
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

DATA SCIENCE AND COMPUTATION

Ciclo 34

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

LEARNING REPRESENTATIONS FOR GRAPH-STRUCTURED SOCIO-
TECHNICAL SYSTEMS

Presentata da: Simone Piaggesi

Supervisore

Ciro Cattuto

Esame finale anno 2023

Coordinatore Dottorato

Daniele Bonacorsi

Co-supervisore

Andrè Panisson

Abstract

THE recent widespread use of social media platforms and web services has led
to a vast amount of behavioral data that can be used to model socio-technical
systems. A significant part of this data can be represented as graphs or net-

works, which have become the prevalent mathematical framework for studying the
structure and the dynamics of complex interacting systems. However, analyzing and
understanding these data presents new challenges due to their increasing complexity
and diversity. For instance, the characterization of real-world networks includes
the need of accounting for their temporal dimension, together with incorporating
higher-order interactions beyond the traditional pairwise formalism.

The ongoing growth of AI has led to the integration of traditional graph min-
ing techniques with representation learning and low-dimensional embeddings of
networks to address current challenges. These methods capture the underlying sim-
ilarities and geometry of graph-shaped data, generating latent representations that
enable the resolution of various tasks, such as link prediction, node classification,
and graph clustering. As these techniques gain popularity, there is even a growing
concern about their responsible use. In particular, there has been an increased
emphasis on addressing the limitations of interpretability in graph representation
learning.

This thesis contributes to the advancement of knowledge in the field of graph
representation learning and has potential applications in a wide range of complex
systems domains. We initially focus on forecasting problems related to face-to-face
contact networks with time-varying graph embeddings. Then, we study hyperedge
prediction and reconstruction with simplicial complex embeddings. Finally, we
analyze the problem of interpreting latent dimensions in node embeddings for
graphs. The proposed models are extensively evaluated in multiple experimental

I

settings and the results demonstrate their effectiveness and reliability, achieving
state-of-the-art performances and providing valuable insights into the properties of
the learned representations.

II

Acknowledgements

THIS thesis would not have been the same without the many inspiring people
I have met along my Ph.D. journey. I am extremely grateful for the support
and guidance of the many mentors, colleagues, and friends who have been

a part of this long path.
First, my sincere thanks go to my supervisors Prof. Ciro Cattuto and Prof. André

Panisson, for their unwavering help during the development of my Ph.D. work.
Thanks to Ciro, who gave me the rare opportunity to work within the exceptional
research environment at ISI Foundation; and thanks to André, who offered me his
continuous guidance and expert advice throughout this Ph.D. path.

Then, I would like to thank Prof. Avishek Anand for hosting me during the
visiting periods abroad in Hannover and Delft, and for providing me with invaluable
resources and support. I am grateful to all the fantastic people I met during those
months, both inside and outside the research laboratories.

I am also indebted to the many students, junior researchers, and senior scien-
tists who have shared their time and expertise with me during these years. Their
contributions have been instrumental in shaping my research and personal growth.

Finally, I must express my profound gratitude to my family and friends for
providing me with unfailing motivation and encouragement throughout these years.
This accomplishment would not have been possible without them.

And, last but not least, I am deeply indebted to Simona, whose endless support
and love have been a constant source of strength and inspiration.

Thank you.

III

Contents

List of Figures IX

List of Tables X

1 Introduction 1
1.1 Machine Learning on Graph Structures 2
1.2 Research Questions . 3

2 Background Review 5
2.1 Neural Representations from Language Processing 6

2.1.1 WORD2VEC embeddings 6
2.1.2 Skip-gram with negative sampling 8

2.2 Learning Representations on Graphs 9
2.2.1 Encoder-decoder perspective 9
2.2.2 Shallow methods and matrix factorization 10
2.2.3 Graph neural networks and graph autoencoders 11

2.3 Network Reconstruction and Link Prediction 12
2.3.1 Tasks description . 12
2.3.2 Unsupervised setting . 12
2.3.3 Supervised setting . 13

3 Representation Learning on Time-Varying Graphs via Higher-Order Skip-
Gram with Negative Sampling 15
3.1 Preliminaries and Related Work 16

3.1.1 Time-varying graphs and their tensor representations . . . 16

V

Contents

3.1.2 Representation learning on time-varying graphs 18
3.2 Methods Description . 19

3.2.1 Overview of the proposed method 19
3.2.2 SGNS for higher-order data structures 20
3.2.3 Low-dimensional embedding of time-varying graphs . . . 21

3.3 Experiments . 23
3.3.1 Datasets . 23
3.3.2 Parameter settings and baseline methods 24
3.3.3 Downstream tasks . 26

3.4 Results . 27
3.4.1 Task performances and training complexity 27
3.4.2 Embedding space visualization 32

3.5 Summary . 35

4 Representation Learning on Simplicial Complexes for Effective Higher-
Order Link Prediction and Reconstruction 37
4.1 Preliminaries and Related Work 38

4.1.1 Simplicial complexes and their mathematical representations 38
4.1.2 Representation learning on higher-order structures 39
4.1.3 Link prediction and network reconstruction with higher-

order interactions . 40
4.2 Methods and Tasks Description 40

4.2.1 Low-dimensional embedding of simplicial complexes . . . 40
4.2.2 Reconstruction and prediction of higher-order interactions 42

4.3 Experiments . 43
4.3.1 Datasets . 43
4.3.2 Training process and baseline methods 44
4.3.3 Downstream Tasks . 46

4.4 Results . 49
4.4.1 Reconstruction and prediction of triadic interactions . . . 50
4.4.2 Reconstruction and prediction of tetradic interactions . . . 54

4.5 Summary . 56

5 Interpretability of Dimensions in Node Representations for Graphs 57
5.1 Related Work . 59

5.1.1 Interpretability for node embeddings 59
5.1.2 Interpretability for link prediction 59
5.1.3 Interpretability for word embeddings 61

5.2 Methods Description . 61
5.2.1 Importance-based utility of latent dimensions with edge

scoring . 61

VI

Contents

5.2.2 Interpretability metrics for latent dimensions 62
5.2.3 Node embeddings with interpretable dimensions 64

5.3 Experiments . 67
5.3.1 Datasets and baseline methods 67
5.3.2 Evaluation tasks . 69

5.4 Results . 70
5.4.1 Interpretability . 70
5.4.2 Link prediction . 72
5.4.3 Scalability . 74

5.5 Summary . 75

6 Conclusions 77
6.1 Main Contributions . 78
6.2 Future Work . 79

Appendices 83

Bibliography 101

VII

List of Figures

3.1 A time-varying graph H and its corresponding time-respecting
supra-adjacency graph GH. 17

3.2 Representation of SGNS and HOSGNS with embedding matrices
and operations on embedding vectors. 22

3.3 Two-dimensional projections of 128-dim HOSGNS node embed-
dings and time embeddings, trained on LYONSCHOOL. 34

3.4 Two-dimensional projections of 128-dim HOSGNS time-resolved
node embeddings obtained with Hadamard products, trained on
LYONSCHOOL. 34

3.5 Two-dimensional projections of 128-dim time-resolved node em-
beddings trained on LYONSCHOOLwith baseline methods. 35

4.1 Schematic view of SIMPLEX2VEC. 44
4.2 Schematic description of 3-way link classification tasks. 47
4.3 Calibrated AUC-PR scores on 3-way link reconstruction and pre-

diction for SIMPLEX2VEC and k-SIMPLEX2VEC. 49
4.4 Calibrated AUC-PR scores on 4-way link reconstruction and pre-

diction for SIMPLEX2VEC and k-SIMPLEX2VEC. 53

5.1 Saliency plots with per-dimension edge utilities for 8-dim embed-
dings trained on a graph generated via Stochastic Block Model. . . 60

5.2 Interpretation scores compared among RF-DEEPWALK, RF-GAE
and different dense embedding methods trained on synthetic datasets. 71

5.3 Interpretation scores compared among DEEPWALK, SPINE-DEEPWALK

and RF-DEEPWALK methods trained on synthetic datasets 71

IX

List of Figures

5.4 ROC-AUC scores on link prediction for different embedding meth-
ods trained on synthetic datasets. 72

5.5 Normalized execution times for different embedding methods when
trained on multiple datasets. 74

X

List of Tables

3.1 Summary statistics of empirical and synthetic time-varying graph
datasets. 24

3.2 Macro-F1 scores on node classification of epidemic states accord-
ing to different SIR processes over empirical datasets. 28

3.3 Macro-F1 scores on temporal event reconstruction over empirical
datasets. 29

3.4 Macro-F1 scores on missing event prediction over empirical datasets. 30
3.5 Macro-F1 scores on node classification of epidemic states accord-

ing to different SIR processes over synthetic datasets. 31
3.6 Macro-F1 scores on temporal event reconstruction and missing

event prediction over synthetic datasets. 32
3.7 Number of trainable parameters and training time of time-varying

graph representation learning models trained on LYONSCHOOL and
synthetic datasets. 32

3.8 Number of class components for each labeled class in LYONSCHOOL. 33

4.1 Summary statistics of empirical higher-order datasets, referred to
the largest connected component of the projected graph. 43

4.2 Number of unobserved configurations obtained with the sampling
approach in different datasets. 48

4.3 Calibrated AUC-PR scores on 3-way link reconstruction and pre-
diction, with the hardest class of negative configurations. 51

4.4 Calibrated AUC-PR scores on 4-way link reconstruction and pre-
diction, with the hardest class of negative configurations. 55

XI

List of Tables

5.1 Summary statistics of synthetic and empirical graph datasets. . . . 68
5.2 Community-aware scores for evaluating the interpretations of dif-

ferent embedding methods. 73
5.3 Sparsity-aware scores for evaluating the interpretations of different

embedding methods. 73
5.4 ROC-AUC scores for evaluating the link prediction performance

of different embedding methods. 73

XII

CHAPTER1
Introduction

HUMAN interactions play a central role in the functioning of society and
are the driving force behind social connections and relationships. In re-
cent years, the proliferation of online social media and the widespread

use of portable devices has led to an explosion of (meta)data on human interac-
tions at various spatial and temporal scales [Kit14]. These digital traces have
provided researchers with new insights about human behavior in socio-technical
systems [Ves09]. Computational social science [LPA+09] and digital epidemi-
ology [SBB+12] are just a couple of research disciplines that have emerged in
response to the increasing availability of data on human interactions. These fields
seek to understand human behavior and dynamical phenomena that are influenced
by it, such as the spread of diseases, using data-driven approaches.

The ability to access large quantities of relational information has also allowed
researchers to examine various kinds of human interactions in techno-social systems,
such as proximity contacts [CVdBB+10,ISB+11,SKL+10] and digital communica-
tions [LH08, OSH+07, EMS04]. In addition to providing new insights into human
activities, the study of behavioral traces also has practical applications. For exam-
ple, understanding the patterns of human mobility can help policymakers design
more effective interventions to address social inequalities [GTP+20]. Similarly,
studying diffusion patterns through networks of human interactions can inform the

1

Chapter 1. Introduction

development of strategies to control the spread of infectious diseases [PSV02].
Given the significance of interactions in shaping the behavior in techno-social

systems, several important research directions can advance our understanding of
complex systems and inform the design of effective interventions in response to
societal issues. Some potential high-impact problems that could be handled include:

• Effectively predicting the spread of diseases through networks of human
interactions.

• Understanding the evolution of interacting systems over time and predicting
how they may change in the future.

• Identifying key features that play a crucial role in shaping the behavior of the
whole system.

To address these and other pressing research challenges, it is more and more
necessary to understand the emergent complexity in behavioral data being generated
on a continual basis. Specifically, there is a growing need for machine learning
techniques, used in combination with traditional approaches, to discover new
knowledge from the plethora of data generated by the vast number of digital devices
and social media platforms.

1.1 Machine Learning on Graph Structures

Graphs, or networks, are a natural way to represent units connected by pairwise
relationships [New03]. Due to the abundance of real-world systems that can be
easily described as networks, graph theory [W+01] has been used as the ma-
jor paradigm to understand organizational principles in complex interacting sys-
tems [BGL16, GN02], and contagion phenomena such as epidemics and opinion
spreading [PSCVMV15, BBV08]. In recent years, areas of particular interest have
been the study of temporal networks [HS12] and higher-order graphs [BCI+20].
Temporal networks capture the changing nature of interactions over time, and
higher-order graphs take into account the fact that interactions often take place
in groups of individuals. The use of these advanced network representations has
allowed researchers to more accurately model the complexity of real-world sys-
tems [LRS19].

Besides traditional graph analytics approaches, there has been increasing focus
on the use of machine learning methods for uncovering the underlying structure
of interactions in complex systems. Representation learning algorithms [Ham20]
aim to extract compact representations of graph-shaped data, usually called vector
embeddings, which can be used for solving learning tasks such as classification or
clustering over networks [XSY+21]. One key advantage of using such embedding

2

1.2. Research Questions

methods is that they are able to encode in a feature space latent relationships
between graph units [Xu21]. This is particularly useful for tasks such as node
classification and link prediction [LZ11], where the connections between nodes can
provide important contextual information in addition to engineered node features
[ASK+21]. While most methods have been developed for standard graphs, in the
last years we experienced several advancements for representation learning on
time-varying [BMVZ21] and higher-order graphs [PSHM23], two central topics of
this dissertation.

The use of graph representation learning techniques can greatly enhance our
understanding of relationships and interactions within complex systems. However,
like the prevalence of machine learning models, there are potential issues that need
to be addressed for using these approaches in a responsible manner [HGC20]. In
particular, besides important aspects such as unfairness and bias [MMS+21], the key
concerns examined in this thesis are the interpretability and explainability of graph
representations [SM19,DVK17]. In many cases, models’ internal functioning is not
transparent and the provided output is not human-understandable [GMR+18]. For
instance, low-dimensional embeddings learned by these techniques may be difficult
for humans to interpret, making it hard to explain the results or draw meaningful
conclusions from the data. This could have serious consequences, particularly when
the models are used to make decisions that have real-world impact [WY21].

1.2 Research Questions

In this thesis, Learning Representations for Graph-Structured Socio-Technical
Systems, we focus on research challenges associated with developing prediction
models for complex systems. We will study representation learning algorithms
with a focus on their effectiveness, meaning that they can reach state-of-the-art
prediction performances, and their reliability, meaning that their output can be easily
understood. To achieve these goals, we will examine specific problems related
to learning embedding representations for graph-structured data. Ultimately, our
purpose is to make a meaningful contribution to the field and to create tools that
can be used to tackle real-world problems related to complex systems. Specifically,
the contributions of this dissertation are guided by the following research questions:

Research Question 1. Are representation learning techniques for time-resolved
proximity networks effective in predicting the occurrence of contact events and
estimating the outcomes of spreading processes?
Contributions to address this question are described in Chapter 3 and in [PP22].
We designed a feature learning algorithm trained with negative sampling and
based on a higher-order generalization of the skip-gram approach [MSC+13],
which captures both topological and dynamical properties of time-resolved contact

3

Chapter 1. Introduction

networks [ZSBB11]. We show that the proposed time-varying graph representations
are effective in performing prediction of temporal links in the form of classification
tasks, and even that they can be useful to recover crucial information about the
outcome of SIR spreading processes [KR08].

Research Question 2. Are representation learning methods applied to higher-
order relational data effective in predicting the occurrence of group-wise interac-
tions?
Contributions to address this question are described in Chapter 4 and in [PPP22].
There we show a representation learning framework to perform the reconstruction
and prediction of group-wise links in the form of classification tasks, for triadic and
tetradic interactions. We carefully formalize network reconstruction [CMS21] and
link prediction [KSSB20] for polyadic graph structures, and we show that neural
representations obtained from simplicial complexes [SCL18] are able to outperform
traditional approaches, even when training data is composed only of lower-order
interactions.

Research Question 3. How can we comprehend the latent embedded features,
especially in combination with model predictions, extracted by graph representation
learning approaches?
Contributions to address this question are described in Chapter 5, where we propose
novel metrics to measure the interpretability [DG18] of node embeddings based
on marginal contributions of dimensions to edge prediction. We say an embedding
dimension is more interpretable if it can faithfully map to an understandable sub-
structure in the input graph - like community structure [GN02]. We also introduce
a novel approach that can retrofit existing node embeddings by making them more
interpretable without sacrificing their downstream task performance.

In addition to the main contributions of this thesis, we include a prelude to several
background topics in Chapter 2, which are introductory elements to the material
presented in the rest of this dissertation. After presenting the core of the work, we
will summarize the obtained results and illustrate open directions for future research
in Chapter 6.

4

CHAPTER2
Background Review

THIS thesis is centered on the idea of graph representation learning. Graphs
[New03] are ubiquitous data structures, extensively used in a wide range of
fields, including physics, computer science, biology and sociology [Bar12].

Many natural, technological and social systems can be modeled as graphs, which
capture interactions between individual units. Due to their versatility and usefulness,
graphs form the foundation to describe many complex systems [Ves12], and provide
convenient means for storing and retrieving relational knowledge about interacting
entities [JPC+21].

Representation learning [BCV13] is a key aspect for modern machine learning
applications in natural language processing [MSC+13, VSP+17], image recogni-
tion [DGE15, MM20], graph mining [GL16, VCC+18] and many others [ZYHD20,
MLB+22]. Representation learning is the process of extracting features, typically
lower-dimensional and more compact than the raw input, that describe the under-
lying characteristics of data. These features can be used to facilitate the analysis
of data, as well as to build classifiers or other predictors. Traditional methods
for obtaining these representations involve manual feature engineering, which is
often a time-consuming and expensive procedure. Furthermore, hand-engineered
features may not be flexible enough to adapt to different learning tasks. Conversely,
representation learning utilizes data-driven approaches to discover representations

5

Chapter 2. Background Review

that encode hidden patterns and similarities within the data.
Graph representation learning [Ham20] is a collection of techniques that are

utilized to incorporate the structural information of a graph into a machine learning
model. The aim is to learn a mapping function that projects nodes or (sub)graphs as
points of a latent vector space [HYL17b]. The embedding map is usually optimized
in an unsupervised manner, so that geometric relationships in the embedding space
reflect the structure of the original graph, or directly learned on a target supervised
task. The learned representations can be applied to a variety of graph-based learning
tasks [XSY+21], such as link prediction, node classification and graph clustering.

In this chapter, we provide necessary background notions and topics that will
be extensively used in this thesis.

2.1 Neural Representations from Language Processing

2.1.1 WORD2VEC embeddings

WORD2VEC is one of the most famous representation learning methods and it
was designed to compute word embeddings from a textual corpus [MCCD13]. It
provided the inspiration for developing the first techniques to learn node embeddings
in networks [PARS14, TQW+15, GL16], relying on the parallelism between textual
sentences and random walks on a graph. Here we review WORD2VEC’s functioning
as a paradigmatic example of unsupervised representation learning for relational
data.

Given a text corpus W = {w1, w2, . . . }, where every word wt ∈ V belongs to
a given vocabulary V , word embeddings are the results of an encoding function
enc : V → RD (usually D << |V|) that incorporates syntactic and semantic
properties of the training corpus into geometric relationships among word vectors
[LG14a]. In particular, WORD2VEC exploits the distributional hypothesis [Har54]
and computes embeddings for words according to the linguistic context in which
they are placed. Essentially, a linguistic context describes the ways in which words
relate to other words, according to their relative positions in language, defining a
proper relational structure that can be encoded in a latent vector space.

Formally, in WORD2VEC every word token wt is paired with a contextual window
corresponding to the multi-set CT (wt) = {wt−T , . . . , wt−1, wt+1, . . . , wt+T } of
surrounding words, where the hyperparameter T is the maximum number of steps
needed to reach any context word. The objective is to minimize the log-probability
loss:

min
θ

−
∑

wt∈W
ℓ
(
wt, CT (wt); θ

)
(2.1)

where each term ℓ(wt, CT (wt); θ) generally refers to the log-likelihood of observing
a target word wt along with its contextual words CT (wt).

6

2.1. Neural Representations from Language Processing

WORD2VEC architecture is a 2-layer dense neural network and model parameters
θ refer to two weight matrices V,C ∈ R|V|×D involved in the neural optimization
(input_layer-hidden_layer and hidden_layer-output_layer transformations). Rows
of the weight matrices {vi}i∈V and {ci}i∈V are identifiable as word vectors, respec-
tively called word embeddings and context embeddings. Thus, the model actually
learns two encodings, namely encV and encC, but usually only the first one is taken
into account for downstream tasks [NMCC16] and for this reason we will use the
term enc referring to encV. It is even possible to apply weight tying [PMH18] to
share word and context parameters in the same embedding matrix. Depending on
the parametrization of the log-likelihood with respect to embedding parameters,
we have two variations of the optimization task known as Skip-Gram (SG) and
Continuous-Bag-Of-Words (CBOW).

Skip-Gram model

In the Skip-Gram model, given any input word i, it is optimized the conditional
log-probability of predicting the surrounding context words:

ℓ(i, CT (i); θ) ≡ log Pr[CT (i) | i ; θ] = log
∏

j∈CT (i)

Pr[j | i ; θ] (2.2)

where the multi-word conditional likelihood is factorized because of the indepen-
dence assumption in observing any neighborhood word from the input word i.
The conditional log-probability of a single word-context pair is modeled as a soft-
max function parametrized by the inner product of input-word and context-word
embeddings:

Pr[j | i ; θ] = exp (vi · cj)∑
u∈V exp (vi · cu)

(2.3)

Finally, the log-likelihood takes the form:

ℓ(i, CT (i); θ) =
∑

j∈CT (i)

[
vi · cj − log

∑
u∈V

exp
(
vi · cu

)]
(2.4)

Continuous-Bag-Of-Words model

In the CBOW model, given all the input surrounding neighbors CT (i) of word i,
it is optimized the log-probability of observing the central word given the whole
context words:

ℓ(i, CT (i); θ) ≡ log Pr[i | CT (i) ; θ] (2.5)

With the assumption of disregarding the textual ordering of contexts, the conditional
log-probability is modeled as a softmax function parametrized by the sum of inner

7

Chapter 2. Background Review

products between input-word and context-word embeddings:

Pr[i | CT (i) ; θ] =
exp

(∑
j∈CT (i) vj · ci

)
∑

u∈V exp
(∑

j∈CT (i) vj · cu
) (2.6)

Finally, the log-likelihood takes the form:

ℓ(i, CT (i); θ) =
∑

j∈CT (i)

vj · ci − log
∑
u∈V

exp
(∑
j∈CT (i)

vj · cu
)

(2.7)

2.1.2 Skip-gram with negative sampling

When dealing with large vocabularies, a common drawback in CBOW and SG
approaches is the expensive computation of the per-word partition function deriving
from the softmax:

Z
(sg)
i (θ) =

∑
u∈V

exp
(
vi · cu

)
, Z

(cbow)
i (θ) =

∑
u∈V

exp
(∑
j∈CT (i)

vj · cu
)

(2.8)

One solution to alleviate this issue consists in using the Negative Sampling technique
[MSC+13], a form of Noise Contrastive Estimation (NCE) [MK13] where the
problem of fitting the conditional probability is reduced to a binary classification,
discriminating between samples from the data distribution and samples from a
known noise distribution.

In the next lines, we describe in detail the Skip-Gram with Negative Sampling
(SGNS) approach. We firstly denote as D the multi-set collecting co-occurrences
(i, j) between any word i in the text corpus with neighboring words j ∈ CT (i). Also,
we denote as #(i, j) the number of times (i, j) appears in D. Similarly we use
#i =

∑
j #(i, j) and #j =

∑
i#(i, j) as the number of times each word occurs

in D, with relative frequencies PD(i, j) =
#(i,j)
|D| , PD(i) =

#i
|D| and PD(j) =

#j
|D| .

For any word i and its context words CT (i), the optimization task consists in
minimizing the binary cross-entropy loss:

bce(i, CT (i); θ) = −
∑

j∈CT (i)

[
log σ(vi · cj) + κ · E

jn∼Pα
N
[log σ(−vi · cjn)]

]
(2.9)

where each word-context pair (i, j) encountered in the text is classified against
a number κ of negative pairs (i, jn) randomly sampled. The sigmoid (σ(x) =
(1+e−x)−1) of the inner product of embedding vectors parametrizes the probability
of the positive class Pr[(i, j) ∈ D | vi, cj] = σ(vi · cj), and negative sampling
is done according to the noise distribution Pα

N (j) = (#j)α∑
u(#u)α . In the original

8

2.2. Learning Representations on Graphs

work [MSC+13], it is observed that setting α = 3
4 produces superior performance

in semantic evaluation experiments, but it has not been proved to have the same
effects with graph learning tasks. For this reason, we consider the simpler case
α = 1 which generates negative contexts sampled with the empirical unigram
distribution PN (j) = PD(j).

The loss over the entire corpus
∑

i∈W bce
(
i, CT (i); θ

)
gives the SGNS objec-

tive function and, following results from Levy and Golberg [LG14b], can be written
as:

L(sgns) = −
|V|∑
i=1

|V|∑
j=1

[
PD(i, j) log σ(vi ·cj)+κ PN (i, j) log σ(−vi ·cj)

]
(2.10)

where PN (i, j) = PD(i) ·PD(j) is the probability of (i, j) under assumption of sta-
tistical independence. Levy and Goldberg [LG14b] established the relation between
Skip-Gram trained with negative sampling and traditional matrix decomposition
methods [KB09], showing the equivalence of SGNS and low-rank matrix factoriza-
tion. When D is sufficiently high, optimal SGNS embedding matrices satisfy these
relations:

(VCT)ij ≈ log

(
PD(i, j)

κ PN (i, j)

)
= PMI(i, j)− log(κ) ≡ SPMIκ(i, j) (2.11)

which tell us that SGNS optimization is equivalent to a rank-D matrix decom-
position of the word-context pointwise mutual information (PMI) matrix [CH90]
shifted by a constant, i.e. the number of negative samples. This equivalence
was later retrieved from diverse assumptions [YDZ+20, ABH19, MG17, ALL+16],
and exploited to compute closed form expressions approximated in different node
embedding models [QDM+18].

2.2 Learning Representations on Graphs

2.2.1 Encoder-decoder perspective

Given an undirected graph G = (V, E) with adjacency matrix A such that entries
Aij = ω(i, j) are the edge weights, node embeddings are the output of an encoder
function:

enc : v ∈ V 7→ v ∈ RD (2.12)

which maps nodes into geometric points of the D−dimensional vector space RD

(usually D << |V|). As in word embeddings, node representations can be collected
into the entries of the embedding matrix V ∈ R|V|×D, that is learned with a
reconstruction objective. The encoder enc is jointly optimized with a decoder

9

Chapter 2. Background Review

function dec : RD × RD → R to predict pair-wise node proximities simG(i, j)
from node embeddings returned by the encoder:∑

(i,j)∈V×V

ℓ
(
dec
(
vi,vj

)
, simG(i, j)

)
(2.13)

Many embedding methods fit this encoder-decoder framework: factorization-based
methods like NETMF [QDM+18], HOPE [OCP+16], GRAREP [CLX15]; walk-
based like DEEPWALK [PARS14], NODE2VEC [GL16], WALKLETS [PKCS17]; and
even deep neural methods like GRAPHSAGE [HYL17a] and GAE [TW16], where
the encoder function is given by a graph neural network [SGT+08].

2.2.2 Shallow methods and matrix factorization

A well-known family of approaches is called shallow embedding [ZYZZ18] because
the encoder function is simply an embedding lookup that selects the corresponding
row of the embedding matrix based on the node ID. Despite the apparent hetero-
geneity of these algorithms, the majority of them can be unified from the perspective
of matrix factorization [QDM+18]. In particular, the methods can be described as
factorizing a certain node-to-node proximity matrix: explicit decomposition with
SVD-like techniques [OCP+16, CLX15], or implicit decomposition by optimizing
a proxy task [PARS14, GL16]. Here we mainly describe the second approach,
showing the connection with the first one.

DEEPWALK [PARS14] and NODE2VEC [GL16] consist in sampling random
walks from the graph and processing node sequences as textual sentences. The Skip-
Gram model is used to obtain node embeddings from co-occurrences in random
walk realizations, where the empirical objective1 is derived from Equation (2.9):

−
∑

(i,j)∈D

[
log σ(vi · vj) + κ · E

jn∼PN
[log σ(−vi · vjn)]

]
(2.14)

where D contains training node pairs (i, j) generated from walks co-occurrences.
The DEEPWALK approach employs first-order random walks with transition proba-
bilities proportional to edge weights, whereas NODE2VEC adopts tunable second-
order transitions to interpolate between breadth-first search and depth-first search.
Although the original implementation of DEEPWALK uses hierarchical softmax to
compute embeddings, we will refer to the SGNS formulation given by [QDM+18].

Since SGNS can be interpreted as a low-rank factorization of the word-context
PMI matrix [LG14b], the closed form of the PMI matrix implicitly decomposed
in DEEPWALK and NODE2VEC can be derived [QDM+18]. Given the 1-step ran-
dom walk matrix P = D−1A, whose entries collect the transition probabilities

1Here we suppose to learn a unique set of representations {vi}i∈V , but even separated representa-
tions {vi, ci}i∈V can be computed.

10

2.2. Learning Representations on Graphs

P (i → j) ∝ ω(i, j), in DEEPWALK the expected PMI for a node-context pair (i, j)
occurring in a T -sized window is:

PMIDW(i, j) = log

(
PD(i, j)

PN (i, j)

)
= log

 1
2T

∑T
r=1

[
di

vol(G) (P
r)ij +

dj

vol(G) (P
r)ji

]
di

vol(G) ·
dj

vol(G)

(2.15)

where D = diag(d1, . . . , d|V|), di =
∑

j∈V Aij is the node degree, and vol(G) =∑
(i,j)∈E Aij .

2.2.3 Graph neural networks and graph autoencoders

A second family of methods consists in learning a parametrized encoder function
that returns node embeddings, instead of directly optimizing embedding vectors
for each node. Since graphs are complex structures analogous to irregular grids,
the class of models called Graph Neural Networks (GNNs) [WPC+20] have been
proposed as a generalization of convolutional operations for the graph domain.

GNNs work with neural message passing, in which embedding features are
exchanged between nodes and updated using customized operations across multiple
neural network layers. During each iteration at layer l, the hidden embedding
x
(l)
i of node i ∈ V is combined with the ”message“ vector obtained aggregating

node embeddings from the neighborhood Γi. These operations can be expressed as
follows:

x
(l+1)
i = UPD(l)

(
x
(l)
i ,msg

(l)
Γi

)
(2.16)

msg
(l)
Γi

= AGG(l)
(
{x(l)

j : j ∈ Γi}
)

(2.17)

The initial embedding xi = x
(0)
i may encode input node attributes2. Instead, we

define the final layer output as the node embedding vi = x
(L)
i after L message

passing layers.
Despite GNNs can be also trained for node-level and graph-level classification

tasks, here we are more interested in considering edge-level pairwise objectives like
Equation (2.13) because their optimization is an unsupervised task that does not
require the availability of ground-truth labels. For instance, Graph Autoencoders
(GAE) [TW16] are unsupervised architectures that utilize a Graph Convolutional
Network (GCN) [WK17] to encode the graph structure with the following aggrega-
tion rule:

x
(l+1)
i = η

(
W(l) ·

∑
j∈Γi∪{i}

x
(l)
j√
didj

)
(2.18)

2Attribute features are sometimes unavailable or difficult to be collected. In absence of such
features, shallow node embeddings or even one-hot encodings can be used as input.

11

Chapter 2. Background Review

where η is a nonlinearity like sigmoid or ReLU. GAE trains the embeddings with a
pair-wise edges reconstruction loss:

ℓ(i, j) = − log σ(x
(L)
i · x(L)

j)− κ · E
jn∼PN

[log σ(−x
(L)
i · x(L)

jn
)]

Another GNN model -GRAPHSAGE [HYL17a]- optimizes node embeddings
with a random walk-based objective3, using structural updates defined by:

x
(l+1)
i = η

(
W(l) ·

[
x
(l)
i ,

1

di

∑
j∈Γi

MLP(x
(l)
j)
])

(2.19)

where [∗, ∗] is the concatenation function and MLP is a multilayer dense neural
network.

2.3 Network Reconstruction and Link Prediction

2.3.1 Tasks description

Network reconstruction [GSP09] and link prediction [KSSB20] are common tasks
performed over graphs and nowadays are often formulated as classification problems
to evaluate the quality of node embeddings. Network reconstruction [CMST21,
CMST20] relates to the capability of recovering the training graph structure from
latent embeddings. Given a graph G, by reconstruction we mean the task of
classifying whether a pair of nodes (i, j) is an edge of G, i.e. (i, j) ∈ E , or not.

Link prediction [ZYR21, CLX19] refers to the generalization capability in iden-
tifying out-of-sample edges, i.e. the task of correctly determining the set E∗ of links
that have not been observed but are likely to occur. Given any non-edge pair (i, j) ∈
UE coming from the set of unobserved links UE = {(i, j) ∈ V × V : (i, j) /∈ E},
the prediction task is to classify which candidate pairs will connect in the future, and
so (i, j) ∈ E∗, versus those that will remain unconnected, and so (i, j) ∈ UE \ E∗.

2.3.2 Unsupervised setting

In the next paragraphs we summarize different approaches that are part of the
unsupervised setting, so called because they do not require to learn additional
parameters in order to perform edge classification. Formally, the unsupervised edge
classification setting [Sha20] on the input graph G is composed by: candidate sets
for edges and non-edges (E(+) and E(−)); a similarity function s : E(+)∪E(−) → R
that assign high scores to candidate edges E(+) and low scores to candidate non-
edges E(−). From this perspective, in network reconstruction we have E(+) = E
and E(−) = UE , while for link prediction E(+) = E∗ and E(−) = UE \ E∗.

3Notice that when the window size of co-occurrences is set T = 1, the random walk loss is
equivalent to the edge reconstruction loss.

12

2.3. Network Reconstruction and Link Prediction

Traditional methods are based on similarity heuristics, used to rank pairs of
nodes (candidate links), and can be obtained from indices calculated with local or
global graph information. These methods, in principle, assign likelihood scores in
such a way that presumably occurring connections get higher scores than improbable
ones. Given their ability to maintain both local and global characteristics of graphs,
node embeddings can be utilized as well to compute likelihood measures.

Local indices These similarity metrics are computed considering first-order and
second-order neighbors of a node, and are based on different heuristics. To
mention a few: Common Neighbors (CN(i, j) = |Γi ∩ Γj |) increases the like-
lihood of a connection if the candidate nodes have a substantial neighborhoods
overlap [New01]; Adamic-Adar Index (AA(i, j) =

∑
k∈Γi∩Γj

1
log |Γk|) promotes

a connection if common neighbors have a low degree [AA03]; and Preferen-
tial Attachment (PA(i, j) = |Γi| · |Γj |) assigns high similarity to larger degree
nodes [BJN+02].

Global indices These similarity indices are computed using paths statistics from
the whole graph: for instance, Shortest-Path Index (SP (i, j) = 1

d(i,j)) and Katz

Index (Katzβ(i, j) =
∑∞

l=1 β
l|Al|ij , 0 < β < 1) summarize the intuition that

highly reachable pair of nodes are likely to form an edge [Kat53]. Since global
indices generally outperform local ones, but require higher time for being computed,
quasi-local indices like Local Paths (LP (i, j) = A2 + βA3, 0 < β < 1) have
been proposed as a trade-off between accuracy and complexity [LJZ09].

