a so called ”hole”, i.e. a

positively charged particle

• The n-type: on the opposite, this layer is made by adding atoms that

have one more electron in the outer level than silicon (like phosphorus);

this way, these atoms forms all the possible bonds with the adjacent

silicon atoms, but one electron remains free from bonding, and is then

free to move inside the silicon structure

A solar cell is then a n-type layer put on top of a p-layer. The point of contact

between these two layers (and the closer portion of the two layers), is called

p-n junction, which is the region where, when all the excess electrons of

the n-type material and all the holes of the p-type material diffuse across the

junction and recombine; when this process is completed, we see the formation

of the so called depletion zone. Depletion zone is a space region that acts as

a barrier for the flow of the charge carriers; because of the presence of these

opposite charges, it creates an electric field that prevents the excess electrons
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in the n-type layer from filling all the holes in the p-type layer[159]. Its width

depends on the doping concentration of the semiconductors and the thickness

of the junction. It is important to note that the width of the depletion zone

also affects the efficiency of the solar cell, since a wider depletion zone will

result in less recombination of the charge carriers, hence more current flow

and more efficiency. When all the holes in the depletion zone are filled, the

p-type part of the zone itself contains negative ions, and the n-type part

contains positive ions instead.

When the solar cell is exposed to light, silicon electrons are ejected, leading

to the formation of new holes. When this happens in the aforementioned

electric field, this will move electrons to the n-type layer and holes to the p-

type layer. If the two layers are connected with a metallic wire, the electrons

will then travel from the n-type to the p-type layer, crossing the depletion

zone and then going through the wire back to the n-type layer. This setting

then creates a flow of electricity[159].

1.3 Materials and devices fabrication and ex-

perimental methods

As mentioned above, advanced materials, and in particular molecular and

organic materials, can replace silicon-based systems for developing devices

with new and improved functionalities. Moving from materials to full-scale

devices, however, we need to take into consideration two main aspects:

• The interaction between two (or more) components of the device, usu-

ally thin-film layers made of two different materials. This gives birth to

the so called interfaces; the phenomena that take place here are quite

often very crucial in determining the properties of a device.

• The set of different processes and procedures used to fabricate the

different materials and the techniques used to fabricate interfaces; these

are as important as the materials used, since different ways to process
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a molecular material can lead to completely different performances of

the final byproduct

Moreover, the morphology of interfaces often plays a crucial role in affecting

the performance of devices, making the fabrication process a fundamental

factor in the final performance of a device. Here, we introduce the main

concepts related to the fabrication and processing of molecular and organic

materials and devices and a brief explanation of some of the main procedures

used today.

1.3.1 Deposition Techniques

The process of applying a layer of organic material onto a pre-existing

substrate is called deposition or growth.

Deposition can be done either with the material in the vapor or solution

phase4, and the choice is made depending on the specific vapor pressure or

solubility of the material. Different deposition techniques result in materials

with different morphologies and aggregation structures which, as discussed

before, deeply affect the electrical properties of the semiconductor.

Even though there are several applications 5 of vapor deposition of semi-

conducting materials[31], at the time of this writing, solution techniques are

more mature and reliable. Solution growth usually results in more uniform

films of materials, and allows the realization of larger areas at relatively low

temperatures. These properties result in scalable and flexible byproducts at

low cost. The great progress made with these kinds of deposition techniques

lead to a huge improvement of the performance of the resulting devices fab-

ricated in the last years[78, 131, 130, 85, 127].

Here, we are going to introduce the main techniques used today, based on

what is already present in many reviews[31, 176, 129, 86]. A summary is

4These means, respectively, the organic material opportunely vaporized or dissolved in

an appropriate solvent
5Even for the development of flexible devices, which is an even more challenging field.
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visible in figure 1.7.

Figure 1.7: A schema of the main solution deposition techniques[31].

Drop casting

This is the simplest solution technique. It works by simply dropping the

solution directly onto the substrate. The solvent is chosen in order to be able

to spontaneously evaporate, leaving behind the organic materials in the form

of a crystallized thin film.

The technique has been modified in recent years in order to optimize the

crystallization of the semiconductor. One of these adaptations is Vibration-

Assisted-Crystallization (VAC), where a delicate vibration is applied to the

substrate. This way, the molecules gets enough energy to pass from its

metastable state to a state of minimum potential energy, meaning the state

with the highest degree of order[32]. Alternatively, Solvent-Assisted-Crystallization

(SAC)[110] or specific surface treatments[45] makes the evaporation of the

solvent slower, which is another way to improve the crystallization process.
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Spin coating

This is probably the most used technique. The solution is deposited onto

the substrate, which rotates at very high speed (usually more than 1000

rpm). The consequent centripetal acceleration forces the solution to spread

uniformly on the entire substrate resulting, after the evaporation of the sol-

vent, with a uniform semiconductor. The geometrical properties6 of the

resulting film are the consequence of many different parameters like spinning

velocity and acceleration, the concentration of the solution and the type of

solvent used.

Even this technique has been modified and improved over time. For example,

in [181] it is presented a variation where the substrate is not placed on the

rotational center, and this implies that the solution does not spread radially

but along a specific direction.

Meniscus-guided techniques

Many deposition techniques based on solutions use some kind of linear

translation of the substrate or the coating tool in order to allow for an aligned

growth of the semiconductor. These methods usually rely on the formation

of a meniscus on the solution, which in turn facilitates the evaporation of

the solvent. Moreover, the relative linear motion of the solution and the sub-

strate promotes a better alignment of the microstructure inside the organic

materials.

Many parameters can be used to influence the crystallization process (for

example the velocity of the translation or the temperature) and the selection

of different tools result in many different techniques[40]. Some prominent

examples are:

• Dip-coating: the substrate is immersed in the organic solution, then

is pulled out with a controlled velocity. The evaporation rate and the

velocity of the substrate are the main parameters, leading to different

6For example thickness, uniformity, microstructures and so on
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thickness and crystalline structure of the final material[66].

• Blade coating: a ”spreading element” (which can be a bar, a blade,

a knife and so on) leaves a wet thin film on the top of the substrate,

which is then left to crystallize. The velocity of the spreading and the

temperature are still the main parameters that influence the quality

of the final result. This is a very scalable technique, and has seen

different adaptations[160, 135, 164]. In particular, a technique called

Bar Assisted Meniscus Shearing (BAMS) has shown to lead to some of

the best performing organic semiconductors based on small molecules.

Printing Techniques

These techniques give the possibility to deposit the organic material,

solved in a solution, in a spatially confined manner, allowing the deposi-

tion process to follow a pattern.

Some important techniques are:

• Inkjet printing: it is probably the most famous technique of this

kind. The process is made by spurting a droplet of the solution using

a piezoelectric or a thermal process. The main parameter is the ink

(i.e. solution) interaction with the substrate, which is in turn influ-

enced by the surface energy of the substrate and the viscosity of the

solution. An optimized version of inkjet printing is called Pneumatic

Nozzle Printing[177], and is a combination of the inkjet printing ap-

proach with the meniscus guided one: the solution is ”printed” by an

outlet. This outlet is placed close to the surface in order to favor the

formation of a meniscus. This method is perfect to obtain an organic

film which shape follows a specific pattern

• Spray coating: this is another method based on an outlet sprouting

small droplets. In this case, however, the droplets are aerosolized using

an inherent gas as a carrier, then the particles hit the substrate and

are able to dry very quickly, resulting in a very homogeneous film.
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Main parameters are the pressure of the gas, the shape and dimension

of the outlet, the concentration of the solution and the duration of

the whole deposition process. This is another very scalable method

that also allows to get very high quality materials spread on very large

surfaces[82].

1.4 Computational methods

Nowadays, several decades have passed since computational science (and,

in particular, computational simulations) has become a tool in the hands

of researchers. By ”computer simulation” we mean a process encompassing

mathematical modeling of a scientific question where the modeling itself is

done through specific software and digital tools, and the actual calculation

is then performed on a computer. These softwares are meant and designed

to predict the general behavior and the outcome of a real-world or physical

system.

Computer simulations have altered the interplay between experiment and

theory. The essence of the simulation is the use of the computer to model a

physical system. Calculations implied by a mathematical model are carried

out by the machine and the results are interpreted in terms of physical prop-

erties. Since computer simulation deals with models it may be classified as a

theoretical method. On the other hand, physical quantities can (in a sense)

be measured on a computer, justifying the term ”computer experiment”[111].

While the reliability of these mathematical models could require validation

by comparison with their results to the real-world outcomes they aim to pre-

dict, simulations are often easier and quicker to perform and organize than

laboratorial experiments; even more, simulations can be performed in batches

and concurrently, allowing researchers to test different hypotheses, materi-

als and architectures all at the same time, in a identical environment and

without the uncertainties of a real-world lab. Simulations also have another

key advantage: they allow researchers to investigate and evaluate details and
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properties of the physical entities that are otherwise impossible to analyze

and know through laboratory experiments due to the nature of the phenom-

ena, to the microscopic scale of the entities at hand or because of lack of

reasonable ways to measure them.

However, these also have some drawbacks:

• In order to correctly and efficiently perform simulations, a researcher

must be skilled in different complex disciplines and topics, and in par-

ticular:

– Theoretical physics and chemistry

– Applied physics and chemistry

– Specific approximations and assumptions of specific algorithms

and methods

– Computer science and engineering

– Programming

– High-performance computing (HPC) environments

• While being quicker than actual experiments, simulations are still a

long and complex computation, which can last from minutes, to hours

or days and even weeks or months

• Large scale simulations require HPC facilities

• Many of the methods are intrinsically based on numerical algorithms,

for which the accuracy and convergence must be tested and validated

before, during and after the computation

Here, we are going to introduce some of the main computational methods

used at this date.

1.4.1 Density Functional Theory

Density Functional Theory (DFT) is a computational quantum mechan-

ical modeling method used in physics, chemistry and materials science to
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investigate the electronic and nuclear structure of many-body systems, in

particular atoms, molecules, and the condensed phases. Using this theory,

the properties of a many-electron system can be determined by using func-

tionals, i.e. functions of another function. In the case of DFT, these are

functionals of the spatially dependent electron density. DFT is among the

most popular and versatile methods available in condensed-matter physics,

computational physics, and computational chemistry.

DFT is an example of ab-initio method, meaning that it require no informa-

tion coming from empirical knowledge about a physical/chemical system ana-

lyzed; instead, it uses many different approximations to solve the Schrödinger

equation using wave functions for the description of the atomic orbitals and

the calculation of molecular properties[12].

The history of DFT is rooted in the birth of quantum mechanics in the early

20th century. Applying quantum mechanics principles to more complicated

systems such as molecules and solid-state materials proved to be difficult:

even in classical physics there is no general solution to a three-body prob-

lem7, but in order to describe just a water molecule at the quantum level we

have to deal with ten electrons and three atomic nuclei.

In this context, DFT emerged in the mid-60s from a single idea: tackling

this problem by not focusing on the individual electrons but instead using

the electron density as the fundamental variable to solve for, and further-

more reformulating the many-body problem as an equivalent single-particle

problem.

This single idea help to solve two categories of problems:

• Handle any element in the periodic table in any kind of atomic ar-

rangement, without the need for experimental input parameters. Be-

cause of this, DFT has strong predictive power, even for completely new

molecules or materials. That made atomistic simulations able to reduce

development time and cost; using HPC clusters, a single researcher can

screen hundreds or even thousands of materials in parallel, vastly out-

7For example: the combined orbital motion of the sun, the moon, and the Earth
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numbering the number of experiments a human can perform at the

same time

• Understand how materials and devices behave and operate under dif-

ferent conditions. A trained DFT user can correlate measurement data

with simulation results to draw conclusions about the physical origin

of certain effects observed in the material or device that cannot be ex-

plained with other, simpler models. Such insight is crucial in order to

fully understand the properties of the analyzed material, to scale down

device dimensions or optimize materials choices or process conditions

1.4.2 Molecular Dynamics

We can describe molecular dynamics (MD) simulation as a technique

where the atomic trajectories of a system made of N particles are computed

by numerical integration of Newton equation of motion starting from cer-

tain initial and boundary conditions. The main idea behind MD is that of

computing the property of the system at hand as a temporal mean, based

on the trajectories of the N particles present in the system. This is done by

enforcing all the methods known as statistical mechanics[111].

In a nutshell, the main idea is that, known the potential, the force acting on

the ith particle is given by the gradient with respect to the atomic coordi-

nates; so, starting from the Newton equation of force:

Fi = mi
d2ri(t)

dt2

Assuming that mi is the mass of the ith atom, ri(t) is the position at time

t, then Fi is the force acting on the particle i at time t.

With regard to the force related to the potential, the equation is:

Fi = −∇U(r1, . . . , rN) = −
(
∂U

∂xi

,
∂U

∂yi
,
∂U

∂zi

)
[111]

As such, MD can simulate the dynamical behavior of complex systems in

given thermodynamical conditions. In several application contexts in the
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field of materials development, MD simulations are used in conjunction with

molecular mechanics (MM) potentials. Here, a molecular system is generally

described in terms of a set of very simple potential energy terms, approximat-

ing the constituting units as a set of particles kept together by mechanical

interactions. Although very rough, these approximations allows the simula-

tion of very large molecular aggregates at relatively limited computational

costs. The drawback of this approach, however, is the intrinsic inability to

describe systems where chemical bonds are formed or broken, thus at differ-

ence with electronic structure methods (e.g., DFT). A full example of MM

potentials could be:

U (r1, r2, . . . , rN) =

Nbond∑
ibond=1

Ubond (ibond, ra, rb)

+

Nangle∑
iangle=1

Uangle (iangle, ra, rb, rc)

+

Ndihed∑
idihed=1

Udihed (idihed, ra, rb, rc, rd)

+
N−1∑
i=1

N∑
j>i

Upair (i, j, |ri − rj|)

. . .

Here, we can introduce the different components of these potentials, that

are:

• Bonds: these are made of two particles (atoms) which are connected

by a strong link, mimicking the occurrence of chemical bonds through

electron sharing

• Angles: these are made of three particles, linked by a bond in a two-

by-two fashion

• Dihedrals: like the angles, but made of four particles instead of three
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• Pairs: similar to bonds, but instead of sharing electrons, their link is

due to other interatomic (non-bonding) forces.

The definition of full potential terms enables MD simulation of complex sys-

tems. An ordinary run of a MD simulation can be represented as in Figure

1.8:

Figure 1.8: a schematic of the general MD simulation workflow

MD simulations have to deal with a complex problem: the selection of

the atomic force field, i.e. the set of interatomic forces that bind each pair

of atoms/particles present in the system. In particular, the potential U

represents the potential energy of N interacting atoms as a function of their

positions. These potentials can be built in two different ways:

• Using empirically determined values for many possible atom pairs (i.e.

an hydrogen atom bonded with a carbon atom) but also depending on

the chemical neighborhood

• Computed using more accurate lower level methods (like DFT).

In the first case, it is easy to understand how building the potential for a

system with many atoms of different atoms types using this method can be

very difficult, even more so because not all the possible pairs and neighbor-

hoods have an empirically determined potential. This leaves the researcher

with the burden of manually compiling the potential for the system at hand,

carefully choosing the different potential types for each o. However, due to

the complexity of the task and to the incompleteness of the known, empirical

potentials, part of this process is inevitably led in a trial-and-error fashion,

and is more a work of art and experience than a precise science. In the second
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case, researchers have to first develop DFT simulations, perform them and

then use the results to perform the subsequent MD simulation, meaning that

two different simulations enviroments (and so two different set-ups, software

stack, configuration options and so on) must be taken into account.

Another key limitation of MD simulations is related to simulation time scales.

That means that a lot of interesting phenomena (even for applications like

biology, chemistry and so on) take place both in very restricted time frames

and very long ones (i.e. time intervals ranging from femtoseconds to seconds);

this means that a simulation should last for billions of time steps to capture

all these different phenomena. Since this kind of simulation is usually per-

formed for very big systems (in the order of magnitude of tens of thousands

of atoms) these kind of computations may result to be intractable. This is

also related to the rare events problem; here, ”rare” is relative to the amount

of events that happens at this scale, so these rare events (phase transitions,

transformations of the elements and so on) actually happen many times for

each microscopic interval of time. But computers are only able to compute

all the equations at discrete time-steps, and for these reasons we have a high

probability of missing many of these rare events. Unfortunately, these events

are also the most fundamental ones for deeply understanding the physics and

chemistry of a system, and the inability to capture them with MD leads to

imprecise results that do not take into account the impact and effect of these

events.

1.4.3 Device simulations

These are higher scale simulations, which are grounded in statistical mod-

els of all the different kinds of phenomena that determine the functionality of

real-world devices. Differently from the two previous families of methods, the

main difference is that device simulations method lose any kind of descrip-

tion of the atomic nature of the materials and phenomenon analyzed, and

the physical system is described using a (1D/2D/3D) mesh for the discretiza-

tion of the system. On these meshes, the equation describing the system or
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the phenomena investigated are then computed. These equations are gener-

ally differential equation based on empirical knowledge, results coming from

lower scale simulations or from theoretical frameworks used to describe the

system.

These simulations can be of many different types. Here, we are going to

highlight the main ones.

Drift-diffusion simulations

Drift-diffusion equations are a system of partial derivative equations used

to describe the charge transport phenomenon of electronic devices. They

have a particularly important role in the simulation of properties of devices

based on semiconductors[154, 107].

The equations are:
−∇ · (ϵ∇φ)− ρ = 0, in Ω,

q
∂n

∂t
−∇ · Jn = q (G−R) , in Ωsemic,

q
∂p

∂t
−∇ · Jp = q (G−R) , in Ωsemic,

where:

• Ω and Ωsemic are the region of space occupied by the device and that

occupied by the semicondutor alone respectively

• ϵ is the electric permittivity of the material

• q is the element charge

• φ is the value of the electrical potential inside the device

• n and p are the density of the two charge carriers, namely electrons

and holes respectively

• ρ is the charge density per volume unit; in particular, for the semicon-

ductor holds: ρ = −q (n− p+ D), where D is the concentration of the

eventual doping elements; for the insulator, this is simply ρ = 0
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• Jn and Jp are the density vectors for the electric current, normalized

per surface unit

• (G−R) is the generation-ricombination ratio

This must be paired with careful defined boundary conditions8 and then

solved with regard to φ, n and p as functions of time and space.

Multiscale simulations

The aforementioned methods have different strengths and drawbacks, but

share a trait: limited by their weaknesses, they are unable to simulate all the

properties needed to fully understand an actual physical system, ranging

from quantistic properties to the actual physics of a full device together with

the properties of the materials that compose the device.

In order to overcome this problem, the modern approach to simulation re-

volves around the joint usage of many of these solutions, using information

and results coming from one or more different scales to aid the convergence

of a specific method or to obtain more precise results. This way of thinking

and approaching the problem is called multiscale simulation.

The different scales and their order are depicted in figure 1.9.

While being a more powerful approach, this also gives birth to new prob-

lems, mainly due to the increased complexity of the approach. In particular,

merging the information coming from different scales is not a trivial task,

both due to the different physical model used at different scales and, con-

sequently, the different softwares used to perform the different simulations.

These softwares also use very different data structures and file formats, fur-

therly impairing the integration of the respective results. This process is

even more difficult when the problem analyzed is so complex that it requires

a mixture of a bottom-up9 and top-down10 approach, leading to the need of

8These are dependent on the geometry of the device
9Meaning that we are going from a lower scale (for example, quantum physics) to a

higher one (for example, molecular dynamics)
10The opposite of the bottom-up approach; for example, we may need to use results
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Figure 1.9: A figure showing the different scales of simulations in a plot,

showing their distribution with regard to the size scale (on the x-axis) and

time (on the y-axis)

integrating different results coming from different scales more than once and,

possibly, in both directions.

This is a situation where automatic and data-driven techniques can play a

fundamental role in helping researchers to improve this mechanism, both in

terms of ease of use and performance-boosting. Moreover, data-driven tech-

niques can also help to make the different scales more integrated, and there

are some pieces of literature already moving in this direction[63].

stemming from a device simulation into a coarse-grain simulation



38 Scientific and technological context

1.5 Data, an open challenge in applying Data-

Driven techniques to Materials Science

Here, we discuss the general picture of the state-of-the-art of data-driven

techniques applied to materials science, presenting the main problems at a

high level. Then, in each chapter, we will analyze the deeper technical as-

pects of these problems, together with the proposed solutions.

At the time being, the field suffers from a deep fragmentation of software,

techniques and file formats, often customized for a specific research field (pro-

tein dynamics, pharmacology, single-molecule analysis, device optimization

and so on). This means that sharing information and data coming from dif-

ferent sources is very difficult because they are usually encoded in different

formats, which sometimes may not contain all the data needed to be used in

a different context with a different software for a new purpose. This means

that researchers have to invest a lot of time in converting files or even gath-

ering missing information from papers, other files or contacting the original

author in order to be able to use data for their work, and this is a huge

problem both for new research lines or for reproducible science.

Another problem of the actual state-of-the-art in computational simulation

is the need to bend the actual physics of the problem at hand to the needed

approximation, and that sometimes means manually filling long and com-

plicated input files (which, again, are custom-formatted in order to be used

with the specific software used). For example, in order to perform a MD

simulation, a researcher must write the entire force field for all the entities

at play; this can be done by consulting very long and specific look-up tables

reporting the best parameters for a specific pair of atoms. However, these

values do not depend only on the two atoms that form the pair, but also

on the larger chemical neighborhood surrounding those atoms. This means

that it’s not uncommon to have a combination for which the exact force field

is not known, and this leaves the researcher with the burden to identify the

best approximation between those already known. This is a very difficult
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task based on very specific expertise, resulting in a high entry barrier to the

discipline for young or new researchers.

The whole process is even harder when a scientific question requires to be

tackled on different scales. In fact, while the approach is relatively similar,

the kind of input files that must be prepared, the resources that have to be

used and the physical and technical knowledge required are very different,

leading a lot of researchers to specialize in one specific scale. This means

that leading complex simulations, investigating a problem at all the possible

scales, is usually a job for very large, multidisciplinary teams. Moreover,

each step can be completely disjoint from the next and previous one, and

integrating them may require an additional process of tuning different simu-

lation parameters in order to make the whole pipeline consistent.

Another important aspect to consider is the fact that each of these simulation

steps can be performed with a plethora of different software, any of which

uses its own standard for input files, naming conventions, specific simulation

parameters and, obviously, output file formats and information. In the sem-

inal years of the discipline, researchers have been pushed to develop their

in-house software and corresponding data formats, in a quest for developing

the most powerful simulation stack, while embracing the new technologies

and languages developed along the years. This effort led to the develop-

ment of many, very efficient softwares like CP2K[83], GROMACS[15] and

LAMMPS[166].

However, this led to a situation where data formats for results, input files

and computational recipes are completely customized to each software; even

the files for describing the actual chemical entities (like molecules, sets of

atoms etc) can be encoded in one of many different formats, where some are

completely barebones (like .xyz files, which actually contains only the coordi-

nates and types of the different atoms) or very complex (like .pdb, the format

developed and used for the Protein Data Bank[16], where many advanced

information and metadata are stored into the file). It is easy to understand

how this situation makes it very hard to design new experiments while also
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enforcing the knowledge and results obtained by other teams and researchers

who are using different software and file formats. Also, as we are going to

discuss more deeply in other chapters who are fully dedicated to machine

learning (namely chapters 2, 4 and 5), this scattered data is very hard to

be put to use for training machine learning models; in fact, collecting data

coming from different experiments mean dealing with the aforementioned

plethora of formats, files and encodings, making it long and complicated for

the data scientist to be able to integrate all the different data sources in other

to gather sufficient amount of data.

Some work has been made in order to overcome these limitations[3], but

these solutions are only partial; for example, software like Galaxy[3]11 are

meant to give researchers a way to automatically execute their simulation

workflows using small pre-built building blocks, while automatically collect-

ing the produced data with the specific pipeline that produced them, saving

also an history of potential multiple runs. It is obviously a very powerful

software and promising approach, but it also has some drawbacks; the main

idea behind Galaxy is to wrap every component inside an XML[138] scheme,

allowing the software to track everything and maintain a record of prove-

nance and correspondence in a univocal way. However, this adds a new layer

of complexity to an already very nested, stratified and complex discipline,

which means that researchers who cannot find an implementation of one or

more of the building blocks of their experiments then need to learn both how

to implement such a building block and how to ”wrap” it inside an XML file.

