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Abstract

The application of modern Information and Communication Technologies

(ICT) technologies is radically changing many fields pushing toward more open

and dynamic value chains fostering the cooperation and integration of many con-

nected partners, sensors, and devices. As a valuable example, the emerging Smart

Tourism field derived from the application of ICT to Tourism so to create richer

and more integrated experiences, making them more accessible and sustainable.

From a technological viewpoint, a recurring challenge in these decentralized envi-

ronments is the integration of heterogeneous services and data spanning multiple

administrative domains, each possibly applying different security/privacy policies,

device and process control mechanisms, service access, and provisioning schemes,

etc. The distribution and heterogeneity of those sources exacerbate the complexity

in the development of integrating solutions with consequent high effort and costs

for partners seeking them.

Taking a step towards addressing these issues, we propose APERTO, a decen-

tralized and distributed architecture that aims at facilitating the blending of data

and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform

allowing fast prototyping of the business logic, lowering the barrier of entry and

development costs to newcomers, (zero) fine-grained scaling of resources servic-

ing end-users, and reduced management overhead. APERTO FaaS infrastructure

is based on asynchronous and transparent communications between the compo-

nents of the architecture, allowing the development of optimized solutions that

exploit the peculiarities of distributed and heterogeneous environments.

In particular, APERTO addresses the provisioning of scalable and cost-efficient

mechanisms targeting: i) function composition allowing the definition of complex



workloads from simple, ready-to-use functions, enabling smarter management of

complex tasks and improved multiplexing capabilities; ii) the creation of end-

to-end differentiated QoS slices minimizing interfaces among application/service

running on a shared infrastructure; i) an abstraction providing uniform and opti-

mized access to heterogeneous data sources, iv) a decentralized approach for the

verification of access rights to resources.
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1 Introduction

The ever-increasing attention to topics of sustainability, personalization, and

accessibility is driving many innovative changes and developments in many sec-

tors like Smart Cities, Industry 5.0, and Smart Transportation. These sectors based

on recent developments in network infrastructures, such as WiFi6 and 5G, aim at

integrating an ever-increasing number of data sources and services coming from

sensors, the Internet of Things (IoT), mobile devices, and even other business part-

ners. Although cloud computing is at the forefront of this technological ecosys-

tem, a one-size-fits-all approach is no longer feasible. In fact, neither the cloud

nor the networks connecting these objects to the cloud were designed to serve and

process the enormous data volumes originating from geographically dispersed and

heterogeneous endpoints.

Modern cloud solutions are then evolving toward the so-called Cloud Contin-

uum (CC) a model representing a continuum of resources and aiming at integrating

large-scale centralized public cloud deployment with distributed and near-the-

device computational resources such as edge computing or private clouds.

The Cloud Continuum constitutes a revolutionary paradigm, proposing a shift

from a centralized to a fully distributed architecture, and many new forms of cloud

computing support models are emerging.

Among them, Function as a Service (FaaS) is gaining more and more atten-

tion in the market and in academic research also thanks to its low development

effort, event-centric architecture, and fine-grained scalability of functions. This

service delivery model generally requires minimum development and management

effort from customers, emphasizing the absence of control and knowledge of the

developer of where the code will be put in execution. Thanks to this paradigm
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and the associated platforms, the development process of new services and the

upgrade of existing ones is limited to the creation of the business functionality

since the configuration, setup, and deployment are transparently managed by the

infrastructure. In FaaS the complete absence of control over the infrastructure en-

ables the fast creation and deployment of new services over large and, in principle,

unlimited, heterogeneous infrastructures.

The evolution of these technologies is suggesting many scenarios where a

continuum of data sources, services, and computational resources belonging to

different providers and business actors interconnects and cooperates in order to

create a more integrated and optimized value chain benefiting end users and busi-

nesses at all levels. However, the heterogeneity in protocols, formats, capabilities,

and constraints characterizing these scenarios hampers the acceptance of common

standards and poses a high barrier in terms of complexity and costs for the creation

of integrating solutions.

To solve these problems we propose APERTO, a layered architecture for

service and data integration in distributed scenarios involving many actors with

different offerings and needs. APERTO aims at proposing a standard architecture

mitigating the problem of heterogeneity in integration by proposing an architecture

organized in layers, hiding aspects related to the technologies used, and grouping

the different tasks. The aim of APERTO is not only to exploit better-existing

resources for greater business value but also to stimulate the creation of novel ser-

vices toward the whole potential of aggregation and augmentation of the platform.

APERTO is a platform that aims to provide a single access point for advanced and

augmented information and facilities to third-party organizations, both private and

public, by presenting a unified view of services and information.
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Core of adaptation, integrating, and fast-development capabilities of APERTO

is a novel Function as a Service platform, called APERTO FaaS, specifically de-

veloped to exploit heterogeneous resources available on the CC. APERTO FaaS

promotes strong decoupling and asynchronous interactions among architectural

components facilitating the integration of heterogeneous and unreliable resources.

These properties also facilitate the creation of abstractions and optimizations en-

abling customers to exploit transparently peculiar characteristics of each cloud

continuum resource. To support integrating heterogeneous distributed data sources

and services APERTO FaaS integrates specific functionalities supporting develop-

ers to cope with the complexity of these scenarios.

Emerging Cloud Paradigms is seeing a rising number of frameworks and

programming languages concurrently employed to compose and create services.

Those units of execution, whether implemented via microservice or functions, are

characterized by more ephemeral liveness as a consequence of the ever-increasing

adoption of fast auto-scaling techniques. These changes prevent the adoption of

mechanisms realized at the programming framework layer to uniformize and op-

timize operativity on data storage.

To mitigate this problem APERTO FaaS integrates abstractions and optimiza-

tions specifically designed to decouple user-defined business logic from opera-

tional aspects, such as protocols, dialects, and location, characterizing interactions

with data stores. These abstractions facilitate the execution of arbitrary workloads

integrating heterogeneous data sources available in the continuum of resources.

The execution on resources available in the CC, however, poses new chal-

lenges in terms of QoS differentiation between the different services developed

and hosted in the continuum of resources. The types of applications that are
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requested to run on these distributed infrastructures are very differentiated and

with very differentiated requirements, from latency upper-bounds to maximum al-

lowable downtime and reliability; moreover, the ICT infrastructures hosting them

include very heterogeneous resources and tend to employ more and more cloud

continuum virtualized resources, which are typically positioned close to IoT sen-

sors and actuators for greater efficiency [1]. At the same time limited availability

across the continuum of resources in terms of computational capacity, network

throughput, or latency can create situations of contention among the workflows

executed. To fill this relevant gap, APERTO FaaS proposes a novel approach able

to coordinate the different QoS mechanisms available over technologies across the

stack of virtualized FaaS invocations in the cloud continuum to properly manage

end-to-end QoS in terms of jitter, latency, and en-queuing time.

Advanced and complex capabilities of coordination in the cloud continuum

are essential not only to guarantee the respect of constraints in terms of QoS,

but also for the rising need of composing elaboration of information and execu-

tion of services dislocated in different sites creating more complex and integrated

workloads and services. By decoupling complex functionalities into simpler ones,

composition enables smarter management of complex tasks and improved mul-

tiplexing capabilities. Moreover, the intrinsic distribution of our targeted sce-

narios makes consolidation of services and data on the same infrastructure cost-

ineffective and in some cases technically impracticable.

Mechanisms of orchestration and compositions over the continuum of re-

sources are an ever-appealing feature enabling integration of service and data pro-

vided by heterogeneous partners and devices with near to the source execution of

business logic. However, heterogeneity and distribution of resources and data in-
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trinsic in scenarios of interest for this thesis hampers the creation of composition

solutions with accessible complexity barriers for developers belonging to many

realities.

Moving a step closer to addressing these issues, APERTO FaaS proposes an

innovative solution for FaaS function composition enabling optimized informa-

tion and service integration and aggregation over CC resources. APERTO FaaS

exploiting the FaaS models enables to express integration of sources as a compo-

sition of functions abstracting from their complexity and heterogeneity. The com-

position mechanism of APERTO FaaS, by relying on principles of transparency

and asynchronicity in components interaction, opens also to the creation of local

optimizations taking advantage of single-site capabilities such as high-bandwidth

networks or optimized node to node communications.

Finally, in scenarios including many partners and devices is easy to under-

stand the need for an efficient mechanism to regulate the rights of the different

actors. Current cloud solutions rely on centralized verification services that hardly

adapt to distributed scenarios where the fault of a portion of the infrastructure

could lead to severe unavailability of the service. We then propose a decentral-

ized authorization layer able to verify request permission to access services or

resources by exploiting distributed computational resources available in the cloud

continuum. Our proposal, furthermore, promotes a decoupling abstraction able to

separate access control logic from customer define ones by encouraging modular-

ity and reusability of code. The authorization layer is then specialized to enable the

verification of access right at the triggering of the function of the FaaS platform,

providing a boost in the verification process and reducing consequently end-user

perceived latency.
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In short, we believe that this thesis advances significantly the state-of-the-art

literature in the field by proposing the following primary original contributions: (i)

APERTO architecture to abstract the aspects related to the technologies used and

group the different tasks and address the problem of heterogeneity and dissem-

ination of information and services in contexts characterized by multiple actors

and partners. (ii) APERTO FaaS platform enabling to integrate heterogeneous re-

sources available in the cloud continuum and to promote asynchronous and decou-

pled interactions among architectural components to achieve better scalability and

fault-tolerance (iii) An original cloud persistence layer abstracting and decoupling

from single storage implementation and optimizing data operations performance

in FaaS platforms. (iv) An orchestration mechanism able to effectively achieve

a strong end-to-end differentiation of service QoS leveraging on heterogeneous

prioritization mechanisms (v) An efficient function composition architecture en-

abling to execute distributed workloads integrating the execution of multiple func-

tions leveraging on peculiarities of cloud continuum resources (vi) A decentralized

and distributed access control architecture decoupling customer-defined business

logic from the different authorization domains. (vii) An original implementation

of the proposal based on cloud-oriented technologies and patterns that are shap-

ing the FaaS and CC markets along with experimental results that quantitatively

show the feasibility of the proposed approaches and the efficiency of the proposed

implementations

The remainder of the thesis is organized as follows. The first two chapters (2,

3) give some background on Cloud Computing evolution over the past years with

a focus on new models of distribution and cloud services. We will then focus on

FaaS computing, the capabilities of this new cloud computing model, and the def-
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inition of roles of recurring architectural components composing these platforms.

Section 4 gives to the reader an overview of factors at the base of the creation

of distributed and heterogeneous scenarios and presents our proposal for an ar-

chitecture aiding the effective integration of services and data in those scenarios.

Section 5 proposes our novel FaaS platform, the central technological component

of our integration architecture followed by implementation choice and technolo-

gies integrated into our first prototype. We will then present an extensive test bed

demonstrating the feasibility and benefits of our proposed architecture(sec. 6).

Finally, in Sec. 8 conclusions are drawn and some directions for future work are

discussed.
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2 Distribution and Service Models towards the Cloud

Continuum

In the past years, Cloud Computing has changed absolutely ICT by provid-

ing convenient access through the network to virtually unlimited computing re-

sources (e.g., networks, servers, storage, applications, and services). In this chap-

ter, we will walk through the evolution of this concept from the originally central-

ized model, providing a limited variety of offering models, to an infrastructure in-

tegrating a continuum of distributed resources offered to customers through many

differentiated service models.

At the base of the cloud computing model is the provisioning of computa-

tional resources on which customers can run applications and services. These

resources are configured and rapidly provisioned by the cloud provider, with re-

duced customer management effort, and following a pay-per-use model [2]. As

a support to the billing methods of Cloud Platforms, providers have integrated ex-

tensive monitoring solutions to keep track of the usage of Information Technology

(IT) resources. This allows the cloud provider to charge consumers depending on

how many resources were used for a specific time frame. In that sense, measured

usage is closely related to the on-demand characteristic. The extensive monitor-

ing of resources enables to discharge users from many duties in terms of physical

resource management and orchestration that are demanded to the Cloud Provider.

In Cloud Computing, in fact, the end user is not necessarily aware of pro-

vided resources exact location, but they may be able to specify the region or zone

like country, state, or even Data Centers. To support the ever-increasing demand

for Cloud resources many companies have developed distributed infrastructure
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spanning many regions all over the globe and providing ready-to-use resources

to many customers. The huge availability of resources distributed across many

regions has enabled to cloud platform to provide unprecedented resiliency capa-

bilities. In fact, cloud services provide robust systems through the distribution

of redundant copies of the resources across physical locations. In case of one

resource becomes deficient, another redundant copy can take it over. Thanks to

the resiliency of cloud-based IT resources, cloud consumers can increase both the

reliability and availability of their applications.

A key characteristic of Cloud architectures is their rapid elasticity. Cloud

services can transparently scale by provisioning and releasing resources, as re-

quired in response to changing runtime conditions. In many cases, the demand for

resources changes throughout the year, month, or even the day. Elasticity allows

customers to change the allocation of resources dynamically, adding facilities to

deal with service peak times and removing them when they are no more needed,

paying just for the facilities they use. From a customer perspective, this reflects

the great flexibility capacity of cloud platforms to accommodate the varying needs

of businesses. As an example, a startup can begin by leasing minimal computing,

storage, and communication facilities. Then, it can adapt to the requirements by

adding more resources.

2.1 Cloud Deployment Models

Before Cloud Computing emerged, private clusters and grid computing made

use of many parallel machines to solve highly demanding jobs, while utility com-

puting provided services managed and delivered remotely by one or more providers

through a pay-per-use subscription model. The concept of cloud computing has
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gradually evolved from these models and the way resources are owned and orga-

nized defines different kinds of models in which cloud offerings can be divided.

In particular, a cloud deployment model represents a specific type of environment,

primarily distinguished by ownership, size, and access. Since the early begin-

ning, four models of deployment emerged: i) the public cloud accessible by every

customer in the world, ii) the community cloud reserved to users belonging to a

federation of entities, iii) the private cloud confining access to a resource in the

boundaries of a company, and iv) the hybrid cloud integrating multiple of afore-

mentioned models (Fig 1).

Figure 1: Cloud deployment models, distinguished by infrastructure ownership

and permission to access resources
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A public cloud is a type of cloud computing that delivers computing re-

sources (e.g., storage, networking, servers, applications, and services) over the

internet from every location all over the world. It allows potentially any users

to access and use these resources on a pay-per-use basis, rather than having to

build and maintain their own infrastructure. Public clouds are owned and operated

by third-party cloud service providers, which offer their resources to the general

public over the Internet. These providers are responsible for the maintenance, se-

curity, and operation of the underlying infrastructure, as well as the development

and management of the cloud services. Public clouds offer a number of benefits,

including flexibility, scalability, and cost-efficiency. They allow users to access a

wide range of resources on-demand, and to scale their usage up or down as needed,

without the need to invest in and maintain their own infrastructure.

A community cloud is a type of cloud computing that is shared by a spe-

cific community of users, such as a group of organizations with common interests

or a specific industry. It is typically owned and operated by one or more of the

organizations in the community and is tailored to address the specific needs and

requirements of that community. Like a public cloud, a community cloud de-

livers computing resources (e.g., storage, networking, servers, applications, and

services) over the Internet. However, it is designed to meet the specific needs and

requirements of a particular community and is usually only accessible to members

of that community. A community cloud can offer a number of benefits, includ-

ing cost-efficiency, security, use case-oriented optimizations, and compliance.

By sharing resources among a group of organizations with similar needs, a com-

munity cloud can help to reduce the cost of infrastructure and management, while

providing a secure and compliant environment for the community’s specific needs.
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Private clouds are typically owned and operated by the organization using

them, or by a third party on behalf of the organization. They may be hosted on-

premises, in a data center owned and operated by the organization, or they may

be hosted by a third-party provider and accessed over a private network. Private

clouds offer a number of benefits, including security, compliance, and control.

They provide a secure and compliant environment for sensitive data and work-

loads and allow the organization to have more control over the infrastructure and

services being used. They can also offer increased performance and reliability, as

the resources of the private cloud are dedicated to the organization and not shared

with other users.

A hybrid cloud is a type of cloud computing that combines the benefits of

both public and private clouds. It allows organizations to use a mix of on-premises,

private cloud, and third-party, public cloud services, depending on their specific

needs. In a hybrid cloud environment, an organization can use the public cloud

for tasks that don’t require a lot of customization or sensitive data and the private

cloud for more sensitive or critical workloads. The differentiation among private

and public resources also enables a first decentralization, exploiting data and pro-

cessing locality for latency-sensitive workloads. This allows the organization to

take advantage of the scalability and cost-efficiency of the public cloud, while still

being able to maintain control and security over certain workloads. A hybrid cloud

can offer a number of benefits, including flexibility, scalability, and cost-efficiency.

It allows organizations to choose the most appropriate cloud environment for each

workload, based on their specific requirements, and to easily move workloads be-

tween the different environments as needed. It can also help organizations to avoid

vendor lock-in, as they are not dependent on a single cloud provider.
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These early definitions mainly focus on the ownership of the infrastructure

and the typology of users allowed to access provided services. However, they

also highlight the first necessity of hybrid solutions putting the basis for a first

decentralization of the cloud.

2.2 Models of Distribution of Cloud Continuum

The progressive diffusion of Cloud Computing technologies providing easy

access to convenient, low-management, and scalable resources leads to the per-

vasive adoption of these technologies to support the ever-increasing demand and

integration of IT services. The increasing reliance of many companies on the

services offered by cloud computing has highlighted the importance of keeping

these services always accessible and available. A single centralized cloud ap-

proach could represent a single point of failure for the overall architecture due to

possible network connectivity problems, human errors, unpredictable failure, or

natural disasters. From a business perspective, service availability is particularly

crucial: despite vendors claiming the highest levels of service up-time, outages

keep happening for any cloud provider in any geographic zone ranging from a few

minutes blackout on a single data center to an entire geographic regions disruption

for hours and even days [3]. With an ever-increasing reliance on Cloud services,

these phenomena of unavailability can cause substantial financial loss and major

disruptions.

The pervasive adoption of cloud services also highlighted the rising prob-

lem of vendor lock-in experimented by customers when the willingness to migrate

from one cloud provider to another to follow cost logic or take advantage of dif-

ferent capabilities of the provider. A customer experiments with a lock-in when
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the cost and effort associated with the migration from a service of a cloud provider

to one of another provider are so high that makes the migration unfeasible or not

cost-effective. This phenomenon can happen for a variety of reasons, such as op-

erational cost to execute the migration or high developer effort to migrate from

custom cloud provider API to the new ones.

2.2.1 Multi-Cloud

One first approach to address cloud availability and lock-in problems could

be the employment of the Multi-Cloud pattern. Multi-cloud refers to the use of

multiple cloud computing services from different providers in a single hybrid in-

frastructure. This can include using services from public cloud providers like

Amazon Web Services1, Microsoft Azure2, and Google Cloud Platform3, as well

as private cloud and on-premises infrastructure. The Multi-Cloud approach can

then be seen as a generalization of the original definition of hybrid cloud when

considering the integration of multiple public cloud providers at once.

There are several reasons why an organization might choose to use a multi-

cloud strategy. One of the main reasons is to avoid vendor lock-in, which occurs

when a company becomes dependent on a single provider for their cloud services.

By using multiple providers, an organization can ensure that they have a backup

plan in case one provider experiences an outage or a change in pricing. Addition-

ally, using multiple cloud providers can also help to optimize costs, as different

providers may offer different prices for the same services. The integration of a

multi-cloud strategy also allows organizations to take advantage of the unique
1Amazon Web Services (AWS) https://aws.amazon.com/en/
2Microsoft Azure https://azure.microsoft.com/en-us
3Google Cloud Platform (GCP) https://cloud.google.com/gcp

14



features and services offered by each provider. For example, one provider may

offer better data storage options, while another may have more advanced machine

learning services. By using multiple providers, an organization can choose the

best option for each specific use case. The outcome is a more resilient unlocked-

in multi-cloud ecosystem where not only the load can be subdivided on multiple

providers but can also exploit some sort of geographical proximity to serve ser-

vices from the nearest cloud region [4].

Implementing a multi-cloud strategy can be challenging, as it requires coor-

dination and management across multiple platforms. This can be managed by

using tools like cloud management platforms, which can provide a single point of

control for multiple cloud environments, or with the integration and adoption of

common standard cloud technologies widely spread across providers(OpenStack,

Kubernetes) which can abstract the cloud providers layer.

While desirable, the granularity of these solutions is still too coarse to take

advantage of strict locality and handle the huge amount of data and strict require-

ments imposed by the increasing number of devices connected and smart services

requested.

2.2.2 Edge Computing

Edge Computing is a computing paradigm shifting from logically centralized

cloud infrastructure to distributed and closer to customer computational resources.

The convergence and the increasing ubiquity of wireless Internet access and

market penetration of Internet of Things (IoT) technology have given rise to the

so-called Internet of Everything (IoE) era where billions of connected things cre-

ate and exchange data through cloud data platforms. The pervasiveness of these
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devices is opening new applications and development of ICT technologies to many

sectors, such as smart cities applications [5], mobile gaming [6], cognitive assis-

tance applications [7], and Industry 4.0 [8].

Centralized and remote solutions such as classical Cloud solutions hardly

grasp on latency, bandwidth, security, and Connectivity availability needs that

those innovative developments seek. An increasing number of industries, for ex-

ample, are utilizing technology that demands fast analysis and reaction. However,

cloud computing alone is not adequate for meeting these demands due to delays

caused by the distance between the data source and the network, leading to inef-

ficiency, delays, and unsatisfactory customer experiences. At the same time data

continuously produced by those devices requires the availability of adequate band-

width to be moved in order to be processed and arises many security and privacy

concerns. Finally, the increasing dependency on cloud services for a rising num-

ber of processes and services makes the connectivity availability to those services

a critical factor.

Fog and Edge Computing, commonly unified under the umbrella of Edge

Computing, are two, relatively new, paradigms of computing that have been pro-

posed to address these challenges. In Edge Computing storage and computing re-

sources are placed closer to devices that produce and consume data or services [9].

Edge resources are tailorable on use case scenario-specific needs providing differ-

ent functionalities, such as computing offloading, data storage, caching, or coordi-

nating and redistributing service requests from clouds to users [10]. Moving data

processing and analysis to the edge helps speed system response, enabling faster

interactions thanks to the reduced number of network hops to be traversed in order

to reach computational and storage resources. The reduced number of network
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hops traversed joined with the development of new network connectivity tech-

nologies, such as WiFi-6 and 5G also promises to make available unprecedented

network bandwidth supporting parallel and continuous transmission of requests

and data.

The Edge resource could operate not only as a primary endpoint but also as a

fallback in case of disruption of the availability of Cloud resources or connectivity

to them, increasing in this way the reliability of the entire system. Finally, close-

ness to the producer of data opens new frontiers in privacy-preserving computation

and aid in meeting regulation constraints in terms of privacy and security of users

such as the ones described in the General Data Protection Regulation (GDPR)

regulation [11].

The distribution of computational resources can span multiple tiers [12] from

the data centers to end-users/devices depending on different scenario needs [8],

[13] (Fig. 2).

The first tier is the edge computing offer developed by major public cloud

providers, also called Edge Cloud for its closeness to traditional cloud computing

offers. As a consequence of the rising demand for edge resources, many public

cloud providers, such as Amazon, Microsoft Azure, or Google Cloud have dif-

ferentiated their offers by disseminating smaller data centers in many regions by

providing closer, with respect to the traditional offer, cloud resources still accessed

through the internet.

A common second tier, commonly known also as Near Edge, is located be-

tween the core or regional data centers and the last-mile access [14]. This tier

is commonly owned and operated by a telco provider or internet service provider

providing access to the same edge resources to multiple customers at once.
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The third deployment model is the On-premises Edge. This edge tier is lo-

cated in the last mile access and can include edge nodes operated by enterprises

(e.g., a retail store, a factory, a train) [15] or by customer-specialized edges, such

as nodes located in a residential house in smart building scenarios [16] or in cars

to support smart mobility.

Finally, the last Edge tier often called Far Edge [17] includes all those clus-

tered and non-clustered systems directly connected to sensors/actuators via hetero-

geneous protocols, including non-internet protocols, and providing computational

and storage resources.

2.2.3 Towards the Cloud Continuum

Depending on the specific need, each use case scenario could decide to adopt

only one of the aforementioned cloud distribution models or more than one of

them. Both multi-cloud and edge computing are emerging as promising archi-

tectural patterns, which could potentially accommodate the expected demands

in terms of service availability and quality profiles. In fact, the development of

an infrastructure that extends beyond centralized data centers, from the cloud to

the edge toward the so-called Cloud Continuum, combining the large-scale data

processing capability of cloud computing with the location-aware, geographically

distributed, low latency data processing capability of edge computing is more and

more expected an attractive solution direction.

From the integration of the different models in the cloud continuum many op-

portunities emerged but also significant research and technical challenges have to

be faced in order to make this paradigm effective. Among those, the orchestration,

organization, and management of these decentralized infrastructures are of partic-
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Figure 2: Cloud Continuum integrating computational resources available from

multiple Cloud, Edges, and On-premises.

ular interest as constituting a key enabler for the effective adoption of this model.

