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What Mother Nature does is rigorous until
proven otherwise; what humans and science do

is flawed until proven otherwise.

N. N. Taleb, Antifragile: Things That Gain
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Abstract

Understanding the complex dynamics of beam-halo formation and evo-
lution in circular particle accelerators is crucial for the design of current and
future rings, particularly those utilizing superconducting magnets such as the
CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and
the proposed Future Circular Hadron Collider (FCC-hh). A recent diffu-
sive framework, which describes the evolution of the beam distribution by
means of a Fokker-Planck equation, with diffusion coefficient derived from
the Nekhoroshev theorem, has been proposed to describe the long-term be-
haviour of beam dynamics and particle losses. In this thesis, we discuss the
theoretical foundations of this framework, and propose the implementation
of an original measurement protocol based on collimator scans in view of
measuring the Nekhoroshev-like diffusive coefficient by means of beam loss
data. The available LHC collimator scan data, unfortunately collected without
the proposed measurement protocol, have been successfully analysed using
the proposed framework. This approach is also applied to datasets from de-
tailed measurements of the impact on the beam losses of so-called long-range
beam-beam compensators also at the LHC. Furthermore, dynamic indicators
have been studied as a tool for exploring the phase-space properties of realistic
accelerator lattices in single-particle tracking simulations. By first examining
the classification performance of known and new indicators in detecting the
chaotic character of initial conditions for a modulated Hénon map and then
applying this knowledge to study the properties of realistic accelerator lattices,
we tried to identify a connection between the presence of chaotic regions in the
phase space and Nekhoroshev-like diffusive behaviour, providing new tools to
the accelerator physics community.
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Introduction

The development and use of particle accelerators have been of paramount
importance in making significant discoveries in fundamental particle physics.
These large-scale devices, such as the Large Hadron Collider [1] at CERN, re-
quire extensive collaboration and expertise in various fields of physics and en-
gineering. The success of these experiments is highly dependent on delivering
high-quality beams at the collision points. This is where the field of accelera-
tor physics comes into play, with a focus on understanding and improving the
many aspects of particle motion inside the accelerator, overcoming the multiple
challenges that arise from the complex nature of the dynamics of a high-energy
particle beam in the accelerator’s environment. The complexity of these chal-
lenges increases along with the requirements and goals for future accelerator
machines, such as the planned LHC luminosity upgrade, HL-LHC [2, 3].

The physics concepts describing the dynamics of charged particles in circu-
lar accelerators are based on some building blocks, as the motion of particles in
a circular storage ring or collider can be reduced to that of a charged relativistic
particle under the influence of an electromagnetic field. As such, the dynam-
ics of particles within accelerators falls within the realm of classical mechanics
and can be understood and described in terms of Hamiltonian formulations of
the dynamics and, in the context of single-particle tracking, through the use of
symplectic maps.

However, in classical mechanics, when non-linear effects are introduced we
observe the emergence of phenomena linked with concepts such as determinis-
tic chaos, and resonances, which makes the overall system becoming extremely
complex, with numerous problems that are still open, especially when it comes
to determining the long-term evolution of these non-linear Hamiltonian sys-
tems. Research in these areas, which lie at the intersection of mathematics and
physics, is ongoing and constantly evolving.

For modern circular particle accelerators, one open problem is understand-
ing the complex dynamics of beam-halo formation and evolution, which is es-
sential for optimal design and operation of a storage ring or collider. This is
particularly important for colliders that use superconducting magnets, such as
the LHC, its luminosity upgrade HL-LHC, and the proposed FCC-hh [4], as
even tiny beam losses have a direct and major impact on accelerator perfor-
mance.

The dynamics of the beam-halo is affected by a variety of factors, including
unavoidable non-linear field errors in superconducting magnets, and ripples
in their power converters. This in general can be precisely described using a



2 Introduction

Hamiltonian approach, from which equations of motion can be derived. How-
ever, when time-dependent effects are present, a significant change in the na-
ture of beam dynamics occurs. For example, modulations in the characteristic
frequencies of the Hamiltonian system can result in extended weakly-chaotic
layers in phase space [5]. In these regions, the orbit diffusion can be modelled
as a stochastic process. The complexity increases when the periodic modula-
tions themselves appear to be stochastic in nature, as they could involve the
entire accessible phase space.

A recent framework has been proposed [6, 7], which describes the long-
term behaviour of beam dynamics and particle losses in circular accelerators
using a diffusive model. This framework uses a Fokker-Planck equation to
describe the evolution of the beam distribution, with the diffusion coefficient
being a key quantity for describing the beam dynamics. The use of diffusive
models for transverse dynamics of charged particles in accelerator physics is
not new, with a significant amount of literature available on the subject (see for
example Refs. [8–20] and references therein). However, the model developed
in this framework has a unique feature, which is the assumption that the func-
tional form of the diffusion coefficient is derived from the optimal estimate of
the perturbation series provided by the Nekhoroshev theorem [21–23].

The merit of having such a global diffusive framework is the possibility of
extrapolating the long-term losses, the evolution of the beam emittance, and
the evolution of the beam-tail population by using indirect measurements such
as the beam loss signal. An increased understanding of each of these quantities
would significantly help to improve the designs of current and future accelerator
rings. Moreover, the knowledge of valid scaling laws for long-term extrapola-
tion can also provide a great advantage in the context of numerical simulations
and particle tracking, as realistic particle tracking simulations over the order of
magnitude of a few hours of real beam time are currently not feasible.

In this thesis, we begin by providing a complete review of the diffusive
framework. Then, the first original contribution is the derivation of an origi-
nal measurement protocol, which is optimized for probing a Nekhoroshev-like
diffusive coefficient from beam loss data. This protocol makes use of collima-
tor scans, a technique that has been used extensively in the LHC to inspect
both the beam tail population and to measure a diffusion coefficient, although
a different diffusive framework was used for the latter.

The available LHC collimator scan data, which were gathered during a dedi-
cated LHC Run 2 collimator scan measurement campaign, have been analysed
in detail to extract information on the diffusive dynamics and to assess the va-
lidity of the proposed Fokker-Planck model with Nekhoroshev-like diffusion
coefficient. The results of this analysis are presented and discussed in detail,
since the data were taken with the aim of measuring a local diffusion coefficient,



3

without making assumptions on the functional form of the global diffusion co-
efficient.

Then another original application of the diffusive framework is presented
in the analysis of the loss signal measured during the testing and the applica-
tion of beam-beam wire compensators on the LHC Beam 2 during a dedi-
cated Run 2 measurement campaign. Wire compensators are a novel device
that aims to counteract beam-beam effects in LHC, which are responsible for
beam losses and beam-quality degradation. Analysis of the loss signal via our
diffusive model aims to provide information on the long-term effects of wire
compensators on both beam losses and emittance.

Finally, we investigated the use of dynamic indicators as a tool for study-
ing the phase space properties of realistic accelerator lattices in single-particle
tracking simulations. Dynamic indicators are mathematical tools that inspect
the linear response of a dynamical system to small perturbations in either its ini-
tial conditions or along the orbit. They are used to probe the chaotic character
of an orbit and to inspect the geometry of regular orbits.

Many typologies of dynamic indicators exist and are widely used mainly in
celestial mechanics, which shares some of its Hamiltonian formulations with ac-
celerator physics. Some of these indicators are also used in accelerator physics,
such as the Fast Lyapunov Indicator [24, 25], and the Frequency Map Anal-
ysis [26, 27], while more recent ones, such as the Reversibility Error Method
(REM) [28, 29] and the Generalized Alignment Index (GALI) [30, 31] are still
not widely used in the field.

With the intent of also providing new valid tools to the accelerator physics
community, we first inspect the classification performance of these indicators in
detecting the chaotic character of orbits on a simple accelerator-like non-linear
model, the modulated Hénon map. Next, we apply the knowledge achieved to
study the phase-space properties of realistic accelerator lattices, with the main
goal of identifying a connection between the presence of extended chaotic re-
gions in the phase space and Nekhoroshev-like diffusive behaviour.

Structure of the work

The thesis is divided into three parts. In Part I, we provide a complete re-
view of the diffusive framework, as well as the fundamental elements of classical
mechanics, and accelerator physics, which are required for the rest of this the-
sis: in Chapter 1, we recall the fundamentals of Hamiltonian mechanics, along
with the notions necessary to understand the Nekhoroshev theorem; in Chap-
ter 2, we present the elements of stochastically perturbed Hamiltonian systems
which ultimately lead to the formulation of the diffusive model under study;
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finally, in Chapter 3, we focus on the elements of accelerator physics that are
required to understand the context of this thesis.

In Part II, we begin with the original contributions of this thesis: in Chap-
ter 4, we present the implementation of an optimized measurement protocol
to detect a Nekhoroshev-like diffusive coefficient from beam loss data by col-
limator scans; in Chapter 5, we study the available LHC collimator scan data;
finally, in Chapter 6, we present the analysis of the loss signal measured during
the testing and application of beam-beam wire compensators at the LHC.

In Part III, we focus on the field of single-particle tracking simulations and
the usage of a wide set of dynamic indicators: in Chapter 7, we present a com-
parative study based on the dynamics generated by the Hénon map, in which
we determine the best performing indicators for an accelerator-like model with
time-dependent modulation of linear frequencies. Finally, in Chapter 8, the
results of the study are applied to an HL-LHC lattice, and we investigate the
properties of the dynamics generated by the magnetic lattice by means of se-
lected dynamic indicators.



Part I

Theoretical foundations





1 | Hamiltonian dynamics

In this chapter, we present a brief review of the fundamental concepts of
Hamiltonian mechanics that are used throughout this thesis. Starting from
the coordinate transformations, we then focus on the fundamental concepts of
perturbation theory, such as the averaging principle.

Next, we present the KAM and Nekhoroshev theorems, two fundamental
results of perturbation theory, which constitute the foundation of this thesis.
These two theorems give important insights into the behaviour of an otherwise
integrable Hamiltonian system under small perturbations, which is exactly the
case in the study of the dynamics of a charged particle in the magnetic field of
a circular accelerator.

Finally, we introduce the concept of a symplectic map, which is a mathemat-
ical object that at the heart of multiple applications in the field of accelerator
physics such as the one-turn map, and we see how these two theorems can be
applied to the study of symplectic maps.

1.1 | Generalities

We start by recalling some of the fundamental concepts of Hamiltonian
dynamics. This will also define the core elements of nomenclature and notation
that will be used throughout this thesis. This theoretical recall mainly follows
Ref. [32].

Let (q(t) , p(t)) be a set of coordinates in a 2n dimensional phase space, and
let H(q, p, t) be a differentiable real function, a dynamical system is said to be
Hamiltonian if the following equations hold:

¤qi =
𝜕H

𝜕pi
, ¤pi = −𝜕H

𝜕qi
i = 1, .., n. (1.1)

These equations are called Hamilton or canonical equations with Hbeing the
Hamiltonian of the system under study. They are related to a geometrical Least
Action Principle via the differential 1-form in the extended 2n+1-dimensional
phase space

𝜔 = pidqi − Hdt . (1.2)

In fact, if one considers the differential of the 1-form

d𝜔 = dpi ∧ dqi −
𝜕H

𝜕qi
dqi ∧ dt −

𝜕H

𝜕pi
dpi ∧ dt (1.3)
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one defines the vortex lines as the curves in the extended phase space whose
tangent is parallel to the null eigenvector of the 2-form d𝜔. Then it is possible
to prove that the vortex lines 1-form have a one-to-one projection on the time
axis that corresponds to the orbits q(t) , p(t) that solve the Hamilton equations,

1.1.1 | Canonical transformations

The advantage of having a Hamiltonian formulation of a system is the free-
dom to make a convenient coordinate choice in the phase space. For example,
positions and momenta are independent and can be exchanged in role or mixed
to achieve optimal formulations, which might highlight specific properties and
invariants in the system, while the Hamiltonian equation maintains its form.
Such changes in coordinates have, however, to maintain the canonical of the
Hamiltonian equation defined in Eq. (3.9) , also referred to as symplectic condi-
tions.

Let us consider a Hamiltonian H(p, q, t), for which we wish to apply a
coordinate transformation (pi , qi) → (Pi ,Qi). To maintain the Hamiltonian
properties, we then look for a new Hamiltonian K(P,Q, t) for which

¤Pi = − 𝜕K

𝜕Qi
, ¤Qi =

𝜕K

𝜕Pi
. (1.4)

Both Hamiltonian formulations need to leave invariant the structure of the dif-
ferential form (1.3) to maintain the canonical form of the equation of motion:

d(pidqi − Hdt) = d(PidQi −Kdt) , (1.5)

which implies that the differential

dF = pidqi − PidQi + (K− H)dt , (1.6)

must be exact. This provides the Hamiltonian transformation laws

pi =
𝜕F
𝜕qi

, Pi = − 𝜕F
𝜕Qi

, K= H+ 𝜕F
𝜕t
. (1.7)

Note that the Hamiltonian function changes if the transformations are time-
dependent. The function F (q,Q, t) is called the generating function of the co-
ordinate transformation.

In the Hamiltonian formulation, it is also possible to assign the role of time
to another coordinate. We will see in Chapter 3 how this possibility enables
the Courant-Snyder coordinate system, used in accelerator physics.
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When a coordinate is used to parameterize the orbit, we see that the mo-
mentum conjugate to that coordinate, with a minus sign, becomes the new
Hamiltonian function.

As an example, let us assign the role of time to the kth space coordinate qk.
Let us indicate the kth pair of coordinates as pk = p̃, qk = q̃. From this we can
choose the formally equivalent form

pidqi − Hdt =
∑︁
i≠k

pidqi + (−H)dt + (−p̃)dq̃ , (1.8)

which highlights the new coordinate roles, as now it is possible to express the
motion as a function of q̃, whilst −p̃ plays the role of the Hamiltonian. In this
new form, the equivalent equations of motion become

dpi
dq̃

= − 𝜕p̃
𝜕qi

,
dqi
dq̃

=
𝜕p̃
𝜕pi

(i ≠ k) ,

dH
dq̃

= −𝜕p̃
𝜕t
,

dt
dq̃

=
𝜕p̃
𝜕H

.
(1.9)

Finally, the phase flow of a Hamiltonian system is itself a group of canon-
ical transformations as a consequence of the geometrical nature of the varia-
tional principle associated with the canonical equations. This property justifies
the construction of symplectic integrators, i.e. algorithms for the numerical inte-
gration of Hamilton equations that preserve the Hamiltonian structure of the
system.

1.1.2 | Action-angle variables

We consider a n degree-of-freedom integrable Hamiltonian system, which
will have a 2n dimensional phase space with a symplectic manifold described
by the phase variables (qi , pi), where n integrals of motion Ji in involution are
known (i.e. if one considers Ji as Hamiltonian functions, the corresponding
phase flows that solve the canonical equations, commute).

The Liouville theorem states that, if the surfaces Mk defined by Ji = ki are
compact, then they are diffeomorphic to n tori 𝕋 n, and it is possible to perform
a canonical change of variables to the action-angle coordinates (𝜙i , Ii) such that
the action Ii (J) are first integrals of motion and the angles 𝜙i evolve according
to

¤𝜙i = 𝜔i (I1 . . . , In) , (1.10)

where 𝜔i defines the frequencies of the motion.
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This implies that if we set as Hamiltonian one of the integrals of the motion,
for example H= J1(I, we see that the new equations of motion read

¤Ii = 0 , ¤𝜙i = 𝜔i (I1 . . . , In) , (1.11)

The actions Ii can be explicitly calculated. Let us start with the one-dimen-
sional case, where the only integral of motion is the Hamiltonian H itself, and
its conserved value h is the energy, and the set Mk reduces to Mh.

We can then define a canonical transformation starting from the generating
function S (I, q), which yields

p =
𝜕S
𝜕q

, 𝝓 =
𝜕S
𝜕I
, H

(
p =

𝜕S
𝜕q
, q

)
= h(I) . (1.12)

The invariant torus are the level closed curves identified by the value of the
Hamiltonian H = h that depends on the action H = H(I). On the energy
level curves, the differential of the generating function dS reduces

dS =
𝜕S
𝜕q
dq = p dq , (1.13)

which implies

S (q , I) =
∫ q

Mh

p dq , (1.14)

The 1−form p dq is closed and therefore locally exact on invariant surfaces
Mh. But if one performs a cycle with a level curve Mh, the S value changes
according to

ΔS (I) =
∮

Mh(I )

p dq . (1.15)

Due to Stokes’ theorem, this last integral corresponds to the area inside the
curve. To define an angular variable 𝜙 by the second equation of (1.12) , we
require that ∮

Mh(J)

d𝝓 = 2𝜋 , (1.16)

Then the periodicity of 𝜙 on the torus implies∮
Mh (I )

d
(
𝜕S
𝜕I

)
=
𝜕ΔS (I)

𝜕I
= 2𝜋 , (1.17)
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from which we finally get the expression for the canonical action variable I

I =
1
2𝜋

∮
Mh

p dq . (1.18)

On the other hand, differentiating (1.14) in I we obtain the following, from the
definition of 𝜙

𝜙 =
1
2𝜋

𝜕

𝜕I

∫
p dq . (1.19)

Generalization to systems with many degrees of freedom requires one to
prove that the differential form pdq is closed on the invariant surfaces and the
construction n basic cycles 𝛾1 , . . . , 𝛾n 1d on the toriMki . Then the variation of
the angular variable 𝜙i , integrated along the cycle 𝛾 j , is equal to 2𝜋𝛿i j , where
𝛿i j is the Kronecker symbol.

In such a scenario, the actions variables Ii then read as

Ii (k1 , . . . , kn) =
1
2𝜋

∫
𝛾i

p j dq j . (1.20)

It can be shown that these integrals are independent of the choice of 𝛾i . [32]

1.2 | Perturbation theory for Hamiltonian systems

Many physical systems can be modelled and described in terms of an ideal
integrable Hamiltonian affected by small non-integrable perturbations. A com-
mon example is the problem of the motion of planets around the Sun, which
can be treated as a perturbation of an ideal motion of non-interacting planets
around a fixed attracting centre. Another relevant example, as we shall see in
the next chapter, is how the motion of a charged particle inside a circular ac-
celerator can be described as the perturbation of an otherwise ideal harmonic
oscillator-like betatron motion around a reference orbit.

Understanding how these perturbations affect the properties of a Hamil-
tonian system is one of the main problems in dynamical systems, which was
called by Poincaré “fundamental problem of dynamics”. Multiple approaches to
this problem have been explored and grouped under the general topic of per-
turbation theory.

If the evolution timescale of the perturbation is much smaller than the
timescale of the unperturbed system, a standard approach that is often pro-
posed in perturbation theory is to average over time the perturbations, under
the idea that dynamics can be separated into a slow-fast variables evolution.
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This method is called averaging principle. We highlight this specific choice of
words, as Arnold reminds us, it is “not a theorem, but a physical proposition,
that is, a vaguely stated and, strictly speaking, false assertion”. However, “Such
assertions often happen to be fruitful sources for mathematical theorems” [32].

Let us consider an integrable Hamiltonian system H0 with n degrees of free-
dom. This defines a foliation of a domain of its phase space into invariant tori,
which defines the action-angle variables I = (I1 , . . . , In), 𝝓 = (𝜙1 , . . . , 𝜙n).

The Hamiltonian H0 depends only on the action variables H0 = H0(I).
The equations of motion in the unperturbed case have the standard form:

¤I = 0 , ¤𝝓 =
𝜕H0

𝜕I
= 𝝎(I1 , . . . , In) , (1.21)

where 𝝎 are the frequencies of motion. Let us now add a small Hamiltonian
perturbation to H0, i.e. we consider H1(I, 𝝓, 𝜖 ) of period 2𝜋, with 𝜖 being a
small parameter that represents the magnitude of the perturbation. The result-
ing perturbed Hamiltonian reads:

H= H0 + 𝜖H1 . (1.22)

If H0 is integrable, we can write the equations of motion in terms of the action
angle variables (I j , 𝜙 j):

¤I j = −𝜖 𝜕H1
𝜕𝜙 j

, ¤𝜙 j = 𝜔 j + 𝜖
𝜕H1

𝜕I j
. (1.23)

The same notation can be used if the perturbation is also periodic in time
with frequency 𝜔p, as one can extend the phase space to introduce one new
degree of freedom: the angle 𝜓 = 𝜔pt and the conjugated momentum I𝜓 .

If we apply the concept of averaging principle to the perturbed Hamiltonian
system, considering the angle fast variables and the action slow variables, we
transform the perturbed system into a simpler one, where the fast periodic
oscillations are averaged out. These oscillations are eventually treated as an
extra drift element in the original unperturbed solution. We then define a new
averaged Hamiltonian ⟨H⟩ which reads

⟨H⟩ (I) = H0(I) + 𝜖 ⟨H1(I, 𝝓)⟩ , (1.24)

where we are considering the standard definition of integral average

⟨ f ⟩ = 1
(2𝜋)n

∮
𝕋 n
dn𝝓 f (I, 𝝓) . (1.25)

To be able to correctly apply the averaging principle, it is fundamental that
all the Fourier components of the perturbation have a fast variation. This con-
dition requires that the frequencies 𝜔 j are not under any resonant conditions.
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That is, there must be no vector of frequencies 𝜔1,...,r (r ≤ n) such that there
exists a vector k j ∈ ℤr for which

∑
k j𝜔 j ≈ 0.

When a non-resonant condition holds, it is possible to prove that the action
variables I j , can change by a quantity O(𝜖 ) after a time interval O(𝜖 ), When a
resonant condition is satisfied, it is not possible to perform this kind of averag-
ing since we have a slow dynamics also in the angular dependence, that may
introduce significant effects of the perturbation on the action dynamics. This
can be seen in a simple example r = 2, i.e. where, in an n−dimensional sys-
tem, which has an n−size vector of frequencies 𝝎, we consider 𝜔1 and 𝜔2 to
be in resonant condition with integer numbers k1 and k2. If we consider the
following linear symplectic transformation

\1 = k1𝜙1 + k2𝜙2 , \ j = 𝜙 j , for 3 ≤ j ≤ n , (1.26)

which also implies the linear transformation of the momenta I j into Ĩ j due
to the symplectic conditions. We obtain the result that the new equation of
motion for \1 is

¤\1 = k1𝜔1 + k2𝜔2 + 𝜖
𝜕H1

𝜕 Ĩ1
≈ 𝜖

𝜕H1

𝜕 Ĩ1
= O(𝜖 ) . (1.27)

As \1 evolves as a slow variable, it does not meet the conditions to be averaged.
All the other n − 2 angles \ j , however, do, as they exhibit an evolution O(1).
This canonical transformation can be extended, and the resulting system will
be a system with r slow evolving angles and n − r fast angles.

1.3 | Kolmogorov-Arnold-Moser (KAM) theory

As stated in the previous section, the averaging principle is not a mathemat-
ically proven theorem that can be applied to every physical system. However,
for the case of Hamiltonian systems, there are rigorous results that offer better
insight into the effects of perturbations. One of the most important results is
the theorem of Kolmogorov [33] for non-degenerate Hamiltonian systems, rig-
orously proven by Moser [34], then extended by Arnold [35] for isoenergetically
non-degenerate ones, which proves the existence of invariant tori for a perturbed
Hamiltonian system.

Let us consider a perturbed Hamiltonian system in the form of

H(I, 𝝓, 𝜖 ) = H0(I) + 𝜖H1(I, 𝝓, 𝜖 ) . (1.28)

When considering the unperturbed Hamiltonian H0, we have that its phase
space is foliated into invariant tori I = const. The tori with non-resonant fre-
quencies have trajectories that fill them everywhere densely. On the contrary,
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the tori with resonant frequencies will be foliated into invariant tori of lower
dimension.

The unperturbed system H0 is classified as non-degenerate if its frequencies
are functionally independent, namely, if

det
(
𝜕𝜔

𝜕I

)
= det

(
𝜕2H0

𝜕I2

)
≠ 0 . (1.29)

In such a nondegenerate system, the non-resonant tori form a set in the phase
space of full measure. The resonant tori, instead, form a set of measure zero,
which, however, is still dense in the phase space. Most importantly, we have
the following application.

F : ℝn −→ ℝn

(I) −→ (𝝎) (1.30)

is a diffeomorphism. This means that the invariant tori are equally well de-
scribed by the action variables I or by their corresponding frequencies 𝜔.

The unperturbed system H0 is classified as isoenergetically non-degenerate if
the following condition holds:

det ©«
𝜕𝝎
𝜕I 𝜔n

𝜔n 0

ª®¬ = det ©«
𝜕2H0
𝜕I2

𝜕H0
𝜕In

𝜕H0
𝜕In

0

ª®¬ ≠ 0 , (1.31)

i.e., one of the frequencies does not vanish and the ratio of the other frequen-
cies n − 1 to it is functionally independent of the value of H0. Likewise to the
non-degenerate condition, also this condition guarantees the existence on ev-
ery energy level surface of a set of densely populated invariant tori, which will
have full measure for non-resonant frequencies and zero measure for resonant
frequencies. The non-degenerate and the isoenergetically non-degenerate con-
ditions are independent.

Now that we have recalled these definitions, we can state the KAM theo-
rem, which proves the existence of a large measure set of invariant tori for the
perturbed H in the phase space:

Theorem 1 (KAM [33–35]) . If the unperturbed Hamiltonian system H0 is non-
degenerate or isoenergetically non-degenerate, then, in the perturbed Hamiltonian sys-
tem such as Eq. (1.28) , most of the non-resonant invariant tori do not disappear but
are only slightly deformed. More specifically, there exist positive constants 𝜖0 , a1 , a2 ,
and a3, independent of 𝜖 , such that for any 𝜖 < 𝜖0 one can find:

(a). a near to identity canonical transformation

C𝜖 :V ′ × 𝕋 n −→V × 𝕋 n

(I′, 𝝓′) −→ (I, 𝝓) (1.32)
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withV ′ ⊆ ℝn open;

(b). a setV𝜖 ⊆ V ′;

(c). a smooth function h′𝜖 (I′, 𝝓′) defined onV ′ × 𝕋 n;

which satisfy

(i). Vol(V \V𝜖 ) ≤ a1
√
𝜖 ;

(ii). ∥I − I′∥ ≤ a2
√
𝜖 , ∥𝝓 − 𝝓′∥ ≤ a3

√
𝜖 ;

(iii). whenever I′ ∈ V𝜖 the perturbed Hamiltonian field H𝜖 ◦ C𝜖 (I′, 𝝓′) admits an
invariant torus.

From this theorem, we can define a set S𝜖 = C𝜖 (V𝜖 × 𝕋 n) ⊆ V × 𝕋 n of large
measure composed of invariant tori. This set is also referred to as the set of
KAM tori. Within this set, due to (ii), we have that any orbit (I(t) , 𝝓(t)) having
initial condition (I(0) , 𝝓(0)) ∈ S𝜖 satisfies the relation ∀ t

∥I(t) − I(0)∥ ≤ 2a2
√
𝜖 . (1.33)

This set of invariant tori S𝜖 is constructed as a complement of a neighbourhood
of all the non-linear resonances regions in the phase space. Meaning, if we
consider any vector k ∈ ℤn defining a resonance order, we have a resulting
resonant manifold which reads

Rk =

{
I ∈ V

�� ∑︁
i

ki𝜔i (I) = 0
}
, (1.34)

and we exclude a neighbourhood of Rk following a Diophantine law:�����∑︁
i

ki𝜔i (I)
����� ≤ 𝛾0

√
𝜖

|k |𝜏 , (1.35)

where 𝛾0 > 0 is a suitable positive constant and 𝜏 > n − 1. This excluded
neighbourhood of resonances is referred to as Arnol’d web.

The proof of the KAM theorem is based on the possibility to define a con-
verging procedure for consistently eliminating the fast phases of H in increas-
ingly high orders in the small parameter. Such procedure has the property of
quadratic convergence, as after m successive changes of variables, the phase-
dependent discrepancy in the new Hamiltonian is of order 𝜖 2

m
.

At each step, the generating function is constructed on the sum of the
Fourier harmonics of H1 whose order do not exceed an integerN . The integer
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N is then chosen so that the absolute value of the remainder R1N = H1 − H1N
of the Fourier series does not exceed 𝜖 . These progressive steps gradually lead
to a superconvergence to the non-resonant KAM set.

The KAM theorem has important consequences for the analysis of stability
of perturbed Hamiltonian systems. The most immediate one being the exis-
tence of large invariant compact regions for Hamiltonian systems, that implies
the global stability of the orbits for systems with two degrees of freedom:

Theorem 2. ([33]) In an isoenergetically non-degenerate system with two degrees
of freedom, all initial conditions will have their action variables remaining near their
initial value.

This theorem has immediate proof, as such a system has a four-dimensional
phase space with three-dimensional energy levels which are highly populated
by two-dimensional KAM tori. Since a two-dimensional torus has the topolog-
ical property to divide a three-dimensional energy level, an orbit starting in a
gap between two KAM tori will be forever trapped between those tori. Result-
ing action variable oscillations will not exceed the order of magnitude of

√
𝜖 ,

following the estimates given by KAM theorem.
When instead we are considering a system with more than two degrees of

freedom, we have that the n−dimensional invariant tori do not separate a (2n−
1)-dimensional energy-level manifold like points on a plane or lines in a space.
Consequently, the gaps between tori, related by different resonance spaces, are
all connected with each other. Therefore, the KAM Theorem does not prevent
an orbit with initial condition near a resonance region to eventually evolve far
away from its initial action value.

1.4 | Nekhoroshev theorem

As stated in the previous section, even though the stability set S𝜖 has large
relative measure, its complement can be open, dense, and if the number of
degrees of freedom is larger than two, also connected, enabling the orbits’ dif-
fusion in the phase space.

Therefore, the possibility for solutions to wandering the complement of S𝜖 ,
such as the so called Arnol’d diffusion, can prevent any result of stability over
an infinite time.

For this reason, it becomes difficult (if not impossible) to treat the problem
of the orbit stability for infinite time in the case of a perturbed Hamiltonian sys-
tem. But it is possible to operate with asymptotic estimates, which are limited
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to very long times1. We look for estimates in the following form:

∥I(t) − I(0)∥ ≤ r (𝜖 ) (1.36)

which are valid for times |t | ≤ T (𝜖 ) such that r → 0 and T → ∞ in the limit
𝜖 → 0.