Moreover, it looks like not all the existing simulation software is available

by default on Galaxy, which means that researchers need either to learn how

to use a new simulation software or must find a way to integrate the one

they prefer inside Galaxy. Ideally, we would like to give researchers tools like

Galaxy but without this added complexity.

11While Galaxy has been initially developed for biomedical applications, it has already

been used also for other domains, and many of the software embedded inside Galaxy (like

Gromacs) are the same software used in materials science that we introduced before.



Chapter 2

Developing features for

materials entities

In this chapter, we introduce the work done on applying machine learning

algorithms to the prediction of properties of the simplest constituting units

in aggregates of molecular materials, which are molecular pairs. It must be

noted that there is a radical difference between dealing with single molecules

or dealing with molecular systems or molecular aggregates (even the small

ones). These differences are discussed throughout this first chapter and the

related activities, but they are going to be analyzed in further detail in the

following (i.e. chapter 3).

At the beginning, we give a deeper analysis on the state-of-the-art of machine

learning applications to the case of molecular systems, highlighting strengths

and limitations. Then, we focus on the development of features that are able

to describe the physics of the systems at hand, allowing for more powerful

predictions even in more complex cases. Moreover, we focused on creating

models that are trainable even with small datasets1, which is a common

1In this project, we are working with datasets coming from actual simulation workflows.

These simulations tend to be very long and difficult to set-up, which usually means that

the resulting datasets are quite small. Improving the computational throughput of this

kind of workflow is, as already stated, one of the incentives of using machine learning

techniques in this realm.

41
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scenario in the materials modeling field due to the expensiveness and duration

of traditional simulations. It must be noted that this is the lowest possible

scale of simulation used in multiscale simulation approaches, which is another

reason why we decided to tackle this problem at the beginning of our research

activities.

2.1 Physics and chemistry context

In this chapter, we are going to use the knowledge introduced in the pre-

vious chapter, and in particular in section 1.1. In particular, we are going

to deal with the Electronic Coupling, as introduced in section 1.1.1. The

computational evaluation of charge transport properties in molecular mate-

rials generally requires the simulation of electronic coupling values within a

large set of neighboring molecules constituting a model of a molecular aggre-

gate. It is then easy to understand why it’s crucial to develop methods to

compute the electronic coupling that are both reliable and efficient in order

to enable the possibility to quickly use the computed couplings to then com-

pute higher scale properties of bigger aggregates.

2.1.1 A computational perspective

Generally speaking, the properties of molecular materials depend both

on the properties of individual molecules (related to the chemical composi-

tion and structure of a molecule) and on the properties of aggregates. For

example, in Fig. 2.1 the complex structure of the morphology obtained from

molecular dynamics simulations of aggregation of a perylene diimide deriva-

tive is shown[100, 98].

The aggregation morphology depends, in turn, on both the peculiar molec-

ular structure and on processing conditions and environment[101]. In several

cases of technological interest, the resulting aggregate exhibits structural
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Figure 2.1: Molecular structure of a perylene diimide derivative and resulting

simulated morphology at the interface with a substrate.

features on the nanometric scale. Indeed, nanoscale aggregation and mor-

phology have impact on several properties of molecular materials[152]. The

evaluation and prediction of the properties of aggregate must therefore con-

sider the properties of materials across a quite wide range of length scales,

from the molecular scale to the nano- and micro-scale.

Multiscale simulations techniques provide tools for the modelling of the prop-

erties of materials at different scales[170, 34]. In the particular cases consid-

ered in this work, multiscale simulations can be used to link the properties of

individual molecules to the properties of molecular aggregates. Specifically,

different computational methods target phenomena occurring at different

scales, and the output of a simulation at a given scale can be used as an

input to perform another set of simulations at a lower or higher scale, pro-

viding the cross-scale link.

A particularly interesting case study concerns the evaluation and predic-

tion of the charge transport properties in molecular semiconductors. The
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charge transport properties of molecular materials are exploited in several

cases of technological interest, for example in the development of organic

light-emitting diodes (OLEDs) or organic photovoltaic (OPV) solar cells. In

several cases, the propensity to efficient charge transport depends on the

intrinsic electronic properties of materials, as for example occurring in func-

tionalized carbon-based nanostructures[115, 155, 113, 114, 112]. In the case

of molecular materials, however, the overall properties of the materials, in

terms of phenomena related to charge transport, depend on:

• the electronic properties of individual molecules (electronic configura-

tion, energy levels, etc.);

• molecular aggregation, intermolecular interactions, morphology, defor-

mations, interfaces and all other effects concerning the interaction of

individual molecules with other molecules or materials[97].

A very simple, though effective, model of molecular semiconductors describes

the charge transport process in terms of percolation of charge by hopping

from a molecule towards a neighbouring molecule, as shown in Fig. 2.2.

Figure 2.2: Charge hopping mechanism in molecular semiconductors.

The current flowing through materials can essentially be interpreted as a

sequence of single events involving two neighboring molecules. This quantity

can usually be determined by DFT simulations, involving pairs of molecules

and neglecting collective effects. The transport properties of molecular ag-
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gregates can subsequently be obtained by a sort of weighted statistical inte-

gration, for example by applying kinetic Monte Carlo (kMC) simulations[134,

168]. However, two relevant issues must be considered:

• The evaluation of the intermolecular couplings by DFT simulations is

quite demanding, from the computational side, and can require up to a

few CPU hours for a single molecular pair, on standard computational

infrastructures.

• As we discussed before, the properties of molecular materials, includ-

ing charge transport, depend strongly on the aggregation morphology

and on resulting interactions on a scale of several tens or hundreds

of nanometers. As the typical size of individual molecules is on the

order of a few nanometers, the evaluation of intermolecular coupling

in nanoscale aggregates results in several thousands of pairs, each of

which needs an independent DFT calculation.

The use of statistical methods, such as Kinetic MonteCarlo (kMC), for the

evaluation of charge transport properties requires a balance between accuracy

and computational load, which can exceed several thousands of CPU hours.

Therefore, we need a set of tools which can assist the evaluation of the charge

transport properties of molecular materials with good accuracy and, possibly,

saving CPU time.

2.2 Machine learning for materials entities:

state of the art

In recent years, machine learning (ML) methods have applied with suc-

cess to studies of the properties of molecular materials[125, 77, 58, 21, 150,

120, 149]. The vast majority of these studies are focused on the properties of

individual molecules, targeting the correlation between molecular structure

and resulting properties[53, 93, 147]. The properties of several technologi-

cal materials constituted by molecular aggregates, however, depend on both
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molecular structure and on aggregation morphology, as for example in the

case of nanoscale materials[91, 90]. Computational methods for predicting

the properties of molecular materials must therefore integrate the proper-

ties of individual molecules with information about aggregation morphology,

which, in turn, can be related to materials fabrication and processing[97].

The definition of a modeling paradigm able to simulate and predict the

properties of molecular materials as a function of molecular structure and

aggregation/fabrication conditions can potentially enable high-throughput

development of novel materials for technological applications.

2.3 Development of a systematic approach

After the analysis of the current state-of-the-art and the limitations dis-

cussed in the previous section, here we introduce our approach to the appli-

cation of ML to materials science. In general, we can identify two macro-

approaches present in literature:

• Using physics-based featurization of the entities at hand, which allow

us to use shallow and simple models to fit the problem (we can relate

this to higher scale simulations)[36, 183]

• Using powerful model with non-specific features which can capture

some aspects of the physical entities at hand (we can see this tech-

nique as more related to ab-initio methods)[133, 52]

The first approach suffers from a common problem: they lack a systematic

approach to the application of machine learning algorithms to materials sci-

ence and molecular entities in general, leading to sparse results and ad-hoc

procedures with little potential for re-application to different domains and

tasks or even to the same task applied to different molecules. Moreover,

many of the procedures developed in these works are only usable with sim-

pler entities (small molecules, linear molecules, restricted number of atoms)
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and do not study the impact of different ways of representing the same char-

acteristics.

On the other hand, the second class of articles enforces very powerful fea-

tures and data format like graph representation of molecules, which suffers

from high-complexity both in the conversion of raw structural files to these

high level features and in their actual usage both from a computational

load standpoint and with regards to the models that are able to process

them for their learning phase; in particular, they require longer training

times, more data entries and customly developed models (i.e. graph neural

networks[141, 24, 175]) which despite being very powerful and promising are

also hard to train and require an amount of data that is hard to have at

disposal in the materials science domain[184, 23, 151, 180, 9].

In this work, we are introducing a first attempt at systematically develop-

ing lightweight yet expressive features to represent molecular systems that

are able to be fed to rather simple models while also being able to be used

to solve related tasks for different (and even very different) molecules with

no modification required. A specific work on featurization is required for

different reasons:

• from a technical point of view, the amount of data available to re-

searchers if often too limited to allow for reliable and fast enforcement

of deep learning techniques

• having simpler, more interpretable models is an important factor when

the problem at hand has no prior known answer and the AI approach

is used in order to help researchers find the root principle of a chemico-

physical effect instead of just finding the answer for a specific molecule

or material in a specific context

• on the opposite, if a proved rule is known, enforcing these rule to ex-

tract meaningful features can serve both as a way to reduce the com-

putational burden of training an algorithm and as a method to further

investigate the deeper nature of a known phenomena
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Obviously, complex models play a fundamental role in scientific research,

with very notable examples like AlphaFold[72], but they serve a different

purpose, that is giving answers for unknown problems helping researchers

formulate new hypotheses and finding new rules or laws previously unknown2.

However, we think that after this step researchers could furtherly confirm

their new findings by creating (or, hopefully, reusing) specifically tailored

featurization of the entities at hand to train a simpler model: if this model

achieve comparable results to the more complex ones, then this could be

another good sign of the validity of the new theoretical3 findings.

Ultimately, our target is to be able to describe intrinsically complex multi-

scale systems relying on simple techniques, enforcing knowledge about the

physical systems and materials analyzed to optimize both the computational

load and the shareability of the implementation. In this specific case, we

want to find and fit the correlation that exists between the structure and the

morphology of a given material (and, in particular, a molecular pair) and a

target property.

2.3.1 A multiscale top-down approach: from simula-

tions to data workflows

Our approach relies on a top-down view of the properties of molecular

materials for applications. For example, we can consider the properties of

active materials used in organic electronic devices as derived from interlinked

materials properties on progressively lower length scales, from the device to

the molecular scale, as shown in Fig. 2.3.

In this case, we can first consider the aggregation morphology of molecular

2Another important role of complex models is for those problems where a proven answer

does exists, but the chaotic nature of the physical process at hand makes hard to rigorously

and reliably calculate it for specific contexts with traditional (i.e. procedural and/or non-

statistical) computational tools
3And, as and added bonus, this theoretical findings are immediately usable in practical

context via the trained models
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Figure 2.3: Top-down description of the properties of active materials used

in organic electronic devices. Partially adapted from Ref. [79, 10, 97].

materials at the nanoscale. For example, we can simulate the aggregation of

molecules, in different conditions, by atomistic (or coarse-grained) MD[96].

This step will also link the nanoscale morphology of molecular materials to

processing or fabrication conditions, a fundamental part in the engineering

of organic electronic devices[99]. Then, we can proceed to a reduction of the

scale, extracting pairs of neighboring molecules from the MD configurations

and computing electronic couplings for each pair (see Fig. 2.4). As explained

before, however, this step may require the evaluation of electronic coupling

for a large number of molecular pairs, in the order of thousands or more.

It is worth noting that the top-down approach discussed above relies,

technically, on the knowledge of the molecular structure only. Indeed, the

aggregation morphology of molecular materials, at least for pure bulk materi-

als, depends on the molecular structure and aggregation conditions only. The

whole process that goes from the single molecule to the final pairs selection

can therefore be represented as in Fig. 2.5.

We start from the knowledge of the structure of the individual molecule.

On the basis of this knowledge, we build a suitable atomistic potential, usu-

ally in terms of a force field, including intramolecular and intermolecular

terms. We select the conditions leading to aggregation and build a computa-

tional model that is able to reproduce the aggregation morphology using MD

simulations. The individual molecular pairs are extracted from the simulated

aggregate, and DFT calculations are carried out for each selected pair. This
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Figure 2.4: Simulation of the aggregation morphology of molecular materi-

als by MD, from which individual pairs are extracted for subsequent DFT

calculations.

set of steps also defines a flow of data which links molecular structure to

charge transport properties.

2.3.2 Selected molecules and task

The general task of this activity is to develop a general set of rules to

create machine learning-powered software for predicting the properties of

molecular aggregates. These properties are determined by the structure of

the molecule(s) that compose them and by the way they arrange themself

with regard to the others in the bulk. For these reasons, we aimed at de-

veloping a set of features and procedures able to use this kind of spatial

information and relate them to the properties at hand.

In order to be able to come up with the most general solution possible, we

chose a very complex molecule as our testbed and we started from the sim-

plest aggregate possible: a molecular pair. In particular, we decided to work

with the fac-tris(1,3-diphenyl-benzimidazolin-2-ylidene-C,C2’)iridium(III)[81]

(also known as DPBIC), a molecule that has applications in organic electron-
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Figure 2.5: Multiscale workflow for the simulation of charge transport prop-

erties in molecular aggregates.

ics and in particular in OLEDs systems. We chose this molecule because of

its geometrical and topological characteristics:

• It has a considerable amount of atoms (namely 103), making it a fairly

big molecule

• It has a pseudo spherical shape and symmetry

• It is used as the basic component for an homonym molecular material,

whose properties strongly depend on how the single molecules arrange

themselves in space absolutely and respectively

Our aim is to define a set of features that gives us the possibility to train

a model in order to determine the properties of the basic building block of

a bulk of such material, a pair of molecules; as a results, having the ability

to predict the selected properties for a molecular pair will then give us the

possibility to enforce well established techniques (i.e. Monte Carlo methods)

to calculate the aggregated property of a bigger bulk.

In our example, we selected the diabatic electronic coupling, which is an

important property for materials used in (organic) electronics in order to

achieve good performance (high luminous efficiency, power efficiency and so



52 Developing features for chemical entities

on). This property is known to depend, aside from the actual molecule or

molecules at play, on the distance between the molecules and on their mutual

respective orientations. More details on the physical problem are given in

the next subsections.

Other than being good for training the machine learning algorithm, we

want to develop a set of features that are also understandable for human

researchers, giving them the opportunity to understand both the physical

characteristics of a system and to interpret why, once trained, the model

actually gives specific predictions for a specific case; this way, researchers are

able to both debug a non-working model (for example: a model that gives

unreasonable predictions for a well known situation) or to get insight on cases

for which they had no prior knowledge and results.

Standard computational workflow

Our specific problem can be described as follows: we can use density func-

tional theory (DFT) calculations to compute the electronic coupling between

dimers extracted from molecular aggregates. Essentially, the intermolecular

electronic coupling represents the propensity of charges to jump from one

molecule to a neighboring molecule in a given molecular pair. The knowl-

edge of the electronic coupling in all possible molecular pairs in a given set of

molecules allows for example the simulation of the electrical current passing

through the molecular aggregate.

The simulation of electronic couplings in molecular aggregates proceeds

as follows:

• The morphology of a bulk amorphous aggregate of a given molecular

system is simulated by molecular dynamics (MD). In this step, individ-

ual molecules are inserted into a periodic simulation box and a suitable

MD protocol is applied to induce aggregation until a target density is

reached. A high-symmetry (e.g. cubic) periodic box can be used, as

periodicity should not impact (for large boxes) on the morphology of

the aggregation. A box size of about 10x10x10 nm is generally sufficient



Developing features for chemical entities 53

Figure 2.6: Pairs of nearest-neighboring molecules are considered from the

morphology of a molecular aggregate (left). The selected pair is isolated

from the aggregate and the electronic coupling between the two molecules is

computed.

for the simulation of currents in amorphous aggregates. This leads to

several hundreds of molecules in the simulation box (with a molecular

density of about 1 molecule per nm3). The system is then equilibrated

using MD, and a configuration file is obtained with the position of all

atoms in all molecules in one of the equilibrated configurations. If we

have N molecules with M atoms in each molecule, we will have a total

of NxM atom positions, consisting of a record of 3 real coordinates in

3D space (x, y, z).

• Pairs of nearest-neighboring molecules (that is: molecules with a dis-

tance between the respective centers of mass below a given threshold)

are extracted from the aggregate. Either a set of random pairs or the

whole set of pairs in the periodic box can be selected from the config-
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uration file of the equilibrated aggregate.

• For each selected pair, the configuration of the two molecules (say, A

and B), in terms of 3D coordinates of all constituting atoms, and atom

types (atomic number) are considered. These coordinates are used in

a DFT calculation of the electronic coupling between the two selected

molecules. This step is repeated for each selected pair of molecules.

At the end of this computational workflow, we will have a correlation between

atom pairs and electronic coupling, for example as a look-up table, connected

to the coordinates of each molecule.

It is easy to see that this is quite expensive (a few CPU hours for each

pair) and must be repeated for a large (several thousands) number of pairs

for the simulation of currents in nanoscale aggregates. The prediction of

electronic couplings can therefore be useful in simulations of the electronic

properties of molecular materials. This is a fundamental enabler for higher

scale simulations which, enforcing these ”individual” results, can offer results

on a higher level of aggregation, allowing researchers to infer properties and

discover new materials and phenomena otherwise impossible to compute at

this level of precision, accuracy and scale. As a matter of fact, at the actual

state of the art, is very difficult if not impossible to use actual, computed

properties of a lower scale (for example: the molecular or atomistic level) to

compute the properties of higher scales (for example, a big bulk of a material

or the interaction between two or more different materials).

The prediction task

In ordinary simulations, we need to compute the electronic coupling ex-

plicitly between all selected pairs of molecules. However, within this formal-

ism, the electronic coupling depends on the configuration of the dimer only,

in terms of atomic positions of the two molecules involved. In other words,

the relative position of all atoms in the two molecules is the only information

needed to compute the electronic coupling. We may therefore think about
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a learning/prediction task, where the relationship between the configuration

of a molecular pair and the resulting electronic coupling is first learned, on

the basis of computed data, and predictions are made for arbitrary molecular

pairs. The full information about the configuration of the molecular pair is,

however, quite complex. If we have M atoms in each molecule, the exact

representation of a configuration of a molecular pair requires 2 × (3 × M)

reals for the 3D coordinates of the two molecules and 2× (M) integer values

for the atomic numbers. For molecules constituted for example by 100 atoms,

we therefore need 600 reals and 200 integers, leading to a quite complex rep-

resentation. Moreover, the direct use of cartesian coordinates is usually not

recommended to represent the relative position of objects in space, as they

are not translationally and rotationally invariant[56]. We therefore need to

find a more efficient way to represent the configuration of a molecular pair

and use a quantitative indicator (feature) to relate the configuration to the

coupling.

2.3.3 Descriptors of molecular pairs

Molecular systems can be considered as objects in 3D space. A pair of

molecules A and B can therefore be defined in terms of two (generally dif-

ferent) objects in 3D space.

To make things simpler, we first define the standard translation and orienta-

tion of a molecular pair by translating the center of mass of molecule A to the

origin and aligning the two centers of mass along the x axis. We stress that

we are roto-translating the whole pair, and the relative position of all atoms

in the two molecules is therefore unchanged. This assumption is valid for any

molecular system. In principle, this operation leads to a unique definition

of the configuration of a molecular pair, thus removing the issues related to

translational/rotational invariance. However, for an exact representation of

the configuration of the molecular pair, we would still need 2× (4×M)− 1

values if using cartesian coordinates4.

4Here, M is still the number of atoms of the molecule.
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We will therefore try to use approximate descriptors of the configuration of

molecular pairs, which are able to correlate configuration with resulting elec-

tronic coupling in an accurate and efficient way.

Intermolecular coupling depends generally from the intermolecular distance.

A good option can therefore be to include, in the set of descriptors, a measure

of the intermolecular distance.

In the particular case considered, the intermolecular coupling depends strongly

on the mutual orientation of the two molecules involved. Moreover, in amor-

phous compact aggregates, the structure of molecules deviates quite signif-

icantly from the ideal (vacuum phase) structure. Approximate descriptors

can therefore include:

• Descriptors of the intermolecular distance: even in a bulk, single molecules

are somewhat recognisable. This fact is very important for computing

the properties of a bulk of molecules, whose properties are determined

by an aggregation of the properties of the individual molecules or from

the properties of specific smaller molecular aggregates (like in this case

with molecular pairs). In particular, in this experiment we need to be

able to find a way to measure a general concept of distance between

molecules. This measure correlates quite well with the electronic cou-

pling, as known in literature[100].

• Descriptor of the intermolecular orientation: The mutual orientation

between two molecules can first be defined in terms of the orientations

of each molecule constituting the pair. If we can associate a vector

v (in a given space) to the orientation of a molecule, for a pair of

molecules (A,B), the mutual orientation between the two molecules

can be defined in terms of the two vectors vA and vB. Associating an

orientation to a molecule, however, needs some sort of rules. Moreover,

we need a measure of the difference between the two orientations, that

is equivalent to finding the distance between the two orientation vectors

in the multi-dimensional vector space considered.
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• Descriptor of the molecular deformation: molecules have an ideal struc-

ture, which is the one that comes from assigning coordinates to each

atom by only considering the inner forces of the molecule (i.e. the

forces that spawn from the interactions between the atoms themselves).

However, in a realistic context, molecules are also influenced by the

other molecules that surround them. This extra interactions forces the

molecules to change shape, giving birth to what we can define as a

deformed version of the same molecule.

2.3.4 Preliminary results

We used two datasets. These datasets are coming from different random

sub-sampling of the same DPBIC bulk, so they are comparable since they

do not have any physico-chemical difference, but on a statistical standpoint

they can show different behavior. In fact, distance mean and distributions

are quite different (Fig 2.11), while the rotations are statistically identical5

(see Figure 2.9).

We tried with a naive approach, using the most basic approach to each of

the aforementioned dimensions that we need to measure:

• For the intermolecular distance, the most obvious choice is the distance

between the centers of mass of the two molecules in a given pair. In

this specific case, since the molecule has a spherical shape and a very

heavy atom at its center, we can try to use the coordinates of the two

central atoms to compute the distance between the two molecules

• For the mutual orientation, we can try to use the euler angles. Since

they are known to have many problems and ill behaviors[56], we can

also try to use the more stable quaternion representation or the rotation

matrix representation.

• For the deformation, we can use the RMSD. The acronym RMSD

stands for Root Mean Square Deviation (also known as Root Mean

5We performed a t-test which resulted in a 0.8 p-value.
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Square Error), which is a very common way of measuring the differ-

ence between N values (i.e. sample or population values). It is usually

used to aggregate the magnitude of the errors in predictions for various

data points into a single measurement, but in the realm of computa-

tional chemistry it is also a very good way of measuring the per-atom

distance between two entities (like molecules). In particular, since we

are using it on two structurally identical molecules, it can give us the

relative amount of distortion between two ”real world” molecules or

between the ideal version of the molecule and a distorted ”real” one.

We then selected a bunch of different models to train with this data, in par-

ticular we trained a Kernel Ridge Regressor (KRR)[57, 169] and a Gradient

Boosting Regressor (XGB)[55]. These have been chosen both for their ease

of use, expressiveness and flexibility.

For all these models, we used the same approach during the training phase:

• We chose the specific features for the training (one for each one of the

physical characteristics listed above)

• We chose the tuning strategy and parameters6

• We trained each model (with the same tuning strategy) on both dataset

separately and then on the combined dataset

However, this first experiment did not turn out to be successful. None of the

selected models managed to learn to fit the problem at hand.

Despite the tuning, both XGB and KRR achieved a MSE of around 0.03

(against the normalized Coupling, which has been transformed using the log10

and then normalized in the range [0, 1] using the a min-max scaler7) when

6For the KRR we tuned on a grid comprising five kernels (namely the RBF, laplacian,

polynomial and linear kernels) and α ranging from 1.0 and 10.0 with a step of 1.0; for

XGB we tuned on a grid comprising the number of estimators (testing in particular for

10, 50, 100 and 500), the learning rate (testing for 0.0001, 0.001, 0.01, 0.1 and 1.0), the

subsample (0.5, 0.7 and 1.0) and the max depth (testing for 3, 7 and 9)
7As implemented in the scikit-learn library
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using both datasets. We also tried to split the datasets into two subsets, one

containing only the molecular pair with low distance (under or equal to 13

Angstrom) and one with the long distanced ones (above 13 Angstrom); we

tried this approach in order to make the problem a little bit simpler, trying to

fit only a local relationship (and so more feasibly fitted as a liner relationship)

between the geometrical features and the coupling value. However, even this

approach proved to be unsatisfactory.