Latent feature similarity indices Matrix factorization methods and node em-
beddings capture structural patterns into low-rank latent representations, allowing
their use as topological predictors. Computation of edge likelihoods is possible
using pairwise distance scores [RZHW22] like the inner product vi · vj (the higher
the better) and generalized vector distances ||vi − vj ||p (the lower the better) like
Manhattan and Euclidean distances.

2.3.3 Supervised setting

Here we summarize the supervised setting for edge classification, so called because
an additional classifier is trained on positive and negative example edges. Formally,
the supervised edge classification setting [Sha20] on the input graph G is performed
by train-test splits over the candidate pair sets E(+) and E(−) of the unsupervised
setting, and it involves the following elements: training examples for edges and non-
edges (E(+)

tr and E(−)
tr); test edges and non-edges (E(+)

ts and E(−)
ts); a parametrized

score function s : (E(+)
tr ∪ E(+)

ts)∪ (E(−)
tr ∪ E(−)

ts) → R that is trained to assign high

13

Chapter 2. Background Review

scores to training edges E(+)
tr and low scores to training unconnected pairs E(−)

tr .
Classifier parameters θ are the solution to the optimization problem:

max
θ

Pr[s(e; θ) > s(ē; θ) | e ∈ E(+)
tr , ē ∈ E(−)

tr] (2.20)

For train-test splits we refer to ρ and γ as the fractions of training examples
randomly sampled respectively from the candidate edges and non-edges. For
instance, in network reconstruction we have |E(+)

tr | = ρ|E|, |E(−)
tr | = γ|UE | and

E(+)
ts = E \ E(+)

tr , E(−)
ts = UE \ E(−)

tr . Instead for link predicition |E(+)
tr | = ρ|E∗|,

|E(−)
tr | = γ|UE \ E∗| and E(+)

ts = E∗ \ E(+)
tr , E(−)

ts = (UE \ E∗) \ E(−)
tr .

Hand-crafted feature construction Feature extraction is a crucial point in su-
pervised edge prediction learning. Generally, similarity indices and other node-
based or edge-based topological features can be manually extracted and used to
construct hand-engineered edge vectors. For handling domain-specific problems,
non-topological features and other attributes could be utilized as well.

Node-level feature aggregation Low-dimensional node embeddings express
latent topological features that can be used instead of hand-crafted ones. Arbitrary
aggregation of pairwise node embeddings can be implemented to obtain link-
level representations, used as input to a machine learning classifier. For example,
in [GL16] different binary aggregation functions are used to provide the input to the
classifier: average vi+vj

2 , Hadamard product vi ∗ vj , absolute difference |vi − vj |,
and squared difference |vi − vj |2.

14

CHAPTER3
Representation Learning on Time-Varying

Graphs via Higher-Order Skip-Gram with
Negative Sampling

A great variety of natural and artificial systems can be represented as net-
works of elementary structural entities coupled by relations between them.
The abstraction of such systems as networks helps us understand, predict

and optimize their behaviour [New03, AB02]. In this sense, node and graph embed-
dings have been established as standard feature representations in many learning
tasks [CZC18, GF18]. Node embedding methods map nodes into low-dimensional
vectors that can be used to solve downstream tasks such as edge prediction, network
reconstruction, and node classification.

Node embeddings have successfully achieved low-dimensional encoding of
static network structures, but many real-world graphs are inherently dynamic [HS12,
CFQS12]. Time-resolved networks also support important dynamical processes,
such as epidemic or rumor spreading, cascading failures, consensus formation,
etc. [BBV08]. Time-resolved node embeddings have been shown to yield improved
performance for predicting the outcome of dynamical processes over networks, such
as information diffusion and disease spreading [SOBC21], providing an estimation

15

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

of infection and contagion risk when used with contact tracing data.
Learning meaningful representations of time-resolved proximity networks can

be of extreme importance when facing events such as epidemic outbreaks [KBL+20,
GSQ+21]. The manual and automatic collection of time-resolved proximity graphs
for contact tracing purposes presents an opportunity for quick identification of
possible infection clusters and infection chains. Even before the COVID-19 pan-
demic, the use of wearable proximity sensors for collecting time-resolved proximity
networks has been largely discussed in the literature and many approaches have
been used to describe patterns of activity and community structure, and to study
spreading patterns of infectious diseases [SPW+15, GPC14, GVF+15].

In this chapter and in [PP22] we propose a representation learning model that
performs implicit tensor factorization on different higher-order representations of
time-varying graphs. The main contributions are as follows:

• Given that the skip-gram embedding approach implicitly performs a factor-
ization of the shifted Pointwise Mutual Information matrix (PMI) [LG14b],
we generalize it to perform implicit factorization of a shifted PMI tensor.
We then define the steps to achieve this factorization using Higher-Order
Skip-Gram with Negative Sampling (HOSGNS) optimization.

• We show how to apply 3rd-order and 4th-order SGNS on different higher-
order representations of time-varying graphs.

• We show that time-varying graph representations learned via HOSGNS out-
perform state-of-the-art methods when used to solve downstream tasks, even
using a fraction of the number of embedding parameters.

We report the results of learning embeddings on empirical time-resolved face-
to-face proximity data and using such representations as predictors for solving
three different tasks: predicting the outcomes of a SIR spreading process over the
time-varying graph, network reconstruction, and link prediction. We compare these
results with state-of-the-art methods for time-varying graph representation learning.

3.1 Preliminaries and Related Work

3.1.1 Time-varying graphs and their tensor representations

Time-varying graphs [HS12, CFQS12] are defined as triples H = (V, ET , T) , i.e.
collections of events (i, j, k) ∈ ET , representing undirected pairwise relations
among nodes at discrete times (i, j ∈ V , k ∈ T). H can be seen as a temporal
sequence of static graphs {G(k)}k∈T , each of those with adjacency matrix A(k)

such that A(k)
ij = ω(i, j, k) ∈ R is the weight of the event (i, j, k) ∈ E . We

can concatenate the list of time-stamped snapshots [A(1), . . . ,A(|T |)] to obtain a

16

3.1. Preliminaries and Related Work

(a) time-varying graph

k

t0 t1 t2

i j

(b) supra-adjacency graph

i

k

j

t0 t1 t2

self-coupling cross-coupling

Figure 3.1: A time-varying graph H with three intervals (a) and its corresponding
time-respecting supra-adjacency graph GH (b).

single 3rd-order tensor Astat(H) ∈ R|V|×|V|×|T |, which characterizes the evolu-
tion of the graph over time. This representation has been used to discover latent
community structures of temporal graphs [GPC14] and to perform temporal link
prediction [DKA11].

Indeed, beyond the above stacked graph representation, more exhaustive repre-
sentations are possible. In particular, the multi-layer approach [DDSRC+13] allows
to map the topology of a time-varying graph H into a static network GH = (VH, EH)
(the supra-adjacency graph) such that vertices in VH ≡ V × T correspond to tem-
poral copies i(k) ≡ (i, k) of original nodes i ∈ V , and edges in EH represent
causal connections (i(k), j(l)) among them. This mapping is analogous to the
time-unfolded representation, which has been exploited in several works to study
time-respecting paths and causal patterns in temporal networks [PSG+13]. Since
every link can be arranged in a quadruple (i, j, k, l), the connectivity structure is
associated with a 4th-order tensor Adyn(H) ∈ R|V|×|V|×|T |×|T | that is equivalent,
up to an opportune reshaping, to the adjacency matrix A(GH) ∈ R|V||T |×|V||T |

of GH. Multi-layer representations for time-varying networks have been used to
study time-dependent centrality measures [TPM19] and properties of spreading
processes [VFPC15].

In this chapter we consider a particular multi-layer representation [SOBC21]
defined by two rules:

1. For each event (i, j, t0), if i is also active at time t1 > t0 and in no other
time-stamp between the two, we add a cross-coupling edge between supra-
adjacency nodes j(t0) and i(t1). In addition, if the next interaction of j with
other nodes happens at t2 > t0, we add an edge between i(t0) and j(t2). The
weights of such edges are set to ω(i, j, t0).

2. For every case as described above, we also add self-coupling edges (i(t0), i(t1))
and (j(t0), j(t2)), with weights set to 1.

17

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Thus, the supra-adjacency graph has vertex set V(T) = {(i, t) ∈ V×T : ∃ (i, j, t) ∈
ET } consisting only in “active” node-time pairs, i.e. nodes with non-null interac-
tions during time-steps. Figure 3.1 shows the differences between a time-varying
graph and its time-unfolded supra-adjacency representation, according to the for-
mulation described above.

3.1.2 Representation learning on time-varying graphs

Given a time-varying graph H = (V, ET , T), we define as temporal network em-
bedding the encoding function:

f : (v, t) ∈ V × T 7→ v(t) ∈ RD (3.1)

which project time-stamped nodes into a latent low-rank vector space that incorpo-
rates structural and temporal properties of the original evolving graph [KGJ+20,
BMVZ21].

Many existing methods learn node representations from sequences of static
snapshots through incremental updates in a streaming scenario: deep autoen-
coders [GKHL17], SVD [ZCP+18], skip-gram [DWS+18, PLY+20] and random
walk sampling [BKPB19, MKA18, YCA+18]. Another class of models learns
dynamic node representations by recurrent/attention mechanisms [GCC20,LZP+18,
SWG+20, XRK+20] or by imposing temporal stability among adjacent time in-
tervals [ZYR+18, ZGY+16]. Moreover, [KZL19] presented an embedding frame-
work for user-item temporal interactions, and [MUH+21] suggested a tensor-
based convolutional architecture for dynamic graphs. In DYANE [SOBC21] and
WEG2VEC [TKG20] the dynamic structure is projected into a static graph, in order to
compute embeddings with WORD2VEC. Closely related to these ones are [NLR+18]
and [ZLM+20], which learn WORD2VEC-based vectors according to time-respecting
random walks or spreading trajectory paths. In addition, recently proposed meth-
ods learn node embeddings based on higher-order representations that capture
non-Markovian properties in temporal networks [SCKC20, BKTK19].

Methods that perform well for predicting outcomes of spreading processes make
use of time-respecting supra-adjacency representations such as the one proposed
by [VFPC15]. In these graph representations, a random walk corresponds to a
temporal path in the original time-varying graph, enconding relevant information
about the spreading process into its connectivity structure. This is the case of
the concurrent method DYANE, in which vector representations are computed for
each time-stamped node i(t) ∈ V(T) of the supra-adjacency graph described in
Section 3.1.1. Similar models that learn time-resolved node representations require
a quantity O(|V|·|T |) of embedding parameters to represent the time-varying graph
in the latent space. As we will see, compared with these methods, our approach
requires a quantity O(|V|+ |T |) of embedding parameters for disentangled node
and time representations.

18

3.2. Methods Description

3.2 Methods Description

3.2.1 Overview of the proposed method

Given a time-varying graph H = (V, ET , T), we propose a representation learning
method that learns disentangled representations for nodes and time slices, namely
an encoding function f∗ : (v, t) ∈ V × T 7→ v, t ∈ RD. This embedding
representation can then be reconciled with the definition in Equation (3.1) by
combining v and t in a single v(t) representation using any aggregation function
AGG : (v, t) ∈ RD×RD 7→ v(t) ∈ RD. It follows that computing and combining
distinct vector embeddings for nodes and time slices needs a quantity O(|V|+ |T |)
of learnable parameters, leading to a more efficient method to obtain time-aware
node representations without requiring to learn a much bigger number O(|V| · |T |)
of learnable parameters.

The parameters of the embedding representation encoded by f∗ are learned
through a higher-order generalization of skip-gram with negative sampling (HOS-
GNS), based on the existing skip-gram framework for node embeddings, as shown
in Section 3.2.2. We show that this generalization allows to implicitly factor-
ize higher-order relations that characterize tensor representations of time-varying
graphs, in the same way that the classical SGNS decomposes dyadic relations
associated with a static graph.

Similar approaches have been applied in NLP for dynamic word embed-
dings [RB18], and higher-order extensions of the skip-gram model have been pro-
posed to learn context-dependent [LQH15] and syntactic-aware [CPVDE17] word
representations. Also, tensor factorization techniques have been applied to include
the temporal dimension in recommender systems [XCH+10,WSD+19], knowledge
graphs [LOU20,MTD19] and face-to-face contact networks [SPW+15,GPC14]. But
in this chapter, we empirically show how to merge SGNS with tensor factorization,
and then apply it to learn time-varying graph embeddings. HOSGNS differs from
existing temporal network embeddings based on skip-gram [DWS+18, PLY+20],
which are minor adaptations of standard SGNS to the dynamic setting. In fact,
in Section 3.2.2 we show how the equations in the skip-gram framework can be
completely rewritten to be naturally applied to inherently higher-order problems.

In the next sections, we first show the formal steps to the generalization of the
skip-gram approach to higher-order data structures, and then we show how to apply
HOSGNS on 3rd-order and 4th-order representations of time-varying graphs. In
the same spirit that WORD2VEC refers to the word pairs (i, j) as (word, context),
here we refer to the node pairs (i, j) as (node, context), and the time pairs (k, l) as
(time, context-time).

19

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

3.2.2 SGNS for higher-order data structures

Here we address the problem of generalizing SGNS to learn embedding representa-
tions from higher-order co-occurrences. In Section 3.1.1 we described snapshot-
based and multilayer-based representations of time-varying graphs, that can be
seen as 3rd and 4th-order co-occurrence tensors; therefore in the remainder of this
chapter we focus on 3rd and 4th-order structures. In this section, we describe in
detail the generalization of SGNS to the 3rd-order case. In Appendix A, we discuss
in more detail the derivation of the HOSGNS objective function to any N th-order
representation.

We consider a collection of training samples D = {(i, j, k) : i, j ∈ V, k ∈ T }
obtained by gathering co-occurrences among pairs of nodes and time-steps. While
SGNS is limited to pairs of node-context (i, j), here D is constructed with three (or
more) variables, e.g. random sampling walks over a higher-order data structure. We
denote as #(i, j, k) the number of times the triple (i, j, k) appears in D. Similarly
we use #i =

∑
j,k #(i, j, k), #j =

∑
i,k #(i, j, k) and #k =

∑
i,j #(i, j, k) as

the number of times each distinct element occurs in D, with relative frequencies
PD(i, j, k) =

#(i,j,k)
|D| , PD(i) =

#i
|D| , PD(j) =

#j
|D| and PD(k) =

#k
|D| .

Optimization is performed as a binary classification task, where the objective is
to discern occurrences actually coming from D from random occurrences. We define
the likelihood for a single observation (i, j, k) by applying a sigmoid function to
the higher-order inner product [[·]] of corresponding D-dimensional representations:

Pr[(i, j, k) ∈ D | vi, cj , tk] = σ
(
[[vi, cj , tk]]

)
≡ σ

(∑D

r=1
VirCjrTkr

)
(3.2)

where embedding vectors vi, cj , tk ∈ RD are respectively rows of V,C ∈ R|V|×D

and T ∈ R|T |×D. In the 4th-order case we will also have a fourth embedding
matrix Z ∈ R|T |×D. For negative sampling we fix an observed (i, j, k) ∈ D and
independently sample jn and kn to generate κ negative examples (i, jn, kn). In this
way, for a single occurrence (i, j, k) ∈ D, the expected contribution to the loss is:

log σ
(
[[vi, cj , tk]]

)
+ κ · E

jn,kn∼PN

[
log σ

(
− [[vi, cjn , tkn]]

)]
(3.3)

where the noise distribution is the product of independent unigram probabilities
PN (j, k) = PD(j) ·PD(k). Thus the global objective is the sum of all the quantities
of Equation (3.3) weighted with the corresponding relative frequency PD(i, j, k).
The full loss function can be expressed as:

L = −
∑
i,j,k

[
PD(i, j, k) log σ

(
[[vi, cj , tk]]

)
+ κ PN (i, j, k) log σ

(
− [[vi, cj , tk]]

)]
(3.4)

20

3.2. Methods Description

In Appendix A we show the formal steps to obtain Equation (3.4) for the N th-
order case and that it can be optimized with respect to the embedding parameters,
satisfying the low-rank tensor approximation of the multivariate shifted PMI tensor
into factor matrices V,C,T:

∑D

r=1
VirCjrTkr ≈ log

(
PD(i, j, k)

PN (i, j, k)

)
− log κ ≡ SPMIκ(i, j, k) (3.5)

Equation (3.5), like the analogous derived in Levy and Goldberg [LG14b] in
Equation (2.11), assumes full rank embedding matrices with D ≈ R = rank(SPMIκ).
For the case when D ≪ R, a comprehensive theoretical analysis is missing, al-
though recent works propose the feasibility of exact low-dimensional factorizations
of real-world static networks [CMST20, CMST21]. Nevertheless, in Appendix A,
we include an empirical analysis of the effectiveness of HOSGNS for low-rank
factorization of time-varying graph representations.

3.2.3 Low-dimensional embedding of time-varying graphs

While a static graph G = (V, E) is uniquely represented by an adjacency matrix
A(G) ∈ R|V|×|V|, a time-varying graph H = (V, ET , T) admits diverse possible
higher-order adjacency relations (Section 3.1.1). Starting from these higher-order
relations, we can either use them directly or use random walk realizations to build
a dataset of higher-order co-occurrences. In the same spirit that random walk
realizations lead to dyadic co-occurrences used to learn embeddings in SGNS, we
use higher-order co-occurrences to learn embeddings via HOSGNS.

As discussed in Section 3.2.2, the statistics of higher-order relations can be
summarized in multivariate PMI tensors, which derive from co-occurrence prob-
abilities among elements. Once such PMI tensors are constructed, we can again
factorize them via HOSGNS. To show the versatility of this approach, we choose
probability tensors derived from two different types of higher-order relations:

• A 3rd-order tensor P(stat)(H) ∈ R|V|×|V|×|T |, which gathers relative fre-
quencies of nodes occurrences in temporal edges:

(P(stat))ijk =
ω(i, j, k)

vol(H)
(3.6)

where vol(H) =
∑

i,j,k ω(i, j, k) is the total weight of interactions occurring
in H. These probabilities are associated to the snapshot sequence repre-
sentation Astat(H) = [A(1), . . . ,A(|T |)] and contain information about the
topological structure of H.

21

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Node embeddings
matrix, V

Node embeddings
matrix, V

Context embeddings
matrix, C

Context embeddings
matrix, C

Time embeddings
matrix, T

Context-time
embeddings

matrix, Z

Classical SGNS HOSGNS

Figure 3.2: Representation of SGNS and HOSGNS with embedding matrices and
operations on embedding vectors. Starting from a random walk realization on a
static graph G = (V, E), SGNS takes as input nodes i and j within a context window
of size T , and maximizes σ(vi ·cj). HOSGNS starts from a random walk realization
on a higher-order representation of time-varying graph H = (V, ET , T), takes as
input nodes i(k) (node i at time k) and j(l) (node j at time l) within a context
window of size T and maximizes σ([[vi, cj , tk, zl]]). In both cases, for each input
sample, we fix i and draw κ combinations of j or j, k, l from a noise distribution,
and we maximize σ(−vi · cj) (SGNS) or σ(−[[vi, cj , tk, zl]]) (HOSGNS) with their
corresponding embedding vectors (negative sampling).

• A 4th-order tensor P(dyn)(H) ∈ R|V|×|V|×|T |×|T |, which gathers occur-
rence probabilities of time-stamped nodes over random walks of the supra-
adjacency graph GH (as used in DYANE). Using the numerator of Equa-
tion (2.15), with supra-adjacency indices i(k) and j(l) instead of usual indices
i and j, tensor entries are given by:

(P(dyn))ijkl =
1

2T

T∑
r=1

[
di(k)

vol(GH)
(Pr)i(k),j(l) +

dj(l)

vol(GH)
(Pr)j(l),i(k)

]
(3.7)

These probabilities encode causal dependencies among temporal nodes and
are correlated with the dynamical properties of spreading processes. Notice
that the computation of P(dyn)(H) requires an undirected supra-adjacency
graph, while in DYANE is directed.

We also combined the two representations in a single tensor that is the average
of P(stat) and P(dyn):

(P(stat|dyn))ijkl =
1

2

[
(P(stat))ijk1[k = l] + (P(dyn))ijkl

]
(3.8)

22

3.3. Experiments

Figure 3.2 summarizes the differences between graph embedding via classical
SGNS and time-varying graph embedding via HOSGNS. Here, indices (i, j, k, l)
correspond to (node, context, time, context-time) in a 4th-order tensor representation
of H.

The above tensors gather empirical probabilities PD(i, j, k, ..) corresponding to
positive examples of observable higher-order relations. The probabilities of negative
examples PN (i, j, k, ..) can be obtained as the product of marginal distributions
PD(i) · PD(j) . . .
Objective functions like Equation (3.4) can be computed with a sampling strategy:
picking positive tuples according to the data distribution PD and negative ones
according to independent sampling PN , HOSGNS objective can be optimized
through the following weighted cross-entropy loss:

L(bce) = − 1

B

[B∑
(ijk...)∼PD

log σ
(
[[vi, cj , tk, ..]]

)
+ κ

B∑
(ijk...)∼PN

log σ
(− [[vi, cj , tk, ..]]

)]
(3.9)

where B is the number of samples drawn in a training step and κ is the negative
sampling constant. We additionally apply the warm-up steps explained in the
Appendix A to speed up the main training stage.

3.3 Experiments

For the experiments, we use time-varying graphs collected by the SocioPatterns
collaboration (http://www.sociopatterns.org) using wearable proximity sensors that
sense the face-to-face proximity relations of individuals wearing them. After train-
ing the proposed models (HOSGNS applied to P(stat) , P(dyn) or P(stat|dyn)) on
each dataset, embedding matrices V,C,T (and Z except for P(stat)) are mapped
to embedding vectors vi, cj , tk (and zl) where i, j ∈ V and k, l ∈ T . In the next
paragraphs, we illustrate how datasets are processed, how we train HOSGNS, and
how we use learned representations to solve different downstream tasks: node
classification, temporal event reconstruction, and missing event prediction.

3.3.1 Datasets

We performed experiments with both empirical and synthetic datasets describing
face-to-face proximity of individuals. We used publicly available empirical contact
data collected by the SocioPatterns collaboration [CVdBB+10], with a temporal
resolution of 20 seconds, in a variety of contexts: in a school (“LYONSCHOOL”),
a conference (“SFHH”), a hospital (“LH10”), a high school (“THIERS13”), and in
offices (“INVS15”) [GB18]. This is currently the largest collection of open datasets
sensing proximity in the same range and temporal resolution used by modern
contact tracing systems. In addition, we used social interaction data generated by

23

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Table 3.1: Summary statistics of empirical and synthetic time-varying graph
datasets. In order: number of single nodes |V|, number of time-steps |T |, number
of events |ET |, number of temporally-active nodes |V(T)|, average weight of events
1

|ET |
∑

e∈ET ω(e), nodes density |V(T)|
|V||T | and links density 2|ET |

|V|(|V|−1)|T | .

Dataset |V| |T | |E| |V(T)| Average Nodes Links
weight density density

LYONSCHOOL 242 104 44,820 17,174 2.81 0.682 0.0148
SFHH 403 127 17,223 10,815 4.08 0.211 0.0017
LH10 76 321 7,435 4,880 4.45 0.200 0.0081
THIERS13 327 246 35,862 32,546 5.26 0.405 0.0027
INVS15 217 691 18,791 22,451 4.16 0.150 0.0012

OPENABM-2k-100 2,000 100 1,243,551 198,537 1.0 0.993 0.0062
OPENABM-5k-20 5,000 20 632,523 99,966 1.0 0.999 0.0025

the agent-based model OpenABM-Covid19 [HPN+21] to simulate an outbreak of
COVID-19 in an urban setting.

We built a time-varying graph from each dataset, and for the empirical data we
performed aggregation on 600 seconds time windows, neglecting those snapshots
without registered interactions at that time-step. The choice of the time scale may
have a substantial impact on the system’s properties under study [KKB+12,RPB13],
and in Appendix A we report a sensitivity analysis with the change of performance
as the window length is altered. In a practical setting, the optimal aggregation width
can be chosen based on domain knowledge, cross-validation, or –possibly– directly
learned from data [SBWG10, LCF15, FC17]

The weight of the link (i, j, k) is the number of events recorded between nodes
(i, j) in a certain aggregated window k. For synthetic data, we maintained the
original temporal resolution and we set links weights to 1. Table 3.1 shows statistics
for each dataset.

3.3.2 Parameter settings and baseline methods

HOSGNS variants are optimized with Adam [KB15] fixing the negative samples
parameter κ = 5, linearly decaying the learning rate from a starting value of
0.05 for 4000 iterations. In the case of empirical datasets, the implementation of
event sampling is made through the realization of a tensor with the probability
distributions P(stat) and P(dyn) defined in Equations (3.6) and (3.7). For A(dyn)

we set the random walks context window T = 10. Before training we apply 100
warm-up steps, fixing the sample size B = 50000.

In the case of synthetic datasets, due to the huge size and low sparsity of the

24

3.3. Experiments

probabilities tensor, HOSGNS was implemented by sampling positive and negative
events from a corpus of random walks. For HOSGNS(stat) random walks are
sampled from the set of temporal snapshots {G(k)}k∈T with window size T = 1,
and for HOSGNS(dyn) random walks are sampled from the supra-adjacency graph
GH with window size T = 10. With these sampling strategies, positive examples are
drawn from the same probability distributions as in P(stat) and P(dyn). Embedding
parameters are initialized with 1000 warm-up steps, fixing the batch size of positive
examples to 20000.

We compare our approach with several baseline methods from the literature of
time-varying graph embeddings, which learn time-stamped node representations:

• DYANE [SOBC21], learns temporal node embeddings training DEEPWALK on
the supra-adjacency graph. As in the original paper, we optimized NODE2VEC1

with default hyperparameters (p = q = 1, κ = 5, walk_length = 80,
num_walks = 10 and the same context window size T = 10 that we chose
for HOSGNS). The number of SGD epochs is 1 since we did not observe any
improvement in downstream tasks by increasing the number of epochs.

• DYNGEM [GKHL17], a deep autoencoder architecture that dynamically
reconstructs each graph snapshot initializing model weights with parameters
learned in previous time frames. With the code made available online by
the authors2, we trained the model with SGD with momentum (learning rate
10−3 and momentum coefficient 0.99) for 100 iterations in the first time-step
and 30 for the others. We set the internal layer sizes of the autoencoder to
[400, 250, D].

• DYNAMICTRIAD [ZYR+18], which captures structural information and tem-
poral patterns of nodes, modeling the triadic closure process. The model
is trained using Adagrad (learning rate 10−1) with 100 epochs and nega-
tive/positive samples ratio set to 5. Coefficients β0 and β1 related to social
homophily and temporal smoothness are set to 0.1. We used the reference
implementation available in the official repository3.

• DYSAT [SWG+20], a deep neural model that computes node embeddings
by a joint self-attention mechanism applied to structural neighborhood and
temporal dynamics. The algorithm is trained using the standard implementa-
tion4 with Adam optimizer (initial learning rate 10−3) for 100 epochs with

1https://github.com/snap-stanford/snap/tree/master/examples/
node2vec

2http://www-scf.usc.edu/~nkamra/
3https://github.com/luckiezhou/DynamicTriad
4https://github.com/aravindsankar28/DySAT

25

https://github.com/snap-stanford/snap/tree/master/examples/node2vec
https://github.com/snap-stanford/snap/tree/master/examples/node2vec
http://www-scf.usc.edu/~nkamra/
https://github.com/luckiezhou/DynamicTriad
https://github.com/aravindsankar28/DySAT

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

window size for temporal attention set to 10, spatial and temporal drop-out
probabilities equal to 0.1 and 0.5 respectively.

• ISGNS [PLY+20], an incremental skip-gram embedding model based on
DEEPWALK. ISGNS is trained using the reference code5 with standard
NODE2VEC parameters (the same as DYANE).

3.3.3 Downstream tasks

Node classification

The aim of this task is to classify nodes in epidemic states according to a SIR
process with infection rate β and recovery rate µ. We simulated 30 realizations
of the SIR process on top of each empirical graph with different combinations of
parameters (β, µ). We used similar combinations of epidemic parameters and the
same dynamical process to produce SIR states as described in [SOBC21]. Then we
set a logistic regression to classify epidemic states S-I-R assigned to each active
node i(k) during the unfolding of the spreading process. We combine the embedding
vectors of HOSGNS using the Hadamard (element-wise) product vi ∗ tk, compared
with dynamic node embeddings learned from baselines.

Temporal event reconstruction

In this task, we aim to determine if a generic event (i, j, k) (occurred or not) is in
H = (V, ET , T), i.e. if there is an edge between nodes i and j at time k. We create
a random time-varying graph H̄ = (V, ĒT , T) with same active nodes V(T) and a
number of |ET | events that are not part of ET (i.e., |ET | = |ĒT | and |ET ∩ ĒT | = 0).
In other words, ĒT contains random events that may occur only between the nodes
that are active in each snapshot, disregarding other possible edges that involve
inactive nodes. Embedding representations learned from H are used as features to
train a logistic regression to predict if a given event (i, j, k) is in ET or in ĒT . We
combine the embedding vectors of HOSGNS as follows: for HOSGNS(stat), we use
the Hadamard product vi ∗ cj ∗ tk; for HOSGNS(dyn) and HOSGNS(stat|dyn), we
use vi∗cj∗tk∗zk. For baseline methods, we aggregate vector embeddings to obtain
link-level representations with binary operators (Average, Hadamard, Weighted-L1,
Weighted-L2 and Concat) as already used in previous works [GL16, TMKM18].

Missing event prediction

In this task, we aim to predict the occurrence of an event (i, j, k) previously removed
from H = (V, ET , T). We create a pruned time-varying graph H† = (V, E†

T , T)

5https://github.com/RingBDStack/dynamic_network_embedding

26

https://github.com/RingBDStack/dynamic_network_embedding

3.4. Results

with the same active nodes V(T) and a number of events |E†
T | = 70% |ET | sampled

from H. Embedding representations learned from H† are used as features to train a
logistic regression to predict missing occurred events (i, j, k) ∈ ET \E†

T against the
events ĒT of a random time-varying graph H̄ = (V, ĒT , T) (see the construction
above). We combine the embedding vectors of HOSGNS for the classification task
as explained in the event reconstruction task.

3.4 Results

In this section, we first show downstream task performance results for the empirical
and synthetic datasets, then we compare the different approaches in terms of training
complexity (Section 3.4.1), by measuring the number of trainable parameters and
the training time with a fixed number of training steps. Finally, we show the
visualization of the two-dimensional projections of the embeddings for one of the
chosen empirical datasets (Section 3.4.2).

3.4.1 Task performances and training complexity

Tasks were evaluated using train-test splits. To avoid information leakage from
training to test, we randomly split V and T in train and test sets (Vtr,Vts) and
(Ttr, Tts), with proportion 70%− 30%. For node classification, only nodes in Vtr

at times in Ttr were included in the train set, and only nodes in Vts at times in Tts
were included in the test set. For event reconstruction and prediction, only events
with i, j ∈ Vtr and k ∈ Ttr were included in the train set, and only events with
i, j ∈ Vts and k ∈ Tts were included in the test set.

All approaches were evaluated for downstream tasks in terms of Macro-F1
scores in all datasets. For a fair comparison, all models produce time-stamped node
representations with dimension D = 128 and event representations with dimension
D = 192, as input to the logistic regression. Five different runs of the embedding
model are evaluated on 30 different train-test splits in every downstream task. We
report the average score with standard error over all splits. In node classification,
every SIR realization is assigned to a single embedding run to compute prediction
scores. In event reconstruction and prediction tasks, a different random time-varying
graph realization H̄ to produce samples of non-occurring events is assigned to each
train-test subset.

Empirical datasets

Results for the classification of nodes in epidemic states are shown in Table 3.2.
DYNGEM and DYNAMICTRIAD have low scores, since they are not devised to
learn from graph dynamics. Also DYSAT has a bad performance in this task, since
this method uses a context prediction objective that preserves the local structure

27

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Table 3.2: Macro-F1 scores on node classification of epidemic states according to
different SIR processes over empirical datasets. For each (β, µ) we highlight the
two highest scores and underline the best one.

(β, µ) Model Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.25,0.002)

DYANE 78.1± 0.5 67.0± 1.2 52.5± 1.7 71.9± 0.6 64.3± 0.8
DYNGEM 58.7± 2.8 35.9± 1.1 34.5± 0.7 35.5± 1.2 58.8± 1.1
DYNAMICTRIAD 31.0± 0.4 28.8± 0.4 29.9± 0.3 30.3± 0.2 30.4± 0.2
DYSAT 27.3± 0.2 27.4± 0.3 29.7± 0.2 30.2± 0.2 30.5± 0.2
ISGNS 63.5± 0.6 60.7± 0.8 54.1± 1.1 56.4± 0.6 52.3± 0.6

HOSGNS(stat) 55.5± 0.8 57.3± 1.1 45.9± 0.9 46.9± 0.7 44.5± 0.7

HOSGNS(dyn) 79.2± 0.5 69.1± 1.1 59.6± 1.5 71.8± 1.2 64.6± 0.7

HOSGNS(stat|dyn) 77.4± 0.6 67.4± 1.2 59.7± 1.2 72.5± 0.7 64.2± 1.0

(0.0625,0.002)

DYANE 72.2± 0.6 64.9± 1.7 59.0± 1.2 68.0± 0.5 60.2± 0.5
DYNGEM 56.4± 2.7 35.9± 4.1 35.8± 1.2 32.9± 1.2 55.0± 0.6
DYNAMICTRIAD 29.5± 0.5 33.1± 2.5 29.6± 0.4 27.4± 0.3 28.4± 0.2
DYSAT 26.4± 0.2 29.5± 1.3 29.5± 0.3 26.5± 0.2 28.5± 0.2
ISGNS 59.2± 0.3 57.1± 1.6 55.9± 1.0 49.0± 0.3 47.2± 0.3

HOSGNS(stat) 55.5± 0.7 57.6± 2.2 49.4± 0.8 45.5± 0.4 43.6± 0.5

HOSGNS(dyn) 73.5± 0.5 65.7± 1.6 61.1± 1.2 69.5± 0.3 59.6± 0.5

HOSGNS(stat|dyn) 72.9± 0.6 66.3± 1.9 58.2± 1.1 68.5± 0.4 59.0± 0.7

(0.1875,0.001)

DYANE 74.7± 0.7 67.7± 1.2 63.4± 1.8 72.7± 0.4 68.6± 0.4
DYNGEM 57.4± 2.8 36.2± 2.6 41.4± 1.3 34.8± 1.3 61.2± 0.9
DYNAMICTRIAD 32.3± 0.5 31.5± 0.8 30.5± 0.4 27.9± 0.3 30.0± 0.2
DYSAT 26.4± 0.2 29.4± 0.8 30.0± 0.3 27.7± 0.3 29.9± 0.2
ISGNS 65.1± 0.5 63.0± 1.4 60.2± 1.7 56.0± 0.5 52.5± 0.5

HOSGNS(stat) 56.9± 0.8 59.4± 1.7 48.5± 1.1 49.0± 0.6 46.2± 0.8

HOSGNS(dyn) 76.5± 0.4 68.6± 1.1 62.4± 1.7 74.8± 0.5 67.9± 0.7

HOSGNS(stat|dyn) 74.5± 0.4 69.4± 1.4 62.5± 2.0 73.6± 0.6 67.3± 0.5

(0.125, 0.002)

DYANE 77.1± 0.4 68.4± 0.9 54.8± 1.5 71.6± 0.4 62.4± 0.5
DYNGEM 57.1± 2.7 32.8± 1.3 35.0± 0.8 34.4± 1.0 57.1± 0.7
DYNAMICTRIAD 30.4± 0.4 29.3± 0.4 30.1± 0.3 29.0± 0.3 29.4± 0.2
DYSAT 27.0± 0.1 27.1± 0.3 30.3± 0.3 28.3± 0.3 29.4± 0.2
ISGNS 61.8± 0.4 58.2± 0.7 54.6± 1.2 51.4± 0.3 49.1± 0.4

HOSGNS(stat) 55.4± 0.9 55.9± 0.8 44.9± 1.0 46.3± 0.4 44.8± 0.6

HOSGNS(dyn) 77.5± 0.5 68.8± 0.8 58.7± 1.1 72.6± 0.5 63.3± 0.6

HOSGNS(stat|dyn) 75.2± 0.6 68.1± 0.8 59.7± 1.1 72.0± 0.5 63.4± 0.6

(0.125, 0.001)

DYANE 75.3± 0.4 71.6± 1.9 59.0± 1.8 72.4± 0.3 65.8± 0.6
DYNGEM 58.9± 2.9 37.0± 4.1 41.0± 1.4 32.5± 1.2 59.0± 1.2
DYNAMICTRIAD 31.2± 0.5 35.0± 3.3 30.5± 0.7 27.4± 0.3 29.5± 0.2
DYSAT 25.9± 0.2 30.4± 1.2 30.3± 0.7 26.9± 0.2 29.3± 0.2
ISGNS 65.5± 0.5 59.4± 0.8 57.9± 1.3 54.0± 0.4 50.6± 0.4

HOSGNS(stat) 56.8± 0.9 61.8± 2.4 49.1± 1.9 47.3± 0.6 45.9± 0.7

HOSGNS(dyn) 76.0± 0.4 71.5± 2.0 59.6± 2.0 74.2± 0.4 65.9± 0.6

HOSGNS(stat|dyn) 74.6± 0.4 70.2± 1.9 59.9± 2.3 74.8± 0.4 66.0± 0.6

without properly encoding dynamical patterns. HOSGNS(stat) is not able to capture
the graph dynamics due to the static nature of P(stat). ISGNS, due to the incre-
mental training, performs only marginally better than HOSGNS(stat). DYANE,

28

3.4. Results

Table 3.3: Macro-F1 scores on temporal event reconstruction over empirical
datasets. We highlight in bold the two best scores for each dataset. For baseline
models, we underline their highest score.

Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE

Average 56.4± 0.4 52.9± 0.5 52.3± 0.6 51.0± 0.4 52.7± 0.4
Hadamard 89.7± 0.3 86.5± 0.3 74.6± 0.6 94.7± 0.1 94.1± 0.1
Weighted-L1 90.2± 0.2 83.3± 0.5 73.3± 0.7 94.7± 0.1 94.4± 0.2
Weighted-L2 90.6± 0.2 84.5± 0.5 72.0± 0.5 95.0± 0.1 94.8± 0.2
Concat 65.7± 0.4 53.8± 0.4 56.2± 0.6 57.0± 0.4 50.9± 0.4

DYNGEM

Average 57.7± 0.5 56.8± 0.7 54.8± 1.5 40.4± 1.5 42.8± 0.9
Hadamard 62.2± 0.4 55.1± 1.0 52.5± 1.6 40.8± 1.5 43.7± 1.0
Weighted-L1 58.4± 0.6 52.3± 0.7 50.9± 1.2 41.3± 1.6 44.8± 0.9
Weighted-L2 53.7± 0.6 47.0± 0.8 47.0± 1.3 39.2± 1.2 43.6± 0.6
Concat 60.4± 0.4 57.8± 0.3 48.9± 1.7 36.9± 1.3 45.7± 1.0

DYNAMICTRIAD

Average 51.7± 0.2 56.9± 0.4 60.2± 0.6 58.1± 0.2 56.1± 0.3
Hadamard 60.3± 0.3 58.9± 0.4 59.5± 0.5 62.2± 0.3 64.7± 0.3
Weighted-L1 79.1± 0.4 72.3± 0.4 75.5± 0.6 70.8± 0.3 78.1± 0.2
Weighted-L2 77.4± 0.4 73.4± 0.4 77.4± 0.5 72.4± 0.2 78.9± 0.3
Concat 52.2± 0.2 53.4± 0.3 55.9± 0.7 55.1± 0.2 53.2± 0.3

DYSAT

Average 51.1± 0.3 49.6± 0.4 51.6± 0.5 50.4± 0.2 50.1± 0.3
Hadamard 75.1± 0.5 52.9± 0.3 54.8± 0.6 71.1± 0.4 66.8± 0.5
Weighted-L1 72.4± 0.5 51.5± 0.3 56.1± 0.6 66.4± 0.4 64.8± 0.3
Weighted-L2 72.4± 0.5 51.7± 0.3 56.8± 0.7 66.5± 0.4 63.7± 0.4
Concat 50.0± 0.3 50.1± 0.4 52.3± 0.5 49.8± 0.2 50.9± 0.3

ISGNS

Average 53.4± 0.4 50.3± 0.5 48.1± 0.6 49.4± 0.4 45.9± 0.5
Hadamard 90.1± 0.3 87.2± 0.4 80.8± 0.7 96.7± 0.2 96.7± 0.2
Weighted-L1 89.9± 0.3 87.7± 0.4 81.6± 0.4 96.8± 0.2 96.4± 0.2
Weighted-L2 89.7± 0.3 88.2± 0.4 81.7± 0.5 96.9± 0.1 96.8± 0.2
Concat 57.1± 0.5 50.2± 0.4 48.8± 0.7 52.7± 0.4 43.8± 0.4

HOSGNS(stat) Hadamard 98.5± 0.1 98.8± 0.1 99.8± 0.1 99.6± 0.1 99.1± 0.1

HOSGNS(dyn) Hadamard 90.3± 0.2 80.9± 0.4 68.1± 0.7 93.5± 0.2 87.2± 0.2

HOSGNS(stat|dyn) Hadamard 91.8± 0.2 86.7± 0.4 73.6± 0.6 94.3± 0.1 89.0± 0.2

HOSGNS(stat|dyn) and HOSGNS(dyn) show good performance, with these two
HOSGNS variants outperforming DYANE in most of the combinations of datasets
and SIR parameters.

Results for the temporal event reconstruction task are reported in Table 3.3. Tem-
poral event reconstruction is not performed well by DYNGEM. DYNAMICTRIAD has
better performance with Weighted-L1 and Weighted-L2 operators, while DYANE,
DYSAT and ISGNS have better performance using Hadamard and Weighted-L2.
ISGNS has the second best performance in most of the datasets. Since Hadamard
product is explicitly used in Equation (3.2) to optimize HOSGNS, all HOSGNS
variants show the best scores with this operator. HOSGNS(stat) outperforms all
approaches, setting new state-of-the-art results in this task. The P(dyn) represen-
tation used as input to HOSGNS(dyn) does not focus on events but on dynam-
ics, so the performance for event reconstruction is slightly below DYANE, while

29

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Table 3.4: Macro-F1 scores on missing event prediction over empirical datasets.
We highlight in bold the two best scores for each dataset. For baseline models, we
underline their highest score.

Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE

Average 56.8± 0.6 50.6± 0.8 51.3± 1.0 49.1± 0.6 49.3± 0.8
Hadamard 87.3± 0.3 73.5± 0.6 67.0± 1.0 87.2± 0.3 80.1± 0.8
Weighted-L1 87.8± 0.3 73.3± 0.6 65.9± 1.0 84.0± 0.4 78.4± 0.6
Weighted-L2 88.5± 0.2 73.7± 0.5 66.1± 1.0 84.4± 0.4 78.9± 0.6
Concat 64.4± 0.5 52.4± 0.8 51.9± 1.0 57.0± 0.6 51.4± 0.7

DYNGEM

Average 56.2± 0.5 51.8± 0.8 52.0± 1.1 49.7± 0.5 50.9± 0.7
Hadamard 54.8± 0.6 51.3± 0.7 51.7± 1.2 44.7± 0.7 50.9± 0.6
Weighted-L1 55.5± 0.4 48.5± 0.8 50.2± 1.0 52.2± 0.4 49.8± 0.7
Weighted-L2 53.2± 0.7 47.8± 0.9 48.0± 1.1 48.9± 0.6 45.3± 0.6
Concat 58.2± 0.5 50.4± 0.8 46.4± 1.4 48.8± 0.5 49.9± 0.6

DYNAMICTRIAD

Average 51.4± 0.4 52.6± 0.6 53.0± 0.8 52.0± 0.4 49.9± 0.7
Hadamard 53.1± 0.4 49.5± 0.6 52.0± 0.8 51.7± 0.5 49.8± 0.6
Weighted-L1 64.3± 0.4 56.6± 0.7 54.2± 0.9 53.6± 0.4 47.2± 0.6
Weighted-L2 64.5± 0.4 57.3± 0.7 54.9± 0.9 54.5± 0.5 47.0± 0.6
Concat 52.6± 0.3 51.8± 0.5 52.7± 0.9 51.5± 0.3 49.9± 0.6

DYSAT

Average 51.3± 0.4 51.6± 0.6 52.5± 0.8 50.0± 0.4 50.3± 0.6
Hadamard 73.8± 0.6 52.5± 0.7 56.6± 0.7 68.5± 0.5 61.5± 0.8
Weighted-L1 71.3± 0.5 52.0± 0.6 57.6± 0.8 63.2± 0.6 64.4± 0.5
Weighted-L2 70.7± 0.5 51.5± 0.7 56.5± 0.8 63.1± 0.5 63.4± 0.5
Concat 49.2± 0.4 48.8± 0.8 52.4± 0.9 49.8± 0.5 50.4± 0.6

ISGNS

Average 52.4± 0.6 49.5± 0.8 44.9± 0.9 48.0± 0.4 42.7± 0.8
Hadamard 79.8± 0.4 59.3± 0.7 61.1± 1.2 59.3± 0.6 51.7± 0.7
Weighted-L1 80.8± 0.3 59.8± 0.7 61.7± 1.0 59.0± 0.6 49.8± 0.7
Weighted-L2 81.5± 0.3 60.2± 0.7 62.5± 0.9 59.9± 0.6 51.5± 0.7
Concat 55.8± 0.7 50.8± 0.6 46.8± 0.8 52.2± 0.5 48.5± 0.6

HOSGNS(stat) Hadamard 52.1± 0.4 43.8± 0.6 34.2± 0.2 55.9± 0.6 43.0± 0.5

HOSGNS(dyn) Hadamard 89.2± 0.2 74.9± 0.6 67.1± 0.8 90.7± 0.3 81.4± 0.5

HOSGNS(stat|dyn) Hadamard 89.2± 0.3 76.3± 0.7 68.5± 1.0 89.9± 0.3 80.8± 0.6

HOSGNS(stat|dyn) is comparable to DYANE.

Table 3.4 outlines the results for the missing event prediction task. In this
case HOSGNS(stat) has lower performance but is comparable with DYNGEM and
DYNAMICTRIAD. DYSAT and ISGNS works slightly better with Hadamard or
Weighted-L1/L2 operator, but they are outperformed by DYANE that has an ex-
cellent performance with Hadamard or Weighted-L2. However, HOSGNS(dyn)

and HOSGNS(stat|dyn) have the best scores, which emphasize the importance of
leveraging dynamics to learn and predict missing information.

We observe an overall good performance of HOSGNS(stat|dyn) in all down-
stream tasks, being in almost all cases among the two highest scores, compared
to the other two HOSGNS variants which excel in certain tasks but have lower
performance in the others.

30

3.4. Results

Synthetic datasets

Here we report the performance of downstream tasks with the two synthetic datasets
only for HOSGNS(stat) and HOSGNS(dyn), given the similar performance of
HOSGNS(dyn) and HOSGNS(stat|dyn) in previous experiments. We also chose
DYANE as the only baseline, given its better performance compared to other
baselines in empirical datasets.

Results for the node classification task are reported in Table 3.5, reflecting
previous results on empirical datasets, with HOSGNS(dyn) performance compa-
rable or superior to DYANE. Results for the event reconstruction and prediction
tasks are reported in Table 3.6. DYANE performs well with Hadamard operation,
but nevertheless the scores are below HOSGNS(dyn) and HOSGNS(stat) scores.
Especially with HOSGNS(stat), the performance of event reconstruction is not
much larger than even prediction, contrary to empirical datasets. This difference
might be due to the different topological features of synthetic networks with respect
to empirical ones.

Table 3.5: Macro-F1 scores on node classification of epidemic states according to
different SIR processes over synthetic datasets. For each (β, µ) we highlight the
best score.

(β, µ) Model Dataset
OPENABM-2k-100 OPENABM-5k-20

(0.25,0.002)
DYANE 57.9± 1.8 59.6± 1.7

HOSGNS(stat) 31.2± 0.1 27.8± 0.6

HOSGNS(dyn) 57.5± 1.8 61.0± 1.1

(0.0625,0.002)
DYANE 61.8± 0.4 53.8± 1.3

HOSGNS(stat) 29.8± 0.2 29.4± 1.4

HOSGNS(dyn) 59.5± 0.9 54.5± 1.4

(0.1875,0.001)
DYANE 60.3± 1.4 59.6± 1.5

HOSGNS(stat) 31.9± 0.2 27.4± 0.7

HOSGNS(dyn) 60.5± 1.1 60.9± 1.0

(0.125, 0.002)
DYANE 60.7± 1.1 61.3± 0.6

HOSGNS(stat) 30.8± 0.1 27.4± 1.2

HOSGNS(dyn) 58.9± 1.4 60.7± 0.6

(0.1875, 0.001)
DYANE 60.3± 1.4 59.6± 1.5

HOSGNS(stat) 31.9± 0.2 27.4± 0.7

HOSGNS(dyn) 60.5± 1.1 60.9± 1.0

Training complexity

We report in Table 3.7 the number of trainable parameters and training time duration
for each considered algorithm, when applied to an empirical graph (LYONSCHOOL)
and to the synthetic ones. The proposed HOSGNS model requires a number of

31

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

Table 3.6: Macro-F1 scores on temporal event reconstruction and missing event
prediction over synthetic datasets. We highlight in bold the best two scores for each
dataset. For baseline models, we underline their highest score.

Model Operator
Dataset

OPENABM-2k-100 OPENABM-5k-20
Reconstruction Prediction Reconstruction Prediction

DYANE

Average 52.2± 0.1 51.7± 0.1 51.9± 0.1 51.9± 0.1
Hadamard 76.4± 0.1 72.4± 0.2 90.5± 0.3 77.8± 0.2
Weighted-L1 70.3± 0.1 67.4± 0.2 78.2± 0.7 70.5± 0.3
Weighted-L2 70.3± 0.1 67.7± 0.1 78.8± 0.5 70.9± 0.3
Concat 53.8± 0.1 54.6± 0.1 52.5± 0.1 52.5± 0.2

HOSGNS(stat) Hadamard 91.1± 0.1 87.0± 0.1 98.7± 0.1 86.0± 0.1

HOSGNS(dyn) Hadamard 78.7± 0.1 79.8± 0.2 82.8± 0.3 82.4± 0.2

trainable parameters that are orders of magnitude smaller than other approaches,
with a training time considerably shorter as the number of nodes increases, given
a fixed number of training iterations. ISGNS has a comparable number of param-
eters because it incrementally updates O(|V|) parameters moving across the |T |
snapshots. DYSAT training time is considerably higher due to the computational
overhead of the self-attention mechanism.

Table 3.7: Number of trainable parameters and training time of time-varying graph
representation learning models trained on LYONSCHOOL and synthetic datasets.
The embedding dimension is fixed to 128.

Model

Dataset
LYONSCHOOL OPENABM-2k-100 OPENABM-5k-20

|V| = 242, |T | = 104 |V| = 2000, |T | = 100 |V| = 5000, |T | = 20
Tr. parameters Tr. time Tr. parameters Tr. time Tr. parameters Tr. time

DYANE 4,396,544 62s 50,825,472 1,014s 25,591,296 448s
DYNGEM 459,270 516s 1,867,428 10,765s 4,270,428 23,307s
DYNAMICTRIAD 3,221,632 1,131s 25,600,128 17,191s 12,800,128 12,625s
DYSAT 98,336 18,323s 323,232 152,976s 707,232 8,958s
ISGNS 61,952 381s 512,000 5,895s 1,280,000 3,062s

HOSGNS(stat) 75,264 316s 524,800 548s 1,282,560 724s
HOSGNS(dyn) 88,576 303s 537,600 565s 1,285,120 734s

3.4.2 Embedding space visualization

One of the main advantages of HOSGNS is that it is able to disentangle the role of
nodes and time by learning representations of nodes and time intervals separately. In
this section, we include plots with two-dimensional projections of these embeddings,
made with UMAP [MHM18] for manifold learning and non-linear dimensionality
reduction. With these plots, we show that the embedding matrices learned by

32

3.4. Results

HOSGNS(stat) and HOSGNS(dyn) successfully capture both the structure and the
dynamics of the time-varying graph.

Dynamical information can be represented by associating each embedding
vector to its corresponding time interval k ∈ T , and graph structure can be rep-
resented by associating each embedding vector to a community. While com-
munity membership can be estimated by different community detection meth-
ods, we choose to use a dataset with ground-truth data containing node mem-
bership information. We consider the LYONSCHOOL dataset as a case study,
widely investigated in literature with respect to structural and spreading prop-
erties [SVB+11, BCC+13, SBBPS12, PGBC13, SBCG18, GBB+18]. This dataset
spans two days and includes metadata (Table 3.8) concerning the class of each par-
ticipant of the school (10 different labels for children and 1 label for teachers), and
we identify the community membership of each individual according to these labels
(class labels). Moreover, we also assign time labels according to the activation of
individual nodes in temporal snapshots.

Table 3.8: Number of class components for each labeled class in LYONSCHOOL.

Class name Class label Number of children
or teachers

CP-A 0 23
CP-B 1 25
CE1-A 2 23
CE1-B 3 26
CE2-A 4 23
CE2-B 5 22
CM1-A 6 21
CM1-B 7 23
CM2-A 8 22
CM2-B 9 24
Teachers 10 10

To show how disentangled representations capture different aspects of the
evolving graph, in Figure 3.3 we plot individual representations of nodes i ∈
V and time slices k ∈ T labeled according to the class membership and the
time snapshot respectively. Both HOSGNS(stat) and HOSGNS(dyn) capture the
community structure (left of each panel) with node embeddings clustered into the
ground-truth classes, but dynamical information expressed by time embeddings
(right of each panel) is different for the two methods. Due to the time-respecting
topology of the supra-adjacency graph, HOSGNS(dyn) captures the causality of
node co-occurrences encoding temporal slices into a time-ordered one-dimensional
manifold. HOSGNS(stat) is built on the snapshot representation, invariant over time
permutation, and thus the temporal encoding is constrained to the local connectivity
structure of graph slices.

In Figure 3.4 we visualize representations of temporal nodes i(k) ∈ V(T),

33

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

(a) HOSGNS(stat)

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

(b) HOSGNS(dyn)

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l
0

20

40

60

80

100

tim
e

la
be

l

Figure 3.3: Two-dimensional projections of 128-dim HOSGNS node embeddings
{vi}i∈V and time embeddings {tk}k∈T , trained on LYONSCHOOL dataset. On the
left of each panel, node embeddings are labeled according to class communities;
on the right of each panel, time embeddings are labeled according to time-steps.

(a) HOSGNS(stat)

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100
tim

e
la

be
l

(b) HOSGNS(dyn)

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

Figure 3.4: Two-dimensional projections of 128-dim HOSGNS time-resolved node
embeddings obtained with Hadamard products {vi ∗ tk}(i,k)∈V(T) , trained on
LYONSCHOOL dataset. On the left of each panel, embeddings are labeled according
to temporal participation in class communities; on the right of each panel, embed-
dings are labeled according to the time-step of activation.

34

3.5. Summary

(a) DYANE

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

(b) DYNGEM

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

(c) DYNTRIAD

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

(d) DYSAT

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

20

40

60

80

100

tim
e

la
be

l

(e) ISGNS

0
1
2
3
4
5
6
7
8
9
10

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e

la
be

l

Figure 3.5: Two-dimensional projections of 128-dim time-resolved node embed-
dings trained on LYONSCHOOL dataset with baseline methods. On the top of each
panel, embeddings are labeled according to temporal participation in class com-
munities; on the bottom of each panel, embeddings are labeled according to the
time-step of activation.

computed as Hadamard products of nodes and time embeddings. HOSGNS(stat)

projections show clusters of nodes active at multiple times representing different
social situations: interactions during lectures present uniform class labels and
heterogeneous time labels, whereas interactions occurred in social spaces with
mixed classes present uniform time labels and heterogeneous class labels. This is
in line with previous studies [GPC14], where different patterns of interactions are
found during school activities, and gatherings in social spaces (such as the canteen
and playground) are more concentrated during lunchtime. HOSGNS(dyn) projected
embeddings, due to the causality information encoded in time representations,
display trajectories of social interactions that span over time in the embedding
space, with communities interacting and mixing at different points of the day.

In Figure 3.5 we see dynamic node embeddings computed with baseline meth-
ods without dissociating structure and time. The embedding space in DYANE en-
codes properly the time-aware topology, since the model is based on the supra-
adjacency graph like HOSGNS(dyn). Also DYNAMICTRIAD captures significant
temporal structures, but it is less effective to express the overall dynamics since it is
limited in modeling the triadic closure process. Other relevant interaction patterns
are instead accounted with supra-adjacency random walks. DYNGEM, DYSAT and
ISGNS embedding spaces do not encode any structural or temporal information.

3.5 Summary

In this chapter, we introduce Higher-Order Skip-Gram with Negative Sampling
(HOSGNS) for time-varying graph representation learning. We generalize the skip-
gram embedding approach that implicitly performs a factorization of the shifted

35

Chapter 3. Representation Learning on Time-Varying Graphs via
Higher-Order Skip-Gram with Negative Sampling

PMI matrix to perform implicit factorization of a shifted PMI tensor. We show
how to optimize HOSGNS for the generic N th-order case, and how to apply 3rd-
order and 4th-order SGNS on different higher-order representations of time-varying
graphs. The embedding representations learned by HOSGNS outperform other
methods in the literature and set new state-of-the-art results for solving downstream
tasks. By learning embeddings on empirical time-resolved face-to-face proximity
data, such representations can be effectively used to predict the outcomes of a SIR
spreading process over the time-varying graph. They also can be effectively used
for network reconstruction and link prediction.

HOSGNS is able to learn more compact representations of time-varying graphs
due to the reduced number of parameters, with computational complexity that
is comparable to or lower than other state-of-the-art methods. By learning dis-
entangled representations of nodes and time intervals, HOSGNS uses a number
of parameters in the order of O(|V| + |T |), while models that learn node-time
representations need a number of parameters that is at least O(|V| · |T |). While
other methods such as DYANE assume that the whole temporal network has to be
known, here we relax this assumption and show that the learned representations
can be used also for predicting events that are not seen during the representation
learning phase.

36

CHAPTER4
Representation Learning on Simplicial

Complexes for Effective Higher-Order Link
Prediction and Reconstruction

NETWORK science provides the dominant paradigm for the study of structure
and dynamics of complex systems, thanks to its focus on their underly-
ing relational properties. In data mining applications, topological node

embeddings of networks are standard representation learning methods that help
solve downstream tasks, such as network reconstruction, link prediction, and node
classification [Ham20]. Complex interacting systems have been usually repre-
sented as graphs. This representation however suffers from the obvious limitation
that it can only capture pairwise relations among nodes, while many systems are
characterized by group interactions [BCI+20]. Indeed, simplicial complexes are
generalized graphs that encode group-wise edges as sets of nodes, or simplices,
with the additional requirement that any subset of nodes forming a simplex must
also itself form a simplex belonging to the complex. Unlike alternative high-order
representations, e.g. hypergraphs, which also overcome the dyadic limitation of the
graph formalism [TBBER21], the simplicial downward closure constraint works
particularly well when studying systems with subset dependencies, such as brain

37

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

networks and social networks (e.g., people interacting as a group also engage in
pairwise interactions).

Due to the increased interest in studying complex systems as generalized graph
structures, topological representation learning techniques on simplicial complexes
are also emerging as tools to solve learning tasks on systems with polyadic relations.
In particular, here we focus on tasks based on the reconstruction and prediction of
higher-order edges. While for standard graphs these problems have been extensively
studied with traditional machine learning approaches [LZ11, CMS21] and represen-
tation learning [CMST21, MLDB20], the literature for their higher-order counter-
parts is more limited. In fact, reconstruction and prediction of higher-order interac-
tions have been investigated mainly starting from pairwise data [YPP21, BAS+18]
or time series [WMC+22, SBPA23], without particular attention to representation
learning methods.

In this chapter and in [PPP22] we study low-dimensional embeddings of sim-
plicial complexes for link prediction and reconstruction in higher-order networks.
Our main contributions are:

• We introduce an embedding framework to compute low-rank representations
of simplicial complexes.

• We formalize network reconstruction and link prediction tasks for polyadic
graph structures.

• We show that simplicial similarities computed from embedding representa-
tions outperform classical network-based reconstruction and link prediction
methods.

Since the problems of link prediction and network reconstruction are not yet
well-defined in the literature for the higher-order case, none of the available state-
of-the-art methods were previously evaluated in terms of both these tasks. In
this chapter we properly delineate the formal steps to perform higher-order link
prediction and reconstruction, and we make a comprehensive evaluation of different
methods adding many variations such as the use of multi-node proximities and
simplicial weighted random walks.

4.1 Preliminaries and Related Work

4.1.1 Simplicial complexes and their mathematical representations

Simplicial complexes can be considered as generalized graphs that include higher-
order interactions. Given a set of nodes V , a simplicial complex K is a collection
of subsets of V , called simplices, satisfying downward inclusion: for any simplex

38

4.1. Preliminaries and Related Work

σ ∈ K, any other simplex τ which is a subset of σ belongs to the simplicial
complex K (for any σ ∈ K and τ ⊂ σ, we also have τ ∈ K). This constraint
makes simplicial complexes different from hypergraphs, for which there is no
prescribed relation between hyperedges. Choosing for one or the other higher-order
representation frequently appears to be driven by technical convenience and, in
many cases, different choices can result in dissimilar outcomes when studying group
interactions [ZLB23]. Moreover, the validity of the closure assumption strongly
depends on the system under study [TBBER21]. For instance, if three authors in a
collaboration network have written a paper together, it is not necessarily true that
each pair of scientists have co-authored a paper as well. Instead, with face-to-face
social relations, a group-wise interaction usually implies pairwise links.

A simplex σ is called a k-simplex if |σ| = k + 1, where k is its dimension
(or order). A simplex σ is a coface of τ (or equivalently, τ is a face of σ) if
τ ⊂ σ. We denote with dim(σ) the order of simplex σ, and with Nk the number
of k-simplices in K. Each simplicial complex can be unfolded in its canonical
graph of inclusions, called Hasse Diagram (HD): formally, the Hasse diagram of
complex K is the multipartite graph GK = (VK, EK), such that each simplex σ ∈ K
corresponds to a node of VK, and two simplices σ, τ ∈ K are connected by the
undirected edge (σ, τ) ∈ EK iff σ is a coface of τ and dim(τ) = dim(σ)− 1. In
other words, each simplicial order corresponds to a graph layer in GK, and two
simplices in different layers are linked if they are (upper/lower) adjacent in the
original simplicial complex.

4.1.2 Representation learning on higher-order structures

Representation learning on usual graphs [Ham20] allows obtaining low-dimensional
vector representations of nodes that convey information useful for solving machine
learning tasks. Shallow embedding methods generate node representations as a
result of an unsupervised task (e.g., matrix factorization [QDM+18]), while GNN
methods obtain node vectors from iterative message passing operations, e.g. graph
convolutions and graph attention networks [VCC+18]. In hypergraph settings, node
embedding methods typically leverage hyperedge relations similarly to what is done
for standard graph edges: for example, spectral decomposition [ZHS06], random
walk sampling [HCY+19, HLS19], autoencoders [TCW+18]. Recently, Maleki et
al. [MSWP22] proposed a hierarchical approach for scalable node embedding in
hypergraphs. In simplicial complexes, random walks over simplices are exploited
to compute embeddings of interacting groups with uniform or mixed sizes [Hac20,
BHL+19], expanding hypergraph methods that compute only node representations.
Extensions of GNNs have been proposed to generalize convolution and attention
mechanisms to hypergraphs [YNY+19, FYZ+19, ZZM20, BZT21] and simplicial
complexes [EDS20, BFW+21, GBL22].

39

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

4.1.3 Link prediction and network reconstruction with higher-order
interactions

The link prediction [LZ11] task infers the presence of unobserved links in a graph
by estimating their occurrence likelihood, while network reconstruction consists
in the inference of a graph structure based on indirect data [Pei19], missing or
noisy observations [New18]. In this chapter, we use latent embedding variables
to assess the reconstruction and prediction of a given edge, relying on similarity
indices. In higher-order systems, link prediction has been investigated primarily for
hypergraphs, in particular with methods based on matrix factorization [ZCJC18,
SPM20], resource allocation metric [KDPR20], loop structure [PSL+21], and
representation learning [YNN+20,CP20]. The higher-order link prediction problem
was introduced in a temporal setting by Benson et al. [BAS+18] (reformulating the
term simplicial closure [PPV17]), while Liu et al. [LML22] studied the prediction
of several higher-order patterns with neural networks. Yoon et al. [YSSY20]
investigated the use of opportune k-order projected graphs to represent group
interactions, and Patil et al. [PSM20] analyzed the problem of finding relevant
candidate hyperlinks as negative examples. Recently Choo et al. [CS22] investigated
a related problem on the predictability of persistence in higher-order interactions.
Despite these early results, reconstruction of higher-order interactions is an ongoing
challenge: for example, Young et al. [YPP21] proposed a Bayesian inference
method to distinguish between hyperedges and combinations of low-order edges
in pairwise data, while Musciotto et al. [MBM21] developed a filtering approach
to detect statistically significant hyperlinks in hypergraph data. In addition, some
works studied approaches for the inference of higher-order structures from time
series data [WMC+22, SBPA23].

4.2 Methods and Tasks Description

4.2.1 Low-dimensional embedding of simplicial complexes

Given a simplicial complex K, we want to learn a mapping function g : τ ∈
K 7→ vτ ∈ RD from elements of K to a D-dimensional low-rank feature space
(D ≪ |K|). The mapping g must preserve topological information incorporated in
the simplicial complex, in such a way that adjacency relations are preserved into
geometric distances between vectors of the embedding space. Here we propose
that representations of simplices can be obtained by random-walking over the
inclusions hierarchy of K and learning the embeddings according to the simplex
proximity observed through such walks, preserving high-order information about
the topological structure of the complex itself. Here we discuss the sampling
strategies to obtain a corpus of simplicial random walks and the optimization
framework to compute simplex embeddings.

40

4.2. Methods and Tasks Description

Random walk sampling

The navigation of the downward inclusion chain can be performed with usual
graph random walk sampling, unfolding the simplicial complex in its canonical
graph of inclusions, i.e. the Hasse diagram. In the following Experiments, we
consider several weighting schemes [BHL+19] to bias the random walks between
the vertices of the HD:

Unweighted The jump to a given τ is made by a uniform sampling among the set
of neighbors Γσ = Γ↓

σ ∪ Γ↑
σ of the node σ in the HD (corresponding to faces

Γ↓
σ and cofaces Γ↑

σ of the simplex σ in the simplicial complex).

Counts To every node τ of the HD is attached an empirical weight ω(τ), counting
the number of times that τ appears in the data. The probability to jump from
σ to τ is given by P (σ → τ) = ω(τ)∑

r∈Γσ
ω(r) .

LObias With the definition of transition probability as before, the weight ω(τ) is
defined to introduce a bias for the random walker towards low-order simplices:
as explained in [BHL+19], every time a n-simplex σ appears in the data its
weight is increased by 1, and the weight of any subface of dimension n− k

is increased by (n+1)!
(n−k+1)! . There is an equivalent scheme for biasing towards

high-order simplices, but we empirically observed that the performance of
the first one is better.

EQbias Starting from the weights’ set {ω(τ)}τ∈VK computed with empirical
counts, we attach additional weights {ω(σ, τ)}(σ,τ)∈EK to the Hasse dia-
gram’s edges in order to have equal probability of choosing neighbors from
Γ↓
σ or Γ↑

σ. Transition weights for the downward (upward) step (σ, τ) are
defined by normalizing ω(τ) with respect to all the downward (upward)
weights ω(σ, τ) ∝ ω(τ)∑

r∈Γ
↓(↑)
σ

ω(r) , with the probability of the step given by

P (σ → τ) = ω(σ,τ)∑
r∈Γ

↓
σ∪Γ

↑
σ
ω(r) .

Optimization framework

Inspired by language models such as WORD2VEC [MCCD13], we start from a
corpus W = {σ1, σ2, . . . } of simplicial random walks, and we aim to max-
imize the log-likelihood of a target simplex σl given the multi-set CT (σl) =
{σl−T . . . σl−1, σl+1 . . . σl+T } of context simplices within a distance T , determined
as the number of steps between the target and the context simplex. The objective
function is as follows: ∑

σl∈W
log Pr[σl | {vτ : τ ∈ CT (σl)}] (4.1)

41

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

where the probability Pr[σl | {vτ , . . . }] ∝ exp
[∑

τ∈CT (σl)
vτ · vσl

]
is a soft-

max function which represents the likelihood of observing simplex σl given context
simplices in CT (σl). The soft-max is normalized via the standard partition function
Zσl

=
∑

u∈K exp
[∑

τ∈CT (σl)
vτ · vu

]
. This leads to the maximization of the loss:

∑
σl∈W

[
− logZσl

+
∑

τ∈CT (σl)

vτ · vσl

]
(4.2)

Our method of choice –SIMPLEX2VEC [BHL+19]– is implemented by sampling
random walks from GK and learning simplicial embeddings with Continuous-Bag-
Of-Words model [MCCD13]. To overcome the expensive computation of Zσl

, we
train CBOW with Negative Sampling. While SIMPLEX2VEC is conceptually similar
to k-SIMPLEX2VEC [Hac20], there are important differences: (i) by fixing k as
simplex dimension, k-SIMPLEX2VEC uses exclusively upper connections through
(k+1)-cofaces and lower connections through (k-1)-faces to compute random walk
transitions; (ii) random walks focus on a fixed dimension, allowing the embedding
computation only for k-simplices. SIMPLEX2VEC instead computes embedding
representations for all simplex orders simultaneously because the random walks
are sampled from the entire Hasse diagram.

4.2.2 Reconstruction and prediction of higher-order interactions

Network reconstruction [CMST21] and link prediction [MLDB20] are common
tasks performed to assess the quality of node embeddings. In standard graphs, most
popular methods are based on similarity metrics, used to rank pairs of nodes (candi-
date links), and can be obtained from local (e.g., number of common neighbors) or
global indices (e.g., number of connecting paths). Here we formalize these tasks as
binary classification problems for simplicial complexes.