In the case Hsatisfies a technical property called steepness2, a very important
result on the estimate of diffusion scale times holds. An analytic function is said
to be steep if it has no stationary points and its restriction to any plane of any
dimension has only isolated stationary points.

Such result is stated by Nekhoroshev in his celebrated theorem, named after
him:

Theorem 3 (Nekhoroshev’s theorem [21]) . Let us consider a perturbed Hamil-
tonian system in the form of Eq (1.28) . If the unperturbed Hamiltonian H0 is steep,
there exist positive constants 𝜖0 , a, b , t0 , r such that for any 𝜖 < 𝜖0, and for any motion
(I(t) , 𝝓(t)) with (I(0) , 𝝓(0)) ∈ V × 𝕋 n it is

∥I(t) − I(0)∥ ≤ r𝜖 a , (1.37)

for any time t satisfying:

0 ≤ t ≤ t0 exp
( 𝜖0
𝜖

)b
, (1.38)

where the value of the constants a, b depend on the steepness properties of H0.

A complete overview of the theorem’s proof is presented in [38], the outline
of it is that the long-term behaviour of the orbits can be studied removing from
H only a finite number of harmonics in an open subset of the phase space
𝜖H1k (I)eik·𝝓, precisely those with order |k | = ∑n

i=1 |ki | up to a given threshold
K. The harmonics with |k | ≥ K can then be estimated to be exponentially
small. As a consequence, if K is suitably large, these terms turn out to be very
small, and they can determine large deviations of the actions only after long
exponential times.

1.5 | Symplectic maps

A 2n × 2n matrix A is defined as symplectic if it satisfies the equation

AJAt = J , (1.39)

1For example, in the case of hadron colliders orders of magnitudes higher than the usual
operation time.

2The notion of steepness was introduced by Nekhoroshev in [36]. The definition we report
here is a necessary and sufficient condition for steepness [37].
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where At denotes the transposed matrix and J is a block matrix defined accord-
ing to

J =
(
0 In
−In 0

)
, (1.40)

where In is the n × n identity matrix.
A map M : ℝ2n → ℝ2n is said to be a symplectic map if its Jacobian matrix

DM, whose elements DMi , j are given by

DMi , j (x) ≡
𝜕Mi

𝜕x j
(x) , (1.41)

is a symplectic matrix for every x, meaning

DM(x)JDMt (x) = J. (1.42)

The symplectic condition for a map characterizes the canonical transforma-
tions of the phase space and the phase flows of Hamiltonian systems. In the
case of a 2-dimensional map it reduces to the area-preserving condition.

An example of symplectic map is defined by the Poincaré map of a Hamil-
tonian phase flow on a section of the phase space or by the one period evolution
map in case of periodic Hamiltonian systems. A simple conceptual scheme of
a Poincaré section is shown in Fig. 1.1. For a time-dependent Hamiltonian
H(x, t), with period T (H(x, t = T ) = H(x, t = 0)), one can define a sym-
plectic map M as the one period map which will represent the evolution of an
initial condition x(0) to x(T ).

1.5.1 | Poincaré-Birkhoff theorem

After we have seen the most important theorems on how small perturba-
tions can affect the dynamics of a Hamiltonian system, we are interested to
discuss some specific results for the dynamics described by an area-preserving
map.

The first important theorem we will present is the Poincaré-Birkhoff theo-
rem [39]. This theorem shows how the interplay between the perturbation and
the natural resonances present in the map leads to the creation of new structures
in the phase space, also referred to as resonant islands.

Let us consider an area-preserving map Tk (k ∈ ℤ). If the system described
by Tk is integrable, we can define action-angle coordinates (𝝓, I) where, for
every I , an invariant curve ΓI is defined, along which, at each turn, 𝜙 increases
by an angle 𝜔(I). The map T j therefore will read as a twist map:

©«
𝜙(k+1)

I (k+1)
ª®¬ =

©«
𝜙(k) + 𝜔 j

(
I (k)

)
I (k)

ª®¬ . (1.43)
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x

x′

Figure 1.1: Simple sketch of the concept behind a Poincaré section of a symplectic
evolution.

Since the frequency is a generic function of the action I , we have that some
initial conditions x(𝜙, I) will have a resonant frequency 𝜔(I)/(2𝜋) ∈ ℚ, i.e. a
frequency n𝜔(I) = 2𝜋ℓ. For these resonant frequencies, we have that the n−th
iteration of the map Tn will map a point into itself, and that the resulting orbit
given by Tkx0 will be a finite set of n points. For non-resonant frequencies, i.e.
𝜔(I)/(2𝜋) ∈ ℝ \ℚ, the orbit given by Tkx0 is dense on the invariant curve ΓI .

Now let us introduce a perturbation of the map Tk ,𝜖 = Tk + 𝜖T(1)
k , the

resulting perturbed map T j ,𝜖 will now read

©«
𝜙(k+1)

I (k+1)
ª®¬ =

©«
𝜙(k) + 𝜔 j

(
I (k)

)
+ 𝜖 f (I (k) , 𝜙(k))

I (k) + 𝜖 g (I (k) , 𝜙(k))
ª®¬ , (1.44)

with f , g regular on their domains. The Poincaré-Birkhoff theorem states
that if and d𝜔/dI ≠ 0, the unperturbed resonant invariant curves ΓI , with
n𝜔(I) = 2𝜋ℓ , will be not preserved by the perturbation. However, the per-
turbed map Tn𝜖 will have a chain of 2n fixed points close to ΓI , half of them are
elliptic, and half of them hyperbolic. Near the elliptic fixed point there exist
new invariant curves that corresponds to the KAM tori with non-resonant sec-
ondary frequencies, whereas the separatrix curves connecting the hyperbolic
points creates a chaotic layer.

The sketch of the proof is based on the fact that the derivative of the func-
tion 𝜔(I) is not vanishing. If the invariant curve ΓI , have a resonant frequency
𝜔(I∗) of order n, each point of the curve is a fixed point for the map Tn. This
implies that there exist also the curves Γ+, where I+ > I∗, and Γ−, where I− < I∗,
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Γ−

Γ+
R𝜖

R′
𝜖

Figure 1.2: Schematic picture of the concept behind the Poincaré-Birkhoff theorem
proof. The invariant curves Γ− and Γ+ are characterized by rotation frequencies dif-
ferent in sign under the perturbed map Tn𝜖 . The curve R𝜖 is made of points with no
rotation, and it is mapped into R′

𝜖 by the map. As the map is area-preserving, we ob-
serve an even number of intersections between R𝜖 and R′

𝜖 , which correspond to the
fixed points given by the theorem. These fixed points can be distinguished between
elliptic and hyperbolic by inspecting the direction of the arrows in the pictures, which
ultimately represents the dynamic flow near them. Elliptic points (blue stars) have
arrows rotating around them, hyperbolic points (red stars) have arrows pointing away
from them.

on which 𝜙 rotates with opposite direction. We can assume, without loss of
generality, that n𝜔(I−) < n𝜔(I∗) < n𝜔(I+) and, therefore, 𝜔(I−) < 0 and
𝜔(I+) > 0.

This fact holds also for the perturbed map T𝜖 . Due to the regularity of f
and g , we know that for each angle 𝜙 there exists a value of the action I𝜙, for
which Tn𝜖 has zero phase advance. The set of all pairs (𝜙, I𝜙) describes a closed
curve that we name R𝜖 , which will describe a full radial variation under the
action of Tn𝜖 . This curve R𝜖 will be close to the unperturbed invariant curve
ΓI . Let us now define as R′

𝜖 the resulting curve after having applied Tn𝜖 at each
point of R𝜖 , as stated before, the difference will be a variation in radius. As the
map is area-preserving, the area enclosed by the evolved curve R′

𝜖 cannot be
greater or smaller than the area enclosed by the starting curve R𝜖 . Therefore,
it is impossible that one of the two curves surrounds the other, and they must
intersect in an even number of points, and the points of intersection are fixed
points of Tn𝜖 . A schematic picture of this scenario is given in Fig. 1.2.
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To determine the nature of these fixed points, that is, to assess whether they
are stable elliptic points or unstable hyperbolic points, we have to consider the
flow of Tn in the neighbourhood of Γ+ and Γ− and look at how it connects to
the dynamics of the orbits given by R𝜖 →T nR𝜖 .

If we inspect the arrows represented in Fig. 1.2, we can distinguish two dif-
ferent scenarios at the intersections. When the arrows move around the fixed
point, it is an elliptic fixed point. When the arrows move away from the fixed
point, the dynamic is hyperbolic. It follows that these 2n fixed points will be an
alternation of n elliptic fixed points of period n, with n hyperbolic fixed points
of the same period. This pattern of fixed points gives the origin to the Poincaré-
Birkhoff islands.

1.5.2 | KAM and Nekhoroshev theorems for symplectic maps

The Poincaré-Birkhoff theorem suggests that the effect of a small pertur-
bation on an integrable symplectic map preserve the non-resonant invariant
curves according to the KAM theorem. A more precise statement is obtained
by extending the KAM theorem to symplectic maps.

Likewise, also the results presented in the Nekhoroshev theorem can be
extended to symplectic maps. However, for both theorems, the final statements
are not necessary identical to the Hamiltonian version (see [40] and references
therein).

Theorem 4 (KAM, area-preserving maps) . Let us consider a perturbed symplectic
map like the one in Eq. (1.44) , where f and g are analytic on their domains, and let 𝝎
be a frequency vector that follows a Diophantine law like the one presented in Eq. (1.35) .
Then, an invariant orbit with frequency vector 𝝎 in the unperturbed system is mapped
into a closed orbit of the perturbed system for 𝜖 sufficiently small. Moreover, the measure
of the closed orbits in a polydisc ∥I∥ ≪ R approaches the measure of the disc itself as
𝜖 → 0.

The theorem is very similar to Theorem 1: for symplectic maps we have
that the KAM theorem guarantees stability of motion only for maps up to 2d,
where a 1d invariant curve constitutes a topological barrier to the motion. For
higher dimensions, the existence of invariant tori does not constitute such a
barrier. For example, in a 4d map, a KAM tori will be a 2d tori (i.e. the direct
product of two circles), which does not constitute a topological barrier as its
complement is a connected set of dimension two.

A more broad stability result is obtained by generalizing the Nekhoroshev
theorem for Hamiltonian flows to symplectic maps [22, 23].

Theorem 5 (Nekhoroshev, symplectic maps) . Let us consider a symplectic map in
a phase space of dimension 2n, with n ≥ 2, analytic in a polydisc of unit radius, having
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the origin as an elliptic fixed point. If the frequency vector 𝜔 satisfies the Diophantine
condition, then any orbit with initial point in a polydisc of radius I/2 will remain in a
polydisc of radius I for a time t ≤ T , with

T =T0 exp

[(
I∗
I

)1/2^ ]
, (1.45)

with the constants ^ , T0, and I∗ depending on the Diophantine condition and the
Fourier components of the perturbation.

The estimate (1.45) can be also related to the optimal estimate in the order
of the asymptotic perturbative expansion that reduces the perturbed map to
an integrable form. In the next chapter, we will also see what is the logical
flow which suggests the usage of the form 1/(2^) for the exponent within the
exponential term.



2 | Stochastic Hamiltonian systems

After having introduced the basic concepts of the theory of stochastic
Hamiltonian systems in Chapter 1, we now turn to the study of the diffusive
properties of these systems. These properties are related to the introduction of
a stochastic perturbation in the Hamiltonian describing the system under con-
sideration. The framework we review here for the application of the averaging
principle on stochastic Hamiltonian systems follows the line of work presented
in [6, 7, 41].

The chapter is structured as follows. We will first present the fundamental
concepts of stochastic processes in Section 2.1, in which we will define the no-
tation used and show some simple models of stochastic-induced diffusion over
toroidal surfaces and integrable Hamiltonian systems. Next, we will focus in
Section 2.2 on the application of the averaging principle to stochastic Hamilto-
nian systems, and show how it is possible to reach an expression of the diffusion
process in terms of a Fokker-Planck equation. Finally, in Section 2.3, we will
show how the diffusion coefficient D(I) has a functional form related to the
stability time estimate of the Nekhoroshev theorem.

2.1 | Stochastic perturbations

2.1.1 | Notation for stochastic processes

Let us start by defining the following notation: If b (s) is a regular stationary
stochastic Gaussian process, we set

w(t) =
∫ t

0
b (s) ds , w1(t) =

∫ t

0
w(t) ds , (2.1)

If the realizations b (t) are continuous, with a correlation function

⟨b (t)b (t + 𝜏)⟩ = Ω(𝛾𝜏) , Ω(𝛾𝜏) ≃ 𝛾

2
e−𝛾 |𝜏 | . (2.2)

the limit 𝛾 → ∞ is the white noise limit where the process b (t) loses its reg-
ularity. The correlation (2.2) is generic in many physical systems, since it is
satisfied by Markov processes and strongly chaotic systems, and the white noise
limit 𝛾 → ∞ allows one to approximate the physical orbits with the solution of
a stochastic differential equation even if the white noise is not a regular function.
Then w(t) is the Wiener process. We can write w1(t) in the form

w1(t) =
∫ t

0

∫ s

0
b (u) du ds′ =

∫ t

0
b (u)

∫ s

u
ds′ du =

∫ t

0
(s′ − u)b (u) du . (2.3)
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This form is convenient if we want to present the processes w(t) and w1(s) in
the standard form ∫ t

0
K (t , s)b (s) ds (2.4)

where K (t , s) is called the kernel of the noise. We have that K = 1 forw(t) and
K = t− s forw1(t). This implies that the variance is 𝜎2(t) = t for Wiener noise
w(t) while for its integral w1(t), we have

𝜎2(t) =
∫ t

0
(t − u)2 du =

t3

3
. (2.5)

If instead we are considering a noise characterized by a specific spectrum,
also referred to as coloured noise, we can consider its Fourier expansion, which
reads

b (t) =
∫
𝜔

b̂ (𝜔)ei𝜔t d𝜔 (2.6)

where here the random variables b̂ (𝜔) are such that〈
b̂ (𝜔)

〉
= 0

〈
b̂ (𝜔) b̂ ′(𝜔′)

〉
= F (𝜔)𝛿 (𝜔 − 𝜔′) (2.7)

where b̂ ′(𝜔′) comes from the Fourier expansion of b (t + 𝜏) and F (𝜔) is called
power spectrum of the noise. The following relation holds

⟨b (t + 𝜏)b (t)⟩ =
∫
𝜔

∫
𝜔′

〈
b̂ (𝜔) b̂ (𝜔′)

〉
ei (𝜔−𝜔

′)t+i𝜔𝜏 d𝜔 d𝜔′ =

∫
𝜔

F (𝜔)ei𝜔𝜏 d𝜔 ,

(2.8)
i.e. the correlation function is the Fourier transform of the power spectrum
F (𝜔).

2.1.2 | Simple diffusion models

Diffusion over a toroidal surface

We start by investigating the fast diffusion process of a probability distribu-
tion on a toroidal surface. We are interested in this process as such a situation
occurs in action-angle Hamiltonian systems for the angle variable.

Let us consider a simple example of angular diffusion. Let x be an angular
variable defined over the interval [0, 1]. We consider the stochastic Hamilto-
nian dynamics

¤𝜙 = 𝜔 + I mod 1 ,
¤I = 𝜖 b (t) .

(2.9)
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The distribution function 𝜌T (x̂ , t) for the angular variables𝜙 can be defined
using the solution 𝜌(x̂ , t) with open boundary conditions on ℝ using

𝜌T (x , t) =
+∞∑︁
k=−∞

𝜌(x + k , t) x ∈ [0, 1] , k = 0, ±1, ±2, . . . . (2.10)

In the white noise limit, the solution of (2.9) on ℝ is given by

y = y0 + 𝜖w(t) , x = x0 + (𝜔 + 𝜖 y0)t + 𝜖w1(t) , (2.11)

by writing the evolution of the average value of x(t) in the form ⟨x(t)⟩ = x0 +
(𝜔 + 𝜖 y0)t, x(t) is a Gaussian process and the probability density in ℝ reads

𝜌(x , t) =
exp

{
−(x−⟨x(t)⟩)2
2𝜎2 (t)

}
√
2𝜋𝜎2

, 𝜎2(t) = 𝜖 2
t3

3
, (2.12)

we can then apply (2.10) and finally obtain

𝜌T (x , t) =
+∞∑︁
n=−∞

exp
{
−(x−⟨x(t)⟩+n)2

2𝜎2

}
√
2𝜋𝜎2

n = 0, ±1, ±2, . . . . (2.13)

If we represent the solution in the form of a Fourier series,

𝜌T (x , t) =
+∞∑︁
k=−∞

fk (t)e2𝜋ikx , (2.14)

the fk coefficients are given by

fk =
∫ 1

0
e−2𝜋ikx 𝜌T (x , t) dx (2.15)

=

+∞∑︁
n=−∞

1
√
2𝜋𝜎2

∫ 1

0
exp

{
−(x − ⟨x(t)⟩ + n)2

2𝜎2
− 2𝜋ikx

}
dx . (2.16)

By assuming real fk coefficients, we obtain

𝜌T (x , t) = 1 + 2
∞∑︁
k=1

e−2𝜋
2𝜎2k2 fk cos(2𝜋k(x − ⟨x(t)⟩)) . (2.17)

The most important aspect of this example, is how 𝜌T relaxes to the uni-
form distribution ∝ e−𝜎2 (t) , and the relaxation timescale can be estimated by

𝜎2 ∝ 𝜖 2t3 ≃ 1 , (2.18)

so that t ≃ 𝜖−2/3, while for the Wiener process y(t) the diffusion timescale is
t ≃ 𝜖−2 since

𝜎2 ∝ t . (2.19)
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Application to an integrable Hamiltonian system

We now consider the simplest stochastic perturbed Hamiltonian system and
observe how the perturbation causes a fast diffusion on the angular variable.
Some of the methods used here will be used similarly for the more generic
scenario. Let us consider the following stochastic perturbed Hamiltonian

H= H0(I) − 𝜖 𝜙b (t) . (2.20)

From this Hamiltonian, we have the equations of motion

I ′ = 𝜖 b ,
𝜙′ = 𝜔(I) ,

(2.21)

from which follows immediately

I = I0 + 𝜖w(t) . (2.22)

Therefore, the action is a Gaussian process with average value I0 and variance

𝜎2
I = 𝜖 2t . (2.23)

In a perturbation approach 𝜖 ≪ 1 we study the evolution of the system over
time t ≪ 𝜖−2. Then in the Taylor expansion for 𝜙′, we obtain

𝜙′ = 𝜔(I0) + 𝜔′(I0)𝜖w(t) + O(𝜖 2) , (2.24)

the contribution of the term O(𝜖 2) can be neglected at this timescale. A direct
integration leads to

𝜙 = 𝜙0 + 𝜔(I0)t + 𝜖𝜔′(I0)w1(t) , (2.25)

so that the relaxation timescale of the angle variable is estimated by

𝜎2
𝜙 ∝ 𝜖 2t3𝜙 ≃ 1 (2.26)

i.e. t𝜙 ≃ 𝜖−2/3. The perturbation approach is justified if one chooses t ≃ t𝜙
since t𝜖 2 ≃ 𝜖 4/3 ≪ 1. It follows that the angle variable can be considered a fast
variable in the diffusion process, whereas the action is a slow variable.

2.2 | Averaging principle for stochastic Hamilto-
nians

We now present an extension of the averaging principle to the case of
generic stochastic perturbed Hamiltonian system in the action-angle variables
in the presence of weak chaotic dynamics in the phase space.
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As the perturbation causes the breakdown of the KAM tori in certain re-
gions of the phase-space, we observe an overlapping of a regular dynamics and
a random dynamics characterized by a small Lyapunov exponent (i.e. a small
chaotic character), depending on the initial condition. We set as working hy-
potheses that it is possible to achieve a phenomenological description of the
dynamics of the system by means of a stochastic perturbed Hamiltonian de-
scription in the form of

H0(I) + b (t)H1(𝜙, I) , (2.27)

where (𝜙, I) are the action-angle variables and the noise realization also de-
pends on the orbit initial condition. The use of these models is due to their
ability to capture the impact of combining an integrable Hamiltonian with a
chaotic Hamiltonian environment that causes variations in the phase space. Ad-
ditionally, they can simulate the effects of weak layers of chaos in the phase
space that lead to pseudo-random disruptions in the evolution of the action
variables. In order to keep the symplectic nature of the dynamics intact, we
take into account regular (i.e., coloured) stationary noise.

Each orbit is the result of a superposition of a regular dynamic and small
variations due to random disturbances in the phase space. The perturbation
H1(𝜙, I) represents the intensity of the variations, while the “noise” b (t) takes
into account the correlation properties of the fluctuations: the noise instances
b (t) are based on a probability space, which can encompass hidden degrees of
freedom and the correlation of the associated stochastic process, linked to the
chaotic nature of the dynamics.

In the case of a weak chaotic region, instances depend on the initial condi-
tion, and the system (2.27) is an effective representation of the dynamics. Of
course, the measure of the chaotic region should be large to avoid the dynam-
ical traps of Hamiltonian systems, which are caused by the stickiness of trajec-
tories to certain specific domains in phase space. In the case of weak chaos, the
white noise approximation cannot be applied directly to the process b (t), but
one can assume that ∥H1∥ ≪ 1, where ∥ ∥ is the L2 norm, so that it is possible
to introduce a slow diffusion time 𝜏 ∝ ∥H1∥2t for the action variable at which
the white noise approximation is valid.

Specifically, the “noise” depends on the angle variables that can be regarded
as a fast variable, which are independent on a timescale much shorter than the
diffusion timescale. To achieve this, let us consider the slow variables

\ = 𝜙 −Ω(I)t , (2.28)

where Ω(I) = 𝜕H0/𝜕I , which we use to define the new Hamiltonian

b (t)H1 (\ +Ω(I)t , I) . (2.29)
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To reach an approximate solution of the stochastic dynamics of (2.27) , we
consider the evolution of angle-action variables (\ , I) for a timeT , which gives
us the following map expression:

Δ\ j =

∫ T

0

𝜕H1

𝜕I j
(\ +Ω(I)t , I) b (t) dt −

∫ T

0
t
𝜕H1

𝜕𝜙k
(\ +Ω(I)t , I) 𝜕Ωk

𝜕𝜕I j
b (t) dt

ΔI j = −
∫ T

0

𝜕H1

𝜕𝜙 j
(\ +Ω(I)t , I) b (t) dt

(2.30)
where Δ\ = \ (T ) − \ (0) and ΔI = I (T ) − I (0).

The time intervalT should be long enough to consider the noises b (t) and
b (t +T ) independent, but should be short in comparison to the evolution time
of the action and the slow phase. We can observe the distinct nature of the fluc-
tuations in the action I and the angle \ due to the presence of the slow evolving
term ∝ t 𝜕Ω

𝜕I , which results in an increase in sensitivity to the fluctuations of the
process b (t) during the time intervalT . The stationary solution for the angle
distribution is a uniform distribution, however, if Δ\ is small during a time in-
terval T , the existence of resonances kΩ(I) = 0 does not allow for averaging
the angles in the action dynamics.

Let us now estimate the variance of angle variables using the dominant term
for an evolution timeT\ under the assumption that the action variables can be
considered constant during such a time interval. We obtain the following

Var(Δ\)i j ∝
∫ T𝜙

0

∫ T𝜙

0

𝜕H1

𝜕𝜙k
(\ +Ω(I)t , I) 𝜕H1

𝜕𝜙m
(\ +Ω(I)s, I) ×

× 𝜕Ωm

𝜕Ii

𝜕Ωk

𝜕I j
tsΦ(t − s) dt ds , (2.31)

which leads to the following estimate:

∥Var(Δ\)∥ ∝
(𝜕Ω𝜕I )2 (∥H1∥2)T3

\

2
, (2.32)

whereT\ is the relaxation timescale. To get a consistent expression forT\ , let
us consider

H1(𝜙, I) = 𝜖 Ĥ1(𝜙, I) , (2.33)

where ∥Ĥ1∥ = O(1). The relaxation timescale for the slow angle variables can
be approximated as 𝜖−2/3. Once this time has passed, it can be assumed that
the angles are distributed uniformly. It is important to note that this estimate
is based on the assumption that

𝜕Ω

𝜕I
= O(1) , (2.34)



Averaging principle for stochastic Hamiltonians 29

so that the evolution of the action dynamics does not alter the distribution of
angles; that is, the uniform distribution must remain unchanged as the actions
evolve. When considering an almost isochronous system, that is

𝜕Ω

𝜕I
= O(𝜖 ) , (2.35)

the previous estimate gives a relaxation timescaleT𝜙 ≃ 𝜖−4/3.
Let us now consider for such a system a time interval T for its evolution,

such that both the actions and the slow angles evolve; we have the following

ΔI j = −
∫ T

0

𝜕H1

𝜕𝜙 j
b (s) ds +

∫ T

0

∫ t

0

𝜕2H1

𝜕Ik𝜕𝜙 j

𝜕H1

𝜕𝜙k
b (t)b (s) ds dt

−
∫ T

0

∫ t

0

𝜕2H1

𝜕𝜙k𝜕𝜙 j

[
𝜕H1

𝜕Ik
− 𝜕Ω

𝜕Ik

𝜕H1

𝜕𝜙k
t
]
b (t)b (s) ds dt , (2.36)

where we are implying H1(𝜙 +Ω(I)t , I), and we are neglecting terms of order
O(𝜖 2).

Let us now consider the following notation for the Fourier expansion of H1:

H1(𝜙 +Ω(I)t , I) =
∑︁
k

hk (I) exp [ik(𝜙 +Ω(I)t)] . (2.37)

We can explicitly compute the variance of the fluctuating terms D(I , \) in
terms of the Fourier expansion, which then reads

D(I , \) =
∑︁
k

∫
𝜔

∫ T

0
ik jhk (I) exp(ik(\ +Ω(I))s + 𝜔s) b̂ (𝜔) ds d𝜔

=
∑︁
k

ik jhk (I) exp(ik\)
∫
𝜔

exp(i (kΩ(I) + 𝜔)T ) − 1
i (kΩ(I) + 𝜔) b̂ (𝜔)d𝜔 .

(2.38)

In this equation, we notice the occurrence of small denominators, which pro-
vides a contribution to the fluctuations of order O(T ) when kΩ(I) + 𝜔 = 0.
When this is the case, the variance reads

D(I , \) = 1
T

∑︁
k ,n

k jnlhk (I)hn (I)ei (k−n)\×

×
∫
𝜔

(
ei (kΩ(I)+𝜔)T − 1

) (
e−i (nΩ(I)+𝜔)T − 1

)
(kΩ(I) + 𝜔) (nΩ(I) + 𝜔) F (𝜔) d𝜔 . (2.39)



30 Stochastic Hamiltonian systems

This integral can then be written in the alternative form

D(I , \) = 4
T

∑︁
k ,n

k jnlhk (I)hn (I)ei (k−n) (\+Ω(I)T )×

×
∫
𝜔

sin
(
(kΩ + 𝜔)T2

)
sin

(
(nΩ + 𝜔)T2

)
(kΩ(I) + 𝜔) (nΩ(I) + 𝜔) F (𝜔)d𝜔 . (2.40)

If we then consider the limitT ≫ 1, if k = n, by using the integral∫ ∞

−∞

sin2(ax)
x2

dx = 𝜋a , (2.41)

it is possible to prove that the limit

Δ(I) = lim
T→∞

4
T

∫
𝜔

sin2
(
(kΩ(I) + 𝜔)T2

)
(kΩ(I) + 𝜔)2

F (𝜔) d𝜔 (2.42)

is finite, with the main contribution given by the condition kΩ(I) ≃ 𝜔. That is,
the action values at which the unperturbed frequencies satisfy a resonant condi-
tion with a Fourier component in the noise. This implies that, if we consider a
noise power spectrum with a peak at 𝜔∗, the variance of the action fluctuations
is maximal at I = I∗, so that kΩ(I∗) = 𝜔∗. If F (𝜔) = const, that is, the white
noise limit, we can prove that

D(I) =
∑︁
k ,n

k jkl |hk (I) |2 = 𝜖 2
〈
𝜕Ĥ1

𝜕𝜙 j

𝜕Ĥ1

𝜕𝜙l

〉
𝜙

. (2.43)

If instead we consider the case n ≠ k, we have a fast fluctuating term with
zero mean in the integral of Eq. (2.40) whenT ≫ 1. This means that its con-
tribution to the action variance vanishes in the limitT → ∞, unless a resonance
condition

(k − n)Ω(I) = 0 (2.44)

is satisfied. If that is the case, we have a finite contribution to the integral that
reads

D(I , \) ≃
res∑︁
k ,n

k jnlhk (I)hn (I)ei (k−n)\Δ(I) , (2.45)

where the sum runs on the resonant harmonic that depends on the action val-
ues. In this scenario, the variance is influenced by the angles \ , resulting in a
uniform distribution in the angle variables that are not invariant for the action
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fluctuations. However, if the actions can be considered constant for a time in-
terval of the order of O(𝜖−2/3), it is possible to average the varianceD(I , \) over
the angle variables, as each orbit can cover all angle values at a fixed action be-
fore diffusion occurs. In this case, the impact of resonances between the noise
spectral components and the perturbation components can be disregarded, and
we regain the desired result

Di , j (I) =
∑︁
k

k jkl |hk (I) |2Δ(I) . (2.46)

In fact, if it is assumed that the relaxation time of the angles \ is much shorter
than the diffusion time of the action variables, the angles can be considered as
fast random variables that define the various noise instances independently of
the random perturbation b (t), then we can examine the average dynamics of
the action with regard to both the random perturbation and the angles \

E(ΔI j)\ =
1
2

𝜕

𝜕Ik

∫ T

0

∫ T

0

𝜕H1

𝜕𝜙 j
(\ +Ωt) 𝜕H1

𝜕𝜙k
(\ +Ωs)Φ(t − s) ds dt

=
1
2

𝜕

𝜕Ik

∑︁
k

k jkl |hk (I) |2
∫ T

0

∫ T

0
exp(ikΩ(t − s))Φ(t − s)ds dt ,

(2.47)
where we have neglected the contribution of the terms with zero mean value
with respect to the angle variables.