A visual representation of the results of such fittings can be seen in figures

2.7 and 2.8.

Figure 2.7: Plot depicting the prediction performance of a Kernel Ridge

Regressor on the both DPBIC pairs datasets combined.

Our first interpretation was that the dataset was too small to allow us

to use it to train a model, but some of the aforementioned previous works
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Figure 2.8: Plot depicting the prediction performance of a Gradient Boosting

Regressor on the both DPBIC pairs datasets combined.

managed to use datasets of the same size. So, this left us with two other

hypotheses:

1. The complexity of our problem (in particular, the peculiarities of the

molecule selected) has stricter requirements than those in the high-

lighted literature

2. Our dataset, other than small, does not sample the latent space in

a sufficiently uniform way, meaning that some parts of the possible

configurations are not enough represented in the dataset, making it

impossible for the model to be able to learn to predict the corresponding
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value8

To check if the second hypothesis is true, we plot the distribution of differ-

ent values: the electronic coupling itself, a single number representing the

distance between the two molecules and a single number representing the

rotational distance between the two molecules. These plots are visible in

figures 2.9, 2.10, 2.11 and 2.12.

These figures (in particular figure 2.12) give us good hints of the fact

that our models were not able to correctly learn the relationship between our

features and the electronic coupling because of the uneven sampling of the

latent space in our data. As in many cases with non-fitting models, there is a

great probability that the data used are not enough or, more probably, that

they do not sample the entire latent space sufficiently or uniformly. This

problem is even more common in cases where a part of the latent space is

more interesting/important (for example, we might be more interested in

having a lot of data for the dimers which exhibit high electronic coupling)

but the data have way more information about the least interesting part.

This problem is known in literature as unbalanced domain .

However, it is not trivial to figure out how to solve this problem, since it is

hard to come up with realistic molecular pairs with the characteristics needed

to balance our datasets, and leading a simulation campaign able to overcome

this limitation could prove to be very long, expensive and inefficient9.

Moreover, we are not sure that this is the only reason why our first approach

failed. For these reasons, we then developed a simplified system which is

able to emulate the behavior of our real-world scenario, but giving us more

control on the whole system and giving us the possibility to generate a high

volume and high quality dataset with ease. This process is explained in the

next section.

8Moreover, it could be that these undersampled portions of the latent space are the

most interesting ones (i.e. those with the highest or lowest electronic coupling)
9Sure enough, due to the intrinsic variability and chaotic nature of molecular materials

facbrication (even in a simulated context) we can end up performing a lot simulations and

still getting a strongly imbalance dataset.
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2.3.5 Building an artificial model system

One of the major limitations we encountered is the fact that many data

sources related to chemical entities (aside from those on single molecules) are

extremely small or unspecific. For this reason, we decided to design an ideal

model for which we can easily generate a great amount of data but maintain

affinity with the real case.

Starting from the actual geometry of the real molecule introduced before, we

decided that a sphere with a set of marked points on its surface can be used

as a model for a molecular system for which intermolecular coupling can be

computed. The intermolecular coupling can be considered as the coupling

between the two sets of points on the surface of two neighboring spheres, and

can be simply computed as an exponential function of the distance between

the points.

Data generation procedure and rationale

We want to be able to create a set of N pairs, generated by random

orientations of two spheres, for which we calculate the coupling. This will

subsequently be used for training a ML model.

The dataset will contain:

• Geometric coordinates for the mutual position/orientation of the two

spheres, (quaternion coordinates, rotation matrix, euler angles, RMSD,

...)

• Computed (simulated by a simple point-to-point exponential function)

intermolecular coupling.

The steps to generate the dataset are:

• Define the position of a reference set of points (the ”coupling” elements)

on the sphere surface10

10This is done randomly, using the Marsaglia algorithm.
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• Generate two random quaternions

• Rotate the points of the two spheres

• Translate the two spheres with a distance function (fixed, random

within a given range, etc.)

• Compute coupling

• Recompute the features and coordinates11

• Generate a dataset list (with the geometric features, quaternions, etc.)

• Convert it to a dataframe and write to file

• Visualize correlations

Model description

A pair of spheres in 3D can have i) different orientations with respect to a

reference orientation and ii) different relative positions of the centers of mass

(top panel). This is equivalent to fixing one of the spheres in a reference

position and with a reference orientation (middle frame) and considering the

position and orientation of the second sphere. In this case, the only informa-

tion needed about the system pertains to the second sphere (since the first

sphere is always in the same position).

Alternatively, we can align the two centers of the spheres along a reference

axis (bottom panel). In this case, the relative rototranslation information

about the two spheres is defined by i) the scalar distance between the two

spheres ii) the rotation of the first sphere iii) the rotation of the second

sphere. Note that in this latter case the rotation of both spheres is needed.

We cannot simply rotate the first sphere to a reference position and rotate

11While this step may look redundant and useless, it helps us to make the process as

realistic as possible, giving a more sound comparison with the real-case scenario even from

a computational load perspective and allowing us a nearly 100% code reusability.
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the second sphere accordingly (see Figure 2.13).

Therefore, the most convenient way to represent the relative orientation

and position of two spheres in 3D space is translating the whole system

(the pair) in order to align the first sphere with a reference position, and

considering the translation and rotation of the second sphere as coordinates.

We need to perform two tests: one just rototranslating the second sphere

randomly, and a second one where both spheres are rototranslated randomly,

and the whole system is translated to align the first sphere to a reference

position and orientation.

The common setting is the following:

• The reference point is at (0,1,0) on the surface of the spheres.

• The first sphere is fixed at (0,0,0) and with a fixed orientation.

• The center of mass of the second sphere is at a fixed distance with

respect to the 1st sphere (2.0) and at a random position.

• The second sphere is randomly rotated with respect to the first sphere.

As for the previous example, we directly use the quantities used to generate

the rotation as features.

2.3.6 Testing the Model system

Here we apply the whole ML and data pre-processing pipeline introduced

in sections 2.3.3 and 2.3.4, applying that to the model system we developed

in section 2.3.5 and see how it performs. Since we have more control on the

data generated, we can test if the inability to fit the real system was due to

the model and features or if the problem relies in the data available.

Features distribution

The range of the features seems to be a critical point for fitting. The

fitting may be affected by the non-uniform distribution of features sampling
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a uniform space of rotations.

We first tested the distribution of rotation points (random rotations) ob-

tained from two different methods (Marsaglia method and renormalization,

respectively). Results are very similar in the two cases. We can therefore

assume that the distribution of rotations is sufficiently random. Within this

assumption, ideally we want to use features that are uniformly distributed

for a uniform sampling of rotations.

For a distance of 5.0 and a very large number of points (i.e. 100.000), we

obtain different distributions for different features. In particular, the trans-

lation vector components and the rotation matrix elements exhibit a normal

distribution, while Euler angles, axis-angle components and quaternion com-

ponents are distributed in a less regular fashion. It must be noted that also

the artificial coupling is not uniformly distributed, but shows a Gaussian-like

distribution.

Figure 2.14 shows some of these distributions for the most meaningful fea-

tures.

Translation vector components are uniformly distributed, as expected.

Therefore, we can conclude that translation vector components can be used

safely.

For efficient learning, translation vector components need to be renormal-

ized.

Quaternion components are NOT uniformly distributed for a uniform sam-

pling of SO(3). This is known in literature[178]. The relationship between

uniformly distributed numbers and quaternion components is:

h = (
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu2)

Therefore, quaternion components are distributed as the sin and the cos

functions. This may lead to issues in learning.

Interestingly, the matrix components are uniformly distributed. This can be

crucial in learning algorithms.

Regarding the other minor features:
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• Position components are more or less random.

• The components of the axis-angle representation are distributed in two

different ways: uniform distribution of the axis component and cos-like

distribution of the angle. This may lead to inaccuracies, similar to

those we get with quaternions.

• One of the components of the Euler angles is also not uniformly dis-

tributed (the pitch angle, in this case).

Thanks to this analysis, we can conclude that the use of a normalized

translation vector and a rotation matrix can therefore be considered the best

representation of relative roto-translation.

Symmetries

When dealing with multi-point scenarios, the asymmetric case performs

much better than the symmetric one. At first glance, this would mean that

we need to ”symmetrize” the coupling in symmetric systems. In other words,

the learning could get confused when different possible orientations lead to

the same coupling. Let us consider for example the simple 2D case of two

circles with coupling points, represented in figure 2.15. One of the circles is

fixed, and the other one can rotate around its center.

If we have a single coupling center (black lines in 2.15), the coupling is a

function of a ”rotation coordinate” q that is, in this case, a measure of the

rotation of the circle. The domain of the variable q is, in this case, [0, 2π].

The coupling has a maximum at 0 and 2π and a minimum at π.

If we have two symmetric coupling centers, however, the coupling has a dif-

ferent periodicity (red curves in 2.15).

However, what we are trying to do is to learn the function f(q) that repro-

duces the correct behavior f(q) = c. If we are able to correctly represent

rotations through the coordinate q, we should be able to learn any arbitrary

function f(q), irrespective of periodicity etc. However, numerical issues can

be the cause of the fact that the specific shape of f(q) can affect the accuracy
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of learning.

So, we try to use a description of roto-translation of spheres that uses the

”minimal” rotation coordinate. Essentially, we consider the three vectors for

each sphere and compute the rotation matrix that represents the minimal

rotation that maps one sphere onto the other, computed as a quaternion

distance. We also need to consider all contributions to coupling, as we are

”symmetrizing” contributions by exchanging the order of points.

Results

At the end of this evaluation, we then evaluated all the approaches sys-

tematically. As expected, the rotation matrix proved to be the best repre-

sentation for the mutual orientation of the two spheres, while the translation

vector has been used as the feature containing information about mutual

distance. However, even other features (like the quaternion) proved to be

useful in fitting this relation. The plot below (Figure 2.16) shows some of

the results for different features set12.

This ideal experiment gave us some insight about the best ways to actually

represent our real-world problem and some possible ill properties of our data

that can hinder the learning process of our ML algorithms. In the next

section, we are going to analyze how we applied this new knowledge to the

original problem.

2.4 Back to the real data

Thanks to these promising results, we gained some confidence in the fact

that our approach to the problem is solid. That means that the reason why

the model cannot fit on the real-world data is not related to our featurization

or model selection, but was actually caused by the ill behaviors shown in the

12It must be noted that only the best sets have been reported
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data. The next step has been the use of specific statistical techniques for

data-augmentation that are also able to re-balance the dataset distribution.

2.4.1 Dealing with unbalanced domains

With unbalanced domain we refer to a dataset where the distribution of

classes is not equal. For example, in a binary classification problem, if one

class has significantly more examples than the other class, the dataset is con-

sidered unbalanced. This can cause issues during the training and evaluation

of models, as the model may be biased towards the majority class and have

difficulty accurately classifying the minority class. Unbalanced domains are

common in real-world applications, such as fraud detection or medical diag-

nosis, and require special consideration during the modeling process.

As the above description suggests, this problem has been extensively studied

for classification problems, with well known statistical techniques like:

• SMOTE (SyntheticMinorityOver-samplingTEchnique)[22]: it works

by selecting a random sample from the minority class and computing

the k-nearest neighbors for that sample. Synthetic samples are then

generated by taking the difference between the selected sample and

its k-nearest neighbors, and multiplying that difference by a random

number between 0 and 1. The synthetic samples are then added to

the original dataset to balance the class distribution. SMOTE is a

popular technique for handling class imbalance because it can increase

the diversity of the minority class while also retaining the original dis-

tribution of the minority class.

• ADASYN (ADAptive SYNthetic sampling approach)[54]: quite sim-

ilar to SMOTE, the main difference betweenADASYN and SMOTE

is that ADASYN adapts the synthetic sample generation process to

the density distribution of the minority class samples. It does this by

assigning higher weights to minority class samples that are harder to

classify, which are the minority samples that are farther from the deci-
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sion boundary. This way, ADASYN generates synthetic samples that

are more likely to be misclassified, in order to make the classification

task harder and more balanced. As a result, ADASYN is more effec-

tive than SMOTE in handling imbalanced datasets with a large degree

of overlap between the minority and majority classes.

When dealing with regression problems, the first challenge is how to adapt

this kind of approach to work in contexts where we do not have categorial

(i.e. discrete) classes of target but we are instead interested in predicting

continuous values. The first consideration to make is that, in continuous

problems, ”imbalanced data” means that the data points have a skewed

distribution across the continuous target variable.

The most relevant solutions are:

• SMOTER (SMOTE for Regression)[142]: as the name suggests, this

is an adaptation of the SMOTE algorithm. The main difference is

that, instead of sampling classes, SMOTER is based on the concept

of relevance functions[163]; in a nutshell, those functions are designed to

set a sort of threshold to define classes” between the continuous target

variable (i.e. values that have a relevance function above threshold

are the relevant cases, while those with a relevance function below

the threshold are the irrelevant one). Once the dataset is divided, the

least represented region(s) are oversampled in the same way as SMOTE

does, using a linear interpolation of the real targets to create the new,

synthetic one.

• SMOGN (Synthetic Minority Over-Sampling Technique for Regres-

sion with Gaussian Noise)[17]: this technique is a direct improvement

of SMOTER, which also adds Gaussian noise to the synthetic sam-

ples after the interpolation phase. The addition of noise to the syn-

thetic samples helps to increase the diversity of the synthetic samples,

which can improve the performance of regression models on imbalanced

datasets.
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It must be noted that these methods can also be used as data augmentation

techniques, helping us to overcome the fact of having a restricted amount

of data. We then added SMOGN in line with the aforementioned pre-

processing pipeline and then re-trained the model.

The results are reported in figure 2.17, figure 2.18 and figure 2.19.

The whole pipeline, including pre-processing, data balancing and aug-

mentation and the actual training phase took just a few minutes on a normal

laptop. The final augmented dataset included around 1200 entries, and we

used around 200 of these entries for the test set. The time needed for the

testing phase is in the order of 10ms, which is a huge improvement com-

pared to the simulation workflow, which requires around 40 minutes on a

HPC cluster to compute the electronic coupling of a single pair of the same

material.

2.5 Applying the same pipeline to a different

molecule

To further evaluate the quality of the whole workflow developed dur-

ing these activities, we performed another experiment using a very different

molecule in order to see if our model would be able to learn its proper-

ties without modifications. Moreover, we also asked the model to predict

the energy values of the HOMO and LUMO of the molecule. It must be

noted that these are properties of a single molecule, and while related to the

electronic coupling they are obviously not exactly overlapping nor one can

perfectly deduce one of these using the coupling or viceversa. If we manage

to fit this new context with no or few modifications to our approach, it would

be a strong indication of the generality of our workflow.

More precisely, we chose the 5,12-Dihydroquinolino[2,3-b]acridine-7,14-dione

molecule (also known as quinacridone)[62], which is a molecule used for or-

ganic colorants[94] but that is also known for its semiconductor properties[173].

Its structure can be seen in picture 2.20.
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Due to the simple shape of this molecule, we managed to get very good

predictive performances with a very restricted dataset both for the HOMO

and the LUMO energies. Figures 2.21 and 2.22 shows the relationships

between the predicted values and the actual values of these properties.

Another key element of this final experiment is that we wanted to ver-

ify how hard it is, for the general researcher, to use our solution. For this

reason, we enrolled an external researcher with no previous experience in

programming, ML and data science. After being instructed on the basics of

these fields, we asked this person to use our software to predict the HOMO

and LUMO energy of pairs of quinacridone molecules. In a few days, this

researcher managed to run the whole pipeline, obtaining the aforementioned

results. This is another crucial benefit of choosing simpler approaches based

on shallow models and encoded physical knowledge instead of complex mod-

els based on generics representations: allowing researchers that are new to

the field of data science or even computational science to easily enforce the

power of machine learning models with little to no training, furtherly increas-

ing the ease of access to these tools and helping to make them more popular

and widespread.

2.6 Discussion

In this first experiment, we showed how investing in a strong featurization

process, using knowledge emerging from the published literature, alongside

with a good pre-processing pipeline allows us to obtain good results in the

prediction of fairly complex properties using simple models and a very low

computational power. In the DL era, the hustle of working on hand-tailored

features may look surprising or useless at first, but digging deeper in the

history of the field of materials science and computational simulations it is

easy to see how developing the lightest and fastest solutions is a key enabler

for empowering a new wave of multiscale materials design with the ability to

merge information relative to different scale in real-time.
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Moreover, we also showed that well known statistical procedures for data

augmentation can be used in the context of natural sciences, generally im-

proving the quality of the learning process and allowing the application of

learning techniques even with relatively small datasets.

Another advantage of this process is the fact that linear models are way easier

to explain than deep and complex neural networks. This allows researchers

to easily inject their formal knowledge of the problems to the algorithm, giv-

ing a new proof of previously known results. Moreover, this also gives them

the possibility to enforce the opposite process: using the results obtained

using ML to gather new knowledge about the system analyzed which can

be relatively easily understood and put to test. This can be done in two

different ways:

1. If a set of features is completely unknown: implement a very powerful

DL model using unspecific features, in order to find answers to the

problem. Then, trying to identify the most relevant characteristics

(for example, studying which cases are better or worse understood by

the powerful model), turn them into actually usable features and fit a

simpler model. If this process is successful, researchers can then be able

to find a formal and provable scientific explanation for a phenomenon.

2. If a macro-set of features is known, but it is not easy to understand

which are actually relevant: using the whole set to fit a simple model

and evaluate the solution found. If the solution is good enough, re-

searchers can then try to progressively remove less promising features

and see if the new trained model is as performant as before. Itera-

tively doing this process (which can be at least partially automated),

researchers can find the minimal set of features that are needed to ac-

tually solve the problem, and then proceed to use this new knowledge

to find a formal scientific explanation to the problem.

Another key advantage of the second approach is that it makes way easier

for researchers coming from different backgrounds to understand and use the
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resulting ML models, due to the simplicity of the resulting software and to

the adherence of this software to their pre-existing knowledge. We showed

this fact in our last experiment, easily leading a researcher with no program-

ming and computational science experience to run our software in order to

fit a machine learning model able to predict slightly different properties than

the one we used and for a completely different molecule.

At the actual state-of-the-art, this whole process is hindered by a main fac-

tor, namely the lack of bigger databases, able to collect results obtained from

different teams, using different softwares (and, consequently, encoded using

different formats). This leaves the ML practitioner with a choice: using

small datasets, relying on data augmentation procedures (which, however,

can prove to be insufficient for very small datasets used for more difficult

problems) or trying to merge different datasets, investing a very long time

trying to understand the structure of all the different formats, with the pos-

sibility of finding out (potentially after a long period of time) that not all file

formats contains the same information, and then being forced to use other

statistical procedures to infer the missing features or not using the incom-

plete features at all.

This problem needs to be addressed, leading to the creation of common data

platforms. However, as easily understandable from what stated above, this

is not and easy task; researchers need to understand the information that are

explicitly reported together with those that are intrinsically contained in each

data format currently used, developing a unique way to encode all of them

and in the best way possible, both in a human-understandable and efficiently

machine-processable and storable way. In a plethora of different fields, these

problems have been historically faced through semantic technologies and, in

particular, through the development of ontologies. Indeed, ontologies are the

base ingredients for the creation of knowledge graphs, which can then be used

to create formal specifications for databases using the intrinsic relationship

between entities used in that specific field of knowledge.

These technologies and their application to our research activities are going
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to be the main theme of the next chapter.
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Figure 2.9: Two plots - one for each dataset - depicting the distribution of

the rotational difference between the molecules in the pairs. To plot this in

a single figure, we transformed the corresponding rotation matrix for each

pair into a numerical value which gives a measure of the magnitude of the

rotation needed to align the two molecules. In particular, this transformation

is the following: θ = arccos((trace(M)−1)/2). As we hypothesized, the vast

majority of the pairs falls in a specific part of the latent space, which is the

one with a high difference in orientation. As known, these are the pairs with

the lowest coupling, hence the least interesting ones. The t-test resulted in

a p-value of 0.815.
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Figure 2.10: Two plots - one for each dataset - showing the distribution of the

relative distortion between molecules in a pair. Differently from the rotation

matrix histogram, it looks like the RMSDs are roughly normally distributed,

which should not be a pathological situation. However, even though this is

still an open question, it is very likely that RMSD is a less useful feature than

the rotation matrix, so it probably cannot compensate for the ill behavior

shown in figure 2.9. The t-test for this two distributions resulted in a p-value

of 0.049.
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Figure 2.11: Two plots - one for each dataset - showing the distribution of

the distances of the two molecules in the pairs. These look nearly uniformly

distributed, which is definitely a good scenario, in all the bins other than

the two smaller ones, i.e. 9 and 10. However, these are the most important

ones, since it is known that closest molecules are the ones exhibiting higher

couplings. The t-test resulted in a p-value of 0.017.
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Figure 2.12: Two plots - one for each dataset - showing the distribution of

the electronic coupling of each molecular pair. Both are very skewed towards

the left, probably due to the combined effect of the ill behaviors shown in

figure 2.6 and figure 2.8. This is probably the greatest cause of the poor fit of

our ML models, which are probably learning to assign a close-to-0 electronic

coupling to nearly all the possible cases. The t-test resulted in a p-value of

3.83−19
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Figure 2.13: Some examples of mutual orientation of two spherical objects

with aligned centers. In a) we can see positions that would be representable

using only the rotation of the second sphere; in b) we can see a mutual

orientation in 3D (upper image) that when transposed on aligned spheres

requires both rotations to be represented.
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Figure 2.14: Plots showing the distributions of the main features. We can

see how the components of the translation vector (b) and of the rotation

matrix (d) are uniformly distributed, while those of the quaternion (c) are

not. Coupling (a) is somewhat normally distributed.
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Figure 2.15: A plot showing the trend in the value of the artificial electronic

coupling depending on the position of the two spheres. The black line shows

the trend when the spheres have only one marked point, related to the po-

sition of the two black spheres drawn over the plot; the red line shows the

same trend when the spheres have two marked points, and the corresponding

spheres position is drawn under the plot. It is easy to see that the two-point

scenario deeply suffers from the symmetry problem.
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Figure 2.16: A plot showing the performance of the trained model in predict-

ing the artificial coupling using the distance vector and the rotation matrix

as features. On the x-axis there are the predicted values, on the y-axis the

actual values of the coupling.
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Figure 2.17: A plot showing the relation between the predictions made by

theKRR model (on the x axis) and the values obtained from the simulations

(on the y axis) using the distance vector and the rotation matrix as features.

Other than appreciating the vast improvement against figure 2.7, we can

already see how the resampling algorithm allowed us to have a dataset which

samples the latent space more uniformly and, even more importantly, that

contains more values on the important side of the spectrum (high coupling

values) instead of low values (near zero values, nearly absent in the plot).
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Figure 2.18: A plot showing the relation between the predictions made by

the XGB model (on the x axis) and the values obtained from the simulations

(on the y axis) using the distance vector and the rotation matrix as features.

Other than the nearly perfect fit, we can already see how the resampling

algorithm allowed us to have a dataset which samples the latent space more

uniformly and, even more importantly, that contains more values on the

important side of the spectrum (high coupling values) instead of low values

(near zero values, nearly absent in the plot).
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Figure 2.19: Two histograms showing the distribution of the values of the

electronic coupling predicted by our XGB model (on the left) and the values

given by the simulations (on the right). Again, these are results obtained

using the distance vector and the rotation matrix as features. We can see how

the distributions are actually quite similar (the t-test resulted in a p-value

of 0.96, confirming that the null hypothesis cannot be rejected). Moreover,

like in figure 2.18, we can see how our dataset now contains more entries

with high values than entries with lower values. The two distributions are

statistically equivalent, as proved by the t-test which results in a p-value of

0.998.
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Figure 2.20: The 2D chemical structure of the quinacridone molecule.

Figure 2.21: Predictions against truth for the HOMO energy of quinacridone

pairs.
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Figure 2.22: Predictions against truth for the LUMO energy of quinacridone

pairs.
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Chapter 3

Semantic Data Management

In the previous chapter, we introduced two major limitations of the cur-

rent state-of-the-art in the field of materials science R&D activities: the lack

of systematic approaches to deal with features and descriptors, and the huge

effort needed for data generation. But we had to face many other challenges

during our research activities: a huge plethora of different software and tools

to perform simulations and measurements (and the consequent proliferation

of data formats), the lack of platform well suited to share data related to

chemical entities, the lack of data formats able to offer the right amount of

information for each different application and sub-field and the inevitable

necessity of representing the same entity in many different ways depending

on the specific activity performed. These peculiarities are part of the intrin-

sic complexity of the field, which requires to be treated carefully and in a

systematic fashion in order to be embraced and, progressively, solved.