Given a simplicial complex K, by reconstruction of higher-order interactions
we mean the task of correctly classifying whether a group of k + 1 nodes s =
(i0, i1, . . . , ik) is a k-simplex of K or not. This task is intended to study if the
information encoded in the embedding space can preserve the original training
structure. More specifically, we consider S = {s ∈ K : |s| > 1} as the set of
interactions (simplices with order greater than 0) that belongs to the simplicial
complex K. Given any group s = (i0, i1, . . . , ik), with the reconstruction task we
aim to discern if the elements in s interact within the same simplex, and so s ∈ S,
or s is a group of lower-order simplices, and so s /∈ S (but subsets of s may be
existing simplices). When group s interacts within a simplex, we say that s is
closed, conversely it is open.

By higher-order link prediction we mean instead the task of predicting whether
a non-interacting group s̄ /∈ S at the present time will appear in the future as

42

4.3. Experiments

Table 4.1: Summary statistics of empirical higher-order datasets, referred to the
largest connected component of the projected graph. In order: total number of
time-stamped simplices; number of unique simplices; number of training nodes |V|
and edges |E| in the first 80% of D; number of triangles in the first 80% |∆| / new
triangles in the last 20% |∆∗|; number of training tetrahedra in the first 80% |Θ| /
new tetrahedra in the last 20% |Θ∗|.

Dataset
Time-stamped Unique |V| |E| |∆|/|∆∗| |Θ|/|Θ∗|

simplices simplices

HIGH-SCHOOL 172,035 7,818 327 5,225 2,050 / 320 218 / 20
PRIMARY-SCHOOL 106,879 12,704 242 7,575 4,259 / 880 310 / 71
EMAIL-EU 234,559 25,008 952 26,582 143,280 / 17,325 631,590 / 82,945
EMAIL-ENRON 10,883 1,512 140 1,607 5,517 / 1,061 14,902 / 3,547
TAGS-MATH 819,546 150,346 893 60,258 167,306 / 34,801 101,649 / 26,344
CONGRESS-BILLS 103,758 18,626 97 3,207 32,692 / 371 90,316 / 3,309
COAUTH-HISTORY 114,447 11,072 4,034 9,255 4,714 / 1,297 3,966 / 1,008
COAUTH-GEOLOGY 275,565 29,414 3,835 27,950 17,946 / 3,852 12,072 / 3,168

a closed interaction. This task is intended to study the generalization ability of
embedding methods to predict unseen interactions that are likely to occur. To
describe this task, we refer to S∗ as the set of new incoming simplices. Given
any open configuration s̄ ∈ US coming from the set of unobserved interactions
US =

{
s ∈ 2V : |s| > 1, s /∈ S

}
, namely the complement of S with respect to the

power set of the vertices 2V , the prediction task consists in classifying which groups
will give rise to a simplicial closure in the future (s̄ ∈ S∗) versus those that will
remain open (s̄ ∈ US \ S∗).

4.3 Experiments

Here we describe the experimental setup used to quantify the accuracy of SIM-

PLEX2VEC in reconstructing and predicting higher-order interactions. In the next
paragraphs, we illustrate which datasets we use, how we sample unobserved hyper-
links, and how we use them in downstream tasks.

4.3.1 Datasets

We consider data in the form of collections of time-stamped interactions D =
{(s, t), s ∈ S, t ∈ T }, where each s = (i0, i1, . . . , ik) is a k-simplex of the node
set V and T is the set of time-stamps at which interactions occur. We split D in two
subsets, Dtrain and Dtest, corresponding to the 80th percentile t(80) of time-stamps,
namely Dtrain = {(s, t) ∈ D, t(0) ≤ t ≤ t(80)} and Dtest = {(s, t) ∈ D, t(80) <
t ≤ t(100)}, where t(0) and t(100) are the 0th and the 100th percentiles of the set T .

43

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

(b) random walks on
the Hasse Diagram

(a) simplicial complex
from sequential data

(d) simplex2vec
embeddings

(c) weighting scheme
80%

Community A

Community B

Figure 4.1: Schematic view of SIMPLEX2VEC. Starting from simplicial sequential
data (a), we construct a simplicial complex on whose Hasse diagram we sample
random walks (b) with different weighting (c), from which we construct the embed-
ding space (d).

We use real-world time-stamped data, indicated above with the collection D,
from different domains [BAS+18]: face-to-face proximity (“HIGH-SCHOOL” and
“PRIMARY-SCHOOL”), email exchange (“EMAIL-EU” and “EMAIL-ENRON”), on-
line tags (“TAGS-MATH”), US congress bills (“CONGRESS-BILLS”), coauthorships
(“COAUTH-HISTORY” and “COAUTH-GEOLOGY”). When the datasets came in pair-
wise format, we associated simplices to cliques obtained by integrating edge infor-
mation over short time intervals [BAS+18].

We considered, for all datasets, only nodes in the largest connected component
of the projected graph (two nodes of the projected graph are connected if they appear
in at least one simplex of D). In addition, to lighten the embedding computations,
for CONGRESS, TAGS and COAUTH datasets we apply a filtering approach in order
to reduce their sizes: similarly to [LNK07] with the Core set, here we selected the
nodes incident in at least 5 cliques in every temporal quartile (except in COAUTH-
HISTORY where we applied a threshold of 1 clique per temporal quartile). In
Table 4.1, we report statistics for every considered dataset after these pre-processing
steps (i.e., extraction of the largest projected component and filtering of unfrequent
nodes).

4.3.2 Training process and baseline methods

We build from Dtrain, disregarding time-stamps, a simplicial complex Ktrain

from which we sample random walk realizations for learning low-dimensional
embeddings. In all the experiments we train WORD2VEC1 on the Hasse diagram
GKtrain , running the CBOW model with window T = 10 and 5 epochs, and

1https://radimrehurek.com/gensim/

44

https://radimrehurek.com/gensim/

4.3. Experiments

sampling 10 random walks of length 80 for any simplex σ ∈ Ktrain, to obtain
D-dimensional feature representations vσ ∈ RD.

Due to the combinatorial explosion of the number of simplicial vertices in the
HD, we constrain the maximum order of the interactions to M ∈ {1, 2, 3} in a re-
duced Hasse diagram GKtrain,M (referred simply as KM from here). Consequently,
every simplex with a dimension larger than M is represented in KM by node combi-
nations of size up to M + 1. This reduction approach introduces a distortion on the
topology of the HD that might affect the final results, but on the other hand it allows
the application of the embedding algorithm to middle-sized systems. However,
scalability remains a concern when dealing with larger simplicial complexes. To
address this challenge, future work should focus on devising methods to properly
compute reduced complexes while keeping the topology unchanged [VDM13].
Alternatively, efforts can be directed towards efficiently limiting the complexity of
the embedding encoder [ZDW+19]. In Figure 4.1, we show the feature learning
process explained before.

To assess the reconstruction and prediction performances of the embedding
model, we compare our approach with several baseline methods:

• Projected metrics. Local and global node-level features computed from the
projected graph. The projected graph is defined as Gtrain = (V, E), where
V is the set of 0-simplices of Ktrain and E =

{
s ∈ Ktrain : |s| = 2

}
is the

set of links between training nodes that interacted in at least one simplex of
Dtrain. Moreover, edges (i, j) can be weighted with the number of simplices
of Dtrain containing both i and j. For triangles-related tasks we considered
several 3-way metrics computed with the code2 released by [BAS+18] (we
show the best performant: Harmonic mean, Geometric mean, Katz, PPR,
Logistic Regression). We exploited also the pairwise random walk measure
PPMIT [CM20], for tetrahedra-related tasks where 4-way implementations
of the above listed scores are not available. PPMI is widely used as similarity
function for node embeddings, and variations of the window size T allow us
to take into account both local and global information.

• Spectral embedding. Eigenvector features from the spectral decomposition
of combinatorial k-Laplacians [Gol02]. Given the set of boundary matri-
ces3 Bk ∈ {0,±1}Nk−1×Nk , the unweighted k-Laplacian Lk = BT

kBk +

Bk+1B
T
k+1 ≡ L↓

k + L↑
k encodes the adjacency information of k-simplices

with their lower-adjacent (k − 1)-faces (L↓
k) and upper-adjacent (k + 1)-

cofaces (L↑
k). The weighted k-Laplacian [CM21] is calculated with the

2https://github.com/arbenson/ScHoLP-Tutorial
3Boundary matrices require the definition of oriented simplices, see [BCI+20] for additional

details.

45

https://github.com/arbenson/ScHoLP-Tutorial

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

substitutions Bk → W
−1/2
k−1 BkW

1/2
k , where every Wk is a diagonal matrix

containing empirical counts for k-simplices4. Following the same procedure
used in graph spectral embeddings [BN03], we compute the eigenvectors ma-
trix Qk ∈ RNk×D corresponding to the first D smallest non-zero eigenvalues
of Lk and we use the rows of Qk as D-dimensional spectral embeddings for
k-simplices.

• k-SIMPLEX2VEC. Features learned with an extension of NODE2VEC [Hac20]5

that samples random walks from higher-order transition probabilities (e.g.,
edge-to-edge occurrences) in a single simplicial dimension. This model
is based on sampling from a uniform structure without taking into account
simplicial weights. We sample the same number of random walks per simplex,
with the same length, as the ones used for SIMPLEX2VEC.

4.3.3 Downstream Tasks

Classification of higher-order links

Similarly to the standard graph case, non-existing links are usually the majority
class in classification tasks and this imbalance is even more pronounced in the
higher-order case [ZCJC18] (in graphs we have O(|V|2) potential links, but the
number of potential hyperlinks/simplices is O(2|V|) in higher-order structures).
In our analyses we focus on 3-node and 4-node groups, reducing the number of
potential hyperedges to O(|V|3) and O(|V|4) respectively. Hence, we restrict the set
of possible interactions S to be exclusively closed triangles ∆, or closed tetrahedra
Θ, and the corresponding complementary sets U∆/Θ of unobserved groups:

∆ =
{
s ∈ Ktrain : |s| = 3

}
, U∆ =

(
V
3

)
\∆ (4.3)

Θ =
{
s ∈ Ktrain : |s| = 4

}
, UΘ =

(
V
4

)
\Θ (4.4)

where we used
(V
k

)
as the set of fixed-size node combinations. For a concise

presentation, in the next lines we describe mainly the 3-way case. In particular,
with the reconstruction task we aim to discern those triplets δ interacting as a group
in the training window [0, t(80)], and so δ ∈ ∆, from those that are groups of
lower-order simplices, meaning δ ∈ U∆. Moreover, defining ∆∗ as the set of new
closed interactions in the interval (t(80), t(100)], with the prediction task we aim to
classify those open groups δ̄ ∈ U∆ that will give rise to a simplicial closure on the

4Weights matrices satisfy the consistency relations Wk = |Bk+1|Wk+1, see [CM21] for further
details.

5https://github.com/celiahacker/k-simplex2vec

46

https://github.com/celiahacker/k-simplex2vec

4.3. Experiments

reconstruction task

Embedding training interval Future test interval

closed training
triangles

open training
structures

future closed
triangles

open test
structures

prediction task

Figure 4.2: Schematic description of classification tasks (reconstruction and pre-
diction) in the case of 3-node group interactions.

test time-span (δ̄ ∈ ∆∗) respect to those ones that remain open (δ̄ ∈ U∆ \ ∆∗)
on the same interval. In Figure 4.2, we sketch the task’s formulation based on
2-simplices (3-node configurations).

Using the learned simplicial embeddings we assign to each higher-order link
candidate δ a k-order similarity score based on the average pairwise inner product
among 0-simplex embeddings of nodes {vi, i ∈ δ} or any high-order k-simplices
{vσ, σ ⊂ δ}:

sk(δ) =
1

|
((δ

k+1)
2

)
|

∑
(σ,τ)∈((

δ
k+1)
2

)

vσ · vτ (4.5)

Likelihood scores of candidate higher-order links are assigned for the baseline
embedding models with the same metric of Equation (4.5) used for SIMPLEX2VEC.

Open configurations sampling

Positive examples, in reconstruction and prediction tasks, are trivial to find from
empirical data. For negative examples instead, enumerating all the unseen configu-
rations (respectively U∆ and UΘ for triangles and tetrahedra) is typically unfeasible.
Thus, we perform sampling of fixed-size groups of nodes to collect unseen in-
stances for the classification tasks. Sampling non-existing hyperedges may result
in different outcomes: an independent sampling of vertices most likely leads to
weakly tied groups of nodes that are unlikely to occur (thus easy to distinguish
from real higher-order links); instead, non-existing hyperedges obtained by slightly
perturbing observed interactions leads to strongly tied configurations that are more
similar to actual hyperlinks [YSSY20]. Studying the embedding performance in

47

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

Table 4.2: Number of unobserved configurations obtained with the sampling
approach in different datasets.

Dataset
Unseen configurations sampled from U∆

nE(×103)
0 1 2 3

HIGH-SCHOOL 3,476 1,150 107 25
EMAIL-EU 8,096 1,392 1,654 186
TAGS-MATH 6,229 2,473 5,467 1,725
COAUTH-HISTORY 9,958 30 60 2

Dataset
Unseen configurations sampled from UΘ

n∆(×103)
0 1 2 3 4

PRIMARY-SCHOOL 17,683 396 19 2 < 1
EMAIL-ENRON 7,048 400 28 2 < 1
CONGRESS-BILLS 1,462 1,264 325 149 80
COAUTH-GEOLOGY 15,473 593 30 3 < 1

downstream tasks, we consider the variety of open configurations as the structure
of internal connections changes. In practice, we sample stars, cliques and other
network motifs [PSM20] from the projected graph to collect group configurations
with distinct densities of lower-order interactions. We independently sample nodes
to obtain (more likely) groups with unconnected units. For each sampled 3-node
group δ we count the number of involved training edges nE(δ), and we analyze tasks
performances for open configurations characterized by fixing nE(δ) ∈ {0, 1, 2, 3}.
For 4-node configurations, instead of nE(δ), we consider the number of training
triangles n∆(δ) ∈ {0, 1, 2, 3, 4} to differentiate open groups. In Table 4.2 we
report the number of open configurations randomly selected from U∆ and UΘ. We
extracted with replacement 107 samples of candidate open configurations for each
pattern (stars, cliques, motifs, and independent node groups). Reported values
refer to the exact number of negative examples available for reconstruction tasks.
For prediction tasks instead, they may contain also future closed interactions (that
are anyway unobserved in the training interval) that must be subtracted to obtain
negative examples.

We claim that quantities nE(δ) and n∆(δ) are related to the concept of hardness
of non-hyperlinks [PSM20], i.e. the propensity of open groups to be misclassified
as closed interaction, and they influence the difficulty of downstream classification
tasks. In fact, increasing the number of lower-order faces -nE or n∆- engaged into
a fake hyperlink, the latter becomes more and more structurally similar to true
hyperlinks, making the classification task more difficult.

48

4.4. Results

0 1 2 3Ex
p

ec
te

d
 A

U
C

0 1 2 3Ex
p

ec
te

d
 A

U
C

(a)

0 1 2 3

0.5

0.8

1.0

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3co
au

th
-M

AG
-H

is
to

ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() k-simplex2vec - s0()

(b)

0 1 2 3

0.6

0.8

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3co
au

th
-M

AG
-H

is
to

ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() k-simplex2vec - s0()

(c)

s0 s1

0.5

0.8

1.0

co
nt

ac
t-

hi
gh

-s
ch

oo
l

s0 s1

em
ai

l-E
u

s0 s1
ta

gs
-m

at
h-

sx
s0 s1co

au
th

-M
AG

-H
is

to
ry

similarity scores
 (3-node groups with n () = 3)

AU
C-

PR

simplex2vec
k-simplex2vec

(d)

s0 s1

0.6

0.8

co
nt

ac
t-

hi
gh

-s
ch

oo
l

s0 s1

em
ai

l-E
u

s0 s1

ta
gs

-m
at

h-
sx

s0 s1co
au

th
-M

AG
-H

is
to

ry

similarity scores
 (3-node groups with n () = 3)

AU
C-

PR

simplex2vec
k-simplex2vec

Figure 4.3: Calibrated AUC-PR scores on 3-way link reconstruction (a)(c) and
prediction (b)(d) for SIMPLEX2VEC and k-SIMPLEX2VEC with: (a)(b) similarity
metric s0 varying the parameter nE ; (c)(d) similarity metric sk (with k in {0, 1})
on highly edge-dense open configurations (nE = 3). Metrics are computed in
unweighted representations, with SIMPLEX2VEC trained on Kk+1 when showing
results for metric sk. The label unbalancing in each sample is uniformly drawn
between 1:1 and 1:5000. A schematic view of positive and negative examples is
reported for each classification task.

4.4 Results

Here we show experimental results with 3-node configurations on datasets HIGH-
SCHOOL, EMAIL-EU, TAGS-MATH, COAUTH-HISTORY (Section 4.4.1) and with
4-node configurations on the remaining ones (Section 4.4.2). We highlight models
performance when using different embedding similarities sk(δ) on open configura-
tions with different nE(δ) or n∆(δ). For each case, the classification of triangles and
tetrahedra respectively, we examine: (i) the comparison with k-SIMPLEX2VEC em-
beddings in the unweighted scenario, to study how different embedding models
learn statistical patterns from the simplicial structure; (ii) the comparison with
classical metrics in the weighted scenario, to study how the addition of empir-

49

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

ical weights influences the embedding performance with respect to traditional
weighted approaches. We also include in Appendix B supplemental experiments
with hypergraph-based embeddings not shown in the main text.

Results are presented in terms of average binary classification scores, where
test sets are generated by randomly chosen open and closed groups. Contrarily
to previous work [BAS+18, CP20], we evaluate models without a fixed class
imbalance because we cannot access the entire negative classes (e.g., U∆ and
U∆ \∆∗ respectively in 3-way reconstruction and prediction). Instead, in every
test set we uniformly sample the cardinality of the two classes to be between 1
and the number of available samples according to the task. We report calibrated
AUC-PR scores [SFHG+20] to account for the difference in class imbalance as a
consequence of our sampling choice6.

In Figures 4.3 and 4.4, for a fair comparison with the other projected and
embedding metrics, we report the similarity sk training SIMPLEX2VEC on Kk+1.
For instance, when comparing node embedding performance (k=0), we use the
Hasse diagram K1 to neglect triadic and higher-order information not explicitly
incorporated with node-to-node proximities in k-SIMPLEX2VEC and spectral node
embeddings. Best average scores are chosen for embedding models with a search
on vector sizes D in the set {8, 16, 32, 64, 128, 256, 512, 1024}.

4.4.1 Reconstruction and prediction of triadic interactions

Comparison of pairwise node proximities with uniform weights

In Figure 4.3(a)(b), we show evaluation metrics on higher-order link classification
(reconstruction and prediction) for 3-way interactions, computed with unweighted
node-level information from different models, varying the quantity nE(δ) referred
to the open configurations. We recall that in this case k-SIMPLEX2VEC is equivalent
to the standard embedding of the projected graph. Hasse diagram K1 scores
s0(δ) computed with SIMPLEX2VEC perform overall better than proximities of the
projected graph (i.e., k-SIMPLEX2VEC scores) in almost all cases, meaning that the
information given by the pairwise structures is enriched by considering multiple
layers of interactions, even without leveraging interaction weights (both in Gtrain

and Ktrain).
Generally, we observe an expected decrease in performance for every model

with respect to parameter nE . For example, a few datasets show less sensitivity in
the performance of prediction tasks to variations of nE(δ) (e.g., EMAIL-EU). We
ascribe this difference to domain-specific effects and peculiarities of those datasets.
Embedding similarity s0(δ) from K1 diagram outperforms k-SIMPLEX2VEC prox-

6For this purpose we fix the reference class ratio π0 = 0.5. See [SFHG+20] for additional details.
We also tested the AUC-ROC metric with similar findings.

50

4.4. Results
Ta

bl
e

4.
3:

C
al

ib
ra

te
d

AU
C

-P
R

sc
or

es
on

3-
w

ay
lin

k
re

co
ns

tr
uc

tio
n

(t
op

)
an

d
pr

ed
ic

tio
n

(b
ot

to
m

),
w

ith
th

e
ha

rd
es

tc
la

ss
of

ne
ga

tiv
e

co
nfi

gu
ra

tio
ns

(n
E
=

3)
.T

he
be

st
sc

or
es

fo
r

di
ffe

re
nt

m
et

ho
ds

ar
e

re
po

rt
ed

in
bo

ld
fa

ce
le

tte
rs

;a
m

on
g

th
es

e
on

es
,t

he
be

st
ov

er
al

ls
co

re
is

bl
ue

-s
ha

de
d

an
d

th
e

se
co

nd
be

st
sc

or
e

is
gr

ey
-s

ha
de

d.

Fe
at

ur
es

Ty
pe

D
at

as
et

H
IG

H
-S

C
H

O
O

L
E

M
A

IL
-E

U
T

A
G

S-
M

A
T

H
C

O
A

U
T

H
-H

IS
TO

RY
s 0

(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

N
eu

ra
l

H
as

se
di

ag
ra

m
K

1

U
nw

ei
gh

te
d

57
.5
±

1.
9

51
.4
±

1.
2

72
.0
±

0.
3

64
.0
±

0.
2

66
.7
±

0.
2

57
.1
±

0.
1

41
.1
±

0.
9

75
.5
±

1.
1

C
ou

nt
s

79
.5
±

1.
0

84
.4
±

0.
9

76
.3
±

0.
4

73
.3
±

0.
2

80
.5
±

0.
1

87
.8
±

0.
1

41
.6
±

1.
0

76
.0
±

1.
1

LO
bi

as
81

.6
±

2.
4

89
.5
±

0.
8

76
.1
±

0.
3

71
.2
±

0.
2

76
.9
±

0.
1

83
.7
±

0.
1

41
.7
±

0.
7

57
.7
±

1.
2

E
m

be
dd

in
g

H
as

se
di

ag
ra

m
K

2

U
nw

ei
gh

te
d

55
.5
±

3.
0

99
.5
±

0.
1

61
.0
±

0.
4

97
.9
±

0.
0

66
.7
±

0.
1

95
.1
±

0.
0

40
.0
±

0.
5

83
.1
±

1.
3

C
ou

nt
s

57
.0
±

1.
3

91
.2
±

0.
9

54
.5
±

0.
2

92
.6
±

0.
1

66
.2
±

0.
1

89
.4
±

0.
1

35
.3
±

0.
4

82
.1
±

1.
3

LO
bi

as
84

.7
±

2.
2

91
.9
±

0.
8

80
.6
±

0.
3

81
.6
±

0.
2

77
.9
±

0.
1

84
.3
±

0.
1

57
.3
±

1.
0

70
.4
±

1.
4

E
Q

bi
as

72
.7
±

1.
1

89
.2
±

0.
7

71
.8
±

0.
3

75
.0
±

0.
2

78
.2
±

0.
2

88
.0
±

0.
1

39
.3
±

0.
7

87
.3
±

1.
1

Sp
ec

tr
al

C
om

bi
na

to
ri

al
L

ap
la

ci
an

s
U

nw
ei

gh
te

d
52

.4
±

3.
7

77
.0
±

1.
3

67
.3
±

0.
3

65
.3
±

0.
2

58
.4
±

0.
2

50
.7
±

0.
1

72
.1
±

1.
1

63
.5
±

1.
4

E
m

be
dd

in
g

W
ei

gh
te

d
70

.4
±

1.
6

75
.3
±

1.
6

79
.4
±

0.
2

76
.4
±

0.
1

79
.9
±

0.
1

50
.4
±

0.
1

82
.3
±

1.
0

68
.4
±

1.
2

Pr
oj

ec
te

d
H

ar
m

.m
ea

n

W
ei

gh
te

d

85
.5
±

1.
5

74
.0
±

0.
2

83
.1
±

0.
1

53
.3
±

1.
1

G
eo

m
.m

ea
n

85
.8
±

1.
1

72
.5
±

0.
2

86
.8
±

0.
1

52
.9
±

1.
3

M
et

ri
cs

K
at

z
78

.6
±

1.
1

65
.6
±

0.
2

81
.8
±

0.
1

49
.2
±

1.
5

PP
R

76
.9
±

1.
4

70
.7
±

0.
2

81
.8
±

0.
1

74
.8
±

1.
3

Fe
at

ur
es

Ty
pe

D
at

as
et

H
IG

H
-S

C
H

O
O

L
E

M
A

IL
-E

U
T

A
G

S-
M

A
T

H
C

O
A

U
T

H
-H

IS
TO

RY
s 0

(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

s 0
(δ
)

s 1
(δ
)

N
eu

ra
l

H
as

se
di

ag
ra

m
K

1

U
nw

ei
gh

te
d

62
.9
±

5.
2

50
.6
±

4.
7

68
.5
±

0.
7

57
.6
±

0.
5

63
.2
±

0.
3

54
.0
±

0.
5

69
.5
±

8.
2

63
.2
±

6.
6

C
ou

nt
s

74
.2
±

3.
0

73
.0
±

3.
4

74
.3
±

0.
8

67
.3
±

0.
7

74
.3
±

0.
4

84
.0
±

0.
3

68
.7
±

8.
4

66
.6
±

8.
6

LO
bi

as
70

.6
±

2.
8

65
.6
±

5.
3

70
.5
±

0.
6

64
.5
±

0.
8

71
.3
±

0.
5

79
.1
±

0.
5

68
.8
±

8.
7

66
.5
±

8.
7

E
m

be
dd

in
g

H
as

se
di

ag
ra

m
K

2

U
nw

ei
gh

te
d

62
.5
±

6.
3

69
.5
±

4.
9

66
.2
±

0.
7

67
.8
±

0.
6

62
.5
±

0.
2

83
.1
±

0.
2

65
.9
±

8.
5

55
.6
±

8.
0

C
ou

nt
s

64
.3
±

3.
6

72
.8
±

3.
6

61
.8
±

0.
7

69
.1
±

0.
6

62
.9
±

0.
3

82
.3
±

0.
3

67
.3
±

8.
2

61
.0
±

9.
6

LO
bi

as
69

.7
±

3.
5

65
.4
±

5.
1

69
.0
±

0.
6

60
.3
±

0.
6

71
.2
±

0.
7

79
.2
±

0.
4

67
.3
±

7.
9

64
.2
±

9.
6

E
Q

bi
as

72
.4
±

3.
6

73
.5
±

3.
5

71
.3
±

0.
6

66
.1
±

0.
6

71
.2
±

0.
4

82
.3
±

0.
3

67
.8
±

8.
6

65
.7
±

9.
3

Sp
ec

tr
al

C
om

bi
na

to
ri

al
L

ap
la

ci
an

s
U

nw
ei

gh
te

d
56

.4
±

3.
6

56
.7
±

6.
8

63
.8
±

0.
6

53
.5
±

0.
7

55
.1
±

0.
2

50
.4
±

0.
2

57
.8
±

6.
0

56
.4
±

5.
7

E
m

be
dd

in
g

W
ei

gh
te

d
66

.5
±

5.
3

56
.1
±

6.
5

65
.2
±

0.
8

55
.6
±

0.
7

72
.8
±

0.
4

50
.3
±

0.
3

70
.1
±

8.
3

53
.5
±

6.
8

Pr
oj

ec
te

d
H

ar
m

.m
ea

n

W
ei

gh
te

d

71
.4
±

4.
3

64
.5
±

0.
8

79
.0
±

0.
2

61
.6
±

8.
2

G
eo

m
.m

ea
n

73
.1
±

3.
8

66
.7
±

0.
8

83
.3
±

0.
2

62
.4
±

7.
7

M
et

ri
cs

K
at

z
69

.3
±

3.
7

63
.2
±

0.
6

77
.8
±

0.
3

62
.4
±

7.
0

PP
R

69
.8
±

3.
9

68
.8
±

0.
5

75
.7
±

0.
4

57
.7
±

4.
6

L
og

is
tic

R
eg

re
ss

io
n

U
nw

ei
gh

te
d

68
.7
±

3.
1

68
.1
±

0.
7

81
.2
±

0.
2

65
.4
±

6.
9

51

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

imities in almost every reconstruction task, except for COAUTH-HISTORY on open
configurations with nE = 3. This fact seems connected with some specific graph
features of collaborations (even possibly related to the filtering approach utilized).
Moreover, coauthorship relations usually are not characterized by subset dependen-
cies (writing a paper as a group does not imply pairwise collaborations) that are
encoded with simplicial complexes. In prediction tasks, we observe the same advan-
tage of SIMPLEX2VEC respect to k-SIMPLEX2VEC, except in HIGH-SCHOOL where
the models perform similarly on nE < 2.

Comparison of higher-order edge proximities with uniform weights

In the previous sections, the metric s0(δ) was computed from feature representations
of 0-simplices. Here we analyze instead how performances change when we
use embedding representations of 1-simplices (edge representations) to compute
s1(δ). Intuitively, group representations like 1-simplex embeddings should convey
higher-order information useful to improve classification with respect to node-level
features.

In Figure 4.3(c)(d), we show evaluation metrics on higher-order link classifi-
cation for 3-way interactions, comparing unweighted node-level and edge-level
information from different models, fixing the quantity nE(δ) = 3 referred to the
open configurations. We consider fully connected triangle configurations because,
besides being the harder configurations to be classified, they consist of the set of
links necessary to compute s1(δ).

Generally, we notice an increase in classification scores when using s1(δ) simi-
larity rather s0(δ) with SIMPLEX2VEC embeddings, instead k-SIMPLEX2VEC exhibits
reduced gains in most datasets. The SIMPLEX2VEC performance gain is quite large
(between 30% and 100%) in all reconstruction tasks, and for prediction tasks it is
noticeable on HIGH-SCHOOL and TAGS-MATH while it is even negative on COAUTH-
HISTORY. Regarding the latter dataset, the use of edge-level similarity balances the
node-level reconstruction loss noticed in Figure 4.3(a).

Role of simplicial weights

Previously we showed that feature representations learned through the hierarchical
organization of the HD enhance the classification accuracy of closed triangles when
considering unweighted complexes. We now integrate these results by studying the
effect of introducing weights. In particular, we analyze the importance of weighted
interactions in our framework, focusing on the case where fully connected open
triangles are the negative examples for downstream tasks.

On the top of Table 4.3, we show higher-order link reconstruction results.
Simplicial similarity s1(δ) on the unweighted HD K2 outperforms all other methods,
in particular weighted metrics based on Laplacian similarity and projected graph

52

4.4. Results

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

(a)

0 1 2 3 4

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() k-simplex2vec - s0()

(b)

0 1 2 3 4

0.6

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() k-simplex2vec - s0()

(c)

s0 s1 s2

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

s0 s1 s2

em
ai

l-E
nr

on

s0 s1 s2
co

ng
re

ss
-b

ill
s

s0 s1 s2co
au

th
-M

AG
-G

eo
lo

gy

similarity scores
 (4-node groups with n () = 4)

AU
C-

PR

simplex2vec
k-simplex2vec

(d)

s0 s1 s2

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

s0 s1 s2

em
ai

l-E
nr

on

s0 s1 s2

co
ng

re
ss

-b
ill

s

s0 s1 s2co
au

th
-M

AG
-G

eo
lo

gy

similarity scores
 (4-node groups with n () = 4)

AU
C-

PR

simplex2vec
k-simplex2vec

Figure 4.4: Calibrated AUC-PR scores on 4-way link reconstruction (a)(c) and
prediction (b)(d) for SIMPLEX2VEC and k-SIMPLEX2VEC with: (a)(b) similarity
metric s0 varying the parameter n∆; (c)(d) similarity metric sk (with k in {0, 1, 2})
on highly triangle-dense open configurations (n∆ = 4). Metrics are computed in
unweighted representations, with SIMPLEX2VEC trained on Kk+1 when showing
results for metric sk. Label unbalancing in each sample is uniformly drawn between
1:1 and 1:5000. A schematic view of positive and negative examples is reported for
each classification task.

geometric mean, allowing almost perfect reconstruction in 3 out of 4 datasets.
Compared with projected graph metrics, this was expected since 3-way information
is incorporated in K2, and the optimal scores reflect the goodness of fit of the
embedding algorithm. Weighting schemes Counts and EQbias also obtain excellent
scores with s1(δ) metric, while metric s0(δ) benefits from the use of LObias weights.
Differently, even simplicial similarity s1(δ) on Hasse diagram K1 outperforms
baseline scores in half of the datasets (with weighting schemes Counts and LObias),
showing the feasibility of reconstructing 2-order interactions from weighted lower-
order simplices (vertices in K1 are simplices of dimension 0 and 1) similarly to
previous work on hypergraph reconstruction [YPP21].

On the bottom of Table 4.3, we show higher-order link prediction results. SIM-

53

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

PLEX2VEC embeddings trained on K1 with Counts and EQbias weights give better
results: in HIGH-SCHOOL and EMAIL-EU with s0(δ) metric, in TAGS-MATH with
s1(δ) metric. In dataset COAUTH-HISTORY the unweighted s0(δ) score is out-
performed uniquely by the weighted L0 embedding, with weighted simplicial
counterparts resulting in similar performances. In the space of projected graph
scores, good results are obtained with geometric mean and logistic regression,
which were among the best metrics in one of the seminal works on higher-order
link prediction [BAS+18].

Overall, we observe that weighting schemes for neural simplicial embeddings
overall positively contribute to classification tasks both for reconstruction and
prediction.

4.4.2 Reconstruction and prediction of tetradic interactions

Unweighted case

In Figure 4.4(a), we show node-level evaluation metrics for 4-way higher-order
reconstruction. Metric s0(δ) of SIMPLEX2VEC computed on K1 shows overall
slightly better performances respect to k-SIMPLEX2VEC similarities, especially
when the density of triangles is low (n∆ < 3). In COAUTH-GEOLOGY we observe
also a remarkable increment of k-SIMPLEX2VEC reconstruction scores for negative
examples with increasing n∆(δ), and this is also observable in EMAIL-ENRON.

In Figure 4.4(b), we report node-level evaluation metrics for 4-way higher-
order prediction. Node-level SIMPLEX2VEC embedding performs better than k-
SIMPLEX2VEC, on PRIMARY-SCHOOL and, to a lesser extent, on COAUTH-GEOLOGY.
In EMAIL-ENRON and CONGRESS-BILLS SIMPLEX2VEC performance increases when
the density of triangles is low (n∆ < 3).

Higher-order similarity measures from k-SIMPLEX2VEC in Figure 4.4(c)(d), are
outperformed by the SIMPLEX2VEC ones in many cases, especially s2(δ) metric for
PRIMARY-SCHOOL, EMAIL-ENRON and CONGRESS-BILLS in reconstruction tasks. In
prediction tasks over EMAIL-ENRON and COAUTH-GEOLOGY, SIMPLEX2VEC obtains
mainly good results overcoming the simplicial baseline. These results generally
confirm our previous findings on 3-way tasks, which displayed an increasing classifi-
cation capability when using higher-order proximities sk (k > 0) for SIMPLEX2VEC.

Weighted case

On the top of Table 4.4, we show reconstruction scores of tetrahedra, when simpli-
cial embeddings are trained on Hasse diagram K2 and negative examples are given
by open 4-way configurations with four triangular faces. Due to K2 characteristics,
features learned from the simplicial complex are not aware of tetrahedral structures
and this task results on reconstructing 4-node groups from training data with most

54

4.4. Results
Ta

bl
e

4.
4:

C
al

ib
ra

te
d

AU
C

-P
R

sc
or

es
on

4-
w

ay
lin

k
re

co
ns

tr
uc

tio
n

(t
op

)
an

d
pr

ed
ic

tio
n

(b
ot

to
m

),
w

ith
th

e
ha

rd
es

tc
la

ss
of

ne
ga

tiv
e

co
nfi

gu
ra

tio
ns

(n
∆
=

4)
.T

he
be

st
sc

or
es

fo
r

di
ffe

re
nt

m
et

ho
ds

ar
e

re
po

rt
ed

in
bo

ld
fa

ce
le

tte
rs

;a
m

on
g

th
es

e
on

es
,t

he
be

st
ov

er
al

ls
co

re
is

bl
ue

-s
ha

de
d

an
d

th
e

se
co

nd
be

st
sc

or
e

is
gr

ey
-s

ha
de

d.