The integration of the many heterogeneous technologies and platforms available

in the continuum of resources poses the primary problem of system integration,

with systems in need of cooperating and coordinating through different protocols,

and data formats. To effectively enable integration and cooperation among sites

the urgency of making interaction among them reliable and scalable arises together

with the need for novel mechanisms of synchronization and coordination.

The complexity resulting from such distributed and heterogeneous infras-

tructure can increase development costs and effort for new services and then ham-

per the adoption of the CC paradigm in many scenarios. New cloud computing

models of services, such as serverless computing, abstracting completely where

customer-defined logic is executed promise to mitigate this issue and lower the

barrier to the adoption of CC infrastructure in many fields, such as Smart Cities,

Smart Agriculture, or Tourism.

2.3 Cloud Service Models

At the foundation of the Cloud Computing concept is the offloading of re-

sponsibility for the creation and maintenance of an application or service to a third
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party, the cloud provider as shown in Figure 3. From the early beginning of cloud

computing developments, 4 models of services emerged differentiating cloud of-

fers based on which of the management and configuration duties are offloaded

from customers to cloud providers.

Figure 3: Levels managed by Provider or by Customers in the different Cloud

Computing Service Models

2.3.1 MaaS

Moving from a classical on-premises installation where the customer has full

control and responsibility on the entire stack, from installation and management

of physical resources to the creation and accessibility of applications and services,

the first model that we encounter is Metal as a Service (MaaS). MaaS is a type of

cloud computing service providing customers with dedicated, bare-metal servers

managed by providers. MaaS providers generally offer a range of physical servers

with different hardware configurations, such as different CPU and memory op-

tions. Customers can choose the configuration meeting their needs and use the

server for any purpose they choose. Even, network connectivity among nodes
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while physically installed by the provider, its configuration, and maintenance are

entrusted to the customer.

MaaS is a good choice for organizations that require high-performance, low-

latency infrastructure and have their own team or a third party to manage all the

infrastructural aspects. Thanks to the total control of the infrastructure, the cus-

tomer is able to operate any optimization required while having the guarantee that

applications belonging to other customers are run on the same infrastructure caus-

ing possible contentions on resources.

2.3.2 IaaS

Infrastructure as a Service (IaaS) is the cloud computing model that takes ad-

vantage of modern virtualization technologies abstracts and provides ready-to-use

configured virtual infrastructures to customers. The IaaS offering includes a va-

riety of services, including virtual machines, storage, and networking enabling the

user to customize the characteristics and performance of the cloud-provided vir-

tual infrastructure. Virtual machines, also known as instances, are one of the main

building blocks of IaaS providing a way for customers to run their own operating

systems and applications on virtualized hardware. This allows customers to have

the flexibility and the responsibility to choose their own software and configure

their environment accordingly to their needs. The pervasive use of virtualiza-

tion technology in IaaS infrastructures revolutionized the market by providing the

ability to cloud providers to abstract from physical resources and run workloads

belonging to different customers on the same infrastructure transparently.
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2.3.3 PaaS

The adoption of the IaaS model discharge customer to the duties of installing

and maintaining physical infrastructures but still requires them to define infras-

tructure characteristics, configure single virtual components, and install all the

necessary software and dependency to run developed services. The Platform as a

Service (PaaS) further reduces customer efforts by providing a ready-to-use exe-

cution environment on which services and applications can run. One of the main

benefits of PaaS is that it abstracts away many of the complexities of managing

and scaling infrastructures, allowing developers to focus only on building their

applications.

PaaS platform can aid customers in the entire development cycle by provid-

ing environments already configured for developing, testing, and deploying appli-

cations without the need to manage the underlying infrastructure and configure

the framework. To further support and speed up development phases, PaaS infras-

tructures are usually juxtaposed by a series of services ready to use and already

configured, such as databases, cognitive, and storage forming the so-called Back-

end as a Service (BaaS). As per the PaaS application, also the use of those services

is completely transparent to customers, with the execution and scalability of the

service completely delegated to the Cloud Provider.

2.3.4 SaaS

Software as a Service (SaaS) is the highest cloud model of services allow-

ing customers to access and use software over the internet, without the need to

install or manage the software themselves. With SaaS, the software and its un-

derlying infrastructure are totally managed by the cloud provider, who takes care
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also of the entire software lifecycle from the development to the maintenance,

updates, and security. Customers access the software typically through an inter-

face such as a web browser or a mobile application, and only pay for the services

they use, usually on a subscription-based model. SaaS is commonly used for a

wide range of business applications, such as Customer Relationship Management

(CRM),Enterprise Resource Planning (ERP), human resources management, and

collaboration or productivity tools like Office 365, Google Suite, or Salesforce.

One of the main benefits of SaaS is that it eliminates the need for customers

to purchase, install, and maintain software, and reduces IT management costs. It

also enables the customer to access the software from any device with internet

access while still leveraging on rapid scalability of cloud infrastructures. SaaS is

becoming more and more popular due to its cost-effectiveness, ease of use, acces-

sibility, and scalability. As long as the customer has a stable internet connection,

they can access the software and the provider takes care of the rest.

2.3.5 Everything as a Service (XaaS)

Starting from these four models the cloud providers differentiated service

model offers over time in order to create a more pervasive and complete offer

suiting in a finer-grained way customer needs. The progressive subdivision into

specific services such as Storage as a Service and Domain Name System (DNS)

as a service as well as the integration of new technologies such as containers with

its relative model of service Container as a Service or the creation of ready-to-

use services such as the Database as a Service led to the definition of the so call

Everything as a Service (XaaS). With the term XaaS, we indicate the continuous

development of cloud service offer in order to integrate new technologies and ex-

23



tend cloud computing capabilities. One of the branches of this differentiation, in

particular, aims to progressively discharge customers from management, configu-

ration, and orchestration effort in order to concentrate only on the business logic

of the application or service.

An emerging model of services that is gaining more and more interest in the

market is the Function as a Service (FaaS) model. In the FaaS model customer is in

charge only to create and upload the code representing the business logic desired

and associate it with the triggering of an event. The infrastructure then takes care

of executing, in a completely transparent way for the customer, the code at each

triggering of that particular event.

In the following chapter, we will focus on this model, its capabilities, and

constituting elements to provide essential background in order to present our in-

novative solution based on the FaaS model for the integration of services and data

in distributed and heterogeneous scenarios.
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3 Function as a Service (FaaS)

Function as a Service [18] is a novel cloud computing model in which customer-

defined logic is put into execution dynamically when triggered by an event. The

abstractions employed by the FaaS platforms give to customers the illusion of

the absence of the entire infrastructural layer making this model part of the

so-called Serverlles Computing model family. The customer-defined logic is rep-

resented in this platform by the function which represents the atomic unit of ex-

ecution. The association between the event and the corresponding function that

is executed at its reception is called FaaS Workflow and is configured by the cus-

tomer after the upload of the code representing the function. The relation that can

be settled between events and functions is many-to-many with a single event that

can trigger the execution of multiple functions as well as multiple events that are

processed by the same function.

Figure 4: Cloud Computing models of service with FaaS as an intermediate offer

between PaaS and SaaS.

In the FaaS paradigm, customers have no control over where and exactly

when their code is executed. In these platforms, in fact, the entire stack on which

the user-provided code is executed, from the hardware to the execution runtime, is
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provided already configured and managed by cloud stakeholders (Fig. 4). The

client is only in charge of the creation and uploads in the platform of the function

code and the configuration of the workflow. The customer has very little control

not only over the configuration of the execution environment but also over the

computational resources available for the execution. From a customer perspective,

in fact, FaaS functions are ephemeral entities whose lifecycle is bounded by the

processing of a single activation event.

The support to a specific programming language for the creation of the func-

tion is in charge of the infrastructure provider, even if most of the public cloud

providers support an ever-increasing number of programming languages includ-

ing Java, Python, JavaScript, etc. The execution environment in which the code

is executed is defined and provided by the FaaS cloud provider and gives to cus-

tomer a low degree of freedom for customization. That limits the freedom of the

developer but enforces the control of the Cloud Provider facilitating optimizations

and management operations such as runtime updates or security fixes.

With respect to the Platform as a Service model, the FaaS model differs es-

pecially for a partial loss of control of Application layer aspects (Fig. 4). In FaaS

platforms, in fact, developers are not requested to implement protocols like HTTP,

TCP, or RabbitMQ to interact with the functions deployed.

The different ingress points to trigger the function are already provided by the

platforms and associated with the function workflow configuration. That behavior

creates a separation between the business logic of the function and the logic to

interact with them which encourages code reusability and fastens the development

of new services. Moreover, as already stated, the user has no control over the

26



Figure 5: Zoom-in showing in details differences among PaaS and FaaS models

in terms of duties managed by provider or customer.

lifecycle of the functions which are instantiated dynamically at the arrival of each

event.

FaaS platforms are so characterized by fine-grained per-request scaling of

resources: at any time the number of resources employed by the FaaS platform

automatically tends to be proportional to the number of requests issued. This scal-

ing mechanism also leads to Zero-scaling capability, which allows services and

applications not in use to consume almost no resources. The zero-scaling features

in public cloud provider FaaS platforms introduced the per-request charge where

the customer pays only for a single activation of functions deployed.

3.1 Architecture composition

In the past years, many FaaS architectures have been proposed by both in-

dustry and academia, targeting specific needs or challenges. From the analy-

sis of these proposals and main Open Source and private FaaS solutions three
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main architecture elements embodying essential behavior realizing FaaS platforms

emerged: the Trigger acting as a bridge between the platform and external world,

Controller managing infrastructural aspects and workflows activation and execu-

tion, and the Function Executor executing code representing functions (Fig. 6).

Figure 6: High-level FaaS architecture components.

The Trigger is the logical entity responsible for receiving or sensing exter-

nal information and converting them into internal events triggering functions ex-

ecution. Triggers typically receive requests from heterogeneous sources and the

interaction with them can employ different protocols and formats.

Depending on the nature of the source, the trigger embodies different forms

of interaction spanning from active ones with the trigger initiating requests or pas-

sive ones by listening for incoming connections. The lifecycle, management, and

scaling of the trigger component are completely demanded of the FaaS platform

which can take advantage of the intrinsic stateless nature of this component.

The Controller works at both the Infrastructural and Application layers (Fig.

7), managing infrastructural elements of the platform and coordinating the exe-

cution of function workflows. The main objective of the controller is to monitor

and coordinate these two layers in order to apply new customer configurations and

maintain workflows responsive thanks also to the metrics coming from a pervasive
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Figure 7: High-level decomposition of a FaaS controller into its constituting

component addressing different orchestration and management duties affecting

infrastructural and application layers.

Monitoring framework traversing layers of the architecture. In FaaS platforms, in

fact, Monitoring capabilities are provided and configured by the platform across

the entire stack of the platform from the Application Layer to the Hardware one.

This pervasive monitoring gives the Controller essential information to take in-

formed decisions in order to maintain the platform responsive.

From a Top-Down perspective, the Customer interacts with the Configura-

tion API by submitting to it Workflows and functions. Configurations received

on these layers are memorized and propagated to other components in order to

activate the Workflow on the platform. The Configuration API Controller can im-
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plement and expose different protocols to receive configurations, like HTTP or

gRPC as well exploit different configuration formats, such as JSON, TOML or

XML.

The rights of a particular user to access the resources described in the work-

flow configuration are checked by the Authorization Controller. This Component

can be also involved in the process of workflow execution verifying the rights of a

user or service to trigger the execution of a specific function workflow.

The Function Router is the controller component that decides which Function

Executor redirects each event incoming from the Trigger. This is the component

that realizes the logic described in each workflow and distributes the computa-

tional load among the nodes of the cluster. Is the Function Router that realizes the

logic of load balancing and fault tolerance in the process of event distribution

and triggers actions of scaling.

For event distribution, the Function Router can interact with other compo-

nents either realizing synchronous service call invocation (Fig. 6) or exploiting

asynchronous pub-sub-based communication (Fig. 8). The former requires that

each received event is first passed to the controller and processed there to decide

the next hop in the invocation chain. In the latter, the controller typically ex-

ploits pub-sub Message Oriented Middleware (MOM) to deliver events to nodes.

The integration of a MOM encourages a more asynchronous and decoupled in-

teraction between the architecture component facilitating their distribution and

management. Moreover, the function router can exploit built-in capabilities for

message delivery of each MOM solution adopted, such as differentiation in QoS,

delivery semantic, or advanced load balancing.
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Figure 8: FaaS architecture introducing a MOM as a medium for event delivery

to Function Executor nodes.

The Component Controller (Fig. 7) is the process in charge of provisioning

and configuring architecture components of the platform. It is this component that,

having received a workflow configuration and code, configures the infrastructure

component to activate the workflow. For example, this controller packages the

code representing the function and deploys it to execution nodes, or sends the

configuration to an HTTP Trigger to make it accept requests at a specific path.

The provision of computational resources needed to deploy new components

or execute functions is demanded to the Resource Controller. Depending on the

specific deployment environment the provisioning of resources can be directly

done by the Resource Controller, e.g. execute the command to scale a specific

service on the local node, or by an external cluster controller. In the latter case,

the Resource Controller acts as an adapter to specific cluster solutions (e.g. Ku-

bernetes, OpenStack), on which the serverless platform is deployed, by requesting

through the specific API the computational resources needed and providing ab-

straction to the Component Controller to provision the platform component on

it.

Function Executor are agents installed on computational resources provi-

sioned by the Resource Controller and usually leveraging on multiple distributed
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virtual physical nodes and are in charge of hosting and putting into execution

functions for each incoming event. Nodes hosting this process, either virtual or

physical, are then called Function Executor Nodes or in short Executor Nodes.

Functions are executable codes expressed in one of the supported languages,

and uploaded by customers ahead of time in conjunction with a configuration. The

configuration is the set of information exploited by the FaaS platform to know to

which external events the execution of a function is associated with and in which

execution environment should be run. The execution environment does not only

specify the language framework but also all the possible dependencies, the targeted

operating system, and the architecture on which the uploaded function code has

to be put in execution. In particular, the process responsible for waiting for events

and for starting function invocation is the so-called Invoker or Watchdog [19].

The distribution and architecture of the invoker can follow three main architecture

models namely: (i) invoker per function creating an invoker instance for each

function deployment, (ii) invoker per node instantiating a single invoker instance

in each node either physical or virtual in the cluster, and (iii) invoker per cluster

providing the invoker as a service deployed on the cluster (Fig. 9).

In the invoker per function model, adopted by platforms such as OpenFaaS [19],

each invoker instance is associated with exactly one function. The resulting in-

voker is a lightweight process with minimal impact on resources, and this pairing

of function-invoker simplifies the management and orchestration plane, at the cost

of greater resource utilization. Moreover, the absence of coordination among in-

vokers located on the same node could inhibit optimizations, such as shared re-

source access or computational resource reservation.
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Figure 9: High-level FaaS Invoker architecture approaches: (a) per cluster, (b)

per node, and (c) per function, respectively.

In the invoker per node model, adopted by platforms such as OpenWhisk [20],

each executor node hosts exactly one invoker component, responsible for receiv-

ing the different events from the controller and through a multiplexing mechanism

invokes the associated function. This model has the advantage of reducing the

number of invoker instances running concurrently on the same host with respect

to the per-function approach, thus potentially contributing to better resource uti-

lization. However, this comes at a cost of a more complex control logic handling

request multiplexing to the invokers, with a consequent increase in complexity in

orchestration and management.

In the invoker per cluster the invoker functionality is de facto offered as a

centralized service. This model has the advantage of having the smallest possi-

ble impact on cluster resources, simplifying event distribution as all the events are

routed to the centralized invoker services. This model forces a strong coupling

with the specific orchestration technologies and protocols on which the FaaS plat-

form is deployed e.g., Kubernetes, Apache Mesos, OpenStack, etc. Moreover, the

communications between the invoker and functions could result in overall slower
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execution times due to the centralization of the service and the introduction of

network-based communications.

From the above considerations, the invoker per node model emerged for its

advantageous trade-offs in terms of complexity, resource consumption, and per-

formance. However, since many FaaS platforms are built on top of already con-

solidated resource management solutions and orchestration platforms, the choice

of a model of deployment for the invoker should take into account the peculiarities

and constraints of the running environment and not only business or performance

logic. In particular, some solutions can inhibit resource management from third

processes. In these cases, the adoption of the simplest and thinner solutions (in-

voker per node) or more integrated ones (invoker per cluster) can represent the

more practical direction.

3.2 Function Composition

An appealing feature available on a rising number of platforms is the capabil-

ity of combining the logic of multiple different functions into a single workflow.

This feature, called function composition, not only further simplifies the develop-

ment of new services and encourages greater modularity and reusability of code

but also facilitates a greater parallelization and distribution of workflow busi-

ness logic.

A particular type of Composition widely adopted in FaaS platforms is Func-

tion Chaining, a pattern inherited from functional programming, where the output

resulting from the execution of a function is piped as ingress of another function,

thus creating complex processing from the composition of a simple function. An
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efficient mechanism of chain can encourage a fine-grained decomposition of logi-

cal functions in small actual functions, enhancing code modularity and reusability.

(a) (b)

(c)

Figure 10: Function composition approaches. (a) Reflective invocation: a third

entity coordinates the function invocation and forwarding of the result to the

successive function in the chain. (b) Continuous Passing at the Business Layer:

the business code directly invokes the next function in the chain through the

associated trigger (c) Continuous Passing at the Infrastructural layer: the invoker

is tasked to forward the output of the business logic to the next function in the

chain.

From the literature, two main patterns emerged for implementing the com-

position logic in FaaS. The reflective invocation pattern relies on the use of a third

entity to encapsulate the logic of function composition. The entity tasked with the

function execution, waits for its result, forwarding it to the next function in the

chain until all the processing units have been executed (Fig: 10a). In the contin-

uous passing composition pattern, instead, the function can locate and name the
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next function in the pipeline, invoking it by forwarding the necessary input (Fig

10b) [21].

FaaS platforms implement these two patterns either at the business layer or as

a built-in capability at the infrastructural layer with advantages and disadvantages

in both choices. The implementation at the business layer foresees that each func-

tion has at least one trigger associated, exposed to the outside, and addressable

from other functions. In this setting, it is the responsibility of the developer to cre-

ate both the logic of the invocation and implement the protocols needed to allow

the composition of and message passing between functions (Figure 10b). While

this approach can offer the best expressiveness and dynamicity, it also hinders

function re-usability and modularity as the business logic is bound to a predeter-

mined composition policy.

On the contrary, in the infrastructure layer approach, the business logic of

each function is decoupled from the composition logic. In this case, upon function

completion, it is up to the FaaS platform to decide whether and where to redirect

the output, as well as the actual protocol used to forward it (Fig 10c). In this ap-

proach, there is a separation between policy and mechanism, leading to easier im-

plementation and overall better performance. Moreover, some optimizations can

be exploited by the infrastructure to improve the processing pipeline performance,

e.g., function co-location, result caching, or optimized function-to-function com-

munication protocols.

To conclude in the adoption of a particular approach for function composi-

tion many trade-offs emerge. In particular, the adoption of approaches based on

third-entities, requiring often some form of states to execute, while providing a

more complete and customizable tool for developers, can introduce constraints in
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terms of scalability, performance, and availability of the mechanisms. Instead,

approaches like continuous passing relying on asynchronous communication and

the absence of state, guarantee better scalability and reliability of the system at

the expense of mechanisms expressiveness. The integration of function compo-

sition at the infrastructural layer allows to exploit peculiarities of each platform

providing advantages, such as performance, fault tolerance, and less resource con-

sumption but they introduce a stronger coupling, with respect to solutions that

rely on application-level coordinator, between the platform and the composition

solution.

3.3 Cloud Continuum enabled FaaS platform

While the FaaS paradigm was originally conceived as a model primarily exe-

cuted in centralized Cloud environments to exploit the huge availability of unused

computational resources of modern data centers, it rapidly evolved to support de-

ploy scenarios over the CC [22], [23]. The integration of these two technologies,

in fact, promises to make available through abstractions of the FaaS model, perfor-

mance improvements derived from the simultaneous exploitation of heterogeneous

and distributed resources available on the Cloud Continuum [1]. The FaaS model

can cover a wider spectrum of applications by exploiting at the same time virtually

unlimited resources of Centralized Clouds and low latency and high throughput

performance of Edge Computing.

In particular, in the Edge scenario, the FaaS paradigm providing fine-grained

scaling and zero-scaling capabilities can provide huge advantages to those deploy-

ments with a high density of differentiated applications or with relatively limited

resources such as for edge cloud nodes.
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We believe that the research and development of standards, optimizations,

and technologies enabling the efficient execution of FaaS function across resources

of Cloud Continuum could benefit and accelerate the development of many fields

such as Industry 5.0, Smart Cities, or smart mobility. Those scenarios, in fact, are

often characterized by a strong dynamicity and heterogeneity in terms of offer and

requirement. The application of the performance tailoring capability of the CC

joint with fast and facilitated development of new services of FaaS can support in

coping with the dynamicity of sectors.
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4 Service and Data Integration in Highly Distributed

Scenarios

Recent development in Cloud Computing towards the cloud continuum en-

abled unprecedented performance, low latency, and bandwidth availability. Many

sectors, such as manufacturing, tourism, city management, and logistic operator

are exploiting these novel capacities as a boost to the development of new dis-

tributed services. In fact, the availability of distributed computational resources

combined with new network technology, such as 5G or WiFi6 is enabling the in-

time processing of data coming from a rising number of devices connected.

The number of connected devices and sensors available in the territory and

inside factories is constantly rising providing continuously update information.

Cities administrations can then exploit sensors to acquire information, such as

crowding, and noise to plan more targeted interventions. Manufacturers can lever-

age information coming from the Industrial Internet of Things and connected ve-

hicles to create a more integrated supply chain with production reducing in this

way delivery time and costs.

At the same time, new Service Models, such as PaaS or FaaS are opening the

development and hosting of services and applications to a wider audience thanks

to reduced deployment and management efforts. This unprecedented number of

sources of information, partners, services, and device connected opens new forms

of collaboration, optimizing processes and creating more involving and unified ex-

periences for end-users. These integration, while appealing and expected to create

great value for manufacturers, customers and communities are hampered by the

heterogeneity in typology, representation, and protocol with which these are made
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and exposed. This scenario is further complicated by the ever-increasing number

of technology consuming this information and services and presenting them to

end users in different ways, such as mobile devices, Virtual Reality headsets, and

wearables.

In this context, the development of integration architectures emerged as a

frequent pattern adopted by different industries and realities to respond to the ex-

igence of interpolating information coming from different sources or combining

services. These solutions however are characterized by a cost proportional to the

number of integration as a consequence of the high heterogeneity of sources and

requirements over the costs of management and orchestration. This often results

in vertical integration with low interoperability among them and waiving on in-

tegrating all those sources are not cost-effective. The creation, promotion, and

adoption of standards among partners could partially alleviate this problem by re-

ducing heterogeneity. However, especially when considering integration among

partners and data coming from different sectors the settling of a common set of

standards satisfying the needs of all partners is often impracticable.

4.1 Smart Tourism Service and Data integration

The tourism field thanks to its intrinsic distribution and the natural presence

of multiple heterogeneous actors shaping this context qualifies as one of our main

reference scenarios during this study.

The rapid and pervasive evolution of digitalization covering all aspects of life

has drastically changed the field of tourism [24] so to propose a new pervasive ex-

perience, more and more based on online services and information; moreover, that

trend is expected to further grow in acceptance and offerings. In fact, we already
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see a wide variety of services, datasets, and platforms concerning and supporting

tourism in many of these new different forms. In the last decades, tourism acquired

a key role in the development and economic growth of many countries, and so it

is in Italy. As stated by Eurostat [25], in the European Union (EU) area tourism is

the EU third largest socioeconomic activity, representing around 10% of the EU

GDP (Gross Domestic Product). Moreover, five EU Member States are among the

world’s top ten tourist destinations worldwide.

In Italy, more significantly than in other countries, tourism is in continuous

growth and represents a vital contribution to the wealth of the nation. In fact,

the total contribution of tourism to the Italian economy in 2017 was 223.2 billion

euros, equal to 13% of Italian GDP, and Italy was ranked the second destination for

outbound trips made by EU residents within the EU, in terms of nights spent [25].

The fast increase in the tourism market is raising the need for “Smarter”

Tourism (Smart Tourism, or ST for short) more able to personalize and adapt cus-

tomer experiences while creating a more culturally rich and even more sustainable

offer. To evidence the importance of ST in the sustainable development of a coun-

try, the European Commission launched the European Capital of Smart Tourism to

stimulate the development and sharing of ST good practices. The European Cap-

ital of ST is an initiative to promote integrated offers and innovative, inclusive,

culturally diverse, and sustainable practices for tourism development by European

cities [26]. Within that project, the European Commission has defined the concept

of Smart Tourism as the combination of properties:

• Accessibility: to enable barrier-free destinations and enable access, regard-

less of age, cultural background, and physical disability.
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• Sustainability: to protect natural resources of a city, reduce seasonality, and

include local communities.

• Digitalization: to use digital technologies to enhance all aspects of the

whole tourism experience.

• Cultural heritage and creativity: to protect and capitalize on the local her-

itage for the benefit of all stakeholders: the destination actors, the industries,

and tourists.