We remark that if Φ(𝜏) is decaying sufficiently fast for 𝜏 → ∞, we have the
limit

lim
T→∞

1
2T

𝜕

𝜕Ik

∑︁
k

k jkl |hk (I) |2
∫ T

0

∫ T

0
exp(ikΩ(I) (t − s))Φ(t− s) ds dt , (2.48)

then, the corresponding variance for the fluctuating terms reads

E(ΔI2) = 𝜕

𝜕Ik

∑︁
k

k jkl |hk (I) |2
∫ T

0

∫ T

0
exp(ikΩ(t − s))Φ(t − s)ds dt + O(𝜖 4) ,

(2.49)
which coincides with (2.46) if divided byT .

We now introduce the diffusion timescale 𝜖 2T ≪ 1 to apply a diffusion
limit as 𝜖 → 0 and T → ∞. In the limit of 𝜖 → 0, we select a time step
T ≫ 𝛾−1, i.e. the correlation timescale of the environment fluctuations, so
that the fluctuations ofΔ\ andΔI can be considered independent at subsequent
time intervals. If we take into account an evolution timescaleT\ ≃ 𝜖−2/3 such
that 𝛾−1 ≪ T ≪ 𝜖−2/3 the action evolution can be described by a diffusion
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process whose diffusion and drift coefficients are obtained by averaging over
the angle variables

ΔI j = −
√︁
T\ 𝜖

2
√︃
D j ,l (I) b̂l +

T\ 𝜖
2

2
𝜕

𝜕Il
D j ,l (I) , (2.50)

where D(I) is defined by the equation (2.46)and b̂l are independent and iden-
tically distributed random variables with zero mean value and unit variance.

If we now define the action diffusion timescale 𝜏 = 𝜖 2t, we can write the
estimate

T\ 𝜖
2 ≃ 𝜖 4/3 ≃ Δ𝜏 ≪ 1 , (2.51)

which holds in the limit 𝜖 → 0. Then, we can approximate with the relation
(2.50) the solution of a stochastic differential equation in the diffusion time

dI j =
√︃
D j ,l (I) dwl (𝜏) +

1
2

𝜕

𝜕Il
D j ,l (I) d𝜏 . (2.52)

From this final expression, we have that the evolution of the distribution
function 𝜌(I , 𝜏) on the diffusion timescale is well approximated by the solution
of the Fokker-Planck equation

𝜕 𝜌

𝜕𝜏
= −1

2
𝜕

𝜕I j

[
𝜕

𝜕Ik
D j ,k (I)

]
𝜌(I , 𝜏) + 1

2
𝜕2

𝜕I j𝜕Ik
D j ,k (I) 𝜌(I , 𝜏) (2.53)

which can be easily rewritten in the form

𝜕 𝜌

𝜕𝜏
=
1
2

𝜕

𝜕I j
D j ,k (I)

𝜕

𝜕Ik
𝜌(I , 𝜏) , (2.54)

which is the desired functional form.

2.3 | Functional form for D(I)
We have reached the result that, under certain conditions, the evolution of

an action distribution function 𝜌0(I , t) can be described by a Fokker-Planck
equation of the form

𝜕 𝜌

𝜕𝜏
=
1
2

𝜕

𝜕I j
D j ,k (I)

𝜕

𝜕Ik
𝜌(I , 𝜏) , (2.55)

where the diffusion coefficient D j ,k (I) reads

D j ,k (I) =
〈
𝜕Ĥ1

𝜕𝜙 j

𝜕Ĥ1

𝜕𝜙k

〉
. (2.56)
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In the context of accelerator physics, we have seen how the betatron motion
can be described in terms of two action variables (Ix , Iy), which define the two
non-linear invariants for the two separate transverse planes. However, if we
assume that such a diffusive process takes place mainly along a one-dimensional
direction, we can justify a 1d approach and reduce Eq. (2.55) to the one-degree-
of-freedom case.

With the generic Hamiltonian notation, the resulting Fokker-Planck equa-
tion reads

𝜕 𝜌

𝜕𝜏
=
1
2

𝜕

𝜕I j
D(I) 𝜕

𝜕Ik
𝜌(I , 𝜏) , (2.57)

with the diffusion coefficient given by

D(I) = 1

∥H1∥2

〈(
𝜕Ĥ1

𝜕𝜙

)2〉
𝜙

. (2.58)

If we want to work with regular time units t, we can consider this form of
Fokker-Plank equation:

𝜕 𝜌

𝜕t
=
𝜖 2

2
𝜕

𝜕I j
D(I) 𝜕

𝜕Ik
𝜌(I , t) , (2.59)

where now 𝜖 2 = _ ∥H1∥2 represents the timescale constant of the diffusive pro-
cess.

Now we are interested in having an effective generic functional form for
D(I). To achieve this, we follow the construction presented in [6], and the
references therein.

To estimate the norm of H1, we see that the perturbation theory suggests a
possible estimate based on the asymptotic character of the perturbation series.
Assuming that there are no low-order resonances in the phase space, we can
rely on the progressive expansion of the perturbative series, which gives us the
following generic estimate [22]:

∥Rn (I)∥ ∝ (n!) ^
(
I
I∗

)n/2
, (2.60)

where the factorial term takes into account the number of contributions due to
the structure of the functional equations defining the perturbation series, the
exponent ^ is related to the number of degrees of freedom, and the parameter
I∗ represents an apparent radius of convergence of the perturbative series and
corresponds to the amplitude above which fast escape to infinity occurs.
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For each I , we then have an optimal order for the Normal Form remainder
defined by the relations

n^ =
(
I
I∗

)1/2
⇒ n =

(
I∗
I

)1/2^
. (2.61)

If we then substitute this relation in the previous equation, we obtain a
Nekhoroshev-like estimate that readsRopt (I)

 ∝ exp [
−^

(
I∗
I

)1/2^ ]
. (2.62)

This relation shows how the optimal estimate scales as a function of the action
I .

From this optimal remainder for the perturbation series, which can also be
used as a measure of the long-term stability of the orbits at specific amplitudes,
we can finally assume the following estimate for H1:

∥H1(𝜙, I)∥ ≃ exp
[
−

(
I∗
I

)1/2^ ]
. (2.63)

This estimate enables us to define the following functional form for the diffu-
sion coefficient

D(I) = c exp
[
−2

(
I∗
I

)1/2^ ]
, (2.64)

where c is a normalization constant evaluated according to

c
∫ Ia

0
D(I) dI = 1 , (2.65)

so that D(I) is normalized over the boundaries considered for the Fokker-
Planck system, as Ia represents the absorbing boundary condition, i.e. a over-
linerier over which we can consider a particle as “lost”. With this notation, the
timescale of the process is completely determined by 𝜖 2, however, variation of
this notation can be freely considered.

Let us now consider this last form of the Fokker-Planck equation, along with
an absorbing boundary condition at Ia, i.e. the phase-space limit beyond which
an initial condition is considered lost. Note that D(I) and 𝜌 have dimensions
[I2t−1] and [I−1], respectively.

In Fig. 2.1 (top and centre), we consider the behaviour of D(I) from
Eq. (2.64) for some values of ^ and for 𝜖 2 = 1. We can distinguish three
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Figure 2.1: Top and centre: plot of D(I) both in linear and logarithmic scale for three
values of ^ as a function of I/I∗. Bottom: evolution of an uniform distribution (in
grey) over the same time interval corresponding to (t = 10.0 [a. u.]) for three values
of ^ . (Simulations parameter: (I∗ = 1.0 [𝜎2])).

regions for this type of function: (i) a stable core region for I ≪ I∗, for which
D(I) has values decreasing to zero exponentially fast; (ii) a ramp-up region
for I . I∗, where D(I) starts to have non-negligible values and changes from
an exponential growth to an almost linear one; (iii) a region for I > I∗, where
D(I) features an almost linear growth (in logarithmic scale a saturation ap-
pears). These three regions are more or less distinguishable depending on the
value of ^ .

In Fig. 2.1 (bottom), we also display the result of the numerical integration
of Eq. (2.59) for some values of ^ , performed on an initial distribution 𝜌0(I) =
1 with a Crank-Nicolson scheme [42] (see Appendix 4.a for some details on
the integration scheme used in our studies). It is also possible to observe in
the shape of the distribution function a stable core region, corresponding to
I/I∗ ≪ 1, where D(I) starts having values very close to zero, a fast decrease
region, and finally a saturation region, for I/I∗ = 1 and beyond, where 𝜌(I , t)
assumes small values.
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3 | Fundamentals of Accelerator
Physics

After the introduction to Hamiltonian mechanics in Chapter 1, and the
overview of stochastic Hamiltonian systems presented in Chapter 2, we now
turn to the presentation of the fundamental concepts of accelerator physics. In
particular, we will introduce the fundamental nomenclature, coordinates, and
common approximations and assumptions used in this domain. These con-
cepts will be required to understand the open challenges of non-linear beam
dynamics, and how they can be related to known results in the field of stochas-
tic Hamiltonian systems as, as we will see, the field of accelerator physics makes
large use of the formalism and results from Hamiltonian mechanics.

It should be noted that the following information is not intended to serve
as a comprehensive overview of accelerator physics. For a more detailed intro-
duction to the subject, the reader is directed to Refs. [43, 44], which were con-
sulted in the creation of this chapter. Our focus here is to provide an overview
of the specific topics that are propaedeutical for the original contributions of
this thesis.

A particle accelerator is a device that uses electromagnetic fields to acceler-
ate a beam of charged particles, allowing for collisions with a target or another
particle beam. These machines can be classified as linear or circular depending
on their geometry. This study will focus specifically on circular accelerators.

An important consideration when working with circular particle accelera-
tors is the type of particles that are accelerated, since a charged particle moving
along a curved trajectory will lose energy due to synchrotron radiation [45].
The amount of energy lost per turn in a circular orbit due to synchrotron radi-
ation follows the law [46]:

U0 = C𝛾 𝛽
3
0
E0
𝜌
, (3.1)

where E0 is the energy of the particle, 𝛽0 the relativistic ratio v/c, 𝜌 the radius
of the circular orbit, and C𝛾 = q2/3𝜖0(mc2)4 a constant [47] dependent on the
particle charge q and mass m. Due to the factor m−4 in U0, this energy loss
factor becomes negligible for hadron beams, but must be taken into account
when working with electron beams in circular accelerators. In this research,
we will only examine hadron machines and energy scales at which synchrotron
radiation can be neglected.

Additionally, this study will focus on single-particle dynamics, which means
that the motion of each individual particle in the beam will be considered in-
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dependent and the repulsive Coulomb force between charges within the beam
will be neglected.

The motion of the particles can be broken down into two components: lon-
gitudinal, in the direction of motion along the circumference, and transverse,
in the plane normal to the longitudinal motion. These two components are also
known, respectively, as synchrotron motion and betatron motion. The focus of
this study will be on the transverse motion of the particles, which, as we will see
in this chapter, can be described by means of an ideal integrable Hamiltonian
system on which we then add non-linear terms and perturbations to describe
the actual beam dynamics.

This non-linear Hamiltonian system describing the betatron motion is the
point of departure and motivation for the study of the non-linear betatron mo-
tion and the application of the framework presented in the previous chapter,
which will be the topic of the following parts and the original contribution of
this thesis.

The chapter is organized as follows. In Section 3.1, we introduce the Frenet-
Serret coordinate system, which is the standard coordinate system used in ac-
celerator physics, and we inspect the Hamiltonian of a charged particle in an
electromagnetic field. In Section 3.2, we solve the equations of motion in the
transverse plane, considering an ideal scenario with only linear components of
the magnetic field. Next, in Section 3.3, we define the invariant of the mo-
tion, the emittance, which comes from the definition of the Courant-Snyder
ellipse. Then, in Section 3.4, we give a brief overview of the effects that arise in
betatron motion when considering non-linear terms in the dynamics. In Sec-
tion 3.5, we introduce the concept of one-turn map, in which the importance of
symplectic maps in the context of accelerator physics is shown. In Section 3.6,
we present the concept of dynamic aperture and how a Nekhoroshev scaling
law emerges from the study of the non-linear dynamics effects on it. Finally,
in Section 3.7, we give a brief overview of the fundamental concepts of longitu-
dinal motion, since the modulation effects given by it on the transverse motion
will be of specific interest in the Part III of this thesis, where we will also inspect
how modulation effects contribute to the non-linear dynamics of the betatron
motion.

3.1 | Particle motion and Frenet-Serret coordinate
system

The standard choice of coordinates in accelerator physics, which takes
advantage of the toroidal symmetry of the circular accelerator, is the Frenet-
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𝜌

x

y r

Figure 3.1: The Frenet-Serret coordinate system applied to a vector r in the starting
Cartesian system. The reference orbit represents an ideal trajectory of particles in the
accelerator, whose radius of curvature is 𝜌. The coordinate s is measured along the
trajectory, while x and y are orthogonal to it.

Serret coordinate system.
Starting from the Cartesian system (X , Y , Z), centred in the accelerator

centre, the Frenet-Serret coordinate system considers as one curvilinear co-
ordinate the path length along the reference orbit s, which describes the ideal
longitudinal motion of a particle inside the accelerator, and two Cartesian coor-
dinates x and y for the transverse ones. In Fig. 3.1, we illustrate the coordinate
system applied to a vector r.

Mapping the Cartesian system to the Frenet-Serret coordinate system
reads:

X = (x + 𝜌) cos
(
s
𝜌

)
, Y = y , Z = (x + 𝜌) sin

(
s
𝜌

)
. (3.2)

To keep the particles on a reference orbit of radius 𝜌, a constant magnetic
field of intensity B is applied. 𝜌 then is given by the equilibrium between the
magnetic force and the centrifugal force. This equilibrium is expressed by the
quantity B𝜌, defined as beam rigidity, which corresponds to

B𝜌 =
p
e

(3.3)

where p is the momentum of the particle and e its charge.
Starting from this coordinate system, it is possible to achieve a practical

Hamiltonian expression for a particle in an accelerator.
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Let us begin from the Hamiltonian of a relativistic charged particle under
the effect of an electromagnetic field, which acts on the particle via the Lorentz
force. The particles are accelerated, in modulus, by the action of an electric
field E (or by the corresponding scalar potential Φ), and their trajectories are
bent, to keep them in the circular reference orbit, by a magnetic field B, which
can be expressed via the vector potential A, i.e. B = ∇ × A.

The Hamiltonian of a relativistic particle under Lorentz force reads

H= eΦ +
√︃
m2c4 + (cp − eA)2 . (3.4)

We then express the square norm of (cp − eA) in the Frenet-Serret system of
coordinates (x , y , s), whose metric tensor reads

gi j = diag
(
1, 1, 1 + x

𝜌

)
, (3.5)

which leads to

H= eΦ +

√︄
m2c4 + (cps − eAs)2

(1 + x/𝜌)2
+ (cpx − eAx)2 + (cpy − eAy)2 . (3.6)

From now on, it is convenient to treat s as the time coordinate. Consequently,
due to canonical coupling, the conjugated momentum −ps will play the role of
a Hamiltonian function H̃. Solving Eq. (3.6) for ps, we obtain

H̃= −
(
1 − x

𝜌

)√︄
E2

c2
− m2c2 − (px − eAx)2 − (py − eAy)2 − eAs , (3.7)

where E = H− eΦ. We have from special relativity that E2/c2 = p2 +m2c2,this
allows us to rewrite the Hamiltonian as

H̃= −
(
1 − x

𝜌

)√︃
p2 − (px − eAx)2 − (py − eAy)2 − eAs . (3.8)

In high-energy circular accelerators, such as those considered for this study,
p ≫ px and p ≫ py, and the so-called paraxial approximation can be applied.
This enables the

√
1 + x ≈ 1 + x/2 expansion for the Hamiltonian, leading to

H̃=

(
1 + x

𝜌

) [
−p + 1

2p

(
p2x + p2y

)]
− eAs . (3.9)

It is customary to assume that there is no magnetic field in the longitudi-
nal direction. With this assumption, we only have contributions to the vector
potential along s, and Ax = Ay = 0, i.e. B = (Bx , By , 0).
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The standard approach to evaluating the contribution of the magnetic field
to H̃, eAs, consists of expanding the magnetic field in its multipolar compo-
nents.

From Maxwell’s equation ∇×B = 0, one obtains the Laplace equation ∇2A,
which, for As, has a general solution that can be expressed in power series as

As = Re
∑︁
n

[
kn + i jn
(n + 1) (x + iy)

n+1
]
, (3.10)

which leads to the corresponding expansion of the magnetic field

By + iBx =
∑︁
n

(kn + i jn) (x + iy)n . (3.11)

The coefficients

kn =
1
n!

𝜕nBy
𝜕xn

����
x=y=0

, jn =
1
n!

𝜕nBx
𝜕yn

����
x=y=0

(3.12)

are called respectively the normal and skew 2(n + 1)-polar coefficients of the
magnetic field. In accelerator physics, it is customary to consider magnetic
elements that generate fields with only one multipolar component. These el-
ements are, in fact, referred to as normal or skew dipoles, quadrupoles, sex-
tupoles, octupoles, etc. Of course, in the case of magnetic field imperfections,
several multipolar components can be associated with a single magnet.

3.2 | Transverse motion

From the Hamiltonian (3.9) , we can derive the equations of motion of the
particle in the transverse plane. We obtain the following

x′ =
(
1 + x

𝜌

)
px
p
, p′x =

p
𝜌

(
1 + x

𝜌

)
+ e𝜕As

𝜕x
,

y′ =
(
1 + x

𝜌

)
py
p
, p′y = e

𝜕As
𝜕y

.
(3.13)

To obtain an expression for the partial derivatives of As as a function of
the x and y components of the magnetic field B, we consider the expression of
∇ × A in the Frenet-Serret coordinates, which reads

∇ × A =
x̂

1 + x/𝜌
𝜕As
𝜕y

− ŷ
1 + x/𝜌

𝜕As
𝜕x

= Bx x̂ + By ŷ (3.14)
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as only the As component is non-zero. This leads to

𝜕As
𝜕x

= −
(
1 + x

𝜌

)
By ,

𝜕As
𝜕y

=

(
1 + x

𝜌

)
Bx , (3.15)

which, substituted in Eq. (3.13) , reads

x′ =
(
1 + x

𝜌

)
px
p
, p′x =

(
1 + x

𝜌

) [
p
𝜌
− eBy

]
y′ =

(
1 + x

𝜌

)
py
p
, p′y = e

(
1 + x

𝜌

)
Bx .

(3.16)

Recalling the definition of beam rigidity in Eq. (3.3) , we can rewrite the equa-
tions of motion as second-order differential equations using the fact that p =

eB𝜌. This leads to

x′′ =
1
𝜌
+ x

𝜌2
+
By
B𝜌

(
1 + x

𝜌

)2
,

y′′ =
Bx
B𝜌

(
1 + x

𝜌

)2
.

(3.17)

If we consider only linear terms for the magnetic fields Bx and By, these
equations can be expressed in the form

z′′ +Kz (s)z = 0 , (3.18)

where z stands for x or y, and the function K (s) represents the effect of the
linear magnetic fields the particle is subject to in the accelerator. For a circular
accelerator of length L the periodic condition Kz (s) = Kz (s + L) holds. This
equation with the periodic condition is referred to in the literature as Hill’s
equation.

An Ansatz for the solution of Hill’s equation is in the form

z(s) = A
√︁
𝛽z (s) cos (𝜓z (s)) , (3.19)

i.e. a harmonic oscillator where the amplitude 𝛽z (s) and phase advance 𝜓z (s)
depend on s. When substituted into Hill’s equation, this results in a relation
between 𝜓z (s) and 𝛽z (s), namely

1√︁
𝛽z (s)

d
ds

( 𝛽z (s)𝜓z (s)) = 0 , (3.20)

which can be solved as

𝜓z (s) =
∫ s

0

ds′

𝛽z (s′)
(3.21)



Courant-Snyder ellipse 43

and a non-linear equation for 𝛽z (s):

1
2
𝛽z 𝛽

′′
z −

1
4
𝛽 ′2
z +Kz (s) 𝛽 2z = 1 . (3.22)

The phase advance over the ring is called tune:

az =
1
2𝜋

∮
ds′

𝛽z (s′)
. (3.23)

3.3 | Courant-Snyder ellipse

As we are interested in the transverse motion of the particle, we want to
consider its evolution each time it crosses the position s = s0, i.e. we want to
consider the Poincaré section of dynamics. At each iteration, we will have a
phase advance of 𝜓z equal to 2𝜋az.

It is possible to decouple the envelope dynamics described by 𝛽z (s) from
the transverse motion of the particles with a coordinate transformation, which
leads to the definition of the Courant-Snyder ellipse and other important quan-
tities in accelerator physics.

From Eq. (3.19) , we find that z′(s) reads

z′(s) = − z
𝛽z (s)

(𝛼z (s) + tan𝜓z (s)) (3.24)

where 𝛼z = −𝛽 ′
z/2. We then consider for our coordinate transformation the

angular variable 𝜙z = 𝜓z and the generating function

F =

∫
dz z′ = − z2

2𝛽z
(𝛼z + tan 𝜙z) , (3.25)

which then yields the canonical action variable Iz

Iz =
𝜕F
𝜕𝜙z

=
z2

2𝛽z
(1 + tan2 𝜙z) =

1
2𝛽z

[
z2 + ( 𝛽zz′ + 𝛼zz)2

]
. (3.26)

In the new variables, the Hamiltonian corresponding to Hill’s equation

H=
z′2

2
+ Kzz

2

2
, (3.27)

reduces to the simple expression

H(𝜙, I , s) = I
𝛽 (s) , (3.28)
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which takes into account the derivative 𝜕F/𝜕s , and from this new Hamiltonian
we find that the equation of motion for the variable 𝜙z reads 𝜙′z = 1/𝛽 (s).

We are now interested in making 𝜙z proportional to s, and removing any
dependence on the 𝛽 function in the equations of motion. To achieve this, we
define

𝜔z =
2𝜋az
L

, (3.29)

where, we recall, L is the circumference of the accelerator and az the tune de-
fined in Eq. (3.23) . Then we have the final change of variables (𝜙z , Iz) →
(𝜙z , Ĩz), which is defined by the generating function

G (𝜙z , Ĩz) = Ĩz
(
𝜔zs −

∫ s

0

ds′

𝛽 (s′)

)
+ 𝜙Ĩ , (3.30)

which results in the Hamiltonian

H(𝜙z , Ĩz) = 𝜔z Ĩz , (3.31)

i.e. the well-known Hamiltonian of a harmonic oscillator (note how Iz = Ĩz).
From this final Hamiltonian, one can introduce and operate with normal-

ized Cartesian coordinates

ẑ =
√︁
2Iz cos 𝜙z , p̂z =

√︁
2Iz sin 𝜙z , (3.32)

and consequently treat the transverse linear motion on both the x̂− p̂x and ŷ− p̂y
planes using an intuitive normalized Cartesian Hamiltonian

H(x̂ , p̂x , ŷ , p̂y) =
𝜔x

2
(x̂2 + p̂2x ) +

𝜔y

2
(ŷ2 + p̂2y ) . (3.33)

The Hamiltonian of Eq. (3.33) describes circular trajectories in decoupled
phase spaces (x̂ , p̂x) and (ŷ , p̂y). Moreover, there are two corresponding action
variables, namely,

Ix =
x̂2 + p̂2x
2

, Iy =
ŷ2 + p̂2y
2

, (3.34)

can be defined. Ix and Iy follow the standard definition of the trajectory area
divided by 2𝜋 and are conserved. However, for historical reasons, the value
2Iz is called Courant-Snyder invariant.

From its definition in the physical coordinates (z, z′), given in Eq. (3.26) ,
it is possible to draw the constant-I surfaces in the (z, z′) phase space, as in
Fig. 3.2, which correspond to concentric ellipses, as the expanded form reads:

Iz =
1
2𝛽z

[
z2 + (𝛼z + 𝛽 z′))2

]
=
1
2

(
𝛾z2 + 2𝛼zz′ + 𝛽 z′2

)
, (3.35)
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Figure 3.2: The Courant-Snyder ellipse 𝛾z2 + 2𝛼zz′ + 𝛽 z′2 = 2Iz. The area enclosed
by the ellipse is equal to 2𝜋Iz.

where we have defined 𝛾 = (1 + 𝛼2)/𝛽 . The area of the ellipse is equal to
2𝜋Iz, and is conserved at any value of s. It can be observed, finally, how the
(z, z′) → (ẑ, p̂z) coordinate transformation modifies the physical coordinates
ellipses into circles with the same area, from which their name “normalized co-
ordinates”.

A single particle following the linear transverse dynamics will have its own
constant Courant-Snyder invariant. When, instead, we want to consider a
beam distribution, a standard property, called emittance is defined as the average
of the Courant-Snyder invariant:

𝜖 z = ⟨Iz⟩ . (3.36)

The emittance is related to the second moments of the beam distribution in
(ẑ, p̂z). In fact, averaging over Iz and 𝜙z in the definitions of ẑ and p̂z given in
Eq. (3.32) , we obtain the following〈

ẑ2
〉
= 𝛽z𝜖 z ,

〈
p̂2z

〉
= 𝛾z𝜖 z ,

〈
ẑ p̂z

〉
= −𝛼z𝜖 z , (3.37)

from there, using the definition of Iz yields

𝜖 z =

√︃〈
ẑ2

〉 〈
p̂2z

〉
−

〈
ẑ p̂z

〉2 . (3.38)

The beam emittance can then be considered as the average Courant-Snyder
invariant of a distribution or as the area (up to a 2𝜋 factor) of the orbit of the
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RMS particle of the beam. A useful implication of this is that a Gaussian beam
distribution in (𝜙z , Iz) coordinate assumes the following practical form

𝜌z =
1
𝜖 z
exp

(
− Iz
𝜖 z

)
. (3.39)

3.4 | Non-linear beam dynamics

The transverse dynamics we treated so far takes into consideration only
the effects of a linear magnetic field (we recall the step between Eq. (3.17) and
Eq. (3.18) , where we dropped all non-linear terms for the magnetic fields Bx
and By), so that this approach takes into account only the elements generated
by a set of ideal dipole and quadrupole magnets.

To include higher-order terms of the magnetic field power series, it is pos-
sible to include non-linear terms directly into Hill’s Hamiltonian. This can be
done to represent both the unavoidable higher-order magnet imperfections in-
side the accelerator machine, or to represent explicit sextupolar and octupolar
elements, which one might want to include in the accelerator lattice.

As Hill’s Hamiltonian is equivalent to two uncoupled harmonic oscillators,
non-linear components can be included in the Hamiltonian as anharmonic per-
turbation. We start by considering higher-order terms n ≥ 2 of the power se-
ries As in Eq. (3.10) , and we perform the change of variables (x , y) → (x̂ , ŷ).
We then see that the non-linear part of the Hamiltonian reads:

Hnlin(x̂ , p̂x , s) = Re
∑︁
n≥2

[
kn (s) + i jn (s)

(n + 1)

(√︁
𝛽x (s) x̂ + i

√︃
𝛽y (s) ŷ

)n]
. (3.40)

To approximate this expression to a simpler form, we introduce the quan-
tity 𝛽 (s) = 𝛽y (s)/𝛽x (s), and its value 𝛽 averaged over the accelerator circum-
ference, which reads

𝛽 =

∮
ds

𝛽y (s)
𝛽x (s)

. (3.41)

We can now substitute the strengths kn (s) and jn (s) (which, we recall, represent
the effect of a normal or a skew magnetic field (2n + 2)) with the integrated
coefficients Kn, Jn, which will be scaled by the value of 𝛽x (s) and 𝛽y (s), that is,
we weight the integral average with the envelope value of the beam where the
magnetic elements are placed. These coefficients read

Kn =
∮
ds kn (s) 𝛽

n
2
x (s) , Jn =

∮
ds jn (s) 𝛽

n
2
x (s) . (3.42)
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With this notation, the non-linear Hamiltonian has the simpler form

Hnlin(x̂ , p̂x) = Re
∑︁
n≥2

[
Kn + i Jn
(n + 1) (x̂ + i 𝛽 1/2ŷ)n

]
. (3.43)

From this Hamiltonian, one can for example write a simple beam model
with one degree of freedom and normal multipoles

H(x̂ , p̂) = 𝜔
x̂2 + p̂2
2

+
∑︁
n>2

Kn
xn+1

(n + 1) , (3.44)

such a simple model can be used to understand many phenomena caused by
non-linear effects.

In an accelerator, non-linear effects can be used to represent either un-
wanted elements, such as magnet imperfections, or to represent specifically
added elements generating a non-linear magnetic field, such as sextupoles and
octupoles. These components can be introduced into an accelerator lattice to
correct specific unwanted effects, like chromaticity, i.e. the fact that particles
with different momentum are differently focused by quadrupoles. Chromatic-
ity, specifically, can be controlled by the introduction of sextupole magnets. An-
other important source of non-linearities is space charge effects and beam-beam
interaction, caused by the electromagnetic interaction of charged particles with
other charged particles, respectively, in the same or in another beam during
collisions.

The introduction of non-linear elements in a circular accelerator is the
cause of three main effects [48]: amplitude-dependent detuning, excitation of
non-linear resonances, and reduction of the dynamic aperture. We will present
the first two phenomena very briefly and focus a little more on the core char-
acteristics of the last one.

Amplitude-dependent detuning

Adding non-linear elements has the inevitable consequence of making the
tune, i.e. the rotation frequency of the harmonic oscillator, an amplitude-
dependent function. In the linear Hamiltonian (3.33) , the frequencyΩ is given
by

Ω =
𝜕H

𝜕I
= 𝜔 , (3.45)

where, we recall, I = (x̂2 + p̂2)/2. The tune Ω is constant at any I , therefore,
all particles have the same tune.
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If we now add an octupolar component to the Hamiltonian, that is, an n = 3
element of the power series in Eq. 3.44, the new Hamiltonian is

H= 𝜔
x̂2 + p̂2
2

+ K3
5
x4 = 𝜔I + K3

5
I2 cos4 𝜙 . (3.46)

Averaging over the angular variable 𝜙, one obtains

⟨H⟩ = 𝜔I + 3
40
K3I2 , (3.47)

and

Ω(I) = 𝜕 ⟨H⟩
𝜕I

= 𝜔 + 3K3
20

I . (3.48)

There is now a linear dependence of the tune on the action I , and each particle
will have a different rotation frequency depending on its amplitude.

The averaging approach used here to obtain an expression of the ampli-
tude detuning highlights only the first-order effects in the frequency. For more
complex Hamiltonians, describing multiple non-linear components, deriving
a complete analytical expression of the detuning is not always a trivial task.