To overcome these limitations, we need a system that is able to represent

the entities we manage in our day to day work into a full-fledged database.

This would strongly improve many aspects of computational and experimen-

tal research activities dealing with materials and chemical entities in general:

easy data access and retrieval, common formats for easier sharing and less

dispersion, etc.

However, standard database tools are unable to effectively solve these prob-

89
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lems, since the objects and procedures used in materials science are not

easily represented using classic database tables. Moreover,the standard ma-

terial scientist is not an expert programmer or database user, and relying

on queries written in standard programming languages, with the classic pro-

gramming structures is probably not a winning solution, together with the

fact that possible very useful queries are not easily expressed in standard

programming languages even by experienced programmers.

Many of these problems share a lot with the discipline of semantic web, which

strives to create a formal representation of all the world wide web, make it

completely machine readable and, consequently, more easily parsable, giving

the possibility to offer users way more powerful tools while enforcing natural

language[128].

One of the main tools used for the semantic web (and semantic technolo-

gies in general) are ontologies. Ontologies can be seen as a set of concepts

that define a realm of knowledge, paired with the relations between them,

which togethers allows researchers to create a formal model of their research

domain. Using this model, we can create a knowledge graph, which is the

object that links the actual information in our hands using the concepts and

relationships we defined in the ontology. Enforcing specifically tailored tech-

nologies like SPARQL[136], we can then query our data using the concepts

and the relationships we defined.

An additional issues is modelling workflow in a systematic way. Ontologies

can also be exploited for modelling workflows providing the terminology used

in defining tasks, problem-solving methods (PSMs), and domain definitions.

The accomplishment of a task can be realized by applying problem solving

methods. Here, we use PSMs for the structuration of knowledge and evaluate

terms and concepts in our ontology[46, 118].

We wanted to focus on a real use-case. The realization of the task is then de-

fined in terms of methods, which are also related to pre- and post-conditions.

The workflow can be defined as a pre-composition of methods or in an incre-

mental way (on-the-fly).
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We need therefore to define tasks (goals and methods) and sub-tasks, as well

as methods and pre-conditions. The instances of pre-conditions define terms

that must be associated with the ontology terms. Further, relationships be-

tween concepts/instances can also be formalized, for this specific case.

In this chapter, we are going to analyze all the activities related to ontol-

ogy development and semantic technologies that we brought on during the

last three years, starting from our custom ontology for the materials science

domain.

3.1 General context

The general domain of this ontology is that of materials science, and in

particular advanced (nanostructured) materials. With that expression, we

mean materials specifically designed to have specific properties, to accom-

plish specific goals etcetera. Moreover, the domain extends to the end devices

built with such materials, and the goals of such devices could be the actual

reason for the development of the materials itself. By ”nanostructured” we

mean the materials exhibit peculiar structural and morphology features at

the nanoscale, and the ”shape” of the materials can be studied in terms of

morphology and interactions of their constituting units, for example clusters,

molecules or atoms. Speaking of end devices, another problem arises which

is that of interfaces, which (roughly speaking) is the zone where the bulks of

two different materials come into contact.

Materials science is composed of many different realms and the overall work-

flow is complex and composite. It ranges from measurements, the actual

fabrication of the devices, many different processes for many different mate-

rials, all kinds of experimental procedures and, of course, theoretical analysis.

Obviously, there is another kind of research that plays an important role in

materials science, namely computational modelling. The general workflow

can and usually include many stages, mixing activities stemming from both

approaches. For example, an experiment can lead to mixed results, and to
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make further investigation easier researchers can decide to organize a simu-

lation campaign in order to avoid to loose time due to environmental effects

and the other unpredictable elements introduced in chapter 1. After the

simulation campaign, researchers can extrapolate new elements and then go

back to a fabrication and measurement phase, which can be the last part of

the whole workflow or can lead to new phases, both experimental and com-

putational. This continuous shift, the exploitation of numerous techniques,

tools, softwares, machines and the respective conventions of both the exper-

imental and computational fields, leads to a plethora of different languages,

data formats and naming rules. To this general framework, we hope to add

the exploitation of data-driven methods (in particular machine learning) in

order to propel research in this sector and to accelerate the discovery of new

materials and devices. We believe that data science and machine learning

could be able to not only accelerate the entire process, but also to give re-

searchers the ability to create something that could not be discovered without

the implementation of such techniques.

It is easy to understand how the complex workflow highlighted above, and

the combination of the numerous elements that are necessary to build both

experimental and computational activities introduces a lot of complexity, and

being able to retrace the entire research process that led to a specific result

becomes rapidly impossible without a common way to describe the entire

workflow in all its steps and together with the results of each of these steps.

However, such a standard is still missing and the actual state of the art often

consists in handcrafted scripts, input files and codifications/representations

which then have to be described with ad-hoc articles, repositories and so

on. That means that nearly anytime a researcher tries to replicate or even

understand and enforce the results of another one, she has to deep dive into

the logic and the ad-hoc choices made to carry on the specific study she is

interested in. This is not only a waste of time, but also a major impediment

to open science and to the ability to quickly gain new insight and knowl-

edge from previous results. Moreover, the probability of making mistakes is
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strongly incremented.

The goal of this project is the realization of a unique entity able to give

researchers a common way to represent, record, lead and share not only the

final results of an experiment, but also the entire process, tools and scientific

reasons that led to such results.

To serve as an example, we can think of a workflow similar to that introduced

in chapter 2.3.3 for OLEDs. There, we enforced multiscale modelling and ma-

chine learning, but we could have also performed experimental measurement

after our simulation and ML campaign. In particular, we can imagine our

team of researchers identifying a promising molecule, then simulating the

charge transmission of the corresponding molecular material. Such a prop-

erty (charge transfer) does not depend only on the molecule but also on the

process we use to actually ”create” the final material. In order to identify

the topology of the best possible material, we then need to calculate a differ-

ent property at a different scale, namely the electronic coupling between two

molecules. Such pairs must be extrapolated from the starting bulk that we

already simulated, then we have to calculate the target property for many

(potentially all) the possible pairs, then we can start to reason about which

could be the best topology on a statistical standpoint. Then, another prob-

lem: obtaining the electronic coupling for a single pair may need 40 minutes

on an optimized computing cluster, and a bulk is made of thousands of pairs.

Here, machine learning can play an important role, because a trained agent,

once trained, can give us the same property in milliseconds. Once obtained

the electronic coupling of a sufficient number of couples, we can then use a

statistical method to see if our suggested topology is actually better than

the one we started at the beginning. At this point, we may go back to the

fabrication laboratory, fabricate the resulting promising material and test its

actual performances in the real world, dealing with all the chaotic elements

typical of the fabrication process (1.3).

In order to efficiently go through such a workflow, we need all the features

and commodities we introduced before, starting from standardization of data
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structures, the ability to easily retrieve valuable molecules for a given target

(in this example, charge transfer) and, if someone already led an analogous

research, we should be able to easily access to the corresponding results, in or-

der to start from where other researchers already arrived. Moreover, defining

standard nomenclatures and languages, jointly with common data structures

and formats, can be a fundamental key in providing more interoperability be-

tween experimental and computational results, further empowering the joint

exploitation of both realms.

3.2 Ontology Development

The MAMBO approach arises from a plethora of practical needs that

exist in the domains related to the development and application of advanced

materials, particularly molecular materials. One of the most pressing issues

in this field is the need for a structured and standardized method of designing

and executing R&D activities, as well as representing materials data, infor-

mation, and workflows. With a focus on providing practical solutions for

common research-oriented activities, the MAMBO development approach

is centered on the definition of a specific set of relations, concepts, and tools

that enable researchers to communicate with each other and standardize their

activities, enabling more interoperability between different methods and re-

search teams. Additionally, this approach should also furnish researchers and

experts with tools for optimizing and automating settings and procedures.

To meet these goals, the MAMBO development approach incorporates con-

cepts from the Problem-Solving Method (PSM) approach. PSMs are use-

ful tools for implementing task-based frameworks in Knowledge Engineering

(KE) and can link the representation of knowledge and information to oper-

ational tasks[162]. This makes PSMs an ideal tool to use in the MAMBO

development process. Accordingly, the MAMBO approach is guided by the

creation of a framework where PSM tools specific to the domain are sup-

ported by a domain ontology, providing terms and concepts for specifying
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tasks, data, and workflows[46, 118]. This allows for a more comprehensive

and accurate representation of materials data, information, and workflows,

which is essential for effective decision making, uptake, and utilization of

materials modeling by a wide range of manufacturing end-users.

Definition coming from previous work[43] describe PSM as built by three

basic components:

• Competence: the description of the input and output behavior re-

lated to a given task, together with a description of what the PSM

can achieve.

• Operational specification: the description of the reasoning process which

links the required knowledge to the specified competence previously de-

fined.

• Requirements/assumptions: the description of the domain knowledge

needed by the PSM to achieve the competence. Simply put, require-

ments and assumptions describe the pre-requisites needed by the infer-

ence steps described by the operational specification for the application

of the PSM to achieve a target.

It comes that PSMs are a tool that can be used to formally define tasks

and their solution (and perform the same solution) enforcing the application

of domain knowledge. It implies that a PSM requires two ingredients: the

task to complete and the actual knowledge of the domain. Then, the task

execution can be described as a sum of methods, which are connected one

to another by pre- and post-conditions. PSMs allow researchers to define

complex workflows and operations using pre-constituted recipes or with an

incremental (on-the-fly) composition of simpler methods[43]. In this work, we

applied these general principles behind PSM approaches to the development

of MAMBO. MAMBO is intended to enable researchers to perform tasks

and relative subtasks, organizing the knowledge required to formalize them

and that is gathered after their execution. This brings us to a mutual rela-

tionship between the ontology, MAMBO, that should be able to provide all
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the concepts and relations needed to formalize the knowledge required to ap-

ply PSMs, and the PSMs themself, which requirements are used as the basic

ingredients used to give birth to the ontology. For these reasons, MAMBO

aims at being a ”lightweight ontology”[43], whose target is to help solving

practical use-cases, organizing the required knowledge, rather than being a

basic and all-encompassing ontology for materials science and molecular ma-

terials. By utilizing this approach, we have the ability to concentrate on the

practical, real-world scenarios that arise from research within the specific

domain. By using the categories and relationships established in MAMBO,

we can form methods that pertain to individual tasks, breaking down com-

plex workflows. Additionally, by continually incorporating new concepts and

relationships discovered through the examination of various applications and

issues, we can continuously refine the ontology to better address and solve

those real-life tasks.

To develop MAMBO, we have to clearly define the typical tasks and sub-

tasks, as well as the methods and pre/post-conditions associated with use-

case scenarios within the chosen domain. The pre-conditions will be linked to

terms within the ontology. Additionally, connections between concepts will

be established to address specific situations. A thorough examination of the

application scenarios and use-cases is essential for the successful development

of MAMBO.

3.2.1 Related works and ontologies

First of all, we led an analysis of the current literature about ontol-

ogy development related to materials science domain. This makes us come

to contact with pre-existing ontologies that influenced the development of

MAMBO (and other less related to our goals and work), while also giving

us the possibility to notice the lack of specific work on molecular nanostruc-

tured materials. After this observation, we started our investigation about

common ontology development methodologies. The ontologies that most in-

fluenced our work are introduced below.
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EMMO The Elementary Multiperspective Material Ontology)[42]. Its

development is a multidisciplinary endeavor that aims to create a standard

framework for representational ontology. Rather than beginning with broad,

abstract concepts like other ontologies, EMMO is built from the ground

up using the actual physical world as understood by physics and materials

science. While highly useful as a foundation, EMMO is designed to be

general and non-specific, and can be used at both the top and middle lev-

els of ontology. Its main purpose is to focus and organize the knowledge

of fundamental physics, chemistry, and philosophy behind applied sciences,

specifically materials science. EMMO defines all the basic building blocks

necessary for organizing knowledge in these fields, leaving it to subsequent

work to establish functional and enforceable categories and classes for practi-

cal applications. From this foundation, various sub-ontologies have emerged,

including MAMBO which borrows different elements from the general de-

sign criteria used during the development of EMMO, specifically in the

definition of relationships between classes, with the aim of potentially using

MAMBO as a domain ontology of EMMO.

MDO The Materials Design Ontology)[88]. It is developed in order to of-

fer a framework that defines concepts and relationships to encompass knowl-

edge in the field of materials design. It aims to create a knowledge repre-

sentation that can bring together experimental and computational results

in a common format and structure. Additionally, MDO is specifically de-

signed to enhance information retrieval from databases that store informa-

tion in the domain of materials science. While MDO has the capability

to represent knowledge in various sub-fields of materials design, particularly

computational tasks, it primarily focuses on crystalline/periodic systems and

single molecules. Therefore, it is less suitable for representing and manag-

ing information about non-crystalline compounds and materials. MDO is

constructed upon Competency Questions, as answered by materials science

experts, and Use Cases, which establish the purpose and foundation upon
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which the ontology is designed. MDO is structured as a modular ontol-

ogy, centered around the core concepts of Structure, Provenance, and Prop-

erty. The term ”Structure” refers to the basic chemical makeup of a specific

material, while the term ”Property” describes the quantitative and qualita-

tive chemico-physical characteristics of a material. In the development of

MAMBO, we reused these general concepts defined in MDO, and adapted

them to the specific context of the target domain. Additionally, we linked

specific classes and attributes already defined in MDO to MAMBO.

DEB The Device, Experimental scaffolds and Biomaterials Ontology)[49].

It is an open resource for organizing information about biomaterials, their

design, production, and biological testing. It is created using text analysis to

identify ontology terms from literature on biomaterials and is systematically

curated to represent the domain lexicon. DEB can be used for searching

terms, making annotations for machine learning applications, standardizing

meta-data indexing, and other cross-disciplinary data exploitation. As an

ontology for Biological materials, Devices and Experimental scaffolds, DEB

is closely linked to MAMBO in terms of foundations and approach. Addi-

tionally, the complexity and heterogeneous nature of the literature and op-

erational approaches in DEB are similar to those addressed by MAMBO.

One of the unique features of DEB is the semi-automatic selection of field

names to be inserted in the ontology, in contrast to common approaches that

rely on domain experts. Furthermore, the DEB terms set is dynamic as new

elements are added when the need for new terms arises from new research.

Ultimately, DEB is explicitly oriented towards integrating machine learning

techniques with classical computational approaches. Specifically, terms in-

cluded in DEB have been selected using a bag-of-words approach, and the

completeness of the selected terms set has been validated in two different

phases: first, a curated selection of articles have been mined, to verify if all

articles were easily findable with the terms present in the ontology. Then,

70 domain experts have been asked to do the same with their articles and
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themes of interest, proposing new missing terms to be added to the ontology.

The approach used in the development of DEB therefore points towards self-

updating ontologies, which can automatically be upgraded with newer terms

and vocabularies leveraging some automation and data-mining techniques.

ChEBI The Chemical Entities of Biological Interest)[30]. It is an on-

tology and database for molecular entities that focuses on small chemical

compounds. The term ”molecular entity” is defined by ChEBI as ”any con-

stitutionally or isotopically distinct atom, molecule, ion, ion pair, radical,

radical ion, complex, conformer, etc., identifiable as a separately distinguish-

able entity.” The molecular entities covered by ChEBI include both natural

and synthetic compounds that have potential biological activity. The con-

cepts defined in ChEBI for the characterization of the structural features of

molecular systems are useful tools for organizing knowledge in domains where

individual molecules and their components are involved. The MAMBO on-

tology builds upon theChEBI approach to defining hierarchies for molecular

systems and subunits by developing concepts related to individual molecules.

CHMO The CHemical Methods Ontology)[13]. This one is an ontology

that details the techniques and procedures utilized in chemical experiments,

including characterization methods like mass spectrometry and electron mi-

croscopy, as well as methods for processing, isolating, and synthesizing ma-

terials such as ionization, chromatography, electrophoresis, epitaxy, and con-

tinuous vapor deposition. It also includes information on the instruments

used during these experiments, such as mass spectrometers and chromatog-

raphy columns. The purpose of CHMO is to supplement the Ontology for

Biomedical Investigations (OBI)[11] and leverages the extensive maturity

of CHMO, a related ontology for experimental procedures. To strengthen

the structure of MAMBO, certain sections of CHMO were utilized and

incorporated into the ontology, specifically classes and relationships related

to the development of experimental materials.
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MSEO The Materials Science and Engineering Ontology)[51]: it is an on-

tology which uses the Common Core Ontologies stack[146] and aims to give

materials scientists the ability to represent their experiments and data in a

semantic manner. MSEO intends to support researchers with data manage-

ment tools that are both human and machine-readable, and easily integrated

into other scientific domains.

Moreover, MAMBO has been influenced by the following projects.

VIMMP The VIrtual Materials Marketplace Project[60]. This project

aims to be a user-friendly platform that offers easy access to all the tangible

and intangible elements necessary for efficient decision making, adoption,

and effective use of materials modeling by a wide range of manufacturing

end-users. This includes information, knowledge, services, and tools. By

providing these resources, VIMMP aims to speed up the development and

market deployment of new materials. The project has been found to be an

effective resource for reusing concepts, structures, and relationships.

OPTIMADE TheOpen DaTabases Integration forMAterialsDEsign)[5,

4] is a consortium that aims to make materials databases interoperable by

developing tools such as a specification for a common REST API. One such

database that OPTIMADE works on is NOMAD (NOvel MAterials

Discovery)[60, 33], which creates, collects, stores, and cleanses computational

materials science data computed by the leading materials-science codes. OP-

TIMADE also develops tools for mining this data to find structure, corre-

lations, and new information that would not be discovered through smaller

data sets.

3.2.2 Preliminary steps

To adhere to common patterns present in the aforementioned ontologies,

we identified a working group of about 10 domain experts, with competences
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on computational and experimental aspects of materials research and de-

velopment, supported by knowledge engineers, and we asked the experts to

describe typical operations, processes, objectives and goals related to their

research projects, daily routine and tools used, gathering a set of relevant

use cases and objectives, which can be summarized as follows:

• Representing knowledge on integrated modelling and characterization

workflows for advancedmaterials, processes and related technologies.

• Providing a standard representation of materials modelling workflows.

• Providing semantic interoperability across modelling and characteri-

zation tools (for example, modelling software tools, characterization

workflows, etc.).

• Providing a basis for the development of tools with search/query capa-

bilities in the field of materials modelling and characterization.

• Connecting with existing knowledge in the materials science domain.

This updated, more detailed list guided all the following development activ-

ities. Together with these use cases, the analysis team also gathered a first

list of relevant words, which has been iteratively updated during the whole

process.

3.2.3 Specification of tasks

Starting from the general use cases, the analysis team identified an initial

set of more specific tasks that can be supported by MAMBO:

• File the results of a materials modelling activity into a database

• Perform a database query on the details of computational methods

used (for example density functional theory, pure ab-initio methods,

molecular dynamics, coarse-grained methods, finite elements) to gen-

erate materials modelling data.
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• Perform a database query from large computed datasets to retrieve

specific target structures and properties of materials within a given

range.

• Retrieve structured information on materials (including data genera-

tion and provenance) to be used in predictive ML/DL models, testing

accuracy and effectiveness

Although these tasks are already part of the research activities of several

teams within the materials science domain, they often suffer from the lack

of standardization, optimization and automation. Conversely, materials sci-

ence workflows often follow a very tailored and customized set of routines

and methodologies. One of the objectives of MAMBO is therefore support-

ing interoperability in the implementation of workflows within the specific

domain considered.

3.2.4 Competency questions

Following well established and common ontology development schemes[123],

the first draft of MAMBO structures was designed following the results of

competency questions (CQs)[123]. These are questions given to experts of

the field analyzed, and these are used to gather the basic knowledge required,

assisting ontology engineers in defining the domain considered[123]. Essen-

tially, the ontology should contain all the relevant concepts needed to answer

the CQs considered. The analysis team identified an initial set of typical

questions for which the information and organization in MAMBO should

provide answers, including the following:

• Is the material considered crystalline (lattice-structured or periodically

organized)?

• What are the chemical formulae of the molecules involved in the molec-

ular material considered?

• Is the material made of a single molecular component or is it a blend?



Semantic Data Management 103

• Is the material homogeneous, at the molecular scale?

• What is the composition of materials with computed properties (e.g.

computed density) falling within a given range?

• What are the material properties and their values that are produced

by a given materials calculation?

• What are the molecular structures of the interface between two given

materials for which a computed property (e.g. computed density) falls

within a given range?

• For a calculated material property, is the calculation based on ab-initio

methods, data driven techniques or both?

• For a calculated material property, what is the actual computational

method used in calculations?

• For a calculated material property, which software produced the calcu-

lation results?

• What is the value for a specific parameter (e.g., cutoff energy) of the

method used for the calculation?

• What are the input and output structures of a materials calculation?

• Who are the authors of the calculation for a computed property?

• Who are the authors of the measurement for a measured property?

3.2.5 A first outline of MAMBO

We chose not to follow a top-down or bottom-up approach, but rather

to mix them in order to accurately capture the varied nature of concepts

involved. We began by creating a preliminary set of qualitative connections

among the first identified terms, then further defined the ontology classes and

their relationships in greater depth. Our approach was primarily modular,
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starting with core concepts and relationships, and expanding on them to

more specifically organize knowledge within the domain.

Core structure

The core of the ontology is composed of entities that are closely tied to

the tasks and scenarios mentioned earlier. The central idea in MAMBO

is the concept of Material, which is connected to Structure and Property,

and further linked to Experiment and Simulation. This organization reflects

the key terms that frequently appear in the specific domain targeted by

MAMBO. Each of these concepts is closely linked to at least one task related

to the domain we focused on during development. The implementation of

MAMBO will heavily rely on the concepts and connections defined in this

stage, as we will demonstrate later.

More detailed definitions of this basic concepts, as of in a submitted paper

on MAMBO[132], are:

• Material: the most general concept related to a material, which de-

fines a portion of matter with some specific attributes (kind, quality,

etc.)[42]. Despite very generic in principle, the range of the specific

materials covered by MAMBO is narrowed by the set of attributes

considered. The Material concept is strongly related to the following

two concepts: Structure and Property

• Structure: term representing all the concepts and relations connected

to the structural characteristics of a Material. Sub-hierarchies of the

Structure concept will specify knowledge related to typical material

components within the targeted domain (atoms, molecules, etc.).

• Property: concept representing all the chemical and physical proper-

ties of a material (mechanical, electro-magnetic, etc.). The Property

hierarchy is conceptually straightforward and new useful categories rep-

resenting properties emerging from new and/or neighboring domains

can be easily added to the ontology.
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• Simulation: concept representing all the information related to a com-

putational workflow that led to a specific result, from the scientific mo-

tivations down to the actual software and parameters. The Simulation

internal hierarchy is, together with Experiment, the most complex of

the entire ontology, as it should be able to represent a broad range of

scenarios related to different simulation tools and protocols.

• Experiment: analogously to Simulation, this term represents all the

processes and procedures needed to perform an empirical experiment.

Together with Simulation, the Experiment concept represents the

knowledge required to define the procedures providing the value of a

Property, the characteristics of a Structure and/or their mutual link.

Consequently, Experiment and Simulation can be viewed as differ-

ent categories of methods providing different representations of given

physical phenomena.

A crucial aspect of these concepts is their high degree of interconnection,

which is a consequence of their strong mutual relationships. These relation-

ships emerge from the typical design and investigation activities related to

materials science. A sketch of these concepts and their relation is depicted

in Figure 3.1.

Questionnaires

Once we reached this point, we organized a new set of interviews with

domain experts. In order to make the process quicker and less controlled

by the development team, we decided to distribute an anonymous question-

naire. The questionnaire has been built in order to offer experts the level

of detail they prefer, leaving the duty to re-map the emergent concepts and

abstractions on the existing MAMBO core to the development team. At

the end of the process, we found that the vast majority of the terms emerged

during this process can be easily mapped onto the already existing concepts,

and those that cannot are concepts related to devices and akin topics, which
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Figure 3.1: MAMBO main core classes and relationships[132]: the ontology

revolves around the concepts of Material, Simulation and Experiment.