The always enlarging availability of information accessible through the net-

work has modified the approach of visitors to the experience from an even struc-

tured and well-planned tourism offering to more dynamic and by-need ones. The

development of ST will require not only a more personalized experience for tourists

but a more dynamic service proposal as key factors of the whole experience. Ex-

amples of dynamicity are modern apps that exploit geo-localization to retrieve

more suitable local services in the locality of tourists and in a by-need fashion.

That dynamicity further promotes a more personalized experience by using an

intelligent system recommender: today the whole information about previous his-

torical data and profiling plays a key role in ST decision-making processes [27].

Moreover, in the last years, the recent global pandemic has stressed further the

importance of smart and dynamic tourism services based on geographic posi-

tions [28].

Another important accelerator to drive information retrieval toward service

quality is played by the pervasive diffusion of IoT and smart devices, connected

with Social Sensing. In Social Sensing, the final customer can be actively and

deeply involved in many ways, from contributing with her knowledge and sharing
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data gathered with smartphone and personal wearables, to asking her to complete

simple tasks while moving with her phone. Social Sensing extends an already

widespread and well-established series of techniques called crowdsensing [29] al-

ready proposed to involve users in the process of data gathering [30]. Since ini-

tiatives of social sensing, crowdsensing, and crowdsourcing can play an essential

role in the development of smarter tourism services, those initiatives are also cou-

pled with incentivizing user participation via some forms of competition among

users and via strategies of gamification.

Tourism gamification extends strategies from game design and involvement

strategies in non-game contexts [31], so as to influence consumer engagement,

customer loyalty, brand awareness, and user experience in tourism areas [32]. Ex-

amples of these initiatives include as an example the usage of a scoring system

related to customer action undertaken also rewarded with forms digital or mate-

rial incentives and rewards. As an example, in recent years many studies have

proposed the use of Social Sensing to collect geo-tagged information and exploit

them to identify Tourism Areas of Interest [33], map tourist behaviors [34], [35],

compare and differentiate clusters of tourists [36], and discover and repropose

noteworthy new places [37].

From a user perspective, the employment of ST technologies in combination

with techniques of social sensing can achieve better information feeding to the

tourists about the quality and accessibility of a place, depending on their specific

interests, either long-term or defined on the spot, from the presence of barriers to

the support of different languages in the service, depending on the current weather

situation to the current mood of the entire group. In the city of Bologna, for ex-

ample, there is an application to cancel barriers in both access to services and in
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mobility, as demonstrated by projects like mPASS [38] or Kimap [39]. Addition-

ally, we must add that the tourism area itself asks for deep integration with many

other fields, such as Smart Cities [40], Smart Transport, Smart Wealth, and relative

services and data sources as a few examples of connected areas.

To summarize, the integration and combination of ST information and ser-

vices are expected to create great business value and enable the development of

smarter tour-ism services and experiences, but unfortunately, the heterogeneity of

formats and inter-actions protocols slow down the integration of multiple plat-

forms and make difficult the creation and recognition of a unique and comprehen-

sive standard, also because of the lack of regulation and the different stakeholders

and organizations proposing ST services. As a clarifying example, one of the

most challenging scenarios for its wide geographical distribution in the context of

Smart Tourism is the business of Tourism paths (or ways or itineraries, sometimes

pilgrim’s ways), typically established very long ago to suggest routes to religious

pilgrims( e.g. the Francigena way in Italy) in the Middle Age and to give advice

in their ways toward their final destination. This novel and more re-quested type

of tourism offers are characterized by the requirement of extreme personalization

and dynamicity of target user experience; tourists can choose via the information

given by their smart devices how to continue the experience, being always driven

by current information got from their connection on demand. Of course, the same

always-connected feature can be used by many other areas apart from ST, so pre-

sented architecture can be crucial in those too.

In Tourism paths, users intend to use ICT as an essential part of the experi-

ence and tend to be driven by the information they need to get either personally or

as part of a group, and to feed information over the community depending on their
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current experience. We consider that tourists can become prosumers (consumers

and producers at the same time) of the experience of Tourism Paths. As an exam-

ple, via ICT tools, the user can interact more dynamically and satisfactorily, by

choosing to read personalized paths and calibrating languages and contents based

on specific levels of learning [41]. It becomes essential to gather as much infor-

mation as possible, so as to provide customers with the necessary details and to

provide the customers with the best experience possible. That high dynamicity

constitutes a challenge for providers of smart tourism services characterized by

huge distances to be covered with a multitude of information to be gathered, with

a high fluctuation in the number of users requesting those services, and with an

important level of heterogeneity in partners to be involved.

4.2 APERTO5.0

To support a more open integration among the different partners of these sce-

narios we proposed APERTO5.0 (an Architecture for Personalization and Elabo-

ration of services and data to Reshape Tourism Offers 5.0), in shorter APERTO,

a layered integration architecture aiming at a whole integration and deep facil-

itation of service and information organization and blending, to enable the re-

provisioning of novel services as advanced aggregates or re-elaborated ones [42].

APERTO5.0 was originally conceived to specifically support the field of Tourism

but we claim the applicability of the same principles and technologies to many

other fields, such as smart cities or Industry 5.0 seeking more open and dynamic

cooperation with partners, customers, and devices cooperating in the creation of

these extended business value chains.
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APERTO is based on an organization that puts together, on the one hand, all

possible information sources, and services toward better integration, on the other

hand, the best proposition possible for the differentiated needs of all customers,

either single or in different composition groups in number and interests. The pro-

posed architecture has been designed driven in the middle of existing services and

information providers and the possible requests and needs of customers (Figure

11). APERTO5.0 aims at becoming the reference for the development of new

more innovative services and platforms while adding value both for Producers and

Consumers based on its integration and augmentation capacity. In the context of

APERTO5.0 architecture, we defined a Producer as every entity that provides in-

formation or services with a potential appeal, by including partners belonging to

the public and private sector, open data, and any connected things spread in the

interested region, like connected Transports, sensors, and user wearable devices.

On the other side, Customers are users of the platform that can consume services

and data resulting from the processes of augmentation, elaboration, and orches-

tration of information and services coming from Providers. We must stress that a

Provider can also play the role of Customer and vice-versa, by creating a circu-

lar Prod-Cons pattern, where providers can interact with the proposed platform

as customers to grow their services, and customers can improve their experience

through personal contributions to APERTO5.0. This positive evolution can be op-

portunistically encouraged through initiatives, such as crowdsourcing campaigns

and the creation of local relationship networks. We claim that the introduction

of the proposed digital platform can encourage the creation of a network of part-

ners that can also increase, monitor, and guarantee the value of data and services.

These types of relationships can also foster the development of opportunities by
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creating a mutual value such as the creation of an agreement of multiple actors

interested in the development of a service that can benefit in different ways all the

partners. The Network constituted the different partners in the territory supported

by the proposed digital platform constitutes the target supply chain for customers.

Figure 11: High-level vision of the APERTO5.0 architecture in terms of the

layers connecting Providers to Customers.

The architecture of APERTO is based on three well-defined layers called

planes: the higher-layer business plane is responsible for customer interaction;

the other two lower-layer planes are responsible for all possible services (service

plane) and information (data plane) arriving from interested providers. It is im-

portant to stress that APERTO5.0 can expose new services based on the available

existing ones; another lower layer component is the crosscutting one, in charge of

all managing and monitoring functions of the entire architecture.
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We are now expanding the details for the above planes. The Business plane is

the functional plane that addresses the complexity derived from interactions with

customers with the main goal of providing a unique point of interaction, and, at

the same time, hiding from the customers the complexity of distributed datasets

and services. The Business plane has the main goal of uniforming access to the

heterogeneity of services, protocols, and interactions arriving from the underline

planes to compose a solution offer. This plane drives the composition, coordina-

tion, orchestration, and exposition of services and information coming from the

data plane and the service plane. The Business Plane is capable of creating new

synthetic proposals, starting from existing services and information. An example

of a synthetic service in the context of the digital economy can be the commis-

sioning of the creation of a product and the simultaneous search and booking of

the delivery service. These features demand a high level of modularity and com-

posability to adapt to the continuously evolving needs and interaction methods of

customers, via tools like Dashboards, Apps, and APIs.

The Data Plane is the component of APERTO5.0 responsible for collect-

ing, managing, and analyzing all the datasets and information collected from third

parties-providers, realizing the augmentation and conformation of data. This pro-

cess is an essential step in the creation of new services and platforms so that uni-

formity and standardization can reduce considerably the effort related to the man-

agement of different formats. The Data Plan can handle and process both data in

motion and at rest (very static and very dynamic data, as extremes), enabling the

exploitation of both historical data and fresh real-time information. To achieve

good value from data both stored and processed, it is necessary the use blend-

ing techniques, over the data coming from multiple and diverse sources to merge
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them and consolidate a network of partnerships in the territory that can provide

feedback and support, so as to specifically verify the information. The Data Plane

supports multiple types of representation and analytics, in order to handle the dif-

ferent needs of customers, including geographical and time-based queries, up to

computationally intensive processing like graph algorithms and machine learning

techniques.

These Planes, part of the proposed architecture, enable the representation,

integration, and orchestration of the provider’s services. Since the proposed solu-

tion does not replace or force migration of existing services but, on the contrary,

focuses on empowering existing ones, the Service Plane has the goal of matching

to each existing service one or more synthetic services representing it internally to

the platform. Each synthetic service handles all the specificity of the target Pro-

ducer service like protocol, billings, and authentications taking charge of all the

necessary coordination with other planes present in the proposed solution, specif-

ically the Cross Cutting Concern Plane. Moreover, the so-defined services can

be further composed or decomposed to create new synthetic services so as to cre-

ate offerings at different granularities, e.g., a service of transportation can be

composed starting from a sharing mobility service and a public transport one. To

enable these advanced techniques the Service Plane also introduces a series of

composable categories applicable to services that can not only allow a simpler

composition of services but also simplify the suggestion of alternatives to the final

customer, e.g., to suggest alternative component providers, transportation to reach

a point, or nearby hosting structures.

Finally, the proposal defines a Cross Cutting Concern Plane (CCCP) con-

sisting of a series of components to implement all crosscutting concerns and sup-
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porting other planes, in the whole management and interaction with internal and

external services: we expect a continuous evolution of the CCCP, while dealing

with new challenges and new scenarios, especially distributed across a hetero-

geneous territory like the one covered by a pervasive platform of tourism, smart

manufactory, or smart city. The CCCP supports the resolution of problems not

only addressed internally to proposed infrastructure but also directly in relation

to Customers or Providers, e.g., health checks of provider services and endpoints.

Some services belongings to the CCCP can not only support other services but

can become themselves part of the offer of other planes, e.g., the authentication

services that can be provided as a service directly to Customers behaving as part

of the Business Plane. The components realized in the CCCP layer aim to operate

transparently with other components of the infrastructure. In this way, the evolu-

tion and introduction of new features in the CCCP plane can benefit, with little

effort, multiple components belonging to other Planes of the proposed solution.

4.3 APERTO5.0 Architecture Components Full Description

Going deep into a more detailed description of APERTO, we make zoom in

on the presented solution that is fully partitioned into detailed layers, each one

corresponding to a single business process (Figure 12). We describe here: the pre-

sentation layer that implements and proposes a unique view of all services within

the Business Plane; the blending and the data layers inside the Data Plane that

allow the input of all information needed by polishing and presenting, and also

stored within the second component; the analytic and processing layer together

with the integration layer constitute the Service Plane, where the former is capa-

ble of extracting any possible interesting service from the proposed available ones,
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while the latter is capable of getting to all available services available for ST. In

addition, the Auditing, Authentication, and Authorization (AAA) layer in combi-

nation with the monitoring layer constitutes the first two proposed modules that

realize the Cross Cutting Concern Plane.

Figure 12: APERTO5.0 layers more detailed view. All components are put

together for a more comprehensive effort of integration and synergy coordination.

The Presentation Layer constitutes the main component of the Business Plane

to create and provide a unified view for customers and third actors, by combin-

ing information and services coming from the Data plane and Service Plane to

provide new smarter services. Supported customer interaction can employ het-

erogeneous technical protocols, e.g., pub-sub, client/server, fire and forget, and

advanced query languages.
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The Data Plane is subdivided into two horizontal layers: the Blending Layer

and the Analytics and Processing Layer (AP Layer) and one vertical layer: the

Data one.

The Blending layer is responsible for gathering, cleaning, and adapting to a

convenient format the information coming from third-party services, open data,

and custom ad-hoc services. These data sets are then stored, according to pre-

defined or dynamic policies on the different storage services composing the Data

layer. This lower layer implements the integration logic with the different forms of

interactions and queries exposed by external data sources. The interaction meth-

ods supported are massaged and adapted to require no changes on the Provider

side and can support reactive interaction, such as event-based traffic information

systems and scheduled/polling-based ones like information periodically published

on a site.

The Blending layer widely exploits principles of modularity and composabil-

ity, and any introduction of new data sources or data manipulations follows the

plug-in logic with a minimum effort of development and instantiation, enabling in

such way a sustainable growth of handled producers. This component implements

a gathering approach direct from Producer sources, in this way enhancing diver-

sity and customized experience. This approach differs significantly from more

traditional ones such as in tourism aggregation portal as booking.com [43] where

the hosting infrastructure must register and constantly update its own data in a

third-party portal, so requiring a standard format a-priori.

As part of the Data Plane, the Analytics and Processing layer aggregates and

analyzes the different data sources stored in the Data Layer and exposed by the

Integration layer. This layer realizes the process of adding value to the information
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coming from Producers, via the internal creation of new aggregate datasets and the

discovery of new insights through advanced elaboration techniques, such as Big

Data Processing, Data Mining, and AI (Artificial Intelligence) algorithms. This

layer can also support real-time event-based and continuous-stream processing to

enable advanced real-time queries and subscription mechanisms, as well as batch

operations for heavier time-consuming analytics.

The Data layer is a vertical layer inside its Plane, since it cooperates with all

other layers, by storing elaborated data, schemes, and metadata and by exposing

them through advanced indexing and query languages. The Data layer handles

the storing of fresh and past collected datasets and metadata, by enabling fast

and advanced analytics and interactions through the exploitation of the data local-

ity principle and advanced indexing, and by proposing customer-adapted viewing

techniques. To support an effective memorization and query system the Data layer

exploits the most convenient storage strategy, so supporting any different data for-

mat and memorization technology.

The Integration Layer cooperates with the Analytics and Processing Layer

inside the Service Plane. The Integration Layer, in particular, is responsible for

re-exposing in a convenient and optimized way the external services provided by

third parties. The exploitation of many different categories enables the possibility

to properly combine and substitute service calls to create more smarter and reactive

services, e.g., joining actions of buying tickets for different services, such as the-

aters, cinemas, or public transportation. This wrapping mechanism enables hiding

and abstracting from the peculiarities of each service, such as internal protocol,

service call sequence, or rate-limiting, facilitating coordination and combination

realized in the Analytics and Processing layer. Moreover, this layer interacts with
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all external services and datasets to obtain data not directly available, since they

are filtered away, such as real-time number of available tickets or positions and

updated time of arrival of a transport. The Integration layer to support integra-

tion with different heterogeneous Providers implements many types of interaction

including periodically, and reactively.

The Auditing, Authentication and Authorization (AAA) layer and the Moni-

toring layer constitute the core of the Cross Cutting Concerns Plane, available to

all other components, to operate in conjunction with all layers in the proposed ar-

chitecture. These two layers also form an important part of the Business Plane as

they provide important services to the final customer e.g., authentication service

or metric. In fact, the AAA layer is not only responsible for guaranteeing a profi-

cient level of security to the infrastructure layer but also to provide a unique point

of access, for final users, to the services covered and integrated into the platform.

This allows to prevent registration and policy adaptation to any tourism service

provider and enables a unique view for customers and third-party organizations.

The Monitoring layer provides useful insights into the service usage and the

overall state of the platform to enable both elastic management of the infrastruc-

ture and significant added business value. In fact, from the Monitoring layer is

possible to extract and underline trends in services usage with a geographical and

temporal connotation and exploit them internally at the platform or supply ‘as

they are’ to external organizations, think to the trends in ticket buyout of a pub-

lic transport localized in a determined time or region. Moreover, this layer can

control malfunctions and unavailability of services and information provided by

producers, by generating alerts by-need to request automatic execution of recovery

action.
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Figure 13: Serverless platform as enabling technology exploited in APERTO5.0

plane to speed up service and data integration .

The complexity and stratification of the proposed architecture derive from

the exigence of addressing heterogeneity in highly distributed scenarios seeing the

integration of information and services coming from many actors as well as dif-

ferentiation in customer needs. Moreover, this complexity is expected to further

increase with many additional layers and components while increasingly address-

ing more and more use cases with their intrinsic exigences. we claim, however,

the validity of the proposed architecture as a base for the definition of a solution

able to satisfy and integrate many scenarios.

As part of the APERTO proposal, we asses the relevance of adopting the

FaaS cloud computing model to support scenarios characterized by high hetero-

geneity in protocols, format, and needs. For this reason, we pervasively integrate
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the FaaS paradigm as a support to the development of services in all the layers of

the proposed architectural solution.

To meet the complexity of interacting with evolving needs of Prosumer, the

FaaS platform, thanks to the low configuration and setup, can significantly speed

up prototyping, development, and deployment of new functions. Ease of creation

of new functions can so mitigate the cost associated with the complexity of creat-

ing new adapters to services and data or the development of new customer-tailored

services, such as ones of the presentation layer.

The strong separation among function and triggering protocols further speed-

up the creation of new adaptation services thanks to the augmented modular-

ity and reusability of code. Finally, the reduced management effort paired with

fine-grained scaling and zero-scaling capabilities of FaaS platforms promises to

lower the cost associated with the maintenance online of service opening to the

integration of those sources and use-case that otherwise would not meet cost-

effectiveness. The aforementioned capabilities of FaaS platform paired with func-

tion composition and function chaining support open also to the application of this

cloud paradigm to the Analytics and Processing Layer providing parallel comput-

ing capabilities with native multi-language support.
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5 APERTO FaaS

Herein we assess our APERTO FaaS platform proposal specifically devel-

oped to meet the needs of APERTO5.0 in terms of decentralization and easy

extensibility. Current Open Source solutions such as OpenFaaS [18] or Open-

Whisk, proposals are designed and developed with Centralized Cloud Computing

as the target hosting environment. This led to architectures that leverage high-

performance networks and virtually unlimited computational resources that could

embrace classical synchronous client-server interaction. Moreover, the centraliza-

tion of orchestration processes drastically simplifies the management of multiple

nodes grouped in limited regions. However, the architecture so designed hardly

fits in distributed scenarios where network performance varies significantly and

the computational resources available in every site can scale from the big data

center to resource-constrained devices such as Edge nodes, IoTs, and sensors.

In this context, the adoption of Message Oriented Middleware (MOM) is

considered a best practice. In fact, the introduction of a Message Oriented Mid-

dleware provides asynchronous communication among components enabling bet-

ter concurrency as processes are not requested to wait for the response in order to

continue the computation. Moreover, embodying a communication protocol based

on the use of a broker, the introduction of a MOM can support the creation of an

abstraction layer over heterogeneous resources of distributed scenarios.

At the core of APERTO FaaS architecture, we integrated a Message Ori-

ented Middleware embodying the Pub/Sub communication model and behaving as

a backbone for all the communication among architectural components. The intro-

duction of the MOM discharges single components from duties such as discovery,
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load balancing, and implementation of delivery semantics which are completely

deemed to the middleware.

Figure 14: APERTO FaaS architecture partitioned in functional Layers.

The APERTO5.0 Serverless platform can be summarized into 6 functional

Layers, as shown in figure 14, subdivided based on the functional role of each

architectural component. In particular, the i) Bridging Layer is the layer of the

platform interacting with the external world and sensing events can trigger the ex-

ecution of a function, ii) the Delivery Layer groups all the processes in charge for

the delivery of events, configurations, and metrics among the FaaS components,

the Processing Layer is the layer responsible for the processing of sensed events

through the execution of functions, the iv) Controller and Management Layer com-

prehends all those processes distributed across infrastructure nodes cooperating to

the activation and responsiveness of FaaS workflows, the v) Access Control Layer

regulating access to component configuration and provided to the developer at the
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application layer to regulate access to functions, finally the vi) persistency layer

creating a programming language independent layer of abstractions providing op-

timized access to heterogeneous and distributed data sources.

Resources and principles of the cloud continuum paradigm could provide

benefits in terms of throughput, latency, and availability of the system, neverthe-

less, the process of orchestration is complicated by the need to simultaneously

exploit resources with different characteristics and protocols. Leveraging on top

of abstractions and distribution capabilities of APERTO FaaS we propose two

orchestration services specifically thought to address the challenges of QoS ser-

vice differentiation and task coordination when dealing with resources distributed

over the Cloud Continuum. Without loss of generality, proposed orchestration ap-

proaches are then optimized for the APERTO FaaS architecture and exposed to

developers following FaaS model principles and abstractions. We are now pro-

ceeding to describe in detail the architecture of APERTO FaaS organized in the

aforementioned Layers.

5.1 Bridging Layer

The Bridging Layer is the abstraction responsible for unifying requests sent

by external entities that want to utilize services distributed through the Serverless

platform. The Bridging Layer employs components and mechanisms that trans-

form external events into an internal representation of the FaaS platform so that

they can be managed by other layers and transparently processed by functions.

In particular, users, devices, and services interact with the workflows through the

central component of the Bridging Layer, the Trigger. The main responsibility of
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Figure 15: Different deployment options of Trigger: A) locally to source, B) in

the middle between multiple sources and the MOM C) locally to the MOM as a

bridge to other event systems

the Trigger is so to forward to MOM information sensed or received after having

adapted and encapsulated them under the form of events.

Trigger behaves as a bridge between the external world and the FaaS plat-

form, by adapting external protocols, representations, and QoS levels to internal

ones. Thanks to the location transparency introduced by the MOM, the deploy-

ment of triggers can adapt to different scenarios and needs: in particular, we

designed and implemented three deployment options for Trigger, depending on

closeness to either the MOM or the external source.

In the first case (Fig. 15 case A), the trigger is co-located with the event

source. This case allows us to simplify the support of delivery quality between the

source and the trigger as they are co-located on the same host. As a drawback, this

pattern prevents the simultaneous use of the trigger for multiple sources and also

requires that the source device has enough resources to host the trigger execution.
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In the second pattern, i.e., Fig. 15 case B, the trigger runs in the middle be-

tween external sources and the MOM. The trigger can be located in any node

reachable by both MOM and sources and can behave also as a gateway between

different networks. In this configuration Trigger is addressable by multiple sources,

thus maximizing resource usage.

In the last case, Fig. 15 case C, the external source already exploits message-

based communication. This scenario embraces different use case scenarios where

the platform is integrated and deployed as part of an existing infrastructure that

already leverages some form of event exchange, such as an Enterprise Service

Bus infrastructure. In this context, Trigger is placed within the platform MOM

and acts as a connector to external sources.

5.2 Delivery Layer

The Delivery Layer realizes event distribution among the platform compo-

nents. As previously anticipated in APERTO FaaS we opted to rely on a MOM for

the distribution of function-triggering events, configurations, and metrics among

architectural components.

In this type of middleware, communication is typically asynchronous, mean-

ing that the sender and receiver of a message do not need to be connected at the

same time. When a sender sends a message, it is placed in a queue, and the receiver

can retrieve it at a later time. Many MOM natively supports advanced semantics of

delivery, fault tolerance mechanisms, and load-balancing distribution of messages

among subscribers of a queue. The MOM introduces a transparency feature that

allows adding and/or scaling dynamically the deployment of architectural compo-

nents. The synergy between the MOM and Controller completely hides the inter-
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nal complexity of our middleware from the application developers’ perspective,

thus achieving an essential feature of Serverless computational models.

The strong decoupling, in space and time, between architecture components

introduced by the MOM facilitates the development of an architecture that could

meet the needs of highly distributed scenarios such as the one of Smart Tourism,

or Industry 5.0 and the distribution of platform components over a continuum of

distributed resources. In fact, the asynchronicity of interactions between com-

ponents enables better scalability of the platform by removing waits during inter-

actions among components. The loose coupling between components interacting

through the MOM enables also easy extensibility and scalability of the platform by

removing points of synchronization among them. The removal of the strong con-

straint of co-presence in time of components in need to communicate facilitates

the realization of zero-scaling capabilities of Serverless platforms as the service

in charge of executing a task could be instantiated on demand when needed. This

is totally transparent to the other components that interact with it as it is always

available.

The separation of intra-component communication and consolidation in a

unique common layer easiness the creation of communication optimizations that

are inherited transparently by all the components of the platform. At the same

time, the usage of a common protocol for communications simplifies develop-

ments and encourages software reuse.

The Delivery Layer works at both the Application and the Infrastructural

layer providing support in the exchange for configuration and metrics among com-

ponents and application events generated by the bridging layer. Every FaaS work-

flow, in APERTO Serverless, activates at least 1 queue accumulating events gener-
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ated by triggers and waiting to be processed by functions in the processing layer. In

this way, APERTO FaaS supports natively a many-to-many mapping between trig-

gers and functions e.g. an event generated by an HTTP request can be enqueued

in the same queue with one generated by a timed event and then be processed by

the same function logic.