It is possible to numerically evaluate the amplitude-dependent detuning in
single-particle tracking simulations, as the tune can be measured by perform-
ing a numerical estimate of the fundamental frequency of the orbit. We will
present the topic of tune evaluation later in Chapter 7, in the context of dy-
namic indicators, as tune determination is the foundation for consolidated tools
in accelerator physics like Frequency Map Analysis.

Non-linear resonances

If the tunes 𝜔x and 𝜔y satisfy a 1d or 2d resonance condition, the non-linear
magnetic field can eventually lead to severe particle loss. A theoretical approach
to this phenomenon is presented in [40, 49].

When the frequency 𝜔x or 𝜔y is close to a 1d resonant condition n𝜔z/2𝜋 ∈
ℚ, according to the Poincaré-Birkhoff theorem, presented in Section 1.5.1, a
chain of islands with extra fixed points appears. These islands, in regular accel-
erator operations, may reduce the dynamic aperture (for which the definition
is given in Section 3.6) and, close to separatrices, cause the onset of chaotic
motion. When a resonance is crossed due to small, undesired variations of the
magnetic field, which cause oscillations of 𝜔x and 𝜔y values, a growth in beam
emittance may be observed [50], affecting beam lifetime.

Other than 1d resonances, in a system with two degrees of freedom, one can
have a 2d resonant condition between the 𝜔x and 𝜔y frequencies, i.e. m𝜔x +
n𝜔y = 2𝜋ℓ , with ℓ ∈ ℚ. Only difference resonances (m > 0, n < 0) are stable,
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Figure 3.3: Resonance diagram in the (𝜔x , 𝜔y) space up to order4, that is, |m |+|n | = 4.
The resonances are evaluated on the fractional part of 𝜔x and 𝜔y. Dotted lines repre-
sent 1d resonances, continuous lines represent 2d resonances. The two characteristic
working fractional tunes for the LHC are also reported on the resonance diagram.

although they contribute to the motion coupling between the two planes, while
sum resonances (when m and n have the same signs) result in unstable motion.

The possible 1d and 2d resonances (up to order 4) are represented by lines
in the (𝜔x , 𝜔y) diagram in Fig. 3.3, where different colours show the resonance
order. As higher-order resonances are generally weaker than lower-order ones,
the accelerator working point should be selected far from the main resonances;
the LHC does so by operating at fractional tunes (𝜔x , 𝜔y) = (0.28, 0.31) dur-
ing injection and (𝜔x , 𝜔y) = (0.31, 0.32) during collisions [51]. Note that, in
the accelerator literature, frequencies and tunes are reported in units of 2𝜋.

3.5 | One-turn maps

A standard tool in accelerator physics to inspect the transverse dynamic of a
particle in an accelerator magnetic lattice is one-turn maps. A one-turn mapM
is the Poincaré map of the circular accelerator in section (s = s0), and is given
by composing single-element maps:

M =M(L) ◦M(L−1) ◦ · · · ◦M(2) ◦M(1) , (3.49)

where each M(i) represents an element along the circular accelerator lattice,
which might be, for example, a drift space without magnets, a dipole bending
magnet, a quadrupole, or a higher order magnetic element.
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The map M transforms the phase space coordinates x̂ = (x̂ , p̂x , ŷ , p̂y) of a
particle into new coordinates x′ which correspond to the particle after one full
turn (see Fig. 1.1).

In this framework, the effect of each magnetic element on the phase coor-
dinates of the beam can be written, in an analogy with geometrical optics, as
the action of a 4× 4 matrix on the coordinate vector. This matrix corresponds
to the symplectic flow of the Hamiltonian for a given magnetic field.

When considering only the linear components in the magnetic lattice, the
resulting Poincaré map for x̂ reads as a decoupled harmonic oscillator

©«
x̂
p̂x
ŷ
p̂y

ª®®®¬n+1 =
©«
cos𝜔x sin𝜔x 0 0
− sin𝜔x cos𝜔x 0 0

0 0 cos𝜔y sin𝜔y
0 0 − sin𝜔y cos𝜔y

ª®®®¬
©«
x̂
p̂x
ŷ
p̂y

ª®®®¬n . (3.50)

In general, it is not possible to compute exactly the transfer map of a non-
linear element. Therefore, approximation techniques become necessary. The
standard approach that is used in standard tracking codes such as SixTrack [52],
is the one-kick approximation, i.e. it is assumed that the higher-order polynomial
effects on the magnetic potential are all located at a precise position sl and act
with a 𝛿 (s − sl) potential.

The main advantages of this approximation is the fact that the resulting one-
turn map M maintains its symplectic character and enables efficient tracking.
This approximation holds when the higher-order magnetic contributions are
small in length.

A one-turn map with a single non-linear contribution, added with the one-
kick approximation at s = s0, will then read

©«
x̂
p̂x
ŷ
p̂y

ª®®®¬n+1 = R(𝜔x , 𝜔y)
©«

x̂
p̂x + Re

∑
r
Kr+i Jr
r (x̂ + i

√
𝛽 ŷ)r

ŷ
p̂y − Im

∑
r
Kr+i Jr
r (x̂ + i

√
𝛽 ŷ)r

ª®®®¬n
, (3.51)

where now the 𝛽 term, which also appears in the definition of K and J is eval-
uated at s = s0 due to the one-kick approximation.

This shape of the map inspired the investigation of 2d and 4d maps in the
form of (

x̂
p̂

)
n+1

= R(𝝎)
(

x̂
p̂ + f (x̂)

)
n
, (3.52)

which are referred to as Hénon-like maps, due to the well-known map introduced
in Ref. [53]: (

x̂
p̂x

)
n+1

= R(𝜔)
(

x̂
p̂x + x̂2

)
n
. (3.53)
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These models, despite their simplicity, already manifest multiple features
that are observed in a beam under non-linear magnetic fields and have been
used in multiple studies to investigate such features in the context of accelerator
physics, especially in the context of dynamic aperture measurements [54, 55].
These maps were also used as a fundamental building block for the application
of Normal Form theory to betatron motion [40].

3.6 | Dynamic aperture

As shown before, the linear transverse motion can be described as an al-
ways stable harmonic oscillator with two degrees of freedom. When instead
non-linearities are introduced, the stability of the system is affected and the
occurrence of hyperbolic points and resonances makes the motion of various
initial conditions chaotic, eventually leading to their loss as they hit the mechan-
ical aperture of the accelerator.

In this scenario, where the region of stable motion in the phase space is
affected by the non-linear elements in the Hamiltonian, we can introduce the
concept of Dynamic Aperture (DA), as the extent of the phase-space region where
stable motion occurs up to a given number of turns N .

A complete discussion of the definition of DA, its computation, and its accu-
racy can be found in Refs. [54, 55], which provide a fundamental starting point
on the topic. In the context of single-particle tracking, DA is defined over the
number of turns N as the radius of a hypersphere whose volume is equal to
the volume of the phase space where stable motion occurs up to N turns. Note
how this definition neglects the island of stability, which might be given by the
Poincaré-Birkhoff theorem.

The value of (N) must be adapted for a suitable time frame. In a mathe-
matical sense, stable motion implies a bounded motion for N → ∞. In our
accelerator context, stable motion and particle stability can be linked to a max-
imum number of turns Nmax, where the value of Nmax is set on the basis of
the specific application under consideration, e.g. in the LHC a standard 10-
hour luminosity fill, which corresponds to, using the revolution frequency of
11.245 kHz [51], ∼ 109 turns.

A consolidated numerical method for evaluating the DA in 4d symplectic
mappings that model betatron motion is presented in Ref. [54].

Let us operate on a 4d phase space on which we have a one-turn map M.
If we consider an ensemble of initial conditions defined on a polar grid (x =

r cos 𝜙, px = 0, y = r sin 𝜙, py = 0), 0 ≤ 𝜙 ≤ 𝜋/2, where x , y are expressed in
units 𝜎x , 𝜎y, i.e. nominal beam emittance units, and we track them for up to
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Nmax turns to assess their stability, then we can define DA as:

DA(N ) = 2
𝜋

∫ 𝜋/2

0
r (𝜙;N ) d𝜙 ≡ ⟨r (𝜙;N )⟩ (3.54)

where r (𝜙;N ) is the last stable amplitude, i.e. x2+ y2 < rmax for every iteration
of M, not disconnected from the origin for up to N turns in the direction 𝜙.

In addition to this consolidated “radial scan” method, other techniques have
been studied to improve the convergence speed of numerical DA measure-
ments, such as the one presented in Ref. [56], where a Support Vector Machine
algorithm is employed to perform an optimized sampling and border detection
of the stable region of the phase space.

3.6.1 | Dynamic aperture scaling laws

Simulating entire sets of initial conditions on different one-turn maps is
a computationally intense task that becomes unsustainable when considering
extremely high Nmax values or complex symplectic tracking models1. More-
over, the multipolar components of the various superconducting magnets are
known only with limited precision, so one has to perform parametric studies
to consider different realizations of the magnetic lattice. Because of these rea-
sons, realistic timescales in tracking simulation are still out of reach for proper
accelerator physics research.

This limitation motivated the search for a robust model for the time depen-
dence of DA, as such a model could offer insights into the long-term evolution
of DA by extrapolating short-term tracking simulation data. The most recent
developments on the topic of DA scaling laws can be found in [57] and refer-
ences therein.

The models presented in [57] are based on the Nekhoroshev theorem. Pre-
vious models formulated scaling laws using both the KAM theorem and the
Nekhoroshev estimate, theorizing the presence of a stable core with KAM tori
and an increasingly chaotic region where Nekhoroshev-like estimates for stabil-
ity times apply. However, such models presented some internal discrepancies,
such as the possibility to fit non-physical parameters or the strong correlation
between free parameters [58, 59], motivated the usage of a scaling law exclu-
sively based on the Nekhoroshev theorem. This is justified by the fact that
the condition for the applicability of the stability-time estimate provided by
the Nekhoroshev theorem is more general than the existence conditions of the
KAM tori.

1Researches like [55] present simulations in Nmax ∼ 106 − 107, while instead it would be
necessary to reach values ∼ 109.
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In this context, the Nekhoroshev theorem can be used to provide an esti-
mate of the number of turns N (r) for which the orbit of an initial condition
with amplitude r remains bounded. The estimate has a functional form that
reads:

N (r)
N0

=

√︂
r
r∗
exp

[( r∗
r

) 1
^

]
. (3.55)

A more generalized form of this estimate reads

N (r)
N0

=

(
r
r∗

)_
exp

[( r∗
r

) 1
^

]
. (3.56)

From this working hypothesis, the latest scaling law inspected in [57], based
on inverting the functional form of the Nekhoroshev estimate, reads:

DA(N ) = 𝜌∗[
−2e_ W−1

(
− 1
2e_

( 𝜌∗
6

)1/^ (
8
7N

)−1/(_ ^))] ^ , (3.57)

where W is the Lambert-W function [60]. The free parameters in this equa-
tion are 𝜌∗, ^ , and possibly _ , unless it is set at 1/2. The parameter 𝜌∗ is related
to the Nekhoroshev parameters in Eq. (3.55) with the following relation:

𝜌∗ =
( ^

2e

)−^
r∗ . (3.58)

3.7 | Fundamentals of longitudinal dynamics

Although the focus of this work is on the transverse beam dynamics, it is
important to include an essential presentation of the core concepts behind the
longitudinal dynamics, i.e., the theory describing synchrotron oscillations. A
particle that exhibits a longitudinal displacement with respect to the reference
trajectory, or that has a longitudinal momentum different from the reference,
will also manifest a different transverse dynamics, with a mechanism called
syncro-betatron coupling. The main effects of syncro-betatron coupling can be
represented as a turn-dependent modulation of transverse tunes.

In high-energy circular accelerators, the acceleration of particles is achieved
via the use of time-varying electromagnetic fields. The accelerating fields are
generated in dedicated straight elements, called RF cavities. In these cavities,
a high-frequency accelerating voltageV is generated along the longitudinal di-
rection with a specified angular frequency 𝜔rf , and reads

V =V0 sin (𝜔rf t + 𝜙s) , (3.59)
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whereV0 is the amplitude of the RF voltage and 𝜙s is a phase factor.
When the momentum of a particle in an accelerator changes, its revolution

frequency f also changes, following a relation that reads:

d f
f

=

(
1

𝛾2r
− 𝛼p

)
dp
p
, (3.60)

where 𝛾r is the Lorentz factor and 𝛼p is referred to as the momentum com-
paction factor, it depends on the lattice, and it is the ratio between the relative
orbit difference (given by the different trajectory in the magnetic lattice) and
the relative momentum error

𝛼p =
1
C
dΔC
d𝛿

=
1
C

∮
D(s) ds

𝜌
, (3.61)

where C is the path length of the reference orbit, 𝛿 is the fractional off-
momentum Δp/p, and D(s) is the dispersion function [43], which quantifies
the change in orbit effects given by fractional differences in momentum 𝛿 along
the various components of the magnetic lattice.

From this equation we can distinguish two separate regimes. At
(
𝛾−2
r < 𝛼p

)
,

which corresponds to low energies, the frequency of the revolution decreases
with increasing momentum. At

(
𝛾−2
r > 𝛼p

)
, which corresponds to high ener-

gies, it increases. The energy corresponding to 𝛾tr = 1/√𝛼p is referred to as
transition energy, as it delimits the two regimes.

Taking into account a particle with longitudinal phase 𝜙 = 𝜙s, momentum
p0, and revolution periodT0, we will refer to this particle as synchronous particle.
When designing an accelerator, we must have that the angular frequency of
the RF cavity must match the frequency of the synchronous particle. Such a
requirement reads as follows

𝜔rf = h𝜔0 , (3.62)

where 𝜔0 = 𝛽0c/R0 is the angular revolution frequency of the synchronous
particle with 𝛽0, R0 denoting the speed and average orbit radius of the syn-
chronous particle, respectively, and h is an integer known as the harmonic num-
ber, which also represents the number of equally spaced synchronous positions
that can be exhibited along the circular accelerator.

The energy gained by the synchronous particle in each passage through
the RF cavity will then be dependent on 𝜙s and equal to ΔE = eV0 sin (𝜙s).
However, in a real beam, we will have a spread of particles with different par-
ticle momenta, and each of these particles will follow a different orbit, due to
the different interactions with the accelerator magnetic lattice. Due to such
off-momentum orbit and speed differences, each of these off-momentum par-
ticles will have a different revolution frequency than the reference particle and,
therefore, will receive a different ΔE from the RF cavity.
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In the regime below the transition energy 𝛾 < 𝛾tr, a higher-momentum
particle will arrive at the RF cavity ahead of the synchronous particle, i.e.
(𝜙1 < 𝜙s), and will have a lower ΔE than the synchronous particle, causing
a decrease in its phase. On the contrary, a particle with a lower momentum
will arrive at the RF cavity behind the synchronous particle, i.e. (𝜙2 > 𝜙s),
and have a higher ΔE than the synchronous particle, which causes instead an
increase in its phase. In the regime above the transition energy 𝛾 > 𝛾tr, the
correlation between the difference in ΔE and phase variation is inverted.

In Fig. 3.4, we show a simple scheme for an accelerating synchronous par-
ticle for both regimes. We can observe how the two regimes require the syn-
chronous particle to be at a different RF voltage phase to achieve a stable acceler-
ating regime. In Fig. 3.5, instead, we show a sketch of a stationary synchronous
particle above the transition energy, along with the resulting potential well de-
scribed by the RF voltage frequency.

The resulting motion in the longitudinal plane, related to the potential well
given by the RF voltage frequency, is called synchrotron motion, which is char-
acterized by synchrotron oscillations. The fractional off-momentum deviation is
then defined as

𝛿 =
Δp
p0

=
𝜔0

𝛽 2E
𝛿E
𝜔0

. (3.63)

From this we then obtain the equations of motion for the longitudinal vari-
ables.

d𝛿
dt

=
𝜔0

2𝜋 𝛽 2E
eV0 [sin(𝜙) − sin (𝜙s)] ,

d𝜙
dt

= h𝜔0[𝛿 ,
(3.64)

where [ is the slip factor and reads

[ =
Δ𝜔/𝜔0
Δp/p0

, (3.65)

and assumes positive values below the transition energy and negative values
above the transition energy.

When considering small oscillation amplitudes, we can treat the syn-
chrotron motion as that of a harmonic oscillator, where we consider the
linearized equation of motion in the variable Δ𝜙 = 𝜙 − 𝜙s. This approach
leads to the differential equation

d2

dt2
Δ𝜙 −

h𝜔20eV [ cos (𝜙s)
2𝜋 𝛽 2E

Δ𝜙 = 0 . (3.66)
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V (𝜙)

𝛾 < 𝛾tr 𝛾 > 𝛾tr

Figure 3.4: Sketch of the differentV provided at particles with different 𝜙 for an ac-
celerating synchronous particle, and consequent phase evolution respectively in the
regime below transition energy (left, 𝛾 < 𝛾tr), and in the regime above transition en-
ergy (right, 𝛾 > 𝛾tr). 𝜙s and 𝜙′s represent the synchronous particle phase at 𝛾 < 𝛾tr

and 𝛾 > 𝛾tr, respectively. 𝜙1 and 𝜙2 are respectively the phase of a particle with higher
and lower longitudinal momentum, the same goes for 𝜙′1 and 𝜙′2. The frequency of
the RF voltage provides a restoring force towards 𝜙s, causing a different effect on the
phase depending on the value of 𝛾.

𝜙

V (𝜙)

𝜙1

𝜙s
𝜙2

𝛾 > 𝛾tr

Figure 3.5: Sketch of the different V provided at particles with different 𝜙 for a sta-
tionary synchronous particle above transition energy. The synchronous particle 𝜙s
receives no energy from the RF voltage, while particles at different phase receive a
restoring force towards 𝜙s. The frequency of the RF voltage (black curve) describes
a potential well with the minimum corresponding to the synchronous particle (red
curve).
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We then have the following condition for phase stability

[ cos (𝜙s) < 0. (3.67)

The separatrix given by the equations of motion delimits different stable areas
in the phase space. The area of stable motion is called RF bucket.

Particles with small off-momentum deviations undergo a synchrotron os-
cillation during their orbit. This oscillation periodically alters the magnetic
lattice effect on their transverse dynamics as well, leading to what we referred
to as syncro-betatron coupling.

In the context of particle tracking simulations (which also include longitudi-
nal dynamics, will be a 6d tracking), different sets of longitudinal variables can
be used along the transverse ones [61]:

b = s
𝛽

𝛽0
− 𝛽 ct , 𝜏 =

s
𝛽0

− ct , Z = s − 𝛽0ct ;

𝛿 =
p − p0
p0

, p𝜏 =
1
𝛽0

E − E0
E0

, pZ =
1

𝛽 20

E − E0
E0

;
(3.68)

where variables in the same columns are canonically conjugate. The different
variables can be easily related to each other:

b = 𝛽 𝜏 =
𝛽

𝛽0
Z ,

𝛿 = 𝛽 p𝜏 +
𝛽 − 𝛽0

𝛽0
= 𝛽 𝛽0pZ +

𝛽 − 𝛽0

𝛽0
.

(3.69)
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Part II

Probing the diffusive behaviour of
accelerator systems





4 | Probing the diffusive behaviour
in circular accelerators

The content of this chapter, with the due adaptations, has resulted in the article
by C. E. Montanari, A. Bazzani, M. Giovannozzi “Probing the diffusive behaviour of
beam-halo dynamics in circular accelerators”, which has been published in Eur. Phys.
J. Plus in November 2022 (Ref. [62]).

In this chapter, the properties of the Fokker-Planck equation (2.55) with
diffusion coefficient as in Eq. (2.64) , in particular that of the outgoing current
at a boundary condition, are studied in detail by means of analytical models
and by means of numerical simulations. These analyses are then considered
in the context of the transverse losses in a circular accelerator, leading to the
definition of an optimal protocol to extract the information about the diffusion
coefficient by performing a sequence of well-chosen variations of the position
of the boundary condition. An important part of our analysis focuses on the
determination of the accuracy and robustness of the proposed protocol, which
are key aspects for experimental determination of the form of the diffusion
coefficient.

The plan of the chapter is as follows. In Section 4.2, we analyse some impor-
tant characteristics of the FP process presented in the previous chapter, with a
focus on the outgoing current and its behaviour under various conditions, such
as stationary or semi-stationary equilibrium. In Section 4.3, we discuss how
our model can describe the outgoing currents obtained from outward or inward
changes of the position of the boundary condition and how such currents can
be split into two processes with distinct timescales. In Section 4.4, the results
presented in the previous sections are used to define a protocol to reconstruct
the diffusion coefficient of the FP process. The results of detailed numerical
simulations are presented and discussed, quantifying the performance of the
proposed method. Finally, in Section 4.5 some conclusions are drawn, while
details about the numerical integration of the FP process are discussed in Ap-
pendix 4.a and some analytical calculations are presented in Appendices 4.b
and 4.c.
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4.1 | State of the art in diffusion measurements

The concept of using a diffusive model to describe the behaviour of beam
halo and characterize the transverse loss rate is not a novel concept, as achieving
a valid modelling of such a phenomenon can lead to a better characterization
of long-term losses and beam-halo formation.

A rather broad literature exists on the topic of diffusive models applied on
accelerator machines, see, e.g. Refs. [8, 13–15, 17–20] and references therein.

An interesting line of research, which provided a valid approach for gath-
ering local information about the value of the diffusion coefficient, is given by
the usage of collimator scans presented in [16]. Collimator scans can be used to
probe beam-halo dynamics and, in particular, to reconstruct the behaviour of
the diffusion coefficient as a function of transverse amplitude [9, 63, 64]. The
collimator scan method has been intensively used at the LHC: it is based on
small displacements of the jaws combined with the measurement of the beam
losses. The displacements can be either inward or outward, and depending
on the direction, the local losses feature a different behaviour. Inspection of
such features at different amplitudes finally provides local information on the
diffusion coefficient.

The latest diffusion measurements, based on [9] diffusive framework, were
taken during LHC Run 2 [65], and provided a consistent collection of colli-
mator scan data that provided an overview of the halo diffusive phenomenol-
ogy [64].

Finally, the framework on which this work is based has been developed and
proposed in [6, 7], where the long-term behaviour of beam dynamics and par-
ticle losses in circular accelerators is described by means of a global diffusive
model. In this framework, the evolution of the beam distribution is described
by means of a Fokker-Planck equation, in which the diffusion coefficient repre-
sents the key quantity to describe the beam dynamics. An excellent agreement
has been observed between the collected data and the predictions from the FP
model, where the approach consists of fitting the values of the model parame-
ters I∗ and ^ to the collected data.

4.2 | Some considerations on Fokker-Planck pro-
cesses

We treat our problem by using the 1d action variable I , representing the
non-linear invariant of the system. We consider the rescaled action variable
I → I/𝜎2, and express the action in units of the RMS beam emittance, and
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therefore this action will be a dimensionless quantity. A second natural scale of
our problem is given by I∗, as can be derived from the functional form of the
diffusion coefficient (2.64) , and, in fact, in several cases, the analyses presented
in the rest of this chapter will be carried out in terms of the dimensionless
variable I/I∗.

As for the initial condition for the beam distribution, we use the exponential
distribution

𝜌0(I) = exp(−I) , (4.1)

obtained by the transformation of the standard Gaussian distribution in phys-
ical variables. We also note that, for future analysis, it might be interesting to
consider beam distributions made of combinations of exponential distributions,
as this could be used to simulate the behaviour of a beam with overpopulated
tails.

In Ref. [7], a value of ^ around 0.33 was found to be the best fit to the data
measured during the experimental studies in the LHC, and for this reason this
value is used in the numerical simulations presented in this study, although this
choice does not hint at any universality of this value. Unless specified, we also
consider 𝜖 = 1 in all simulations.

4.2.1 | Outgoing current

In a generic diffusive process, the outgoing current at the absorbing bound-
ary condition at Ia is defined as

Ja(t) = D(Ia)
𝜕 𝜌(I , t)

𝜕I

���
(Ia ,t)

. (4.2)

Equation (2.59) provides a means to obtain an analytical estimate of the current
lost at the absorbing barrier (see Appendix 4.b for mathematical details). We
consider the change of variable

x(I) = −
∫ Ia

I

1
D1/2(I ′)

dI′ , 𝜌x (x , t) = 𝜌(I , t)
√︁
D(I) , xa = x(Ia) = 0 ,

(4.3)
and the FP problem in the Smoluchowsky form

𝜕 𝜌x

𝜕t
=
1
2

𝜕

𝜕x
dV (x)
dx

𝜌x +
1
2
𝜕2 𝜌x

𝜕x2
where V (x) = − ln

(
D1/2(x)

)
. (4.4)

Assuming an initial distribution of the form 𝛿 (x − x0), where x0 ∈] −∞, 0],
and approximating the potentialV (x) at x0 as −a x, the following expression is
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obtained for the outgoing current at xa = 0

Ja(x0 , t) =
|x0 |
t
√
2𝜋t

exp

(
−
(x0 + a

2 t)
2

2t

)
, (4.5)

where a , the linearization of the potential (4.4) at x0 with D(I) given by
Eq. (2.64) in the new coordinates has the following expression

a =
1
2^

1
I (x0)

(
I∗

I (x0)

) 1
2^

exp

[
−

(
I∗

I (x0)

) 1
2^

]
. (4.6)

We note that Eq. (4.5) can be applied to a generic distribution 𝜌0 through
a convolution.

Ja(t) =
∫

Ja(x , t) 𝜌x (x) dx . (4.7)

We also note that Eqs. (4.5) and (4.6) inevitably provide an underestimate of
the actual current lost [66], as the actual drift term is a positive increasing func-
tion for I ≪ I∗. However, we expect an accurate description of local behaviour
close to the absorbing boundary condition, i.e. we obtain a good estimate of
the current lost for initial distributions that are close enough to the absorbing
barrier at I = Ia.

4.2.2 | Stationary system with a constant source

Consider a diffusive process within the region [I0 , Ia], with an absorbing
boundary condition 𝜌(Ia , t) = 0, and 𝜌(I0 , t) = 1 as a constant source over
time. Regardless of the shape of the initial distribution 𝜌0, the system will
eventually relax to its equilibrium distribution 𝜌eq(I), characterized by a con-
stant outgoing current at Ia. Such a distribution satisfies the following equation

𝜕

𝜕I
D(I) 𝜕

𝜕I
𝜌eq(I) = 0 , (4.8)

whose solution is given by

𝜌eq(I) = 𝛼

∫ Ia

I

1
D(x) dx , 𝛼 =

1∫ Ia

I0

1
D(x) dx

. (4.9)

The relaxed system features a constant outgoing current given by

Ja(t) = D(Ia)
𝜕 𝜌eq

𝜕I

���
(Ia ,t)

= 𝛼 , (4.10)
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which is directly linked to the integral of the diffusion coefficient. For a
Nekhoroshev-like diffusion coefficient, we have the analytical expression

𝜌eq(I) = 𝛼

∫ Ia

I
exp

[
2

(
I∗
x

) 1
2^

]
dx

= 2𝛼 ^x

[
−2

(
I∗
x

) 1
2^

]2^
Γ

(
−2^ , −2

(
I∗
x

) 1
2^

) �����Ia
I

,

(4.11)

where Γ is the upper incomplete gamma function

Γ(s, x) =
∫ ∞

x
ts−1 e−t dt . (4.12)

When the system is out of equilibrium, an analytical description of the out-
going current can be obtained using the formula in Eq. (4.5) , where, instead of
performing a convolution between Eq. (4.5) and 𝜌0, we perform a convolution
with 𝜌0 − 𝜌eq. The resulting outgoing current is added to the constant value 𝛼

(the mathematical details of such procedures are illustrated in Appendix 4.c).

4.2.3 | Semi-stationary regime for a real system

When working with a Nekhoroshev-like diffusion coefficient, its exponen-
tially small values for I ≪ I∗ generate a stable-core region with extremely low
diffusion rates (see Fig. 2.1). This observation can be shown by computing the
time of the maximum outgoing current for an initial distribution 𝛿 (I − I0). We
consider the time derivative of Eq. (4.5)

𝜕 Ja(x0 , t)
𝜕t

=

√
2x0 [12t + (at − 2x0) (at + 2x0)]

16
√
𝜋t7

exp

(
−
(x0 + a

2 t)
2

2t

)
, (4.13)

which is zero for two values of t of opposite sign, and the positive one is

tmax(x0) =
2

(√︃
a2x20 + 9 − 3

)
a2

. (4.14)

Taking into account the diffusion coefficient of Eq. (2.64) in the change of
variable Eq. (4.3) , we have that

x0(I0) = −
∫ Ia

I0
exp

[(
I∗
I

) 1
2^

]
dI . (4.15)
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We observe that the modulus of the integral of Eq. (4.15) increases expo-
nentially for I0 ≪ I∗. Likewise, the value of a , given in Eq. (4.6) , decreases
exponentially in the same range of values of I0, which characterize a strong
exponential variation for tmax as a function of I0. This fact suggests that the
contribution to the outgoing current at an absorbing barrier at time t is mainly
determined by the initial conditions near I0, with tmax(I0) ≈ t. Therefore, given
a generic initial distribution 𝜌0(I) and an absorbing boundary condition at Ia,
after a transient time t, the system relaxes to a condition where the current
Ja(t) is determined mainly by 𝜌0(I0), where I0 satisfies tmax(I0) ≈ t. Taking
into account the exponential increase in tmax(I), we have a core region that is
slowly eroded by the diffusive process. Outside this core region, the system
behaves as in a semi-stationary regime, characterized by a very slowly varying
source at I0.

The evolution of this semi-stationary process can be approximated by mod-
ifying the 𝛼 term in Eq. (4.9) as

𝜌eq(I , t) = 𝛼 (t)
∫ Ia

I

1
D(x) dx , (4.16)

where here 𝛼 (t) depends on the value of the initial distribution 𝜌0(I0), and can
be estimated by

𝛼 (t) = 𝜌0 (I0(t))∫ Ia

I0 (t)

1
D(x) dx

, (4.17)

in which I0(t) is obtained by inverting Eq. (4.15) to determine I0(x0), and
Eq. (4.14) to obtain x0(tmax). When the two functions are combined, I0(t)
is determined.