D
at

as
et

N
eu

ra
lE

m
be

dd
in

g
(H

as
se

di
ag

ra
m

K
2

)
Sp

ec
tr

al
E

m
be

dd
in

g
(C

om
bi

na
to

ri
al

L
ap

la
ci

an
s)

Pr
oj

ec
te

d
G

ra
ph

PP
M

IM
et

ri
c

s 0
(δ
)

s 1
(δ
)

s 2
(δ
)

s 0
(δ
)

s 1
(δ
)

s 2
(δ
)

T
=

1
T

=
1
0

T
=

∞

PR
IM

A
RY

-S
C

H
O

O
L

U
nw

ei
gh

te
d

52
.9
±

3.
3

45
.2
±

2.
7

64
.5
±

2.
8

U
nw

ei
gh

te
d

52
.1
±

3.
8

58
.2
±

2.
0

53
.4
±

3.
0

51
.5
±

3.
1

50
.2
±

3.
0

50
.2
±

3.
0

C
ou

nt
s

48
.4
±

3.
0

46
.2
±

2.
8

59
.1
±

3.
3

LO
bi

as
50

.6
±

3.
2

61
.6
±

3.
3

70
.7
±

3.
9

W
ei

gh
te

d
54

.0
±

2.
8

55
.9
±

2.
8

53
.4
±

2.
1

47
.9
±

3.
1

47
.0
±

2.
7

48
.5
±

2.
5

E
Q

bi
as

45
.2
±

3.
6

47
.0
±

3.
0

58
.5
±

3.
3

E
M

A
IL

-E
N

R
O

N

U
nw

ei
gh

te
d

69
.0
±

0.
4

56
.0
±

0.
4

58
.2
±

0.
3

U
nw

ei
gh

te
d

69
.0
±

0.
5

68
.0
±

0.
4

55
.5
±

0.
3

68
.5
±

0.
4

66
.7
±

0.
5

66
.9
±

0.
4

C
ou

nt
s

60
.6
±

0.
5

61
.3
±

0.
5

54
.0
±

0.
4

LO
bi

as
68

.0
±

0.
5

46
.5
±

0.
5

57
.4
±

0.
5

W
ei

gh
te

d
71

.1
±

0.
4

79
.0
±

0.
3

76
.9
±

0.
2

58
.3
±

0.
4

57
.9
±

0.
5

62
.0
±

0.
5

E
Q

bi
as

62
.1
±

0.
7

44
.4
±

0.
3

53
.1
±

0.
4

C
O

N
G

R
E

SS
-B

IL
L

S

U
nw

ei
gh

te
d

63
.1
±

0.
2

64
.4
±

0.
1

51
.8
±

0.
2

U
nw

ei
gh

te
d

56
.1
±

0.
2

58
.4
±

0.
1

49
.8
±

0.
1

65
.9
±

0.
1

66
.0
±

0.
1

65
.9
±

0.
1

C
ou

nt
s

43
.1
±

0.
1

70
.4
±

0.
1

72
.5
±

0.
1

LO
bi

as
49

.0
±

0.
1

74
.2
±

0.
1

60
.6
±

0.
2

W
ei

gh
te

d
55

.0
±

0.
1

62
.8
±

0.
2

55
.3
±

0.
2

49
.1
±

0.
1

47
.8
±

0.
1

47
.3
±

0.
1

E
Q

bi
as

65
.7
±

0.
2

69
.0
±

0.
1

74
.2
±

0.
1

C
O

A
U

T
H

-G
E

O
L

O
G

Y

U
nw

ei
gh

te
d

71
.6
±

0.
5

34
.6
±

0.
3

84
.2
±

0.
7

U
nw

ei
gh

te
d

62
.6
±

0.
6

61
.7
±

0.
9

49
.3
±

0.
9

86
.0
±

0.
4

77
.8
±

0.
4

75
.5
±

0.
5

C
ou

nt
s

40
.5
±

0.
3

36
.2
±

0.
4

74
.1
±

0.
3

LO
bi

as
64

.1
±

0.
5

34
.4
±

0.
3

73
.3
±

0.
5

W
ei

gh
te

d
85

.8
±

0.
7

65
.7
±

0.
5

44
.9
±

0.
7

76
.3
±

0.
6

71
.9
±

0.
5

70
.6
±

0.
6

E
Q

bi
as

36
.7
±

0.
3

37
.5
±

0.
2

79
.2
±

0.
4

D
at

as
et

N
eu

ra
lE

m
be

dd
in

g
(H

as
se

di
ag

ra
m

K
3

)
Sp

ec
tr

al
E

m
be

dd
in

g
(C

om
bi

na
to

ri
al

L
ap

la
ci

an
s)

Pr
oj

ec
te

d
G

ra
ph

PP
M

IM
et

ri
c

s 0
(δ
)

s 1
(δ
)

s 2
(δ
)

s 0
(δ
)

s 1
(δ
)

s 2
(δ
)

T
=

1
T

=
1
0

T
=

∞

PR
IM

A
RY

-S
C

H
O

O
L

U
nw

ei
gh

te
d

56
.4
±

1.
8

58
.6
±

2.
3

66
.8
±

2.
4

U
nw

ei
gh

te
d

82
.1
±

4.
0

85
.4
±

1.
7

85
.9
±

3.
1

49
.3
±

2.
2

45
.8
±

1.
6

45
.7
±

1.
7

C
ou

nt
s

63
.0
±

2.
7

67
.8
±

0.
7

72
.2
±

1.
6

LO
bi

as
60

.4
±

1.
6

61
.2
±

2.
2

62
.4
±

2.
6

W
ei

gh
te

d
57

.8
±

2.
4

81
.3
±

4.
4

70
.6
±

1.
5

61
.1
±

2.
3

47
.4
±

1.
6

48
.6
±

1.
6

E
Q

bi
as

62
.7
±

2.
0

65
.6
±

1.
2

68
.3
±

2.
2

E
M

A
IL

-E
N

R
O

N

U
nw

ei
gh

te
d

88
.3
±

6.
6

98
.0
±

2.
1

96
.9
±

2.
3

U
nw

ei
gh

te
d

92
.7
±

2.
9

67
.6
±

5.
7

97
.1
±

1.
8

50
.3
±

0.
2

50
.9
±

0.
5

50
.8
±

0.
5

C
ou

nt
s

77
.0
±

5.
6

88
.7
±

4.
0

83
.5
±

4.
5

LO
bi

as
60

.5
±

3.
1

73
.7
±

5.
4

88
.4
±

4.
0

W
ei

gh
te

d
84

.8
±

5.
6

88
.7
±

3.
7

95
.8
±

2.
4

55
.8
±

2.
2

53
.3
±

1.
3

54
.7
±

1.
5

E
Q

bi
as

57
.9
±

2.
5

84
.9
±

3.
6

80
.4
±

5.
6

C
O

N
G

R
E

SS
-B

IL
L

S

U
nw

ei
gh

te
d

47
.9
±

0.
1

34
.0
±

0.
0

77
.7
±

0.
3

U
nw

ei
gh

te
d

60
.8
±

0.
2

64
.3
±

0.
3

48
.8
±

0.
2

74
.7
±

0.
2

74
.7
±

0.
2

74
.7
±

0.
2

C
ou

nt
s

49
.9
±

0.
2

37
.4
±

0.
1

74
.6
±

0.
3

LO
bi

as
40

.2
±

0.
2

76
.9
±

0.
3

74
.0
±

0.
3

W
ei

gh
te

d
40

.2
±

0.
1

53
.1
±

0.
3

50
.8
±

0.
2

40
.2
±

0.
1

40
.8
±

0.
1

40
.2
±

0.
1

E
Q

bi
as

64
.2
±

0.
2

58
.4
±

0.
3

71
.4
±

0.
2

C
O

A
U

T
H

-G
E

O
L

O
G

Y
U

nw
ei

gh
te

d
55

.1
±

7.
7

60
.1
±

7.
2

74
.8
±

4.
8

U
nw

ei
gh

te
d

57
.0
±

6.
9

48
.1
±

7.
8

52
.1
±

7.
3

50
.7
±

3.
5

54
.6
±

6.
3

55
.3
±

7.
4

C
ou

nt
s

54
.0
±

5.
9

74
.1
±

3.
6

78
.6
±

4.
4

LO
bi

as
75

.9
±

5.
0

84
.2
±

2.
9

73
.9
±

4.
3

W
ei

gh
te

d
88

.5
±

3.
2

52
.0
±

7.
7

52
.7
±

7.
3

54
.9
±

4.
5

56
.1
±

5.
9

55
.3
±

4.
8

E
Q

bi
as

51
.3
±

4.
7

76
.1
±

4.
3

72
.8
±

6.
1

55

Chapter 4. Representation Learning on Simplicial Complexes for
Effective Higher-Order Link Prediction and Reconstruction

triadic structures. Previous work analyzed the problem of higher-order edge recon-
struction from pairwise data [YPP21], but here we focus on a not previously studied
task based on triadic data. From the comparison with spectral embeddings and
PPMI proximities, we notice that SIMPLEX2VEC weighted s2(δ) similarity (LObias
and EQbias) is the best on half of the datasets in classifying closed tetrahedra
respect to triangle-rich open groups. In EMAIL-ENRON weighted L1 embedding
outperforms the unweighted (and weighted ones) s0(δ) simplicial metric, while in
COAUTH-GEOLOGY the best score is given by the unweighted PPMI1 (which is also
the best projected metric in the other 3 datasets).

On the bottom of Table 4.4, we report classification scores for the prediction
of simplicial closures on tetrahedra, when neural embeddings are trained on Hasse
diagram K3 (we empirically observed better results with respect to K2). We compare
these results with spectral embeddings and PPMI projected metrics in predicting
which mostly triangle-dense configurations will close in a tetrahedron in the last
20% of data. Unusually, best scores obtained with SIMPLEX2VEC come from the
unweighted setting in EMAIL-ENRON and CONGRESS-BILLS with respectively s1(δ)
and s2(δ) metrics. There is not a unique best metric, which was also observed
in the 3-way prediction reports at the bottom of Table 4.3. Spectral embedding
outperforms neural methods for PRIMARY-SCHOOL (unweighted s2) and COAUTH-
GEOLOGY (weighted s0).

4.5 Summary

In this chapter, we introduce SIMPLEX2VEC for representation learning on simplicial
complexes. In particular, we focus on formalizing network reconstruction and link
prediction tasks for higher-order structures, and we test the proposed model on
solving such downstream tasks. We show that SIMPLEX2VEC-based representations
are more effective in classification than traditional approaches and previous higher-
order embedding methods. In our experiments, we prove the feasibility of using
simplicial embedding of Hasse diagrams in reconstructing the system’s polyadic
interactions from lower-order edges, in addition to adequately predicting future
simplicial closures.

In conclusion, the employment of SIMPLEX2VEC for representation learning on
simplicial complexes opens up new possibilities for understanding and modeling
higher-order complex systems. The ability to reconstruct and predict links in
these structures can provide valuable insights into the underlying dynamics of
such systems. SIMPLEX2VEC enables the investigation of the impact of different
topological features, and we showed that weighted and unweighted models have
different predictive power. Overall, tools for learning representations of higher-
order systems are promising for understanding and predicting complex behavior.

56

CHAPTER5
Interpretability of Dimensions in Node

Representations for Graphs

THE main goal of graph representation learning is to convert the vertices
of a graph into a latent vector space through the computation of node
representations [HYL17b]. Unsupervised node embeddings are commonly

used to achieve this by optimizing a structural prediction task and encoding graph
proximity relationships into the embedding space. These techniques are widely
used in web and social network analysis for tasks such as link prediction and
community detection [Ham20]. However, there is a lack of comprehension of how to
interpret the dimensions of these embeddings in a way that is easily understandable
by humans [WYT+19, LHLH18, KMA21]. This chapter aims to address this
gap by providing an important missing aspect for the interpretability of node
representations.

The individual dimensions of node embeddings are often challenging to interpret
[LHLH18, DG18, GBH19]. They are not easily understandable to humans because
there is no emphasis on making the embedding dimensions interpretable during
the learning process. As a result, it is unclear how the resulting embedding entries
relate to understandable properties of the input graph. Previous research on the
interpretability of node embeddings has mainly focused on two aspects. Firstly,

57

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

some studies have attempted to map dimensions to ground-truth node labels, when
they are available [GBH19, DNA19]. Secondly, there have been efforts to check
if specific node properties, such as node centrality or clustering coefficient, are
encoded in embeddings for a given prediction task [DG18,BKB+19]. Our proposed
methods aim to retrofit existing node embeddings to make latent dimensions more
interpretable, an important aspect that has not been explored in prior works for
graph representation learning.

The main objective of this chapter is to understand the meaning of the dimen-
sions in node embeddings and associate them with understandable structural units
of the input graph. Even though this is a post-hoc approach, we cannot use the
existing tools for interpreting prediction models as they are mainly designed for
supervised tasks [RSG16, LL17]. We will analyze unsupervised node embeddings
to find evidence for interpretable latent units associated with semantic concepts
of the input data. Given this as the principal objective, we summarize the major
contributions of this chapter as follows:

• We propose a novel per-dimension measure of interpretability that is grounded
in game-theoretic notions.

• We propose a new, modular, and simple approach that aims to enhance the
interpretability of the embedding dimensions by reconfiguring existing node
representations.

• We experimentally show clear gains in the interpretability-performance trade-
offs using our retrofitting approach in comparison with competitive available
methods.

We propose to use communities as interpretable semantic concepts of the input
data, as many real-world graphs have an underlying community structure [GN02].
To interpret any latent dimension d of node embeddings, we firstly establish an
importance measure -µd(u,v)- based on score contributions when predicting the
occurrence of edge (u, v). By constructing saliency maps for dimensions (refer
to Figure 5.1), we can recognize groups of edges (salient subgraphs induced by
our importance measure). We also define metrics to quantify the interpretability
of latent dimensions by assessing the degree of association with individual graph
communities, in addition to the sparsity level of these associations. As an exam-
ple, in Figure 5.1(a), most of the DEEPWALK dimensions are not immediately
interpretable since they do not clearly match with a single clique of the synthetic
graph. To quantify this “degree of matching”, we introduce a score Id and use it as
a dimension-wise community-aware interpretability score.

Secondly, we propose a novel modular approach to improve the interpretability
of existing node representations. The approach, based on autoencoder architectures

58

5.1. Related Work

[Bal12], maps the input embeddings into a new sparse, interpretable, and low-
entropy vector space. Figure 5.1(b) shows the result of this post-processing step
on DEEPWALK vectors. Moreover, the autoencoder’s representational power also
preserves the topological graph information to be used in usual downstream tasks
with minimal performance loss. We conduct extensive experimental evaluations
comparing our approach to other embedding methods in terms of interpretability,
link prediction performance, and scalability over multiple synthetic and real-world
graph datasets. Empirical results show that our retrofitting approach consistently
outperforms existing baselines in terms of per-dimension interpretability, with
minimal or no performance losses under most experimental conditions.

5.1 Related Work

5.1.1 Interpretability for node embeddings

From the node embeddings perspective, interpretability is a multi-faceted concept
that has been studied from different angles. In [DG18, BKB+19] authors investi-
gate, by means of prediction tasks, whether specific topological graph features (e.g.,
degree centrality, clustering coefficient, etc.) are encoded into node representations.
These works significantly differ from our approach, where the aim is to find the
interpretable meaning of embedding dimensions, associating single dimensions
with interpretable graph structures (e.g., communities). Other methods that focus
on explaining individual dimensions [GBH19, KMA21] do not optimize graph re-
construction and edge prediction, as the method presented here does. In [LHLH18]
global interpretations are given in the form of a hierarchy of graph partitions, but
they do not focus on interpreting single dimensions. Instead, [WYT+19] study the
impact on learned node embeddings when removing edges from the input graph.
Another line of research focuses on producing interpretable-by-design represen-
tations based on graph clustering [DNA19], which are conceptually analogous to
community-preserving node embeddings [WCW+17, RDSS19].

5.1.2 Interpretability for link prediction

Our approach focuses on the interpretation of embedding dimensions according
to graph structural reconstruction task, and it is conceptually similar to methods
for the interpretability of embedding-based link prediction. For instance, Ex-
plaiNE [KLDB22] quantify the variation in the probability of a link when adding
or removing neighboring edges. In the same way, many methods have been pro-
posed for explaining link prediction in knowledge graphs [RFMT22, ZPZ+19], but
these works differ from our approach since we aim to quantify the most influential
representation dimensions in scoring links, whereas those methods focus on iden-
tifying other relevant links that enable a given prediction. Moreover, the task of

59

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

(a) DEEPWALK

dimension 0
I0 = 0.709

dimension 1
I1 = 0.638

dimension 2
I2 = 0.603

dimension 3
I3 = 0.542

dimension 4
I4 = 0.533

dimension 5
I5 = 0.476

dimension 6
I6 = 0.369

dimension 7
I7 = 0.309

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0 edge utility score

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0 edge utility score

(b) RF-DEEPWALK

dimension 0
I0 = 0.989

dimension 1
I1 = 0.957

dimension 2
I2 = 0.957

dimension 3
I3 = 0.938

dimension 4
I4 = 0.938

dimension 5
I5 = 0.928

dimension 6
I6 = 0.928

dimension 7
I7 = 0.918

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0 edge utility score

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0 edge utility score

Figure 5.1: Saliency plots with per-dimension edge utilities (normalized between 0
and 1) for 8-dim embeddings trained on a graph generated via Stochastic Block
Model [Abb17]. The figures show edge utility scores and interpretability metrics
when using: DEEPWALK embeddings (a), and retrofitted RF-DEEPWALK embed-
dings (b). Graphs have 80 nodes divided into 8 fully connected cliques.

60

5.2. Methods Description

interpreting link prediction has been used to generate explanations in graph-based
recommendations [GBSRW20, PKFD20].

5.1.3 Interpretability for word embeddings

Since part of the literature on graph representation learning is built upon word
embeddings, methods for interpreting such representations are also relevant for the
graph domain. Previous works in this area focus on interpreting word embedding
dimensions based on semantic information [PDCM22, ŞUY+18], or analyzing
geometric properties of the embedding space [SMF18,PBO17]. Several studies also
show different approaches to learning interpretable representations by design, where
the main goal is achieving sparsity [SGL+16, CZ17], or by leveraging on external
lexicon-based resources [BAMK16, ŞUŞ+20]. Another category of techniques
consists of retrofitting pre-trained models (e.g., WORD2VEC or GLOVE [PSM14])
to improve their interpretability. These post-processing methods can be supervised
approaches that utilize semantic information [FDJ+15, JDH15], or unsupervised
transformations that convert dense word vectors into sparse, overcomplete represen-
tations [SPJ+18, FTY+15].

5.2 Methods Description

In this part, we first present a novel methodology to quantify the per-dimension
interpretability of node embeddings (Sections 5.2.1 and 5.2.2). Then, in Section
5.2.3 we introduce a retrofitting approach to reconfigure existing node embeddings,
making them more interpretable according to previously defined metrics. We will
refer to u as the embedding vectors of node u ∈ V mapped through an encoder enc,
and with ud as entries of these vectors corresponding to dimension d. Embedding
vectors are collected into the entries of the embedding matrix V ∈ R|V|×D, i.e.
Vud = ud. Later we will refer to D as the cardinality of the set Ω = {1, . . . , D}
containing the enumerated dimensions.

5.2.1 Importance-based utility of latent dimensions with edge scoring

The score returned by the decoder function dec(u,v) can be used to perform
edge reconstruction, i.e. assessing the occurrence of edges (u, v): the higher the
score, the higher the likelihood of observing the link on the input graph. Here we
consider popular methods such as DEEPWALK and NODE2VEC, where the decoder
dec(u,v) ≡ σ(u · v), i.e. the sigmoid of the inner product of the embedding
vectors. Let us define a decoder for any subset of dimensions B ⊆ Ω replacing σ

61

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

with a linear scoring function ξB : R|B| × R|B| → R, defined as:

ξB(u,v) =
1

|B|
∑
d∈B

udvd (5.1)

To study the interpretability of node embeddings, we calculate the contribution
score of a single dimension d in the reconstruction of edge (u, v) as:

µd(u,v) = ξΩ(u,v)− ξΩ\{d}(u,v) (5.2)

This measure quantifies the variation of the likelihood function ξΩ when removing
dimension d from the whole set of embedding directions. Given a well-known result
from cooperative game theory [Sha16], a theoretically principled contribution score
is given by the Shapley value, which takes into account the marginal importance of
a feature across all possible subsets of dimensions:

ϕd(u,v) =
∑

B⊆Ω\{d}

|B|! (|Ω| − |B| − 1)!

|Ω|!
[
ξB∪{d}(u,v)− ξB(u,v)

]
(5.3)

where the difference
[
ξB∪{d}(u,v)− ξB(u,v)

]
corresponds to the marginal utility

of adding d to the coalitional set of dimensions B ⊂ Ω. Since the exhaustive
computation of all coalitional contributions requires exponential time complexity,
in place of ϕd we rely on the utility score µd in Equation (5.2), which is based only
on maximal coalitions (with B = Ω \ {d}). This simple yet effective approach has
a tractable computational complexity and attributes feature importance based on
the effect of isolated dimensions.

Although previous work studied how to explain embedding dimensions by
looking at feature values [GBH19, ŞUY+18, DNA19], we argue that studying the
influence of dimensions on edge scores is more appropriate because it relies on
the same functional dependency that is optimized during model training, i.e. the
decoder. For this reason, from here we will rely on the above utility scores to define
the interpretability of embeddings. Since we have not made any other assumption
about the embeddings, apart from the inner product decoder, this procedure is
appropriate for a broad range of representation learning models. In particular, both
dense and sparse vector embeddings can be evaluated with this framework.

5.2.2 Interpretability metrics for latent dimensions

We define metrics to quantify the interpretability of dimensions based on their
marginal utilities µd(u,v). To evaluate the interpretability of a dimension d, we
look at the set of edges with positive marginal utility. By considering only values
greater than 0, we look at multiple induced subgraphs {Gd}d∈Ω with edge sets
Ed = {(u, v) ∈ E : µd(u,v) > 0} that highlight relevant structures in different

62

5.2. Methods Description

dimensions. The focus is on positive payoffs because our main interest is to find
those dimensions that are more effective in predicting a given edge, and we will
leave the analysis of negative effects for future work.

Our goal is to relate “utility-induced“ subgraphs to factors of the input graph
that are easy for humans to understand. Since we are working with unattributed and
homogeneous graphs, these factors can be seen as important structural components,
which we identify with the communities of the graph. In reality, communities
are one of the fundamental organizing principles in real-world graphs [GN02],
where sets of nodes group into densely connected clusters due to specific affinities,
and they appear as a reasonable choice to identify the meaning of representation
dimensions.

In the following paragraphs, we introduce two interpretability metrics in terms
of: (i) level of matching between per-dimension subgraphs {Gd}d∈Ω and the com-
munity structure; (ii) level of sparsity of edge subgraphs {Ed}d∈Ω.

Community-aware metric

We evaluate community-aware interpretability measuring the relevance of edges
Ed with retrieval scores. This procedure is conceptually similar to evaluation
methods used in node-based community detection [YL13], but here adopts an
edge-based approach. Starting from extracted link partitions P = {P1,P2, . . . }
and a membership function π : E → P , we define precision and recall metrics:

precision(Ed,Pi) =
|{(u, v) ∈ Ed : π(u, v) = Pi}|

|Ed|
(5.4)

recall(Ed,Pi) =
|{(u, v) ∈ Ed : π(u, v) = Pi}|

|Pi|
(5.5)

In this way we can determine the partition P̂d which better matches with dimension
d, plus the corresponding interpretability score Id:

P̂d = argmax
Pi∈P

F1(Ed,Pi); I
(com)
d = max

Pi∈P
F1(Ed,Pi) (5.6)

where F1-score is the harmonic mean between precision(Ed,Pi) and recall(Ed,Pi).
Higher values of I(com)

d indicate the dimension d is strongly associated with a single
community. Global community-aware interpretability can be quantified with the
average I(com) = 1

|Ω|
∑

d∈Ω I
(com)
d .

Sparsity-aware metric

We evaluate sparsity-aware interpretability by using the cardinality of edge sets
{Ed}d∈Ω. In fact, highly interpretable directions of the embedding space should

63

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

highlight subgraphs without exceeding in size. In other words, even without
community structure information, we can anyhow quantify whether dimensions are
associated with few structure-relevant edges. We formulate this idea inspired by
entropy-based sparsity for explanation masks in graph neural networks [FKRA22]:

I
(sp)
d = − 1

log |E|
∑

(u,v)∈E

(
1[(u, v) ∈ Ed]

Zd

)
log

(
1[(u, v) ∈ Ed]

Zd

)
(5.7)

where Zd =
∑

(u,v)∈E 1[(u, v) ∈ Ed] is a normalization for the correct computation
of the Shannon entropy. Lower values indicate that embedding dimensions are
associated with small-sized subgraphs. Global sparsity-aware interpretability can
be quantified with the average I(sp) = 1

|Ω|
∑

d∈Ω I
(sp)
d .

5.2.3 Node embeddings with interpretable dimensions

We have previously introduced the per-dimension utility score µd(u,v), associ-
ated with latent embedding direction d, and how it can be used to evaluate the
interpretability of product-based decoder function. As previously shown in Fig-
ure 5.1, standard embedding methods (e.g., DEEPWALK) have poor interpretability
mainly because they are trained with the sole goal of optimizing performance in
neighborhood reconstruction. Our objective is to learn a new embedding function
h∗ : V → RK which preserves both task performance and interpretable decoder
scores over the edges.

Specifically for the textual domain, the interpretability of word embeddings
can be promoted by facilitating the alignment of dimensions with concepts from
external semantic sources [BAMK16, ŞUŞ+20], or by adding sparsity constraints
during the training phase [PSB19,SGL+16]. However, due to the high popularity of
some word embedding approaches [PSM14, MSC+13], post-processing techniques
that are built upon these methods have been often preferred rather than interpretable-
by-design methods [SPJ+18, FTY+15, FDJ+15]. In the field of graph learning, the
restricted availability of taxonomical resources associated with real-world networks
poses several limits in using knowledge bases to explain node embeddings [IKA20].
Consequently, learning interpretable embeddings for graph-structured data is an
even more challenging task, as it cannot fully rely on anything other than topological
information. For this reason, the few available methods perform clustering-aware
regularization to learn explainable node representations [DNA19, RDSS19].

Here, we propose a fully unsupervised approach that can operate without ex-
ternal information or node attributes. Moreover, instead of building a new graph
representation algorithm from scratch, we present a retrofitting technique that
enables the processing of any pre-trained embedding with proven downstream per-
formance. More formally, we present a retrofitting approach for node embeddings,

64

5.2. Methods Description

learning an opportune mapping h : RD → RK such that the function composition
h ◦ enc is exactly the interpretable embedding function h∗ : V → RK stated before.
While similar algorithms for word embeddings enforce learning sparse representa-
tions [SPJ+18], we instead encourage the sparsity of the utility-induced subgraphs
that directly affect the interpretability metrics defined in Section 5.2.2. Intuitively,
we aim to have sparse explanations rather than sparse embeddings themselves,
because it is more straightforward to associate them with human-understandable
graph units. In the next, we will use both u∗ and h(u) to indicate the embedding
vectors of node u ∈ V mapped with the encoder function h∗. We will also refer to
K as the cardinality of the set containing the enumerated dimensions of the new
space Ω∗ = {1, . . . ,K}.

Retrofitting node embeddings

Here we describe the retrofitting optimization task, whereas in the next section we
further discuss the beneficial effects on the interpretability of latent dimensions.
Since we aim to work in an unsupervised framework, we do not use external at-
tributes to improve interpretability, but we rely only on structural graph information.

Inspired by disentangled learning [LTL+19], we enforce orthogonality in edge
reconstruction patterns of representations h. Specifically, we optimise the element-
wise products hd(u) · hd(v) ≡ md(u, v), collected as the entries of K continuous-
valued graph masks {Md ∈ [0, 1]|V|×|V|}d∈Ω∗ , which hide the structure-irrelevant
edges for any dimension in RK . We implemented h as the latent projection of a
single-layer autoencoder, namely h(u) = σ(Ψ(0)u + b(0)), which returns ũ =
Ψ(1)h(u) + b(1) as output. We define with H ∈ R|V|×K as the hidden layer matrix
of the autoencoder, whose entries Hud = hd(u) = u∗d are the components of the
post-processed embedding vectors.

We jointly optimise the hidden layer matrix H, which depends on autoencoder
parameters {Ψ(0) ∈ RK×D,Ψ(1) ∈ RD×K ,b(0) ∈ RK ,b(1) ∈ RD} and masks
matrices {Md ∈ [0, 1]|V|×|V|}d∈Ω∗ computed from H, with the following losses:

Autoencoder Loss In order to preserve graph structural information incorporated
in input node representations, we minimize Lac = ||V − Ṽ||F , where
V, Ṽ ∈ R|V|×D are the input and reconstructed embedding matrices of the
autoencoder.

Orthogonality Loss Inspired by graph clustering techniques [BGA20], we squeeze
embedding mask matrices into one partition matrix Π ∈ RK×|V|, with en-
tries Πdv =

∑
u∈V md(u, v), induced by aggregating edge reconstruction

scores with the same target node . In order to encourage structure-relevant
subgraphs to be incorporated into different embedding axes, we optimize
Lorth = || ΠΠT

||ΠΠT||F
− IK

||IK ||F ||F .

65

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

For scalability reasons, partition matrix entries Πdv =
∑

umd(u, v) =
hd(v)

[∑
u hd(u)

]
can be computed avoiding the explicit calculation and

caching of O(K × |V| × |V|) parameter for graph masks, reducing the
complexity to O(K × |V|).

Size Loss In order to avoid degenerate solutions, e.g. all relevant subgraphs
reconstructed in the same dimension, we enforce the size of every mask
sd =

∑
u,v md(u, v) to be non-zero. This constraint is accomplished by max-

imizing the entropy of the size variables {sd}d∈Ω∗ , opportunely normalized,
Lsize = log |Ω∗|+

∑
d∈Ω∗

(
sd∑

q∈Ω∗ sq

)
log
(

sd∑
q∈Ω∗ sq

)
.

The full objective loss is given by:

L = Lac + Lorth + Lsize (5.8)

Essentially, optimizing the loss Lac ensures to preserve structural graph information,
instead minimization of the losses Lorth + Lsize transform the original embedding
space associating relevant graph clusters with different embedding dimensions.

Interpretable characteristics of retrofitted dimensions

Here we list remarkable properties obtained through our post-processing approach
that directly affect the interpretability of retrofitted node embeddings. Although
we do not go into theoretical detail, we empirically show the effectiveness of such
an approach in the Experiments section. In particular, we reach the following
interpretability features:

• Nonnegativity. Constraining weights to be nonnegative [CZ14] is usually
an important requirement for interpretable learning models. The sigmoid
function ensures the nonnegativity of representations h(u) for any node
u ∈ V .

• Decomposability. It is often desirable for a graph model to produce edge
likelihoods in an interpretable fashion [YL13]. The optimization of graph
masks facilitates straightforward interpretations by decomposing the likeli-
hood scoring function

∑
d∈Ω∗ hd(u) · hd(v) into different bounded terms

hd(u) ·hd(v) ∈ [0, 1] that represent the magnitude with which the edge (u, v)
participates in the associated subgraph induced by Ed.

• Sparsity. Encouraging models to use fewer features for prediction is a
widely adopted constraint to promote interpretability [SPJ+18]. Due to
regularization constraints employed to achieve non-degenerate orthogonality
of graph masks md(u, v), the decoded edge score

∑
d∈Ω∗ hd(u) · hd(v)

receives non-zero contributions only by few relevant dimensions.

66

5.3. Experiments

Moreover, as we will empirically show in the Experiments, learning optimal
graph masks directly affects the utility measures µd

(
h(u), h(v)

)
used to evaluate

interpretability. The following theorem states the per-dimension relations between
utility scores and graph masks entries:

Theorem. Let h∗ : V → RK be a retrofitted encoder function on the graph
G = (V, E). The per-dimension marginal utility score for edge (u, v) ∈ E can be
expressed as:

µd

(
h(u), h(v)

)
=
[
md(u, v)−

1

K

∑
d∈Ω∗

md(u, v)
](1

K
+

1

K2
+ . . .

)
The proof is given in Appendix C, and it is valid for any graph encoder (in point of
fact, entries of graph masks are equal to element-wise vector products).

From Decomposability and Sparsity properties described above for the func-
tion h, it follows that

∑
d∈Ω∗ md(u, v) = αuvK, where typically αuv << 1

is the fraction of non-zero elements in the inner product. With sufficient high
dimensionality K, we can neglect infinitesimal terms in parenthesis obtaining
K · µd

(
h(u), h(v)

)
+ αuv ≈ md(u, v) which expresses a simplified relation

between dimensional graph masks and utility measure.

5.3 Experiments

In this section, we describe the experimental analyses oriented to study the inter-
pretability of embedding methods from different perspectives. In particular, we
aim to discover if the proposed retrofitting approach is more understandable than
other models (in particular those ones that incorporate alternative interpretability
constraints, e.g. sparsity of vector entries, self-clustering, etc.), and if it is capa-
ble of effectively achieving link prediction despite maintaining good scalability
performance. The next sections specify which data and models are used for the
comparison, as well as the description of the tasks performed in order to answer
our research questions.

5.3.1 Datasets and baseline methods

We present our results on a variety of real-world benchmark datasets used in prior
work [YSX+20]: three citation networks (“CORA”, “CITESEER” and “PUBMED”),
two social networks (“BLOGCATALOG” and “FLICKR”), and a web pages net-
work (“WIKI”). Despite their original format, we restrict our analyses to the
larger connected component of any graph, considered unweighted and undirected.
We ran Louvain detection method [BGLL08] to extract the node-level commu-
nities C = {C1, C2, . . . }. Moreover, we use two small-scale synthetic graphs

67

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

Table 5.1: Summary statistics of synthetic and empirical graph datasets. In order:
number of nodes |V|, number of edges |E|, number of extracted communities |C|,
average node degree and average clustering coefficient.

Dataset |V| |E| |C| Average Average
degree clustering coeff.

RINGCLIQUES 160 736 16 9.20 0.960
SBMODEL 160 846 16 10.6 0.750

CORA 2,485 5,069 28 4.08 0.238
CITESEER 2,110 3,668 35 3.48 0.171
PUBMED 19,717 44,324 38 4.50 0.060
BLOGCATALOG 5,196 171,743 10 66.1 0.122
FLICKR 7,575 239,738 9 63.3 0.330
WIKI 2,357 11,592 17 9.84 0.383

consisting of sixteen 10-vertex cliques linked with different connectivity pat-
terns: in “RINGCLIQUES”, cliques are connected through single links to form
a ring shape; in “SBMODEL”, cliques are fully connected communities gener-
ated by Stochastic Block Model [Abb17] (intra_cluster_density = 1 and
inter_cluster_density = 0.01). We report datasets statistics in Table 5.1.