An object (Material) is represented by its structural features (Structure)

and properties (Property), while computational (Simulation) and experi-

mental (Experiment) workflows are connected through a common interface

to Property and to Structure
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are out of our original scope. The questions are the following1:

• Briefly describe your fields of study and interest

• Which is the fundamental component of your work? (Molecule, mate-

rial)

• How do you usually structure your research process?

• Which of the aforementioned steps is usually the most difficult and

time consuming?

• Which role does data have in your research activities?

• How big is the volume of data you usually have to manage? (Some

megabytes, some gigabytes, many gigabytes, terabytes, other)

• Is data automatically collected? (Yes, no, partially)

• If partially, explain which steps of the process of data acquisition are

automated and which are manual

• Which is the rate of acquisition of data? How often are they collected?

How long is this process?

• Redact a list of terms which are needed to speak about your research

activities

• If a search engine for materials science existed, which kind of queries

would you like to be able to do?

• Fully explain a particularly relevant experiment, starting from the de-

sign phase and finishing with the data collection phase

This process lets us focus on many different activities which are being carried

out in our institute, and the fact that the structure we depicted so far holds

is a good hint of the fact that we captured the underlying structure of the

molecular materials realm.
1Closed questions have the possible answers reported inside parentheses
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3.2.6 Implementation

The whole implementation of MAMBO and the concepts described

above have been implemented in OWL[6] using the Protégé editor[121];

the latter is a mature, feature-full and cross-platform software for ontol-

ogy development. The latest implementation of MAMBO is accessible on

GitHub2.

Initially, we formally implemented the concepts and relationships that build

the core of the ontology (see Figure 3.1) and then we gradually built more

complex hierarchies gradually, progressively covering emerging entities and

case studies. The formal definition of the core classes and relationships closely

follows those of the concepts introduced in section 3.2.5. Those formal defi-

nitions are[132]:

• Material: is the main class of MAMBO and is related to the Property

and Structure classes via the has property and has structure re-

lationships respectively. An instance of this class represents the ”ab-

stract” concept of a given material, and will be related to potentially

many instances of Structure and Property, which in turn can result

from different instances of the Simulation or Experiment classes.

• Structure: an instance of Structure represents the specific structural

characteristics of a specific occurrence of a Material, being it a real

world physical material or the object of a computational workflow. The

Structure class is linked to Simulation class via the is computed by

relation and to the Experiment class via the is measured by relation.

• Property: this class defines the general properties of materials, either

computed, measured experimentally or both. Same as for Structure,

an instance of the Property class represents the specific property re-

lated to a specific case. Moreover, the Property class is linked to

Simulation and Experiment via the relationships is computed by and

is measured by, respectively, thus in analogy with the Structure class.

2https://github.com/daimoners/MAMBO
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• Experiment: this class is linked to Structure and Property through

two corresponding relationships, namely has experimental input and

has experimental output, respectively. These relationships describe

the Structure or a Property connected to a specific experiment in

terms of input and/or the ability to produce a result.

• Simulation: this class essentially mirrors the Experiment class on the

side of computational workflows. The Simulation class is linked to

Structure and Property via has input and has output relations.

Deeper hierarchies

These core concepts have been used as the basis for a further structura-

tion of deeper hierarchies for more specific concepts and entities.

In particular, Structure, Simulation and Experiment need a deeper look

in order to understand how they work. Structure has some attributes

like spacegroup, lattice and composition, but the relation hierarchy is

strongly based on the the intrinsic characteristic of materials and chemical

entities, which in general are composed by many different entities at different

scales, ranging from elementary particles and atoms up to molecular aggre-

gates and even other materials. All these entities have been conceptualized

on the same level due to the operative nature of MAMBO, and are re-

lated to Structure via the has structural entity relation (namely: Atom,

Particle, StructuralUnit, MolecularSystem and MolecularAggregate).

While the sub-classes inherit all the parameters of Structure, the indepen-

dent classes share some common fields, while storing some specific parameters

like formula, atomic number, composition, symbol. Moreover, we intro-

duced classes that will help us in linking MAMBO to previous ontologies for

materials science; for example, Crystal can help us to link MAMBO with

MDO, which is very similar in its philosophy and in many design choices,

but focuses solely on materials with a crystalline structure, while MAMBO

focuses on molecular materials (which usually lack a crystalline structure).

However, the ability to enforce both computational and experimental data is
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a common trait, and having some modules that directly link to MDO will

also help us in our future work to more strongly relate to it and to orga-

nize MAMBO in a way that strongly resemble MDO, empowering a more

diffuse re-use of terms, relations and patterns. Moreover, we also inherited

from MDO the concept and class of Coordinates, used to describe the spa-

tial placement of a Structure. However, we decided to go deeper using more

classes to represent different kinds of coordinates. At the time being, we have

a CartesianCoordinates class and a SphericalCoordinates class.

A depiction of the aforementioned relations is given in figure 3.2.

Simulation and Experiment hierarchies share many common traits, and

this is both a design choice and an intrinsic characteristic of them that we

figured out during our preliminary work, during literature review (both in

materials science as a whole and in ontology development for materials sci-

ence) and during our interviews with domain experts. In fact, while method-

ologies, timing and skills are quite often very different, experimental and

computational workflows share many structures and patterns. They both

need a unique identifier to be retrievable (namely, ID), a text-based attribute

for reporting specific information and notes about simulations and experi-

ments (the log attribute) and they both have a class of specific methods

(ComputationalMethod and ExperimentalMethod).

Even though we tried to highlight and embrace the similarities between the

computational and the experimental workflow as much as possible (following

our goal of making experimental and computational data as interoperable

as possible) at this point the two hierarchies split and the used approaches

start to diverge. ComputationalMethods is related to two classes called

Algorithm and InteractionPotential; the first one, Algorithm, is used

to describe the various different algorithms that can be used to perform the

simulations, while the second is used to describe the model chosen for the

interaction between the different particles considered. Both Algorithm and

InteractionPotential both have subclasses; Algorithm subclasses are used

to represent specific algorithms and optimizers used to perform the simula-
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Figure 3.2: Scheme of the Structure class[132]. The main concepts and

relationships used in the Structure class emerge from the analysis of actual

workflows in typical problem solving tasks involving molecular materials.

Terms and relationships are connected to both computational and experi-

mental techniques and methods. Circles represent classes; squares represent

some examples of attributes for the respective classes; dashed lines represent

subclass relationships. For the sake of clarity, we omitted Structure direct

subclasses, for example MolecularAggregate and Crystal. Green circles

represent the classes directly related to structural entities, i.e. those directly

related to Structure itself and StructuralEntity; orange circles represent

the auxiliary classes which encode specific characteristics or spatial features,

like all kinds of Coordinates types or Orientation subclasses, information

related to the lattice (LatticeParameters) and so on.
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tion, while InteractionPotential subclasses are used to represent different

types of potentials that can be used to perform the simulation.

While a similar approach can also be used for ExperimentalMethod, we chose

not to do that first hand but to exploit the work already present in literature

and link that to MAMBO. In particular, we decided to import parts of the

CHMO ontology[13], an ontology specialized in knowledge representation

for the experimental scaffold. It already offers a wide range of methods used

in the development of materials, and we imported all the hierarchies that

contained those methods, linking them to the ExperimentalMethod class.

In particular, we imported the classes called continuant, continuant fiat

boundary and process, together with their respective hierarchies.

Sketches of Simulation and Experiment hierarchies are visible in Figure 3.3

and 3.4 respectively.

3.3 Using MAMBO in research activities

As already stated, we developed MAMBO in order to be used in prac-

tical activities related to data management and curation in the molecular

materials field. These kinds of activities are already being discussed in liter-

ature, and some guidelines and best practices are emerging[48]. The appli-

cability of MAMBO in the organization of knowledge in the target domain

was assessed by analyzing simple typical workflows related to R&D for ma-

terials and in particular molecular materials.

In the following, we focus on simulation workflows for investigations on molec-

ular materials. The analysis of simulation workflows, in particular, allows us

to define technical requirements and tune accordingly the expressiveness of

MAMBO in addressing the specific knowledge involved in the description

of materials at different scales (from particles to aggregates). Following the

PSM approach, a general workflow connecting initial information and con-

ditions (pre-requisites) and final output (post-requisites) is decomposed into

tasks and sub-tasks. The definition of tasks and sub-tasks and the domain
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Figure 3.3: Scheme of part of the Simulation class[132]. The Computa-

tionalMethod class gathers the different computational methods and their

parameters and is related to the Algorithm class (the information about the

specific algorithm used for the simulation) and to the InteractionPoten-

tial class (the information about the inter-atomic interaction potential used

in simulations). These classes and their sub-classes are in green. Supple-

menting classes that collect specific information of algorithms or interaction

potentials (e.g., SimulationEnsemble and its subclasses) are in orange.
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Figure 3.4: Scheme of the Experiment class with its subclasses[132]; the

green circles represent classes that are original to MAMBO, while orange

circles represent the classes imported from CHMO (this is also stated inside

the circle). The double line represents the import relation.
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knowledge is organized in terms of the structure provided by MAMBO. Let

us first consider a simulation workflow for the evaluation of the chemico-

physical properties of a molecular aggregate made of identical molecules by

molecular dynamics (MD). While simple, this workflow exhibits the main

features of more complex simulations. The consistent representation of this

workflow within MAMBO can therefore be instructive of the approach pur-

sued and gives possible hints of the ability to formalize more complex cases.

This macro-task can be decomposed into several interconnected computa-

tional sub-tasks, which involve different operations on structured data. From

the practical point of view, the overall workflow is generally realized by ap-

plying specialized simulation software, which implements specific computa-

tional methods, operating on structured input files and producing output files

as results. Other operations may require the manipulation of files and data

structures. In the case of the workflow considered, we need for example input

files containing information about the structure of the molecule considered.

This information is further processed by specialized software, implement-

ing computational methods, which provide an output in terms of molecular

properties. The methods considered can include for example structure ma-

nipulation tools (simulation box builders, etc.) and MD specific algorithms

for equilibrating molecular aggregates in different conditions[97, 10]. The

workflow produces structured information containing for example a snap-

shot of the structure of the simulated aggregate in the conditions considered

and/or derived properties (for example, the computed equilibrium density of

the aggregate in kg m−3. A sketch of this workflow is shown in Fig. 3.5.

An example of the parallelism between the structural information on

a molecule stored as a file and encoded in a standard format in the con-

text of molecular simulations (xyz format) and corresponding attributes of

MAMBO classes is shown in Fig. 3.6. A similar example for attributes of

classes pertaining to the ComputationalMethod class is shown in Fig. 3.7.

The link between the structure provided byMAMBO and the data defin-

ing a specific computational workflow can be provided by metadata and/or



116 Semantic Data Management

Figure 3.5: A visual description of the workflow discussed above. The first

block contains the input files, which are representable as MolecularSystem

instances (see also Fig. 3.6) as individuals, while together they are an in-

stance of MolecularAggregate; the second block consists of all the files and

software needed to perform the actual simulation (see 3.7 for more details);

the third block represents the output obtained from the simulation, with in-

formation about the structure of the molecular aggregate and the resulting

computed density.[132]

annotations, which can be implemented in a variety of standard formats[102].

The applicability of MAMBO in the definition of the workflow considered

and analyzed by applying PSM techniques (competences - input/output,

operational specifications and requirements) shows the potential of the ap-

proach proposed in the context of specific applications in the materials devel-

opment pipeline. Moreover, the relatively simple case considered, in terms of

concepts and knowledge considered, can be easily extended to more complex

systems and processes. The semantic interoperability ground provided by

MAMBO in the domain considered is at the basis of the representation of

complex workflows in terms of basic and reusable building blocks and en-

ables high-throughput and automated data processing. Moreover, logically

defining the various steps required to link a scientific question to its corre-

sponding results, this enables the possibility to easily re-implement workflows

using different softwares or methods, while enabling interoperability between
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Figure 3.6: An excerpt of a real-world input file containing structural infor-

mation about a molecule encoded in the standard xyz format. In particular,

the file contains information on the cartesian coordinates and symbols of

all the atoms in the molecule and the total number of atoms. Some of the

involved MAMBO instances and class attributes are highlighted in differ-

ent colors. Black: Structure instance; blue: MolecularSystem instance;

yellow: Atom instance and attributes; red: CartesianCoordinates instance

and attributes.[132]

different stacks.

3.3.1 Uniform standards for data exchange and reuse

One specific example of using MAMBO to aid research is the conversion

to and from the various data-formats used to describe chemical entities to

a unified format, which is based on the semantic structures defined inside

MAMBO. Converting different formats to a common reference format is the

basic requirement for the establishment of shared platforms for data storage

and sharing, and preserving the ability to re-convert the standard format

to the existing ones is fundamental to preserve the ability to use existing

softwares and routines.

First, we define some conventions:

• Files containing data about chemical entities should be considered in-

stances of the class Structure.
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Figure 3.7: An excerpt of a real-world input file containing structural infor-

mation about a molecule encoded in the standard xyz format. In particular,

the file contains information on the cartesian coordinates and symbols of

all the atoms in the molecule and the total number of atoms. Some of the

involved MAMBO instances and class attributes are highlighted in differ-

ent colors. Black: Structure instance; blue: MolecularSystem instance;

yellow: Atom instance and attributes; red: CartesianCoordinates instance

and attributes.[132]

• Inside those files, we are going to insert the information about the

different StructuralEntity-ies that compose that specific Structure.

• Each of these files contains a flag called main class, which tells us what

kind” of structure we are going to analyze. So this flag could be one of

MolecularSystem, StructuralUnit, Particle or Atom.

• In any case, the file will contain the values of the specific properties

of that StructuralEntity (for example, a file containing the data of

a MolecularSystem is going to have a value for number of atoms) if

known.

• The same file will also contain the information regarding all the other

StructuralEntity-ies that have a is part of relation with it; in the

same way, the file contains all the needed TopologicalEntity-ies.
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For example, a file containing the data about a MolecularSystem is

also going to contain the data about all the Atoms that build that

MolecularSystem. These sub-entities are also going to ”contain”3 all

their specific information (for example, one these Atoms is going to

contain all the information about the other Atoms to which is linked in

some way)

For the actual formats, we chose to use the JSON[102] file format. This

choice has been made mainly because JSON, other than being an open

format, is a well established technology, and is the de-facto standard for data

exchange (especially on the web). This has several benefits:

1. Nearly all languages already have an efficient parser for JSON files,

together with an easy way to create them

2. While being efficiently parsed and generated, it retains a good amount

of human-readability

3. There are already many databases4 and data-driven applications5 that

are using them to store data

However, JSON also has some drawbacks, mainly the lack of support for

dates and binary data and the fact that JSON objects do not have fixed

length, which causes performance issues. To overcome these limitations,

we could use the BSON format (which stands for Binary JSON). Other

than having more built-in types, it offers fixed size objects; more precisely,

under the hood a BSON is actually a perfect copy of a JSON file in binary

format. So, we can adapt our workflow to use JSON as a general rule

and then use BSON when performance is critical or when we need the types

present in BSON that JSON lacks. BSON does have an obvious drawback:

3By ”contain” we mean an additional level of nesting in the JSON file
4LikeMongoDB and Apache CouchDB. EvenMySQL now have support for storage

and queries on JSON files, and many ML and DL libraries are developed in order to make

JSONs easily usable as input.
5A particularly relevant example is Elasticsearch
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being a binary file, it is not human readable, making it a good choice as an

operational file format, but not for storage and human interaction. First of

all, to convert the existing files to our custom JSON file, we must be able

to read those files. For this purpose, we chose to use the excellent Chemfiles

library6. We chose Chemfiles for two main reasons:

1. Being developed to be used as a tool for aiding computational simula-

tions, it is very focused on high performance

2. It has bindings for many different programming languages7, making it

easier for us to develop tools that can be easily used and adapted by

many different research teams

Chemfiles gives us an easy way to read all the most common file formats

used to represent chemical entities.

Once read, we need to write the needed information inside the new JSON

file. First of all, we need to gather all the data properties defined inMAMBO

for the specific entity at hand. If these data are present in the original file, we

save them in the JSON with the data property name as the key associated

with the value. We then loop over the sub-entities contained inside the file8

and insert a JSON table for each of them, and inside these tables we insert

their data properties, the respective Coordinates instance and so on.

In figure A.1 and A.2 (see Appendix A, we present an excerpt of the original

files (namely, an .xyz file and a .pdb file) and the corresponding resulting

JSON file.

6https://github.com/chemfiles/chemfiles
7In particular, there are official bindings for Python 2 and 3, Fortran, C and C++,

Julia and Rust.
8These are the ones that have a relation of type is part of with the main entity

represented by the whole file
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3.4 Discussion

In this chapter, we focused on the need for strong data organization pol-

icy in the field of materials science. We tackled the problem starting from

the needs and hurdles faced in our first work, introduced in chapter 2. In

particular, we talked about how semantic technologies and ontologies in par-

ticular can help overcome these limitations.

We’ve gone through the whole development process that led to MAMBO,

the Materials And Molecules Basic Ontology. In MAMBO, we have thor-

oughly organized the hierarchies of concepts, physical entities and properties

needed to communicate knowledge and results in the realm of materials sci-

ence. We gave particular attention to the computational realm, trying to fill

some of the gaps we found in literature regarding molecular materials, which

is our specific sector of expertise. Our development has been grounded on

previous works, addressing the specific requirements of our day-to-day ac-

tivities there were missing in those ontologies. For the experimental part,

we directly linked MAMBO to a pre-existing ontology, CHMO, which is a

very mature and extended work for experimental knowledge representation.

The work has been done following the guidance of field experts, gathered

through meetings and questionnaires.

We also performed representation experiments using MAMBO classes and

relation to see if we could use them to formally represent our activities and

computational experiments. If this holds true, we can use MAMBO axioms

to represent the knowledge of our field and use these representations to build

PSM, which are formal statements of problems which can then be tackled

with the appropriate techniques (which are or can ben also based on the PSM

formulation); moreover, we are able to tackle the data-formats problem: us-

ing the classes defined inside MAMBO and their mutual relation, we can

develop standard encodings for representing the different entities9 that come

into play during computational simulations and related activities. With these

9These can be the actual chemical/physical entities or event the specific computational

methods and the corresponding parameters
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standards, we can then develop specific parsers to convert the standardized

format to and from every specific format needed by the numerous software

used to perform the actual simulations. This way, we are able to enforce

those very optimized softwares to perform the heavy computations, but the

results, methods and recipes can then be saved and shared in a unique way,

ready to be used by different teams using different softwares stack. While

this process can be arbitrarily complex, depending on the specific software

and files used, the intrinsic complexity of a simulation and other specific re-

quirements, here we provided a proof of concept for some structure files and

some simulation recipes and the same reasoning and process can be extended

to the more complex scenarios.

Another key aspect is that the already discussed complexity of this realm

makes it impossible to develop relational databases that are suited to man-

age the data stemming from actual research activities. Moreover, it is also

very hard to use existing NoSQL databases without ending up limiting the

expressive power of the resulting architecture and software. For this reason,

many teams are working on developing solid solutions for organizing data

lakes[171] without the common drawbacks of this kind of (potentially) com-

pletely unorganized collection of data; data lakes store completely raw data,

usually in the form of files or blobs. In this context, ontologies can serve as a

key element of organization, allowing for the development of semantic-based

engines that can enforce all the intrinsic structure of the information at hand

without adding artificial constraints and limitations that are proper to exist-

ing, unspecific solutions. Technologies like SPARQL are the results of this

kind of endeavor.

Another key prospect is that, by merging all these semantic technologies

(ontologies and the consequently defined file formats, PSM, SPARQL and

semantic queries in general), we can progressively automate different classes

of problems and workflows. In the long run, and merged with learning-based

techniques, this mechanism can end up becoming a new kind of expert sys-
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Figure 3.8: Visual representation of a semantically structured research work-

flow. A researcher with a scientific question can formulate it using the formal

definition given by the ontology (in our case, MAMBO), then a semantic

engine can query the data lake containing all the known results and solutions.

If one already exist for the problem at hand, it can be reused; otherwise, the

researcher can implement it using a PSM (based on the concepts and rela-

tionships offered by the reference ontologies), and then the resulting files are

saved in the data lake using the standardized formats.

tem, able to automatically create the computational workflow corresponding

to a specific scientific question. This kind of semanticallly structured work-

flow is represented in figure 3.8.

At the moment, MAMBO is only suited for research activities that deal

with materials on their own, and does not define the concepts and relations

needed to represent knowledge about full devices or, more generally, the

interaction that takes place at the interface between two materials bulks.

In the next chapter, we are going to focus on some work we made on this

very field, and the struggle and limitations we are going to find are then



124 Semantic Data Management

going to be the base for a future extension of MAMBO10 to devices or

for the development of a new ontology, specific for devices, that is going to

use MAMBO as its base for concepts related to the individual materials of

which a device is built.

10And all the related work



Chapter 4

Extracting device properties

using machine learning and

simulation results

The obvious next step after learning molecular properties and features is

to move to the other side of the multiscale spectrum: full devices. They are

very different from our previous test case on molecules and atoms, but they

share the same level of complexity, which is due to the interaction between

different components and higher-scale physical phenomena instead of being

the cause of the interaction between many atoms and their quantistic prop-

erties.

In particular, we focused on a class of devices which are pretty fundamen-

tal for modern technologies, namely the transistors and in particular Light

Emitting Transistors (LET) and their organic variants (OLET).

In this work, rather than studying the properties of different materials used

in this class of devices, we focus on applying machine learning techniques

to extract properties from these devices, both quicker than a standard com-

putational simulation and using easily measurable properties to infer more

”hidden” ones. Eventually, the aim of this work is to use data coming from

computational workflows in order to help experimental researchers to bet-

125
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ter understand and evaluate the quality of their devices by giving them the

value of selected properties of a real-world device that would be otherwise

very hard or impossible to directly measure.

To do this, we first and foremost need to choose a simulation software to use

in order to obtain our data and then fit these simulated results to experimen-

tal ones. We chose to use OghmaNano[143, 103, 104], a relatively new tool

developed at the university of Durham. We chose it both for its flexibility

and its performances, paired with a good set of tools for partially automating

both data collection and preprocessing. On these bases, we then developed

new tools and implemented machine learning and deep learning techniques

to extract the properties discussed in the following sections. Other than us-

ing machine learning techniques to solve the specific problem at hand, we

also worked on improving the level of automation of the entire pipeline. As

already stated, OghmaNano already give some instruments to automate

part of the process (namely: the parameter scanning and the storage of the

desired, simulated informations in a single dataset), but the whole data pro-

cessing and data analysis and the actual ML pipeline of the workflow are still

completely manual and left to the single researcher. Here, we furtherly au-

tomated this second part of the process, and the result is a two-step process:

perform the simulations and then run the whole data-driven pipeline. This

is represented in figure 4.1.

While OghmaNano improves and progressively offer more API to inter-

act with it even without a GUI, we plan to completeley automate this process.

The ultimate goal is to adhere to the framework that we highlighted at the

end of chapter 3, an in particular in figure 3.8. Once optimized, this could be

a first example of a pre-existing, reusable solution (namely: the development

of a ML model able to predict device properties).
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Figure 4.1: Visual representation of the two components that build the

pipeline that goes from the definition of the scientific question about tran-

sistors to the fitted ML model and the predicted results. The two leftmost

block (in blue) contains the manual actions that the researcher has to do

personally. The other blocks (in red and green) describe all the operations

that are already automated.
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4.1 General context

In chapter 1, we introduced the general knowledge regarding transistors

as a family of devices. Here, we introduce the differences that arise when the

semiconductor of the transistor is a molecular organic material, which is the

scenario where we actually worked on.

While in traditional transistors the semiconductor material used is typically

silicon, in the last years there has been increasing interest in the use of organic

materials as semiconductors. There are many reasons for this:

• Potentially low-cost and scalable production

• Ability to tailor their properties through the design of the molecular

materials.

As already stated (chapter 1), the physics of current flow in transistors built

with organic materials as semiconductors is somewhat different from that in

transistors built with silicon-based materials. Here is a quick recap of the

main differences:

• In silicon-based materials, the electrons can move freely through the

material, giving high conductivity. In organic materials they tend to

be blocked into specific energy levels, and this can lead to lower conduc-

tivity. Compared to that of silicon-based materials, electron mobility

in organic materials is typically much lower

• The flow of current in silicon-based transistors is controlled by band-like

transport. In organic transistors, the flow is controlled by hopping-like

transport.