This behaviour can be observed in Fig. 4.1, where a Nekhoroshev-like dif-
fusive process is simulated for a time long enough to reach the semistationary
regime. Here, we consider the distribution obtained after prolonging the simu-
lation of the system presented in Fig. 2.1 with ^ = 0.33, and compare it to 𝜌eq
from Eq. (4.9) , using 𝛼 obtained from Eq. (4.17) . A global offset between the
two curves is observed, which clearly highlights the limits of the approximation.

4.3 | Reconstruction of the diffusion coefficient of a
FP process

We now consider the problem of modelling the variation of the outgoing
current after a change in position Ia of the absorbing boundary condition, under
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Figure 4.1: Initial uniform distribution for the simulation shown in Fig. 2.1 after nu-
merical integration at t = 1000 [a. u.], compared to the estimate of 𝜌eq from Eq. (4.9) ,
with 𝛼 (t) computed with Eq. (4.17) . (Simulations parameters: (I∗ = 1.0 [𝜎2] , ^ =

0.33)).

the hypothesis that the movement is fast enough to be considered instantaneous
and that the movement is performed over a short distance while the system is
in the semi-stationary regime described in the previous section. The ultimate
goal consists of defining a method to examine the information about the shape
of the diffusion coefficient D(I) contained in the outgoing current measured
after the instantaneous movement of the boundary condition. This, in view
of reconstructing the characteristics of the FP process under analysis, which
corresponds to evaluating the values of the two parameters I∗ and ^ defining
D(I).

We define two types of outgoing current, namely global current, i.e. the
outgoing current observed from a slow core erosion process while keeping the
absorbing boundary condition fixed, and recovery current, i.e. the current ob-
served after the absorbing boundary condition is instantaneously moved, and
the system relaxes to a new semi-stationary regime.

We start by modelling the shape of the recovery current for a stationary
system with a fixed source, both for inward and outward movements of the
absorbing boundary. Furthermore, we recall that this mimics what is done
experimentally when trying to measure the diffusion equation by scanning the
position of some collimators jaws [9, 10, 12, 16, 20, 63, 64]. Afterwards, we
try to adapt the models to a system in a semi-stationary regime, characterized
by a source evolving with time.
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4.3.1 | Moving the absorbing boundary condition inwards

Let us consider a system in equilibrium with a constant source 𝜌(I0 , t) = 1,
and an absorbing boundary condition 𝜌(Ia , t) = 0, and assume that the bound-
ary condition is instantaneously moved inwards to 𝜌(I ′a , t) = 0, with I0 < I′a <
Ia. After this change, the equilibrium distribution varies, and the new equilib-
rium distribution is given by

𝜌′eq(I) = 𝛽

∫ I ′a

I

1
D(x) dx , (4.18)

where 𝛽 is a constant such that 𝜌′eq(I0) = 1, and compared with the constant 𝛼
of Eq. (4.9) , we have 𝛼 < 𝛽 . The graphs of 𝜌eq and 𝜌′eq are shown in Fig. 4.2
(top).

To apply the analytical formulae presented in the previous section, we need
to calculate the difference distribution 𝜌∗(I). Assuming that the original system
starts from the equilibrium distribution in Eq. (4.9) , we obtain

𝜌∗(I) = 𝜌eq(I) − 𝜌′eq(I) = 𝛼

∫ Ia

I

1
D(x) dx − 𝛽

∫ I ′a

I

1
D(x) dx

= 𝛼

(∫ I ′a

I

1
D(x) dx +

∫ Ia

I ′a

1
D(x) dx

)
− 𝛽

∫ I ′a

I

1
D(x) dx

= 𝛼

∫ Ia

I ′a

1
D(x) dx − ( 𝛽 − 𝛼)

∫ I ′a

I

1
D(x) dx

= 𝜌∗app − ( 𝛽 − 𝛼)
∫ I ′a

I

1
D(x) dx . (4.19)

The shape of 𝜌∗(I) is shown in Fig. 4.2 (bottom). This function, restricted
to the interval I ∈ [I0 , I′a], is increasing monotonically, with a maximum in I′a.
Given the Nekhoroshev-like form of the diffusion coefficient, the decrease to
zero when I → I0 is exponentially fast, while in the region close to I ′a, the func-
tion remains almost constant to the value 𝜌∗app that can be used as the lowest-
order approximation of 𝜌∗(I).

In Fig. 4.3, we compare the simulated current with its analytical esti-
mate, obtained by computing the convolution with the distribution 𝜌∗(I)
of Eq. (4.19) , which are in very good agreement (i.e. with a difference not
greater than 10%) . In the same figure, the analytical approximation based on
the convolution with 𝜌∗app is shown, and even in this case the agreement is very
good (i.e. with a difference not greater than 10%) .
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rium distribution for I ′a/I∗ = 0.95. Bottom: Difference between the two equilibrium
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4.3.2 | Moving the absorbing boundary condition outwards

We now consider a system in equilibrium with a constant source 𝜌(I0 , t) =
1, and an absorbing boundary condition 𝜌(Ia , t) = 0, and assume that this
boundary condition is instantaneously moved outward to 𝜌(I′′a , t) = 0, with
I0 < Ia < I′′a . The new equilibrium distribution is given by

𝜌′′eq(I) = 𝛾

∫ I ′′a

I

1
D(x) dx , (4.20)

where 𝛾 is a constant such that 𝜌′′eq(I0) = 1, and compared with the constant 𝛼
of Eq. (4.9) , we have 𝛾 < 𝛼. The graphs of 𝜌eq(I) and 𝜌′′eq(I) are shown in
Fig. 4.4 (top).

To properly define the difference distribution in the new interval [I0 , I′′a ],
we need to extend the definition of the equilibrium distribution 𝜌eq(I), namely

𝜌eq(I) =


𝛼

∫ Ia

I

1
D(x) dx if I ≤ Ia

0 if I > Ia ,

, (4.21)
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which leads to the following expression for the difference distribution

𝜌∗(I) =


−𝛾

∫ I ′′a

Ia

1
D(x) dx + (𝛼 − 𝛾)

∫ Ia

I

1
D(x) dx if I ≤ Ia

−𝛾
∫ I ′′a

I

1
D(x) dx if I > Ia ,

(4.22)

which is a negative distribution, with a minimum at Ia and with 𝜌∗(I0) =

𝜌∗(I ′′a ) = 0.
A plot of 𝜌∗(I) is shown in Fig. 4.4 (bottom), and we note that this dis-

tribution leads to a negative outgoing current that needs to be combined with
the stationary current of the equilibrium process to obtain the actual outgoing
current.

While in the interval [I0 , Ia] a constant approximated distribution function
can be a reasonable assumption, in the interval [Ia , I ′′a ] a different approxima-
tion is needed. Under the assumption that the outward step I′′a − Ia is small, a
linear approximation from 𝜌∗(Ia) to 𝜌∗(I ′′a ) can be considered, namely

𝜌∗app(I) =


−𝛾

∫ I ′′a

Ia

1
D(x) dx if I ≤ Ia

−𝛾
(
I ′′a − I
I ′′a − Ia

)∫ I ′′a

Ia

1
D(x) dx if I > Ia .

(4.23)
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In Fig. 4.5, we compare the simulated current with its analytical esti-
mate, obtained by computing the convolution with the distribution 𝜌∗(I)
of Eq. (4.22) , which is in good agreement (i.e. with a difference not greater
than 10−15%) . In the same figure, the analytical approximation based on con-
volution with 𝜌∗app is shown, and even in this case the agreement is excellent
(i.e. with a difference not greater than 5%) .

4.3.3 | Moving the absorbing boundary condition in a semi-
stationary system

In Section 4.2.3 we have seen how it is possible to describe a diffusive pro-
cess, after a transient time, as a semi-stationary process in which a stable core is
slowly eroded over an exponentially long time, with an approximated timescale
given by Eq. (4.15) . If the position of the absorbing boundary condition is
changed when the system is in this semi-stationary state, and the new position
is close to the original one, so that it is characterized by a timescale of the same
order of magnitude, the stationary part of the system, i.e. the relaxed part out-
side the stable-core, will relax to a new configuration in a time that is short
compared to the timescale of the stable-core erosion.

Being the timescale of the recovery-current process orders of magnitude
shorter than the evolution of the global current, the variation of the shape of
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the core is so slow that it can be neglected. Therefore, we can treat this situation
as a source in a fixed position with a slow-varying intensity 𝛼 (t).

Normalizing a recovery current

Due to the previous assumptions, one can define a normalization procedure
to be applied to the recovery current to make it independent of the characteris-
tics of the global current. We are interested in reducing the problem to the ideal
case of a constant source at I0 and a constant unitary outgoing current at the ab-
sorbing boundary condition Ia, instead of a system with a slow-varying global
current 𝛼 (t). This approach is tested by simulating the same Nekhoroshev-
like FP system twice: first, by keeping the absorbing boundary fixed; second,
by executing some instantaneous changes of the absorbing boundary position.
With this approach, we gather information on the value of the semi-stationary
current 𝛼 (t), thus enabling the transformation of the process with a moving
boundary to a system with a fixed source.

We define the normalized recovery current as the current obtained in the
measurement with the moving absorbing barrier divided by the current 𝛼 (t),
obtained in the measurement with fixed boundary. The normalized recov-
ery current has a unitary value when the absorbing boundary condition is not
changed and has normalized maximum and minimum, respectively, for the
inward and outward movements of the absorbing boundary condition. The be-
haviour of the normalized recovery current can be related to the ideal stationary
systems described above, for which analytical approximations are known.
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In Fig. 4.6, an example of such a procedure is shown (centre) together with
the evolution of the outgoing current (top) and the corresponding variation of
the position of the boundary condition (bottom). It is worth mentioning that for
every change in Ia the value of 𝛼 (t) changes according to Eq. (4.17) , although
for small variations of the absorbing boundary condition, a Taylor expansion
can be applied.

Normalizing a recovery current without knowledge of the global current

Whenever it is not possible to repeat two complete measurements in the
same process, i.e. one with and one without changes in the position of the
boundary condition, the normalization procedure defined previously needs to
be adapted.

Ideally, the best strategy consists of waiting long enough after each change
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in the position of the absorbing boundary to reach an equilibrium and to ac-
complish the recovery process so that the outgoing current measured before
the change in the boundary position and after the long wait is a pure global
current. This would approximately correspond to a complete relaxation of the
difference distribution resulting from the boundary movement. Therefore, in
this way, the outgoing current can be used to reconstruct the shape of the global
current and to perform the normalization procedure.

However, some additional hurdles should be considered: Since we do not
have prior knowledge of the value of D(I), we do not know the timescales of
the recovery currents or those of the core-eroding process. Furthermore, even
though a good fraction of the recovery process is achieved very quickly, com-
plete recovery, corresponding to complete relaxation of the difference distribu-
tion 𝜌∗, could take an exponentially long time, possibly beyond the computing
capabilities. Hence, it might not be possible to perform such a long measure-
ment in a particle accelerator. Therefore, it is necessary to define a protocol
that enables quantitative criteria to establish whether or not an assumed recov-
ery time is long enough to ensure a meaningful reconstruction of the behaviour
of the FP process, possibly including an estimate of the uncertainty in the re-
construction of the global current.

A possible solution, compatible with these constraints, consists of the combi-
nation of three movements of the boundary condition, where, for each value of
the action to be probed, an outward-inward-outward sequence of movements
is performed. These three steps must be performed with a fixed movement size
ΔI and with a fixed relaxation time Δt between the movement of the boundary
condition and the next. The optimal values for ΔI and Δt are discussed in the
next section. A visualization of this protocol is provided in Fig. 4.7 (bottom),
where the change in the boundary condition in three steps is highlighted and
repeated three times, and the corresponding evolution of the outgoing current
is given (top), calculated from numerical simulations. For comparison, the situ-
ation corresponding to the constant position of the boundary condition is also
shown.

We remark that variants of the proposed three-step movement are indeed
possible and that this proposal is also motivated by the wish not to introduce
unnecessary complications. It is also important to stress that the assumption of
performing small and equal movements of the position of the absorbing barrier
for the three steps implies that Δt should also be the same for the steps, since
the relaxation time should be approximately the same for all steps.

This three-step sequence of absorbing-barrier changes is performed at dif-
ferent values of the global current, and this basic sequence can be repeated by
performing it at different action values. The resulting sequence of alternating
recovery currents provides an approximation of the evolution of the global cur-
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rent with a sequence of upper- and lower-bound values at different times, which
can be interpolated and used for the construction of a global current estimate.
These limits provide a degree of uncertainty directly related to the chosen value
Δt, as the longer Δt, the lower the degree of uncertainty in the reconstruction
of the global current. A more detailed discussion of a possible quantitative def-
inition of the optimal choice of the relaxation timescale Δt, together with the
effects of using shorter relaxation times, is discussed in the next section.

To reconstruct the global current, an upper- and lower-bound estimate are
derived by considering the last values of the inward and outward recovery cur-
rents, respectively. Two extra points are added to the upper- and lower-bound
estimates, with the goal of covering the maximum time span for reconstruct-
ing the global current: The last measured global current value before the first
boundary movement is added to both estimates; the last value of the last recov-
ery current measured, which, being an outward recovery current, was already
part of the lower-bound estimate, is also added to the upper-bound estimate.
This explains why in Fig. 4.8 (centre) the estimates coincide at the beginning
and end of the interpolation interval. The two sets of upper-bound and lower-
bound points are each interpolated with a univariate cubic spline, and the aver-
age function of these two interpolating functions is taken as the estimate of the
global current.

We remark that the univariate cubic spline is taken with a number of knots
so that the second derivative does not change sign. This ensures that the re-
sulting global current estimate meets the expected features of the actual global
current. In particular, it avoids local oscillations that might be generated by a
simple interpolation of the upper-bound and lower-bound points. The result
of this approach is shown in Fig. 4.8 where a fraction of the data presented in
Fig. 4.7 is used to reconstruct the global current, and an excellent general agree-
ment (i.e, with a difference not greater than 5%) with the actual global current
is clearly visible.

4.3.4 | Reconstructing D(I) from the normalized recovery
currents

After the proposed reconstruction protocol is performed, a series of normal-
ized recovery currents, obtained for different positions of the boundary condi-
tion, are available. All these curves are then used to reconstruct the shape of
D(I) using a fit procedure.

Thanks to the normalization procedure, every normalized recovery current
can be considered as an individual and independent relaxation process, as in a
system in equilibrium with a fixed source. Therefore, we can consider as ex-
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Figure 4.8: Example of the reconstruction process of the global current applied to a
fraction of the data shown in Fig. 4.7. Top: Outgoing current from the process with
constant boundary (dark blue) and with varying boundary conditions (light blue), along
with the three components of the interpolation process. Middle: Relative difference,
between the lower, average, or upper estimate of the global current and the true global
current, of the interpolation procedure. Bottom: Comparison between the actual re-
covery current and the reconstructed one.



Numerical results 77

pected current the convolution of the analytical current, presented in Eq. (4.5) ,
with one of our approximated difference distribution 𝜌∗, according to Eq. (4.7) .
From a normalized recovery current obtained from an inward movement, we
expect a relaxation curve characterized by an equivalent process with an initial
distribution given by Eq. (4.19) , where the value of 𝜌∗app is calculated consid-
ering 𝛼 = 1, due to the normalization performed, the integral being calculated
over the appropriate action interval. Likewise, for a recovery current from an
outward movement, we expect a curve characterized by an equivalent process
with an initial distribution given by Eq. (4.23) , where we consider 𝛾 = 1, due
to the normalization performed, the integral being computed over the appro-
priate action interval. Assuming a Nekhoroshev-like form forD(I), the goal is
to determine the values of the two parameters I∗ and ^ , which is obtained by
a standard non-linear least squares algorithm applied to the currents obtained
during the execution of the proposed protocol. The strong non-linearity of the
functions involved in the least-squares fit makes the reconstruction of I∗ and ^

a difficult task, and alternative approaches have been tried. A possibility con-
sists in performing a coarse scan of the (I∗ , ^) parameter space to identify an
initial guess of the model parameters, and then performing a finer scan around
the initial guess. In this approach, the distance between the numerical value
of the recovery current and the one obtained from the analytical model for a
given pair of (I∗ , ^) values is evaluated, and the minimum provides either the
initial estimate of the parameters or their optimal value. This strategy has been
successfully applied to the analysis of beam data reported in [67]. Another as-
pect of the fit is the strong correlation between the model parameters, typically
of the order of a Pearson product-moment coefficient of 0.9, which is likely
linked with the strongly non-linear function to be minimized. The impact of
the strong correlation between the model parameters can be mitigated by the
approach based on parameter scanning rather than looking for the minimum
with standard routines to perform numerical optimization.

4.4 | Numerical results

To test the validity of the proposed procedure and obtain a complete
overview of its performance and limitations in the reconstruction of D(I),
several numerical simulations of diffusive processes with a Nekhoroshev-like
diffusion coefficient have been performed using the protocol described in Sec-
tion 4.3. Special emphasis is placed on establishing the reliability of the pro-
posed procedure as a function of the values of ΔI and Δt used in the protocol
of variation of the position of the boundary conditions.
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4.4.1 | Simulation parameters

As an initial condition, we consider the distribution in Eq (4.1) , and note
that all action variables are dimensionless and expressed either in units of sigma
of the beam or in units of I∗. We then consider a Nekhoroshev-like diffusive
system characterized by the parameters obtained from the studies reported in
Ref. [7], namely I∗ = 20.0 [𝜎2], ^ = 0.33. Such a system, as can be seen from
Figs. 2.1 and 4.1, is compatible with the semi-stationary regime and hence with
the application of the proposed procedure.

Different values of the starting position Ia/I∗ of the absorbing boundary
condition have been considered. Although most of our assumptions are valid
for the Ia/I∗ < 1 regime, we also consider starting positions near I∗ and beyond
I∗, i.e. in the saturation region of D(I), to evaluate how robust the method is
under non-ideal conditions.

For each configuration, after an initial time delay when a semi-stationary
regime is reached, ten repetitions of the three-step protocol (outward-inward-
outward), shown in Fig. 4.7, have been performed. Several values of ΔI , i.e.
the action change of the position of the boundary condition, have been used to
assess the presence of an optimal value for the reconstruction procedure. We
observe that at the end of a simulation, the position of the absorbing boundary
condition has changed from Ia/I∗ to (Ia + 10ΔI)/I∗.

Several relaxation time values Δt have been considered to evaluate recon-
struction performance at different levels of equilibrium. We note that an empir-
ical relaxation time has been defined as the time for which a normalized recov-
ery current is expected to recover the 99.9% of the value of the original global
current. This ideal time is computed using full knowledge of D(I), using our
analytical current estimate Eq. (4.5) , and considering an outward movement
of the absorbing boundary condition of size ΔI from the initial position of the
absorbing boundary. It is stressed that, in general, we should assume that such
relaxation time is not known when reconstructing the value of the diffusion
coefficient. It is also worth mentioning that a criterion based on a complete
100% recovery of the global current cannot be used in practice, as this would
require exponentially long simulation times needed to reach the relaxation of
the inner part of the distribution, with negligible differences with respect to the
99.9% case. Different fractions of this ideal time have been used when perform-
ing our procedure, and we evaluate how times shorter than the ideal relaxation
time impact the quality of our final fit, as the system is still in a non-equilibrium
regime when the next absorbing boundary movement occurs.

When working with the data sets generated by the various numerical simula-
tions, a post-processing step is performed on the normalized recovery currents
before executing the final fit procedure for reconstruction ofD(I). It consists of
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selecting a fraction of the data representing the normalized recovery currents,
i.e. only the normalized recovery current data up to a given percentage of the
full recovery. For example, if we decide to filter out normalized data beyond
the 90% recovery, it means that we discard values that are lower than 1.1 for
inward normalized recovery currents and values that are higher than 0.9 for
outward normalized recovery currents. We recall that, in the context of a nor-
malized recovery current, a full recovery implies a value of 1.0 as a normalized
recovery current.

This post-processing step is shown in Fig. 4.9, where two different values
of the fraction of the relaxation time between boundary movements are used
in numerical simulations. In both simulations, the boundary movement starts
after an equal waiting time. In the left plot, the normalized recovery currents,
reported in Fig. 4.8, are shown together with two different filtering levels. On
the right, the same system is simulated using a shorter fraction of the relaxation
time, and the recovery currents are shown together with the same filtering lev-
els presented in the left plot. The much shorter time leads to only a partial
recovery of the currents between boundary condition changes. For these sets
of normalized recovery currents, the filtering levels displayed lead to almost no
data reduction.

By selecting different levels of data filtering, it is possible to assess how this
choice affects the accuracy of the reconstruction ofD(I). It should be noted that
our analytical approximation of Eq. (4.5) performs best when describing the
evolution of a distribution near the absorbing boundary condition [66]. Fur-
thermore, the recovery current features an exponential-like decay that makes
the analytical approximation less accurate over long timescales. For this rea-
son, investigating the dependence of the reconstruction performance on the
fraction of data selected is very relevant.

4.4.2 | Analysis of the reconstruction performance

Numerical exploration of the FP process involves a scan of several simula-
tion parameters, leading to a large hyperspace of possible configurations. For
this reason, we focus on the most ideal configurations, i.e. those that provide
the best reconstruction performance, and then show how the other parameters
affect the reconstruction accuracy of I∗ and ^ .

After each execution of the proposed three-step protocol described in Sec-
tion 4.3 and shown in Fig. 4.7, we end up with two outward and one inward
recovery currents. In every configuration explored, we observe better recon-
struction results when only the recovery currents from the outward step are
considered. On the other hand, considering only the inward recovery currents
or all currents simultaneously, poorer performance and numerical instabilities
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Figure 4.9: Left: normalized recovery current, shown already in Fig. 4.8, together
with two filtering levels. The boundary movements are performed after an initial evolu-
tion time t = 0.4 [a. u.], and the relaxation time Δt between one boundary movement
and the next one is equal to Δt = 0.58 [a. u.]. Right: the same system is simulated
with the same initial evolution time t = 0.4 [a. u.] and one order of magnitude shorter
relaxation time Δt = 0.058 [a. u.], the resulting normalized recovery currents have
not relaxed long enough to reach the 95% filtering level. When the selected filtering
level is not reached by the normalized recovery currents, the whole dataset is used for
the fit reconstruction and no parts are discarded.

are observed. This is explained by the fact that when the position of the ab-
sorbing boundary is moved inward, we are cutting in a distribution that is not
necessarily in the perfect equilibrium configuration defined in our approxima-
tions. On the other hand, when we move the boundary condition outward, we
obtain a much more reliable observable of the distribution that populates the
new available action interval, when evolving towards the new equilibrium state.
It is possible to observe this behaviour in Fig. 4.10, where the relative error in
the reconstruction of ^ and I∗ is shown for the three types of fit as a function of
the fraction of the ideal relaxation time Δt for two values of Ia/I∗, representing
the inner part of the stable-core region (left) and close to the regime change of
D(I) (right). In the inner region, even small fractions of relaxation time provide
a good reconstruction of the fit parameters (i.e. with a difference not greater
than 10 − 15%) . Furthermore, the three types of analysis, based on outward-
only, inward-only, and inward and outward recovery currents, provide results
with comparable accuracy for longer fractions of the relaxation time.

However, in the transition region, only longer fractions of relaxation time
provide a good reconstruction of the fit parameters (i.e. with a difference not
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Figure 4.10: Fit results for I∗ and ^ as a function of the relaxation time Δt for two val-
ues of Ia/I∗, using different subsets of the numerical data. Left: for Ia/I∗ = 0.4, a good
reconstruction performance (i.e. with a difference not greater than 20%) is observed
even for short fractions of the ideal relaxation time. A rather similar performance is
observed for the three types of analysis, the one based on the outward currents having
the best performance. Right: for Ia/I∗ = 0.8, only the cases corresponding to longer
fractions of the relaxation time feature a good performance. Moreover, only the analy-
sis based on the outward currents is displayed, as the other two features either failures
or large errors in the fit. (Simulation parameters: initial Ia/I∗ = 0.4, boundary step
ΔI = 0.1𝜎2, 10 repetitions of the three-step procedure, data up to a maximum current
recovery of 90%).

greater than 20%) and the only applicable type of analysis is based on outward
recovery currents. The other two analyses feature failures or larger errors in
the fit, which are generated by the behaviour of the inward recovery current.
Based on the observed behaviour, in the following plots, we will display only
results from the reconstruction based on the outward recovery currents. The
reasons for the poor performance of the reconstruction of I∗ and ^ when inward
recovery currents are considered are at least twofold. The first reason stems
from the fact that by cutting the distribution with the inward movement of the
boundary condition, the system enters a non-equilibrium regime, in which the
recovery current features sizeable variations. If enough time passes, the system
reaches a new equilibrium, and the recovery current is much more reliable for
the reconstruction of I∗ and ^ , as observed in Fig. 4.10. The second reason
is of purely numerical origin, but somewhat linked to the first one, as when an
inward step is performed, the equilibrium distribution is cut and the sharp edge
needs to be smoothed by applying a logistic function to the cut distribution
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Figure 4.11: Fit results for I∗ and ^ as a function of the initial value of Ia/I∗. The re-
construction performance is excellent for Ia/I∗ ≤ 1, while for larger values the relative
error increases. (Simulation parameters: boundary step ΔI = 0.1𝜎2, relaxation time
Δt = 0.5, 10 repetitions of the three-step procedure, data up to a maximum current
recovery of 90%).

(see the discussion in Appendix 4.a). This has potentially harmful effects on
the generated recovery current, which is subsequently used to reconstruct the
model parameters. Note that the first argument is even more applicable to the
case of data from beam experiments, as observed from the data analyses carried
out recently and discussed in Ref. [67].

In Fig. 4.11, the reconstruction error for the two fit parameters is shown as a
function of the starting position of the absorbing boundary Ia/I∗. Performance
is excellent for Ia/I∗ ≤ 1 (i.e. with a difference not greater than 5%) , while
outside this region the reconstruction error increases. This behaviour is to be
expected, as a recovery current mainly carries local information about D(I).
Therefore, if only the region Ia/I∗ > 1 is sampled, the information about D(I)
reflects only its quasi-linear regime (see Fig. 2.1). Such incomplete informa-
tion inevitably affects the performance of the final fit, as it prevents an accurate
reconstruction of the strongly non-linear part of the diffusion coefficient. This
result also suggests that, after the fit parameters have been determined, one can
verify whether the action interval explored was suitable for an accurate recon-
struction of the functional form of the diffusion coefficient.

The plots in Fig. 4.11 provide some insight into the dependence of the re-
construction performance as a function of a single parameter, while the others
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Figure 4.12: 2d view of the reconstruction performance as a function of the cut in the
recovery current, as applied in Fig. 4.9, and of the initial value of Ia/I∗. It is clearly
seen how certain values of the cut provide a consistent increase in reconstruction per-
formance. White regions indicate a failure in convergence in the final fit procedure.
(Simulation parameters: relaxation time Δt = 1, boundary step ΔI = 0.1𝜎2, 10 repeti-
tions of the three-step, data up to a maximum current recovery of 90%).

are kept fixed. However, in the following figures, the relative error of the recon-
struction procedure is shown as a function of two parameters. The colour code
represents the relative difference between the reconstructed values (from the
proposed protocol) and the true values (used in numerical simulations of FP
processes) of I∗ and ^ that describe D(I). The scale is limited to a relative dif-
ference of 20%, which is assumed as a threshold to identify poor performance.
Note that the white cells represent the cases in which the reconstruction proce-
dure failed.

Figure 4.12 shows the relative error as a function of the cut in recovery
current performed during post-processing and Ia/I∗. The performance of the
reconstruction approach improves when the recovery currents are cut. This
depends on the fact that our approach is local, i.e. accurate to describe the
system’s behaviour close to the boundary condition. The longer the recovery
time, the less local the information collected from the current. For this reason,
the reconstruction performance plots are based on recovery currents cut at 90%.

Regarding the reconstruction performance as a function of the relaxation
time Δt, Fig. 4.13 shows the behaviour, including the dependence on Ia/I∗. In
this case, the longer the relaxation time, the better the reconstruction perfor-
mance. In particular, longer relaxation times allow for a better reconstruction
even for large values of Ia/I∗. It should be noted that, in the case of short re-
laxation times, good overall performance can only be achieved by working at
I/I∗ ≪ 1. Combining the results of the last two analyses, we conclude that the
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Figure 4.13: 2d view of the reconstruction performance as a function of the relaxation
time Δt and the initial value of Ia/I∗. It is clearly seen how the reconstruction perfor-
mance improves for longer relaxation times. However, the method proves to be rather
robust for fractions of ideal time up to 5% provided Ia/I∗ < 0.6. White regions indicate
a failure in convergence in the final fit procedure. (Simulation parameters: boundary
step ΔI = 0.1𝜎2, 10 repetitions of the three-step procedure, data up to a maximum
current recovery of 90%, if smaller values of Δt lead to a normalized recovery below
90%, all the normalized recovery current data are used for the reconstruction).

best approach to an accurate determination of I∗ and ^ consists of increasing
the relaxation time between successive changes in the position of the boundary
condition and cutting the data from the recovery currents.

Figure 4.14 shows the 2d plot of reconstruction performance as a function
of the number of repetitions of the three-step procedure and Ia/I∗. It can be
seen with the higher number of repetitions how the performance improves.
This is naturally linked to the fact that repeating the three-step procedure im-
plies sampling a larger extent of the phase space, thus probing more accurately
the behaviour of the diffusion coefficient as a function of the action. It is also
clearly visible that from six repetitions of the three-step procedure, a good re-
construction is obtained for Ia/I∗ < 1.

Finally, the impact of ΔI is shown in Fig. 4.15, where the performance is
represented as a function of ΔI and Ia/I∗ is represented. We see that perfor-
mance is not strongly affected by the choice ofΔI , i.e. relative error fluctuations
are less than 10% for differences of an order of magnitude in ΔI . However, it
is important to highlight two facts that could suggest a choice in the size of the
change in position of the absorbing boundary condition: (1) the ideal relaxation
time is directly proportional to the size of the absorbing boundary movement;
(2) a too small ΔI could lead to a too local sampling in the action space, thus
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Figure 4.14: 2d view of the reconstruction performance as a function of the number of
three-step movements and of Ia/I∗ starting positions. It is clearly seen how the perfor-
mance increases with the number of three-step movements, as larger regions of phase
space are explored (as in Fig. 4.7). White regions indicate a failure in convergence
in the final fit procedure. (Simulation parameters: relaxation time Δt = 0.5 [a. u.],
boundary step ΔI = 0.1𝜎2, which is ΔI/I∗ = 0.005, data up to a maximum current
recovery of 90% is considered).

negatively affecting the final reconstruction of D(I).