For experimental comparisons with our approach, we use the following baseline
methods:

• DEEPWALK [PARS14], skip-gram based model that computes node embed-
dings from random walks co-occurrence statistics. We train NODE2VEC1

for 5 epochs with the following hyperparameters: p = q = 1, T = 5,
walk_length = 10, num_walks = 20.

• GAE [TW16], neural network model with a GCN encoder trained on adja-
cency matrix reconstruction. The model2 is trained for 200 iterations using
Adam optimizer and learning rate 0.01 as described in the main paper. The
GCN hidden layer size is taken double the output size.

• GEMSEC [RDSS19], a variation of DEEPWALK which jointly learns node
embeddings and node clusters. We train the model3 with the same configura-
tion as DEEPWALK, plus the number of clusters fixed equal to the number of
dimensions.

• SPINE [SPJ+18], a post-processing technique based on k-sparse denoising
autoencoder to generate overcomplete sparse embeddings. We train the

1https://github.com/eliorc/node2vec
2https://github.com/zfjsail/gae-pytorch
3https://github.com/benedekrozemberczki/karateclub

68

https://github.com/eliorc/node2vec
https://github.com/zfjsail/gae-pytorch
https://github.com/benedekrozemberczki/karateclub

5.3. Experiments

original model4 using DEEPWALK vectors as input, for 2000 iterations with
sparsity coefficient 0.15 and learning rate 0.1.

We chose to apply the proposed retrofitting method on DEEPWALK and GAE
embeddings, calling them RF-DEEPWALK and RF-GAE, to analyze the outcome
when handling different inductive biases. In doing this, we use the same number of
iterations and learning rate as with SPINE.

5.3.2 Evaluation tasks

Interpretation of dimensions

We compare all the methods in terms of per-dimension interpretability metrics
defined in Section 5.2.2. About indexes I

(com)
d , we define the edge-level parti-

tion labels π(u, v) using node-level Louvain communities with the assignment
π(u, v) = {c(u), c(v)}, where c : V → C is the per-node community membership
function. Despite the considered empirical graphs having ground-truth labels at-
tached to single nodes, the use of detected communities is preferable because the
usage of node metadata as structural ground-truth has been criticized by previous
work [PLC17].

To compare models together, instead of computing global scores with the aver-
age over all the dimensions, we decided to focus on a subset of effective dimensions
Ωeff that encode the majority of edge information, removing the less impacting
features. In particular, after sorting the scores {I(com)

d }d∈Ω and {I(sp)d }d∈Ω, we take
from the top-ranked dimensions those ones that, cumulatively, have a positive utility
in the reconstruction of at least 90% of graph edges, i.e. |

⋃
d∈Ωeff

Ed| = 90%|E|.
Thus we compute global scores as I(com|sp)

eff = 1
|Ωeff |

∑
d∈Ωeff

I
(com|sp)
d .

Link prediction

We compare all the methods in terms of link prediction performance. To do so,
before training every method, we randomly remove 10% of the edges that are used
as positive examples for the link prediction task, whereas we sample the same
number of node pairs from the set of non-existing links as negative examples. The
task consists in ranking the collected node pairs with the scoring function ξΩ and
evaluating the classification performance with the ROC-AUC score.

4https://github.com/harsh19/SPINE

69

https://github.com/harsh19/SPINE

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

5.4 Results

In this section, we first show the outcomes of interpretation experiments for the
synthetic and empirical datasets (Section 5.4.1), then we evaluate the different
approaches in terms of link prediction performance (Section 5.4.2). Finally, we
compare the scalability of the embedding methods by measuring the training execu-
tion times (Section 5.4.3).

All the methods, except SPINE, are trained on empirical datasets to return em-
bedding vectors with dimensions in the list [2, 4, 8, 16, 32, 64, 128], which we call
output dimensions. In synthetic-generated data, output dimensions are in the list
[2, 4, 8, 12, 16, 24, 32]. Instead, we refer to input dimensions as the dimensionality
of DEEPWALK and GAE vectors used for the proposed retrofitting (RF-DEEPWALK

and RF-GAE) and for SPINE post-processing (SPINE-DEEPWALK), which are
taken from the list [8, 16, 32, 64, 128, 256, 512]. For SPINE, due to the overcom-
plete layer, we chose output dimensions to be multiples of the input dimensions,
according to integer multiplicative factors between ×1 and ×8.

In our analyses, we compare dense and sparse baseline methods separately.
When comparing with sparse methods, we show the best performance of SPINE-
DEEPWALK and RF-DEEPWALK across different input DEEPWALK dimensions.
When comparing with dense methods, we show the best performance of RF-
DEEPWALK and RF-GAE against other baseline methods across different output
dimensions. Results for every method are reported with the average evaluation
score and standard deviation over 5 training runs.

5.4.1 Interpretability

Synthetic datasets

Plot with interpretation scores I(com)
eff and I

(sp)
eff for synthetic datasets are reported

in Figures 5.2 and 5.3. In Figure 5.2, we observe that the model RF-DEEPWALK

performs well in both interpretations based on communities and sparsity when com-
pared with algorithms that return dense representations. In particular, near-perfect
interpretability performance is achieved when the number of output embedding
dimensions approaches 16, i.e. the number of synthetic cliques. In Figure 5.3,
RF-DEEPWALK is even the best model when compared with the natively sparse
method SPINE-DEEPWALK. In the same plot, DEEPWALK has increasing perfor-
mance (higher community-aware scores and lower sparsity-aware scores) when
augmenting the number of input embedding dimensions, and it reaches sparsity
results comparable to RF-DEEPWALK with the maximum size 512. The latter
observation suggests that DEEPWALK needs more embedding dimensions to reach
the interpretability performance of RF-DEEPWALK.

70

5.4. Results

2 4 8 12 16 24 32
Output dimensions

0.25

0.50

0.75

1.00

Co
m

m
un

ity
-a

wa
re

 sc
or

e RingCliques
DeepWalk
GAE
GEMSEC
RF-DeepWalk
RF-GAE

2 4 8 12 16 24 32
Output dimensions

0.20

0.40

0.60

0.80

SBModel

2 4 8 12 16 24 32
Output dimensions

0.6

0.8

Sp
ar

sit
y-

aw
ar

e
sc

or
e RingCliques

DeepWalk
GAE
GEMSEC
RF-DeepWalk
RF-GAE

2 4 8 12 16 24 32
Output dimensions

0.6

0.7

0.8

0.9
SBModel

Figure 5.2: Interpretation scores compared among RF-DEEPWALK, RF-GAE and
different dense embedding methods trained on synthetic datasets, when varying the
number of output dimensions and choosing the best score among models with a
different number of input dimensions. On the top, we compare the community-aware
scores (higher is better); on the bottom, we compare the sparsity-aware scores
(lower is better).

8 16 32 64 128 256 512
Input dimensions

0.25

0.50

0.75

1.00

Co
m

m
un

ity
-a

wa
re

 sc
or

e RingCliques
DeepWalk
SPINE-DeepWalk
RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.4

0.6

0.8

SBModel

8 16 32 64 128 256 512
Input dimensions

0.6

0.8

Sp
ar

sit
y-

aw
ar

e
sc

or
e RingCliques

DeepWalk
SPINE-DeepWalk
RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.6

0.8
SBModel

Figure 5.3: Interpretation scores compared among DEEPWALK, SPINE-
DEEPWALK and RF-DEEPWALK methods trained on synthetic datasets, when
varying the number of input dimensions and choosing the best score among mod-
els with a different number of output dimensions. On the top, we compare the
community-aware scores (higher is better); on the bottom, we compare the sparsity-
aware scores (lower is better).

71

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

Empirical datasets

Best interpretation scores I
(com)
eff and I

(sp)
eff for empirical datasets are reported in

Tables 5.2 and 5.3. We notice that the combination RF-DEEPWALK performs well
with respect to dense embeddings in almost every dataset, with both interpretations
based on communities and sparsity. The model RF-GAE is less interpretable
than RF-DEEPWALK, but still more interpretable than the other dense baselines.
With respect to sparsity-based models, RF-DEEPWALK and SPINE-DEEPWALK

are characterized by good interpretability, obtaining the best scores in half of the
datasets each and outperforming the DEEPWALK embeddings. In Appendix C,
we report extensive results for the entire set of dimension sizes, noticing that both
interpretability metrics improve when increasing latent dimensions, confirming
results found on synthetic data and giving an important insight that help to choose
the embedding size in real-world applications.

5.4.2 Link prediction

2 4 8 12 16 24 32
Output dimensions

0.7

0.8

0.9

1.0

RO
C-

AU
C

sc
or

e

RingCliques
DeepWalk
GAE
GEMSEC
RF-DeepWalk
RF-GAE

2 4 8 12 16 24 32
Output dimensions

0.7

0.8

0.9

SBModel

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

0.9

1.0

RO
C-

AU
C

sc
or

e

RingCliques
DeepWalk
SPINE-DeepWalk
RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.6

0.8

SBModel

Figure 5.4: ROC-AUC scores on link prediction for different embedding methods
trained on synthetic datasets. On the top, we compare RF-DEEPWALK, RF-GAE
and different dense embedding methods when varying the number of output dimen-
sions and choosing the best score among models with a different number of input
dimensions; on the bottom, we compare DEEPWALK, SPINE-DEEPWALK and
RF-DEEPWALK when varying the number of input dimensions and choosing the
best score among models with a different number of output dimensions.

72

5.4. Results

Table 5.2: Community-aware scores for evaluating the interpretations of different
embedding methods. For each dataset, we highlight the best score.

CORA CITESEER PUBMED BLOGCATALOG FLICKR WIKI

DEEPWALK 44.8±0.8 43.3±1.4 42.2±1.1 43.2±0.7 49.9±10.5 44.5±2.5
GAE 37.2±0.6 42.0±1.0 48.7±1.9 49.6±0.6 62.5±2.1 46.0±1.4
GEMSEC 40.5±1.3 44.6±1.4 43.1±0.9 39.2±3.0 42.1±2.2 45.4±0.2
RF-DEEPWALK 62.3±1.9 64.1±2.7 60.5±2.7 59.0±2.3 65.7±1.4 65.2±1.0
RF-GAE 55.0±1.5 52.6±0.8 59.3±1.1 60.0±0.8 59.5±1.3 63.1±1.7

DEEPWALK 49.5±2.3 49.1±1.6 45.7±0.6 48.3±0.9 46.9±1.8 49.6±0.9
DEEPWALK+SPINE 59.0±5.1 54.3±6.0 60.8±3.7 63.2±8.2 70.3±0.1 61.1±1.5
RF-DEEPWALK 62.3±1.9 64.1±2.7 60.5±2.7 59.0±2.3 65.7±1.4 65.2±1.0

Table 5.3: Sparsity-aware scores for evaluating the interpretations of different
embedding methods. For each dataset, we highlight the best score.

CORA CITESEER PUBMED BLOGCATALOG FLICKR WIKI

DEEPWALK 79.2±0.6 77.8±0.6 84.9±0.1 86.5±0.2 87.4±0.4 82.0±0.3
GAE 83.7±0.5 82.5±0.4 85.1±0.5 87.1±0.9 78.5±0.1 84.4±0.2
GEMSEC 82.7±0.3 81.7±0.3 86.5±0.2 91.1±0.3 91.6±0.2 84.6±0.4
RF-DEEPWALK 66.0±1.2 63.0±1.5 68.4±24.2 74.9±0.6 37.2±6.9 68.8±0.3
RF-GAE 72.8±0.1 72.8±0.9 80.5±0.3 82.0±1.2 71.1±2.1 75.6±0.3

DEEPWALK 76.7±0.5 75.5±0.3 83.6±0.1 84.0±0.1 87.4±0.4 79.6±0.4
DEEPWALK+SPINE 69.7±2.0 70.3±2.5 74.1±3.3 61.0±8.9 72.9±12.5 52.9±9.7
RF-DEEPWALK 66.0±1.2 63.0±1.5 74.8±0.8 74.9±0.6 68.1±6.0 68.8±0.3

Table 5.4: ROC-AUC scores for evaluating the link prediction performance of
different embedding methods. For each dataset, we show in boldface letters the best
score, and we higlight with a gray background other methods that reach at least
95% of the best model score.

CORA CITESEER PUBMED BLOGCATALOG FLICKR WIKI

DEEPWALK 92.3±0.7 94.5±0.7 96.4±0.2 75.6±0.1 65.6±0.1 84.8±0.3

GAE 92.6±0.4 95.2±0.6 95.8±0.2 86.9±0.3 89.4±0.4 94.2±0.2
GEMSEC 92.8±0.6 94.2±0.7 95.1±0.3 79.4±0.2 67.0±0.3 90.5±0.4
RF-DEEPWALK 92.2±0.7 94.7±1.0 93.3±1.2 74.7±0.6 75.9±0.9 90.5±0.4
RF-GAE 88.6±1.2 92.0±0.9 96.1±0.1 82.0±1.0 91.1±0.3 94.2±0.4

DEEPWALK 92.5±0.6 94.9±0.8 96.5±0.1 75.8±0.1 66.7±0.2 84.8±0.2
DEEPWALK+SPINE 87.2±1.6 89.7±2.1 90.2±0.6 67.3±1.4 63.2±3.5 81.6±1.4
RF-DEEPWALK 92.2±0.7 94.7±1.0 93.3±1.2 74.7±0.6 75.9±0.9 90.5±0.4

73

Chapter 5. Interpretability of Dimensions in Node Representations for
Graphs

Synthetic datasets

Plots with ROC-AUC scores in link prediction are shown in Figure 5.4 for syn-
thetic datasets. In the top panel, we observe that any model converges to optimal
performance increasing the output embedding size. GAE is the best model because
it achieves almost-best scores with only 4 dimensions, and in general any model
reaches the optimum at roughly 16 dimensions. With respect to the bottom panel of
Figure 5.4, we observe that SPINE-DEEPWALK performance degrades with more
input dimensions, contrary to the other methods which maintain optimal scores
with any input size.

Empirical datasets

Best ROC-AUC scores in link prediction are reported in Table 5.4 for empirical
datasets. In citation networks, we notice that all dense models perform close to
the optimal one, and in other datasets best scores are obtained by GAE and RF-
GAE. For sparse embeddings, SPINE-DEEPWALK is consistently outperformed by
RF-DEEPWALK, with the latter that obtains a comparable performance (or even
superior in FLICKR and WIKI) with DEEPWALK.

5.4.3 Scalability

104

number of nodes

10 1

100

se
co

nd
s/

ite
ra

tio
n

104 105

number of edges

10 1

100

DeepWalk GAE SPINE RF

101 102

number of dimensions

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Figure 5.5: Normalized execution times for different embedding methods when
trained on multiple datasets. On the left, we compare running times in function of
the number of nodes with 128-dim output embeddings; in the center, we compare
running times in function of the number of edges with 128-dim output embeddings;
on the right, we compare running times in function of the number of embedding
dimensions in FLICKR dataset.

Training times for different methods are reported in Figure 5.5, where we
normalize the intervals with respect to the number of iterations/epochs. For DEEP-
WALK we also divide respect to the num_walks parameter to cut out the depen-
dency from the number of walks sampled per node. From left and center panels, we

74

5.5. Summary

observe that training times for the GAE method scale with the number of edges,
instead in all the other cases the running times scale with the number of nodes.
Moreover, RF has slightly higher training times than SPINE, and both are faster than
DEEPWALK. On the right panel, we recognize that in GAE and DEEPWALK the
training times have a notable dependency with respect to the number of embedding
dimensions, while this is less significant in the other ones.

5.5 Summary

In this chapter, we introduce a comprehensive framework for interpreting node
embedding techniques. Relying on feature importance methods derived from
Shapley values, we propose a novel, model-agnostic utility measure for determining
the per-dimension contributions to edge reconstruction scores. Additionally, we
establish appropriate metrics for evaluating the interpretability of embeddings
based on community structure and sparsity. Finally, we propose an auto-encoder
framework to further enhance the interpretability of existing node embedding
methods.

Experimental results demonstrate that our approach improves human under-
standability of embedding dimensions compared to standard methods, while main-
taining comparable performance on link prediction tasks. Furthermore, our model
is superior to the sparse method SPINE, achieving better results in link prediction
tasks. Additionally, our approach is scalable and suitable for use in graphs with
diverse edge densities, and it demonstrates acceptable performance in terms of
different input graph sizes.

Overall, our proposed framework for interpreting node embedding methods
provides a valuable tool for understanding the underlying structure of complex net-
works and offers a means for enhancing the interpretability of existing embedding
methods. This framework has the potential to facilitate further research in the field
of network analysis and improve the interpretability of node embedding methods
for real-world applications.

75

CHAPTER6
Conclusions

THE widespread use of technology and the internet has led to an unprecedented
amount of behavioral information being generated and collected. This has
created new challenges for representing, analyzing and understanding the

structure and dynamics of techno-social systems.
Graphs are a natural way to represent pairwise interconnected relations that

characterize a wide range of complex systems, and traditional network-based meth-
ods of analysis have been widely used for mining knowledge from relational data.
However, analyzing and understanding empirical graph data structures is becoming
more and more a challenging task, due to the increasing complexity and heterogene-
ity of such data. Network representation learning and low-dimensional embeddings
of graphs are examples of tools that have been developed to model interconnected
structures with a data-driven perspective. By leveraging similarities and hidden
geometry of graph-shaped data, these techniques learn latent representations that
help to understand the original data, revealing the important structures, and en-
abling further analyses. Additionally, these latent encodings can be used to perform
various downstream tasks, including link prediction, multi-label node classification,
and graph clustering.

Real-world networks are inherently dynamic, with connections that change over
time, and accounting for their time-evolving nature poses important challenges in

77

Chapter 6. Conclusions

terms of modeling and analysis. While existing methods have been largely focused
on static network data, the relevance of applying graph representation learning to
time-varying networks has become more prominent, especially with the growing
amount of high-resolution time series data on social, biological, and technical
systems.

Moreover, the network science and graph learning communities have recently
highlighted the significance of non-dyadic, higher-order interactions that cannot be
decomposed into multiple dyadic relations, which are typically captured by standard
network models. Failing to account for higher-order structures, which often play an
important role in our understanding of real-world interacting systems, presents a
current limitation of traditional graph formalism. Despite the growing interest in
extending graphs toward higher-order models, we still lack a solid understanding
of representation learning for such complex interactions. It specifically limits our
ability to apply machine learning on socio-technical systems data, where non-dyadic
interactions are common.

Finally, while the majority of previous research has focused on the development
of more performant learning architectures, explaining resulting decisions is a crucial
challenge for the responsible application of representation learning and feature
extraction in real-world prediction tasks. In recent years, there has been a growing
emphasis on addressing the limitations of explainability in representation learning,
particularly in the domain of graph machine learning. This challenge is closely
linked with the interpretability of the learned feature dimensions, and modifying
representation learning techniques to produce interpretable features is thus a crucial
research topic in machine learning for graphs.

This thesis studies novel representation learning techniques for graph-structured
complex systems, presenting empirical evidence of their predictive power and
interpretability. This section summarizes our main research achievements and
presents a perspective on potential future investigations.

6.1 Main Contributions

Contributions of this thesis can be described as follows:

• Firstly, in Chapter 3 and in [PP22] we introduced Higher-Order Skip-Gram
with Negative Sampling (HOSGNS), an embedding method for time-resolved
graphs that uses higher-order co-occurrences over time-aware random walks
to learn low-dimensional encodings of node and temporal slices. We showed
that the model effectively performs implicit tensor factorization of different
higher-order representations of time-varying graphs (e.g., the supra-adjacency
representation [SOBC21]) and achieves state-of-the-art performance in sev-
eral downstream tasks for time-evolving networks of face-to-face proximity

78

6.2. Future Work

contacts, i.e. temporal classification of epidemic states, event prediction and
reconstruction.

• Secondly, in Chapter 4 and in [PPP22] we studied low-dimensional em-
beddings of simplicial complexes for link prediction and reconstruction on
higher-order structures. We showed how to carefully design network recon-
struction [TCW+18] and link prediction [KSSB20] in the case of polyadic
edges, and we conducted experiments to analyze the performance of simpli-
cial complex embeddings [BHL+19] in contrast with traditional and spectral
approaches. Our findings highlight the effectiveness of performing classifica-
tion tasks on hyperedges, even without explicit records of higher-order links
in training data [BAB+21].

• Lastly, in Chapter 5 we discussed the interpretability [DLH19] of latent di-
mensions for node embeddings in graphs. We proposed an attribution method
to compute per-dimension importance with product-based edge scoring, ap-
plied to latent directions of pre-trained embeddings. By means of this method,
we are able to evaluate whether encoded node dimensions are associated with
relevant subgraphs (e.g, communities [GN02]) and quantify the sparsity level
of this association. Moreover, we presented a novel retrofitting approach
capable to enhance the interpretability of existing embedding methods, main-
taining optimal performance in link prediction.

Overall, the research presented in this dissertation has made significant contri-
butions to the field of representation learning and its applications to temporal and
higher-order structure, in addition to shedding light on the interpretability of such
models when applied to graph-structured data. We present some potential research
questions for future work in the paragraphs below.

6.2 Future Work

Representation learning is a broad field of research that encompasses several aspects
and has been extensively studied from various perspectives in the last decade. In
this thesis, we have directed our attention towards studying the advantages and
constraints of representation learning for socio-technical systems structured as
graphs, with an emphasis on empirical understanding. The research findings we
have presented in the previous chapters provide a solid foundation for further
investigation and exploration in the future. Specifically, our work has identified
several promising research directions at the intersection between complex systems
and machine learning.

The ability to estimate the outcome of dynamical processes [BBV08] is a
key challenge in network science, and nowadays there is a growing attraction for

79

Chapter 6. Conclusions

integrating classical approaches based on mechanistic modeling with machine learn-
ing [RPC+19, NTLL19, MLA21]. In the context of infectious disease forecasting,
the COVID-19 pandemic has underscored the importance of effective tools to predict
and control the spread of contagions [CSL+21,CRL+22]. From a machine learning
perspective, novel techniques based on graph neural networks have been proposed to
tackle epidemic forecasting tasks [KBL+20, GSQ+21, FDR22, TRDL+22], and the
approach presented in Chapter 3 is situated in this framework of research. However,
several advancements are necessary to improve the effectiveness and reliability
of these methodologies for epidemic prevention and mitigation [BBB+21]. In
fact, these methods often require complete knowledge of the social network topol-
ogy [TRDL+22], which makes them unsuitable to operate in a realistic scenario
for practical interventions. Moreover, they are not robust to the effects of noise and
errors in tracing data [SOBC21].

Predicting the future evolution of real-world complex systems is another on-
going research topic [VZMZ15, SYS16]. Even in the binary case, the analysis of
link predictability is a current challenge [Zho21], and the integration of established
theoretical frameworks [ZX15, SFX+20] with machine learning techniques for link
prediction [DM20, GHG+20] can represent a crucial step towards dealing with the
predictability of empirical time-evolving networks [TDS+20]. Contributions of
Chapter 4 suggest that forthcoming goals should entail gaining a more compre-
hensive understanding of the key topological and temporal features that impact
the emergence of new interactions [LPZ+15, GPAGS20]. Future research should
also explore the significance of higher-order evolving patterns [CS22, KKS20] in
modeling and predicting social behavior accurately. This is especially important,
as these patterns have been shown to play a critical role in shaping the social
dynamics [IPBL19, CKC+21, IPBB22].

The increasing interest in the field of link prediction is leading to further
investigations of explainable models for achieving the task [BBM14, EBT16]. The
extraction of explanations in the context of edge prediction involves identifying the
most influential features of the input graph, such as subgraphs or node attributes,
that contribute to the prediction of a new link [RFMT22, ZZS+23]. In Chapter 5, a
similar problem has been addressed in the interpretation of latent dimensions for
shallow embedding models. However, there is a significant lack of exploration into
the use of explanation models for GNN-based link prediction [ZC18, ZZXT21],
despite their widespread usage in node and graph classification [YYW+21,LCX+20,
YBY+19]. Further research in this area would provide insight into how structural
network features positively or negatively impact edge prediction, possibly enabling
causal explanations of link predictability [ZLW+22].

Future work includes addressing scalability limitations that affect the applica-
tion of representation learning to large-scale graphs [HFZ+20], even exasperated by
the inclusion of temporal [LYZ+23] and higher-order interactions [MSWP22]. In

80

6.2. Future Work

particular, the embedding models utilized in this thesis can be significantly improved
in terms of space and time complexity. One potential approach to efficiently handle
temporal data, especially in streaming-oriented applications, is the integration of in-
cremental learning techniques [GSG+22] into existing algorithms. Additionally, to
mitigate the challenges posed by growing combinatorial complexities (e.g., increas-
ing orders of simplices), solutions based on decentralized algorithms [GWS+20], or
hierarchical coarse graining approaches [LGP21, BMD+20] may be implemented
to reduce computational costs.

81

Appendices

83

Appendix A

Low-rank Tensor Decomposition

Low-rank tensor decomposition [KB09] aims to factorize a generic tensor into a
sum of rank-one tensors. For example, given a 3rd-order tensor X ∈ RI×J×K ,
the rank-R decomposition of X takes the form of a ternary product between three
factor matrices:

(X)ijk ≈ [[ai,bj , ck]] ≡
R∑

r=1

AirBjrCkr (A.1)

where ai, bj , ck ∈ RR are rows of the factor matrices A ∈ RI×R, B ∈ RJ×R

and C ∈ RK×R. If Equation (A.1) holds with the equality, the above operation is
called Canonical Polyadic (CP) decomposition. For 2nd-order tensors (matrices)
the operation is equivalent to the low-rank matrix decomposition (X ≈ ABT).

For a generic N th-order tensor X ∈ RI1×I2×···×IN , low-rank decomposition is
expressed as:

(X)i1i2...iN ≈ [[a
(1)
i1

,a
(2)
i2

, . . . ,a
(N)
iN

]] ≡
R∑

r=1

A
(1)
i1r

A
(2)
i2r

. . .A
(N)
iNr (A.2)

where a
(1)
i1

,a
(2)
i2

, . . . ,a
(N)
iN

∈ RR (in ∈ {1, . . . , In}, n ∈ {1, . . . , N}) are rows of
factor matrices A(1) ∈ RI1×R, A(2) ∈ RI2×R, . . . ,A(N) ∈ RIN×R.

85

Derivation of the HOSGNS Loss Function

We consider a set of training samples D = {(i1, i2, . . . , iN) : i1 ∈ V1, i2 ∈
V2, . . . , iN ∈ VN} obtained by collecting co-occurrences among elements from N
sets V1,V2, . . . ,VN . We denote as #(i1, i2, . . . , iN) the number of times the tuple
(i1, i2, . . . , iN) appears in D. Similarly we use #in as the number of times each
distinct element occurs in D, with relative frequencies PD(i1, . . . , iN) = #(i1,...,iN)

|D|

and PD(in) =
#(in)
|D| .

Optimization is performed as a binary classification task, where the objective
is to discern occurrences actually coming from D from random occurrences. We
define the likelihood for a single observation (i1, . . . , iN) ∈ D by applying a
sigmoid to the higher-order inner product [[·]] of corresponding D-dimensional
representations:

P [(i1, . . . , iN) ∈ D | a(1)i1
, . . . ,a

(N)
iN

] = σ
(
[[a

(1)
i1

, . . . ,a
(N)
iN

]]
)

(A.3)

where we have N trainable embedding matrices A(1) ∈ R|V1|×D, . . . ,A(N) ∈
R|VN |×D and each embedding vector a(n)in

is the in-th row of the matrix A(n).
We define the loss with negative sampling fixing i1 and picking negative tuples
(ν2, . . . , νN) according to the noise distribution PN (ν2, . . . , νN) =

∏N
n=2

#νn
|D| ≡∏N

n=2 PD(νn):

log σ
(
[[a

(1)
i1

,a
(2)
i2

, . . . ,a
(N)
iN

]]
)
+ κ · E

(ν2...νN)∼PN

[
log σ

(
− [[a

(1)
i1

,a(2)ν2
, . . . ,a(N)

νN
]]
)]

(A.4)

The expectation term can be explicited:

E
(ν2..νN)∼PN

[
log σ

(
−[[a

(1)
i1

,a(2)
ν2 , ..,a

(N)
νN]

)]
=

∑
j2..jN

PN (j2, .., jN) log σ
(
−[[a

(1)
i1

,a
(2)
j2

, ..,a
(N)
jN

]]
)

Weighting the loss error for each tuple (i1, i2, . . . , iN) with their empirical probabil-
ity PD(i1, i2, . . . , iN), and defining [[a

(1)
i1

,a
(2)
i2

, . . . ,a
(N)
iN

]] ≡ mi1i2...iN , we obtain
the global objective with the sum over all combinations of vocabulary elements:

L = −
∑

i1i2...iN

PD(i1, i2, .., iN)
[
log σ(mi1i2...iN)+κ

∑
j2...jN

PN (j2, .., jN) log σ(−mi1j2...jN)
]

= −
∑

i1i2...iN

PD(i1, i2, .., iN) log σ(mi1i2...iN) +

− κ
∑

i1i2...iN

PD(i1, i2, .., iN)
∑

j2...jN

PN (j2, .., jN) log σ(−mi1j2..jN)

In the second term, we can notice that only PD(i1, i2, . . . , iN) depends on the
N − 1 indices (i2, . . . , iN), so performing the sum over that subset of indices

86

we obtain the marginal distribution
∑

i2...iN
PD(i1, i2, . . . , iN) = PD(i1). Fi-

nally renaming indices {jh} → {ih} and observing that PD(i1)PN (i2, . . . , iN) ≡
PN (i1, i2, . . . , iN), we obtain the final loss:

L(hosgns) = −
∑

i1...iN

[
PD(i1, .., iN) log σ(mi1...iN) + κ PN (i1, .., iN) log σ(−mi1...iN)

]
(A.5)

Implicit Tensor Factorization Theorem

Theorem. Let D = {(i1, i2, . . . , iN), i1 ∈ V1, i2 ∈ V2, . . . , iN ∈ VN} be a train-
ing set of higher-order co-occurrences and PMI(i1, .., iN) = log

(
PD(i1,..,iN)
PN (i1,..,iN)

)
the entries of the pointwise mutual information tensor computed from D. Let
A(1) ∈ R|V1|×D, . . . ,A(N) ∈ R|VN |×D be embedding matrices of HOSGNS. For
D sufficiently large, HOSGNS has the same global optimum as the canonical
polyadic decomposition of SPMIκ, the PMI tensor shifted by log κ.

Proof. We consider each relation [[a
(1)
i1

, . . . ,a
(N)
iN

]] ≡ mi1...iN as the entry of a
tensor M ∈ R|V1|×···×|VN |. The global loss L(hosgns) =

∑
i1...iN

ℓ(i1, . . . , iN) in
Equation (A.5) is the sum of local losses computed from elements of M:

ℓ(i1, .., iN) = −
[
PD(i1, .., iN) log σ(mi1...iN) + κ PN (i1, .., iN) log σ(−mi1...iN)

]
For sufficiently large D (i.e., allowing for a perfect reconstruction of SPMIκ), each
mi1...iN can assume a value independently to the others, and we can treat the loss
function L as a sum of independent addends, restricting the optimization problem
to looking at the local objective and its derivative respect to mi1...iN :

∂ℓ(i1, .., iN)

∂mi1...iN

= κ PN (i1, .., iN)σ(mi1...iN)− PD(i1, .., iN)
[
1− σ(mi1...iN)

]
=
[
PD(i1, .., iN) + κ PN (i1, .., iN)

]
σ(mi1...iN)− PD(i1, .., iN)

where we have used dσ
dx = σ(x)(1−σ(x)). To compare the derivative with zero, we

use the identities PD = (PD + κ PN)(1+ κ PN
PD

)−1 and (1+ x)−1 = σ(log x−1):

∂ℓ(i1, .., iN)

∂mi1...iN

= [PD(i1, .., iN) + κ PN (i1, .., iN)]

[
σ(mi1...iN)− σ

(
log

PD(i1, .., iN)

κ PN (i1, .., iN)

)]
from which it follows that the derivative is 0 when elements mi1...iN are equal to
the shifted PMI tensor entries:

∂ℓ(i1, .., iN)

∂mi1...iN

= 0 ⇔
D∑

r=1

A
(1)
i1r

. . .A
(N)
iNr = log

(
PD(i1, .., iN)

κ PN (i1, .., iN)

)
= SPMIκ(i1, .., iN)

(A.6)
Since we have assumed that D is large enough to ensure an exact reconstruction of
SPMIκ, and this is true if D ≈ R = rank(SPMIκ), Equation (A.6) is consistent
with the canonical polyadic decomposition of the shifted PMI tensor.

87

0 250 500 750 1000 1250 1500 1750 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sk
ip

-g
ra

m
 lo

ss
= 5

0 250 500 750 1000 1250 1500 1750 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7
= 20

no warm-up
warm-up

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
= 80

0 250 500 750 1000 1250 1500 1750 2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
= 320

training steps

Figure A.1: Impact of additional warm-up steps in the decrease of HOSGNS(dyn)

loss function L(bce) with respect to the number of training iterations, for
LYONSCHOOL dataset and with different negative sampling sizes κ. The loss function
is normalized with a factor (κ+ 1) for accounting the different contributions of the
negative sampling parameter in L(bce).

Description of the Warm-up Procedure

Here we propose a warm-up strategy with the aim of finding an advantageous
configuration of model parameters to initialize trainable weights. In particular,
we show that we can preliminarily optimize embedding vectors in order to ensure
that all higher-order products mijk... = [[vi, cj , tk, ..]] return the same quantity
m, regardless of the indices combination (i, j, k, ..). The value m can be chosen
in order to make the cross-entropy error as minimum as possible before passing
empirical data samples to the model. We start with a random initialization where
embedding weights are realizations of random variables i.i.d. according to a normal
distribution:

Vir,Cjr,Tkr, .. ∼ N (0, D−2) , r = 1 . . . D

Once chosen m we can fix Hadamard products by optimizing a squared error loss
function:

L(warm−up) =
∑
ijk...

(
[[vi, cj , tk, ..]]−m

)2
(A.7)

The optimal value of m is stated by the following theorem:

Theorem. Let mijk... = [[vi, cj , tk, ..]] be the higher-order inner product among
multiple embedding entities in HOSGNS, and Q = {mijk..., i, j ∈ V, k ∈ T , . . . }
the set of embedding products over all the combinations of indices (i, j, k, ..).
Assuming the same value for each element mijk... ≡ m in the set Q, the cross-
entropy error of the model is minimum when m = − log κ.

Proof. Given the hypothesis, the objective function in Equation (3.9) takes the

88

form:

L(bce) = − 1

B

[B∑
(ijk...)∼PD

log σ(m) + κ

B∑
(ijk...)∼PN

log σ(−m)
]

= −[log σ(m) + κ log σ(−m)] ≡ ℓ(m)

where m is the returned value for each mijk.... Solving the equation dl
dm = 0 we

get:

1

σ(m)

dσ

dx

∣∣∣
x=m

−κ
1

σ(−m)

dσ

dx

∣∣∣
x=−m

= 0 ⇒ κ =
σ(−m)

σ(m)
= e−m ⇒ m = − log κ

In Figure A.1 is shown the effectiveness of the addition of extra warm-up steps in
loss optimization.

Additional Results of Embedding Representations in Down-
stream Tasks

In Figures A.2, A.3 and A.4 we report a sensitivity analysis with the effect of the
embedding size D, the negative sampling constant κ and the number of training
steps E on prediction performances in node classification and event-related tasks.
In every experiment, HOSGNS embeddings have been combined using Hadamard
product.