The main challenges that arise in using organic semiconductors in transistors

are the same challenges researchers face for organic molecular materials in

general: the lower conductivity of these materials when compared to silicon-

based materials and their stability (cfr Chapter 1).
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Despite these challenges, several teams are working with these materials in

order to overcome their limitations and substantial progress is being made

year after year, and the hope is to reach the point where these materials

will be able to play a significant role in the development of next-generation

electronic devices, replacing or helping classical silicon-based materials.

4.2 Defining the device architecture, compo-

nents and conditions

To settle up this kind of activity, we need to be considerate about two

things: the feasibility of the simulations (both in terms of accuracy and time

required to perform them) and the availability of experimental data that are

comparable to our computational setup in order to be able to fit them and

adapt our system to the real-world scenarios.

For these reasons, we decided to look at a relatively simple transistor archi-

tecture with a gate, a source and a drain contacts all made of gold, an active

layer made with an organic semiconductor and an insulator made of PMMA,

a well-known organic dielectric material often used in organic electronics[186].

This is a very simple yet realistic architecture, built with standard materials

which ensures good comparability with existing results, also allowing us to

perform many simulations with ease. The device architecture is shown in

Figure 4.2.

4.3 Property extraction

We planned a multi-step simulation, starting from a simple property in

order to test our entire pipeline, the good functioning of our automation pro-

cess and our ability to produce a sufficient amount of data. In particular,

we decided to use the JV curve of the simulated devices as a feature vector

in ML models. This choice is due to the fact that the JV curve is easy to

measure in real-world devices. Indeed, if we are able to use JV curves to fit
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Figure 4.2: a figure showing the device architecture as rendered by the Ogh-

maNano built-in CAD software.

other (and harder to extract on actual devices) properties we can help ex-

perimental researchers to better profile their devices and to extrapolate more

knowledge on physical phenomena from the same experiments and devices.

First of all, we decided to predict the mobility of carriers in a device, includ-

ing both the full-device isotropic value and the component in the in-plane

direction (from source to drain). The mobility is generally the property that

is most related to the overall current output in transistors and, consequently,

to the JV curve. The fit of mobility allows us to investigate future possibil-

ities, while validating our computational approach. Next, we simulated the

behavior of devices at different temperatures, to see if the impact tempera-

ture on simulations can hinder or help the learning process.

Then, we decided to use simulations to compute the mean density of elec-

trons and holes traps. These are crucial properties for the performance of

molecular materials applications in electronics because they strongly influ-
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ence the amount of current that flows through the device.

Lastly, we tried to use the same approach to predict the density of carriers in

different regions of the device. Being able to do this for several parts of the

device would give us the possibility to reconstruct the carriers density in the

device, giving researchers a clue on the deeper structure of the device, and

helping them in identifying possible performance bottlenecks, architectural

issues and more. The distribution of carriers density across device sections

can only be extracted from real-world devices with complex experimental

set-ups, while also being quite expensive to be simulated accurately on-the-

fly.

4.4 Defining the pipeline

Our computational approach is structured as a layered pipeline of pro-

cedures and includes all the standard steps needed for conducting a set of

device simulations together with the steps needed for using ML techniques.

In the following sections, we discuss this workflow in detail.

4.4.1 Simulations

As already mentioned, we used the OghmaNano software to perform

simulations. OghmaNano is a flexible software, which also offers a very

powerful GUI interface that is suited to be used by researchers that do not

have prior experience in this kind of operations. OghmaNano is a mesh-

based simulator for numerically solving drift-diffusion equations in devices.

This means that device properties are mapped onto rectangular meshes.

Lower-level chemical and physical properties of materials, their interfaces

and the consequences on the whole device are taken into account paramet-

rically using numerical parameters. The resulting approach is very efficient

and fast, allowing us to simulate a large number of device configurations in

a relatively short time and to rapidly gather the amount of data needed to

train our ML models and neural networks.
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4.4.2 Data management

OghmaNano offers a system to automatically perform the parameter

scanning we discussed in the previous section: for each point in the param-

eter scanning grid, a simulation with these parameters is performed. More

specifically, in OghmaNano, each different simulation has its own folder,

where the results are saved. Then, all the results are easily gathered inside

a .json file, where each different simulation corresponds to a univocal hash,

to which corresponds a JSON Object. Inside this table, the different pa-

rameters are identified with a per-name criterion, corresponding to different

JSON basic types, like boolean, number and array. This structure is eas-

ily parsable using any json-related library for any programming language of

choice, giving the possibility to easily move from the JSON file to a more

common programming interface for tabular data, like DataFrames.

However, there is another important data that must be considered: the con-

figuration files needed to perform the specific simulations. By default, these

are saved together with their corresponding results, and they are also saved

in a JSON file. This file, despite its complexity, can still be parsed with any

JSON library, allowing us to be able to reuse and modify input files when

needed1.

4.4.3 Machine learning

We decided to start with a relatively simple machine learning-based ap-

proach. We wanted to start again from what we learned during the activities

reported in chapter 2, trying to replicate the same approach as much as pos-

sible. Moreover, differently from the case of molecular systems, we are able

to easily and quickly generate large datasets, thus limitating the need for

1Actually, behind the curtain, OghmaNano uses a basic version of input files to

generate the files needed for any simulation, altering the needed variables and parameters.
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augmentation techniques like SMOGN.

For these experiments, our data pre-processing pipeline is roughly the same

as the one highlighted in chapter 2, and also the chosen ML algorithm is the

same algorithm that performed better: XGBoost. Also, the tuning strategy

implemented is the same discussed in chapter 2

For the last, more complex experiment, we evaluated different fully-connected

neural networks, since the relation between the features and the targets we

wish to fit is evidently more complex and known to be not linear. Since our

input data does not exhibit any temporal relation (time series), textual or

generally recurrent structure nor is made of images, we rely on the simplest

possible neural network models. In future experiments, it could be interest-

ing to study the effect of giving a more powerful ”a priori” knowledge to the

model.

4.4.4 Automating the pipeline

To make the entire work easier and quicker, we developed a system to

automate the whole simulation and analysis pipeline. OghmaNano offers a

set of tools to automate the randomization of the parameters and generate

the different simulations files, gathering them in a common output file. Then,

this file is parsed by a python script that does the pre-processing step, which

is then followed by the actual ML procedure. While conceptually simple, this

step is fundamental for giving researchers the possibility to efficiently car-

rying out simulations and to enable the generation of large datasets for the

application of ML techniques. Moreover, this entire procedure has been im-

plemented using well known languages and formats, i.e. python and JSON.

The choice of common standards and formats enables the share of procedures

with a broader community and to re-use parts of these recipes to automate

generic workflows. In the long run, these automation procedures can serve as

the base for a more general automation engine for the whole computational

materials science domain.

This automation effort has been developed keeping in mind the assumptions
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and reasoning highlighted in chapter 3. Despite lacking some of the needed

concepts, the semantic assets offered by MAMBO has been used as the

basic pillars during the whole process, and this served two purposes:

• serving as another example of the applicability of MAMBO (and se-

mantic modelling in general) to materials science R&D activities.

• helping us in identifying new classes and relationships that are needed

in order to makeMAMBO a complete reference ontology for materials

science and devices development.

4.5 Experimental setting

We performed four different experiments, each of which led to the creation

of a separate dataset. In each experiment, we set OghmaNano in order to

perform a campaign of simulations on different devices with the same ar-

chitecture while varying different parameters in order to test the ability of

our model to generalize to different and more difficult scenarios. For all the

different experiments, we sampled the JV curve at 10 different voltages to

monitor the evolution of the system. This is going to be the feature used to

train the models in order to predict the different targets in each experiment.

This means that the models are going to be trained using an array of 10 real

numbers for each entry of the dataset. For each experiment, we performed

simulations in order to gather a dataset with 1.000 entries.

For the first experiment, we configured a device to be either pure electrons-

or pure holes-based, in order to make the problem as simple as possible. We

then performed the simulations randomly scanning the average mobility of

electrons or holes in an interval ranging from 1e−10 to 1e−3 m2V −1s−1 both

for the elecrons-based devices and the holes-based devices. We then used

the obtained JV curves in order to train the model to calculate the elec-

trons/holes mobility.

We did an analogous thing for the second experiment, but this time, other
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than average mobility, we also randomly modified the temperature, the tail

slope and the traps density2. We then trained different models to predict the

average mobility again and also the tail slope and traps density.

We then started to also alter the geometry of the devices; in particular,

the third experiment has been divided in three different sub-experiments,

where we randomly altered the thickness of the PMMA layer, the channel

width of the device and then both parameters. Again, we trained different

models in order to predict the carriers mobility and the tails slope and traps

density.

Lastly, in the fourth experiment, we also performed simulations sampling

the density of the carriers at specific horizontal slices of the semiconductor

layer. We then trained our models to use the same JV curve to predict this

carrier densities. This is a harder problem, and we used it in order to test

the power of our approach in more difficult situations.

4.6 Results

Upon definition of the simulation conditions and of the ML and DL work-

flows, we then proceeded to assess our approach. The whole process was as-

sessed iteratively, i.e. simulating a new architecture while using the previous

one to feed the respective ML/DL model.

All the different results were analyzed separately and comparatively, in or-

der to see the difference in the results depending on the complexity of the

problem and to fully understand the value of our approach.

2Te temperature ranages from 280K to 320K, the traps density ranges from 1e+15 to

1e+26 m−3eV −1 (both for electrons and holes); the tail slope ranges from 1e+15 to 1e+26

eV .
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4.6.1 Fitting mobility in basic device architectures

As expected, this first experiment proved to be quite easy to solve. Even

with a few hundreds of simulations we were able to fit the mobility of the

majority carrier in OFETs nearly perfectly. However, the model is not able

to predict the same value for minority carriers. This is an expected behavior,

since in a single carrier (unipolar) device the behavior of the minority carrier

does not follow a regular pattern and its flow is more due to recombination

and other side effects. We also tried to use simpler models, like random forest

and a ridge regressor, still achieving very good results. A plot showing main

fitting results is depicted in Figures 4.3.

While simple, this experiment proved to be fundamental in order to establish

that, at least to some extent, the JV curve is actually a good feature to

predict properties of a device. In particular, it allows us to have a nearly

perfect prediction of the mobility of the major carrier inside a device.

4.6.2 Fitting mobility with variable temperature

In this second experiment, we introduced a first variable to test the effect

of a slightly more complex system on the fit. From our tests, the varying

temperature does not visibly affect the quality of the fit, as visible in figure

4.4.

It must be noted that we did not give the temperature to the model as

a feature. This could be an indication of the quality of the JV curve as a

feature to predict properties of devices. This assumption in further tested in

the experiments described below.

4.6.3 Fitting mobility with variable thickness and vari-

able channel width

Our model managed to fit the problem very well even without using a

very big dataset. Again, the JV curve proved to be a sufficient feature to

predict the carrier mobility. This means that the information regarding the
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Figure 4.3: Plots showing the relationship between values of the holes (1)

and electrons(2) mobility in unipolar p-type OFETs predicted from the ML

algorithm (on the x axis) and those obtained from the simulations (on the

y axis). To make it easier to evaluate the results, the x=y line is drawn.

Similar results are obtained for p-type devices. As expected, the model fits

the relation between the JV curve and the mobility of majority charges, while

it cannot fit the relation between the JV curve and the minority carriers

mobility.
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Figure 4.4: Plots showing the relationship between values of the mean elec-

trons mobility with constant temperature (1), mean holes mobility with vary-

ing temperature(2) and directional electrons mobility with varying tempera-

ture(3) predicted from the ML algorithm (on the x axis) and those obtained

from the simulations (on the y axis). To make it easier to evaluate the re-

sults, the x=y line is drawn. These data are related to simulations coming

from electrons-only devices, but specular results are obtained for holes-only

ones. As expected, the model can fit the relation between the JV curve and

the electrons mobility, while it cannot fit the relation between the JV curve

and the holes mobility. We can see how the variation in temperature does

not affect the fit, which is still nearly perfect.
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Figure 4.5: A plot showing the relationship between values of the electrons

mobility with varying thickness of the semiconductor predicted from the ML

algorithm (on the x axis) and those obtained from the simulations (on the

y axis). To make it easier to evaluate the results, the x=y line is drawn.

These data are related to simulations coming from electrons-only devices,

but specular results are obtained for holes-only ones.

thickness is somehow embedded in the JV curve. The results are shown in

Figure 4.5.

Experiments performed by varying the channel width led to analogous

results (see Fig. 4.6). Therefore, these first experiments suggest that the

JV curve is somewhat able to give to the model some indication about the

geometrical characteristics of the device. This observation will be put to test

in the next section.
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Figure 4.6: A plot showing the relationship between values of the electrons

mobility with electrons mobility with varying channel width of the semicon-

ductor predicted from the ML algorithm (on the x axis) and those obtained

from the simulations (on the y axis). To make it easier to evaluate the re-

sults, the x=y line is drawn. These data are related to simulations coming

from electrons-only devices, but specular results are obtained for holes-only

ones.
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4.6.4 Fitting mobility varying both thickness and chan-

nel width

Even varying both the thickness of the active layer and the channel length,

our model is still able to correctly predict the mobility of devices from JV

curves. This result further demonstrates that the JV curve also contains

some information about the geometric characteristics of the device, giving us

the possibility to fit different device architectures when dealing with carriers

mobility. It looks like that using the JV curve as our feature we are able to

capture the general structure of the device, and that the variation of some

structural/geometrical characteristics (like thickness of layers and channel

width) is directly correlated to specific variation of the JV curve. Moreover,

good fits are obtained by considering either the mean current density in the

whole active layer or the in-plane component (source-drain). In figure 4.7,

we report the results of our fitting in this specific case.

4.6.5 Predicting traps density and tail slope

We then tried to extend the approach proposed to predict other proper-

ties of interest in devices, moving to a more complex setting. In particular,

we considered the prediction of the traps overall density and the tail slope of

electrons and holes distributions.

At difference with the cases discussed above, the approach presented in the

previous sections is essentially unable to predict the trap density distribu-

tions. The results for traps density and tail slope in the same setting as 4.6.2

are visible in figure 4.8 and 4.9 respectively.

The reasons for this failure in predicting correct values can be ascribed to

the limited direct relationship between the trap density and the overall per-

formance of the device, represented by the JV curve. Moreover, the density

of traps is generically associated to intrinsic material and fabrication prop-

erties. As such, the determination of the trap density by using the JV curve

only is probably unfeasible without considering other materials properties.
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Figure 4.7: A plot showing the predicting ability of the model when both

the thickness and the channel width are varied. The overall quality of the fit

is still very good, with a small deviation at very high values, which can be

ascribed to a statistical anomaly due to the limited number of samples when

compared to those with low mobility values.

In addition, the trap density used in numerical simulations represents phe-

nomenological parameters built upon approximations meant to make molec-

ular materials more akin to classical semiconductors based on silicon. Ac-

cordingly, the difference in the physics behind the electronics between these

two classes of materials (highlighted in section 1.1) explains why the formal-

ism based on traps is not perfectly transferable to molecular materials, in

which the main charge transport mechanism is due to hopping, with a less

relevant role of energy level distribution.

Although we are able to simulate the behavior of organic electronic de-

vices by essentially transfer the formalism used for silicon-based systems,

the value of specific simulation parameters can be related to very different

physical properties in the two cases. Accordingly, the ML model is not able

to fit a number that is no a real quality of the device or the materials, but
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Figure 4.8: A plot showing the results of the model in predicting holes traps

density. We can see how the model fails at understanding the relationships

between the JV curve and the traps density, resulting in a very poor fit.

a numerical construct used to describe the charge transport mechanism of

molecular materials in the same way of classical silicon-based materials. For

this reason, this is a quality that is derived from progressive approximations

of experimental results, fitting the simulation results to those real-world de-

vices.

4.6.6 Predicting carrier density distributions

In this last, more complex, experiment we assess the performance of ML

models for predicting the distribution of carrier densities across the active

semiconductor layer. The density of charge carriers in devices is strongly

correlated with the JV curve. However, the spatial distribution of carriers

density is also an intrinsically geometric and material dependent property,

making it akin to the traps density and the tail slope.

It turns out that the nature of the material is predominant in determining



144 Extracting device properties

Figure 4.9: A plot showing the results of the model in predicting holes tail

slope. We can see how the model fails at understanding the relationships

between the JV curve and the tail slope, resulting in a very poor fit.

this property, and again we ended up failing in fitting a model to predict it.

This is visible in figure 4.10.

This is another proof of the fact that, for predicting properties strongly

related to the specific materials used to build the device we need specific

features that describe the atomistic or molecular arrangement of at play,

or at least a more accurate formalization of the properties of the materials

bulk. This is another indication that ML models can play a huge role in

enabling multiscale simulation and multiscale investigations in general of

materials and devices: models at the molecular scale (see 2) can be used to

predict materials properties, which can be plugged into device simulations

or, for example, to train higher scale models for the prediction of full-device

properties, as carrier or traps densities or the tail slope. On top of that,

these models can be efficiently integrated with each other through the huge

throughput boost enabled by the ML approach, leading to an even deeper

understanding of physical models.
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Figure 4.10: A plot showing the results of the model in predicting carriers

density at the bottom-central part of the semiconducting layer. We can see

how the model fails at understanding the relationships between the JV curve

and the carriers density, resulting in a very poor fit.

4.7 Discussion

In this chapter, we discussed the role of data-driven techniques applied

to device simulations and in particular to the prediction of device properties.

We showed how, using the JV curve as the unique feature, we are able to

predict the carriers mobility of a device even with varying architectural pa-

rameters like the semiconductor thickness and the channel width. ML models

are also able to fit device properties with one of more varying parameters and

physical properties, such as temperature. While showing how the JV curve

also brings some geometrical and physical information about the device, we

also showed how this feature is insufficient when the target is more strictly

related to the materials used to build the device, in particular the organic

ones. As stated in chapter 1 and as also proved in chapter 2, the structure and

properties of organic materials are profoundly different from those of crys-
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talline and silicon-based materials, which can be quite efficiently described in

simulations using bulk-like phenomenological parameters. Consequently, the

impact of materials properties on device performances is particularly hard to

predict in molecular materials.

However, the inability to predict properties related to the intrinsic structure

of active materials is another indication of the strong need of computationally

efficient tools to calculate materials properties across a broad range of spatial

scales. In addition, multi-scale crosslinks require tools that are able to ag-

gregate knowledge, leading to effective materials parameters and descriptors.

Enabling this step can lead to a whole new paradigm of multiscale simulation

and multiscale scientific computing in general, allowing researchers to de-

velop software that can simulate the performance of full devices using actual

properties of the specific materials used, calculated on-the-fly through data-

driven algorithms in a real-time fashion. We want to develop methods that

can simultaneously exploit information coming from different scales, with the

same precision and without having dividing the computation into separate

tasks. This next-level integration will lead to more precise assessment of

the behavior of real-world devices, additionally increasing the effectiveness

of computational experiments.

Moreover, this experiment helped us in further assess the effectiveness of our

semantic modelling tools and in particular that of MAMBO. While the

general structure proved to be effective, we also highlighted some missing

concepts like that of interface. This leaves us with a choice, namely extend-

ing MAMBO in order to explicitly offer new assets to represent devices and

their properties, or creating a new ontology for devices that will leverage

MAMBO for describing the individual materials that compose the devices.

Since MAMBO has been developed as a lightweight ontology, we tend more

to the latter option, but in order to make the best choice we need more

experimentation and careful evaluation.



Chapter 5

Suggesting parameters for

device optimization via

ML-driven analysis of

experimental data

To this point, we have talked a lot about computational workflows and

resulting data, showing how we can use data resulting from this kind of simu-

lated experiment to train ML algorithms able to predict the same properties

but in a more efficient way. However, there is a huge elephant in the room:

research in the materials science domain is obviously strongly dependent on

actual empirical data, collected within experimental activities conducted in

the lab. Other than the obvious difference between the two realms, experi-

mental data pose even more challenges; these are due to possible difficulties

in reproducing experiments, the intrinsic limited precision of the measure-

ments, the variability of the results due to external conditions and unpre-

dictable events (from errors of the operator, wear of the tools, to variable

meteorological conditions affecting experimental processes and so on) and

also due to a minor diffusion of all the aspect related to the data culture,

like developing sensible formats, collecting data in a standardized way, col-

147
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lecting as much information as possible (instead of just recording those that

are needed immediately) etcetera.

In this chapter, we discuss the work done in order to overcome many of these

limitations: as an application example, we considered a recent dataset gen-

erated by collecting available data on hybrid photovoltaic solar cells[64] and

reporting all the known information in a single database. This procedure is

obviously prone to errors, leading to incomplete and very diverse resulting

information for each entry. Solving these problems is still an open challenge

in the field, but in this chapter we show how data science techniques can

be applied to process this (and other) available dataset to gather informa-

tion about possible unknown phenomenon related to the performance of the

target photovoltaic devices.

5.1 General Context

A general introduction on the principles behind the working mechanisms

in organic and hybrid solar cells can be found in chapter 1. In this application

example, we deal with photovoltaic cells based on a class of materials called

perovskites. Here, we introduce both the main properties of perovskite mate-

rials and of hybrid (organic/inorganic) photovoltaic cells. Then, we explain

the peculiarities of photovoltaic cells based on perovskites.

5.1.1 Perovskites

Perovskite materials are a class of compounds that have a specific crystal

structure known as the perovskite structure. They are named after the Rus-

sian mineralogist Lev Perovski, who first observed and described this struc-

ture in a mineral (the calcium titanium oxide, whose formula is CaTiO3),

which is called perovskite itself. In literature, this crystalline structure is

referred to as ABX3, which represents the general chemical formula for per-

ovskite compounds, where A and B are cations and X is the bonding anion

(Figure 5.1). Within solar cells, lead (Pb) is often the dominant metal used
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in perovskites.

Figure 5.1: A figure showing the crystalline structure known as perovskite

structure. The main element are the cubic-like grid and then the single atoms

(which, in the case of electronic applications, are going to be the cations)

around and inside that grid.

Perovskite materials can be used as electronic components due to their

semiconducting properties. In particular, they have shown promise as ac-

tive layers in photovoltaic cells, where they can absorb light and generate

an electric current. They have also been explored as active layers in tran-

sistors and light-emitting diodes, where they can be used to control the flow

of electrical current. In energy storage, perovskites have been explored as

cathode materials for lithium-ion batteries and supercapacitors. In photo-

voltaics, perovskite materials have shown great potential as a replacement
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for silicon used in traditional solar cells.

5.1.2 Perovskites and molecular materials

One area of particular interest for perovskites is the use of molecular ma-

terials as cations. Cations are positively charged ions that are incorporated

into the crystal structure of perovskite materials. Molecular materials have

several advantages over traditional inorganic cations, including the ability to

tailor their properties through the design of the molecules, and the potential

for low-cost, scalable production.

5.1.3 Hybrid organic-inorganic perovskite solar cells

Hybrid organic-inorganic perovskite solar cells (HOIPs) are a type of

solar cell which active layer1 is made of a material exhibiting the perovskite

structure[106]. The laboratory-scale efficiency of these devices have been

steadily increasing from 3.8% in 2009[80] to 25.7% in 2021.

The main advantages of this family of devices are related to those of the

perovskite against silicon, like:

• As already stated, they are very efficient. Research has shown that

HOIPs can have efficiencies of over 20%, which is comparable to tra-

ditional silicon-based solar cells[117]. This high efficiency is due to the

unique electronic properties of the perovskite material, which allows

for efficient charge separation and transport.

• The materials used and the possible fabrication methods2 are both low

cost[140].

• Traditional silicon cells require expensive, multi-step processes, con-

ducted at high temperatures (> 1000◦C) under high vacuum in spe-

cial cleanroom facilities[144]. Meanwhile, the hybrid organic-inorganic

1I.e., the layer responsible for the light-harvesting.
2For example, the numerous printing techniques currently available (cfr chapter 1).
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perovskite material can be manufactured with simpler wet chemistry

techniques in a traditional lab environment. Most notably, some of

them have been created using the aforementioned deposition tech-

niques, all of which have the potential to be scaled up with relative

ease3[148, 61, 157, 73, 89].

• Their high absorption coefficient enables ultrathin films of around 500

nm to absorb the complete visible solar spectrum[179].

• Other than their simplicity of processing, perovskite solar cells hold

an advantage over traditional silicon solar cells in their tolerance to

internal defects[74].