To allow for differentiated message distribution policies among the subscribers

of a queue, we also inherited, from classical MOM solutions, the concept of Sub-

scription Groups. In the classical pub-sub model, each subscriber of a topic

receives all messages sent through it. Through the mechanism of Subscription

Groups, each message is sent to only one of the subscribers in each group, thus

realizing a load-balancing feature among the subscribers. Indeed, load balancing

is an essential capability of a MOM in the context of FaaS platforms as it enables

the distribution of workflow requests across multiple executor nodes.

5.3 Processing Layer

The Processing Layer is the abstraction Layer responsible for processing

events forwarded by the Bridging Layer and then handled by the Delivery Layer.

The Processing Layer takes the burden off the customer of knowing both the char-

acteristics of the processing environment and the computing resources used to ex-

ecute a specific workflow. This layer allows the customer to define both the busi-

ness logic and QoS requirements, without knowing how the platform implements

the support that can satisfy them. Specifically, the processing is done through

user-defined business code uploaded in advance by customers.

The main component responsible for the Processing Layer behavior is the

Invoker. The invoker is the terminal part of each MOM queue and waits for the
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arrival of events to be processed by functions. At each event arrival, Invoker in-

stantiates the associated function, set it up ahead of time through the user-provided

configuration, and then takes care of forwarding the event to the function. Thanks

to the abstractions and asynchronous interactions provided by the MOM, APERTO

FaaS can integrate and execute at the same time all three architectural models de-

tailed in section 3.1. In fact, none of the APERTO FaaS components, except the

controller, are aware of how an event will be processed by a specific Invoker; In-

voker is, therefore, the component in charge of managing the life cycle, the execu-

tion environment, and the invocation of the functions. APERTO FaaS Invokers can

be specialized to exploit different function invocation methods and execution en-

vironments depending on deployment scenarios and achieving better performance

or resource-saving.

This specialization can take advantage of the opportunistic composition of

different technologies available either in the environment of execution of the In-

voker, e.g., Operating System, Hypervisor, or realized by the Invoker itself. So,

for its execution, the same workflow can exploit different technologies and opti-

mizations at the same time, e.g. concurrent usage of an execution environment

for 2 different functions or re-usage of the same function instance for subsequent

requests.

5.4 Controller and Management Layer

The Controller and Management Layer is the set of processes accountable to

orchestrate and configure architectural components in order to activate and main-

tain responsive FaaS workflow.
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Figure 16: High-level APERTO FaaS architecture highlighting decentralization

of controller process and removal from component interactions chain in workflow

executions.

To reduce the presence of central points in the architecture which could po-

tentially hamper platform scalability, we propose an evolution of the classical

MOM-aided FaaS model by removing the Controller from the sequence of invoca-

tion of functions(Fig. 16). This reduces the number of processes actively involved

in each request with consequent benefits in terms of resource usage and overall

performance. Moreover, by removing centralized decision processing from the

execution flow we remove a possible point of synchronicity and performance bot-

tleneck which could hamper the scalability of the system. At the application layer,

the routing of events towards the invoker components is done directly by the MOM

with the configuration of queues, publisher, and subscriber made ahead of time at

workflow activation. Eventual interventions of the controller on active flow, such

as the scaling of the number of invokers, are made asynchronously taking advan-

tage of the transparency provided by MOM.
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At the architectural layer, the controller components follow the same prin-

ciples adopted at the application layer. The controller interacts and configures

other components asynchronously by writing configurations on the specific queue

associated with the components it needs to target and receiving acknowledgment

asynchronously through the MOM. Seamlessly, monitoring information and re-

quest from other components are received and processed by the controller asyn-

chronously. The resulting strong decoupling and asynchronicity in interactions

enable the modularization and distribution of the Controller over multiple pro-

cesses, executed conveniently over the continuum of resources.

From a customer perspective, the proposed change of control model imple-

mented by the controller is completely transparent with the developer uploading

workflows definitions along with the code to the controller. The Controller then

once elaborated on the configuration transmits the single configuration to the in-

frastructural components through the queue of the MOM. The infrastructural com-

ponents subscribed to the queue once received the configuration executes the ac-

tions necessary to activate the workflow.

5.5 Data Persistence Layer

The Persistence Layer is the layer of APERTO FaaS providing abstraction

to operate over heterogeneous data sources. Highly distributed scenarios such as

the ones addressed by APERTO5.0 often require access to data stored on heteroge-

neous technologies and imply different protocols to access them. In the past years,

many frameworks such as Hybernate [44], EclipseLink [45], or SQLAlchemy [46]

established in the market, providing performance optimizations and abstractions

to access data sources. However, those solutions were realized at the framework
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level and so compatible with each one with a subset of programming languages

hampering their applicability in modern cloud environments where multiple lan-

guages are exploited at the same time by different services and micro-services.

Moreover, the rapid scalability required for modern cloud platforms, and in par-

ticular in FaaS ones, prevents an effective integration of optimization techniques

based on the durability of the instances such as connection pooling or near com-

putation caching.

Emergent workload management approaches rely on the containerized server-

less paradigm, decoupling state and computation to gain scalability, with data

and state being externalized, and when applicable, stored on cloud storage so-

lutions [47] []. The ephemeral and lightweight nature of functions poses some

challenges to data access and persistence solutions for serverless platforms. As a

consequence, data stores are evolving, integrating new protocols and mechanisms

to facilitate and improve data access performance from serverless platforms.

Cloudburst presented in [48] advocates for a stateful FaaS platform building

on low-latency mutable state and communication. The proposal relies on the Anna

key-value storage and a cache layer, retaining the autoscaling benefits of serverless

computing co-located with function executors for data locality [49]. Cloudburst

also provides a combination of lattice-encapsulated state and new protocols for

distributed session consistency. While this proposal represents an experimentally

viable solution to the problem of serverless data access, the migration of existing

application/service data could be unfeasible due to underlying technological in-

compatibility of the data stores and/or as a consequence of a high data migration

cost.
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Different strategies and data access solutions have been proposed both in

commercial and open-source serverless platforms. On the commercial front, we

usually see the introduction of a third (durable) component acting as an inter-

mediary between the data sources and business logic, and such are the solutions

proposed by Microsoft Azure [50] and Amazon AWS [51]. In these settings, func-

tions interact with the data store via durable components exploiting connectionless

protocols such as ReST. The introduction of a third entity acting as an intermedi-

ary not only contributes to potential increases in latency due to network-based

communication but can also lead to increased billing costs incurred by the service.

Shredder [52] proposes a novel approach integrating storage and a serverless

computational layer with the objective of providing a low-latency, multi-tenant

cloud storage solution. Shredder functions can take advantage of data locality

and native acceleration mechanisms to provide access and processing capabilities

over data stored in the platform. The approach advocated by Shredder is tightly

coupled to the underlying data storage support. At the same time, the scalability

of the platform is limited to the availability of resources allocated to the storage

layer.

In [53] the authors propose SONIC, a data-passing manager that optimizes

application performance by transparently selecting the optimal data-passing method

for serverless workflows, and implementing a communication-aware function place-

ment. The authors present a prototype of SONIC built over the OpenLambda plat-

form, comparing the proposed solution against several others, demonstrating a

reduction in response latency. While the approach taken in SONIC is shown to

improve response latency, its design is limited by the underlying data store per-

formance. Our approach, instead, is data store agnostic and aims at addressing
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response and data access latency over pluggable datastore supports. Thanks to

this design philosophy, our approach facilitates function reuse and composition by

providing a common and well-defined interface to interact with the data layer.

The Persistence Layer is then specialized into Serverless Persistence Support

(SPS) to better support Serverless/FaaS platforms. Is important to stress that the

contribution proposed with the Persistence Layer, while specifically optimized for

Serverless Computing, can be easily generalized as a general-purpose service for

other Cloud Computing models such as PaaS or Container as a Service (CaaS).

In particular, the architectural model proposed can provide the same performance

benefits to all those cloud computing models adopting the sidecar proxy pattern

for service communication such as service and event meshes.

The SPS addresses data source integration at an infrastructural level, as op-

posed to being provisioned as a platform function, allowing the developer to focus

only on the adaptation and integration logic represented by the function. To this

end, SPS evolves the Invoker architectural component, enabling rich interaction

with the function it spawns, which in the classic FaaS architecture it is limited to

the forwarding of the event which has triggered the function invocation and the

return of an eventual result from the function.

In SPS [54], after function bootstrap, the Invoker opens a bidirectional com-

munication channel with the latter over which access to data can be mediated. To

this end, the invoker exposes two different interfaces. The first interface exposes

the standard, datastore independent, Create, Read, Update and Delete (CRUD) op-

erations. The second interface extends the first one with datastore-specific opera-

tions, such as exploiting advanced querying capabilities. This duality of behavior

stimulates a strong decoupling from business logic and specific implementation
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Figure 17: High-level architecture of persistence layer integration in APERTO

FaaS showing the SPS operating as an abstraction and optimization layer for data

operations requested in functions

of the data persistence layer, similar to what is already provided by widespread

standards such as Java Persistence API (JPA). At the same time, the approach pro-

motes the extensibility of the interface, providing more flexibility to the developer.

Once a function triggers an operation on the data, it is up to the invoker com-

ponent to effectively execute the operation on the data store. Since the invoker is

an architectural component, its lifecycle is handled by the infrastructure controller

and can be assumed to have a longer lifespan w.r.t functions. SPS exploits this

characteristic and the strong coupling between invoker and function to introduce

several data access operation optimizations such as connection persistence, reuse,

and pooling.

From the customer perspective, the activation of a workflow requires the user

to (i) upload to the platform the code embodying the business logic of the function,

(ii) upload a configuration file specifying the event that triggers its execution, and

(iii) identify eventual data stores the function can access and perform operations.

When the controller receives the configuration, it checks if data support is enabled
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for that workflow and thereafter creates a container embedding the business logic

and the invoker-specific implementation for the desired data store. Finally, the

controller configures the trigger and MOM to activate the workflows and distribute

the packed function over to suitable nodes.

5.6 Access Control Layer

APERTO5.0 proposes an architecture for service and data integration sourced

by possibly multiple partners distributed over arbitrary regions. In this specific

scenario, access control management represents a major concern and a challeng-

ing task for any development team. Access Control (AC) is a security technique

that determines which resources/services can be accessed by a given entity in a

computation environment [55]. This process is in charge of mediating every re-

quest for resources and data held by a system and deciding, according to a set of

security policies, whether the request should be granted or denied.

A common approach consists in implementing the verification and enforce-

ment of access rights within the business code of the services. However, this prac-

tice complicates the code maintainability and is considered to be an unsafe pro-

gramming behavior that makes the application more prone to misconfigurations

and errors. Moreover, implementing authorization at the source code level implies

code modifications every time an update to authorization logic is required. There-

fore, this approach deeply relies upon a careful manual configuration that becomes

hardly viable in modern large-scale deployments. Due to the issues related to the

tight coupling of authorization and service code, policy decision-making should

always be decoupled from policy enforcement. The key advantage of this sepa-

ration is to allow developers to dynamically modify their access control policies
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without making any changes to the software. To overcome these issues, mod-

ern services usually rely upon a centralized trust entity that is responsible for the

whole management and verification of access control policies.

Although this pattern brings several benefits such as decoupling software

from authorization and enabling the sharing of common policies with other ser-

vices, it still suffers from low reliability and poor scalability. Centralized designs

are more vulnerable to attacks because jeopardizing the authorization server can

lead to the compromise of the whole system. These problems are even more pro-

nounced in cloud continuum computing due to its dynamic nature and low guar-

antee over inter-site connection availability.

In recent years, there has been a growing interest in providing more secure ac-

cess control management for serverless platforms by both the cloud providers and

the academic community. For example, in Amazon AWS, customers can use the

Lambda authorizer [56] feature. When a client submits a request, the API Gate-

way invokes a lambda function that verifies whether the request should be granted

or denied. Nevertheless, this approach is more oriented to user authorization than

that of functions, in particular, it does not seem to be suitable for function-to-

function communications where the API Gateway should not be directly involved.

Moreover, authorization is achieved through an external centralized entity that is

not integrated into the platform.

Alpernas et al. [57] proposed Trapeze, the first information control flow sys-

tem for serverless applications. Trapeze wraps each serverless function through

a security shim that intercepts all the possible interactions between the function

and the external world. The shim is responsible for tracking information flow and

enforcing a global security policy based on a combination of static and dynamic
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security labeling. Trapeze forces developers to correctly define information flow

policies and makes assumptions about the programming language of the serverless

function.

Valve [58] is another serverless platform that assists developers in policy

specification and employs a transparent coarser-grained (i.e., function-level) in-

formation flow model. It employs an agent inside each function instance aiming

at monitoring the function’s file and network behaviors. Valve agents sent infor-

mation to a centralized controller that uses them to identify the flow paths of the

application. These flows constitute a default security policy that can be further

restricted by the workflow designer. Furthermore, it does not depend on the pro-

gramming language of the serverless function while implying a lower overhead

than Trapeze because the latter does not take into account serverless warm-start

performance optimizations.

Sankaran et al. developed WILL.IAM [59], an access control framework that

proactively verifies, at the point of ingress, if a web request will be accepted or de-

nied. This access control model relies upon directed acyclic graphs that determine

the permissions associated with roles (assigned to workflows) and the programmed

workflows in the application. Thus, adopting this approach enables applications

to detect and reject illegitimate requests as early as possible, saving computational

costs and reducing the potential attack surface. Although these solutions allow de-

coupling policy evaluation from software and provide a more secure information

flow control, they still rely upon a centralized access control enforcement point

that degrades system performance and causes unavailability problems in multi-

site distributed scenarios.
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In order to practically address the aforementioned issues, we propose [60]

the separation of the AC responsibility from the Controller component and the

distribution of this process in order to create a performant and fully decentral-

ized solution. Our proposal still decouples authorization decisions from soft-

ware implementation, thus allowing dynamic policy updates, and does not rely

upon a single centralized authorization service. The proposed approach is spe-

cialized to provide an effective and reliable solution for managing authorization in

serverless environments without significantly impacting performance. However,

the approach proposed maintains its validity as a solution for an effective Access

Control service in all those cloud computing models enabling the distribution of

computational resources over the cloud continuum. Moreover, the model applies

seamlessly to all those modern cloud computing models implying the exploitation

of a sidecar component for service communication such as in event and service

meshes. Finally, it is also noteworthy that this layer can potentially behave like a

cross-cutting concern not only for the application and architecture layers but also

for all the other services (e.g., storage layers, container orchestrator platform) that

can be coupled with a serverless platform. This proper nature of the authoriza-

tion layer allows for significantly simplifying the management of access control

to both providers and customers.

Before activating a workflow, some preliminary operations must be performed.

Firstly, the customer provides a configuration to the platform specifying interac-

tions and components involved in the activation of a specific workflow. In this

process, the authorization layer is responsible for verifying whether the customer

has proper rights to modify the configurations of each component involved in the
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activation of the workflow. Then, the customer through the configuration can as-

sociate a set of access control rules to be checked at the invocation of the function.

Although the authorization mechanism is distributed across nodes in the

cloud continuum, it will be perceived by clients as a centralized external service.

This transparency provides users with a unified global perspective of the infras-

tructure that will further simplify the operations needed for managing the whole

workflow. While still relying on the controller to configure and deploy new work-

flows, the verification of the access control rules can not be based on this compo-

nent since in APERTO FaaS it does not behave anymore as an active participant in

the workflow process. In order to pave the way to a better parallelization and dis-

tribution of access control verification, we decided to integrate the authorization

verification within a process deployed in each Executor Node.

Figure 18: Our decentralized architecture for access control verification

integrated into APERTO FaaS platform environment.

In particular, the proposed architecture sketched in Figure 18, introduces in

the APERTO FaaS architecture three novel components: the Rule Engine, the

Local Registry, and the Rule Registry.
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At the reception of an event, the invoker firstly forewords the content of the

event and the identifier of the function that should be executed to the co-located

Rule Engine. The Rule Engine is a stateless process that starting from Rules ex-

pressed in a specific language and contextual information provided by the request

and external systems, decides whether the submitted request should be guaranteed

or not. One of the biggest issues of access control verification and evaluation in

serverless platforms is its additional overhead that results in increased end-to-end

latency. The decentralization of the process in charge of computing access rule

jointly with the co-localization of the two components enables to minimization of

overhead associated with the verification process.

The verification is based on data and policies, which are provided through

heterogeneous sources (e.g., central registries, and users). Therefore, the manage-

ment of such information is a trivial task that, according to the scenario, must meet

different requirements spanning from strict consistency to high availability. Al-

though this work mainly focuses on access control verification, we also introduce

an Local Registry working as an offline copy and adaptation mechanism between

the rule engine and the sources of rules and information exploited in the process

of access verification. The Local Registry is distributed on each executor node

similarly to what do with the Rule Engine providing the same benefits in terms of

availability and low access overhead.

The introduction of the Local Registry solves the problem of momentary

unavailability of the sources at the cost of a possible transitory inconsistency. Our

system decides then to sacrifice the total consistency of the system in favor of a

greater partition tolerance and availability of the overall system [61].
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To provide the abstraction of a single source of truth our solution also intro-

duces the Rule Registry component, a persistence service, logically centralized on

which the user could upload and modify rules. The Rule Registry then acts as a

master in the synchronization with Local Registries propagating updates and new

rules guaranteeing in this way the long-term consistency of rules. The decoupling

between the Local Registry abstracts into single implementations opens to fast

evolution of the two components in order to meet constraints and needs of differ-

ent deployment and application scenarios. The process of verification of access

bases its function on external information constituted by data and policies. That

information and policies can come from different and very heterogeneous sources

such as central registries, the user itself, or the context in which the function is ex-

ecuted. Moreover, the management of this source of information it’s not a trivial

task and can require complex systems in order to meet very different constraints

dictated by the scenario spanning from strict consistency to high availability.

Although this work mainly focuses on the process of access control verifica-

tion, as part of our architecture we define the registry as the source of all rules and

information. In order to cope with many different scenarios and requirements, we

also introduce an adaptation layer between the Rule Engine and the Registry layer

to enable concurrent access to different registry solutions.

5.7 End-to-end QoS Service Differentiation

In this section, we will propose Time-Effective Middleware for Priority Ori-

ented Serverless (TEMPOS), an innovative middleware extending capabilities of

APERTO FaaS Layers in order to enable the composition of the different technolo-
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gies available in the cloud continuum to achieve an effective end-to-end Quality

of Service (QoS) differentiation between services hosted.

The types of applications that are requested to run on cloud continuum infras-

tructures are very differentiated and with very differentiated requirements, from

latency upper-bounds to maximum allowable downtime and reliability; moreover,

the ICT infrastructures hosting them include very heterogeneous resources and

tend to employ more and more cloud continuum virtualized resources, which are

typically positioned close to IoT sensors and actuators, in the Far Edge, for greater

efficiency [1]. In addition, in these scenarios, depending on the industrial sector

and the specific kind of application, the severity of effects due to provisioning

failures can range from negligible to critical.

In this context, the definition and efficient usage of prioritization mecha-

nisms become necessary to meet the different QoS demands of different types

of IoT applications, composed of multiple tasks competing for the same virtual-

ized resources. In addition, single mechanisms are not sufficient: the coordination

of different prioritization technologies, across the full invocation stack (possibly

including virtualized processing, invocation messaging, and communications) is

needed to meet constraints of end-to-end jitter, latency, and queuing delays [62].

However, such coordination and orchestration of distributed resource reservation

and invocation prioritization, while maximizing the efficiency of resource utiliza-

tion, is recognized as a challenging task. This is further exacerbated by the huge

heterogeneity of devices, operating systems, communication mediums, and proto-

cols present in Far Edge cloud-enabled IoT environments [63].

The need for control and compliance with QoS specifications in cloud-to-

things environments for industrial manufacturing is widely recognized. But sim-
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ilar needs are present more and more in other application domains, which are

increasingly benefiting from IoT-empowered technologies. For example, in the

Smart Hospitality domain, modern accommodation facilities are integrating more

and more connected sensors and actuators to provide an increasingly digitized and

personalized experience for their customers [64].

IoT devices, along with digital services, work alongside staff promising to

help manage and create a more engaging experience, while also achieving acces-

sibility and reduced environmental impact goals. Hence the need to provide dif-

ferentiated QoS levels in the delivery and processing of information from different

devices. For instance, IoT devices embedded in smart doors or management sys-

tems (e.g., SPA temperature controllers) require low latency and small variation

in response time; at the same time, the growing number of AI and Virtual/Aug-

mented Reality technologies embedded in both guest rooms and hotel gyms [65],

while requiring high bandwidth and benefiting from localization of computational

resources, can tolerate small performance degradation.

The opportunistic usage of edge cloud resources to improve latency and jit-

ter has been extensively discussed in [66, 67] and also represents one of the key

factors pushing for wide adoption of this computing model [68]. The coordina-

tion and coupling of different prioritization mechanisms is not a recent issue but,

with the recent advent of next-generation networking, it has gained an increasing

research interest. The need for concatenation of mechanisms present at different

levels of the stack has been considered a primary problem since the earliest dis-

tributed systems. To tackle resource orchestration and partitioning while guaran-

teeing QoS levels at the edge, [69] proposes DRAGON: that paper describes some
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implementation insights about DRAGON and evaluates its performance benefits

if compared with traditional orchestration approaches.

The introduction of middleware for the concatenation of QoS-aware com-

position mechanisms is a frequent design pattern applied in the literature to re-

duce complexity. In [70] the authors propose a technique to couple priority and

reservation-based OS and network QoS management mechanisms through Dis-

tributed Object Computing middleware, with adequate performance results.

In [71] the authors present a middleware built on CORBA for providing dis-

tributed soft real-time applications with a uniform API to reserve heterogeneous

resources with real-time scheduling capabilities in a distributed environment: that

solution introduced uniform interfaces to support the reservation of CPU, disk,

and network bandwidth on Linux systems.

The application of FaaS Cloud Computing to Edge environments character-

ized by the limited availability of resources is considered an appealing direction

for the peculiar capabilities of FaaS in terms of zero and fine-grained scaling.

Notwithstanding the novelty of the FaaS computing paradigm, some platform im-

provements have already been proposed in the literature to achieve better FaaS

performance and in particular latency reduction. Some papers have proposed the

deployment of serverless platforms on edge nodes to achieve better QoS [72], such

as in TEMPOS. The usage of different invocation methods to speed up function

startup has been proposed as the exploitation of cross-compiling to achieve faster

executables. For example, in [73] the authors propose Faaslets, an isolation ab-

straction that exploits WebAssembly to achieve good isolation and fast function

startup; they also propose an additional optimization with a mechanism to restore
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from already initialized snapshots, thus improving platform throughput and tail

latency.

In the proposed project Catalyzer [74] the authors propose a serverless sand-

box system to enhance function startup and isolation. To provide fast startup,

Catalyzer exploits a checkpoint mechanism to skip initialization and a new OS

primitive to reuse the state of the running sandbox; this results in a relevant reduc-

tion of the startup time of function invocations, up to less than 1 millisecond in

the best cases. However, despite the relevant evaluations introduced in the FaaS

ecosystem, opening the application of this paradigm to a rising number of scenar-

ios, the proposed approaches do not solve the problem of providing coordination

mechanisms in order to enable concurrent execution in the cloud continuum of

different applications with different QoS needs.

To fill this relevant gap, we proposed TEMPOS [75]: a Time-Effective Mid-

dleware for Priority Oriented Serverless IoT applications in the cloud continuum.

TEMPOS is a novel middleware, specifically designed and optimized for advanced

QoS management in FaaS infrastructures, that hides the possible heterogeneity

and complexity of edge deployment environments while providing a strong QoS

separation among the workflows put into execution.

To this purpose, the TEMPOS orchestrator coordinates and composes differ-

ent technologies of prioritization and reservation available across the full support

stack associated with the different virtualization layers involved in FaaS infrastruc-

tures deployed over the edge cloud continuum. Thanks to its complexity hiding,

TEMPOS can be exploited in multiple diverse scenarios such as Smart Tourism,

Industry 5.0, or Smart Agriculture. TEMPOS abstractions require only the defi-

nition of the business logic in form of a workflow with an associated QoS level
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(among the available ones). It is the TEMPOS middleware that asynchronously

checks the QoS support of the targeted resources in the deployment environment

components and updates the configuration of the single FaaS components accord-

ingly.

TEMPOS integrates and extends the APERTO FaaS layers(Fig. 19) in order

to create the needed end-to-end QoS differentiation behavior across all architec-

tural components.

In the Controller and Management Layer, TEMPOS extends the controller in

order to create an abstraction for developers to expose applicable configurations in

a simplified and facilitated way. To this purpose, the Controller maps and matches

the QoS requested by an application developer/deployer to the quality levels sup-

ported by the different layers and exposed through well-defined interfaces.

More specifically and practically, the Controller handles two different con-

figuration steps. On the one hand, it receives the configuration for all components

of the TEMPOS infrastructure from the developer/deployer, then remaps this con-

figuration to specific commands sent synchronously to each of the different layers.