In Figure A.5 we show the prediction performance of embedding models
DYANE and HOSGNS(dyn) in the node classification task, changing the width
of the aggregation window in SocioPatterns data. In HOSGNS(dyn) we notice a
modest descent of classification performance for larger aggregation windows, while
results for DYANE are more unstable, resulting in a less robust performance with
respect to the proposed HOSGNS model.

89

5 20 80 320

0.60

0.65

0.70

0.75
M

ac
ro

-F
1

LyonSchool

5 20 80 320

0.63

0.65

0.68

0.70

0.73
SFHH

5 20 80 320
negative sampling constant

0.50

0.55

0.60
LH10

HOSGNS(stat) HOSGNS(dyn) HOSGNS(stat|dyn)

5 20 80 320

0.50

0.60

0.70

Thiers13

5 20 80 320
0.45

0.50

0.55

0.60

0.65

InVS15

64 128 192 256
0.50

0.60

0.70

M
ac

ro
-F

1

LyonSchool

64 128 192 256

0.60

0.65

0.70

SFHH

64 128 192 256
embedding dimension

0.50

0.55

0.60
LH10

64 128 192 256

0.50

0.60

0.70

Thiers13

64 128 192 256
0.45

0.50

0.55

0.60

0.65

InVS15

1000 2000 4000 8000

0.60

0.65

0.70

0.75

M
ac

ro
-F

1

LyonSchool

1000 2000 4000 8000

0.63

0.65

0.68

0.70

0.73
SFHH

1000 2000 4000 8000
training steps

0.50

0.55

0.60
LH10

1000 2000 4000 8000

0.50

0.60

0.70

Thiers13

1000 2000 4000 8000
0.45

0.50

0.55

0.60

0.65

InVS15

Figure A.2: Macro-F1 scores related to the node classification of SIR states with
epidemic parameters (β, µ) = (0.125, 0.001), computed with HOSGNS embed-
dings. On the top, classification scores are reported varying the negative sampling
parameter κ; in the center, varying the embedding dimension D; on the bottom,
varying the number of training iterations E. In each panel remaining parameters
are fixed to D = 128, κ = 5 and E = 4000.

5 20 80 320
0.90

0.92

0.94

0.96

M
ac

ro
-F

1

LyonSchool

5 20 80 320

0.80

0.85

0.90

0.95

1.00
SFHH

5 20 80 320
negative sampling constant

0.70

0.80

0.90

1.00
LH10

HOSGNS(stat) HOSGNS(dyn) HOSGNS(stat|dyn)

5 20 80 320

0.94

0.96

0.98

Thiers13

5 20 80 320

0.90

0.95

1.00
InVS15

64 128 192 256
0.90

0.93

0.95

0.97

M
ac

ro
-F

1

LyonSchool

64 128 192 256

0.80

0.90

1.00
SFHH

64 128 192 256
embedding dimension

0.70

0.80

0.90

1.00
LH10

64 128 192 256
0.92

0.94

0.96

0.98

Thiers13

64 128 192 256

0.85

0.90

0.95

1.00
InVS15

1000 2000 4000 8000

0.90

0.92

0.94

0.96

M
ac

ro
-F

1

LyonSchool

1000 2000 4000 8000

0.80

0.85

0.90

0.95

1.00
SFHH

1000 2000 4000 8000
training steps

0.70

0.80

0.90

1.00
LH10

1000 2000 4000 8000

0.94

0.96

0.98

Thiers13

1000 2000 4000 8000
0.85

0.90

0.95

1.00
InVS15

Figure A.3: Macro-F1 scores related to temporal event reconstruction, computed
with HOSGNS embeddings. On the top, classification scores are reported varying
the negative sampling parameter κ; in the center, varying the embedding dimension
D; on the bottom, varying the number of training iterations E. In each panel
remaining parameters are fixed to D = 128, κ = 5 and E = 4000.

90

5 20 80 320
0.70

0.75

0.80

0.85

0.90

M
ac

ro
-F

1

LyonSchool

5 20 80 320

0.50

0.60

0.70

SFHH

5 20 80 320
negative sampling constant

0.40

0.50

0.60

0.70
LH10

HOSGNS(stat) HOSGNS(dyn) HOSGNS(stat|dyn)

5 20 80 320
0.60

0.70

0.80

0.90
Thiers13

5 20 80 320
0.40

0.50

0.60

0.70

0.80
InVS15

64 128 192 256

0.60

0.80

M
ac

ro
-F

1

LyonSchool

64 128 192 256

0.50

0.60

0.70

SFHH

64 128 192 256
embedding dimension

0.40

0.50

0.60

0.70
LH10

64 128 192 256

0.60

0.70

0.80

0.90
Thiers13

64 128 192 256
0.40

0.50

0.60

0.70

0.80
InVS15

1000 2000 4000 8000

0.70

0.80

0.90

M
ac

ro
-F

1

LyonSchool

1000 2000 4000 8000

0.50

0.60

0.70

SFHH

1000 2000 4000 8000
training steps

0.40

0.50

0.60

0.70
LH10

1000 2000 4000 8000
0.60

0.70

0.80

0.90
Thiers13

1000 2000 4000 8000
0.40

0.50

0.60

0.70

0.80
InVS15

Figure A.4: Macro-F1 scores related to missing event prediction, computed with
HOSGNS embeddings. On the top, classification scores are reported varying the
negative sampling parameter κ; in the center, varying the embedding dimension D;
on the bottom, varying the number of training iterations E. In each panel remaining
parameters are fixed to D = 128, κ = 5 and E = 4000.

300 600 1200
0.55

0.60

0.65

0.70

0.75

0.80

Ly
on

Sc
ho

ol
M

ac
ro

-F
1

(0.25, 0.002)

300 600 1200

(0.0625, 0.002)

300 600 1200

(0.1875, 0.001)

DyANE HOSGNS(dyn)

300 600 1200

(0.125, 0.002)

300 600 1200

(0.125, 0.001)

300 600 1200
0.50

0.60

0.70

SF
HH

M
ac

ro
-F

1

300 600 1200 300 600 1200 300 600 1200 300 600 1200

300 600 1200
0.40

0.50

0.60

0.70

LH
10

M
ac

ro
-F

1

300 600 1200 300 600 1200 300 600 1200 300 600 1200

300 600 1200

0.66

0.68

0.70

0.72

0.74

Th
ie

rs
13

M
ac

ro
-F

1

300 600 1200 300 600 1200 300 600 1200 300 600 1200

300 600 1200

0.60

0.65

0.70

In
VS

15
M

ac
ro

-F
1

300 600 1200 300 600 1200
time aggregation window (s)

300 600 1200 300 600 1200

Figure A.5: Macro-F1 scores related to node classification of epidemic states
for different SIR processes, varying the time window used to aggregate empirical
datasets, with embedding dimension D = 128.

91

2.5 0.0 2.5 5.0

0

1

2

3

4

5

SP
M

I 5
r2 = 0.531
LyonSchool

5 0 5 10

0

2

4

6

8
r2 = 0.432

SFHH

5 0 5
embedding reconstruction

2

0

2

4

6 r2 = 0.78
LH10

0 5 10

0

2

4

6
r2 = 0.527

Thiers13

0 5 10
0

2

4

6

8
r2 = 0.521

InVS15

15 10 5 0 5

20

15

10

5

0

5

SP
M

I 5

r2 = 0.708
LyonSchool

15 10 5 0 5

15

10

5

0

5 r2 = 0.713
SFHH

20 10 0 10
embedding reconstruction

20

15

10

5

0

5 r2 = 0.692
LH10

15 10 5 0

20

15

10

5

0

5
r2 = 0.494

Thiers13

10 0
15

10

5

0

5 r2 = 0.382
InVS15

15 10 5 0
25

20

15

10

5

0

5

SP
M

I 5

r2 = 0.673
LyonSchool

15 10 5 0 5

15

10

5

0

5 r2 = 0.688
SFHH

20 10 0
embedding reconstruction

20

15

10

5

0

5 r2 = 0.65
LH10

15 10 5 0

20

15

10

5

0

5
r2 = 0.462

Thiers13

10 0

15

10

5

0

5 r2 = 0.384
InVS15

Figure A.6: Histograms of shifted PMI values SPMI5(i, j, k . . .) (whereas are
greater than −∞) versus embedding reconstructed values from higher-order inner
products [[vi, cj , tk, ..]]. From the top to the bottom, HOSGNS model has been
trained respectively on P(stat), P(dyn) and P(stat|dyn). The histograms were built
by uniformly sampling 107 entries from the SPMI5 tensors.

Tensor Decomposition Evaluation

In Figure A.6 we probe the capability of the HOSGNS models to reconstruct the
shifted PMI tensor entries in empirical datasets by computing the higher-order prod-
uct of embedding vectors, operation optimized during the training phase to classify
non-zero elements of the tensor itself. We verify the goodness of approximation
estimating the square of the Pearson coefficient between the distribution of actual
PMI values and the estimated ones, having fixed the model κ = 5 during training.

92

Appendix B

Additional Comparison with Walk-based Hypergraph Embed-
dings

In Figures B.1 and B.2 we compare classification scores respectively for reconstruc-
tion and prediction of higher-order links, among SIMPLEX2VEC and Skip-Gram node
embeddings generated with 1st-order random walks [ZHS06] on the unweighted
hypergraph structure of the input data (we use the same setup for WORD2VEC :
T = 10, 5 epochs, walk_length = 80, num_walks = 10). Even SIMPLEX2VEC is
trained with unweighted walk transitions, leading to a similar 1st-order random
walk strategy (but, on a different topological structure). The hypergraph contains
hyperedges (formed by at least 2 nodes) that are simplices of Kk, where k = 2, 3 is
the order of simplices involved in the classification task. Even comparing node-level
similarity indices, we notice that SIMPLEX2VEC outperforms hypergraph-based node
embeddings in the majority of the datasets, except in the reconstruction of densely
connected configurations for co-authorship data.

93

0 1 2 3Ex
p

ec
te

d
 A

U
C

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

0 1 2 3

0.5

0.8

1.0

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3
co

au
th

-M
AG

-H
is

to
ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() hypergraph-skipgram - s0()

0 1 2 3 4

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() hypergraph-skipgram - s0()

Figure B.1: Calibrated AUC-PR scores on higher-order link reconstruction for
SIMPLEX2VEC (trained on K1) compared with walk-based hypergraph embeddings,
with similarity metric s0. On the left, classification scores are reported varying the
parameter nE for 3-node interactions; on the right, varying the parameter n∆ for
4-node interactions. Metrics are computed in unweighted representations. Label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.

0 1 2 3Ex
p

ec
te

d
 A

U
C

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

0 1 2 3
0.5

0.8

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3

co
au

th
-M

AG
-H

is
to

ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() hypergraph-skipgram - s0()

0 1 2 3 4
0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() hypergraph-skipgram - s0()

Figure B.2: Calibrated AUC-PR scores on higher-order link prediction for SIM-

PLEX2VEC (trained on K1) compared walk-based hypergraph embeddings, with
similarity metric s0. On the left, classification scores are reported varying the
parameter nE for 3-node interactions; on the right, varying the parameter n∆ for
4-node interactions. Metrics are computed in unweighted representations. Label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.

94

Additional Comparison with Hypergraph Neural Networks

In Figures B.3 and B.4 we compare classification scores respectively for recon-
struction and prediction of higher-order links, among SIMPLEX2VEC and Hyper-
SAGNN [ZZM20] node embeddings on the unweighted hypergraph structure of the
input data. Due to the model architecture, we compute hyperedge likelihood scores
for Hyper-SAGNN combining embeddings with the same euclidean functional form
optimized during model training, as e0(δ) = 1

|δ|
∑

i∈δ |di − si|2, where the pair
(si,di) corresponds to the (static, dynamic) embeddings of node i as explained in
the paper. In this setup, we notice that SIMPLEX2VEC outperforms Hyper-SAGNN
embeddings in the larger part of experiments.

One of the main drawbacks of existing hypergraph-based methods (e.g., [HLS19,
ZZM20, BZT21, MSWP22]) is that they are limited to compute 0-simplex represen-
tations (node embeddings), making impossible the use of higher-order proximities
(computed with interaction embeddings, like edges and triangles) similarly to the
ones showed in Figures 4.3 and 4.4 (c)(d).

95

0 1 2 3Ex
p

ec
te

d
 A

U
C

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

0 1 2 3

0.5

0.8

1.0

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3
co

au
th

-M
AG

-H
is

to
ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() hyper-sagnn - e0()

0 1 2 3 4

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() hyper-sagnn - e0()

Figure B.3: Calibrated AUC-PR scores on higher-order link reconstruction for
SIMPLEX2VEC (trained on K1) compared with Hyper-SAGNN node embeddings,
with similarity metric s0. On the left, classification scores are reported varying the
parameter nE for 3-node interactions; on the right, varying the parameter n∆ for
4-node interactions. Metrics are computed in unweighted representations. Label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.

0 1 2 3Ex
p

ec
te

d
 A

U
C

0 1 2 3 4Ex
p

ec
te

d
 A

U
C

0 1 2 3

0.6

0.8

co
nt

ac
t-

hi
gh

-s
ch

oo
l

0 1 2 3

em
ai

l-E
u

0 1 2 3

ta
gs

-m
at

h-
sx

0 1 2 3

co
au

th
-M

AG
-H

is
to

ry

of training edges in open 3-node groups n ()

AU
C-

PR

simplex2vec - s0() hyper-sagnn - e0()

0 1 2 3 4

0.5

0.8

1.0

co
nt

ac
t-

pr
im

ar
y-

sc
ho

ol

0 1 2 3 4

em
ai

l-E
nr

on

0 1 2 3 4

co
ng

re
ss

-b
ill

s

0 1 2 3 4

co
au

th
-M

AG
-G

eo
lo

gy

of training triangles in open 4-node groups n ()

AU
C-

PR

simplex2vec - s0() hyper-sagnn - e0()

Figure B.4: Calibrated AUC-PR scores on higher-order link prediction for SIM-

PLEX2VEC (trained on K1) compared with Hyper-SAGNN node embeddings, with
similarity metric s0. On the left, classification scores are reported varying the
parameter nE for 3-node interactions; on the right, varying the parameter n∆ for
4-node interactions. Metrics are computed in unweighted representations. Label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.

96

Appendix C

Per-dimension Utility Function Theorem

Theorem. Let enc : V → RD be any embedding encoder function which returns
a feature vector u = enc(u) for any node u ∈ V of the graph G = (V, E). The
per-dimension marginal utility score for edge (u, v) ∈ E can be expressed as:

µd(u,v) =
[
udvd −

1

D
u · v

](1

D
+

1

D2
+ . . .

)
Proof. Referring to Ω = {1, . . . , D} as the set containing the enumerated dimen-
sions, from Equation (5.2) we start writing the explicit formula for the definition of
µd(u,v):

µd(u,v) =
1

D

∑
q∈Ω

uqvq −
1

D − 1

∑
q∈Ω\{d}

uqvq

Using the expression
∑

q∈Ω uqvq = u · v = udvd +
∑

q∈Ω\{d} uqvq, we find that:

µd(u,v) =
1

D
udvd −

(
1

D − 1
− 1

D

) ∑
q∈Ω\{d}

uqvq

=
1

D
udvd −

1

D

(
1

1− 1
D

− 1

)
(u · v − udvd)

Ignoring the case of 1-dimensional embeddings, D > 1 and 0 < 1
D < 1, then the

expression within the parenthesis can be rewritten using the geometric series:

1

1− 1
D

− 1 =

∞∑
k=0

1

Dk
− 1 =

1

D
+

1

D2
+ . . . (C.1)

97

Replacing the formula in parenthesis with Equation (C.1), we prove the theorem:

D · µd(u,v) = udvd −
(

1

D
+

1

D2
+ . . .

)
(u · v − udvd)

= udvd

(
1 +

1

D
+

1

D2
+ . . .

)
− u · v

(
1

D
+

1

D2
+ . . .

)
=
[
udvd −

1

D
u · v

](
1 +

1

D
+

1

D2
+ . . .

)

Additional Experimental Results on Empirical Datasets

In Figures C.1, C.2 and C.3 we report the complete set of experimental results
for interpretation metrics and link prediction performance on multiple real-world
datasets, when varying the number of embedding dimensions.

2 4 8 16 32 64 128
Output dimensions

0.3

0.4

0.5

0.6

Co
m

m
un

ity
-a

wa
re

 sc
or

e Cora

2 4 8 16 32 64 128
Output dimensions

0.4

0.6
CiteSeer

2 4 8 16 32 64 128
Output dimensions

0.3

0.4

0.5

0.6
PubMed

DeepWalk GAE GEMSEC RF-DeepWalk RF-GAE

2 4 8 16 32 64 128
Output dimensions

0.3

0.4

0.5

0.6
BlogCatalog

2 4 8 16 32 64 128
Output dimensions

0.4

0.5

0.6

Flickr

2 4 8 16 32 64 128
Output dimensions

0.4

0.6

Wiki

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

Sp
ar

sit
y-

aw
ar

e
sc

or
e Cora

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9
CiteSeer

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

PubMed
DeepWalk GAE GEMSEC RF-DeepWalk RF-GAE

2 4 8 16 32 64 128
Output dimensions

0.8

0.9

BlogCatalog

2 4 8 16 32 64 128
Output dimensions

0.4

0.6

0.8

Flickr

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

Wiki

Figure C.1: Interpretation scores compared among RF-DEEPWALK, RF-GAE and
different dense embedding methods trained on real-world datasets, when varying
the number of output dimensions and choosing the best score among models with a
different number of input dimensions. On the top, we compare the community-aware
scores (higher is better); on the bottom, we compare the sparsity-aware scores
(lower is better).

98

8 16 32 64 128 256 512
Input dimensions

0.4

0.5

0.6

Co
m

m
un

ity
-a

wa
re

 sc
or

e Cora

8 16 32 64 128 256 512
Input dimensions

0.4

0.5

0.6

CiteSeer

8 16 32 64 128 256 512
Input dimensions

0.4

0.5

0.6
PubMed

DeepWalk SPINE-DeepWalk RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.5

0.6

BlogCatalog

8 16 32 64 128 256 512
Input dimensions

0.2

0.4

0.6

Flickr

8 16 32 64 128 256 512
Input dimensions

0.4

0.5

0.6

Wiki

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

Sp
ar

sit
y-

aw
ar

e
sc

or
e Cora

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

0.9

CiteSeer

8 16 32 64 128 256 512
Input dimensions

0.75

0.80

0.85

PubMed
DeepWalk SPINE-DeepWalk RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.6

0.7

0.8

0.9
BlogCatalog

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

0.9
Flickr

8 16 32 64 128 256 512
Input dimensions

0.6

0.7

0.8

Wiki

Figure C.2: Interpretation scores compared among DEEPWALK, SPINE-
DEEPWALK and RF-DEEPWALK methods trained on real-world datasets, when
varying the number of input dimensions and choosing the best score among mod-
els with a different number of output dimensions. On the top, we compare the
community-aware scores (higher is better); on the bottom, we compare the sparsity-
aware scores (lower is better).

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

RO
C-

AU
C

sc
or

e

Cora

2 4 8 16 32 64 128
Output dimensions

0.6

0.7

0.8

0.9

CiteSeer

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

PubMed
DeepWalk GAE GEMSEC RF-DeepWalk RF-GAE

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

BlogCatalog

2 4 8 16 32 64 128
Output dimensions

0.6

0.7

0.8

0.9
Flickr

2 4 8 16 32 64 128
Output dimensions

0.7

0.8

0.9

Wiki

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

0.9

RO
C-

AU
C

sc
or

e

Cora

8 16 32 64 128 256 512
Input dimensions

0.7

0.8

0.9

CiteSeer

8 16 32 64 128 256 512
Input dimensions

0.8

0.9

PubMed
DeepWalk SPINE-DeepWalk RF-DeepWalk

8 16 32 64 128 256 512
Input dimensions

0.6

0.7

BlogCatalog

8 16 32 64 128 256 512
Input dimensions

0.6

0.7

Flickr

8 16 32 64 128 256 512
Input dimensions

0.75

0.80

0.85

0.90
Wiki

Figure C.3: ROC-AUC scores on link prediction for different embedding methods
trained on real-world datasets. On the top, we compare RF-DEEPWALK, RF-
GAE and different dense embedding methods when varying the number of output
dimensions and choosing the best score among models with a different number of
input dimensions; on the bottom, we compare DEEPWALK, SPINE-DEEPWALK

and RF-DEEPWALK methods when varying the number of input dimensions and
choosing the best score among models with a different number of output dimensions.

99

Bibliography

[AA03] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social
networks, 25(3):211–230, 2003.

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Reviews of modern physics, 74(1):47, 2002.

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent
developments. The Journal of Machine Learning Research, 18(1):6446–
6531, 2017.

[ABH19] Carl Allen, Ivana Balazevic, and Timothy Hospedales. What the vec?
towards probabilistically grounded embeddings. In Advances in Neural
Information Processing Systems, pages 7465–7475, 2019.

[ALL+16] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Ris-
teski. A latent variable model approach to pmi-based word embeddings.
Transactions of the Association for Computational Linguistics, 4:385–399,
2016.

[ASK+21] Sarwan Ali, Muhammad Haroon Shakeel, Imdadullah Khan, Safiullah
Faizullah, and Muhammad Asad Khan. Predicting attributes of nodes
using network structure. ACM Transactions on Intelligent Systems and
Technology, 12(2):1–23, 2021.

[BAB+21] Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guil-
herme Ferraz de Arruda, Benedetta Franceschiello, Iacopo Iacopini, Sonia
Kéfi, Vito Latora, Yamir Moreno, et al. The physics of higher-order inter-
actions in complex systems. Nature Physics, 17(10):1093–1098, 2021.

[Bal12] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures.
In Proceedings of ICML workshop on unsupervised and transfer learning,
pages 37–49. JMLR Workshop and Conference Proceedings, 2012.

101

Bibliography

[BAMK16] Danushka Bollegala, Mohammed Alsuhaibani, Takanori Maehara, and Ken-
ichi Kawarabayashi. Joint word representation learning using a corpus and
a semantic lexicon. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[Bar12] Albert-László Barabási. The network takeover. Nature Physics, 8(1):14–16,
2012.

[BAS+18] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon
Kleinberg. Simplicial closure and higher-order link prediction. Proceedings
of the National Academy of Sciences, 115(48):E11221–E11230, 2018.

[BBB+21] Antoine Baker, Indaco Biazzo, Alfredo Braunstein, Giovanni Catania, Luca
Dall’Asta, Alessandro Ingrosso, Florent Krzakala, Fabio Mazza, Marc
Mézard, Anna Paola Muntoni, et al. Epidemic mitigation by statistical
inference from contact tracing data. Proceedings of the National Academy
of Sciences, 118(32):e2106548118, 2021.

[BBM14] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Who to fol-
low and why: link prediction with explanations. In Proceedings of the
International Conference on Knowledge Discovery & Data Mining, pages
1266–1275, 2014.

[BBV08] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical
processes on complex networks. Cambridge university press, 2008.

[BCC+13] Alain Barrat, Ciro Cattuto, Vittoria Colizza, Francesco Gesualdo, Lorenzo
Isella, Elisabetta Pandolfi, J F Pinton, Lucilla Ravà, Caterina Rizzo, Mari-
ateresa Romano, et al. Empirical temporal networks of face-to-face human
interactions. The European Physical Journal Special Topics, 222:1295–
1309, 2013.

[BCI+20] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime
Lucas, Alice Patania, Jean-Gabriel Young, and Giovanni Petri. Networks
beyond pairwise interactions: structure and dynamics. Physics Reports,
874:1–92, 2020.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[BFW+21] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F
Montufar, Pietro Lio, and Michael Bronstein. Weisfeiler and lehman
go topological: Message passing simplicial networks. In International
Conference on Machine Learning, pages 1026–1037. PMLR, 2021.

[BGA20] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral
clustering with graph neural networks for graph pooling. In International
Conference on Machine Learning, pages 874–883. PMLR, 2020.

[BGL16] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organi-
zation of complex networks. Science, 353(6295):163–166, 2016.

102

Bibliography

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[BHL+19] Jacob Charles Wright Billings, Mirko Hu, Giulia Lerda, Alexey N
Medvedev, Francesco Mottes, Adrian Onicas, Andrea Santoro, and Gio-
vanni Petri. Simplex2vec embeddings for community detection in simplicial
complexes. arXiv preprint arXiv:1906.09068, 2019.

[BJN+02] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ravasz,
Andras Schubert, and Tamas Vicsek. Evolution of the social network of sci-
entific collaborations. Physica A: Statistical mechanics and its applications,
311(3-4):590–614, 2002.

[BKB+19] Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos,
Andrew Stephen McGough, and Boguslaw Obara. Exploring the semantic
content of unsupervised graph embeddings: An empirical study. Data
Science and Engineering, 4:269–289, 2019.

[BKPB19] Ferenc Béres, Domokos M Kelen, Róbert Pálovics, and András A Benczúr.
Node embeddings in dynamic graphs. Applied Network Science, 4(1):64,
2019.

[BKTK19] Caleb Belth, Fahad Kamran, Donna Tjandra, and Danai Koutra. When to
remember where you came from: Node representation learning in higher-
order networks. In Proceedings of the International Conference on Ad-
vances in Social Networks Analysis and Mining, pages 222–225, 2019.

[BMD+20] Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, Jean-Loup
Guillaume, and Bivas Mitra. Louvainne: Hierarchical louvain method
for high quality and scalable network embedding. In Proceedings of the
International Conference on Web Search and Data Mining, pages 43–51,
2020.

[BMVZ21] Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur
Ziviani. A survey on embedding dynamic graphs. ACM Computing Surveys,
55(1):1–37, 2021.

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–1396,
2003.

[BZT21] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and
hypergraph attention. Pattern Recognition, 110:107637, 2021.

[CFQS12] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola
Santoro. Time-varying graphs and dynamic networks. International Journal
of Parallel, Emergent and Distributed Systems, 27(5):387–408, 2012.

[CH90] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography. Computational Linguistics, 16(1):22–29,
1990.

103

Bibliography

[CKC+21] Sandeep Chowdhary, Aanjaneya Kumar, Giulia Cencetti, Iacopo Iacopini,
and Federico Battiston. Simplicial contagion in temporal higher-order
networks. Journal of Physics: Complexity, 2(3):035019, 2021.

[CLX15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In Proceedings of the
International Conference on Information and Knowledge Management,
pages 891–900, 2015.

[CLX19] Ren-Meng Cao, Si-Yuan Liu, and Xiao-Ke Xu. Network embedding for
link prediction: The pitfall and improvement. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(10):103102, 2019.

[CM20] Sudhanshu Chanpuriya and Cameron Musco. Infinitewalk: Deep network
embeddings as laplacian embeddings with a nonlinearity. In Proceedings
of the International Conference on Knowledge Discovery & Data Mining,
pages 1325–1333, 2020.

[CM21] Yu-Chia Chen and Marina Meila. The decomposition of the higher-order
homology embedding constructed from the k-laplacian. Advances in Neural
Information Processing Systems, 34, 2021.

[CMS21] Giulio Cimini, Rossana Mastrandrea, and Tiziano Squartini. Reconstructing
networks. Cambridge University Press, 2021.

[CMST20] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and
Charalampos Tsourakakis. Node embeddings and exact low-rank represen-
tations of complex networks. Advances in Neural Information Processing
Systems, 33:13185–13198, 2020.

[CMST21] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and
Charalampos Tsourakakis. Deepwalking backwards: From embeddings
back to graphs. In International Conference on Machine Learning, pages
1473–1483. PMLR, 2021.

[CP20] Neeraj Chavan and Katerina Potika. Higher-order link prediction using
triangle embeddings. In IEEE International Conference on Big Data, pages
4535–4544. IEEE, 2020.

[CPVDE17] Ryan Cotterell, Adam Poliak, Benjamin Van Durme, and Jason Eisner.
Explaining and generalizing skip-gram through exponential family principal
component analysis. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers, pages 175–181, 2017.

[CRL+22] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea
Brennen, Alvaro J Castro Rivadeneira, Aaron Gerding, Tilmann Gneit-
ing, Katie H House, Yuxin Huang, et al. Evaluation of individual and
ensemble probabilistic forecasts of covid-19 mortality in the united states.
Proceedings of the National Academy of Sciences, 119(15):e2113561119,
2022.

104

Bibliography

[CS22] Hyunjin Choo and Kijung Shin. On the persistence of higher-order interac-
tions in real-world hypergraphs. In Proceedings of the SIAM International
Conference on Data Mining, pages 163–171. SIAM, 2022.

[CSL+21] Giulia Cencetti, Gabriele Santin, Antonio Longa, Emanuele Pigani, Alain
Barrat, Ciro Cattuto, Sune Lehmann, Marcel Salathe, and Bruno Lepri.
Digital proximity tracing on empirical contact networks for pandemic
control. Nature Communications, 12(1):1655, 2021.

[CVdBB+10] Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-
François Pinton, and Alessandro Vespignani. Dynamics of person-to-person
interactions from distributed rfid sensor networks. PloS One, 5(7), 2010.

[CZ14] Jan Chorowski and Jacek M Zurada. Learning understandable neural
networks with nonnegative weight constraints. IEEE Transactions on
Neural Networks and Learning Systems, 26(1):62–69, 2014.

[CZ17] Yu Chen and Mohammed J Zaki. Kate: K-competitive autoencoder for text.
In Proceedings of the International Conference on Knowledge Discovery &
Data Mining, pages 85–94, 2017.

[CZC18] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A compre-
hensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering, 30(9):1616–1637,
2018.

[DDSRC+13] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko
Kivelä, Yamir Moreno, Mason A Porter, Sergio Gómez, and Alex Are-
nas. Mathematical formulation of multilayer networks. Physical Review X,
3(4):041022, 2013.

[DG18] Ayushi Dalmia and Manish Gupta. Towards interpretation of node embed-
dings. In Companion Proceedings of the The World Wide Web Conference,
pages 945–952, 2018.

[DGE15] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual
representation learning by context prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1422–1430, 2015.

[DKA11] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link
prediction using matrix and tensor factorizations. ACM Transactions on
Knowledge Discovery from Data, 5(2):1–27, 2011.

[DLH19] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable
machine learning. Communications of the ACM, 63(1):68–77, 2019.

[DM20] Aswathy Divakaran and Anuraj Mohan. Temporal link prediction: A survey.
New Generation Computing, 38(1):213–258, 2020.

[DNA19] Chi Thang Duong, Quoc Viet Hung Nguyen, and Karl Aberer. Interpretable
node embeddings with mincut loss. In Learning and Reasoning with Graph-
Structured Representations Workshop-ICML, 2019.

105

Bibliography

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608, 2017.

[DWS+18] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. Dy-
namic network embedding: An extended approach for skip-gram based
network embedding. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 2086–2092, 2018.

[EBT16] Jesper E van Engelen, Hanjo D Boekhout, and Frank W Takes. Explainable
and efficient link prediction in real-world network data. In International
Symposium on Intelligent Data Analysis, pages 295–307. Springer, 2016.

[EDS20] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural
networks. In NeurIPS Workshop on Topological Data Analysis and Beyond,
2020.

[EMS04] Jean-Pierre Eckmann, Elisha Moses, and Danilo Sergi. Entropy of dialogues
creates coherent structures in e-mail traffic. Proceedings of the National
Academy of Sciences, 101(40):14333–14337, 2004.

[FC17] Benjamin Fish and Rajmonda S Caceres. A task-driven approach to time
scale detection in dynamic networks. In Proceedings of the 13th interna-
tional workshop on mining and learning with graphs (MLG), 2017.

[FDJ+15] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard
Hovy, and Noah A Smith. Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pages 1606–1615, 2015.

[FDR22] Cornelius Fritz, Emilio Dorigatti, and David Rügamer. Combining graph
neural networks and spatio-temporal disease models to improve the predic-
tion of weekly covid-19 cases in germany. Scientific Reports, 12(1):3930,
2022.

[FKRA22] Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. Z
orro: Valid, sparse, and stable explanations in graph neural networks. IEEE
Transactions on Knowledge and Data Engineering, 2022.

[FTY+15] Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A
Smith. Sparse overcomplete word vector representations. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500, 2015.

[FYZ+19] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao.
Hypergraph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3558–3565, 2019.

[GB18] Mathieu Génois and Alain Barrat. Can co-location be used as a proxy for
face-to-face contacts? EPJ Data Science, 7(1):11, 2018.

106

Bibliography

[GBB+18] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and
Francesco Gullo. Mining (maximal) span-cores from temporal networks. In
Proceedings of the International Conference on Information and Knowledge
Management, pages 107–116, 2018.

[GBH19] Antonia Gogoglou, C. Bayan Bruss, and Keegan E. Hines. On the Inter-
pretability and Evaluation of Graph Representation Learning. NeurIPS
Workshop on Graph Representation Learning, 2019.

[GBL22] Christopher Wei Jin Goh, Cristian Bodnar, and Pietro Lio. Simplicial atten-
tion networks. In ICLR 2022 Workshop on Geometrical and Topological
Representation Learning, 2022.

[GBSRW20] Azin Ghazimatin, Oana Balalau, Rishiraj Saha Roy, and Gerhard Weikum.
Prince: Provider-side interpretability with counterfactual explanations in
recommender systems. In Proceedings of the International Conference on
Web Search and Data Mining, pages 196–204, 2020.

[GCC20] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems, 187:104816, 2020.

[GF18] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applica-
tions, and performance: A survey. Knowledge-Based Systems, 151:78–94,
2018.

[GHG+20] Amir Ghasemian, Homa Hosseinmardi, Aram Galstyan, Edoardo M Airoldi,
and Aaron Clauset. Stacking models for nearly optimal link prediction
in complex networks. Proceedings of the National Academy of Sciences,
117(38):23393–23400, 2020.

[GKHL17] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep em-
bedding method for dynamic graphs. In IJCAI Workshop on Representation
Learning for Graphs (ReLiG), 2017.

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the International Conference on Knowledge
Discovery & Data Mining, pages 855–864, 2016.

[GMR+18] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explaining
black box models. ACM Computing Surveys, 51(5):1–42, 2018.

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[Gol02] Timothy E Goldberg. Combinatorial laplacians of simplicial complexes.
Senior Thesis, Bard College, 2002.

[GPAGS20] Guillermo García-Pérez, Roya Aliakbarisani, Abdorasoul Ghasemi, and
M Ángeles Serrano. Precision as a measure of predictability of missing
links in real networks. Physical Review E, 101(5):052318, 2020.

107

Bibliography

[GPC14] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the commu-
nity structure and activity patterns of temporal networks: a non-negative
tensor factorization approach. PloS One, 9(1):e86028, 2014.

[GSG+22] Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding,
and Omer Khan. Towards real-time temporal graph learning. In IEEE
International Conference on Computer Design, pages 263–271. IEEE,
2022.

[GSP09] Roger Guimerà and Marta Sales-Pardo. Missing and spurious interactions
and the reconstruction of complex networks. Proceedings of the National
Academy of Sciences, 106(52):22073–22078, 2009.

[GSQ+21] Junyi Gao, Rakshith Sharma, Cheng Qian, Lucas M Glass, Jeffrey Spaeder,
Justin Romberg, Jimeng Sun, and Cao Xiao. Stan: spatio-temporal attention
network for pandemic prediction using real-world evidence. Journal of the
American Medical Informatics Association, 28(4):733–743, 2021.