• Perovskite cells also possess many optoelectrical properties that benefit

their use in solar cells. For example, the exciton binding energy is small.

This allows electron holes and electrons to be easily separated upon the

absorption of a Photon. Moreover, the long diffusion distance of the

charge carrier and the high diffusivity - the rate of diffusion - allow

the charge carriers to travel long distances within the perovskite solar

cell, which improves the chance of it to be absorbed and converted to

power.

• Perovskite cells are characterized by wide absorption ranges and high

absorption coefficients, which further increase the power efficiency of

the solar cell by increasing the range of photon energies that are absorbed[25].

• HOIPs also have the advantage of being lightweight and flexible, which

makes them suitable for use in portable and flexible devices[95]. This

makes them ideal for use in a wide range of applications, such as in

portable electronic devices, wearable technology, and flexible solar pan-

els.

3With the exception of spin coating.
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• Additionally, the use of organic cations in the perovskite material allows

for more flexibility in terms of material choice, enabling the incorpora-

tion of a wide range of inorganic and organic materials[67], and for the

development of new materials with improved properties

• Specific to perovskites using organic materials as cations, there is evi-

dence of resulting in more stable materials and devices. This is crucial

for commercialization and practical applications. The stability of the

perovskite material is sensitive to moisture and heat, but research has

shown that the use of organic cations in the perovskite material can

improve the stability of the solar cells[87]. This is a major advantage

over traditional inorganic perovskite solar cells, which are less stable

and more susceptible to degradation under certain environmental con-

ditions.

These combined features result in the ability to fabricate low cost, high

efficiency, thin, lightweight, and flexible solar modules with relative ease.

For example, perovskite solar cells have found use in powering prototypes

of low-power wireless electronics for ambient-powered Internet of Things

applications[75], and may help mitigate climate change[124].

Limitations

Toxicity This is mainly due to the lead content in perovskites[7]. While

traditional silicon-based solar cells are thermally and chemically stable, per-

ovskites are very unstable and easily degrade to rather soluble compounds

of lead or tin, significantly increasing their potential bioavailability[68] and

hazard for human health4[14, 8].

Toxicity is also related to recyclability: currently, producing 1 GW of energy

4While the lethal dose is known to be 5 mg per kg of body mass, serious health effects

arise even at way smaller doses. In particular, younger children are more susceptible to the

toxic effects of lead, and it is known that lead exposure can result in decreased intelligence

and behavioral problems[126]
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using the most efficient perovskite solar cell would result in 3.5 tons of lead

waste. It is then crucial to develop ways to reduce lead contamination with

ways other than lead-leakage prevention.

However, there are some pieces of literature[41, 2] addressing many of the

causes of these two huge limitations. More generally, the use of organic ma-

terials as cations for the perovskites will help to reduce the environmental

impact of these devices.

Stability One big challenge for perovskite solar cells (PSCs) is the aspect

of short-term and long-term stability[44]. The traditional silicon-wafer solar

cell in a power plant can last between 20 and 25 years, setting that timeframe

as the standard for solar cell stability. PSCs have great difficulty lasting that

long[139]. The instability of PSCs is mainly related to environmental in-

fluence (moisture and oxygen)[19, 76], thermal stress and intrinsic stability

of methylammonium-based perovskite[68, 69, 71], and formamidinium-based

perovskite[70], heating under applied voltage[182], photo influence (ultravi-

olet light)[108] (visible light)[69] and mechanical fragility[145]. The water-

solubility of the organic constituent of the absorber material make devices

highly prone to rapid degradation in moist environments[47]. The degrada-

tion which is caused by moisture can be reduced by optimizing the constituent

materials, the architecture of the cell, the interfaces and the environment

conditions during the fabrication steps[108].

Hysteretic current-voltage behavior Another major challenge for per-

ovskite solar cells is the observation that current-voltage scans yield ambigu-

ous efficiency values[158, 167]. The power conversion efficiency of a solar

cell is usually determined by characterizing its current-voltage (IV) behavior

under simulated solar illumination. In contrast to other solar cells, however,

it has been observed that the IV-curves of perovskite solar cells show a hys-

teretic behavior: depending on scanning conditions (such as scan direction,

scan speed, light soaking, biasing) there is a discrepancy between the scan

from forward-bias to short-circuit and the scan from short-circuit to forward
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bias[158].

5.1.4 Production

This is quite similar to the process highlighted in Chapter 1. First of

all, the perovskite must be synthesized, which usually means collecting the

precursor materials (i.e. the individual elements and molecules that are going

to be used to build the perovskite), which are then mixed together in a solvent

and then heated to high temperatures (usually between 150 and 300◦C) in

order to form the actual crystalline structure of the perovskite. The ratio

of the different materials plays a fundamental role in the properties of the

final product. After that, the perovskite must be deposited on the substrate

(which usually is a layer of titanium dioxide on top of a glass surface). This is

done using some of the same deposition techniques introduced in chapter 4,

like spin coating[20]. It is then the moment to form the actual p-n junction,

and this is usually done by adding a small amount of a p-type material to the

perovskite, then heating again to allow for the formation of the actual p-n

junction. When using perovskites with organic cation, there is an additional

final step that is the encapsulation of the solar cell in order to protect it

from the environment. This is typically done by sealing the solar cell in a

protective layer, such as a layer of glass or plastic.

5.2 Identifying best parameters and parame-

ter values via machine learning

In this work, we are going to use unsupervised learning techniques to

identify features that may lead to better performing solar cells. As already

stated in the previous sections, the relationship between the architectural and

chemical parameters of the cell and the final results are only partially known,

and we want to see if some of these hidden relations can be extrapolated from

the known data. The main idea is simple: use some of the known features
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of many different cells, try to divide a dataset in different clusters and see if

these clusters actually exhibit different performance characteristics.

Since the clustering is done without taking the performance as an input, the

algorithm is not going to actually learn anything about the performance, but

will make its decisions using only the features. If the resulting clusters show

different performance measures, we have a strong indication that the features

used are actually important in determining the properties of the final device.

The choice of performing clustering instead of simply train a model to per-

form regression is due to two factors:

• Since we don’t want to simply get the values of the different perfor-

mance measures but we want to identify the features that are most

crucial in determining the performance itself (and, obviously, the val-

ues of these features that lead to better results), simply performing a

regression would give us less information about these hidden patterns;

performing clustering, instead, lead us to a subdivision of the dataset in

different groups of devices with, hopefully, uniform performances and

a mixture of uniform and non-uniform features values. If this proves

to be true, we have strong indication about which features are actually

important in determining the performance (i.e. the features with uni-

form values inside the clusters) and those that, instead, are less crucial

(i.e. those with non-uniform values inside the clusters).

• As already stated, the intrinsic complexity of the discipline (namely:

the fabrication of devices based on molecular and functional materials

in general) means that perfect reproducibility of the results is nearly

impossibile, since the result strongly depend on chaotic and uncontrol-

lable factors like weather; this means that trying to perfectly predict

the already known values of the performance measures using only the

known features can lead to a model completely unable to generalize to

new data and to deal with the inevitable uncertainty of the numerical

results. Using clustering, instead, we can deal with this kind of uncer-

tainty by not trying to predict the exact numerical values but trying
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to predict ranges of values and families of devices, which can then

be studied more deeply by the experimental researchers while trying

to minimize or compensate for the complexity of the fabrication and

measurement process.

5.2.1 The Perovskite Database

This is an important effort in creating a common data platform that re-

searchers can head to when dealing with perovskite-based solar cells. Other

than the data itself, the site5 of the project host plotting and general analy-

sis tools that researchers can manually operate directly from the site itself.

Quoting its homepage:

”The Perovskite Database Project aims at making all perovskite

device data, both past and future, available in a form adherent to

the FAIR data principles, i.e. findable, accessible, interoperable,

and reusable.

In the initial phase of the project, the project team went through

the over 16000 perovskite papers published until the end of Febru-

ary 2020 and extracted data for every single adequately described

perovskite solar cell we could find. For papers published after

that, the database relies on authors to upload their own data.

The project is based around an open database and open-sourced

tools enabling anyone, without any programming experience, to

interactively explore, search, filter, analyze, and visualize the

data. The core of those tools are a set of interactive graphics

that can be reached from the web page.”

The general structure of the project is represented in figure 5.2.

The relevance of this project resides in the fact that (as stated in previ-

ous chapters) there are not many open big databases of experimental data

available today. Moreover, the development of photovoltaic cells is a crucial

5https://perovskitedatabase.com/
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Figure 5.2: A schematic overview of the idea behind the Perovskite database.

This shows the standard research cycle on the left side, and on the right it

shows how the project aims to expand it, helping researchers to improve their

throughput[64].

problem which suffers from all the design difficulties and problems highlighted

in the introduction of this chapter and also in the previous one. For these rea-

sons, it is extremely important to gather all the information known at this

time and make them available for researchers around the world, enabling

them to enforce data-centric techniques (like ML) to use such information to

acquire new knowledge on the topic and developing new architectures and

fabrication procedures for this crucial class of devices.

The collection procedure[64] has been quite simple, yet time consuming: au-

thors manually gathered all the articles present in literature about perovskite

solar cells, extrapolated the data contained in each paper and put them in a

table-shaped database. Obviously, this process shows several challenges and

limitations:

• First of all, this manual process is highly susceptible to human errors.

Along time, many corrections have been implemented and highlighted

on the site, but it is impossible to be completely sure that we are using

correct data
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• Related to the first point, there is also the possibility that the data

reported in the articles are not correct (authors may have reported them

incorrectly or with approximations, the publisher may have formatted

them in a bad way, and so on)

• Not all articles provides all the parameters present in the database;

quite the opposite, the majority of the entries are not complete

• Not all articles supply the same information in the same way, with

the same units and with the same level of detail (for example, error

margins)

Other than these methodological aspects, there are also other issues, related

to the lack of standards and expressive formats in the field:

• Some of the features present in the dataset are meant to represent differ-

ent aspects of the fabrication process. These are intrinsically complex,

entries are extremely variable6 and it has to describe an idea of causal-

ity or other time-based relations, resulting in a complex feature which

is hard to use in this unprocessed form

• Many different strings are used to identify missing data, making it very

difficult to find them all. Some of them are also too similar to a possible

entry7

• Combining the two previous problems, when in a sequence of steps

some of these steps are unknown, the authors inserted one of the afore-

mentioned strings, which is mixed inside actual known data. Other

than making it even more difficult to find all the missing data in an

6For example, the fabrication process can be composed of an arbitrary number of steps

and different techniques. This is represented in a single, string-based column inside the

database. This column can be very simple or very complex, depending on the specific

entry.
7For example, ”NAN” or ”NaN” can be mistaken for the acronym for a possible struc-

ture group
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automatic way, it is also unclear how only a specific part of a proce-

dure can be missing (is it an industrial secret? Is it not reported in the

original article? Or maybe the procedure is actually fully reported but

one of the authors of the database missed to report this information?)

Differently from other kinds of data, finding a statistical way to impute miss-

ing data with a reasonable accuracy is very hard in this case. Accordingly,

one of the motivations of our work is the identifications of features that can

impact the final performance of a solar cell, and trying to fill the missing

data using already known information about other device with similar (yet

different) characteristics and performance can hinder the effectiveness of this

process. Moreover, many of the features within this database are directly

related to specific fabrication and environmental conditions, which are ob-

viously not reported within the database (nor in the original articles) since

they are nearly impossible to accurately be measured or, even worse, to be

accurately monitored during an extended period of time8; for these reasons,

classical imputation techniques are not well suited for our case, making it

harder to actually enforce all the knowledge provided by the database.

In the next sections, we are going to highlight several approaches we used to

try to overcome these limitations and problems, starting from the simplest

techniques and then introducing more complex approaches.

5.3 An automatic approach to pattern recog-

nition

First thing first, we want to stress again that, in this work, we do not

intend to build a model to predict the final performance of a solar cell.

The main reason for this were exposed in 5.2, and here we can add more

clarification, specific for the selected use case:

8For example, the performance of a device is suspected to be strongly dependent on

the humidity, temperature and general weather conditions of the external environment,

both during fabrication and usage.
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1. From a physical perspective, the performance of a real-world solar cell

is influenced by a huge number of external parameters which are hard

to record and, for sure, are not present in the used database. For this

reason, we think that trying to use the known information to predict

the performance of new solar cells can be theoretically possible, but

would inevitably lead to numerically wrong results.

2. Available data is present for solar cells based on a small fraction of the

possible materials, architecture and fabrication procedures. A predic-

tive model based on this kind of data would be very imprecise (if not

completely unreliable) when asked to predict the properties of new de-

vices built with completely new materials or architectures. Moreover,

predicting good results for known situations, could be useful only to

optimize already existing solutions instead of helping to find new ones,

that is actually what the field really needs.

For these reasons, we decided to solve a different problem: which of the

actually known and reliably recorded features are more related to the final

performance of the device? And, more specifically, do the known devices

gather in defined subgroups with uniform characteristics and specific perfor-

mance ranges? Or, are the structural characteristics of devices less related

to the overall performance than we might think?

The questions we pose are subtle, but crucial; for example: the composition

of the perovskite used and the architecture of the device are considered to

be the most crucial features influencing the final performance of the device.

If this is true, we might expect that a clustering algorithm, trained using

only these two features, would end up creating groups of devices that are

uniform with regard to the features themselves. But would the mean per-

formance of these clusters actually reflect the expected behavior? Or maybe

there are other conditions that are more important than these two that we

may be overlooking? Or, additionally, could it be that the interplay between

individual features is as important as the individual features, or maybe even

more important?
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By getting our dataset automatically partitioned in different clusters and

then analyzing the characteristics of these clusters we hope to overcome the

possible biases that the research community might have. Two main scenarios

can occur: we can provide an additional proof of known results coming from

empirical experience or we might find overlooked patterns, helping to unveil

some unknown phenomena.

5.3.1 Clustering algorithms

We used two different clustering algorithms: KMEANS[92, 105] and

DBSCAN[35]. We chose to test both algorithms because they have a crucial

difference: KMEANS requires the user to give the number of clusters as

an input and learns a distance threshold to use to identify the data entries

belonging to each cluster, while DBSCAN requires the δ (i.e., the distance

threshold) to be given as input and learns the number of clusters. Since

what we actually want is avoid injecting any kind of previous bias9, we tried

to find the best approach in an empirical way. We first came out with the

idea of using DBSCAN, since we do not know the number of clusters while

we think that there is no actual minimum distance threshold that identifies

different clusters; however, we also decided to useKMEANS to have another

comparison and also to better study the effect of a different number of clusters

in a more controlled fashion than what DBSCAN allows to do.

Cluster performance is then defined as the mean performance of the

devices belonging to the cluster itself. The performance of the devices is

measured using specific values that are known to be good measurement of a

solar cell performance; in particular, we chose three of these features, which

are introduced in the next section.

9We do not have any a-priori knowledge of either of the two values, which is actually

one of the motivations of this work
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5.3.2 Training workflow

Since our aim is to use ML techniques to understand the physics of the

system at hand, we used our dataset to train the model and, at the same

time, we applied the learning ability of algorithms to identify clusters of de-

vices with homogeneous performances.

Prior than the actual training phase, we performed some data preprocessing.

First of all, we removed some features that had absolutely no entries or very

few entries (under 50% of the actual dataset dimension). Once obtained a

set of usable features, we then proceeded to perform the training of the se-

lected models on different features subsets, in a complexity ramping fashion.

Moreover, we identified a set of main features for each target: we used the

Pearson correlation coefficient[153] to sort the features based on their corre-

lation with one of the targets, and then selected the best five ones. We chose

to restrict the number of features to make it easier to analyze the results,

but nothing prevents us in principle from using all the features that proves

to be effective in the training of eventual production models. We ended up

with three different sets of five features, one for each target. We tried two

major approaches:

1. Using all the selected features at ones, building clusters of the resulting

dataset.

2. Clustering using only two features at a time and taking the two best

performing clusters, selecting a new pair of feature and clustering again.

If the new clustering performs better than the previous one, the next

step will use those rsults as the starting point; otherwise, will re-use the

previous, best performing clusters. The loop is done on all the possible

set of two features drawn from the five previously selected features.

Other than these two ”competing” approaches, we also performed a round of

training using all the possible pairs of features, furtherly trying to identify the

most impacting ones. We tested these approaches for three different targets:
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1. Power Conversion Efficiency (PCE): the key characteristic of a solar

cell is its ability to convert light into electricity. This is known as the

Power Conversion Efficiency and is the ratio of incident light power to

output electrical power.

2. Open Circuit Voltage (Voc): it is the voltage difference measured be-

tween two terminals when no current is drawn or supplied. It is the

maximum voltage that is available for drawing out from a solar cell

3. Fill Factor (FF): the short-circuit current (Isc) and the Voc are the

maximum current and voltage respectively from a solar cell, respec-

tively. However, at both of these operating points, the power from the

solar cell is zero. The FF is defined as the ratio of the maximum power

from the solar cell to the product of Voc and Isc. It implies that, in

conjunction with Voc and Isc, contributes to determine the PCE and

so the true maximum power obtainable from a solar cell[137].

5.4 Data preprocessing and encoding strate-

gies

At this point, we performed another preprocessing step, applied to the

categorical and string-based columns; in particular, we tried different encod-

ing procedures. The results obtained using each encoding methodology are

presented in section 5.5, while the methologies are explained in the following

sections.

5.4.1 Categorical encoding

Firstly, we decided to proceed with the simplest technique to encode the

categorical features present in our set of five most-target-related features:

categorical encoding. This means that we associate a different category (i.e.,

an integer number) with each unique entry in those categories. For example:
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the features Perovskite composition long form and Cell architecture

are two of these kinds of columns. Two examples of entries of the for-

mer are CsSnBr2.7I0.3 and Cs0.05FA0.788GU0.032MA0.129PbBr0.51I2.49,

while two of the latter are nip and pin. Hypothetically, CsSnBr2.7I0.3 and

nip could correspond to category number 1 of columns Perovskite composit-

ion long form and Cell architecture respectively, while Cs0.05FA0.788G-

U0.032MA0.129PbBr0.51I2.49 and pin could be mapped to category 2. Clearly,

if one column has an entry that appears more than once, like the value ”nip”

in the ”Cell architecture” column, each occurrence will correspond to the

same category. Figure 5.3 shows an example result of this process.

5.4.2 One-hot encoding

The next encoding we tried is another classical, namely one-hot encoding.

In this case, instead of assigning a single number to each entry, we insert new

columns (one for each entry in the original column); each column will be set

to 1 if it is the column corresponding to the specific entry in the original

column, otherwise it will be set to 0.

For example, if the original column had only two unique entries like CsSnBr2.7I0.3

and Cs0.05FA0.788GU0.032MA0.129PbBr0.51I2.49, each occurrence of the

first one would be mapped to [1, 0] (i.e. the value of the first of the two new

columns would be set to 1, and the value of the second one to 0) and each

occurrence of the second one would be mapped to [0, 1] (i.e. the value of the

first new column would be set to 0, and the value of the second to 1).

This method has the advantage of resulting in vectors which metrics are in-

variant with regard to the order of the entries in the original dataset, which

is a property known to be favorable to clustering algorithms like KMeans.

However, due to the specific nature of our dataset, it also result in a very

sparse matrix, with many new columns where only one of them has an actual

value for each row of the dataset, which instead is known to be detrimental

to the learning process[185].
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Figure 5.3: A figure showing an example of the application of categorical

encoding. We can see how each entry in the original column corresponds

to a specific, unique identifier number in the encoded column. Example 1,

in particular, appears three times, and the corresponding number (i.e., 1)

appears three times, in the corresponding positions. The same is true for

Example 3, which appears two times.

5.4.3 Word tokenization

The second encoding technique we decided to use is word tokenization.

In this case, the more complex string-based features have been analyzed in

order to identify the characters that convey a sense of order or cause-effect

relationship, distinguishing those that were apparently used for spreading

different messages and relations. Then, we identified the other set of charac-

ters that should be considered as unique entity (for example: the functional
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groups present in the perovskite formula10) and, consequently, individual

words. Once finished, we then used tokenization, and we associated a unique

identifier (namely, an integer) to each of the previously identified words.

Then, each entry of the target column is transformed into a vector of inte-

gers, where each word is transformed into the corresponding integer. Lastly,

since not all the resulting vectors have the same length, we took the length

of the longest one and padded all vectors to this new length, adding extra

zeros11 where needed.

Figures 5.3 and 5.4 show each step of this process.

Figure 5.4: Representation of how tokens are assigned. The first example

shows how the entry CsFAMAPbBrI is splitted in different words, and how

each word is assigned a different token; the second example shows how the

entry CsSnBr is splittend and then the tokens assigned. It must be noted

how the words Cs and Br are assigned to the same two tokens, namely 1

and 4 respectively, in both examples.

10For example the entry CsSnBr in the column Perovskite composition short form

should be divided into three different words (one for each element that build the per-

ovskite), but the entry CsFAMAPbBrI has 5 words: Cs (the caesium element), Pb (lead),

Br (bromine), I (iodine), and FAMA, which is a more complex group often used for

building perovskites.
11Obviously, 0 is not used in the previous encoding as part of the translation dictionary.
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Figure 5.5: Here, we show how the whole tokenization process would work

in a synthetic scenario. The leftmost block shows the dataset, and the first

orange block shows how each entry is associated with a list of tokens. The

second orange block shows the same tokens lists after padding, used to make

all of them of the same length (in this case, 6, as the longest tokens vector

[8, 9, 10, 11, 6, 7]

While being better than one-hot encoding in this regard, word tokeniza-

tion still results in sparse matrix.

5.4.4 Multy-hot encoding

This is a sort of combination between Word tokenization and one-hot en-

coding: we convert each entry of the original column into its corresponding

tokens, and then we insert a new column for each unique token present in the

whole tokenized column; then, each column corresponding to a token present

in the original entry will be set to 1, while the other to 0.
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5.4.5 Dimensionality reduction

Since the most likely issue of tokenization is the high dimensionality of

the resulting tokenized features, which also ends up being a sparse matrix, we

tried to see if performing dimensionality reduction on this big, sparse matrix

can lead to better clustering results.

In particular, we chose to use a new, yet very powerful algorithm for di-

mensionality reduction: UMAP (Uniform Manifold Approximation and

Projection)[109]; UMAP is based on the idea of preserving the global struc-

ture of the data while also reducing the dimensionality by projecting the data

into a lower-dimensional space being careful about preserving the topology

of the original dataset. UMAP uses a combination of techniques:

• Manifold learning: this is a technique used to identify patterns in

high-dimensional data that can be represented in a lower-dimensional

space. In particular, UMAP uses a technique called Riemannian ge-

ometry [172] to model the data as a low-dimensional manifold embedded

in a high-dimensional space.

• Topological data analysis: is a field of mathematics that studies the

global structure of data by analysing its connected components, holes,

and other topological features. UMAP uses a technique called simpli-

cial complex [161] to model the topology of the data. More precisely,

UMAP uses fuzzy topological simplicial complex [161] to compute the

probability of two points being connected, and this allows to capture

more accurate information about the underlying structure of the data.

• Moreover, UMAP uses an optimization algorithm to find the low-

dimensional representation that best preserves the distances between

the points in the high-dimensional space. This is done by minimizing a

loss function that measures the difference between the distances in the

high-dimensional space and the distances in the low-dimensional space.

It must be noted that, using the aforementioned techniques,UMAP is a non-

linear dimensionality reduction algorithm and can handle non-linear struc-
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ture of the data. For these reasons, UMAP is particularly well suited for

being used to create visualization of high dimensional data, allowing for the

creation of highly detailed and accurate visualizations of the data, which can

be useful for exploring and understanding complex data sets.

5.5 Results

For each of the aforementioned encoding and preprocessing strategies, we

are going to show the results of the best clusters obtained and compare them

to the baseline of the dataset. We are also going to analyze the values of

the features of the devices contained in those clusters, in order to see if these

values are homogeneous or not (cfr 5.2).

5.5.1 Results using Categorical encoding and One-hot

encoding

First of all, we analyze the two most basic encoding strategies.

In table 5.1 we can see the best overall clustering results obtained using cat-

egorical enconding for each target12. In table 5.2 we can see the same results

obtained using one-hot encoding.

As we can see, for each target both approaches resulted in at least one

cluster with significantly higher mean performance than the average of the

entire dataset. In particular, the best PCE-oriented clusters shows a mean

that is nearly double of that of the entire dataset. However, the one-hot

encoding approach is generally less performant than categorical encoding.