The goal of this phase is to configure Channels and Topics with the different QoS

levels offered by our middleware. On the other hand, the Controller receives the

set of workflows initially defined by the developer/deployer, along with the QoS

expressed with per-flow granularity (not for single invocation) and that will have

to be mapped to the underlying infrastructure. The developer/deployer can also

request the configuration of workflows at runtime, as the Controller exposes APIs

for deploying new workflows or modifying existing ones. As in the other cases,

these reconfiguration events are handled by the Controller, which interacts syn-
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chronously with the TEMPOS layers to preserve the QoS required for the whole

application.
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Figure 19: High-level vision of TEMPOS integration in APERTO FaaS

architecture showing QoS differentiation based on TEMPOS channel

composition .

In the Delivery Layer, TEMPOS extends event distribution by introducing

a QoS-aware prioritization mechanism. TEMPOS event distribution process is

achieved through the inter-working of different communication technologies and

protocols, along with services in the duty of orchestrating and composing them. A

series of abstractions are then introduced to easily extend the set of supported

technologies and to provide developers/deployers with a simplified view. The

core part of this layer is a novel Message-oriented Middleware (MOM) capable

of dynamically exploiting different mechanisms and technologies to achieve QoS

differentiation.

Application/middleware components can connect to our MOM either to send

or receive a message, through the creation of a Channel. In fact, the TEMPOS

Channel is the abstraction that we offer to define a connection between any pair of

FaaS architectural components.

83



Since the Delivery Layer potentially covers several communication environ-

ments, a Channel is characterized by a specific communication protocol and, if

supported, a prioritization or reservation technique. Therefore, to employ our de-

livery notion in highly heterogeneous contexts, the MOM adopts a mechanism

based on the concept of Adaptor. Adapters allow to support a considerable num-

ber of Channels and interact with them seamlessly and simultaneously. Messages

received by a specific Channel are processed in priority order through the use of

“priority queues”. Through these queues, the TEMPOS MOM processes events in

parallel, prioritizing those associated with higher QoS.

To provide our middleware with a consistent end-to-end quality abstraction,

we introduced the concept of QoS-aware Topic defined as:

T =



Cin1
Cin2

...
CinN

 , Q ,


Ceg1

Ceg2
...

CegN




where

T = Topic, Q = Priority Queue,

Cin = Channel Ingress, Ceg = Channel Egress

The topic is the reference construct in TEMPOS for coordinating and ab-

stracting the different QoS levels made available by the channels and associated

with the priority queues of the MOM. Each topic is then associated with a specific

QoS, which can be derived from the performance of the two channels with the

worst input and output performance, respectively, and the processing performance

associated with the Processing Layer. Thanks to the Topic and Channel constructs,

it is thus possible to provide application developers with a single and transparent
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view, even if the platform is leveraging different QoS-sensitive technologies, such

as TSN, 5G slicing, or Wi-Fi 6 prioritization.

The Bridging Layer plays a fundamental role in QoS differentiation. It is in

this layer, indeed, that the first differentiation happens and QoS characteristics are

applied to events.

Trigger behaves as a bridge between the external world and TEMPOS, by

adapting external protocols, representations, and QoS levels to internal ones. More-

over, Trigger is the first TEMPOS component that can differentiate and character-

ize event quality by exposing a different endpoint for each supported QoS level.

In the previous section 5.1 we claim the novelty introduced by our decentralized

architecture is able to transparently integrate the deployment of the trigger in three

different scenarios: trigger co-located with event source, trigger in the middle, and

trigger as event adapter (sec. 3.1). Depending to the deployment scenario adopted,

TEMPOS exploits different mechanisms in order to differentiate QoS.

In particular, in the first pattern saw the trigger is co-located with the event

source (Fig. 15 case B). This scenario simplifies the support of delivery quality

between the source and the trigger as they are co-located on the same host and

so only inter-host prioritization mechanisms are exploited e.g. Operating System

scheduler.

In the second pattern, i.e., Fig. 15 case B, the trigger runs in the middle

between external sources and the MOM. In this scenario, we have the certainty

that the delivery of information between the source and the trigger is feasible with

adequate quality.

In this configuration Trigger is addressable by multiple sources, thus maxi-

mizing resource usage but also potentially causing conflicts. Of course, incoming
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events belonging to the same quality class can incur conflicts in case of concurrent

transmission; a fine-grained distribution and allocation of Triggers are so advis-

able to avoid situations of quality degradation.

In the last case, Fig. 15 case C, the external source already provides QoS

concepts and exchanges information in the form of events. In this context, Trigger

is placed within the TEMPOS MOM and acts as a connector to external sources

remapping arguments, queues, and qualities of an external system onto internal

ones.

Finally, in the Processing Layer, TEMPOS extends executor nodes behavior

to enable a strong QoS differentiation and prioritization in the processing through

functions of events delivered. This Layer allows the customer to define both the

business logic and QoS requirements, without knowing how the platform im-

plements the support that can satisfy them. Specifically, the processing is done

through user-defined business code that is loaded in advance.

To preserve total transparency and Independence of the Invoker component

from other architectural components even in TEMPOS none of the other platform

components, except the controller, are aware of how an event will be processed by

a specific Invoker; Invoker is, therefore, the component in charge of managing the

life cycle, the execution environment, and the invocation of the functions in such

a way as to reach the target QoS for that specific workflow.

Regarding QoS-aware processing, Invoker can employ both its internal tech-

niques and the ones possibly present at the Executor Node, e.g, Operating System

prioritization. Thanks to the Invoker abstraction, TEMPOS is capable of executing

heterogeneous functions while employing different QoS mechanisms and policies,

without causing side effects on other components or executor nodes.
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5.8 Distributed Task Composition over Cloud Continuum Re-

sources

The coordination of execution of processes and services is an appealing ca-

pability of distributed systems enabling the creation of complex workflows and

analytics starting from simple resources and services available in the continuum

of resources. These approaches result also in a greater appeal in those contexts in-

volving many actors distributed in the territory. In APERTO5.0 the introduction of

service composition could enable the creation of complex workflows starting from

the many resources made available from the different partners leading to smarter

and more integrated behaviors. As an example, a manufacturer at the delivery of a

commission can automatize updates of the warehouse and of the different groups

and machinery in charge of its production. In a tourism context, a tour opera-

tor can create booking packets that simultaneously exploit booking services from

multiple partners, and create a more integrated experience.

The coordination of different services due to their intrinsic nature can really

benefit from the adoption of a FaaS model, abstracting the heterogeneity and com-

plexities of the distributed platform. In FaaS platforms, as already stated in section

3.2, the ability to compose (ready to use) functions to create application-specific

processing pipeline(s) is typically called function composition. By decoupling

complex functionalities into simpler ones, function composition enables smarter

management of complex tasks and improved multiplexing capabilities. Moreover,

function composability promotes reusability, thus further reducing the develop-

ment burden, hence the time to market.

While the composition of services in cloud continuum environments already

presents several challenges, due to the difficulty in coordination and the need to in-
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tegrate heterogeneous protocols and resources, their execution on FaaS platforms

adds challenges derived from the peculiarities of this model. The opaqueness

of function execution, in fact, makes it more challenging to implement efficient

mechanisms for process coordination, such as broadcast, aggregation, and shuf-

fling, which are common communication primitives in distributed systems. This

aspect is particularly relevant when considering machine learning and big data an-

alytics workloads [76]. In addition, no current FaaS platform adopts any resource-

aware optimizations to exploit the specificity of the underlying hardware and/or

software resources. This is becoming an increasingly important feature when con-

sidering that functionalities can be deployed over a continuum of heterogeneous

resources [77]. These optimizations do not only benefit single-host FaaS deploy-

ments but also distributed scenarios where one knows in advance the underlying

resource capabilities and the application resource graph. In fact, this is not an un-

common situation, and the multi-host FaaS scheduler can be tasked to handle the

resource-aware placement of functions [78].

Despite the relative novelty of FaaS platforms, several solutions, both com-

mercial and academic proofs-of-concept, address the topic of function composi-

tion. Our survey is confined to proposals that present system-level novelties and

optimizations, in line with our overall objective.

On the commercial front, Microsoft Azure Cloud has recently introduced

Azure Durable Functions as an extension of Azure Functions [79]. This solution

enables a user to define stateful workflows by writing special orchestration func-

tions, whose state is managed by the platform. Amazon adopts a slightly different

approach with their AWS Step Function offering, which behaves as a finite state

machine controlling the execution of AWS Lambda functions composition [80].
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AWS Step Function allows the definition of a series of checkpoints in the pipeline,

used to enable fault tolerance capabilities, such as error handling and retry logic.

Both those commercial approach while providing a good level of expressive-

ness to customers breaks the fine and zero scaling capabilities of FaaS platforms

as a function or another process, opportunely scaled, needs to be always present to

initiate and coordinate the function composition leading in this way also to higher

costs. Moreover, the necessity of gathering function result values in a unique point

in order to effectuate subsequent invocations obviously lead to many more mes-

sage exchange, and so more resource utilization and greater response latency, to

realize the same function flows in respect to other approaches such as continuous-

passing.

On the academic front, the authors of [21] identify some formal properties

of function composition schemes, proposing a taxonomy of possible approaches.

According to the proposed classification, they also discuss an infrastructural ap-

proach for function composition based on the OpenWhisk [20] platform.

The above offerings implement the function composition feature following

the reflective invocation approach, which violates the fine-grained (zero) scaling

feature, requiring an always-on entity to enact the composition logic. Moreover,

the solutions seem to lack any form of optimization for inter-function communi-

cation, which is crucial for an efficient composition solution. On the contrary, we

adopt a continuous passing composition pattern which does not require the instan-

tiation of a third component and guarantees the best inter-function communication

performance, avoiding intermediary entities.

SAND [81] is a serverless computing platform that combines a novel execu-

tion environment and fast inter-function communication. SAND promises lower
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latency, better resource efficiency, and more elasticity than existing serverless plat-

forms by leveraging an application-level sandbox and a two-level message bus.

SAND makes use of a local communication bus that enables efficient function-

to-function transfers. However, the proposal executes multiple functions of an

application in a single container, violating a core property of FaaS, which is to run

and manage code written in different languages and with different dependencies.

Moreover, the local bus is implemented as a custom process, lacking a standard

interface, interoperability features, and the extensibility and flexibility that DIF-

FUSE embodies.

FAASM [73] introduces Faaslet, an isolation abstraction based on WebAssem-

bly that leverages shared memory regions for communication between functions

in the same address space. Faaslets execute in the FAASM runtime, which takes

care of isolating other system resources using standard Linux cgroups. FAASM

achieves better performance compared to container-based solutions in terms of

memory usage, function instantiation time, and overall throughput. Although

FAASM could have been a good baseline for our work, its architecture does not

provide any support for efficient function composition. Moreover, even though

WebAssembly as an execution environment is an appealing research direction, es-

pecially if combined with other existing technologies, it still lacks stability [82]

and some features are required by production-grade systems.

Moving a step forward, herein we present DIFFUSE [83] a DIstributed and

decentralized platForm enabling Function composition in Serverless Environments.

DIFFUSE expands APERTO FaaS architecture by introducing novel function com-

position mechanisms integrated into the architecture and an optimized MOM-

based approach for function-to-function communication. Abstractions introduced
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by DIFFUSE(Fig. 20) enable the simultaneous integration of multiple MOM

over the cloud continuum, taking advantage of the peculiarities of each one and

tailoring sections of the architecture to different needs and constraints. Deploy-

ment scenarios can then exploit resource-optimized middleware in edge resources

and high throughput-optimized ones in cloud resources. Both can then be ex-

ploited at the same time by simply including functions belonging to the two sites

in the same workflow definition.

Figure 20: DIFFUSE relies on the peculiarities of multiple MOM solutions to

provide enhanced function-to-function communication.

The composition mechanism comprises two layers: (i) the configuration and

coordination layer instrumenting the FaaS platform components, and (ii) the function-

to-function communication layer serving as a conveyor of messages between com-

ponents.

Our proposal provides the user with the capability to define custom process-

ing pipelines expressed via association rules, residing outside the functions’ busi-

ness logic. Association rules are shipped to the controller and allow the definition
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of generic, graph-shaped processing pipelines whereby the pipeline continuation

is determined by the output of the executed function. This also allows us to intro-

duce run-time modifications and updates to the processing pipeline, adding to the

flexibility of the approach.

The Controller then converts workflow definition in component-specific con-

figurations forwarded to the designated components through MOM configuration

queues. These asynchronous updates allow moving the FaaS composition con-

troller outside the chain invocation mechanism, enabling us to reduce the function

response times when compared to the approach where the controller is involved in

each function invocation (reflective invocation. Our solution then doesn’t rely on

a single external or internal coordinator receiving results of each invocation and

triggering subsequent phases of the composition. It is important to note that in con-

trast to the reflective invocation mechanism where the (control) burden is offloaded

to the controller entity, in our approach the control logic is decentralized and dis-

tributed in each executor node. This approach follows the direction undertaken in

APERTO FaaS to reduce points of centralization to achieve better performance,

fault tolerance, and easier distribution over cloud continuum resources.

Without loss of generality, in Fig. 21 is depicted as an example of a pro-

cessing pipeline that is composed of three functions, namely A, B, and C. In a

hypothetical scenario, the execution of the pipeline is triggered because of a user-

issued request, calling function A into execution. Upon function A termination,

depending on its returned output inspected by the invoker component, the contin-

uation of the pipeline will be either the execution of function B or C.

Once a pipeline configuration file is pushed to the platform, the components

establish a series of communication queues (topics) used to exchange applications
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Figure 21: DIFFUSE relies on a MoM-based approach for function-to-function

communication; invokers directly trigger execution of the next function by

publishing function output on the corresponding topic.

and control data among them. In particular, the function-to-function communi-

cation mechanism relies on a MoM-based (Fig. 6) approach, adhering to a pub-

/sub paradigm, enabling the transparent invocation of the next function in the

pipeline. This approach not only enables the distribution of the composition con-

troller exploiting location transparency provided by the MOM but also promotes

taking advantage of single peculiarities of the different MOM. The introduction of

acceleration techniques, as an example, can be done through its implementation in

the Delivery Layer without, automatically benefiting all components.

Returning to our prior example, once function A terminates the execution,

the invoker consults the output and depending on the value, forwards the output

either to Queue A or Queue B, consequently triggering the execution of function

B or C, respectively. This mechanism provides the ability to dynamically scale the

number of invoker instances, thus increasing the level of parallelism.
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In these settings, the MoM acts as a conveyor for all messages and events,

hence it is of paramount importance that the solution is efficient and able to grace-

fully scale with the number of requests. At the same time, it is desirable the

platform be agnostic and decoupled by the specificity of the underlying MoM

solution, promoting portability and openness to future extensions. To this end,

we have introduced an abstraction layer (vertical orange box near the Invoker and

Controller entities, Fig.21) decoupling the components from the specific MoM

APIs by implementing a series of high-level abstractions such as group (commu-

nication channel) creation, send and receive of messages, etc.
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6 APERTO FaaS Reference Implementation

While preserving the general aspect of our study, and without loss of gen-

erality, we now present the current status of the implementation of the APERTO

FaaS prototype. This prototype demonstrate the feasibility of our proposal and al-

lowed us the creation of an extensive series of tests to demonstrate the validity of

our proposal. For better readability, the structure of the chapters follows the high-

level subdivision in Layers presented in the previous chapter, while presenting in

detail techniques and implementations of the architectural components.

6.1 Bridging Layer

The Trigger is the TEMPOS component responsible for the forwarding of

events issued by one or more sources to the MOM, thus defining the core part of

the Bridging Layer. To provide a unique implementation for the different deploy-

ment scenarios presented in Section 5.1, we developed the trigger as an always-

running Linux process. This process always implements two protocols, one for

receiving requests and events from the extern and the other to send the message

through a publish request to the MOM. Depending on the need we have imple-

mented several protocols receiving requests from the extern ranging from HTTP,

TCP, or UDP.

The trigger process at its startup first communicates its activation to the con-

troller by publishing a registration message on a specific and unique queue. Then

it subscribes to a specific queue waiting for configuration messages and commu-

nicated to the controller through the registration message. The configuration mes-

sage that the trigger receives at the activation of a new workflow simply describes a

95



tuple containing the queue IDs at which the trigger has to forward a specific event.

As an example, a configuration message for a trigger exposing the HTTP proto-

col can indicate that all the POST requests to a specific path should be forwarded

to queues A and B, as another example a trigger exposing the TCP protocol can

differentiate the queue destination depending on the port on which he received

the request. Once received a request the trigger remaps the data received through

the request into a data structure containing all needed information, then the data

structure is serialized into a MessagePack [84] and sent to the mom. MessagePack

is an efficient binary serialization format that enables to exchange of data among

multiple languages in an optimized and compressed way.

To handle those cases where the final user requires a synchronous interaction

with the platform, like during an HTTP GET, the trigger insert in the message the

id of the queue on which it will listen for the response. All the interactions with

the MOM and so with other architectural components of the platform are asyn-

chronous thus maximizing the performance of the trigger process. Moreover, the

stateless nature of this process joined with the transparency introduced by the pub-

/sub protocols enables a simple scaling of this component by simply creating and

executing another instance of it. The transparency introduced by the MOM en-

ables the exploitation of the same trigger implementation for all three deployment

scenarios analyzed. Thus, an event issued by a source (e.g., a sensor) is received

by the trigger via the network, or if possible, taking advantage of an IPC mecha-

nism. This can be applied to optimize communication in the case of the co-located

deployment scenario.
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6.2 Delivery Layer

During the development of APERTO FaaS, we integrated and experimented

with different Message Oriented Middleware as the Delivery Layer of our plat-

form. As mentioned before

It is worth mentioning that the Delivery Layer is not constituted only by the

processes composing the broker but also by protocol implementations of publish-

ers and subscribers can play important roles in message dispatching and manage-

ment. As an example in the Kafka Broker [85], as better analyzed also in the

next section 6.8, the publishers realize the load balancing feature of the middle-

ware by synchronizing with the broker and writing the message to a partition of

the Kafka Topic. For many experiments that we conducted and as a possible ref-

erence implementation we relied on NATS [86] messaging broker. NATS is a

lightweight, high-performance messaging system that enables distributed systems

and microservices to communicate with each other. It was designed to be fast,

scalable, and easy to use, with a focus on providing a simple and intuitive API.

NATS is often used as a ”message bus” or ”event bus” for connecting microser-

vices and other distributed systems, and it supports a wide range of messaging

patterns, including publish-subscribe, request-response, and streaming. NATS is

written in the Go programming language and is available as open-source software

under the Apache 2.0 license.

NATS natively supports the concept of Queue groups which allow multiple

subscribers to load balance messages from a single publisher. When a message

is published to a subject that has multiple queue group subscribers, NATS will

distribute the message to a single subscriber in the queue group. This can be

used to distribute workloads across a group of clients. As already mentioned, this
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feature is exploited by APERTO FaaS in order to distribute the load generated

by the same class of event among multiple invokers. Moreover, NATS natively

implements the Request-reply. In this pattern, a client can send a request message

to a subject, and NATS will deliver the request to a single subscriber/invoker. The

invoker can then process the request and send a reply message back to the client.

These primitives when available on the adopted MOM can support the Trigger in

handling transparently synchronous end-user requests.

Finally, NATS implements different forms of clustering and distribution fa-

cilitating the creation of an infrastructure spanning the continuum of resources. In

NATS, a cluster is a group of NATS servers that are connected together and work

as a single entity. Clustering allows scaling the broker horizontally by adding more

servers to the cluster. It also provides fault tolerance, as the cluster can continue to

operate even if one or more servers fail. When a NATS server configured to join

a cluster, starts up, it will connect to the other servers in the cluster and exchange

information about the messages it has received. This allows the NATS cluster to

route messages to the appropriate server and ensures that every message is deliv-

ered. The concept of clustering can be also extended to multi-site deployment. In

a NATS multi-site deployment, you can set up NATS servers in multiple locations

(e.g., data centers, edge resources, or cloud regions) and connect them to form a

single, globally distributed cluster. This allows you to build distributed systems

that can span multiple sites and operate even if one or more sites go offline. To set

up a NATS multi-site deployment, you will need to configure each NATS server

with the addresses of the other servers in the cluster, regardless of their location.

NATS will use these connections to exchange information about messages and

route them to the appropriate server.
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6.3 Processing Layer

To cope with the specific needs of each situation and to also highlights spe-

cific characteristics of the proposal we have implemented the invoker as a Linux

process executing with a different model of concurrency. In the first case, the sim-

plest one the invoker runs as a synchronous blocking process, receiving an event

from the MOM, executing the configured function, and waiting for its termination

before receiving another event. This configuration facilitates a strong control over

the concurrency with which the events are processed by augmenting the number

of concurrent instances spawned by the system on executor nodes available. The

second implementation exploits a multi-thread concurrent model where multiple

functions are concurrently executed by the same invoker. In particular, the in-

voker reserves a thread as an event loop process waiting for events by the MOM

and distributing their processing to the other thread available in the thread pool.

This implementation, creating at the software layer a solution of concurrency is

designed to be run in a single instance for each executor node. In the case the plat-

form requires scaling resources associated with the processing of events coming

from one queue the controller instantiates new executor nodes. Both the imple-

mentations are equipped with an additional feature that if enabled allows them to

retain current functions already put into execution and treat them as long living

processes. While this clashes with the zero-scaling principle of FaaS it also allows

us to not pay the cost of Linux process instantiation and achieve in this way a

reduction in response latency.

The problem of response latency in FaaS platforms is a well-known open

challenge in the sector commonly known as cold start phenomena [87]. In fact,

the recreation at each invocation of the execution environment and the process
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running the function can cause an additional overhead even hampering the appli-

cation of these models to all those use cases demanding low latency in interactions.

Over the past years, many optimizations have been proposed in the literature and

by cloud providers [88] to mitigate these issues ranging from the approach yet

presented of retaining already instantiated function for process subsequent event

to the proposal of new optimized execution environment and process startup. In

the following, we present the current state of APERTO FaaS integrating 3 dif-

ferent methods of function startup and enabling their execution in many different

execution environments. Without the sake of completeness, we believe that those

methods can constitute a valid subset enabling flexible deployment of function on

resources of the cloud continuum spanning from edge devices to big data centers.

The execution environment on which the functions are put into execution de-

pends on the specific use case in which APERTO is being applied. At the moment

of writing APERTO FaaS supports three different methods of function startup: i)

the Dynamically Loaded Function(DLF), the WASM Function, and the Function

Spawn(FSpawn). It is worth mentioning that thanks to the transparency introduced

by the MOM and modern techniques of process isolation such as WASM, Linux

Containers or Virtual Machine, it’s possible to concurrently execute the different

versions of the invoker exploiting different process instantiation methods on the

same node and the resources available on the cloud continuum.

6.3.1 DLF (Dynamically Loaded Function)

We based our DLF mechanism on the dynamic library loading technique.

This is generally used to combine several functions into a single unit shared by

multiple processes at run-time, thus saving disk space and RAM. Although the
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library code can be used by multiple processes at the same time, its variables

remain isolated. Our DLF employs the POSIX standard APIs to handle the dy-

namic library loading [89]. When a function invocation occurs, Invoker opens

(dlopen) the requested shared object file and, subsequently, loads the symbol

(dlsym) related to the main library entry. For this to happen, the application

developer must expose the function within the library with the name and argu-

ments we expect. Consequently, the loaded function is first executed and finally

unloaded (dlclose) after its termination. Due to the mechanism involved, this

invocation method is suitable for executing functions with high performance and

strict requirements, thus primarily aimed at meeting latency-sensitive application

needs level [90].

6.3.2 WASMF (WASM Function)

The WASM invocation method is similar to DLF, as it adopts the same un-

derlying loading mechanism. The TEMPOS invoker integrates a complete WASM

engine, i.e., using the Wasmer library [91], initialized in the startup phase. When

Invoker receives a request, the engine dynamically loads the shared library con-

taining the requested function. To ensure a correct loading, the library must be

compiled using a WASM code generator that translates a target-independent inter-

mediate representation into executable machine code, e.g., Cranelift [92]. Once

the function is loaded and executed, the engine removes the WASM code on its

internal store. An advantage of this invocation method is the possibility of the ap-

plication developers implementing functions in the programming language of their

choice, still providing good results in terms of performance and levels of quality.
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6.3.3 FSpawn (Function Spawn)

The last invocation mechanism, called Function Spawn (FS), follows the

classic Unix idiom of fork() followed by exec() to execute a different pro-

gram in a child process. If the invoker is deployed on a node supporting the

posix_spawnAPI, the latter is used instead of the fork() and exec() scheme

to achieve better performance in case of parent process with a larger size or mem-

ory layout [93]. Due to the flexibility and standard nature of the mechanism em-

ployed in this invocation method, it is possible to execute the function in arbitrary

environments. In particular, as a first implementation, we leveraged FSpawn to

execute functions, deployed in the form of an executable program, directly as a

Linux user-space process. Alternatively, a function can be spawned inside an al-

ready started Docker container providing all the dependencies needed to execute

the code.

6.4 Controller and Management Layer

In APERTO FaaS, thanks to the decoupling of architectural components pro-

vided by the MOM we opted to create a series of controllers, each one specifically

designed to solve a single task. These processes can then be opportunistically

and dynamically attached to the infrastructure by subscribing as publishers and

subscribers to configuration queues.