4.5 | Final remarks

Beam-halo scans, performed with movable collimator jaws, have been used
intensively to study the diffusive behaviour of the beam halo in circular accel-
erators and seem to be a very useful tool to study this special regime of beam
dynamics in the absence of beam instrumentation capable of providing diag-
nostic tools to study beam-halo dynamics.

The main result of this chapter is the identification of an efficient protocol to
test the shape of a diffusion coefficient consistent with the stability time estimate
of the Nekhoroshev theorem. The protocol has been scrutinized by means of
detailed numerical simulations, but it is clear that eventually it should be tested
with beam measurement data. Two aspects should be highlighted: although
the framework presented in this article is one-dimensional, i.e. considering
non-linear beam dynamics in one degree of freedom, we believe that it can be
applied to cases representing systems with two degrees of freedom (as shown
in Ref. [7]). Furthermore, the proposed approach does not rely on previous
knowledge of the beam distribution, which is a clear advantage for applications.

The proposed protocol relies on the idea that it is possible to separate the
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Figure 4.15: 2d view of the reconstruction performance as a function of ΔI and Ia/I∗.
The best performance is achieved for ΔI = 0.005𝜎2, but the dependence on ΔI is
very weak (Simulation parameters: relaxation time Δt = 0.5 [a. u.], 10 repetitions of
the three-step procedure, data up to a maximum current recovery of 90%).

measured outgoing current into a global current, i.e. the general outgoing cur-
rent loss that is measured from the exponentially slow erosion of the stable core
of the beam, and a recovery current, i.e. the current following a change of the
position of the boundary condition, which corresponds to a non-equilibrium
state. By performing an alternating three-step sequence of outward-inward-
outward boundary-condition changes, which can easily be done by means of
collimator scans, it is possible to reconstruct the global current of the erosion
process and use that to normalize the recovery currents. Each normalized re-
covery current ultimately contains local information on the diffusion coefficient
without the need of prior knowledge on the form of the initial distribution in
the action space and can be used for estimating its global shape.

The performance of this protocol has been tested by means of many nu-
merical simulations of Fokker-Planck processes performed in various configu-
rations to evaluate the reliability and limits of our approach. The protocol was
shown to be capable of reconstructing with precision and good accuracy (i.e.
with an error not greater than 10 − 15%) the diffusion coefficient parameters
when performed in a phase-space region where the diffusion coefficient has an
exponential evolution, i.e. for I/I∗ < 1, the relaxation time between changes in
the boundary conditions is long enough so that the system reaches an equilib-
rium state and multiple amplitudes have been probed. For this last condition,
the optimal number of amplitudes to be sampled is highly dependent on the de-
tail of the diffusion process; however, from the simulations it appears that about
six sequences of three-step absorbing boundary changes covering the I/I∗ < 1
region are a good choice.
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The analysis also highlighted how good reconstruction performance can be
achieved by considering only the outgoing recovery currents in the final fitting
reconstruction and by discarding part of the recovery current data beyond a
certain level, as it is more prone to reconstruction errors and more difficult to
characterize with our analytical formulas. It is worth stressing that the recon-
struction performance proves to be good even if the optimal conditions are not
met. Most importantly, the procedure provides useful information on possi-
ble shortcomings present in the data set under consideration, such as a high
uncertainty band in the global current reconstruction, or a reconstructed value
of I∗ that indicates that the probed phase-space region is outside the optimal
interval I/I∗ < 1. In these cases, the protocol should be reapplied under better
conditions, e.g. by adjusting the range of actions probed to satisfy the condition
I/I∗ < 1.

Thanks to the positive and encouraging results of the analysis presented
here, we are confident that the measurement protocol is a powerful tool for
probing the non-linear diffusive behaviour in an accelerator like the LHC, al-
though it should be stressed that it is of general applicability in any circular ac-
celerator. Therefore, the logical next step is the proposal of a dedicated beam
measurement, at the LHC or elsewhere, performed under the optimal con-
ditions considered in this chapter, which will complete the investigations pre-
sented in this chapter. In the meantime, available data from collimator scans
collected at the LHC (but not with the proposed protocol) have been analysed
under the assumption of the proposed functional form for the diffusion coef-
ficient. Very promising results have been obtained that support pursuing this
line of research and will be presented in the next chapter.

Appendices

4.a | Numerical integration of the Fokker-Planck equation us-
ing the Crank-Nicolson method

For executing the numerical integration of a FP equation in the form of
Eq. (2.59) , we used the Crank-Nicolson integration scheme [42], which is a
finite difference method, second-order and implicit in time. It can be shown
that this scheme is unconditionally stable for many differential equations [68].

To obtain valid numerical results of the integration of the FP equation with
a Nekhoroshev-like diffusion coefficient as in Eq. (2.64) , and to obtain a consis-
tent evaluation of the outgoing current in different scenarios, we have to prop-
erly evaluate the stiffness of the problem and, consequently, adapt the fineness
in both time and space discretization. Moreover, regarding the simulation of
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an instantaneous change in position of the absorbing boundary condition, a
rigorous protocol must be established, especially when considering the inward
displacements of the boundary condition, for which some additional precau-
tions must be taken.

The outgoing current, defined in Eq. (4.2) , is obtained by directly com-
puting, in between each integration step, the numerical derivative of 𝜌 at the
absorbing boundary position.

A Nekhoroshev-like diffusion coefficient has the main characteristic of vary-
ing by various orders of magnitude over the accessible range of the action
variable, meaning that if we want to simulate the entirety of a diffusive phe-
nomenon, we must take into consideration such a wide range of values in the
integration process. This becomes mostly critical when the process to be simu-
lated is the recovery current that occurs after a variation in the position of the
boundary condition, such as the ones described in Section 4.3.

The recovery current is mainly dependent on variations in the equilibrium
distribution that are various orders of magnitude lower, in absolute value, than
the core part of the distribution (refer to Figs. 4.1 and 4.3). It is therefore neces-
sary to choose a time and space discretization fine enough to obtain numerical
estimates that are not seriously affected by the integration error. To do that, we
performed a convergence test for a single recovery current in every scenario we
wanted to analyse. In this convergence test, we gradually increased the fineness
of the discretization, until we measured a relative difference between the nu-
merical results not higher than 1%.

When it comes instead to reproduce the instantaneous change of the posi-
tion of the absorbing boundary condition in the integration scheme, we per-
form a resampling of the distribution 𝜌 at the time of the boundary change,
while keeping the same fineness for the spatial discretization. However, in
an outward movement, this process is straightforward, as there is no artificial
change to the existing distribution 𝜌 to be taken into account, and we just add
an empty region with no singular points. Instead, for the case of an inward
movement, we do have to make a cut inside the 𝜌 distribution, correspond-
ing to the movement performed by the absorbing boundary. Such a cut gen-
erates an inconsistency between the non-zero value of 𝜌 at the new position
of the boundary condition and the zero condition imposed by the absorbing
boundary condition. This inconsistency leads to a divergence in the analytical
definition of the outgoing current and undefined behaviours in the numerical
integration. Therefore, we apply to the cut distribution a sharp damping, right
next to the newly positioned absorbing boundary condition, generated by a lo-
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gistic function f (I) defined as

f (I) = 1

1 + e I−Ia+ℓℓ

, (4.24)

where ℓ is the extent of the range of action values where the damping occurs
and is taken equal to twice the fineness of the spatial discretization, and Ia is the
position of the absorbing boundary condition after the inward movement. In
this way, 𝜌d (I) = 𝜌(I) f (I) represents a distribution that is smooth enough to
avoid instabilities in numerical integration. The sharpness of this damping is
directly proportional to the fineness of the spatial sampling, and its effects are
included in the convergence tests.

4.b | Analytical estimate of the outgoing current for a FP pro-
cess

We are interested in finding an accurate analytical approximation for the
outgoing current of a FP process like Eq. (2.59) . We start by applying the
following change of variables

x = −
∫ Ia

I

1
D1/2(I′)

dI ′ , 𝜌x (x , t) = 𝜌(I , t) dI
dx

= 𝜌(I , t)
√︁
D(I) , (4.25)

which leads to

𝜕 𝜌x

𝜕t
=
1
2

𝜕

𝜕x

[
1

D1/2
dD1/2

dx
𝜌x

]
+ 1
2
𝜕2 𝜌x

𝜕x2
, (4.26)

where D = D (I (x)). Introducing the effective potentialV (x) = − ln
(
D1/2(x)

)
,

we obtain the Smoluchowsky form [69]

𝜕 𝜌x

𝜕t
=
1
2

𝜕

𝜕x
dV (x)
dx

𝜌x +
1
2
𝜕2 𝜌x

𝜕x2
. (4.27)

Equation (4.27) can be made self-adjoint by means of the following change of
variables

𝜌x (x , t) = exp
[
−V (x)

2

]
p(x , t) , (4.28)

and Eq. (4.27) is cast into the following form

𝜕p
𝜕t

=
1
4

[
d2V
dx2

− 1
2

(
dV
dx

)2]
p + 1

2
𝜕2p
𝜕x2

. (4.29)
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The general solution of Eq. (4.29) can be written as

p(x , t) =
∑︁
_

c_ (t)𝜙_ (x) , (4.30)

where an expansion using the eigenfunctions 𝜙_ (x) of the operator on the r.h.s.
of Eq. (4.29) has been used, namely

2

{
−1
4

[
d2V
dx2

− 1
2

(
dV
dx

)2]
− _

}
𝜙_ (x) =

d2𝜙_
dx2

, (4.31)

and c_ (t) = c_ (0)e−_ t. This choice of eigenfunctions is motivated by the work-
ing hypothesis that p(x , t → +∞) = 0, i.e. the system will eventually relax to a
zero distribution.

Using the orthogonality and completeness properties of 𝜙_ (x),∫
𝜙_ (x)𝜙_ (x′) dx = 𝛿 (_ − _ ′) (4.32)∑︁
_

𝜙_ (x)𝜙_ (x′) = 𝛿 (x − x′) , (4.33)

and considering the initial condition

𝜌x (x , 0) = exp
[
−V (x)

2

]
p(x , 0) (4.34)

p(x , 0) =
∑︁
_

c_ (0)𝜙_ (x) , (4.35)

we have that

c_ (0) =
∫
exp

[
V (x)
2

]
𝜌x (x , 0)𝜙_ (x) dx , (4.36)

and the solution for an initial Dirac delta distribution 𝜌x (x , 0) = 𝛿 (x − x0) can
be written as

𝜌x (x , t) = exp
[
V (x0) −V (x)

2

] ∑︁
_

e−_ t𝜙_ (x0)𝜙_ (x) , (4.37)

and the outgoing current at an absorbing boundary in x = 0, which in the
original variables corresponds to I = Ia, reads

J (t) = 1
2
𝜕 𝜌x

𝜕x

���
(0,t)

. (4.38)
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If the potential is linearized, i.e. V (x) ≃ −a x, then there is an analytic
solution to the eigenvalue problem in Eq. (4.31)

−2
[
_ − a2

2

]
𝜙_ (x) =

d2𝜙_
dx2

, (4.39)

and if we replace this solution in Eq. (4.38) , we obtain the expression for the
outgoing current

J (x0 , t) =
|x0 |
t
√
2𝜋t

exp

(
−
(x0 + a

2 t)
2

2t

)
, (4.40)

which has dimension t−1. Furthermore, the linearization a of the potential
V (x) near x = x0 reads

a =

1
2^

I (x0)

(
I∗

I (x0)

) 1
2^

exp

[
−

(
I∗

I (x0)

) 1
2^

]
, (4.41)

which can be inserted into Eq. (4.5) , to obtain an analytical estimate of the
outgoing current.

4.c | Outgoing current for a system with infinite source

To make use of the analytical estimate of the outgoing current presented
in Appendix 4.b, we need to slightly modify certain steps to adapt to the dif-
ferent non-zero equilibrium distribution 𝜌eq, as the original calculations are
carried out under the assumption that 𝜌(I , t → +∞) = 0, and modifications to
Eq. (4.35) need to be made and then propagated.

Under these new conditions, the expansion of the solution of the diffusive
problem in Eq. (4.30) can be modified according to

p(x , t) =
∑︁
_

c_ (t)𝜙_ (x) + exp
[
V (x)
2

]
𝜌′eq(x) , (4.42)

where 𝜌′eq(x) = 𝜌eq(I (x)) dIdx is the equilibrium distribution of our system,
while considering the change of variables necessary to work with the self-
adjoint diffusive problem in the Smoluchowsky form. The various consid-
erations about c_ (t) and 𝜙_ (x) are unchanged. The values c_ (0) should be
recomputed and from the expansion in Eq. (4.42) , we obtain

𝜌′(x , 0) = exp
[
−V (x)

2

]
p(x , 0) (4.43)

p(x , 0) =
∑︁
_

c_ (t)𝜙_ (x) + exp
[
V (x)
2

]
𝜌′eq(x) , (4.44)
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which then leads to

c_ (0) =
∫
exp

[
V (x)
2

] {
𝜌′(x , 0) − 𝜌′eq(x)

}
𝜙_ (x) dx

=

∫
exp

[
V (x)
2

]
𝜌∗(x , 0)𝜙_ (x) dx ,

(4.45)

where, 𝜌∗(x , t) stands for the difference between the actual and the equilibrium
distribution, still to be reached, and in this framework, the rest of the analytic
current estimate, i.e. Eq. (4.40) , still applies.



5 | Diffusion measurements at the
CERN LHC

The content of this chapter, with the due adaptations, has resulted in the proceed-
ings by C. E. Montanari, A. Bazzani, M. Giovannozzi, A. A. Gorzawski, and S.
Redaelli “Testing the Global Diffusive Behaviour of Beam-Halo Dynamics at the CERN
LHC Using Collimator Scans”, which were presented as a poster at IPAC’22 in June
2022 (Ref. [67]).

In Chapter 4, we presented an optimal method to measure the diffusion
coefficient of a beam halo, based on the characteristics of the outgoing current,
given by a Fokker-Planck equation with a Nekhoroshev-like diffusion coeffi-
cient. In this chapter, we apply this method to the available LHC collimator
scan data, which was gathered during Run 2, however, not using the optimized
measurement protocol devised in the previous chapter.

As this measurement campaign was tailored to a different model of diffu-
sion, the data was gathered with a different protocol, which inevitably does not
meet all the optimal requirements highlighted in the previous chapter. This
inevitably required an adjustment of the reconstruction procedure to account
for the differences between the optimal and the actual measurement protocol.

The chapter is structured as follows. In Section 5.1, we present the LHC
collimation system. In Section 5.2, we present the collimator scan data and the
diffusion coefficient reconstruction, together with the necessary adjustments ap-
plied to the reconstruction procedure to account for the differences between
the optimal and the actual measurement protocol. Finally, some conclusive
remarks are given in Section 5.3.

5.1 | The LHC collimation system

The LHC layout [1] can be summarized in a geometric scheme composed
of eight straight insert regions (IR) and eight circular arc segments. A simple
scheme of this layout is reported in Fig. 5.1, left. Within this circular scheme,
the main particle physics experiments are located in IR1, IR2, IR5 and IR8,
namely, ATLAS [70], ALICE [71], CMS [72], and LHCb [73]. In these four
IRs, the two beams intersect and interact in what is referred to as an Interaction
Point (IP). The RF cavities for accelerating the beams are in IR4 and IR6 hosts
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the beam extraction system. Finally, IR3 and IR7 are dedicated, respectively,
to the longitudinal and transverse collimation system.

Figure 5.1: Left, layout of the LHC. The ring follows an eightfold symmetry. Each
octant hosts a Long Straight Sector (LSS) surrounded by two Dispersion Suppressor
regions (DSR and DSL). Each octant is connected by an arc (ARC). (From Ref. [1]).
Right, LHC collimation system layout in blue and red for Beam 1 and Beam 2, respec-
tively. (From Ref. [74])

The LHC collimation system is a fundamental component of machine oper-
ation and safety [75, 76]. It has multiple functions, such as cleaning the beam
halo, protecting the machine against unexpected and anomalous losses [77],
and reducing the background noise in experimental IPs [78, 79].

The collimation system counts more than 120 individual collimators. Most
of these collimators are movable devices made up of two movable jaws made of
solid material, which can be brought at different distances from the circulating
beam [80]. A summary of the various collimators positioned along the LHC
layout is reported in Fig. 5.1, right. These jaws are straight and parallel to the
beam and have a tapering at both ends, along the axis of the beam. The distance
between the start and end of the tapering, where the jaw material is straight, is
called the active length of the collimator. Some photos and schemes of these
LHC collimators are reported in Fig. 5.2.

At IR7, where the betatronic collimation system is located, we have an ef-
fective cleaning stage of halo particles that happen to have an excessively large
amplitude of the betatron oscillation. This is called betatron cleaning. To achieve
effective betatron cleaning, we require that the magnetic lattice optics in the col-
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Figure 5.2: Left picture, jaw of a secondary collimator, made of carbon-fiber compos-
ite (CFC) and water cooled through copper pipes. Right picture, two collimator jaws
are installed in a collimator tank. (From Ref. [81])

limation region has very low dispersion and high 𝛽 function values. With such
an optics setup, particles with high transverse displacement also feature high
betatron displacement.

In IR3, instead, a momentum cleaning of particles takes place. In that region,
conversely, a high dispersion value is kept, so that the high transverse displace-
ment is mainly caused by high momentum offset.

To safely clean the beam halo without damaging the magnets or other com-
ponents of the machine, the LHC collimation system works on the basis of a
multistage process. This multistage process consists of a hierarchy of individual
collimators with the purpose of progressively cleaning and controlling the loss
of particles. A scheme of this hierarchy is presented in Fig. 5.3.

Primary collimators, which are also known as Target Collimator Primary
(TCP), are those placed closest to the edge of the beam and form the first stage
of collimation. The purpose of this first collimation stage is to intercept and
dispose of beam halo particles, i.e. it is the stage at which the beam halo ac-
tually gets intercepted above a certain threshold. When interacting with the
primary collimator matter, the primary particles may exhibit various scattering
behaviours, from acquiring an angular kick to depositing energy and producing
secondary particles.

These particles, scattered by the TCPs, form the secondary halo, which is
then tackled by the secondary collimators Target Collimator Secondary-Graphite
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Off-momentum particles

Main beam

Tertiary halo

Primary halo

Aperture

Secondary halo

TCP TCSG BLM TCTTCLA

Betatron collimation region IR7

Figure 5.3: Scheme of the multistage collimation system in the LHC. The hierar-
chy includes primary (TCP), secondary (TCSG) and tertiary (TCT) collimators and
shower absorbers (TCLA). Particles in the primary halo interact with the TCP and are
scattered to the TCSGs. The hadronic showers coming from the TCSGs are finally
absorbed by the TCLAs, and TCTs are in place to protect the aperture bottlenecks of
the triplet quadrupoles. Part of the secondary halo interacts with the ionization cham-
bers of the BLMs, and provide an indirect measurement of the primary halo. (Scheme
based on Ref. [82])

(TCSG). The particles leaving the collimator finally form the tertiary halo,
which finally interacts with the active absorbers, Target Collimator Long Absorber
(TCLA), which are installed downstream of the TCSGs, and Target Collima-
tor Tertiarys (TCTs), which make up a third final collimation stage for local
protection for the aperture bottlenecks in the machine, i.e. in the triuplet
quadrupoles.

Such a hierarchy offers various advantages over a simple single-stage colli-
mation system. It ensures that particles that have been incorrectly outscattered
at larger amplitudes and modified energies, constituting the so-called secondary
beam-halo, will be mainly absorbed by the next stages of collimation and not
by other fragile parts of the machine. Moreover, the interaction of beam-halo
particles with the primary collimator produces hadronic showers whose prod-
ucts can reach the cold magnets downstream of the cleaning region, possibly
leading to unwanted quenches.

In IR7, there are 3 sets of collimators that cover the horizontal, vertical,
and skew planes, as they have been shown to provide satisfactory cleaning [83].
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The collimator hierarchies for these planes are, respectively, denominated by
the letters C, D, and B. That is, the horizontal target primary collimator is
called TCP.C. In IR3, the dispersion is only in the horizontal plane and only
one set of collimators is installed to perform the longitudinal cleaning.

A multi-stage collimation system allows one to distribute the beam loads
over a large controlled area. However, it also leads to a significant increase in
the machine impedance, i.e. the level of self-interaction of the charged particle
beam, mediated by the machine environment [84], which can be an important
cause of beam instability and losses. Collimators are the single highest contrib-
utors of LHC impedance at top energy [85], as their resistive wall tends to be
the element closest to the beam. Therefore, a multi-stage collimation system
has to be configured so that it balances beam load distribution and impedance
contributions efficiently. Active studies are ongoing to optimize the collima-
tion system to minimize the beam losses and the machine impedance, see, e.g.
Ref. [86].

The secondary particle showers represent the point of observation to mea-
sure the amount of primary particles absorbed by the TCPs. To quantify this
amount, the LHC is equipped with multiple ionization chambers, which make
up the beam loss monitor (BLM) system [87, 88]. The charged particles
that pass through the ionization chambers finally provide a measure of Gy/s,
which can be converted into a corresponding measure of protons/s lost us-
ing a measured calibration factor, evaluated by controlled collimator-induced
losses [89], which are also quantified in parallel by the DC Beam Current Trans-
former (DCBCT) [90], which measures the number of protons in the circulat-
ing beam by measuring the magnetic field, induced by the moving beam. A
picture of an LHC BLM is presented in Fig. 5.4. The calibrated BLM data are
the precise loss signal that we finally expect to use to reconstruct the diffusion
behaviour in the transverse plane.

5.2 | Analysis of experimental data

Between 2016 and 2018, collimator scans were performed at the CERN
LHC with physics beams at 6.5TeV [64]. During these scans, one of the jaws
of the primary collimators in IR7 was moved inward and outward in small
steps, starting at 5𝜎nom, where the nominal sigma value 𝜎nom is evaluated for
a nominal emittance Ynom = 3.5µm.

The scan was performed after executing a beam-based alignment [92] of
the collimator, which is a procedure in which the TCP jaws are progressively
positioned closer to the beam until the halo is touched. By performing such
a procedure, one is sure that the centre of the collimator gap is precisely posi-
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Figure 5.4: Top picture, ionization chambers of the LHC BLM system, mounted on
the side of the LHC Magnets. Bottom picture, inner structure of a BLM ionization
chamber. (From Ref. [91])

tioned around the local closed orbit.
The measurement is performed with the local beam loss monitoring (BLM)

system and is provided in unit ofGy/s with 1Hz sampling rate, processed over
different Running Sums (RS), evaluated by a real-time processing system imple-
mented on FPGA [93]. In this implementation, a time window is moved over
the signal sampled by the device, and the maximum peak measured in the time
window is considered the final measurement, which is finally reported in Gy/s,
RSs range from a minimum of 40µs to a maximum of 83.89 s. A list of the
various RS defined in the measurement system is presented in Table 5.1.

The IR7 TCPs dedicated to the vertical plane and to the horizontal plane
(namely, TCP.D and TCP.C) were used to perform a collimator scan of the
beam halo on both Beam 1 and Beam 2, performing a sequence of inward
steps, with pauses of a few seconds between each step, followed by a train of
outward steps, with pauses ranging from ∼ 30 seconds to almost two minutes
between steps. The scraping was first performed on the vertical plane and then
on the horizontal plane.

During the scraping, the BLM data were recorded by the ionization cham-
bers placed after the collimator hierarchy. Two dedicated sets of BLMs are
placed for the two separate planes and are considered in our analysis depend-
ing on the plane that is undergoing scraping. In Fig. 5.5 we present the data
collected during fill 6052 of type RS06, i.e. sampling the maximum spike
measured by the BLM over a time window of 10.24ms. Here, the collimator
jaw positions are reported in millimetres from the centre of the beam, mea-
sured after the beam-based alignment. The two different BLM planes reading
is reported.
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Signal
Name

Time Windows Refreshing Data formats

Number
of 40µs

steps

Duration
[ms]

Number
of 40µs

steps

Duration
[ms] FPGA/VME

Measurement
and Logging DB

(rate: 1Hz)
[Gy/s]

RS01 1 0.04 1 0.04
Maximum of
sum values
observed
from the

last
readout

Maximum of
sums

normalized
to window

length

RS02 1 0.08 1 0.04
RS03 2 0.32 1 0.04
RS04 8 0.64 1 0.04
RS05 16 2.56 2 0.08
RS06 64 10.24 2 0.08
RS07 256 81.92 64 2.56
RS08 16384 655.36 64 2.56

RS09 32768 1310.72 2048 81.92 Last calculated
sums observed

in the last
readout

Last calculated
sum normalized
to window length

RS10 131072 5242.88 2048 81.92
RS11 524288 20971.52 16384 655.36
RS12 2097152 83886.08 16384 655.36

Table 5.1: Specifications of the various Running Sums (RSs) that are defined in the
FPGA based data gathering system of the BLMs. (Ref. [94])

It should be noted that these collimator scans were not performed using an
optimal protocol such as that proposed in the previous chapter. In fact, com-
plete inward scans, followed by outward scans, were used instead of a sequence
of in/out steps. Furthermore, jaw movements were not always performed leav-
ing enough time for the system to relax to its equilibrium state. This can be
observed from the fact that, between most outward steps, the loss signal still
has a non-negligible positive first derivative when the next collimator outward
step is performed, suggesting that a recovery current process was still ongoing
when the jaw was moved, as the expected global current process has negative or
close to zero first derivative. This suggests that an ideal resting time between
steps was not achieved before the next collimator step.

Due to these two characteristics of the measurement protocol used during
the collimation scan, some of the working hypothesis made in the previous
chapter, which ultimately allow the reconstruction of D(I) by fitting the nor-
malized recovery current, may not hold. More specifically, we lack the upper
bound to reconstruct the global current, and we cannot be sure that the beam
tail distribution after an outward step follows Eq. (4.22) .

To address these characteristics and shortcomings of the data, we had to
consider only a subset of the data and modify some of the elements of the
fitting procedure.

To address the lack of alternating jaw movements, we selected a region of in-
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Figure 5.5: Beam loss data from the two separate BLM monitors corresponding to the
TCPs on the vertical and horizontal planes, using RS06 (i.e. the maximum spike over
a time window of 10.24ms), for Beam 1 and Beam 2, and positions of IR7 TCP jaws
measured in the vertical and horizontal plane for the collimator scans carried out in fill
6052. The data acquired represent a complete collimator scan on both planes. The
jaw positions are considered from the beam centre position, measured after a beam-
based alignment. (Data from Ref. [64])

terest (ROI) in which many outward steps were performed with almost regular
sampling, with loss signals exhibiting the features we expect to see from a re-
covery current. This decision is motivated by the fact that the simulation study
presented in the previous chapter shows how recovery currents induced by out-
ward steps are much more reliable for reconstruction purposes than those in-
duced by inward steps.

In Fig. 5.6 we present the portion of the data collected in Fill 6052 that
we finally selected. Unfortunately, only the scraping performed in the vertical
plane meets our quality requirements to apply the fitting of our diffusive model.

The measured collimator jaw position is converted to measured beam sigma
units 𝜎 using the nominal optical parameters and the measured value of the
beam emittance, taking into account the position of the beam centre. The
nominal optical parameters were considered as the measured 𝛽 -beating level,
i.e. the difference between the measured optical functions and the expected
nominal values, was in the few percent level as expected from regular LHC
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Figure 5.6: Selected data from Fill 6052 (i.e. Fig. 5.5). The data shown correspond
to outward jaw movements in the vertical plane. The yellow-marked region of interest
(ROI) represents a subset of data meeting our quality requirements for applying the
fitting of our diffusive model. The jaw positions are considered from the beam centre
position, measured after a beam-based alignment. A corresponding position measured
in 𝜎 units is also reported. (Data from Ref. [64])

operation [95]. To convert the Gy/s units of the BLM signal to protons/s,
we used a calibration factor F [89] dependent on the TCP jaw position. This
calibration factor F is calculated from the BLM loss data and the intensity lost
recorded by the DCBCTs during the collimator steps. The coefficient reads

F =

(
−9.0 × 10−14𝜎 + 6.2 × 10−13

)−1
, (5.1)

where 𝜎 is the position of the collimator jaw in sigma units.
The absence of alternating jaw movements implies a lack of information for

constructing an upper-bound estimate of the global current. Moreover, since
the jaw movements were not always performed to allow enough time for the
system to relax to its semi-stationary state, we cannot make strong assumptions
on the global current value by only interpolating the end points of the outward
recovery currents.

To address this issue, we define an initial estimate of the global current shape
J est

eq (t), by constructing a Cubic Spline Interpolation (CSI) passing through the
end points of the sequence of outward recovery currents, following the same
methodology as presented in the previous chapter. This “fundamental CSI”,
has the features we expect to observe from a global current we expect to ob-
serve from a Nekhoroshev-like Fokker-Planck process. However, by just inter-
polating the end points, it does not take into account missing recovery due to
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collimator steps being performed too quickly.
To include this missing information, the fundamental CSI has been multi-

plied by different constant terms to represent possible different levels of partial
recovery of JR (t). This procedure is shown in Fig. 5.7. One can see how
the fundamental CSI represents the initial lowest estimate of global current,
while the different multiplicative constants introduce different gap levels after
the terminating points of the recovery currents. This multiplicative can then
be treated as a free parameter for reconstructing missing information.

Finally, the rapid sequence of jaw movements introduces another issue: the
difference distribution 𝜌∗ cannot be described with certainty by Eq. (4.22) , or
its approximated form by Eq. (4.23) . To address this issue, we replace the
D(I)-dependent integral terms in Eq. (4.23) with the approximation

𝜌∗app(I) =
{
−M if I ≤ Ia
−

(
I ′a−I
I ′a−Ia

)
M if I > Ia

, (5.2)

whereM is a fixed constant for each jaw movement that represents an unknown
amount of out-of-equilibrium distribution.