While it must be noted that these results are all coming from using all the

5 selected features for each target, also the other two approaches resulted in

an increase in mean performance of the devices in the best clusters.

12More results can be found in Appendix B.
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Target Mean Baseline Gain

PCE 22.87 12.0307 190.097

Voc 1.31937 0.961676 137.195

FF 0.826167 0.649566 127.187

Table 5.1: Results of the best performing clusters obtained with categorical

encoding for each target considered. The Voc is measured in Volts (V), while

PCE is a percentage and FF is a ration between 0 and 1.

Target Mean Baseline Gain

PCE 21.12 12.0307 175.55

Voc 1.2145 0.961676 126.293

FF 0.8141 0.649566 125.323

Table 5.2: Results of the best performing clusters obtained with one-hot

encoding for each target considered. The Voc is measured in Volts (V), while

PCE is a percentage and FF is a ration between 0 and 1.

It must be noted that these three results have been obtained by the DB-

SCAN algorithm. In general, looking at the bare mean performance and/or

the gain in performance of the best clusters with regard to the baseline, the

DBSCAN algorithm shows higher performance all around for all the three

targets using both encoding approaches. However, also the best KMEANS

best clusters perform better than the baseline, while showing another useful

trait, namely a higher number of devices falling within the same, better-

performing clusters. For example, the three best performing clusters for the

PCE target obtained using the DBSCAN algorithm and categorical en-

codings contains, in total, 19 devices. The top three clusters for the same

target obtained through KMEANS and categorical encodings contains 1017

devices. In particular, the top clusters of the two algorithms contain 8 and

20 devices respectively. For one-hot encoding, the situation is analogous.



Suggesting parameters for device optimization 171

While higher performance is the main objective of this work, it should also

be noted that too small clusters may end up being statistical anomalies or

general outliers of the dataset; on the contrary, bigger clusters allow for more

statistically sound conclusions.

However, this higher number of elements in a cluster also implies another

crucial difference: a higher number of different feature values in the cluster.

For example, the best cluster obtained using DBSCAN has all devices with

exactly the same feature value for all the 5 used features, while in the best

cluster obtained using theKMEANS algorithm, one of the features (namely

Perovskite composition long form uniques) has 320 different values. It

is hard to determine if this is a good or bad quality. For example, it could be

better to have more uniform clusters that clearly state that specific values

of specific features lead to better performance; on the other hand, this could

be the result of human biases that ended up influencing the algorithm, or

could be that the algorithm is failing in understanding deeper links between

the features and the device performance. While a definitive answer could

be found only after a targeted experimental or simulation campaign, we can

try to find some indications in the future sections, where we analyze other

techniques used trying to obtain better results.

5.5.2 Results using Word tokenization and Many-hot

encoding

In table 5.3 we can see the best global results obtained using word tok-

enization for each target13. In table 5.4 we can see the results obtained using

may-hot encoding.

In this case, the two approaches obtain literally the same performances

for the best clusters. In fact, these clusters actually contains the same de-

vices. Less performant clusters are, instead, slightly different.

Morever, we can notice that the top results are inferior than those obtained

13Again, more results can be found in Appendix B.
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Target Mean Baseline Gain

PCE 21.494 12.0238 178.76

Voc 0.8262 0.6496 127.185

FF 1.3194 0.9621 137.1394

Table 5.3: Results of the best performing clusters obtained with word tok-

enization, divided by target. Again, the Voc is measured in Volts (V), while

PCE and FF are percentages.

Target Mean Baseline Gain

PCE 21.494 12.0238 178.76

Voc 0.8262 0.6496 127.185

FF 1.3194 0.9621 137.1394

Table 5.4: Results of the best performing clusters obtained with many-hot

encoding, divided by target. As always, the Voc is measured in Volts (V),

while PCE and FF are percentages.
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in the previous experiment; also, the worst performing clusters have higher

mean performance than those obtained in the previous experiment, furtherly

highlighting how tokenization leads to worse ”classification” of the devices.

These are again obtained using DBSCAN, and KMEANS usually have

lower performance. However, in this second experiment, using KMEANS

we obtained clusters containing devices with more uniform features. For ex-

ample, the best cluster obtained for the PCE using categorical encoding and

KMEANS as the clustering algorithm contained devices with 320 different

values in the Perovskite composition long form entries column, while

the same cluster obtained using tokenization contains only 269 different val-

ues for the same column. This effect is even stronger in the second best

performing cluster, where we passed from 326 different values of categorical

encoding to 232 of word tokenization.

The lower performance is probably due to the fact that the encoding resulting

from word tokenization and many-hot encoding is a sparse matrix, just like

one-hot encoding. This sparsity counterbalances (and actually overcomes)

the higher expressivity of these two last approaches. However, this higher

expressivity has some effect on the KMEANS approach, which results in

less homogeneous clusters.

5.5.3 Results using UMAP

Differently from simple tokenization, the application of UMAP has mixed

results. In some cases it lends to better results (in particular for Voc and

PCE, both when using DBSCAN and KMEANS) than tokenization and

categorical encoding, while in other it ends up performing worse than tok-

enization (when applied to FF, and again this is true both for DBSCAN

and KMEANS). Another surprising thing is that rising the dimension of

the space encoded through UMAP does not led always to better perfor-

mance; for example, when clustering with respect to Voc using DBSCAN,

the best performing projection is a 3D space, while all the test done with

higher dimensional spaces (namely 5, 8 and 22-D spaces) resulted in pro-
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gressively worse results as the dimensionality of the space grows. Finally,

in some cases the dimensionality of the space yields no difference in results

at all, like when clustering for PCE or FF using DBSCAN. In this case,

we obtain nearly the same mean performance for all the different dimensions

tried, which could be an indication of the fact that we reached the limit of

this approach. However, it must be noted that this approach works better

than tokenization for PCE, but worse for FF.

In table 5.5 we report, as usual, the best performing clusters.

Target Mean Baseline Gain

PCE 25.220 12.0238 209.7509

Voc 0.806 0.6496 124.0802

FF 1.365 0.9621 141.8817

Table 5.5: Results of the best performing clusters obtained with UMAP

applied to tokenized columns, divided by target. It should be noted that the

gain of the FF target using tokenization was 127.185, and that the highest

score for the FF target has been obtained using a 3-dimensional space. As

in the previous tables, the Voc is measured in Volts (V), PCE and FF are

percentages.

5.6 Discussion

This chapter has been devoted to presenting the activities related to the

application of data-science methods to experimental data. We focused on

various limitations that usually arise when dealing with hand-collected data

coming from many different experiments. As said at the end of chapter 2

and in chapter 3, the lack of standards for data sharing severely impairs

the ability to use machine learning pipelines due to the poor quantity and

quality of data usually available. In this chapter, we tested some techniques

in order to overcome this limitations. In particular, we considered the Per-
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ovskite Database, a recently published dataset containing all the available

data about perovskite solar cells, i.e. a family of solar cells based on a spe-

cific class of materials called perovskite. This dataset has been created by

manually collecting all the data contained in all the available papers written

on this specific topic, which has been then reunited in a single location. This

process is prone to human error, and the data engineering of the more com-

plex information and features is limited. Moreover, not all papers report the

same quantities, measurement and characteristics of the discussed devices.

The measurement techniques and procedures also vary, making it harder to

build a uniform dataset.

Here, we analysed techniques that can potentially deal with these limita-

tions, starting from the selection of sensible performance measurement to

use as targets of our evaluation, the selection of a limited number of mean-

ingful features and then furtherly select different feature sets for each target,

choosing features which are more related to each specific performance mea-

sure.

Finally, we proposed the encoding of complex textual features describing

multi-step processes that researchers usually carry out to fabricate devices

or materials. These features usually contain many pieces of information, re-

lated one to another by a causal or temporal relationship, and being able

to efficiently represent these characteristics is key to developing a valuable

learning algorithm. To this end, we tested different encoding techniques,

moving from the simpler ones (i.e. categorical encoding and one-hot encod-

ing), to slightly more complex ones (like word tokenization and many-hot

encoding of the tokenized dataset) and then even projecting the previous

high dimensional encoding and datasets to lower dimensional spaces using

the UMAP algorithm. While results about the best encoding strategy are

not conclusive, we highlighted patterns and recognised the limitations of each

approach, which can potentially be extended to similar workflows or different

problems.

Our aim is to use clustering algorithms to find unknown patterns inside the
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available data. This could be a fundamental enabler for future investigations

of new devices and to understand the still unknown mechanism that can

lead very similar devices to have radically different performance and stabil-

ity. While this pattern recognition process is usually made ”manually” by

researchers, using experimental scaffolds and contemporary testing of many

different devices, we hope to help to speed up this process by guiding the

choice of new device to test based on the knowledge acquired through clus-

tering. Identifying more promising clusters with similar characteristics and

higher average performance is a first step towards the identification of new de-

vice architectures able to outperform the actual state-of-the-art, while also

leading to a deeper understanding of the physics that controls the perfor-

mance of apparently very similar devices. The intrinsically chaotic nature

of the problem requires solid statistical and predictive techniques, and clus-

tering and dimensionality reduction are well known techniques that can be

used to find underlying structures and patterns in otherwise messy fields and

situations.

As a future work, we aim at using this database as another test-bed for as-

sessing the expressiveness of MAMBO. We aim at rebuilding the dataset

using the semantic assets given by MAMBO (and, possibly, those offered

by the new ontology for devices discussed in section 4.7). If we manage to do

this, we can re-design the structure of the database and make it more easily

accessible and used, while also leading the way to a better representation of

experimental data.
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In this thesis, we showed the effectiveness of data-driven technologies ap-

plied to materials modelling and devices development.

First of all, we outlined the actual cutting edge technologies and methods

used both in laboratories to fabricate real-world advanced materials and de-

vices and to fully enforce the power of contemporary HPC clusters to perform

multiscale simulations and gather knowledge about materials properties and

devices performance. We introduced the physics and chemistry of organic

semiconductors, showing the differences that characterize them when com-

pared to traditional silicon-based materials, their advantages and disadvan-

tages, the most active line of research and the techniques used to synthesize

them and to use them to fabricate full scale devices like transistors and solar

cells. Also, we introduced basic knowledge about the functioning of those

classes of devices.

By introducing these state-of-the-art techniques, we also highlighted their

limitations and drawbacks, pointing to where there is more room for im-

provement and tuning or where current technologies simply fail in delivering

new results and deeper understanding of scientific problems. Then, we dis-

cussed about the benefits that the introduction of data-driven technologies

can have for the discipline, the impact that this new approach can have

on the whole field and how the integration of experimental workflows, com-

putational simulations and data science and machine learning can lead to

improved research activities and new scientific breakthroughs.

177
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We then introduced our first work, devoted to developing a system able

to predict properties of a material at the quantistic level. We introduced

the problem related to the specific property analyzed (namely, the electronic

coupling in organic semiconductor materials) and we discussed the standard

approach of computational simulations. Then, we showed how enforcing pre-

existing physical knowledge about the analyzed phenomena to chisel machine

learning models data features can lead to incredibly well performing models

while also achieving a computing time that is orders of magnitude lower than

that obtainable using computer simulations or even big deep learning mod-

els. Moreover, we showed how this approach can be easily generalized and

applied to different molecules and materials and also to predict similar but

different properties without changing any step of the pipeline. Even though,

at this stage, training is required, training this kind of models is a relatively

cheap computation, and it is still more convenient than conventional simula-

tions since they require the same amount of time for each specific case, while

the ML model, once trained, can predict new cases in a few milliseconds.

These kinds of models can serve as fundamental enablers for nearly-real-time

multiscale investigation of physical processes, allowing for a tighter integra-

tion of phenomenon and properties emerging at different scales in order to

obtain more accurate and theoretically sound predictions. In particular, our

model is able to determine the value of a property for very small aggregates

(namely: a molecular pair) and then we can use very efficient statistical meth-

ods (like Monte Carlo methods) to calculate the corresponding property of

the actual molecular aggregate; this way, we are actually performing a first

scale transition very efficiently, allowing us to compute a sort of mean prop-

erty of a bulk of materials using the corresponding property of the individual

particles that build the materials, which is a huge improvement in precision

and theoretical soundness. The main drawback of this approach is that it

needs a deep understanding of the physical laws that govern the system at

hand, which then have to be carefully encoded in machine-indigestible fea-

tures. While the introduction of deep learning methods made featurization
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a thing of the past, we think that it still has a role in the scientific realm:

other than the already discussed performance gain, using well humanly un-

derstandable features to fit the problem can help researchers to understand

how the machine learning models they use work and are able to fit the prob-

lem at hand, which can be a key element in allowing them to discover or better

understand new physical laws and processes that were previously overlooked.

While the previous work ended up severely outperforming previous approaches,

we still faced a huge limitation, namely the very limited availability of data

about the analyzed problems. Moreover, very often the available datasets are

also uncurated, incomplete and unstandardized, leaving to the data practi-

tioner the burden of developing complex and time consuming pre-processing

pipelines to make the data usable. To tackle this problem, we started the

development of a new ontology, specifically crafted to deal with molecular

materials and related entities and concepts. While ontologies are a well es-

tablished technology for formally organizing knowledge related to specific

domain, they are also very well suited to be the basic ingredient for the stan-

dardization of data formats, and they can be used to develop open standards

that developers and researchers can then target or enforce when developing

software or collecting and sharing data. Moreover, the formal definition of

concepts allows for easier application of PSMs to a target question, which

can serve both as a way to share common recipes for solving specific classes

of problems and as another ingredient in the automation of pipelines.

This kind of research line can be seen as a general endeavor towards the col-

lection of huge amounts of data on the field of materials science. These data

are intrinsically unstructured and their collection and usage is also intrinsi-

cally dependent on the specific activities that they are used for. This problem

is impossible to be solved using classical relational database technologies, and

in fact we are already witnessing the application of NoSQL technologies to

scientific research data. However, even standard NoSQL technologies are

not suitable to be applied to this specific realm, and researchers are devel-
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oping new technologies that are more akin to the concept of data-lakes. In

this picture, semantic technologies (like ontologies) that formally associate

data and metadata without forcing artificial constructs but only enforcing

the intrinsic nature of the data at hand are a fundamental asset.

The next part of our work focused on enforcing techniques similar to those

used for molecular properties to whole devices. This activity, which is a joint

effort with researchers at the university of Durham, aimed at using computa-

tional tools to create a dataset of devices that can then be used to train a ML

model to predict properties of the device. In particular, we strove to use only

the JV curve as the feature since this is the easiest property to measure also

on real-world devices. This way, we can develop ML applications that can

also be used for validating experimental data and results, furtherly mixing

computational science, experimental science and data science in the research

process. Moreover, we also made the whole process that goes from the defi-

nition of the device architecture to the final, trained model as automated as

possible, aiming at making data science and artificial intelligence more easily

adopted from a wider audience of researchers.

We managed to develop a solid approach, training a set of models to pre-

dict the carrier mobility of the device (both the overall mean and a direc-

tional component) in many different situations, with increasing difficulty.

We started from a simple device, ranging only the basic electronic materials

parameters (like the mobility itself) and testing both electrons devices and

holes devices. Then we did the same while also changing the temperature of

the environment, still managing to fit the mobility and even without giving

the temperature as an explicit feature to the model. Further tests were per-

formed by varying the thickness of the semiconductor and the channel width

of the device, and our model still managed to perfectly fit the mobility and,

again, without using these variable parameters as features. Finally, we used

a dataset where more parameters were changing at the same time, still man-

aging to get a very high performing model. We then tried to predict other
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parameters that were more related to the specific materials used and/or to

the geometrical features of those materials. In that case, we did not man-

aged to develop a model able to predict those properties; other than being

an expected behavior, this is also a perfect example of where the approach

outlined in the second chapter (and more generally, in this thesis) can be

a game changer: notably, we can use a model akin to the one obtained in

chapter 2 to compute the properties of the materials used to build the de-

vice, and then use this predicted properties to help training another model

which is then able to correctly predict the characteristics of the full device.

While this approach is still theoretically possible using computational sim-

ulations, the computational resources needed for simulations and the long

effort required to organize an actual simulation campaign makes it mate-

rially unfeasible. However, with the necessary preparation, we can easily

develop a model specifically trained to predict the properties we need and

then use this model to move from atomistic or molecular properties to those

of devices built with the chosen materials.

In the last chapter, we also showed how to work on data directly coming

from real-world devices, and in particular perovskite solar cells. In partic-

ular, we wanted to use automatic approaches to find unknown patterns in

already available data in order to give researchers indications on the type of

devices and materials to test in order to obtain solar cells with higher per-

formances. Again, we had to develop techniques to overcome the limitations

of the available dataset. In particular, the whole collection process has been

done manually by the authors of the dataset, which is prone to human error.

Moreover, the lack of uniformity in data presentation of the original papers

led to very inconsistent formats14 and incomplete entries. Moreover, the high

amount of missing data forced us to drop many features since there is no clear

14For example, the authors used many different strings for missing data; the dataset

contains many features with the same type of information but with different encodings; the

dataset contains very complex features without any kind of explanation about the meaning

of specific characters used to communicate an idea of causal or temporal relationships.
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method on how to statistically or automatically infer sensible values.

For these reasons, we decided to perform clusterization on three different

measurements that are used to judge the quality of a solar cell: the PCE,

the FF and the Voc. First of all, we identified 5 different features that are

statistically more related to each of these targets using the Pearson correla-

tion, selecting them between those with a reasonable amount of non-missing

data. Then, we tried different approaches for the encoding of the string-

based, complex features in order to make them more easily processed by

the learning algorithm. In particular, we tried categorical encoding, one-

hot encoding, word tokenization and many-hot encoding of the tokens, and

we saw how the simpler approach outperformed the supposedly more ex-

pressive ones. Since we thought that this is caused by the sparse nature of

the datasets resulting from the more complex encodings, we used another

algorithm, namely UMAP, to project the tokenized features to a lower-

dimensional space, resulting in a non-sparse matrix. This process actually

achieved a better performance than categorical encoding on two targets.

All these methods and research lines show how data-driven technologies can

help to make it easier and faster to gain insights using historical data. We

gave different examples on how already existing datasets and easily usable

methodologies coming from data-science can lead to new insights and im-

proved predictions, while allowing for tighter integration between experi-

mental data, computational science and bridging the gap between knowledge

coming from different scales. We also showed how semantic technologies can

furtherly serve the discipline by creating common platforms for data sharing

and standardization, which can immensely improve the reliability and appli-

cability of the aforementioned data-driven procedures. While prototypical,

these techniques showed promising results and leave huge room for improve-

ment in future work.



Appendix A

Chemical files conversion based

on MAMBO

Here we leave some figures that, for ease of readability, could not fit in

chapter 3.
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Figure A.1: Two fragments of two different files representing the same

molecule (aside from the specific coordinates). On the left, the .xyz file,

on the right the .pdb file. While representing the same entity, the contain

different explicit information, and even the information contained in both

files (namely the coordinates and the atom types) are represented differently.
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Figure A.2: Excerpts of the two .json files corresponding to those shown in

figure A.1; on the left, the one corresponding to the .xyz file, on the right

the one corresponding to the .pdb file. We can see how, aside from the

specific coordinates, the two files are identical. Moreover, looking at the one

built from the .xyz file, it must be noted that we were able to insert more

information than those contained in the original file, namely the bonds, the

angles and the dihedrals.
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Appendix B

Perovskite solar cells clustering

results

Here we discuss some more results obtained through clustering of the Per-

ovskite database1.

First of all, let’s look at the results obtained using the round-based approach,

meaning using two features at once for the clustering and then using other

two features to perform clustering again using the data contained in the two

best-performing clusters of the previous round.

Let’s see how this approach performed for the PCE in table B.2 and B.1.

Round Mean Gain

6 14.1187 117.356

7 15.8291 131.573

10 16.7367 139.116

Table B.1: Results for the best rounds using KMEANS for the PCE. The

baseline is 12.0307.

1It must be noted that in this appendix on we are going to discuss results obtained only

using categorical encoding and word tokenization, since these have been the first methods

we tested.
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Round Mean Gain

1 12.3702 102.822

2 20.8217 173.071

3 20.8217 173.071

Table B.2: Results for the best round using DBSCAN for the PCE. The

baseline is 12.0307. Here we can se that, differently than what happens for

KMEANS (B.1 the performance reached the top at round 3 and is higher

than what we achieved using KMEANS.

For the FF we have a very different scenario: we obtain better perfor-

mance using KMEANS instead of DBSCAN. Even the trend of growth is

different: in fact, DBSCAN grows slower and grows until the last rounds,

while with KMEANS we still have lower performances but it reaches the

top values during first rounds. It must be noted that this is the only case

where KMEANS outperforms DBSCAN in the entire work.

These results are visible in B.3 and B.4.

Round Mean Gain

1 0.699818 107.736

2 0.723625 111.401

3 0.77075 118.656

Table B.3: Results for the best rounds using KMEANS for the FF. The

baseline is 0.649566.

Finally, for the Voc we have a situation very similar to that seen for the

PCE, where KMEANS performance grows slower than that of DBSCAN.

Howver, whileDBSCAN again outperformsKMEANS, here the difference

in performance between the two approaches is smaller than in the first case.

We can see those results in B.5 and B.6.
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Round Mean Gain

8 0.757333 116.591

9 0.76425 117.655

10 0.76425 117.655

Table B.4: Results for the best round using DBSCAN for the FF. The

baseline is 0.649566.

Round Mean Gain

7 0.999612 103.945

9 1.00681 104.693

10 1.06005 110.229

Table B.5: Results for the best rounds using KMEANS for the FF. The

baseline is 0.961676.

Round Mean Gain

2 1.08167 112.477

3 1.11217 115.649

4 1.1186 116.318

Table B.6: Results for the best round using DBSCAN for the FF. The

baseline is 0.961676.
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[108] Matteocci, F., Cinà, L., Lamanna, E., Cacovich, S., Divitini,

G., Midgley, P. A., Ducati, C., and Carlo, A. D. Encapsula-

tion for long-term stability enhancement of perovskite solar cells. Nano

Energy 30 (12 2016), 162–172.

[109] McInnes, L., Healy, J., and Melville, J. Umap: Uniform man-

ifold approximation and projection for dimension reduction.

[110] Mei, Y., Loth, M. A., Payne, M., Zhang, W., Smith, J., Day,

C. S., Parkin, S. R., Heeney, M., McCulloch, I., Anthopou-

los, T. D., Anthony, J. E., and Jurchescu, O. D. High mobility

field-effect transistors with versatile processing from a small-molecule

organic semiconductor. Advanced Materials 25 (8 2013), 4352–4357.

[111] Meller, J. J. Molecular dynamics. Encyclopedia of Life Sciences

(2001).

[112] Mercuri, F. Semiempirical calculations on the electronic properties

of finite-length models of carbon nanotubes based on clar sextet theory.

Molecular Simulation 34 (2008), 905–908.



Bibliography 209

[113] Mercuri, F. Theoretical investigations on the healing of monovacan-

cies in single-walled carbon nanotubes by adsorption of carbon monox-

ide. Journal of Physical Chemistry C 114 (12 2010), 21322–21326.

[114] Mercuri, F., Re, N., and Sgamellotti, A. Influence of sub-

stituents and length of silanylene units on the electronic structure of

π-conjugated polymeric organosilicon systems. Journal of Molecular

Structure: THEOCHEM 489 (10 1999), 35–41.

[115] Mercuri, F., and Sgamellotti, A. Functionalization of carbon

nanotubes with vaska’s complex: A theoretical approach. Journal of

Physical Chemistry B 110 (8 2006), 15291–15294.

[116] Miller, A., and Abrahams, E. Impurity conduction at low con-

centrations. Physical Review 120 (11 1960), 745.

[117] Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik,

M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., and

Seok, S. I. Perovskite solar cells with atomically coherent interlayers

on sno2 electrodes. Nature 2021 598:7881 598 (10 2021), 444–450.

[118] Mizoguchi, R., Vanwelkenhuysen, J., and Ikeda, M. (pdf)

task ontology for reuse of problem solving knowledge, 1995.

[119] Mott, N. F. On the transition to metallic conduction in semiconduc-

tors. https://doi.org/10.1139/p56-151 34 (12 2011), 1356–1368.

[120] Mueller, T., Kusne, A. G., and Ramprasad, R. Machine learn-

ing in materials science. Reviews in Computational Chemistry 29 (5

2016), 186–273.
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