In fact, our system can work in a static behavior without any controller pro-

cess active by simply providing statics configurations in a queue. At the moment

of writing, 3 controllers have been designed and implemented to support APERTO

FaaS: the Static Controller, the HTTP Controller, and the Node Configurator. The

Static Controller is a simple process that once activated reads a JSON or TOML
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configuration file, requires the MOM the creation of queue described in the con-

figuration, and writes architectural component configurations in the queue to then

terminate its execution. This Controller was essentially created to help us in the

configuration phase of those experimental settings requiring a static behavior of

the platform without any scaling or reconfiguration action. The HTTP Controller,

instead, after its startup activates an HTTP endpoint exposing REST API to con-

figure APERTO FaaS dynamically while it is running. In particular, the HTTP

controller accepts POST requests having JSON structured body and indicating

configurations for elements or describing a FaaS workflow.

Finally, the Node Configurator is a process that helps the invoker in config-

uring the executor node in order to properly activate a workflow. Its duties can

vary depending on the model of invoker adopted but actually implements: i) a

download process to make available at a specific path the code of the function

needed by a workflow, ii) a scaling process in charge of instantiating or destroying

invoker process in the case of single thread model, a monitoring process in charge

of watching node resource availability and signal to the controller, through the

queue, the necessity of scaling resources associated with a specific workflow.

6.5 Data Persistence Layer

To enable uniform and performant data operativity from the function we cre-

ate SPS as a process running inside the same execution context of the invoker

component. While the strong decoupling and transparency guaranteed by the

MoM can potentially enable the simultaneous exploitation of different invoker

models and execution environments, the current implementation of SPS adopts

a Docker-based invoker per function architectural pattern. This choice is mainly
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driven by the simplicity that this model brings to the management and orchestra-

tion plane, enabling us to exploit already consolidated mechanisms for isolation,

multi-tenancy, and container orchestration. Without loss of generality, the current

proposal can be easily deployed over a Kubernetes cluster as a standard container

and could leverage on Containerd and Kubernetes environment variables and se-

cret management features.

From the customer perspective, the activation of a workflow requiring to op-

erate on a data store requires only that the user indicate eventual data stores the

function can access and perform operations. When the controller receives the con-

figuration, it checks if data support is enabled for that workflow and thereafter

creates a container embedding the business logic and the invoker-specific imple-

mentation for the desired data store. Finally, the controller configures the trigger

and MoM to activate the workflows and distribute the packed function over to

suitable nodes.

Once the workflow activation phase is terminated the specialized invoker

opens receiving an ingress event, starts a new instance of the function, opens a

bidirectional communication channel through stdin/out, and pipes the events to the

function (22 step 1). The invoker then waits either for a message of termination

containing the result of the execution of the function(22 step 6) or a specialized

message containing information to execute an operation on the configured data

store (22 step 2). If the invoker receives a data store operation, it unpacks and

deserializes the message through the specific datastore driver and executes the de-

sired operation (22 step 3 and 4). Upon termination, the result of the operation is

serialized and returned to the function (22 step 5).

104



Figure 22: High-level architecture of SPS showing the interaction sequence from

the function activation to the query of data storage and ending with function

termination and return of result

During this last step, the SPS layer can take advantage of optimizations made

in the invoker data access mechanism. In particular, the current implementation

provides a connection pooling mechanism, allowing to retain persistent connec-

tion(s) to target databases and a (de)queuing mechanism that allows amortizing

connection creation cost over multiple requests. It is important to note that busi-

ness logic might require an arbitrary number of data operations during its lifetime.

The strong decoupling between the invoker and the functions it services al-

lows amortizing the cost of development of a specific invoker for each datastore

solution while providing a desirable degree of flexibility. In particular, in order

105



to offer the wider possible compatibility with existing languages and frameworks,

we opted to implement invoker-function communication through stdin allowing

asynchronous exchange. The (de)serialization process is handled msgpack, allow-

ing us to achieve cross-language representation with a reduced overhead in both

message size and computation time [94].

6.6 Authorization Layer

The Authorization layer verifies the rights associated with an event received

by the invoker from the MOM before activating the function in charge of process-

ing the event. In order to associate a set of rules with a specific workflow the

customer uploads to the controller a set of rules referencing the id of the workflow

specified. For each configuration received, the controller pushes rules in special

topics. By following this approach and exploiting the communication capabilities

provided by the MOM, different components of the architecture will be able to in-

dependently read them. Rules are then uploaded by the controller, through HTTP

requests, directly to the master registry.

Finally, the invoker waits for events incoming from a specific topic. At each

event arrival, the invoker: (i) deserializes it and extracts the fields necessary to is-

sue the query to the rule engine, and (ii) if the rule engine evaluation is successful,

it executes the code specified by the customer through the event provided as input

argument, otherwise, an error is returned.

In the proposed architecture, the customer defines a set of policies described

through a specific policy language named Rego4. For the sake of clarity, in the
4https://www.openpolicyagent.org/docs/latest/policy-language
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snippet below, we report a simple example of a policy. In this example, a user will

be granted to use a feature only if her/his role is authorized to invoke that function.

a l l o w {
some g r a n t
u s e r i s g r a n t e d [ g r a n t ]
i n p u t . f n I n v o k e d == g r a n t . f u n c t i o n s [ i ]

}
u s e r i s g r a n t e d [ g r a n t ]{

some i , j
r o l e := d a t a . u s e r r o l e s [ i n p u t . u s e r ] [ i ]
g r a n t := d a t a . r o l e g r a n t s [ r o l e ] [ j ]

}

Listing 1: A Rego policy example granting access according to user roles.

As our rule engine, we employed Open Policy Agent (OPA) 5, a lightweight

general-purpose policy engine service that decouples policy decision-making from

policy enforcement.

To efficiently manage the distribution and update of policies while achieving

the best performance in terms of fault tolerance and high availability, the registry

was implemented as two-levels storage.

The first level is realized through CouchDB, an open-source document-oriented

NoSQL database that exploits a Multi-Version Concurrency Control (MVCC) pro-

tocol to enable the synchronization and replication of documents over one or more

instances to maintain eventual consistency, also supporting offline replication. It

is the reference central point responsible for managing the consistency and per-

sistence of access control policies, providing a global perspective of authorization

management. The second level consists of caches that minimize the latency of

accessing policies and data. It is implemented through the cache offered by OPA.
5https://www.openpolicyagent.org
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A local process called bundle server subscribes to changes of access control rules

memorized in CouchDB and consequently updates the cache. In this proposal, the

bundle server represents the adaptation mechanism of our solution that enables the

rule engine to transparently use multiple policy management systems.

This model of policy distribution enables us to achieve high availability and

fault tolerance. Co-locating a replica of the rule engine, data, and policies, on each

execcutor node, improves performance and makes each executor node totally in-

dependent from the others. It is worth outlining that in this approach, we embrace

eventual consistency in favor of higher availability and reduced latency in access-

ing policies. In the future, as specified in Section 7.6, we plan to explore other

consistency models.

6.7 End-to-end QoS Service differentiation

While preserving the general aspect of our study, and without loss of gen-

erality, in this section we present the current status of the implementation of a

TEMPOS prototype, which primarily exploits Linux real-time scheduling, differ-

entiated MOM priorities, and Time-Sensitive Networking (TSN) as the underlying

system-level mechanisms to enforce the QoS-aware TEMPOS abstractions (TEM-

POS QoS-aware topics) for QoS management. The section is structured by pre-

senting how we realized the TEMPOS architecture described in Section 5.7, first

focusing on the QoS Level and then on the System Level (Fig. 23).

The current implementation of the TEMPOS middleware provides applica-

tion developers with two distinct QoS levels. On the one hand, we define a Best-

effort Quality (BQ) and assume its use in case of communication and function

invocation with no strong latency and jitter constraints. On the other hand, we
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specify the Strict Quality (SQ) to support the execution of functions that require

more stringent and soft real-time QoS.

For the initialization of a QoS-aware workflow, the application developer/de-

ployer must simply provide a specific configuration file, currently based on the

TOML configuration file format, containing: i) all the information needed by the

Controller to interact with all other entities, i.e., MOM, Triggers, and Invokers,

and ii) the specification of the requested QoS levels for the connection between

components and function execution at each targeted node. Then, at the end of the

configuration phase, the Controller waits for reconfiguration/management requests

from the developer/deployer, thus making both the Controller and the entire mid-

dleware reconfigurable and modifiable at run-time. The current implementation

exposes the Controller functionality through REST APIs.

In particular, every time the Controller receives a request, it performs the

possibly needed reconfigurations by interacting with the entities involved in each

layer. The latter, in turn, exposes specific management interfaces and manages

these configuration requests in an ad-hoc process outside the interactions of the

TEMPOS workflows defined by the developer/deployer. Finally, the Controller

maintains an internal representation of all TEMPOS components, which is up-

dated with each request, thus allowing a centralized view of the entire middleware

deployment environment.

To enable the strong differentiation of QoS of workflows no current MOM

implementation has been demonstrated to support the coordination of different pri-

oritization mechanisms. We decide then to implement a prototype of the TEMPOS

Message-oriented Middleware with two different queues, for SQ and BQ, respec-

tively. We developed these two queues using two different network sockets and
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Figure 23: TEMPOS spanning different logical levels and orchestrating physical

resources and component configuration in order to achieve QoS differentiation.

two threads. The sockets separate messages into two separate queues, while each

thread acts as a priority queue processor since both are scheduled according to the

real-time Linux scheduler [95]. The first thread handles all messages labeled

with strict quality and runs with a higher priority than the best-effort thread. Since

the priorities provided by the scheduler range from 0 to 99, as default, we use the

lowest priority (0) for BQ, while we associate the highest priority (99) with SQ.

Moreover, an application developer can specify to use of the Controller to choose

the type of Linux real-time scheduler, e.g., Round Robin or FIFO, and set differ-

ent values for the priorities of the threads associated with the queues. That makes

the MOM more flexible and, in the future, opens up to the easy introduction of

additional queues with intermediate quality.

A significant aspect of our MOM is its transparency of the protocols used

by the underlying network; this property is achieved thanks to the introduction

of TEMPOS middleware elements called Adapters (Section 5.7) and realized via

a plugin-based mechanism within the MOM. A plugin represents a set of well-

defined interfaces, which specify how to: i) open a connection, i.e., create a Chan-
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nel, ii) configure the QoS level of a newly created connection, iii) send messages

through the Channel and iv) safely close the connection. In addition, the associa-

tion between one or more channels connected to the MOM and one of the queue

processors realizes the concept that we name TEMPOS Topic. Since the TEMPOS

components, including the MOM, are entirely implemented using a compiled lan-

guage such as Rust, we based the plugin system on the dynamic library loading

mechanism [96]. The realized plugins must be compiled and distributed as shared

libraries, which are then loaded at run-time by the MOM according to the config-

uration received from the Controller.

At the time of writing, we completed the implementation of a TSN-based

plug-in. Specifically, we based our implementation on the IEEE 802.1Qbv stan-

dard, which aims to support the combination of best-effort and real-time traffic

within TSN networks [97]. The standard presents the notion of time-triggered

communication windows, often called time-aware traffic windows, thus defining

a mechanism to support different types of time-critical flows. In practice, a win-

dow is divided into multiple time slots associated with selected traffic classes and

repeated cyclically. This makes it possible to minimize the interference of best-

effort traffic with priority traffic (i.e., real-time traffic), which we refer to as strict

communication QoS level. This mechanism is achieved by inserting a so-called

guard band before the scheduled traffic window, which forces the buffering of

packets belonging to traffic classes not to be transmitted. From an implemen-

tation perspective, windows and slots are expressed through a Gate Control List

(GCL) that identifies the time instants in which packets can be transmitted on the

medium [98].
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To achieve a strong QoS end-to-end differentiation we have to recall that the

trigger is a critical point of the architecture, creating the first differentiation of flux

and eventually causing contention among concurrent requests coming from the

outside of the platforms. We decided then to create a strong separation for the two

priorities by executing a separate process for each trigger type and each designated

priority. To provide a unique implementation for the different deployment scenar-

ios presented in Section 5.1, we developed the trigger as an always-running Linux

process listening on a network socket. Thus, an event issued by a source (e.g., a

sensor) is received by the trigger via the network, or if possible, taking advantage

of an IPC mechanism. This can be applied to optimize communication in the case

of the co-located deployment scenario. Once executed, the Trigger first receives

the configuration, containing the QoS level to be used, from the Controller, and

then opens a second connection, i.e., the Channel used to communicate with the

MOM. Different from the MOM, we consider the implementation of each Trigger

as limited to a single protocol, be it TSN, Wi-Fi 6, or any other protocol providing

a priority-based communication mechanism. At the moment, we have completed

the implementation of the co-located trigger model by exploiting TSN-based com-

munication.

To support the prioritization of the execution of functions we extended the

invoker process by introducing the concept of prioritized execution. The current

implementation exploits the concurrent execution of two threads one in charge

of receiving configuration from the controller and the second of receiving events

and spawning functions. Even in this case, as already done for the trigger, the

separation among the two levels of QoS is done by executing a separate process

for each function and each QoS level. If two or more invokers are concurrently
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executing on the same node, the prioritization of the execution of the function

is kept thanks to the Linux real-time scheduling. By executing the trigger as a

process with different priorities in the Linux real-time scheduler, functions that

are children of the invoker processes inherited the same execution prioritization.

6.8 Distributed task composition over cloud continuum resources

Thanks to DIFFUSE, APERTO FaaS is able to provide advanced function

composition capabilities over resources in the cloud continuum. As already men-

tioned, our solution doesn’t rely on a central coordinator for the composition of the

single function but exploits MOM pub/sub decoupling and decentralization of the

composition process that enables the direct invocation of the following function

in the composition from the execution context of the function. From a customer

perspective, composition workflows are shipped seamlessly to normal workflow

through the controller REST API. Currently, the association rules are shipped to

the controller in a JSON-based format and allow the definition of generic, graph-

shaped processing pipelines whereby the pipeline continuation is determined by

the output of the executed function. Once processed the workflow definition the

controller configures through the specific queue the executor environment and the

MOM by creating needed association rules and queues. Each invoker configured

to run a function included in the workflow then receives a rule associating the exe-

cution of the function with a topic on which the result of this execution is published

in order to trigger the following function in the composition. To introduce a level

of flexibility in diffuse we also enabled the possibility of instrumenting multiple

destination topics. In the current implementation, the decision on which topic the

result is forwarded is based on a simple query evaluation on the exit code of the
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function. The association between the function and the next topics is kept by the

invoker in a hash table data structure for fast retrieval of correspondence.

To enable the invoker to communicate with different MOM middleware at the

same time we implemented an adaptation layer exposing the standard primitives

of the Pub/Sub model and remapping on specific API implementation opportunis-

tically bundled with the invoker process as libraries.

In the following, we present the design of a distributed shared memory mid-

dleware, allowing us to exploit modern hardware, guaranteeing low latency and

high-bandwidth communication. Next, we discuss the other MoM alternatives and

overall characteristics, adding to the deployment spectrum of our platform. To

support efficient function-to-function communication and thus reduce workflow

execution latency we present a zero-copy transfer mechanism for use in distributed

multi-host deployments. The Distributed Shared-Memory Queue (DSMQueue)

exploits modern networking hardware to build a zero-copy, delete−after−read

data transfer mechanism embodying a similar semantic to its local counterpart, the

Linux kernel mqueue primitive. This approach enables a transparent load balanc-

ing mechanism among subscribers (Invokers), whereby a read operation triggers

the message removal from the queue. This way, the same function execution re-

quest is never executed more than once.

More in detail, DSMQueue is a distributed queue that exposes a push (send)

and a pop (receive) operation. This queue, currently implemented as a ring buffer

replicated among a group of processes (shared state), may be configured to offer

different semantics, such as FIFO (default) or LIFO. The send/receive operations

can be either blocking or unblocking. In a blocking configuration, when the queue

is full, the process issuing a send (push) goes into a blocking state; when the queue
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is empty, the process issuing a receive (pop) blocks on it. The specific configura-

tion depends on the scenario requirements. For example, in a context where data

freshness is important, an unblocking FIFO configuration allows the sender to

overwrite the data in the buffer according to a specific queue management policy.

Considering we are dealing with a shared state in a distributed environment,

one needs to rely on synchronization primitives to preserve consistency. To ad-

dress this issue, we decided to adopt a well-known model for state sharing: the

State Machine Replication (SMR) [99]. In SMR, every group member - the queue

instance associated with processes representing the Invokers - holds a replica of

the state, and all are bound to apply the same operations in the same order to

maintain overall consistency. Guaranteeing a strong consistency model requires

implementing a form of atomic multicast, which imposes that any message sent

by any group member is broadcasted to the others and delivered in the same order

to all the members (a total ordering) even in case of failures.

To fulfill all the above requirements, we implemented our solution on top

of the Derecho open-source library [100]. The library enables point-to-point and

multicast communication and supports total ordering, failure atomicity, and op-

tional durable message logging. An optimal hardware mapping for RDMA en-

ables Derecho to efficiently support even the strongest consistency properties,

such as the SMR model while guaranteeing high performance in terms of data

throughput and latency. At the same time, to preserve compatibility when suitable

hardware is not available, Derecho can execute on top of the TCP/IP stack without

requiring any modifications to existing applications.

More in detail, Derecho allows users to define distributed services as “repli-

cated objects”, i.e., a set of state variables having an associated set of operations.

115



Table 1: MoM technologies with respective Delivery semantic, Delivery Order,

and Load Balancing capabilities.

Delivery semantic Delivery Order Load Balancing

Kafka
Exactly-Once,
At-Least-Once,
At-Most-Once

Within single partition
total ordering

Producer-side:
static,

Round-Robin

Redis
At-Least-Once
At-Most-Once Total Ordering

Consumer-Side:
First requesting

First served

DQueue Exactly-Once Total Ordering
Consumer-Side:
First requesting

First served

Processes holding replicas of such an object will form a process group. Each

state update can then be forwarded as an atomic multicast to all the group mem-

bers and performed by all replicas. On an RDMA network, Derecho offers a

zero-copy, lock-free critical path among remote applications, leading to ultra-low

latency and exceptionally high bandwidth utilization. DSMQueue builds on Dere-

cho and provides some higher-level blocking primitives to send/receive messages

to/from, e.g., Invoker components. Specifically, we implement DSMQueue as a

Derecho replicated object, where the shared state is the ring buffer. The operations

we define on that state are API calls that allow components to create and subscribe

to specific message queues, acting as conveyors of data among components.

Adding to the deployment spectrum of our proposal, we identified two other

state-of-the-art MoM solutions, namely Apache Kafka and Redis Stream [85,101].

In specific, Kafka is a highly scalable, open-source event streaming platform,

while Redis Stream is a streaming abstraction built on top of the widespread per-

sistent Redis database.

116



Table 1 provides a summary of some characteristics the different MoM solu-

tions embody. All the options offer advanced state replication and consistency

mechanisms for improved load distribution and fault tolerance. In particular,

Kafka exploits a multi-broker mechanism with a configurable level of topic (chan-

nel) replication, while Redis employs a classical Driver-Worker active replication

scheme.

Similarly, our DSMQueue proposal replicates the queue state (data) exploit-

ing RDMA to guarantee the highest possible performance. DSMQueue, which is

based on the Derecho library, adopts the same active replication pattern of Redis,

but the logic is completely decentralized, thus eliminating the need for a driver

node on the critical data path. In this setting, all the nodes are equal peers that

agree on the same shared state, thus achieving the maximum possible degree of

parallelism.

Concerning the delivery semantics, DSMQueue offers an exactly-once se-

mantic, while Redis offers an at-least-once embodying less overhead in synchro-

nization when compared to DSMQueue. This behavior may lead to a lower use of

the network resources but does not guarantee the consistency of the shared state in

case of failure of one or more nodes, which DSMQueue is always able to guaran-

tee. Kafka is the only one of the three solutions that, thanks to its deep integration

with Apache Zookeeper, allows choosing among all the three delivery semantics

at most once, at least-once, and exactly once at a topic granularity.

This chapter presented the state-of-the-art implementation of Aperto FaaS

demonstrating the technical feasibility of the proposed approaches. Proposed im-

plementations and integrated technologies represent some of the most widespread

approaches adopted in cloud-native environments. Trade-offs, technological gaps,
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and limits encountered, while narrowed to FaaS platforms can be easily extended

also to other cloud computing models. Although the market is thriving with so-

lutions, we denote the absence of MOMs proposals specifically designed to meet

the FaaS platforms’ needs, which has required their implementation from scratch.

The prototype of Aperto FaaS enabled us to structure an extensive set of tests, pre-

sented in the next chapter and aiming at demonstrating quantitatively the goodness

of approaches adopted and technological choices.
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7 Experimental assessment and Test results

This chapter presents an experimental evaluation, assessing our proposal in

its main contributions. During the development of the different components of

APERTO FaaS we had the opportunity to collaborate with different partners and

realities in the Emilia Romagna(IT) territory providing us with different use case

scenarios belonging not only to the Tourism context. The experimental testbed

takes into account different scenarios and consequently different execution envi-

ronments and service offer constraints spanning from high-performance central-

ized cloud to low-power devices into the edge.

In particular, in the first section of the chapter, we show a performance brake

down of the Processing Slices comparing the performance of the three invoca-

tion methods implemented in APERTO FaaS. Then we demonstrate the effective-

ness of SPS architecture by accelerating data operations with different database

technologies. In the third section, we evaluate the implications of different archi-

tectural implementations of the Authorization layer and the performance benefits

introduced by our solution. The fourth section demonstrates TEMPOS capabilities

of prioritizing workflow execution in each of the layers of the architecture. Then,

we present tests and results demonstrating how end-to-end QoS is influenced by

TEMPOS differentiation. In the last section, we present an extensive evaluation of

DIFFUSE function composition mechanisms tested under different loading con-

ditions and leveraging different MOM technologies.
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Table 2: Specifications of the nodes used for the processing performance

evaluation testbed.

Node Tag Model CPU Memory
1 Custom Workstation AMD Ryzen 3700X 8/16 CPU 32 GB
2 Dell Optiplex 3010 Intel Core i5-3470 4/4 CPU 10 GB
3 UP Core Plus board Intel Atom E3950 4/4 CPU 8 GB

7.1 Processing startup methods Comparison

The first testbed section is focused on how different methods of invocation

and execution environments perform when run over heterogeneous hardware. To

this purpose we consecutively invoked the same function (Algorithm 1), pro-

grammed in a compiled language, for 2 minutes when invoked with the mecha-

nism of i) DLF, ii) WASMF and iii) FSpawn. We next repeated the test with the

FSpawn mechanism but with two different versions of the same function imple-

mented in two different interpreted languages, i.e., Python and JavaScript. These

tests are repeated on nodes A, B, and C (Table 2) as representative of three very

different cases of resource availability on edge hosts.

All the results show(Fig. 24) that i) startup and execution times are sensibly

influenced by the employed hardware and ii) latency minor than 1ms is easily

achievable on medium-top class hardware.DLF with execution duration near to

100 µs qualifies as the fastest mechanism to invoke functions; this opens up to

the application of TEMPOS in many challenging and latency-sensitive use cases

where sub-millisecond end-to-end latency is needed; however, DLF restricts the

usable programming languages to the only ones compatible with the generation of

shared libraries.
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Algorithm 1 Pseudo code showing the operations performed by the function used
in the tests: deserialization, count of occurrence in the text, and repetitions of
operations of square root and power based on the index value.

1: function MAIN(e : Event) ▷ The function entry point
2: message, pattern← deserialize(e)
3: occur ← count occurence(message, pattern)
4: res← 0
5: for i← 0, occur do
6: if i mod 2 = 0 then
7: res← res+ pow(i)
8: else
9: res← res+ sqrt(i)

10: end if
11: end for
12: output(res)
13: end function
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Figure 24: Mean execution times for the different invocation methods gathered

in a run of 5 min. Each run repeated on nodes A, B, and C.
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Table 3: Number of invocations executed by the different invocation methods

during the processing test (5 min. run).

Invocation Mode Node 1 Node 2 Node 3
DLF 1884× 103 1004× 103 428× 103

WASMF 183× 103 85× 103 22× 103

FSpawn (Rust) 142× 103 42× 103 25× 103

FSpawn (Python) 5× 103 2× 103 855
FSpawn (Node.js) 1× 103 940 303

The FSpawn execution, on the contrary, showed maximum flexibility, being

able to run every language executable in a Linux environment. However, it ex-

hibited the worst performance in terms of total execution time, with latency up

to hundreds of milliseconds, in particular when running non-compiled languages

(Figure 24). This qualifies FSpawn as a good mechanism to adopt in a FaaS plat-

form given its flexibility, but its measured performance makes it infeasible to use

in deployment scenarios where end-to-end latency needs to be below the 1ms

threshold. The execution through WASMF performed one order of magnitude

worst than DLF and only slightly better than the execution of a compiled func-

tion with FSpawn, with an execution time of the order of 1ms. However, this

mechanism showed the potentiality of sensibly reducing the execution and startup

time of many non-compiled languages. Table 3 shows that the choice of the right

invocation mechanisms also results from a trade-off between the freedom in imple-

mentation language selection and the number of executable functions on a given

hardware infrastructure. Also, in this case, the results of this first test work also as

a baseline for the successive results because the first test was conducted without

concurrency among workflows.
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7.2 Data Persistence Performance

Herein, we assess the performance advantages that derive from exploiting the

architectural optimizations proposed in SPS. To this end, we conduct a comparison

of two different approaches as follows: (i) the Native approach where the function

embeds in its business logic the creation of a connection to a database and executes

operations on it, and (ii) the SPS approach where data operations are mediated by

the invoker.