A scan is performed on different combinations of the multiplicative factor
of the CSI and ofM , while keeping track of the 𝜒 2 achieved by the fitting rou-
tine that determines the values of the model parameters ^ , I∗. The result of this
procedure is shown in Figs. 5.8 and 5.9, where one can observe the existence
of an optimal configuration of parameters and the good reconstruction perfor-
mance achieved by such a configuration. The optimal fit results for Beam 1 and
Beam 2 data are reported in Table 5.2.

Beam / Plane CSI M ^ I∗ [𝜎]
Beam 1 / V ×1.5 750 0.59 ± 0.03 21 ± 2
Beam 2 / V ×1.5 1000 0.85 ± 0.02 39 ± 8

Table 5.2: Results of the fit procedure of ^ and I∗ for the selected data in the vertical
plane, along with corresponding setup obtained for the CSI multiplicative constant and
M value for (5.2) .

Note that the values reported in [7], namely ^ = 0.33 and I∗ ≃ 21, were
obtained for Beam 2 and considering the diffusion in the vertical plane. It
should be stressed that these previous measurements were performed with non-
colliding bunches, whereas in the beam measurements analysed here, beam-
beam effects were present.
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Figure 5.8: Fit performance of ^ and I∗ for Beam 1 data, using different combinations
of CSI multiplicative constants and values of M for Eq. (5.2) . The color map shows
the existence of an optimal pair of values at (CSI ×1.5, 750).
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5.3 | Final remarks

Despite the differences between the approach used to collect the data during
LHC Run 2 and the optimal one suggested by the numerical studies performed
on the Nekhoroshev-like Forkker-Planck diffusive model, we were able to anal-
yse the loss signal measured by the BLMs during collimator scans, and obtain
a promising reconstruction of the recovery currents, which are ultimately the
indicator of diffusive-like behaviour.

To address missing information in the data, due to the different measure-
ment protocol used, we had to adapt some of the key elements of our fitting pro-
cedure. That is, we had to define a new method for reconstructing the global
current estimate and we had to consider a different form for the difference
distribution 𝜌∗. This led to good reconstruction performances and promising
insights into the global diffusive behaviour of the LHC beam halo.

Future collimator scans during the LHC Run 3 will focus on acquiring
beam data using the proposed optimized experimental method, to character-
ize more accurately the presence of non-linear diffusive behaviour.



6 | Application of the diffusive model
to describe beam losses in the
presence of wire compensators

In this chapter, we examine the case of beam-beam wire compensators,
which play an important role in counteracting the detrimental effects of beam-
beam interactions in the LHC. Our original contribution to this field is the
application of our diffusive model to assess the long-term effects of wire com-
pensators on beam losses and emittance.

Through the study of the LHC Beam 2 data, collected during a Run 2 mea-
surement campaign, we aim to understand the effectiveness of wire compen-
sators in mitigating beam-beam effects without causing unwanted effects such
as increased emittance. The results of this analysis provide insight into the po-
tential benefits of utilizing wire compensators in present and future accelerator
design and show how this diffusive model can be applied to assess long-term
effects of new components in the accelerator via inspection of the beam loss
data.

The chapter is structured as follows. In Section 6.1, we present the gen-
eralities of wire compensators and their implementation in the LHC. In Sec-
tion 6.2, we give an overview of the data gathered during the dedicated wire
compensators’ measurement campaign in Run 2. In Section 6.3, we discuss
how our diffusive model can be applied to the data and, in Section 6.4, we
present the results of the analysis. Finally, in Section 6.5, we draw our con-
clusions and discuss the potential future applications of the diffusive model in
light of the results and difficulties encountered in this analysis.

6.1 | Generalities on the LHC beam-beam wire
compensators

One of the most significant limits in the present LHC design and the future
HL-LHC is given by the electromagnetic interactions between the two counter-
rotating beams in the shared sections of the machine that occur around the in-
teraction points [3]. These beam-beam interactions lead to what can be distin-
guished as head-on beam-beam effects, which occur when the beam bunches
overlap at the interaction point, and long-range beam-beam effects, occurring
when the two beams are transversely separated in the remaining part of the
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shared region.
In the LHC, the beams are set in collision with a crossing angle, which has

the purpose of separating bunches immediately upstream and downstream of
the collision point [3] to reduce the strength of long-range beam-beam effects.
However, an increase in the crossing angle also implies a reduction in inte-
grated luminosity, that is, the total number of collisions that have occurred over
a given period of time, typically measured in inverse femtobarns fb−1 [96], as
the overlap of the bunches decreases. A schematic visualization of two differ-
ent crossing angles and their consequent effect on beam separation and bunch
overlap is presented in Fig. 6.1. The nominal full crossing angle for LHC is set
at \c = 285µrad, while for HL-LHC the expected baseline parameter will be
set at \c = 500µrad [2].

Beam 1 Beam 2

Beam 1 Beam 2

\c1
\c2

Long
range

Long
range

Figure 6.1: Schematic visualization of two different full crossing angles and their con-
sequent effect on beam separation and bunch overlap. As \c1 > \c2, the bunches are
more separated in the first case (left), while the bunch overlap is larger in the second
case (right). The long-range beam-beam effects are also more significant in the second
case.

To address long-range beam-beam effects while maintaining a small cross-
ing angle, a corrective approach based on electromagnet lenses was presented
in [97]. The concept of wire compensators can be traced back to the early
2000s, when the resemblance between long-range beam-beam kicks and the
1/r dependence of a kick caused by a DC wire was observed [19, 97]. This sim-
ilarity is more accurate with larger beam-beam separations. Since the initial
proposal, various experiments have been conducted, including installing and
testing different types of wires at facilities such as the RHIC [98] at Brookhaven
National Laboratory, DAFNE [99] at INFN in Italy, and at the CERN Super
Proton Synchrotron (SPS) CERN [100, 101]. In 2015, a study was conducted
using a resonance compensation criterion to optimize the position and current
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of the wires [102], where it was shown that the non-linear kicks from distributed
long-range beam-beam interactions could be approximated by two equivalent
kicks on either side of the IP. A sketch of the concept of compensation given by
beam-beam wire compensators, which we will refer to as BBCW, is presented
in Fig. 6.2. In the sketch, the weak-strong approximation is represented [103,
104], i.e. it is assumed that one beam, called strong beam, will not be affected by
the other beam, called weak beam that, in contrast, experiences kicks caused by
the electromagnetic fields generated by the strong beam.

Beam 1 Beam 2
IP1/5

Beam 1 Beam 2
IP1/5

+

−

−

+

Figure 6.2: Left, sketch of the long-range beam-beam effects experienced by Beam 2
from Beam 1, assuming the weak-strong approximation (i.e. we consider the effect
of Beam 1 on Beam 2 and not vice versa). Right, sketch of the principle of the com-
pensation given by the BBCW. The long-range beam-beam effects (red arrow) are
compensated by the DC wires (green arrow), which are placed in the beam path be-
fore and after the interaction point.

The BBCW has been tested in multiple iterations on various accelerator
complexes (a complete list of experimental applications up to early 2022 is
available in [105]).

In LHC, BBCW are installed for Beam 2 only, as it was the only beam
that was expected to operate with a coronograph [106], which is a device that is
expected to allow transverse beam-halo measurements in the future and allow
inspection of beam-halo properties with and without BBCW. The wires are
embedded in the tertiary collimators placed upstream and downstream of IP1
and IP5 [107]. These wire collimators are still part of the collimator hierarchy,
presented in Section 5.1, and are placed near the IPs to locally protect the super-
conducting triplet quadrupoles from debris generated at the interaction point.
A scheme of a wire collimator, along with a picture of one of the collimators
deployed in the LHC, is reported in Fig. 6.3.

A collimator hosts two separate wires (one per jaw), and each wire can carry
up to 350A. These two separate wires are cabled in series so that they have the
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Figure 6.3: Left: section view of a wire collimator. These collimators are composed of
tungsten jaws into which a copper wire with a thin silicon dioxide insulator is embedded
(from Ref. [107], details on the components can be found in references therein). Right:
photo of the wire collimator currently installed in the LHC on the left side of IP5 (from
Ref. [105]).

same polarity. This configuration enables a specific 2-jaw powering setup with
the characteristics of doubling the odd multipolar strength of the kick, while the
even ones cancel out. This choice is motivated by the need to compensate for
octupolar resonances [108]. The two possible configurations are presented in
Fig. 6.4. The first, called the single wire configuration, powers only the internal
wires. The second one, called quadrupolar configuration, powers both wires.

Beam 1 Beam 2

IP1/5

Beam 1 Beam 2

IP1/5

Figure 6.4: Left, sketch of the single wire configuration, where only one wire per
pair is powered. Right, quadrupolar configuration, where both wires in each pair are
powered to compensate the octupolar resonances.
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6.2 | Overview of experimental data

For the application of our diffusive framework, we consider the experimen-
tal data gathered at the CERN LHC during the 2018 LHC Machine Devel-
opment (MD) programme, during the BBCW measurements campaign [108].
More specifically, we consider the data gathered during fill 7386, as it has the
configuration closest to an operational scenario.

During this MD measurement, the BBCW prototypes installed for Beam 2
were tested in various long-range beam-beam-dominated scenarios. During fill
7386, three trains of symmetric bunches, that is, bunches that fill the same slots
in Beam 1 and Beam 2, enabling collisions only at IP1 and IP5, were tested at
flat-top energy with collisions at different crossing angles, smaller than the nom-
inal one to enhance long-range beam-beam effects. In this operational-like
fill, the wire compensators were set in the quadrupolar configuration. The cali-
brated loss signals measured by the various BLMs for the two beams are shown
in Fig. 6.5, note that the measurement unit is in protons/s, since we are con-
sidering calibrated losses, which are a combination of the original Gy/s BLMs
signal located in IR7 [109], converted into an estimate of the corresponding
protons lost by a conversion factor established with dedicated measurements
and simulation studies [110]. In addition to the BLM data, the beam intensity
measured by the DCBCTs, the current in the wire, the octupole powering, and
the crossing angles are also reported.

The BLM data for Beam 1 and Beam 2 in units of protons/s represents a
high-precision measure of protons lost over time. Instead, the DCBCT data
provide a measurement of the intensity of the beam in number of protons over
time. This measurement is not sensitive enough; it can be seen from the plot
how the measured intensity does not distinguish the different regimes of losses
highlighted by the BLM data and maintains a steady linear decrease. This dif-
ference in sensitivity makes the BLM data a fundamental tool for inspecting
the different regimes of losses in the transverse plane.

BBCW and octupole magnets powering are reported in Ampere. BBCW
wires can be found in either an off state, namely at 0A, or in an on state, namely
at 350A. Instead, the octupoles are found at two different current values,
namely 260A and −560A. It is important to highlight how the switch of
state for both systems requires a non-negligible amount of time; this will be
thoroughly discussed in the next section.

It is possible to see how the data provide a variety of crossing angle config-
urations, along with on-off alternations of both BBCW power and octupoles
current. Qualitatively, one can see how the BBCW equipped in Beam 2 do
lead to a lower BLM loss signal when they are turned on, while turning them
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Figure 6.5: Overview of the data gathered during fill 7386. BLM calibrated losses
and DCBCT beam intensity measurements were taken at different combinations of
crossing angles, wire power, and octupole power.

off leads to a strong peak in the losses measured by the BLMs.
We will now discuss how our diffusive framework can be applied to this loss

signal, along with some necessary considerations on how one must preprocess
and interpret these data before applying the model.

6.3 | Application of the diffusive model

Let us consider the Fokker-Planck equation presented in Eq. (2.59) , with
the Nekhoroshev-like form of the diffusion coefficient. We recall that the sys-
tem is fully characterized by the three free parameters 𝜖 , I∗, and ^ .

To apply this model to the BLM data and reconstruct D(I) for the various
states of the system, we perform a fitting approach inspired by the procedure
used in the work of Bazzani et al. [7], where the same Fokker-Planck model is
used to reconstruct the evolution of the normalized beam intensity.

From the collected BLM and DCBCT data, we want to construct a mea-
sure of the normalized intensity of the beam as a function of the number of
turns. We first convert the measurements from seconds to the number of turns,
considering that in LHC Run2, a reference proton at 6.5TeV performs 11245
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turns every second. We then evaluate the relative intensity lost over an interval
[N0 , N1], as the DCBCT data are not sensitive enough to measure the small
differences in the loss rates, we consider the amount of protons lost from the
integrated BLM signal, and we take the DCBCT value registered at the begin-
ning of the interval considered as the reference intensity, as it is the moment
at which the first peak in the BLM losses was measured. This procedure is
illustrated in Fig. 6.6.
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Figure 6.6: Example of the procedure used to evaluate the relative intensity lost over
an interval [N0 , N1]. The BLM signal is integrated over the interval, and the DCBCT
value registered atN0 = 3.5×106 turns is used as the reference intensity. A comparison
between the integrated losses measured in the stationary state of the chunk and the
transient state, whose definition is given later and in Fig. 6.7, is also reported. As the
losses in the transient state are much lower than the losses in the stationary state, our
working hypothesis still holds.

In addition to the various assumptions made to allow the application of the
special form of the diffusion coefficient, it is important to note that this model
has the strong assumption that D(I) does not evolve over time. This implies
that the magnetic lattice of the accelerator must not manifest stronger variations
than those given by the small stochastic perturbation. Such an assumption re-
quires some preliminary consideration on the BLM loss signal that we have at
hand.

When the BBCW, the crossing angle, and the octupoles are in a stationary
state, we can state that the parameters of the Fokker-Planck equation can be
considered as constant over time. We can define this state as stationary and have
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the beam distribution 𝜌(I , t) following the evolution defined by the Fokker-
Planck equation.

When, instead, a variation in any of the accelerator elements occurs, e.g.
a BBCW is switched on or the crossing angle is varied, the parameters of the
Fokker-Planck equation vary as well into a new value. This variation does not
necessarily occur in a negligible time. As can be seen in Fig. 6.7. In fact, switch-
ing the BBCW DC current to the target voltage takes a significant number of
seconds, leading to a time interval in which the system is in a transient state.
During such a transient state, we cannot make assumptions about the evolu-
tion of the transverse beam or the evolution of the values of 𝜖 , I∗, and ^ , and
therefore we are forced to discard these data slices.
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Figure 6.7: Visualization of the difference between stationary state and transient state
for a data slice. We define as stationary state the time interval in which all the param-
eters of the system are in a steady state, while the transient state is the time interval in
which the system is undergoing a variation. Here, the BBCW DC current is switched
on to the target value, causing a transient state along the process.

In Fig. 6.8, we show the BLM data for Beam 2 divided into enumerated
chunks where the system is in stationary state. We can see how the stationary
states are generally longer than the transient states, except for the part where
the octupoles change powering.

We assume that the beam distribution at the end of a stationary state can
be used as the initial condition of the next stationary state. Therefore, we com-
pletely neglect the transient state losses between the two stationary states. How-
ever, to justify this approach, we must verify that the integrated loss in the tran-
sient state is significantly smaller than the integrated loss in the stationary state.
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Figure 6.8: Experimental data for Beam 2 divided in chunks, where each chunk is
in a stationary state. Each chunk is characterized by a different set of parameters, and
the system is in a transient state when the parameters are changed. Each chunk has
a number assigned, which will be used to identify it for the rest of the analysis. Red
corresponds to stationary state data, while black represents transient state data.

In Fig. 6.9, this comparison is shown for each individual chunk, and it is
possible to see how the interval where the octupole state changes has higher
relative transient losses. Such comparable losses led us to the decision not to
inspect this chunk of data characterized by varying octupole currents, and we
performed the fitting procedure only on the data up to those variations. It must
be noted that also chunks 5 and 10 display a comparable level of high losses in
the transient state; this is mainly due to the fact that, for these two specific
chunks, a change in parameters was performed after a very short number of
turns, compared to the other chunks. Such a short time, inevitably, makes the
losses in the stationary state almost comparable to those in the transient state.

After defining the properties of the data to be inspected, we fit our diffusive
model following the same procedure as in the work of Bazzani et al. [7]. We
consider a Gaussian beam in the action variable I , as an initial condition. This
then gives us the following exponential distribution

𝜌0(I) = 𝜎−2 exp
(
− I
𝜎2

)
(6.1)

where 𝜎2 stands for the measured beam emittance. For convenience, it is pos-
sible to scale the action variable I → I/𝜎2, which corresponds to the setting
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Figure 6.9: Comparison of the integrated losses in transient state and in stationary
state for each chunk of data. The chunk number follows the nomenclature defined in
Fig. 6.8. A higher relative loss in the transient states can be seen for the chunk where
the octupoles current is changed.

𝜎 = 1 in the simulations without affecting the beam loss rate. As for the absorb-
ing boundary condition, we consider the position of the TCPs in IR7, which
were set at nominal position. To fit the data, we then scan the values ^ and I∗,
and integrate the evolution of the FP equation (2.59) as a function of the num-
ber of turns. The parameter 𝜖 2 is then fixed by requiring that the initial and
final values of the relative intensity, evaluated at the beginning and at the end of
the fragment, are equal. The scan in ^ and I∗ is first performed as a brute-force
grid scan on a range of candidate values; then a least-square fitting is performed
with starting point on the best parameters found with the preliminary scan.

As we assume that the beam distribution at the end of a stationary state
can be used as the initial condition of the next stationary state, we can use the
evolved beam distribution as the initial condition for the next chunk. This
procedure, iterated for all parts, finally gives us the reconstructed D(I) for the
various states of the system. Note that this working hypothesis forces us to
include in the fitting process also chunk 5 and chunk 10, despite their significant
relative losses in the transient state.
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6.4 | Numerical results

We perform the fitting procedure using the data for both Beam 1 and
Beam 2. As the wires are installed on Beam 2 only, we do not expect to
observe a significant difference between D(I) reconstructed on the Beam 1
chunks with wire on and wire off. However, the data of Beam 1 are useful
for understanding the effects of different crossing angles on the system and
assessing the performance of the fitting procedure.

Beam 1 data

We first consider the data of Beam 1 divided in chunks only where the cross-
ing angle is varied. In Fig. 6.10, we show the relative intensity loss, along with
the fit reconstruction. Note that we considered Beam 1 data up to the point at
which the octupole current is varied. In Fig. 6.11, we show the reconstructed
D(I) for the various crossing angles, with the resulting parameters reported in
Tab. 6.1.

We can see howD(I) increases as the crossing angle is lowered, as expected
from the fact that long-range beam-beam effects become more important, and
we can also observe how, in general, the fitting procedure manages to reproduce
the data with high precision, as can be seen from the plotted fit residual in
Fig. 6.10.

\c 160µrad 150µrad 140µrad 130µrad

I∗ 90 ± 30 123 ± 10 140 ± 30 63.33 ± 0.02
^ 0.72 ± 0.06 0.72 ± 0.01 0.73 ± 0.03 0.6250 ± 0.0003
𝜖 2 6.8 × 10−7 1.1 × 10−6 2.8 × 10−6 5.3 × 10−6

Table 6.1: Fit parameters for the reconstructed D(I) for the data of Beam 1 divided
in chunks where the crossing angle is varied. The uncertainty reported represents the
standard deviation of the fit parameters evaluated by the least-squares method.

We now inspect the data of Beam 1 divided in chunks where the wire com-
pensators, acting on Beam 2, are switched on and off. A comparison of the
reduced 𝜒 2 values of the fit for the two different slicing methods is shown
in Fig. 6.12. We can see that the reduced 𝜒 2 values are mainly lower when
smaller fragments are considered, but not consistently, as some individual
chunks achieve a higher reduced 𝜒 2 value than the fit performed on entire
chunks with the same crossing angle. We can also observe how the reduced
𝜒 2 value ranges between various orders of magnitude for the different smaller
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Figure 6.10: Relative loss of intensity for the data of Beam 1 divided in chunks where
the crossing angle is varied. The fit reconstruction is also shown. A good agreement
between the data and the fit is observed.

fragments. This suggests that in some individual situations, overfitting issues
may occur, especially in the cases where the reduced 𝜒 2 value drops the most.

We can see how the reconstructed D(I), presented in Fig. 6.13, although
manifesting differences, does not show a consistent different diffusion value
between the two states, as the wires appear to affect the diffusion coefficient
inconsistently. Furthermore, extreme differences are also obtained from the
D(I) reconstruction of the whole section, also at lower I values, where the dif-
fusion is expected to be close to orders of magnitude lower than its value at
higher I values. This suggests that the fitting procedure might be affected by
overfitting when the chunks are too small and not rich enough in information,
giving non-physical results.

From this analysis, it is impossible to detect a consistent effect of the wires
on the diffusion coefficient of Beam 1, which leads to the conclusion that the
impact of the BBWC on Beam 1 is negligible, and therefore the data analysis
should not take into account the status (on or off) of the wire.
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Figure 6.11: Reconstructed D(I) for the data of Beam 1 divided in chunks where the
crossing angle is varied. The D(I) increases as the crossing angle is lowered.

Beam 2 data

Now we inspect the data of Beam 2, where the wires are installed. We
consider the data divided into chunks as presented in Fig. 6.8. In Fig. 6.14, we
show the relative intensity loss, along with the fit reconstruction. In Fig. 6.15,
we show the reconstructed D(I) for the various crossing angles and the various
states of the wire.

It can be seen that, in general, the fit reconstruction is able to reproduce the
data quite well. Furthermore, it is possible to see how the reconstructed D(I)
is consistently different when the wires are switched on and off, with generally
higher diffusion values when the wires are off. This is in agreement with the
expectation that the wires are able to reduce the long-range beam-beam effects
and thus the diffusion. Moreover, it is possible to see how such a reconstructed
D(I) for the wire on also has lower values for low I amplitudes. This suggests
that indeed the BBCWs might provide better long-term stability of the beam.

The values of the two parameters, I∗ and ^ , are shown in Fig. 6.16 and,
in this case, no significant patterns can be observed in the evolution of the pa-
rameters for the different states of the system. However, a strong correlation
can be observed between ^ and I∗. A similar correlation was also observed and
commented on in Chapter 4. In future studies, this correlation trend will be
investigated and tackled by imposing the same ^ value on multiple fittings, as
this parameter is expected to depend only on the geometry of the phase space
and, therefore, to be constant in physical systems with the same phase-space
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Figure 6.12: Comparison of the reduced 𝜒 2 values of the fit for the two different
chunking methods of Beam 1. The black dashed lines represent the reduced 𝜒 2 ob-
tained when fitting the entire data chunk with the same crossing angle, without consid-
ering the wire status. The reduced 𝜒 2 values vary over multiple orders of magnitude
when smaller chunks are considered, and in two cases is higher than the reduced 𝜒 2

obtained by the larger chunk fitting. This may suggest overfitting issues for when the
reduced 𝜒 2 exhibits the lowest values. The numbers representing the chunks follow
the nomenclature in Fig. 6.8.

dimensionality.

6.5 | Final remarks

We have performed an initial study of the effects of the BBCWs on the
long-term beam dynamics of the LHC using our diffusive framework. We
have used the data of the LHC Beam 1 and Beam 2, collected during an MD
measurement campaign of Run 2, and we have reconstructed the diffusion co-
efficient of various system configurations. Ultimately, we have found that the
wires are able to reduce the long-range beam-beam effects and thus the dif-
fusion. Moreover, we have observed that our model suggests that the wires
are consistently able to reduce intensity loss. As expected, the model did not
highlight significant BBCWs effects on Beam 1.

As noted in the overview of the experimental data, a large portion of the
data had to be discarded because of the large losses occurring during transient
periods. Moreover, multiple chunks considered in the analysis are character-
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Figure 6.13: Reconstructed D(I) for the data of Beam 1 divided in chunks where the
wire compensators are switched on and off, compared with the D(I) reconstructed
using the full chunk corresponding to the crossing angle. The D(I) does not show
a consistent different diffusion value between the two states and, in many situations,
the values obtained for D(I) on the smaller samples obtain extremely different results
from the full fitting result for low values of I . This suggests overfitting issues. The
numbers representing the chunks follow the nomenclature in Fig. 6.8.

ized by a very short time span, which might be too short to be representative of
long-term beam dynamics. This is a limitation of the collected data that could
have had a significant impact on the results.

However, the promising results obtained in the fit reconstruction seem to
suggest that this diffusive framework may provide some insight into the long-
term effects of BBCWs on beam dynamics. This has motivated us to consider a
different data collection strategy for the scheduled MD measurements of LHC
Run 3. More specifically, we planned to measure the BLM losses while keeping
the BBCWs on and off for longer time spans to better characterize the long-
term effects of the wires.

Additionally, we planned to perform collimation scans with BBCWs on and
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Figure 6.14: Relative intensity loss and fit reconstruction for the data of Beam 2 di-
vided in chunks, following the nomenclature of Fig. 6.8. The fit reconstruction shows
a very good agreement with the data, as can be seen from the fit residuals.

off, in order to directly inspect the beam tail population and measure D(I)
following the protocol presented in Chapter 4. The purpose was to compare
the values obtained with the two different methodologies.

Both of these strategies in the data gathering have been successfully im-
plemented during a MD measurement campaign of LHC Run3 [111], and the
results will be presented in a future work.
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Part III

Dynamic indicators for the
detection of regular and chaotic

motion





7 | Overview of dynamic indica-
tors

The content of this chapter, with the due adaptations, has resulted in the article by
A. Bazzani, M. Giovannozzi, C. E. Montanari, G. Turchetti “Performance analysis of
indicators of chaos for non-linear dynamical systems”, currently under internal peer
review.

After investigating the applicability of a Nekhoroshev-like diffusive mod-
els to the study of beam loss data, we now switch our focus to the topic of
single-particle tracking and, consequently, to the problem of characterizing the
long-term dynamics of non-linear symplectic maps, which of course includes
realistic accelerator one-turn maps.

In this chapter, we focus on the identification of chaotic behaviour in the
orbits of complex dynamical systems by using dynamic indicators. Dynamic
indicators have been already proposed, and new ones have been designed with
the goal of enhancing the detection of chaos in numerical simulations. The
difficulty lies in forecasting chaotic behaviour by analysing orbits of a restricted
length. To inspect the properties of these indicators, and assess which ones are
the best performing, we carry out an accurate analysis of the performance of the
indicators briefly introduced to classify the orbits of a 4dmodulated polynomial
symplectic map, namely a 4d Hénon map that is considered a reference model
for several applications.

The chapter is structured as follows. In Section 7.1, we give a brief intro-
duction on the topic of chaos indicators, as well as a summary of the dynamic
indicators under analysis; in Section 7.2 we define mathematically and discuss
in some detail the chaos indicators considered; in Section 7.3 we discuss their
numerical implementation; in Section 7.4 we present the numerical results
and rank the different indicators in terms of classification efficiency, in partic-
ular, studying their predictive power. Finally, some conclusions are drawn in
Section 7.5. In addition, we report some detail on the computational cost of
implementing indicators using parallel computing facilities in Appendix 7.a,
while some considerations on the time dependence of indicators are presented
in Appendix 7.b.
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7.1 | Introduction

The study of the long-term evolution of Hamiltonian systems is a very dif-
ficult task from both a theoretical and a numerical point of view. The KAM
theory [112] cannot be used to solve the stability problem for Hamiltonian sys-
tems in more than two dimensions. Therefore, great effort has been devoted
to improving time stability estimates after the celebrated Nekhoroshev theo-
rem [21]. However, the existence of chaotic layers in phase space strongly
affects the long-term evolution of the orbits, and for this reason, numerical
indicators have been proposed to detect the chaotic character of orbits using a
limited number of time iterations.

For a given Hamiltonian model, one has to tackle the problem of compar-
ing the performance of the various indicators to assess which one provides the
optimal classification of the orbits. In applications, this task must be accom-
plished taking into account the characteristics of the physical problem under
consideration. For instance, in the field of accelerator physics, the study of the
charged-hadron motion in the magnetic lattice of a circular accelerator is often
devoted to the determination of the region of phase space in which bounded
motion occurs. The extent of such a region is called dynamic aperture and
involves studying the stability of orbits of a 6D polynomial symplectic map
in a neighbourhood of an elliptic fixed point, up to 108 − 109 iterations (see,
e.g., [40]). An exhaustive analysis of the phase-space topology is clearly beyond
the current computational capabilities. Therefore, indicators of chaos turn out
to be extremely useful to reduce the amount of computational time needed to
assess the character of orbits (regular or chaotic). This task may be affected by
the presence of orbit diffusion in phase space, which occurs in chaotic layers.
The presence of small stochastic effects, which naturally arise in physical sys-
tems, may prevent orbit trapping near regular regions, the so-called stickiness
phenomenon [25, 113], thus inducing diffusive behaviour in phase space.

It is worth noting that polynomial symplectic maps are not only central for
the analysis of accelerator physics problems, as they are also present in other
domains and have been intensively studied to understand the phase space struc-
ture of Hamiltonian systems [114], and are a fundamental tool for long-term
integration of orbits [40].

The main result of this chapter is to show that it is possible to determine a
classification performance ranking of the main commonly used chaotic indica-
tors when applied to a generic 4d cubic polynomial symplectic map of Hénon-
like form (see, e.g., [40]), which is an excellent prototype dynamical system
for applications.

The indicators of chaos are typically based on the existence of positive Lya-
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punov characteristic exponents, and their numerical performance is strongly
affected in the regions where sticky orbits are present.

The family of Fast Lyapunov indicators (FLI ) [24] has been proposed to
distinguish the regions of regular and chaotic motion for symplectic maps [25].
They also proved to be suitable for distinguishing resonant regions in phase
space and to visualize the Arnold web of resonances where slow diffusion oc-
curs [32]. These indicators are based on the evolution of an initial deviation
vector and provide the linear response of the tangent map along an orbit. When
considering one or more initial deviation vectors, the result depends on the di-
rection of the initial deviation vectors. To overcome this, the linear response
to a random displacement vector with zero mean value and unit variance was
recently proposed [115]. The trace of the corresponding covariance matrix de-
fines the square Lyapunov Error (LE), which is similar to FLI . Furthermore,
the invariants of the covariance matrix of order k > 1 are asymptotically related
to the sum of the first k Lyapunov exponents. However, unlike the Generalized
Alignment Index (GALI (k)) indicators [30, 31], these invariants do not depend
on the initial deviations [116]. Recently, a couple of approaches have been pro-
posed to improve the performance of some indicators, namely applying the
Weighted Birkhoff averaging [117] or the Mean Exponential Growth of Nearby
Orbit (MEGNO) [118], which is used to filter the oscillations and to improve
the accuracy by averaging on map iterations [119, 120].