[GTP+20] Laetitia Gauvin, Michele Tizzoni, Simone Piaggesi, Andrew Young, Natalia
Adler, Stefaan Verhulst, Leo Ferres, and Ciro Cattuto. Gender gaps in urban
mobility. Humanities and Social Sciences Communications, 7(1):1–13,
2020.

[GVF+15] Mathieu Génois, Christian L Vestergaard, Julie Fournet, André Panisson,
Isabelle Bonmarin, and Alain Barrat. Data on face-to-face contacts in an
office building suggest a low-cost vaccination strategy based on community
linkers. Network Science, 3(3):326–347, 2015.

[GWS+20] Lingbing Guo, Weiqing Wang, Zequn Sun, Chenghao Liu, and Wei Hu.
Decentralized knowledge graph representation learning. arXiv preprint
arXiv:2010.08114, 2020.

[Hac20] Celia Hacker. k-simplex2vec: a simplicial extension of node2vec. In
NeurIPS Workshop on Topological Data Analysis and Beyond, 2020.

[Ham20] William L Hamilton. Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning, 14(3):1–159, 2020.

[Har54] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[HCY+19] Jie Huang, Chuan Chen, Fanghua Ye, Jiajing Wu, Zibin Zheng, and Guohui
Ling. Hyper2vec: Biased random walk for hyper-network embedding. In
Database Systems for Advanced Applications: DASFAA 2019 International
Workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April
22–25, 2019, Proceedings 24, pages 273–277. Springer, 2019.

[HFZ+20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark:
Datasets for machine learning on graphs. Advances in Neural Information
Processing Systems, 33:22118–22133, 2020.

[HGC20] Patrick Hall, Navdeep Gill, and Benjamin Cox. Responsible Machine
Learning. O’Reilly Media, Incorporated, 2020.

108

Bibliography

[HLS19] Jie Huang, Xin Liu, and Yangqiu Song. Hyper-path-based representation
learning for hyper-networks. In Proceedings of the International Confer-
ence on Information and Knowledge Management, pages 449–458, 2019.

[HPN+21] Robert Hinch, William JM Probert, Anel Nurtay, Michelle Kendall, Chris
Wymant, Matthew Hall, Katrina Lythgoe, Ana Bulas Cruz, Lele Zhao,
Andrea Stewart, et al. Openabm-covid19—an agent-based model for non-
pharmaceutical interventions against covid-19 including contact tracing.
PLoS computational biology, 17(7):e1009146, 2021.

[HS12] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports,
519(3):97–125, 2012.

[HYL17a] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. Advances in Neural Information Processing
Systems, 30, 2017.

[HYL17b] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learn-
ing on graphs: Methods and applications. IEEE Data Eng. Bull., 40(3):52–
74, 2017.

[IKA20] Maximilian Idahl, Megha Khosla, and Avishek Anand. Finding inter-
pretable concept spaces in node embeddings using knowledge bases. In
Machine Learning and Knowledge Discovery in Databases: International
Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20,
2019, Proceedings, Part I, pages 229–240. Springer, 2020.

[IPBB22] Iacopo Iacopini, Giovanni Petri, Andrea Baronchelli, and Alain Barrat.
Group interactions modulate critical mass dynamics in social convention.
Communications Physics, 5(1):64, 2022.

[IPBL19] Iacopo Iacopini, Giovanni Petri, Alain Barrat, and Vito Latora. Simplicial
models of social contagion. Nature Communications, 10(1):2485, 2019.

[ISB+11] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François
Pinton, and Wouter Van den Broeck. What’s in a crowd? analysis of face-to-
face behavioral networks. Journal of theoretical biology, 271(1):166–180,
2011.

[JDH15] Sujay Kumar Jauhar, Chris Dyer, and Eduard H Hovy. Ontologically
grounded multi-sense representation learning for semantic vector space
models. In HLT-NAACL, pages 683–693, 2015.

[JPC+21] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip.
A survey on knowledge graphs: Representation, acquisition, and appli-
cations. IEEE Transactions on Neural Networks and Learning Systems,
33(2):494–514, 2021.

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, 1953.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, 2009.

109

Bibliography

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Representations, 2015.

[KBL+20] Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin
Blais, and Shawn O’Banion. Examining covid-19 forecasting using spatio-
temporal gnns. In Proceedings of the 16th International Workshop on
Mining and Learning with Graphs (MLG), 2020.

[KDPR20] Tarun Kumar, K Darwin, Srinivasan Parthasarathy, and Balaraman Ravin-
dran. Hpra: Hyperedge prediction using resource allocation. In ACM
Conference on Web Science, pages 135–143, 2020.

[KGJ+20] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Ak-
shay Sethi, Peter Forsyth, and Pascal Poupart. Representation learning
for dynamic graphs: A survey. Journal of Machine Learning Research,
21(70):1–73, 2020.

[Kit14] Rob Kitchin. Big data, new epistemologies and paradigm shifts. Big data
& society, 1(1):2053951714528481, 2014.

[KKB+12] Gautier Krings, Márton Karsai, Sebastian Bernhardsson, Vincent D Blondel,
and Jari Saramäki. Effects of time window size and placement on the
structure of an aggregated communication network. EPJ Data Science,
1(1):1–16, 2012.

[KKS20] Yunbum Kook, Jihoon Ko, and Kijung Shin. Evolution of real-world
hypergraphs: Patterns and models without oracles. In IEEE International
Conference on Data Mining, pages 272–281. IEEE, 2020.

[KLDB22] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Explanations for network
embedding-based link predictions. In Machine Learning and Principles and
Practice of Knowledge Discovery in Databases: International Workshops
of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings,
Part I, pages 473–488. Springer, 2022.

[KMA21] Shima Khoshraftar, Sedigheh Mahdavi, and Aijun An. Centrality-based
interpretability measures for graph embeddings. In IEEE International
Conference on Data Science and Advanced Analytics, pages 1–10. IEEE,
2021.

[KR08] Matt J. Keeling and Pejman Rohani. Modeling Infectious Diseases in
Humans and Animals. Princeton University Press, 2008.

[KSSB20] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas.
Link prediction techniques, applications, and performance: A survey. Phys-
ica A: Statistical Mechanics and its Applications, 553:124289, 2020.

[KZL19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic
embedding trajectory in temporal interaction networks. In Proceedings
of the International Conference on Knowledge Discovery & Data Mining,
pages 1269–1278, 2019.

110

Bibliography

[LCF15] Yannick Léo, Christophe Crespelle, and Eric Fleury. Non-altering time
scales for aggregation of dynamic networks into series of graphs. In
Proceedings of the ACM Conference on Emerging Networking Experiments
and Technologies, pages 1–7, 2015.

[LCX+20] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong,
Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural
network. Advances in Neural Information Processing Systems, 33:19620–
19631, 2020.

[LG14a] Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit
word representations. In Proceedings of the Conference on Computational
Natural Language Learning, pages 171–180, 2014.

[LG14b] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in Neural Information Processing Systems, pages
2177–2185, 2014.

[LGP21] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A
multi-level framework for scalable graph embedding. In Proceedings of
the International AAAI Conference on Web and Social Media, volume 15,
pages 361–372, 2021.

[LH08] Jure Leskovec and Eric Horvitz. Planetary-scale views on a large instant-
messaging network. In Proceedings of the World Wide Web Conference,
pages 915–924, 2008.

[LHLH18] Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu. On interpretation
of network embedding via taxonomy induction. In Proceedings of the
International Conference on Knowledge Discovery & Data Mining, pages
1812–1820, 2018.

[LJZ09] Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on lo-
cal paths for link prediction of complex networks. Physical Review E,
80(4):046122, 2009.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems, 30, 2017.

[LML22] Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns
in temporal networks. In Proceedings of the World Wide Web Conference,
pages 1340–1351, 2022.

[LNK07] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for
social networks. Journal of the American society for information science
and technology, 58(7):1019–1031, 2007.

[LOU20] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor
decompositions for temporal knowledge base completion. In International
Conference on Learning Representations, 2020.

111

Bibliography

[LPA+09] David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-László
Barabási, Devon Brewer, Nicholas Christakis, Noshir Contractor, James
Fowler, Myron Gutmann, et al. Computational social science. Science,
323(5915):721–723, 2009.

[LPZ+15] Linyuan Lü, Liming Pan, Tao Zhou, Yi-Cheng Zhang, and H Eugene
Stanley. Toward link predictability of complex networks. Proceedings of
the National Academy of Sciences, 112(8):2325–2330, 2015.

[LQH15] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Learning context-sensitive
word embeddings with neural tensor skip-gram model. In Proceedings of
the International Joint Conference on Artificial Intelligence, 2015.

[LRS19] Renaud Lambiotte, Martin Rosvall, and Ingo Scholtes. From networks to op-
timal higher-order models of complex systems. Nature Physics, 15(4):313–
320, 2019.

[LTL+19] Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, and
Xia Hu. Is a single vector enough? exploring node polysemy for network
embedding. In Proceedings of the International Conference on Knowledge
Discovery & Data Mining, pages 932–940, 2019.

[LYZ+23] Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng,
Sheng Tian, Ruofan Wu, and Changhua Meng. Scaling up dynamic graph
representation learning via spiking neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2023.

[LZ11] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications, 390(6):1150–1170,
2011.

[LZP+18] Taisong Li, Jiawei Zhang, S Yu Philip, Yan Zhang, and Yonghong Yan.
Deep dynamic network embedding for link prediction. IEEE Access,
6:29219–29230, 2018.

[MBM21] Federico Musciotto, Federico Battiston, and Rosario N Mantegna. Detect-
ing informative higher-order interactions in statistically validated hyper-
graphs. Communications Physics, 4(1):1–9, 2021.

[MCCD13] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio and
Yann LeCun, editors, International Conference on Learning Representa-
tions, Workshop Track Proceedings, 2013.

[MG17] Oren Melamud and Jacob Goldberger. Information-theory interpretation
of the skip-gram negative-sampling objective function. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 167–171, 2017.

[MHM18] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-
fold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

112

Bibliography

[MK13] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings effi-
ciently with noise-contrastive estimation. In Advances in Neural Informa-
tion Processing Systems, pages 2265–2273, 2013.

[MKA18] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec:
Scalable dynamic network embedding. In IEEE International Conference
on Big Data, pages 3762–3765. IEEE, 2018.

[MLA21] Charles Murphy, Edward Laurence, and Antoine Allard. Deep learning
of contagion dynamics on complex networks. Nature Communications,
12(1):4720, 2021.

[MLB+22] Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Hav-
torn, Joakim Edin, Christian Igel, Katrin Kirchhoff, Shang-Wen Li, Karen
Livescu, Lars Maaløe, et al. Self-supervised speech representation learning:
A review. IEEE Journal of Selected Topics in Signal Processing, 2022.

[MLDB20] Alexandru Cristian Mara, Jefrey Lijffijt, and Tijl De Bie. Benchmarking
network embedding models for link prediction: are we making progress? In
IEEE International Conference on Data Science and Advanced Analytics,
pages 138–147. IEEE, 2020.

[MM20] Ishan Misra and Laurens van der Maaten. Self-supervised learning of
pretext-invariant representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 6707–6717,
2020.

[MMS+21] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. A survey on bias and fairness in machine learning. ACM
Computing Surveys, 54(6):1–35, 2021.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems, pages 3111–3119,
2013.

[MSWP22] Sepideh Maleki, Donya Saless, Dennis P Wall, and Keshav Pingali. Hy-
pernetvec: Fast and scalable hierarchical embedding for hypergraphs. In
International Conference on Network Science, pages 169–183. Springer,
2022.

[MTD19] Yunpu Ma, Volker Tresp, and Erik A Daxberger. Embedding models for
episodic knowledge graphs. Journal of Web Semantics, 59:100490, 2019.

[MUH+21] Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E Kilmer, and
Haim Avron. Dynamic graph convolutional networks using the tensor
m-product. In Proceedings of the SIAM International Conference on Data
Mining, pages 729–737. SIAM, 2021.

[New01] Mark EJ Newman. Clustering and preferential attachment in growing
networks. Physical Review E, 64(2):025102, 2001.

113

Bibliography

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003.

[New18] Mark EJ Newman. Network structure from rich but noisy data. Nature
Physics, 14(6):542–545, 2018.

[NLR+18] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed,
Eunyee Koh, and Sungchul Kim. Continuous-time dynamic network embed-
dings. In Companion Proceedings of the The World Wide Web Conference,
pages 969–976, 2018.

[NMCC16] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. Im-
proving document ranking with dual word embeddings. In Companion
Proceedings of the World Wide Web Conference, pages 83–84, 2016.

[NTLL19] Qi Ni, Ming Tang, Ying Liu, and Ying-Cheng Lai. Machine learning
dynamical phase transitions in complex networks. Physical Review E,
100(5):052312, 2019.

[OCP+16] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asym-
metric transitivity preserving graph embedding. In Proceedings of the
International Conference on Knowledge Discovery & Data Mining, pages
1105–1114, 2016.

[OSH+07] Jukka-Pekka Onnela, Jari Saramäki, Jörkki Hyvönen, Gábor Szabó, M Ar-
gollo De Menezes, Kimmo Kaski, Albert-László Barabási, and János
Kertész. Analysis of a large-scale weighted network of one-to-one hu-
man communication. New journal of physics, 9(6):179, 2007.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the International
Conference on Knowledge Discovery & Data Mining, pages 701–710.
ACM, 2014.

[PBO17] Sungjoon Park, JinYeong Bak, and Alice Oh. Rotated Word Vector Rep-
resentations and their Interpretability. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 401–411,
Copenhagen, Denmark, 2017. Association for Computational Linguistics.

[PDCM22] Thibault Prouteau, Nicolas Dugué, Nathalie Camelin, and Sylvain Meignier.
Are embedding spaces interpretable? results of an intrusion detection
evaluation on a large french corpus. In LREC 2022, 2022.

[Pei19] Tiago P Peixoto. Network reconstruction and community detection from
dynamics. Physical Review Letters, 123(12):128301, 2019.

[PGBC13] André Panisson, Laetitia Gauvin, Alain Barrat, and Ciro Cattuto. Fin-
gerprinting temporal networks of close-range human proximity. In IEEE
International Conference on Pervasive Computing and Communications
Workshops, pages 261–266. IEEE, 2013.

114

Bibliography

[PKCS17] Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena. Don’t
walk, skip! online learning of multi-scale network embeddings. In Pro-
ceedings of the International Conference on Advances in Social Networks
Analysis and Mining, pages 258–265, 2017.

[PKFD20] Namyong Park, Andrey Kan, Christos Faloutsos, and Xin Luna Dong.
J-recs: Principled and scalable recommendation justification. In IEEE
International Conference on Data Mining, pages 1208–1213. IEEE, 2020.

[PLC17] Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground truth
about metadata and community detection in networks. Science advances,
3(5):e1602548, 2017.

[PLY+20] Hao Peng, Jianxin Li, Hao Yan, Qiran Gong, Senzhang Wang, Lin Liu, Li-
hong Wang, and Xiang Ren. Dynamic network embedding via incremental
skip-gram with negative sampling. Science China Information Sciences,
63(10):1–19, 2020.

[PMH18] Nikolaos Pappas, Lesly Miculicich, and James Henderson. Beyond weight
tying: Learning joint input-output embeddings for neural machine trans-
lation. In Proceedings of the Third Conference on Machine Translation:
Research Papers. Association for Computational Linguistics, 2018.

[PP22] Simone Piaggesi and André Panisson. Time-varying graph representation
learning via higher-order skip-gram with negative sampling. EPJ Data
Science, 11(1):33, 2022.

[PPP22] Simone Piaggesi, André Panisson, and Giovanni Petri. Effective higher-
order link prediction and reconstruction from simplicial complex embed-
dings. In Learning on Graphs Conference, pages 55–1. PMLR, 2022.

[PPV17] Alice Patania, Giovanni Petri, and Francesco Vaccarino. The shape of
collaborations. EPJ Data Science, 6:1–16, 2017.

[PSB19] Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhat-
tacharyya. Word2sense: Sparse interpretable word embeddings. In Pro-
ceedings of the 57th annual meeting of the Association for Computational
Linguistics, pages 5692–5705, 2019.

[PSCVMV15] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and
Alessandro Vespignani. Epidemic processes in complex networks. Reviews
of modern physics, 87(3):925, 2015.

[PSG+13] René Pfitzner, Ingo Scholtes, Antonios Garas, Claudio J Tessone, and
Frank Schweitzer. Betweenness preference: Quantifying correlations in
the topological dynamics of temporal networks. Physical Review Letters,
110(19):198701, 2013.

[PSHM23] Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane.
Architectures of topological deep learning: A survey on topological neural
networks. arXiv preprint arXiv:2304.10031, 2023.

115

Bibliography

[PSL+21] Liming Pan, Hui-Juan Shang, Peiyan Li, Haixing Dai, Wei Wang, and Lixin
Tian. Predicting hyperlinks via hypernetwork loop structure. Europhysics
Letters, 135(4):48005, 2021.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1532–1543,
2014.

[PSM20] Prasanna Patil, Govind Sharma, and M. Narasimha Murty. Negative Sam-
pling for Hyperlink Prediction in Networks. In Hady W. Lauw, Raymond
Chi-Wing Wong, Alexandros Ntoulas, Ee-Peng Lim, See-Kiong Ng, and
Sinno Jialin Pan, editors, Advances in Knowledge Discovery and Data
Mining, pages 607–619. Springer International Publishing, 2020.

[PSV02] Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of
complex networks. Physical Review E, 65(3):036104, 2002.

[QDM+18] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In Proceedings of the International Conference on Web
Search and Data Mining, pages 459–467. ACM, 2018.

[RB18] Maja Rudolph and David Blei. Dynamic embeddings for language evolu-
tion. In Proceedings of the World Wide Web Conference, pages 1003–1011,
2018.

[RDSS19] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton.
Gemsec: Graph embedding with self clustering. In Proceedings of the
International Conference on Advances in Social Networks Analysis and
Mining, pages 65–72, 2019.

[RFMT22] Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili.
Explaining link prediction systems based on knowledge graph embeddings.
In Proceedings of the 2022 International Conference on Management of
Data, pages 2062–2075, 2022.

[RPB13] Bruno Ribeiro, Nicola Perra, and Andrea Baronchelli. Quantifying the
effect of temporal resolution on time-varying networks. Scientific Reports,
3(1):1–5, 2013.

[RPC+19] Francisco A Rodrigues, Thomas Peron, Colm Connaughton, Jurgen Kurths,
and Yamir Moreno. A machine learning approach to predicting dynamical
observables from network structure. arXiv preprint arXiv:1910.00544,
2019.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should
i trust you?" explaining the predictions of any classifier. In Proceedings
of the International Conference on Knowledge Discovery & Data Mining,
pages 1135–1144, 2016.

116

Bibliography

[RZHW22] Omar F Robledo, Xiu-Xiu Zhan, Alan Hanjalic, and Huijuan Wang. In-
fluence of clustering coefficient on network embedding in link prediction.
Applied Network Science, 7(1):1–20, 2022.

[SBB+12] Marcel Salathe, Linus Bengtsson, Todd J Bodnar, Devon D Brewer,
John S Brownstein, Caroline Buckee, Ellsworth M Campbell, Ciro Cattuto,
Shashank Khandelwal, Patricia L Mabry, et al. Digital epidemiology. PLoS
Computational Biology, 8(7), 2012.

[SBBPS12] Michele Starnini, Andrea Baronchelli, Alain Barrat, and Romualdo Pastor-
Satorras. Random walks on temporal networks. Physical Review E,
85(5):056115, 2012.

[SBCG18] Anna Sapienza, Alain Barrat, Ciro Cattuto, and Laetitia Gauvin. Esti-
mating the outcome of spreading processes on networks with incomplete
information: A dimensionality reduction approach. Physical Review E,
98(1):012317, 2018.

[SBPA23] Andrea Santoro, Federico Battiston, Giovanni Petri, and Enrico Amico.
Higher-order organization of multivariate time series. Nature Physics, pages
1–9, 2023.

[SBWG10] Rajmonda Sulo, Tanya Berger-Wolf, and Robert Grossman. Meaningful
selection of temporal resolution for dynamic networks. In Proceedings of
the Eighth Workshop on Mining and Learning with Graphs, pages 127–136,
2010.

[SCKC20] Mandana Saebi, Giovanni Luca Ciampaglia, Lance M Kaplan, and Nitesh V
Chawla. Honem: learning embedding for higher order networks. Big Data,
8(4):255–269, 2020.

[SCL18] Vsevolod Salnikov, Daniele Cassese, and Renaud Lambiotte. Simpli-
cial complexes and complex systems. European Journal of Physics,
40(1):014001, 2018.

[SFHG+20] Wissam Siblini, Jordan Fréry, Liyun He-Guelton, Frédéric Oblé, and Yi-
Qing Wang. Master your metrics with calibration. In International Sympo-
sium on Intelligent Data Analysis, pages 457–469. Springer, 2020.

[SFX+20] Jiachen Sun, Ling Feng, Jiarong Xie, Xiao Ma, Dashun Wang, and Yanqing
Hu. Revealing the predictability of intrinsic structure in complex networks.
Nature Communications, 11(1):1–10, 2020.

[SGL+16] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word
embeddings using l1 regularized online learning. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 2915–2921,
2016.

[SGT+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2008.

117

Bibliography

[Sha16] Lloyd S Shapley. 17. a value for n-person games. In Contributions to the
Theory of Games (AM-28), Volume II, pages 307–318. Princeton University
Press, 2016.

[Sha20] Govind Sharma. Hypergraph Network Models: Learning, Prediction, and
Representation in the Presence of Higher-Order Relations. PhD thesis,
Indian Institute of Science Bangalore, 2020.

[SKL+10] Marcel Salathé, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W
Feldman, and James H Jones. A high-resolution human contact network
for infectious disease transmission. Proceedings of the National Academy
of Sciences, 107(51):22020–22025, 2010.

[SM19] Wojciech Samek and Klaus-Robert Müller. Towards explainable artificial
intelligence. In Explainable AI: interpreting, explaining and visualizing
deep learning, pages 5–22. Springer, 2019.

[SMF18] Jamin Shin, Andrea Madotto, and Pascale Fung. Interpreting word embed-
dings with eigenvector analysis. In NeurIPS Workshop on Interpretability
and Robustness in Audio, Speech, and Language, 2018.

[SOBC21] Koya Sato, Mizuki Oka, Alain Barrat, and Ciro Cattuto. Predicting par-
tially observed processes on temporal networks by dynamics-aware node
embeddings (dyane). EPJ Data Science, 10(1):22, 2021.

[SPJ+18] Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-
Kirkpatrick, and Eduard Hovy. Spine: Sparse interpretable neural em-
beddings. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1), 2018.

[SPM20] Govind Sharma, Prasanna Patil, and M. Narasimha Murty. C3MM: Clique-
Closure based Hyperlink Prediction. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 3364–3370, 2020.

[SPW+15] Anna Sapienza, André Panisson, Joseph Wu, Laetitia Gauvin, and Ciro
Cattuto. Detecting anomalies in time-varying networks using tensor de-
composition. In IEEE International Conference on Data Mining Workshop,
pages 516–523. IEEE, 2015.

[ŞUŞ+20] Lütfi Kerem Şenel, Ihsan Utlu, Furkan Şahinuç, Haldun M. Ozaktas, and
Aykut Koç. Imparting interpretability to word embeddings while preserving
semantic structure. Natural Language Engineering, page 1–26, 2020.

[ŞUY+18] Lütfi Kerem Şenel, Ihsan Utlu, Veysel Yücesoy, Aykut Koc, and Tolga
Cukur. Semantic structure and interpretability of word embeddings.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
26(10):1769–1779, 2018.

[SVB+11] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella,
Jean-François Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne
Régis, Bruno Lina, et al. High-resolution measurements of face-to-face
contact patterns in a primary school. PloS One, 6(8), 2011.

118

Bibliography

[SWG+20] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
Dysat: Deep neural representation learning on dynamic graphs via self-
attention networks. In Proceedings of the International Conference on Web
Search and Data Mining, pages 519–527, 2020.

[SYS16] Ke-ke Shang, Wei-sheng Yan, and Michael Small. Evolving net-
works—using past structure to predict the future. Physica A: Statistical
Mechanics and its Applications, 455:120–135, 2016.

[TBBER21] Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. The
why, how, and when of representations for complex systems. SIAM Review,
63(3):435–485, 2021.

[TCW+18] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. Structural deep
embedding for hyper-networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[TDS+20] Disheng Tang, Wenbo Du, Louis Shekhtman, Yijie Wang, Shlomo Havlin,
Xianbin Cao, and Gang Yan. Predictability of real temporal networks.
National Science Review, 7(5):929–937, 2020.

[TKG20] Maddalena Torricelli, Márton Karsai, and Laetitia Gauvin. weg2vec: Event
embedding for temporal networks. Scientific Reports, 10(1):1–11, 2020.

[TMKM18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.
Verse: Versatile graph embeddings from similarity measures. In Proceed-
ings of the World Wide Web Conference, pages 539–548, 2018.

[TPM19] Dane Taylor, Mason A. Porter, and Peter J. Mucha. Supracentrality Analysis
of Temporal Networks with Directed Interlayer Coupling, pages 325–344.
Springer International Publishing, 2019.

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings of
the World Wide Web Conference, pages 1067–1077, 2015.

[TRDL+22] Abhishek Tomy, Matteo Razzanelli, Francesco Di Lauro, Daniela Rus, and
Cosimo Della Santina. Estimating the state of epidemics spreading with
graph neural networks. Nonlinear Dynamics, 109(1):249–263, 2022.

[TW16] N Kipf Thomas and Max Welling. Variational graph auto-encoders.(2016).
In Neural Information Processing Systems Workshop on Bayesian Deep
Learning, 2016.

[VCC+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In International
Conference on Learning Representations, 2018.

[VDM13] Anais Vergne, Laurent Decreusefond, and Philippe Martins. Reduction
algorithm for simplicial complexes. In Proceedings IEEE INFOCOM,
pages 475–479. IEEE, 2013.

[Ves09] Alessandro Vespignani. Predicting the behavior of techno-social systems.
Science, 325(5939):425–428, 2009.

119

Bibliography

[Ves12] Alessandro Vespignani. Modelling dynamical processes in complex socio-
technical systems. Nature Physics, 8(1):32–39, 2012.

[VFPC15] Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza. Analyt-
ical computation of the epidemic threshold on temporal networks. Physical
Review X, 5(2):021005, 2015.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Systems, 30, 2017.

[VZMZ15] Alexandre Vidmer, An Zeng, Matúš Medo, and Yi-Cheng Zhang. Prediction
in complex systems: The case of the international trade network. Physica
A: Statistical Mechanics and its Applications, 436:188–199, 2015.

[W+01] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice
hall Upper Saddle River, 2001.

[WCW+17] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang
Yang. Community preserving network embedding. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), 2017.

[WK17] Max Welling and Thomas N Kipf. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2017.

[WMC+22] Huan Wang, Chuang Ma, Han-Shuang Chen, Ying-Cheng Lai, and Hai-
Feng Zhang. Full reconstruction of simplicial complexes from binary
contagion and ising data. Nature Communications, 13(1):1–10, 2022.

[WPC+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 32(1):4–24, 2020.

[WSD+19] Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh V Chawla.
Neural tensor factorization for temporal interaction learning. In Proceedings
of the International Conference on Web Search and Data Mining, pages
537–545, 2019.

[WY21] Xinru Wang and Ming Yin. Are explanations helpful? a comparative
study of the effects of explanations in ai-assisted decision-making. In 26th
International Conference on Intelligent User Interfaces, pages 318–328,
2021.

[WYT+19] Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. Dis-
cerning edge influence for network embedding. In Proceedings of the
International Conference on Information and Knowledge Management,
pages 429–438, 2019.

[XCH+10] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G
Carbonell. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In Proceedings of the SIAM International Conference
on Data Mining, pages 211–222. SIAM, 2010.

120

Bibliography

[XRK+20] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. In Interna-
tional Conference on Learning Representations, 2020.

[XSY+21] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and
Huan Liu. Graph learning: A survey. IEEE Transactions on Artificial
Intelligence, 2(2):109–127, 2021.

[Xu21] Mengjia Xu. Understanding graph embedding methods and their applica-
tions. SIAM Review, 63(4):825–853, 2021.

[YBY+19] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural net-
works. Advances in Neural Information Processing Systems, 32, 2019.

[YCA+18] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen,
and Wei Wang. Netwalk: A flexible deep embedding approach for anomaly
detection in dynamic networks. In Proceedings of the International Confer-
ence on Knowledge Discovery & Data Mining, pages 2672–2681, 2018.

[YDZ+20] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie
Tang. Understanding negative sampling in graph representation learning.
In Proceedings of the International Conference on Knowledge Discovery &
Data Mining, pages 1666–1676, 2020.

[YL13] Jaewon Yang and Jure Leskovec. Overlapping community detection at
scale: a nonnegative matrix factorization approach. In Proceedings of the
International Conference on Web Search and Data Mining, pages 587–596,
2013.

[YNN+20] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav,
Anand Louis, and Partha Talukdar. Nhp: Neural hypergraph link predic-
tion. In Proceedings of the International Conference on Information and
Knowledge Management, pages 1705–1714, 2020.

[YNY+19] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin,
Anand Louis, and Partha Talukdar. Hypergcn: A new method for train-
ing graph convolutional networks on hypergraphs. Advances in Neural
Information Processing Systems, 32, 2019.

[YPP21] Jean-Gabriel Young, Giovanni Petri, and Tiago P Peixoto. Hypergraph
reconstruction from network data. Communications Physics, 4(1):1–11,
2021.

[YSSY20] Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and
when do we need higher-order information in hypergraphs? a case study on
hyperedge prediction. In Proceedings of the World Wide Web Conference,
pages 2627–2633, 2020.

[YSX+20] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and
Sourav S. Bhowmick. Scaling attributed network embedding to massive
graphs. Proceedings of the VLDB Endowment, 14(1), 2020.

121

Bibliography

[YYW+21] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explain-
ability of graph neural networks via subgraph explorations. In International
Conference on Machine Learning, pages 12241–12252. PMLR, 2021.

[ZC18] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems, 31, 2018.

[ZCJC18] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link
prediction: Predicting hyperlinks in adjacency space. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[ZCP+18] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. Timers:
Error-bounded svd restart on dynamic networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2018.

[ZDW+19] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. Prone:
Fast and scalable network representation learning. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2019.

[ZGY+16] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan.
Scalable temporal latent space inference for link prediction in dynamic
social networks. IEEE Transactions on Knowledge and Data Engineering,
28(10):2765–2777, 2016.

[Zho21] Tao Zhou. Progresses and challenges in link prediction. Iscience,
24(11):103217, 2021.

[ZHS06] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with
hypergraphs: Clustering, classification, and embedding. Advances in Neural
Information Processing Systems, 19, 2006.

[ZLB23] Yuanzhao Zhang, Maxime Lucas, and Federico Battiston. Higher-order
interactions shape collective dynamics differently in hypergraphs and sim-
plicial complexes. Nature Communications, 14(1):1605, 2023.

[ZLM+20] Xiu-Xiu Zhan, Ziyu Li, Naoki Masuda, Petter Holme, and Huijuan Wang.
Susceptible-infected-spreading-based network embedding in static and
temporal networks. EPJ Data Science, 9(1):30, 2020.

[ZLW+22] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learn-
ing from counterfactual links for link prediction. In International Confer-
ence on Machine Learning, pages 26911–26926. PMLR, 2022.

[ZPZ+19] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Huajun
Chen. Interaction embeddings for prediction and explanation in knowledge
graphs. In Proceedings of the International Conference on Web Search and
Data Mining, pages 96–104, 2019.

[ZSBB11] Kun Zhao, Juliette Stehlé, Ginestra Bianconi, and Alain Barrat. So-
cial network dynamics of face-to-face interactions. Physical Review E,
83(5):056109, 2011.

[ZX15] Boyao Zhu and Yongxiang Xia. An information-theoretic model for link
prediction in complex networks. Scientific Reports, 5(1):1–11, 2015.

122

Bibliography

[ZYHD20] Chao Zhang, Zichao Yang, Xiaodong He, and Li Deng. Multimodal intelli-
gence: Representation learning, information fusion, and applications. IEEE
Journal of Selected Topics in Signal Processing, 14(3):478–493, 2020.

[ZYR+18] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic
network embedding by modeling triadic closure process. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2018.

[ZYR21] Yi-Jiao Zhang, Kai-Cheng Yang, and Filippo Radicchi. Systematic com-
parison of graph embedding methods in practical tasks. Physical Review E,
104(4):044315, 2021.

[ZYZZ18] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network
representation learning: A survey. IEEE Transactions on Big Data, 6(1):3–
28, 2018.

[ZZM20] Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-sagnn: a self-attention
based graph neural network for hypergraphs. In International Conference
on Learning Representations, 2020.

[ZZS+23] Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng,
Christos Faloutsos, and Yizhou Sun. Page-link: Path-based graph neural
network explanation for heterogeneous link prediction. arXiv preprint
arXiv:2302.12465, 2023.

[ZZXT21] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang.
Neural bellman-ford networks: A general graph neural network framework
for link prediction. Advances in Neural Information Processing Systems,
34:29476–29490, 2021.

123

	List of Figures
	List of Tables
	Introduction
	Machine Learning on Graph Structures
	Research Questions

	Background Review
	Neural Representations from Language Processing
	WORD2VEC embeddings
	Skip-gram with negative sampling

	Learning Representations on Graphs
	Encoder-decoder perspective
	Shallow methods and matrix factorization
	Graph neural networks and graph autoencoders

	Network Reconstruction and Link Prediction
	Tasks description
	Unsupervised setting
	Supervised setting

	Representation Learning on Time-Varying Graphs via Higher-Order Skip-Gram with Negative Sampling
	Preliminaries and Related Work
	Time-varying graphs and their tensor representations
	Representation learning on time-varying graphs

	Methods Description
	Overview of the proposed method
	SGNS for higher-order data structures
	Low-dimensional embedding of time-varying graphs

	Experiments
	Datasets
	Parameter settings and baseline methods
	Downstream tasks

	Results
	Task performances and training complexity
	Embedding space visualization

	Summary

	Representation Learning on Simplicial Complexes for Effective Higher-Order Link Prediction and Reconstruction
	Preliminaries and Related Work
	Simplicial complexes and their mathematical representations
	Representation learning on higher-order structures
	Link prediction and network reconstruction with higher-order interactions

	Methods and Tasks Description
	Low-dimensional embedding of simplicial complexes
	Reconstruction and prediction of higher-order interactions

	Experiments
	Datasets
	Training process and baseline methods
	Downstream Tasks

	Results
	Reconstruction and prediction of triadic interactions
	Reconstruction and prediction of tetradic interactions

	Summary

	Interpretability of Dimensions in Node Representations for Graphs
	Related Work
	Interpretability for node embeddings
	Interpretability for link prediction
	Interpretability for word embeddings

	Methods Description
	Importance-based utility of latent dimensions with edge scoring
	Interpretability metrics for latent dimensions
	Node embeddings with interpretable dimensions

	Experiments
	Datasets and baseline methods
	Evaluation tasks

	Results
	Interpretability
	Link prediction
	Scalability

	Summary

	Conclusions
	Main Contributions
	Future Work

	Appendices
	Bibliography