We evaluate the different schemes under two representative synthetic work-

loads: (i) a constant-rate stream of requests, and (ii) a stream of incoming requests

issued at an increasing rate. The first workload aims to assess the properties of the

proposal in a steady regime, while the second scenario reproduces a typical traffic

pattern that can represent a transitional state of a system subject to an increasing

number of users requesting a particular service.

The proposed evaluations are conducted over pluggable data store layers,

namely: (i) MySQL a classical, widely popular SQL relational database, and (ii)

MongoDB a connection-based NoSQL document-based DB. The choice of these

two candidates was made not only taking into consideration the characteristics of

those solutions but also their wide diffusion on the market.

To assess the different configurations, we employ a lightweight, short-lived

business logic coded in Rust with execution times of about 4 ms. Upon termi-

nation, each invoker logs into Unix Syslog three timestamps associated with the

reception of a particular event, the issuing of an operation to the data store, and

the transmission of the result. Those timestamps are later on used to compute the

different metrics. Response times are measured as the time-lapse between the mo-
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ment the request is issued and the moment when the result of the computation is

returned to the trigger.

To better highlight the performance impact of the different approaches, we

also fix the number of concurrent functions that the FaaS platform can perform in

parallel, removing the time variations due to the scaling mechanism.

The experiments are conducted on four identical nodes, each equipped with a

4-core i5-3470 CPU @ 3.20GHz, 12GB RAM, running Ubuntu 20.04. One node

hosts the stress script used to simulate different patterns of traffic, a second node

hosts the various DBs (one at a time), and the other node hosts the FaaS platform.

Once a request is issued and received by the trigger, the latter forwards it to the

invokers via the MoM.

In this first experiment, we would like to investigate the system behavior

under a steady regime. Hence, the trigger issues a fixed number of requests at

a constant rate of 20 requests/second, and the experiment is run by varying the

underlying data store support and mechanism used to access the data.

Focusing on the read performance shown in Fig 25(a), we observe that MySQL

mediated by SPS configuration exhibits the best performance, while the native

MySQL approach results in the worst-performing configuration. In the case of

MongoDB, the introduction of SPS optimization accelerates not only the func-

tion execution but also the data access metric component. When comparing the

performance of the Read to the Create one, the scenario changes significantly.

MySQL, as expected, has the worst performance and this is to be attributed to its

transactional nature and ACID properties. Even in this configuration, the benefits

introduced by SPS optimizations are considerable, obtaining a 28% reduction of

end latency in the case of MySQL and a 55% reduction for MongoDB.
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Figure 25: Average end-to-end response latency, function execution time, and

database operation latency of the various configurations. The system is subjected

to a synthetic, constant load of 20 requests/second, assessing the performance of

an (a) read operation and a (b) create operation (log scale).

In this experiment, we aim to showcase that our solution not only guarantees

better use of computational resources but also that the connection reuse feature,

when employed, can contribute to an improved workload throughput and better

parallelism in data store interactions.

Fig. 26 shows the performance comparison of the different configurations.

For both the Read and Create operations, the benefits of SPS are evident; overall,

the system can digest the load gracefully, working at a faster pace when compared

to the Native approach. This behavior becomes evident in the Create operation,

where SPS-mediated access is capable of absorbing 8 times the load of the Native

configuration while still achieving lower end-to-end latency. In the Read opera-

tion, the SPS-mediated MySQL services almost 4 times more concurrent requests

before exhibiting a performance degradation, while SPS-mediated MongoDB can
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Figure 26: Log scale representation of the end-to-end response latency of the

different solutions assessed when subjecting the system to an increasing rate of

(a) read operation and a (b) create operation requests starting from 1 and reaching

16400.

tolerate almost 2 times more concurrent requests. Overall, SPS performance ex-

hibits lower variability when compared to the Native solution.

7.3 Authorization Performance

In order to assess the applicability of the proposed architecture in serverless

environments, we tested it in different load conditions. All experiments were con-

ducted on a local cluster composed of 6 nodes equipped with an Intel(R) Core(TM)

i5-3470 CPU running at 3.20GHz and 12 GB of RAM. The node in charge of sub-

mitting requests was configured to linearly generate from 0 to 1000 concurrent

requests in 300 seconds to obtain more samples under the different load condi-

tions. To compare the performance of the decentralized approach with that of the

centralized one, the cluster was configured in both modes. In the centralized de-
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ployment, we have a single node that hosts the trigger, the controller, and the rule

engine, while the invokers and the functions are deployed on each of the remain-

ing nodes. On the other hand, as far as the decentralized design is concerned, the

trigger and the controller are hosted on the same node, while the invokers, the

functions, and the rule engine are deployed on each of the remaining nodes.

7.3.1 Component Performance

We first evaluated in which component (trigger, invoker, and function) of the

architecture the authorization verification should be integrated. This experiment

was only conducted with the centralized approach due to the impracticability of

decentralizing authorization in the trigger that would have significantly favored

other components. In Figure 27, for each of the components under study, we

report the trend of end-to-end latency as the number of requests increases. In

order to evaluate as many scenarios as possible, we considered both authorized

(Figure 27(a)) and unauthorized (Figure 27(b)) requests.

Results show that the novel approach proposed for enforcing access control

verification in the invoker performs better than the others for both authorized and

unauthorized requests. Verifying access control at this level prevents the actual

function invocation if the request is not authorized. Moreover, this component

will not be susceptible to congestion because our architecture foresees more in-

stances. This choice enables instantiating resources proportionally to the effective

number of requests as demonstrated by the graphs where its end-to-end latency

scales gracefully. As well as for the invoker, verifying policies at the trigger level

avoids instantiating a function for requests that will be denied. Indeed, it per-
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forms quite well for unauthorized requests even though its performance tends to

get worse as the number of requests increases.

Since every type of external event is managed by a different trigger, inte-

grating verification inside this component requires the replication of authorization

mechanisms on each trigger type. Thus, each trigger will constitute a bottleneck

for the architecture since triggers are not replicated. Furthermore, this approach

is not adequate for function invocations where the trigger is not directly involved,

such as in function-to-function communications. Despite we have already men-

tioned the disadvantages of verifying access control within the source code and

the reasons for not using it, for the sake of completeness, we also evaluated the

access control verification at the function level. By adopting this approach, even

though the request may be denied, the access rights will be evaluated only after the

function has been instantiated resulting in additional network latency and higher

billing.
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Figure 27: End-to-end latency of access verification at the (i) trigger, (ii) invoker,

and (iii) function level when the requests are granted (a) and denied (b).
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7.3.2 Decentralized Performance vs Centralized Performance

Then, we compared the performance of the decentralized approach with that

of the centralized one to evaluate if our architecture can be actually adopted. In

Figure 28, we report, for both designs, the trends of end-to-end latency as the

number of requests increases and scaling the number of the executor nodes. With

a low number of nodes employed for executing functions, the performance of the

two approaches is almost indistinguishable, while with only one executor node,

the centralized deployment performs slightly better. However, with about 700

requests per second, the centralized design requires more than 50 milliseconds to

satisfy the requests. This exponential increase in response latency, shown in Figure

28, is caused by the increasing queuing of requests due to resource saturation.

On the other hand, as the number of executor nodes increases, the decentralized

approach starts performing better. This can be clearly observed with four executor

nodes. When having available more than one node for executing functions, the

decentralized approach should be always adopted since it guarantees to achieve

better performance.

7.3.3 Policy Performance

Finally, we tested both approaches using policies progressively more com-

plex. Indeed, according to the system and the use case scenario, policies can be re-

ally different from each other. In complex systems which involve many users, sev-

eral organizations, and dynamic environmental factors, policies tend to be much

more complex compared to those employed to address authorization in small net-

works. As a matter of fact, the time needed to evaluate policies is proportional to

their complexity. Hence, to evaluate the potential applicability of our proposal to
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Figure 28: Comparison of end-to-end latency performance between centralized

and decentralized access verification when scaling the number of executor nodes

from 1 to 4.

actual scenarios, we tested our architecture against increasingly complex policies

classified as Easy, Mid, and Complex. The policy reported in Listing 1 is the Easy

policy employed in our evaluation. Mid and Complex policies were obtained by

complicating the Easy one with respectively 10 and 25 random integer compar-

isons.

As shown in Figure 29, our decentralized approach outperforms centralized

ones already when evaluating simple policies. The performance difference be-

tween the two approaches becomes more and more evident with the increase in

rule complexity. This can be observed when evaluating complex policies where

the end-to-end latency of our decentralized proposal reaches about two orders of
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Figure 29: Comparison of end-to-end latency performance on the log scale

between centralized and decentralized access control verification of increasingly

complex policies.

magnitude lower than its centralized counterpart due to network congestion related

to access control verification.

7.4 QoS Service differentiation evaluation

To quantitatively evaluate and validate the effectiveness of TEMPOS, we

developed a series of testbeds to analyze the behaviors of several of its primary

components. The tests described below aim at demonstrating that the TEMPOS

middleware can support differentiated end-to-end QoS levels while offering appli-

cation developers a simplified interaction and instrumentation interface. Special
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attention was given to demonstrating the ability of TEMPOS to orchestrate and

compose different mechanisms to achieve highly differentiated QoS for different

workflows. Nevertheless noteworthy, these testbeds also show the validity and fea-

sibility of the achieved TEMPOS implementation stack under very different load

conditions.

Table 4: Specifications of the nodes used for the evaluation testbed.

Node Tag Model CPU Memory TSN driver
A Custom Workstation AMD Ryzen 3700X 8/16 CPU 32 GB 1 × Intel I211
B Dell Optiplex 3010 Intel Core i5-3470 4/4 CPU 10 GB -
C UP Core Plus board Intel Atom E3950 4/4 CPU 8 GB 4 × Intel I210

D,E UP Xtreme board Intel Core i3-8145UE 2/4 CPU 8 GB 4 × Intel I210

Of course, the performance results achievable by TEMPOS in absolute terms

depend on the characteristics of resources in the targeted deployment environment.

Therefore, the following series of testbeds can also constitute the first step to cali-

brating resources in target deployment scenarios with similar technological stacks.

Our testbeds are designed to simulate a worst-case where the number of concur-

rent requests is putting under stress the TEMPOS middleware. In particular, we

organized our testbeds in three cases, aiming each one to stress alternatively the

event-delivery process, the event processing, or the overall middleware.

In the first case, we test the behavior of TEMPOS event delivery under dif-

ferent load conditions, thus emulating diverse resource competition scenarios of

workflows. The specific goal is to demonstrate the ability of our middleware to

chain different QoS mechanisms while maintaining guarantees about latency and

jitter. The second case aims at demonstrating the TEMPOS ability to hide het-

erogeneity while still providing a strong differentiation of QoS. For this reason,

in this testbed case, we trigger the execution of a complex and computationally

heavy function, representative of many common workloads (Algorithm 1), while
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employing all the different function invocation methods currently supported in our

TEMPOS prototype.

In the last testbed case, instead, we aim at verifying the ability of TEMPOS

of composing mechanisms for QoS at different TEMPOS slices, to achieve con-

figurable and complete end-to-end QoS over different workflows.

We have implemented and configured two workflows, invoking the same

function (Algorithm 1) and configured one with BQ level and the other with SQ.

All tests foresee an increasing number of requests for each workflow, to show the

TEMPOS behavior in the presence of challenging dynamicity in the supported

service load. The reported results are discussed and analyzed by presenting the

overhead quotas introduced by single TEMPOS components.

To assess and validate TEMPOS feasibility over edge cloud deployment en-

vironments, we have decided to conduct our test on nodes with limited compu-

tational resources (Table 4). As the edge hosts, we have employed three TSN-

enabled nodes. In particular, Node A and Node B have been introduced and ex-

ploited only during the second testbed case to verify how invocation methods per-

formance would variate in correlation with node performance.

We opted to co-locate Triggers and data Producers on Node E, thus emulating

a practical case where two edge nodes cannot communicate by employing differ-

entiated QoS mechanisms. The choice of assigning one of the two resource-rich

nodes to these TEMPOS components is mainly due to the need to generate high

and precise loads to stress our middleware. The second most performant board,

node D, hosts an instance of the TEMPOS MOM. In addition, we decided to de-

ploy all the invokers on the node with fewer resources to emphasize concurrent
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resource requests and potential QoS conflicts in the processing slice, which is a

practically recurrent situation.

The three nodes of our testbed are connected through a Relyum RELY-TSN-

BRIDGE Ethernet switch, configured with a TSN setup realizing differentiated

QoS channels for the ingress/egress of topics. To set up the selected QoS mecha-

nism for TEMPOS best effort and strict effort levels, we use two new qdiscs queu-

ing disciplines built into the Linux kernel: i) taprio (Time-Aware Priority Shaper)

implementing a simplified version of the scheduling defined by IEEE 802.1Qbv

and ii) etf (Earliest TxTime First) qdisc that allows applications to set a trans-

mission time for each packet (this information is then used by the scheduler to

de-queue the packet and forward it over TSN). Note that applications based on

the IEEE 802.1Qbv standard must rely on a single time reference: to this purpose,

an autonomous standard called IEEE 802.1AS is specified in the TSN context,

which defines a specific profile of the IEEE 1588 standard by extending the Preci-

sion Time Protocol (PTP). This extension, called generic Precision Time Protocol

(gPTP), defines two main entities, namely the Clock Master (CM) and the Clock

Slave (CS), associated with the devices in the network [97].

About our testbed synchronization, each TEMPOS node participates to elect

a controlling entity, determined by the Best Master Clock Algorithm (BMCA):

this controlling node is called the PTP grandmaster [98]; the grandmaster sends

clock information to each of the Clock Slaves connected to it; once all TEMPOS

devices are synchronized, we have what is effectively a time-aware network of

nodes, i.e., a ready-to-use gPTP domain.

In our testbed, we created two time-aware TSN windows of 1ms, i.e., be-

tween Trigger and the MOM, and between the MOM and Invoker. Each window
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is divided into two time slots, one for SQ and one for BQ, each of 500 µs; the first

SQ slot is scheduled in the first half of the first window, where the second SQ slot

is skewed of 300 µs concerning the starting time of the MOM-invoker window;

this configuration enables strict TEMPOS traffic to find the gate open at each step,

with no additional delays. Finally, to gather monitoring statistics and to evaluate

TEMPOS performance, in each TEMPOS component in the testbed we introduced

the logging of any received event id, associated with its synchronized timestamp;

those logs are collected and analyzed only offline at the end of tests, not to perturb

the performance of workflow execution.

7.4.1 Event Delivery QoS Differentiation

In the first testbed case, we aim at demonstrating the TEMPOS ability to

prioritize event delivery based on workflow QoS. In particular, in the first test, we

submitted a constant rate of 1000 events per second to Trigger for a time-lapse of 5

minutes. Then, we measured the difference between the timestamp corresponding

to event creation at Trigger and the one reported at its delivery. We alternate

the activation of SQ and BQ workflows to observe the behaviors of the two in a

scenario with no perturbation due to concurrency. The results in Figure 30 show

that the events belonging to the SQ workflow are characterized by a lower end-to-

end latency and jitter when compared with those of the BQ workflow.

In particular, end-to-end latency for SQ workflow events settles to 501 µs on

average, thus showing that TEMPOS is compatible with very challenging contexts

that call for less than 1 ms response time, like soft real-time ones.

Note that a clear differentiation between TEMPOS QoS levels is possible

thanks to the combined exploitation of prioritization mechanisms acting at the net-
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Figure 30: First testbed section showing performance of Delivery slice. Average

end-to-end latency of best effort and Strict effort traffic when executed in

separated environments.

work layer and the event processing layer. In particular, the lower jitter is mainly

due to the strict scheduling of events and the synchronization of TSN windows

in ingress and egress of the topic. In fact, the maximum latency that we mea-

sured throughout all tests for each hop is 223 µs for the delivery of one event to

the TEMPOS MOM, 57 µs for event processing, and 299 µs for event delivery to

Invoker. Overall, once transmitted by Trigger, a packet reaches Invoker in no more

than 700 µs, in full compliance with what is configured as the QoS request in the

testbed setup.

Finally, let us observe that the high priority assigned to the queue processor

for SQ events prevents other applications in the user space running at the edge

node (such as the MOM control thread) to steal resources from the event process-

ing; of course, this does not happen for BQ. Note also that these measurements
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could be considered as the baselines for event delivery by TEMPOS in the ideal

case of absence of perturbations.

In the second test of this testbed case, we investigate how the TEMPOS

event-delivery mechanisms behave when multiple workflows are active and in

competition for resources. This test consists of two rounds: i) 1 best QoS and

1 strict QoS workflows are concurrently active and ii) the number of active best

QoS workflows is increased to 3. We decided to increase only the number of

best-QoS workflows in this test because the configuration of the current testbed

makes impossible the simultaneous sending of more than 1000 strict messages per

second, moreover, in most practical scenarios, most events tend to belong to the

Best-quality type. We submitted for 5 minutes a constant rate of 1000 events per

second per each active flow and again we measured the time-lapse between the

creation of the event in Trigger and its delivery at Invoker.

The results in Figure 31 demonstrate that the strict-quality latency is not pe-

nalized by the concurrent execution of one or more best-effort workflows even

when compared with the baselines of Figure 30. In both rounds, the latency con-

stantly remains under the threshold of 600 µs. As a second-level observation, note

that in the first round, despite the concurrent presence of two active flows of event

delivery, the jitter is negligible but a noticeable increase is observable in the sec-

ond round: this is mainly due to our usage of new API (NAPI), a device driver

packet processing extension to improve the networking performance; in particu-

lar, NAPI implements a mechanism of interrupt mitigation for network devices.

This mechanism allows the network card driver to exploit two different packet

reception modes: i) interrupt request (IRQ) issued for each incoming packet and

ii) a polling [102] based mechanism. Since the IRQ-based implementation can be
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Figure 31: First testbed section showing performance of Delivery slice. Average

end-to-end latency of best effort and Strict effort traffic with 1 and 3 concurrent

best effort producers and 1 strict effort.

very inefficient in high-speed networks as it constantly interrupts the kernel, NAPI

introduces the polling mechanism that allows the kernel to periodically check in-

coming network packets without being interrupted. When the incoming packet

data rate is sufficiently high for NAPI, then it automatically switches to polling-

based mode, thus motivating the observed behavior [103].

The periodic activation of the NAPI polling mode allows us to achieve a sub-

stantial acceleration in terms of latency, at the expense of jitter and CPU utiliza-

tion. In the case of workloads more sensitive to jitter than latency, the disabling of

this feature is recommendable; TEMPOS can perform this disabling transparently

for application developers thanks to its abstractions.
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7.4.2 Processing Prioritization

After validating the QoS-constrained delivery features of TEMPOS, here we

present a series of tests to show TEMPOS performance in terms of event process-

ing. The following tests are therefore implemented by considering the Processing

Layer only, with local-to-nodes function triggering. In this test, we separately

experimented again with the three invocation mechanisms (i.e., DLF, WASMF,

FSpawn), but this time with concurrent invocations of 6 functions, 2 executed

with SQ setup, and 4 with BQ. The level of parallelism selected is motivated by

the number of cores available on the used nodes (Node C Table 4) and the need of

creating challenging resource conflicts among workloads in our tests.
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Figure 32: Testbed results of concurrent invocation of functions configured with

different QoS using the Dynamic Loaded Functions invocation model

As shown in Figures 32, 33, 34 our queuing mechanism can well prioritize

strict quality when resource conflicts occur: the time of execution of SQ functions
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is almost half of the BQ ones. In other words, Invoker demonstrates to be ca-

pable of correctly applying the requested prioritization even with heterogeneous

mechanisms and in different execution environments.
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Figure 33: Testbed results of concurrent invocation of functions configured with

different QoS using Function Spawn invocation model.

In addition, the reported results highlight a negligible variability in execution

time in the case of SQ functions, as opposed to BQ. BQ functions showed a signif-

icant variation of the execution time of the order of hundreds to thousands of ms

depending on the method used; therefore, the usage of SQ functions enables, not

only to achieve a further reduced latency but also stricter predictability of process-

ing time. Invoker showed to be capable of transparently executing heterogeneous

workloads while exploiting diverse technologies present in infrastructure nodes.
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Figure 34: Testbed results of concurrent invocation of functions configured with

different QoS, using WASM Function invocation model.

7.4.3 Full Stack

This section report results about the TEMPOS ability to coordinate and con-

catenate different QoS mechanisms available in each slice to achieve the targeted

end-to-end quality for the workflows. We deployed on node E two data producers

and two triggers configured with the two BQ and SQ levels; on node B, instead,

we deployed 3 invokers with SQ configuration and 3 with BQ.

We then create and deployed two workflows executing the same function and

triggered by the same event, but configured one with BQ and one with SQ. Next,

we linearly increased the number of events submitted to the triggers until reaching

1000 events per second for each workflow. The experiment is repeated firstly with

only one active workflow, then with both workflows concurrently active.
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Figure 35: End-to-end test performance of the TEMPOS platform operated in

two different scenarios: isolated execution of workflows with different QoS (1

BQ and 1 SQ), and concurrent execution of them. Comparison of end-to-end

latency averages for BQ and SQ traffic executed both separately and

simultaneously with an increasing number of messages/seconds (from 10 to

1000).

As predictable from the results of the previous sub-section, in an isolation

case with only one workflow active per time, the SQ end-to-end latency is con-

siderably better, with an average of 3.34ms than BQ, which settled to an average

of 3.96ms, as also shown in Figure 35. It is also noteworthy that this behavior

is maintained for the entire duration of the test, with different rates of requests,

thus demonstrating the elasticity of the TEMPOS middleware. In the concurrent

scenario, with both workflows active and competing for resources, the two work-

flows coexist and do not affect each other’s performance until reaching the critical

threshold of 500 messages per second. Until this threshold, we can also observe
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that both workflows behave similarly as in the previous experiments where they

were executed separately. Over the critical threshold, we can observe that conflicts

among workflows become critical and the BQ workflows progressively degrade

their performance. Note that the latency performance of SQ workflows remains

consistently approximately 3.1ms despite the constrained hardware adopted and

the concurrency with other workflows.
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Figure 36: End-to-end test performance of the TEMPOS platform operated in

two different scenarios: isolated execution of workflows with different QoS (1

BQ and 1 SQ), and concurrent execution of them. Zoom-in on end-to-end latency

results showing single contributions of TEMPOS components (execution time) to

the overall response times

Zooming in on the performance behavior of some single TEMPOS compo-

nents, we can observe (Figure 36) how QoS mechanisms are correctly applied

across all the hops of the technological stack. In fact, we can observe how, in

each trait of the invocation stack, SQ performs almost identically when executed
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in concurrency with other workflows, while BQ workflows degrade their perfor-

mance when competing with other active workflows. Let us finally note that in

Figure 36 the “Best Conc.” MOM-Invk bar is almost the same as the Invok bar

because the time is taken as the difference between the invoker function invoca-

tion instant and the sending message instant from the MOM: given that the invoker

reception is sync-blocking, that message anyway waits in the invoker socket until

the previous invocation is completed.

7.5 Function Chaining performance comparison

This section presents an experimental evaluation, assessing our proposal as-

a-whole while varying the underlying MoM support. In particular, we evaluate and

compare the capabilities of DSMQueue with the other traditional MoMs, identify-

ing possible deployment tradeoffs.

To this end, the three emerging configurations are evaluated under three rep-

resentative workloads: (i) a constant-rate stream of requests, (ii) a stream of in-

coming requests issued at an increasing rate, and (iii) a large batch of requests

submitted to the system in a small amount of time. The first workload aims to

assess the properties of our serverless platform in a steady regime of incoming

requests, whereas the second and the third scenarios reproduce a typical traffic

pattern that arises when a high number of concurrent events need to be processed

in batch (e.g., process all the tweets with a specific hashtag).

For this evaluation, we employ a lightweight, short-lived business logic with

an execution time of about 60 µs. Upon termination, the last function of each

pipeline appends a timestamp to its output, later on, used to compute the different

metrics. Response times are measured as the time-lapse between the moment
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the request is issued and the termination timestamp of that function (end-to-end

latency). We define as throughput the number of satisfied requests per unit of

time. We examine how these metrics, as well as the total execution time, vary

under an increasing composition length. In this assessment, we vary the number

of composable functions from 2 to 5, and each function is packaged as a distinct

container, although embodying the same business logic. Also, the application

graphic is a linear path, hence no branching logic is considered.

Finally, addressing the issue of the cold start phenomena [104], that is mini-

mizing function bootstrap time whose effects are further exacerbated in a compo-

sition setting, the invoker adopts a simple pluggable optimization. In the current

implementation, the provisioned strategy does not reclaim the resources allocated

to the function whenever the request inter-arrival time is lower than the average

function bootstrap and execution time. In the experimental setting, this simple,

yet effective, logic removes any potential bias in the measurements of the differ-

ent system configurations

The experiments are conducted on two identical machines, each equipped

with a 4-core i5-3470 CPU @ 3.20GHz, 10GB RAM, running Ubuntu 20.04. The

two nodes are directly interconnected by a 100Gbps Mellanox ConnectX-6 DX

NIC, which supports both standard Ethernet traffic and RDMA networking. On

each machine, we run a single instance of the function invoker, which has access to

the code of the function to be executed in the experiment. On one of the nodes, we

also run a traffic generator process, which we use as a trigger to simulate different

ingress traffic patterns: the trigger forwards the invocation requests to the invokers

using the MoM.
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We configure Kafka with at least-once semantics to avoid the overhead intro-

duced by transactions in an exactly-once mode, and for the same reason, the num-

ber of partitions in the topic is set equal to the number of nodes with a replication

factor of 1. Redis was deployed as a single instance in one of the two nodes and

set up in order to create a Redis Stream with one single active group, i.e., function

invokers cooperate to consume a different portion of the same stream of messages.

Finally, we configure DSMQueue to replicate the shared-memory queue across a

group of three processes, the trigger, and the two invokers. We configure the un-

derlying Derecho library to enforce strong consistency across the replicas, and to

keep the shared state in volatile memory, with no persistence support.

7.5.1 Constant-rate stream of incoming requests

In this first experiment, we would like to investigate the system behavior

under a steady regime. Hence, the trigger issues a fixed number of requests at a

constant rate of 1.000 requests/second, and the experiment is run by varying the

length of the function composition from 2 to 5.

Figure 37 shows the end-to-end latency of each execution as a function of

the composition length. Note the logarithmic scale in the y-axis, which magnifies

the length of the whiskers for the smaller values. We can observe two important

trends. First, as expected, the latency increases with the composition length. This

increment is generally attributed to the time taken to execute more functions, and

the time spent in the (de)queuing operations. At this request rate, the MoMs can

sustain the traffic with little to no queueing effects, hence the delay contribution is

mainly to be attributed to networking and synchronization of concurrent requests.
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In all configurations, the latency increment is linear, but there are important

differences. For DSMQeueue, the median latency shows a 2x increment when

switching from 2 to 5 functions: much of it is the function execution time, whereas

only 33% is caused by additional middleware operations. This increment is more

evident in Redis, which demonstrates a higher (3x) latency increment between 2

and 5 functions. As the function execution time is constant, the additional latency

time is caused by the middleware operations, which in this case account for 86%

of the total increment. Kafka exhibits similar behavior, but with an even higher

increment factor (4x).
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Figure 37: End-to-end latency at a steady regime.

The second consideration regards the relative performance of the different

middleware solutions. For the simplest case of two functions in the composition,

DSMQueue shows the best median latency (284 µs). While Redis is able to keep

up (2x slower), Kafka demonstrates an order of magnitude higher latency (22x

slower). The amount of these latency gaps increases as the composition length
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increases: for a composition of length 5, Redis is 3.2x worse than DSMQueue

(554 µs), and Kafka is again out of scale (49x higher latency).

In conclusion, DMSQueue outperforms the other alternatives, which rely on

traditional TCP/IP networking and higher-layer constructs to implement advanced

capabilities. Kafka adopts a similar semantic to the other MoMs (see Section 6.8),

yet it shows the worse performance by far, and this is to be attributed to its default

message/topic persistency support. DSMQueue and Redis have a more similar

architecture, but Redis is between two and three times slower in this context.

7.5.2 Incremental rate stream of incoming requests

Herein, we would like to assess system scalability by subjecting the platform

to an increased rate of incoming requests, varying from 1 to 65K requests/sec-

ond. In this scenario, the composition length is kept constant at 3, representing a

common option in real-world scenarios e.g., simple map-reduce operations, etc.

Figure 38 shows the end-to-end throughput and latency (y-axis in log scale) of the

proposal under a varying rate of incoming requests.

Figure 38 shows that the different configurations gracefully scale up the re-

sources to keep up with demand, and throughput increases linearly up to a certain

inflection point before starting to decline. This critical point corresponds to the

maximum input rate that middleware can sustain without queuing any request:

after a threshold, new requests begin to queue up, competing with the existing

invocation requests, using up the available resources. The critical rate is similar

for DSMQueue and Redis, which start to queue requests between 8K and 12K re-

quests/second, whereas this behavior emerges much earlier in Kafka, at about 240

requests/second.
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Figure 38: End-to-end latency and throughput with a varying rate of ingress

traffic..

As one may expect, the competition for resources between incoming and en-

queued requests has a direct effect on latency (Figure 39). Up to the critical input

rate, DMSQueue shows a better end-to-end latency than Redis, averaging about

500 µs versus 1ms. Shortly after the critical rate, DSMQueue shows an increas-

ingly oscillatory effect, whereas, surprisingly, Redis exhibits a decline in latency.

Finally, between 8K (Redis) and 16K (DSMQueue) requests/second, performance

degrades rapidly and reaches a similar regime of much higher latency (tens of ms),

although DSMQueue still demonstrates a much better behavior. Finally, we ob-

serve that Kafka, even in low request regimes, demonstrates an order of magnitude

higher latency than both Redis (10x slower) and DSMQueue (20x slower).

Overall, DSMQueue performs well in terms of latency (2x) and has compa-

rable throughput to Redis. This behavior remains constant up to a critical ingress

rate, as well as for the highest input rates, while the behavior of both systems

becomes unstable during the transition between those two phases. In addition
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Figure 39: End-to-end latency and throughput with a varying rate of ingress

traffic..

to the motivations provided in Sec. 7.5.1, it is noteworthy to point out that the

DSMQueue zero-copy approach fully manifests its benefits as the message size

grows. This leads to extra spare time, not spent on copying data [100].

On the other hand, the poor performance of Kafka is to be attributed to

the MoMs consistency mechanism used to maintain a distributed, structured, and

durable commit log of events: any request - ingress data to functional components

of the chain - must be acknowledged prior to serving successive ones. Considering

the high ingress load and the additional load generated by intermediate results of

function executions, the topics acquire an increasing backlog of requests (events)

subject to the dynamics of the commit log. As a consequence, the invoker enti-

ties tasked with the execution of functions and output serialization to Kafka are

subjected to ever-increasing waiting times, expecting an acknowledgment from

the broker. This in turn results in a lower end-to-end chain throughput with a re-

spective spike in terms of latency. The specific interval where the phenomenon
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manifests itself is tied to the current testbed characteristics (CPU, RAM, etc.): to

mitigate it, one could rely on the topic partitioning feature of Kafka, distributing

the load among cluster nodes according to design-time criteria. It is noteworthy to

point out that in our current setting, Kafka is configured with an “at-least-one” se-

mantic, more optimistic in terms of performance with respect to an “at most-one”

semantic.

7.5.3 Burst of incoming requests

In this experiment, we assess the behavior of the platform when subjected to

a sudden burst of concurrent requests. To this end, our trigger produces a burst

of 10K invocation requests at the highest possible sending rate. This way, we

intentionally exacerbate the queuing effect described in Section 7.5.2: the message

queue will fill up with invocation requests, as the invokers will not be able to

consume them at the same rate. We keep the composition length constant to 3

functions: this further stresses the queue, as per our architecture each pipeline

execution requires the invokers to produce and consume new requests to and from

the queue.

In this setting, we are interested in the total time the system takes to consume

the entire batch of concurrent requests. Figure 40 breaks down the total execu-

tion time by plotting the Cumulative Distribution Function (CDF) of the pipeline

execution time.

In this case, the different behavior of the considered systems depends on the

different waiting times between the execution of two consecutive functions. Such

waiting time is determined by the different communication overhead introduced by

each solution, which directly affects the speed at which they process the backlog
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Figure 40: Response time CDF MoM comparison for a composition of length 3.

of requests. In particular, the trend that we observe is the same as we described

in the previous experiment. The shared memory approach of DSMQueue is the

fastest in processing the request batch (2.25 seconds), Redis takes about twice that

time (4.71 seconds), and Kafka is an order of magnitude slower (86.06 seconds)

as shown in Figure 41.

7.5.4 MoM enabled load balancing

In this last experiment, we investigate how the different properties of the

three MoMs (see Sec. 6.8) impact the distribution of the pipeline workload across

the available nodes. Indeed, one driving motivation for this work is to enable

DIFFUSE to scale across a varying number of hosts and to efficiently use all the

available resources. To effectively measure such efficiency, we are interested in

how the workload is distributed when the available machines are subject to differ-

ent load conditions.
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Figure 41: Response time CDF Kafka performance in isolation for a

composition of length 3

To this end, we run the same experiment discussed in Sec. 7.5.3, but this time

the adopted function is more computationally expensive than the one in the prior

experiments, totaling an average execution time of 60ms. Also, to better high-

light the differences between the MoMs, one of the two available hosts executes

a background application, saturating its computing, memory, and disk resources.

This way, we expect that the same function will take a different execution time de-

pending on the host it is executing on in one case, the function will compete with

the background application to acquire the necessary resources, whereas those will

be immediately available on the other host. We want to understand if and how each

MoM takes the server load condition into account when deciding, transparently to

the user, how to distribute the incoming workload.

Figure 42a shows the results. As expected, the same function on the two hosts

takes a significantly different amount of time to complete: on average, 35ms on

the idle one, and more than twice, about 85ms, on the other. We observe that
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Figure 42: Load balancing behavior of the different MoMs

Redis and DMSQueue execute about 30% of the workload on the saturated server,

leaving almost 70% of it to the idle machine. On the contrary, Kafka assigns the

same number of functions to both hosts. This different behavior is directly linked

to the way each MoM implements the queue abstraction (Sec. 6.8). In DSMQueue

and Redis Stream, the queue is a (logically) single FIFO buffer that processes

compete to access, either when producing or consuming new data. In our setting,

these processes correspond to the two invokers. Since the function execution on

the idle host takes approximately half of the time taken on the saturated one, the

invoker on the idle host ends up consuming more than twice the number of func-

tions than the invoker on the saturated host: an indirect form of load balancing

induced by the load on each node. Kafka, instead, blindly follows a round-robin

scheme, assigning an equal number of functions to each host. While this approach

eliminates the need for coordination among the invokers - which no longer need

to compete to access the queue - it also does not take the actual server load into
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account. As a consequence, many more functions are scheduled on the saturated

host, leaving unused resources on the idle host: this is clearly inefficient, and it

results in a significant increase in the time needed by Kafka to process the function

batch (Figure 42b).

Even though Redis and DSMQueue already provide an implicit form of load

balancing, an explicit mechanism could lead to faster function execution times,

and, as a consequence, to improvements in the overall system throughput. The

development of a new load-balancing mechanism requires the introduction of an

observability layer, providing real-time information on resource usage.

7.6 Experimental assessment summary considerations

In conclusion, this section presented experimental assessments and perfor-

mance evaluations conducted on our APERTO FaaS proposal. The exploitation of

a MOM to interconnect architectural components of APERTO FaaS enabled our

solution to leverage heterogeneous computational resources and integrated seam-

lessly different technologies. Moreover, the asynchronicity in intra-component

communications has facilitated and improved the parallelization of workflow exe-

cutions.

The integration of different methods of function invocation and relative iso-

lation technologies enable APERTO FaaS to exploit the more convenient methods

depending on the needs of the use case and the characteristics of the hosting infras-

tructure. From our experiment emerged a strong tradeoff between the flexibility

of the solution and the startup overhead of the function. The FSPAWN, based on

the classical Linux fork startup procedure, while providing a more flexible execu-

tion environment allowing the creation of functions with arbitrary programming
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languages and leveraging on different isolation technologies such as VM or Linux

container demonstrated the worst performance when compared with the two other

methods. On the opposite, the DLF method showed the best performance in each

scenario of execution with performances in function execution of different orders

of magnitude faster than the other two methods. This performance improvement

can be critical in particular when leveraging on limited computational resources

as enablers to support greater loads (Table 3). In future work, we plan to inda-

gate in more depth the potentiality of DLF methods, possible further performance

improvements, and the porting of this technology to more process isolation tech-

nologies. Finally, the WASMF method, based on the WebAssembly emerging

technology showed good performance while still providing good support to the ex-

ecution of functions programmed in many programming languages and executed

in a promising isolation environment.

In the next few years, we expect a rising number of technologies and im-

provements in existing ones specifically addressing the problem of process startup

while guaranteeing different levels of isolation. Function as a Service in fact has

shifted part of the research attention not only to execution performance and ac-

celeration of programs but even to their performance startup when executed in

different isolation and virtualization environments. Experiments conducted in this

regard aim not only to provide an overall perspective on the performance of the

different methods but aim also to give a first technical reference to address trade-

offs driven by the choice of the different technologies depending on the application

context. The expansion of this technical reference is actually under consideration

in order to provide a more general and exhaustive perspective on methods, tech-

nologies, performance, and consequent tradeoffs over these technologies.
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The Persistence and the Authorization Layers demonstrated the feasibility

of creating a layer addressing cross-cutting concerns and decoupling business

logic with protocols and configurations of single workflows. The creation of FaaS-

specific optimization in these two layers also allows us to demonstrate that integra-

tion at the architectural level following distribution and asynchronicity principles

is to be preferred with respect to the centralized and synchronous one.

In particular, results from the test conducted over the persistence layer show

that the proposal improves end-to-end response latency, leading to better usage of

resources and graceful scaling of resources. Experiments conducted over the Au-

thorization layer demonstrated that the invoker is the most appropriate component

to integrate access control verification in a serverless platform realizing a complete

decentralization of the process. Our evaluations demonstrate, in fact, that the dis-

tributed approach outperforms the centralized one under different load conditions

and with increasingly complex policies, also delivering better performance when

lower computational resources are available.

In future work, we plan to extend the capabilities of SPS and integrate novel

optimizations for further accelerating data operations performance On this front,

we would like to investigate mechanisms for shared connection pooling and dis-

tributed data caching, speeding up the performance of some operators. We also

aim to extend SPS to other invoker model architectures and innovative data mesh-

oriented solutions, expanding the deployment options of our proposal over a con-

tinuum of resources made available by the development of 5G, NVF, and cloud-

edge technologies. Concerning the authorization mechanisms, we plan to extend

our solution to as many heterogeneous scenarios as possible in the cloud-to-thing

continuum, considering different distribution and consistency models such as tan-
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gle [105], and blockchain for managing policies across distinct distributed regions.

Moreover, we also aim at integrating context-aware access control mechanisms in

our authorization architecture.

The queue abstraction introduced by the MOM in APERTO FaaS radically

changed orchestration and coordination by providing an abstraction for end-user

over different prioritization technologies, and a point of indirection and optimiza-

tion for function-to-function communication.

In particular, we proposed TEMPOS a QoS-aware middleware for serverless

platforms which employs and coordinates different QoS mechanisms provided by

individual technologies. Leveraging on virtualized FaaS invocation stack in the

cloud continuum, TEMPOS is capable of properly managing end-to-end QoS in

terms of jitter, latency, and en-queuing time. Therefore, to evaluate the valid-

ity of TEMPOS, we presented a series of real testbeds to extensively assess the

state-of-the-art implementation of a TEMPOS prototype. The latter mainly ex-

ploit Linux real-time scheduling, a novel MOM with differential priorities, and

Time-Sensitive Networking (TSN) protocols as underlying system-level mecha-

nisms to apply TEMPOS QoS-aware abstractions (TEMPOS QoS-aware topics)

for QoS management.

The results show that TEMPOS strongly differentiates workflows based on

the assigned QoS level. Specifically, TEMPOS allows the SQ workflow to main-

tain an end-to-end latency that is 1 millisecond lower than the BQ workflow,

throughout the isolated test. In addition, the SQ flow maintains a stable latency of

3 ms even during concurrent testing, while the BQ averages 600ms under heavier

workloads. QoS awareness is preserved across the entire invocation stack with

the delivery layer able to achieve nearly twice the performance for event deliv-
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ery leveraging SQ workflows compared to BQ workflows, even under concurrent

execution. Finally, the TEMPOS processing slice leverages multiple invocation

methods seamlessly, ensuring that higher priority (SQ) workflows execute twice

as fast as lower priority (BQ) workflows.

As future work, we are planning to integrate TEMPOS with a novel resource

orchestrator for the full cloud continuum chain, e.g., up to 5G micro-datacenters

and traditional geographically distant cloud datacenters, able to fully handle both

network [106] and computing [87] resources. In addition, we aim to introduce

new levels of QoS considering not only latency and jitter differentiation but also

the semantics of delivery and throughput while expanding support to resources not

considered in this work such as storage or hardware accelerators.

To support efficient function composition, we presented DIFFUSE: a DIs-

tributed and decentralized platForm enabling Function composition in Serverless

Environments. The proposal relies on pluggable middleware solutions serving as

conveyors of messages among the platform components. To this aim, different

middleware configurations were presented and assessed under different scenarios,

highlighting their strengths and weaknesses. Results show that networking tech-

niques like RDMA may bring significant performance advantages and enhanced

QoS guarantees. At the same time, systems based on standard networking inter-

faces represent a valid alternative in environments with more conventional settings

or specific constraints on the development, deployment, or scale of the infrastruc-

ture.

DIFFUSE is under active development and in future work, we aim to in-

troduce support for hybrid MoM deployments, exploiting also the in-host shared

memory optimizations, spanning heterogeneous resources on the edge-to-cloud
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continuum. This feature allows for exploiting the most convenient medium for

function-to-function communication, depending on the local environmental char-

acteristics. Moreover, we are working on the introduction of a resource manage-

ment mechanism able to handle the intelligent placement, scaling, replication, and

coordination of platform components and functions. At the core of this capability

is the introduction of an observability layer providing real-time operational data

on resource usage, data locations, etc.
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8 Conclusion and Future Works

Continuous development and introduction of new technologies in connectiv-

ity, devices, and ICT services are opening wider and more interconnected business

value chains. The growth of these new business frontiers is continuously stimu-

lated by an ever-increasing number of partners in willingness to cooperate and

integrate among themselves and with devices, services, and data available over

the internet and in the territory. In many sectors is, in fact, expected an expansion

from the usual confinement of single businesses to more integrated and intercon-

nected ones involving partners and information with valuable potential. Industry

5.0, Smart Cities, and Smart Logistics received a lot of attention in the last years

from industry and research as valuable examples of fields that are demanding more

connected and open integration, but many more are expected to rise in the next fu-

ture.

In particular, the ever-increasing availability of connected devices and the

seeking of customers for more personalized and involving experiences is fastly

evolving also the sector of tourism is taking into great relevance also emerging

aspects of sustainability and inclusivity. Many regions in Europe and in Italy are

currently investing in the progressive digitalization and interconnection of partners

in the tourism value chain.

However, deep fragmentation in services and technologies adopted by dif-

ferent actors in tourism, as well as in other sectors, that characterize also the whole

information provided by customer sensing and IoTs heterogeneity deeply clash

with an effective organization of smarter services.

To support a rapid integration of service and data coming from heteroge-

neous sources we proposed APERTO5.0 a modular solution aiming to address the
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problem of heterogeneity by providing a unifying view in which any item (data,

service, and agents) can become part of an integration mosaic capable of accom-

modating any new possible element.

As a practical solution for service and data integration, blending, and aug-

mentation we proposed APERTO FaaS a FaaS platform specifically developed to

execute on the cloud continuum overcoming its complexities and taking advantage

of its potentiality. In fact, APERTO FaaS MOM-centric architecture promotes

asynchronous and decoupled interactions among architectural components en-

abling it to seamlessly exploit peculiar characteristics of different computational

resources available in the cloud continuum. At the same time, the adoption of

the FaaS model abstracts complexity to customers with a consequently reduced

development effort of new services and integrations.

Through an extensive test bed, we demonstrated that the layered architecture

of APERTO FaaS fosters a separation between business logic and specificities in-

troduced by addressed use cases, such as data formats, technologies, or protocols

adopted. This strong separation of responsibilities joined with the distributed ca-

pacity of the architecture allowed us the integration of performance optimizations

targeting cross-cutting concerns in cloud-oriented systems and more specifically

in FaaS platforms. In particular thanks to the integration of novel mechanisms

for data operation and service authorization APERTO FaaS achieved significant

latency reduction, up to 55% in data operations and 80% in authorization verifica-

tions, leading also to better usage of infrastructural resources. Testing conducted

on these two levels also revealed that the right strategies for decentralization of op-

erations involved in processing user requests can support the system in achieving

better concurrency and parallelization of requests.
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A key feature of APERTO FaaS is the flexibility to exploit and integrate

different resources and devices available in the Cloud Continuum. As part of the

APERTO FaaS proposal, TEMPOS realized this flexibility by integrating hetero-

geneous prioritization technologies and creating in this way an effective mech-

anism for the QoS differentiation of workflows execution. Experimental results

showed that TEMPOS is able to differentiate workflows execution, even in condi-

tions of contentions of computational resources, guaranteeing a lower latency and

jitter for those configured with a higher prioritization.

Asynchronous communication and strong decoupling among architecture com-

ponents enabling APERTO FaaS to exploit the capabilities of different technolo-

gies lead to the proposal of DIFFUSE a framework for function composition. DIF-

FUSE queue abstraction for function-to-function communication and the distri-

bution of composition logic among infrastructural nodes enabled the creation of

optimized workflows composing the execution of multiple functions. DIFFUSE,

also, demonstrated that local optimizations, such as the exploitation of shared

memory technologies, can accelerate complex function workflow execution and

increase overall platform throughput. Those optimizations are offered in a com-

pletely transparent way to the developer which can create distributed workflows

spanning multiple sites.

We believe that the acceleration in the pervasive adoption of ICT technolo-

gies will push different domains to wider and more open cooperation among ac-

tors, enriching value chains and supporting the achievement of shared and com-

munitary objectives such as sustainability, inclusivity, and resiliency. We sustain

that innovation and concepts introduced by APERTO and APERTO FaaS can ef-

fectively be employed to support the integration and interconnection of services
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and data in many of these emerging use cases. Through the cooperation with many

realities, we then plan to research the challenges and benefits of adopting APERTO

proposal in different domains, such as Smart Transportation, Smart Cities, and In-

dustry 5.0.

Considering the contribution of APERTO5.0 to the tourism management

field, owing to the cooperation with realities of the territory we plan a deeper

exploration of the potentiality of a pervasive application of concepts and possibil-

ities opened by APERTO in the many possible tourism facets and in particular in

tourism management deserves better exploration by field experts.

The distribution of services over resources of the Cloud Continuum is ex-

pected to assume ever-increasing importance to cope with the rising demand for

contextualized and ever-updated information coming also from the ever-increasing

number of devices and services connected. In this context, the development and

consolidation of new cloud computing service models abstracting the complex-

ity of distributed and heterogeneous environments is a key factor to open a wider

adoption of these distribution models. In particular, the FaaS service model is

expected to achieve greater importance in the market thanks also to performance

improvements introduced by research opening to the application of this paradigm

to more use case scenarios characterized by constraints such as low-latency or

low power consumption. During our research path, many new challenges emerged

(Section 7.6) in this direction and we plan to extend our APERTO proposal in order

to expand its capabilities and adaptability to address an ever-increasing number of

scenarios.

The study and development of new layers abstracting and optimizing com-

plexities of distributed and heterogeneous environments, while presenting a sim-
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plified view to developers, is a promising research direction. In particular, the ever-

increasing attention to the theme of sustainability of IT infrastructure demands

the creation of orchestration mechanisms able to make developers conscious of

environmental impacts while still abstracting from implementation complexities.

In this direction, we plan to expand APERTO offer by integrating novel low-power

technologies, abstractions, and optimizations to differentiate APERTO services in

terms of performance and power consumption. Experimentation and integration

of novel Cloud Computing models, such as event and service mesh, could further

complete the APERTO offer by enabling and conveniently proposing a more sus-

tainable model suiting customer needs. Finally, we consider an appealing direction

of research the study and creation of novel orchestration mechanisms able to create

new forms of federated and more resilient collaboration among different sparse

resources and partners in the cloud continuum. The creation of federations could

lead to further decentralization of APERTO ecosystem encouraging cooperation

among partners in terms of both resources and services.
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AAA Auditing, Authentication, and Authorization. 51, 54

AC Access Control. 71

APERTO Architecture for Personalization and Elaboration of services and data

to Reshape Tourism Offers 5.0. 2, 3, 47, 50, 55, 164

API Application Programming Interface. 14, 48, 82

AWS Amazon Web Services. 14

BaaS Backend as a Service. 22

CaaS Container as a Service. 69

CC Cloud Continuum. 1, 3, 6, 19

CCCP Cross Cutting Concern Plane. 49–51

CRM Customer Relationship Management. 23

DNS Domain Name System. 23

ERP Enterprise Resource Planning. 23

EU European Union. 41

FaaS Function as a Service. 1, 3–7, 24, 25, 39, 67, 164

GCP Google Cloud Platform. 14
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GDPR General Data Protection Regulation. 17

gRPC Google Remote Procedure Call. 30

HTTP Hypertext Transfer Protocol. 26, 30

IaaS Infrastructure as a Service. 21

ICT Information and Communication Technologies. 4, 8, 16, 44, 78, 161

IoE Internet of Everything. 15

IoT Internet of Things. 1, 15, 79, 161

IT Information Technology. 8, 23

JPA Java Persistence API. 70

JSON JavaScript Object Notation. 30

MaaS Metal as a Service. 20

MOM Message Oriented Middleware. 30, 71, 84, 162

PaaS Platform as a Service. 22, 39, 69

QoS Quality of Service. 3, 4, 6, 78, 79, 85
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