To calculate the sensitivity to small deviations along an orbit, the Reversibil-
ity Error Method (REM ) can be used [28, 29]. In this case, the linear response
to the forward evolution in the presence of small random noise is considered,
followed by the unperturbed backward evolution. The covariance matrix of the
random process, which provides the final deviation from the initial condition in
the limit of zero noise amplitude, can be computed, and its invariants quantify
the violation of reversibility. The first invariant for the forward-backward pro-
cess BF is the square of the reversibility error, which is equal to the sum of the
squares of Lyapunov errors computed at each iteration of the map. This invari-
ant can be compared with the results for REM , when the stochastic perturba-
tion is generated by the finite numerical precision present in both the forward
and backward directions.

Finally, a completely different indicator introduced by J.Laskar [26, 27] is
represented by the Frequency Map Analysis FMA, which computes the varia-
tion of the main frequency of a given orbit considering different orbit lengths
to detect the chaotic character.
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7.2 | Definition and main properties of indicators of
chaos

7.2.1 | Frequency Map Analysis

Originally introduced by J. Laskar in the field of celestial mechanics, the
Frequency Map Analysis (FMA) rapidly expanded outside the initial domain
of application (see, e.g., [26, 27, 121–135] for a selected list of references, with
special emphasis on accelerator-related applications) is a numerical method to
inspect the global dynamics of multidimensional Hamiltonian systems, taking
advantage of the quasiperiodicity of regular orbits located on KAM tori.

Given a Hamiltonian systemH (I , \) = H0(I) +YH1(I , \), where for Y = 0
the Hamiltonian H0(I) is integrable and (I , \ are action angle variables in
ℝn × 𝕋 n, where 𝕋 represents a one-dimensional torus. If the system is non-
degenerate,

det
(
𝜕a (I)
𝜕I

)
= det

(
𝜕2H0(I)

𝜕I2

)
≠ 0 , (7.1)

the application
F : I ∈ ℝn −→ a ∈ ℝn (7.2)

is a diffeomorphism on its image. This means that the invariant tori are equally
identified by the action variables I or by their corresponding frequency vector
a. For a nondegenerate system, when Y is sufficiently small, the KAM theo-
rem [33–35], states that there still exists a set of initial conditions of positive
measure that correspond to regular orbits on invariant tori, for which, accord-
ing to Pöschel [136], a similar diffeomorphism still applies.

Based on this theoretical framework, it is possible to distinguish between
regular orbits on the KAM tori, which feature a discrete structure for Fourier
components defined by the harmonic of the fundamental frequencies, and
chaotic orbits, which exhibit a complex structure in the Fourier spectrum [135].
In this sense, FMA is a technique that performs numerical evaluations of the
frequency vector a from a time series corresponding to a certain interval
[i , i +n], for different values of i. In case of a regular orbit lying on a KAM tori,
the frequency vectors for various i will agree up to the precision of the numer-
ical method used to determine the frequency. On the other hand, a chaotic
orbit will have a that evolves over different intervals, showing fluctuations in
frequency space [133].

To achieve an accurate numerical evaluation of fundamental frequencies,
multiple studies have been carried out to improve standard algorithms such as
the Fast Fourier Transform (FFT) or the Average Phase Advance (APA) [26,
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137–139]. In the work of Bartolini et al. [140], the fundamental frequency is
evaluated using an FFT combined with a Hanning filter and an interpolation al-
gorithm, resulting in a closed-form formula for the fundamental frequency. In
recent studies [141], the frequency determination carried out using the average
phase advance algorithm is improved by applying the weighted Birkhoff aver-
aging [142], which will be used in the sequel to perform the evaluation of FMA.
More precisely, we define FMAn as the Euclidean distance between two vec-
tors defined by the fundamental frequencies a1 and a2, evaluated respectively
over the time intervals [0, n/2] and [n/2, n] of the orbit. An initial condition
on a KAM torus has FMAn converge to zero when n → ∞. In contrast, an ini-
tial condition in a chaotic layer will converge to an asymptotic value for FMAn
bounded away from zero.

7.2.2 | Lyapunov Error invariants

Let M (x, n) be a time-dependent symplectic map with x ∈ ℝ2d where the
first d components of x are the space coordinates and the last d their conjugate
moments. Denoting byDM the Jacobian matrix (DM)i j = 𝜕Mi/𝜕x j and by xn
the orbit after n iterations, the corresponding tangent map Ln (x) is defined by

xn = M (xn−1 , n − 1) ≡ Mn (x) , x0 = x;

Ln (x) = DM (xn−1 , n − 1) Ln−1(x) ≡ DMn (x) , L0 = I ,
(7.3)

where Mn (x) = M (x, n − 1) ◦Mn−1(x) with M0(x) = x.
For any initial condition x, consider a small stochastic deviation 𝜖 𝝃 where 𝝃

is a unit random vector with ⟨ 𝝃 ⟩ = 0 and a unit covariance matrix ⟨ 𝝃 𝝃T ⟩ = I,
where the suffixT denotes the transposed vector. Letting yn = M (yn−1 , n−1) be
the orbit with initial condition y0 = x0+𝜖 𝝃 the linear response𝚵n (x), initialized
by 𝚵0 = 0 is given by

𝚵n (x) = lim
𝜖→0

yn − xn
𝜖

= DM (xn−1 , n − 1) × lim
𝜖→0

yn−1 − xn−1
𝜖

= DM (xn−1 , n − 1)𝚵n−1
= Ln (x) 𝝃 .

(7.4)

The random vector 𝚵n has zero mean and covariance matrix

Σ2n (x) = ⟨𝚵n (x)𝚵Tn (x) ⟩ = Ln (x)LTn (x) . (7.5)
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Oseledet theorem [143] states that the limit

lim
n→∞

(LTn Ln)1/2n = W eΛ WT (7.6)

exists, where W is an orthogonal symplectic matrix and Λ is diagonal with en-
tries _ j (x) ordered in a decreasing sequence in j.

The diagonal entries of Λ are the Lyapunov exponents, and the columns
of W the corresponding Lyapunov vectors. Since the eigenvalues of LTn Ln
are the same as those of the covariance matrix LnL

T
n , the two matrices have

the same characteristic polynomial. Then consider the corresponding invari-
ants I (k)n (x) , k = 1, . . . , 2d, i.e., the coefficients of the characteristic polyno-
mial. The first invariant I (1)n (x), is given by the trace of the covariance matrix,
namely,

I (1)n (x) ≡ Tr
(
Σ2n (x)

)
= Tr

(
LTn (x) Ln (x)

)
= LE2n (x) , (7.7)

which is the square of the Lyapunov error LEn (x). Note that it does not depend
on the initial deviation vector or on the chosen orthogonal reference frame,
and its asymptotic behaviour is determined by the first, i.e., largest, Lyapunov
exponent _1.

The other invariants I (k) are the sum of all products that combine k distinct
eigenvalues if they are simple. The geometric interpretation is straightforward.
Letting e j be the standard base vectors, we have Ln = (e1 n , . . . , e2d n)where
e j n = Ln e j. Therefore, the invariant I (k)n (x) is the sum of the squared volumes
of the (2dk ) parallelotopes whose sides are the vectors e j1 n (x) , . . . , e jk n (x).

The difference with respect to GALI (k)
n indicators (see Section 7.2.5), is

that the I (k)n (x) are independent of the initial displacements.
For a symplectic map, Ln (x) is a symplectic matrix, andΣ2n (x) = Ln (x) LTn (x)

is symplectic and positive definite. As a consequence, ordering the eigenvalues
in a decreasing sequence, we have e_ j;n e_2d− j+1;n = 1. The asymptotic behaviour
of the invariant I (k)n , k ≤ 2d is given by

lim
n→∞

1
2n

log I (k)n (x) = _1(x) + . . . + _ k (x) . (7.8)

In a region of chaotic motion, _ j n (x) are positive for j ≤ d just as their limit
_ j (x), so that I (k)n (x) has exponential growth with n, for n sufficiently large. In
a region of regular motion, I (k)n (x) grows according to a power law I (k)n (x) ∼ n2k
for k ≤ d as all Lyapunov exponents vanish.
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7.2.3 | Fast Lyapunov Indicator and Weighted Birkhoff aver-
aging

The Fast Lyapunov Indicator [24], is one of the best known dynamic indi-
cators, due to its straightforward implementation and its sensitiveness to the
detection of chaotic structures [144]. Given M (x, n), its tangent map Ln (x),
and an arbitrary initial unitary deviation vector 𝝃 , FLI is defined for n ≥ 1, as:

FLIn (x0 , 𝝃 ) = ln ∥Ln (x0)𝝃 ∥ , (7.9)

i.e., the logarithm of the linear response 𝚵n (x), calculated for an arbitrary fixed
deviation vector. The quantity FLIn/n tends to the largest Lyapunov exponent
as n → ∞. Therefore, in a region of regular motion, this quantity tends to zero,
whereas in a region of chaotic motion it takes a positive value.

It is possible to take advantage of the properties of the logarithm in Eq. (7.9)
to avoid overflows for large values of n, and to express the limit FLIn/n as an
average along the trajectory xn [145]:

FLIn (x0 , 𝝃 )
n

=

n−1∑︁
i=0

ln ∥yi − xi ∥
n

,

yi = DM (xi−1 , i − 1)
yi−1 − xi−1
∥yi−1 − xi−1∥

,

y1 = DM (x0 , 0)𝝃 .

(7.10)

In the work of Das et al. [117], it is presented how the application of the
Weighted Birkhoff averaging method WBn [142] in the evaluation of FLI can
lead to superconvergence properties when applied to oscillating time series.
Instead of considering equal weighting (1/n), the Weighted Birkhoff averag-
ing method uses a weighting function w

(
i
n

)
, which acts similarly to a window

function in spectral analysis. A function w(t) that proved to be very effective
in improving the convergence of quasiperiodic time series averages [142] reads
as follows:

w(t) :=
{
exp

[
− 1
t(1−t)

]
, for t ∈ (0, 1)

0, for t ∉ (0, 1)
. (7.11)

Replacing the standard mean withw(t) in Eq. (7.10) leads to the weighted Fast
Lyapunov Indicator FLIWB

n :

FLIWB
n (x0 , 𝝃 ) =

n−1∑︁
i=0

w
(
i
n

)
ln ∥yi ∥ . (7.12)



132 Overview of dynamic indicators

We expect that FLIWB
n (x0 , 𝝃 ) converges faster than FLIn (x0 , 𝝃 )/n to their

common limit in the case of regular orbits, at least.
To simplify the notation, we will refer to FLIn (x0 , 𝝃 )/n and FLIWB

n (x0 , 𝝃 )
as FLIn (𝝃 )/n and FLIWB

n (𝝃 ), respectively, specifying the choice made for the
initial unitary displacement 𝝃 .

7.2.4 | Backward-Forward reversibility error

The reversibility error is obtained by computing the linear response of the
dynamics to small additive stochastic perturbations on the orbit after n forward
iterations n followed by n backward iterations

yn′ = M (yn′−1 , n′ − 1) + 𝜖 𝝃 n′ , y0 = x , 1 ≤ n′ ≤ n ;
yn′ = M−1(yn′−1 , 2n − n′) + 𝜖 𝝃 n′ , n + 1 ≤ n′ ≤ 2n .

(7.13)

where 𝝃 n′ are random vectors with zero mean and unit covariance matrix
⟨𝝃 n′⟩ = 0 and ⟨𝝃 n′𝝃Tn′′⟩ = 𝛿n′n′′ . 𝝃 n′ = 0 for n′ > n. We denote by xn′ the orbit
when random deviations are absent 𝜖 = 0. This orbit enjoys the symmetry
property xn′ = x2n−n′ for n + 1 ≤ n′ ≤ 2n, so the reversibility condition x2n = x
is satisfied.

The linear response for the BF process is defined by

𝚵BFn′ (x) = lim
𝜖→0

yn′ − xn′
𝜖

, 1 ≤ n′ ≤ 2n , (7.14)

and the cumulative random deviation 𝚵BFn′ (x)satisfies the recurrence

𝚵BFn′ = DM (xn′−1 , n′ − 1) 𝚵BFn′−1(x) + 𝝃 n′ , 1 ≤ n′ ≤ n;
𝚵BFn′ = DM−1(x2n−n′+1 , 2n − n′) 𝚵BFn′−1 + 𝝃 n′ , n + 1 ≤ n′ ≤ 2n .

(7.15)

From the recurrence relation of the tangent map (7.3) evaluated for n′ and
from the equality DM−1(M (x, k) , k))DM (x, k) = I for k = 2n − n′ it follows

DM (xn′−1 , n′ − 1) = Ln′ (x) L−1n′−1(x) ,

DM−1(x2n−n′+1 , 2n − n′) =
(
DM (x2n−n′ , 2n − n′)

)−1
= L2n−n′ (x) L−12n−n′+1(x) .

(7.16)
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Replacing Eq. (7.16) in Eq. (7.13) we obtain the final result

𝚵BFn (x) = Ln (x)
n∑︁
k=1

L−1k (x) 𝝃 k ;

𝚵BF2n (x) = L−1n (x) 𝚵BFn (x) +
n−1∑︁
k=0

L−1k (x) 𝝃 2n−k

=

n−1∑︁
k=1

L−1k (x) (𝝃 k + 𝝃 2n−k) + 𝝃 2n + L−1n (x)𝝃 n .

(7.17)

If random deviations are present only in the forward process, the covariance
matrix of 𝚵BF2n is given by

Σ2 BFn (x) =
〈
𝚵BF2n (x)

(
𝚵BF2n (x)

)T 〉
=

n∑︁
k=1

(
LTk (x)Lk (x)

)−1 . (7.18)

If random deviations are present both in the forward and backward processes,
we define Σ2 BFn as 1/2 the covariance matrix of 𝚵BF2n , and the result is the
r.h.s. of Eq. (7.18) where the last term of the sum (LTn Ln)−1 is replaced by
1
2 I + 1

2 (L
T
n Ln)−1 due to the boundary condition, and asymptotically, for n → ∞

the difference is negligible.
The invariants of the matrix Σ2 BFn provide information on the effect of

small random perturbations along the orbits. If the map M is symplectic,
both Ln and LTn Ln are symplectic matrices and the trace ofLTn Ln and its in-
verse are equal. As a consequence, it is not difficult to check that the trace

of
(∑

n′
(
LTn′ Ln′

)−1 )k
and of

(∑
n′ LTn′ Ln′

)k
are equal and the invariants of the

covariance matrices of the BF process become

I (k) BFn (x) = I (k)
(
n∑︁

k′=1

(
LTn′ (x) Ln′ (x)

)−1)
= I (k)

(
n∑︁

k′=1

LTn′ (x) Ln′ (x)
)
. (7.19)

The first invariant has a very simple relation to the Lyapunov error LEn (x).
Explicitly, we have the following.(
EBFn (x))

)2
≡ I (1) BFn (x) =

n∑︁
n′=1

Tr
(
LTn′ (x)Ln′ (x)

)
=

n∑︁
n′=1

(
LEn (x))

)2
. (7.20)

We conclude by observing that the BF reversibility error analysis can be
applied to investigate the effect of rounding errors in numerical computa-
tions [146]. Letting M𝜖 be the map evaluated with roundoff errors and M−1

𝜖
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its inverse, we have M−1
𝜖 (M𝜖 (x)) = x + O(𝜖 ). In the IEEE 754 international

standard, the precision of a real number is 𝜖 ∼ 10−16. Iteration with rounding
is defined by Eq. (7.13) where 𝜖 bn′ is missing, but M is replaced by M𝜖 . The
matrix 1

2 𝚵
BF
2n

(
𝚵BF2n

)T , whose average defines the covariance matrix of the BF
reversibility error, is replaced by

XBF2n (x) =
1
2
y2n − x

𝜖

(y2n − x)T
𝜖

. (7.21)

This matrix has a non-zero eigenvalue, with eigenvector y2n − x, and a null
eigenvalue of multiplicity 2d − 1 with eigenspace orthogonal to y2n − x. The
noise-induced Reversibility Error Method (REM ) squared is the non-zero
eigenvalue of such a matrix, equal to is trace and given by(

REMBF
n (x)

)2
= Tr

(
XBF2n (x)

)
=
1
2
y2n − x

𝜖
· y2n − x

𝜖
. (7.22)

The main difference is that REM , due to rounding, is the result of a sin-
gle realization with a pseudorandom error and, therefore, is affected by large
fluctuations when we vary n or x. These fluctuations are absent for the BF
reversibility error previously defined, since averaging over the random devia-
tions is carried out. The other relevant difference is that the higher-orderREM
invariants are zero.

Note that the implementation ofREM is trivial since it does not require the
evaluation of the tangent map and the computational cost is just twice the cost
of the orbit computation, provided that the inverse map is explicitly known.

7.2.5 | GALI (k) indicators

The k-order indicators GALI (k) use the volumes of parallelotopes whose
sides are normalized images of the k linearly independent vectors 𝜼 j with 1 ≤
j ≤ k.

GALI (k)n (x) =
 Ln (x)𝜼1
∥Ln (x)𝜼1∥

∧ . . . ∧
Ln (x)𝜼k
∥Ln (x)𝜼k ∥

 , (7.23)

where ∧ stands for the external product of two vectors. Their asymptotic be-
haviour for chaotic orbits, whose first d Lyapunov exponents are positive, is
given by

GALI (k)n ∼ e−n
(
(_1−_2)+...+(_1−_ k)

)
. (7.24)

where we assume a decreasing order for the exponents.
For regular, quasi-periodic orbits, whose Lyapunov exponents vanish, the

GALI (k) indicators decay following a power law. We recall that the Lyapunov



Numerical implementations 135

error invariants I (k)n grow exponentially with a coefficient given by the sum of
the first k Lyapunov exponents for chaotic orbits, or according to a power law
for regular orbits.

7.2.6 | Introducing filters

We conclude by remarking that the introduction of a filter such asMEGNO
that drastically reduces the numerical oscillations of the indicator of chaos [119,
147], may greatly improve the efficiency of the indicator. In principle, the
oscillations disappear using suitable normal coordinates for the considered sys-
tems, but their computations face the limits and technical difficulties of pertur-
bation theory. Referring to the phase flow that interpolates the orbits at integer
times t = n, MEGNO, applied to LEt (x), it has the double-time average of
d logLEt (x)/d log t

MEGNOn (LE(x)) =
〈〈
t
d logLEt (x)

dt

〉〉
where ⟨ f (t) ⟩ = 1

t

∫ t

0
f (t′) dt′ .

(7.25)

If the indicator LEn (x) grows exponentially as e_ t, then MEGNOn (LE(x))
increases as _ t. If LEn (x) follows the power law t𝛼 , then MEGNOn (LE(x))
converges to 2𝛼.

7.3 | Numerical implementations

7.3.1 | Models

To test the effectiveness of the proposed indicators of chaos, we consider a
4d polynomial symplectic map dependent on time, which is a generalisation of
the Hénon map [40]. The origin is an elliptic fixed point, and the non-linear
terms combine fixed quadratic non-linearities and variable cubic ones. The
map reads:

©«
xn+1
px ,n+1
yn+1
py ,n+1

ª®®®¬ = R(𝜔x ,n , 𝜔y ,n)
©«

xn
px ,n + x2n − y2n + `

(
x3n − 3xny3n

)
yn

py ,n − 2xnyn + `
(
y3n − 3ynx3n

)
ª®®®¬ , (7.26)

where ` represents the intensity of the cubic non-linearity and R is a 4 × 4
rotation matrix defined as

R(𝜔x ,n , 𝜔y ,n) =
(
R

(
𝜔x ,n

)
0

0 R
(
𝜔y ,n

) )
, (7.27)
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with R
(
𝜔x ,n

)
and R

(
𝜔y ,n

)
being 2 × 2 rotation matrices. In the sequel, we

refer to the map (7.26) as the 4d Hénon map and remark that it is often used
as a reference model in applications such as accelerator physics (see, e.g., [40,
55, 57]), since it represents the dynamics generated by a magnetic lattice that
includes sextupole and octupole magnets [40].

Linear frequencies 𝜔x ,n and 𝜔y ,n are slowly modulated as a function of time
n according to

𝜔x ,n = 𝜔x ,0

(
1 + Y

m∑︁
k=1

Yk cos (Ωkn)
)
,

𝜔y ,n = 𝜔y ,0

(
1 + Y

m∑︁
k=1

Yk cos (Ωkn)
)
,

(7.28)

where Y represents the modulation amplitude and the parameters Yk and Ωk
are taken from Table 1 in [55] to model the effect of frequency modulation in a
particle accelerator due to ripples in the currents of the power supplies that feed
the magnets. Modulation of the linear frequency may cause the appearance of
weak chaotic regions in the stability basin near the origin. We recall that the
parameters Yk have an order of magnitude of 10−4.

In numerical simulations, two sets of frequencies 𝜔x0 and 𝜔y0 have been
considered, namely (0.168, 0.201), which is close to resonances of order 5
and 6, and (0.28, 0.31), which are the frequencies in the transverse phase
space for charged particles orbiting in the LHC at injection energy. We have
analysed the performance of chaos indicators as a function of the parameters
Y and `, which have been varied in the intervals [0, 64] and [0, 1], respec-
tively. Some considerations on the computational costs of implementing the
various indicators of chaos in a parallel computing architecture are reported in
the Appendix 7.a.

Figure 7.1 shows some survival plots for various configurations of the 4d
Hénon map. A set of 300 × 300 initial conditions, sampled on a uniform
Cartesian grid in the x − y plane, choosing px = py = 0, is tracked up to
nmax = 108 turns. Grid boundaries are selected to sample a region of inter-
est that contains the stability basin of the origin, more specifically [0.0, 0.45]
for case (𝜔x0 , 𝜔y0) = (0.168, 0.201), or [0.0, 0.60] for case (𝜔x0 , 𝜔y0) =

(0.28, 0.31). An initial condition is considered stable if its distance from the
origin is less than a certain control radius rc when n = nmax. Otherwise, the ini-
tial condition is considered lost and its tracking is stopped, and the stability time

is given by the first value nstab for which
√︃
x2nstab + p2x ,nstab + y2nstab + p2y ,nstab ≥ rc.

The choice of rc is rather arbitrary (we have considered rc = 102) and the de-
pendence of the results on rc is very weak since at that amplitude the dynamics
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of the 4d Hénon map is fully dominated by polynomial terms. The two rows

Figure 7.1: Survival plot for various 4d modulated Hénon maps with quadratic and
cubic non-linearities. Initial conditions, sampled on an uniform Cartesian 300 × 300
grid in the x − y plane, are tracked up to nmax = 108 and are considered lost when
their distance to the origin exceeds a predefined maximum radius rc = 102. The two
sets of linear frequencies feature different shapes of the stable region as can be seen
by comparing the plots in the two rows. The parameters Y and ` induce additional
changes, in particular the increase of the size of the transition region between stability
up to nmax and shorter stability time. The color scale is related to the logarithm of the
stability time as reported on the right.

of Fig. 7.1 show the survival plots for the two sets of frequencies considered
in the studies. The shape of the stable region (yellow area) strongly depends
on the frequencies, as different sets of resonances affect the dynamics. Further-
more, the impact of Y and ` is also clearly seen. The first enlarges the transition
region between stable initial conditions and unstable ones, i.e., the region for
which nstab < nmax, where a weak diffusion occurs, while the latter changes the
shape of the stable region.

7.4 | Results of numerical investigations

In the following, we report the results of the numerical study of the dy-
namic indicators presented in Section 7.2, namely log10(LE), FLI , FLIWB,
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MEGNO(LE), GALI (4) , REM , and FMA. Note that we consider the loga-
rithm of LE, as it is a quantity comparable to FLI and MEGNO(LE). We
first focus on the dependence of FLI on the choice of the initial displacement
vector b , and compare it with log10(LE). Next, we discuss a comparison be-
tween the convergence rate of FLI and that of FLIWB. Finally, we compare
the classification performance of all dynamic indicators by determining their
accuracy, together with its time dependence, in reconstructing a Ground Truth
(GT) evaluated at a high iteration time.

7.4.1 | Dependence on the initial displacement

The main feature ofLE, compared to FLI , is its independence from the ini-
tial choice of direction of the unitary displacement vector b . To highlight this,
in Fig. 7.2, we directly compare the calculated values of log10(log10(LE)/n)
with those of log10(FLI/n), calculated with an initial displacement along one
of the four orthonormal base vectors x̂ , p̂x , ŷ , and p̂y. These calculations are
carried out for a set of 300 × 300 initial conditions, sampled on a uniform
Cartesian grid in the x − y plane. It is possible to see how, at low turn number
(n = 102, top row), the different choice of displacement highlights the struc-
tures in FLI that are missing in LE. This can be explained by considering that
the displacement vector is not fully aligned along the largest Lyapunov expo-
nent yet. In contrast, these structures are missing for LE, which has smoother
behaviour.

The observed differences are greatly reduced for a higher number of turns
(n = 104, bottom row), as the initial displacement tends to become almost
aligned along the direction corresponding to the largest Lyapunov exponent.
However, despite the smaller differences between log10(log10(LE)/n) and
log10(FLI/n), the behaviour of the various indicators is still not the same. It
is worth noting how displacements along x̂ and ŷ produce similar structures
that are, however, different with respect to the case in which displacement is
carried out along p̂x or p̂y. Globally, these observations underline the value of
the invariance properties of LE, which seems to be more promising than FLI
for the analyses that will be discussed in the following sections.

As this dependence on the initial displacement decreases with higher itera-
tion numbers, we will focus only on FLI (x̂) for the remainder of the chapter,
as the rest of the results are not significantly affected by this choice.

7.4.2 | Application of Weighted Birkhoff averaging to FLI

As an additional analysis of the time dependence of chaos indicators, we
compare the values obtained for FLI at different times, using the standard ap-
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Figure 7.2: Color maps of log10(log10(LE)/n) and log10(FLI/n) indicators for a low
iteration number (n = 102, top row) and a high iteration number (n = 104, bottom
row). In both rows, the FLI for the four possible displacements are shown together
with LE, in order to highlight the different structures shown by the indicators. It is
possible to see how, for low iteration numbers, different choices of initial displacement
for FLI highlight structures that do not appear in LE. The differences reduce for
higher number of turns, but are still present. Note that an arrow at the bottom of the
color bar means that pixels of the bottom color correspond to a value equal to or lower
than the bottom value. White pixels correspond to initial conditions whose distance
from the origin has exceeded a predefined radius (rc = 102) during the tracking, before
reaching the target iteration number n. (Simulation parameters used: (𝜔x0 , 𝜔y0) =

(0.168, 0.201) , Y = 64.0, ` = 0.5).

proach that considers the mean in Eq. (7.10) , that is, FLI/n, or the variant
based on the use of Birkhoff weights as in Eq. (7.12) , that is, FLIWB. The
analysis starts considering two ensembles of regular and chaotic particles that
have been classified by means of the value of the FLI indicator computed for
n = 108 turns (effectively this sets a ground-truth level, as discussed in the next
section). The sets are also used to calculate the time evolution of FLI/n and
FLIWB with the objective of evaluating possible improvements in the latter
compared to the first. In Fig. 7.3 (top), the comparison is made for a subset
of the set of regular initial conditions, whereas the behaviour of chaotic ones is
shown in the bottom plot of the same figure. It is possible to observe how, for
regular initial conditions, Birkhoff averaging consistently speeds up the conver-
gence of FLIWB to zero.

The case of chaotic initial conditions has different characteristics. In fact, a
saturation region is observed for the indicator value on the order of 10−3 for
both indicators. When this value is reached, both indicators oscillate around it.
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Figure 7.3: Time evolution of FLI computed using either a standard mean or the
Birkhoff averaging. Top plot: indicators computed for a set of 100 regular initial con-
ditions, the fit highlights a faster convergence rate for the Birkhoff averaging. Bot-
tom plot: indicators computed for a set of 100 chaotic initial conditions. A simi-
lar improvement in convergence rate is observed for low n values, before reaching
a saturation value of the indicator of the order of 10−3. (Simulation parameters:
(𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y = 32.0, ` = 0.5).
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However, the slope with which this non-zero value is reached is different for the
two indicators and is higher in absolute value for FLIWB than for FLI/n, simi-
lar to what is observed for the case of regular orbits. It is also worth stressing the
presence of initial conditions that, up to some n = 106 turns, feature a steady
decrease in the value of the dynamic indicator, as if they were characterized
by regular motion. However, after that, the value of the indicator suddenly in-
creases, reaching the value that identifies chaotic orbits. This behaviour clearly
defies any approach aimed at classifying initial conditions as regular or chaotic
in finite time.

The improvement caused by the Birkhoff averages is also clearly visible in
Fig. 7.4, where the time evolution of the distribution of the values of FLI/n
(top) and FLIWB (bottom) is shown. The part of the distribution correspond-
ing to the regular initial conditions reaches its peak (yellow band) and moves
toward zero with increasing n. However, the displacement towards zero is faster
for FLIWB. Furthermore, the peak of the distribution is sharper for FLIWB

than for FLI . In both graphs, a faint trace of a peak is visible corresponding
to the indicator value of about 10−3. This feature is remarkably similar for the
two indicators, as already seen in Fig. 7.4.

This behaviour shows that the regular orbits benefit from the use of the
Birkhoff averages, whereas the chaotic ones are mostly unaffected by the special
averaging mechanism. These features can be exploited for the classification
problem that will be addressed in the next section.

7.4.3 | Classification performance

For this analysis, we study the predictive performance of chaos indicators
in terms of a binary classification of a large set of initial conditions by varying
the number of iterations n. It should be stressed that this classification only
concerns the behaviour of an orbit that has been detected to be stable for nmax.

An overview of the time dependence of the dynamic indicators and the dis-
tribution of their values observed in our numerical investigation is given in the
Appendix 7.b. The main feature of interest, which constitutes the basis of this
analysis, is the general tendency of dynamic indicators to create a bimodal dis-
tribution, as has also been reported for finite-time Lyapunov exponents in [148,
149]. We focus on studying the evolution of this specific characteristic, i.e., the
presence of two peaks in the distribution of indicator values, as a function of
time, which is the key feature used for the classification analysis.

As the complete development of the bimodal distribution requires vari-
ous orders of magnitude of the number of turns, we perform our analysis
on the logarithm of the seven dynamic indicators, namely log10(log10(LE)/n),
log10(MEGNO(LE)/n), log10(FLI/n), log10(FLIWB), log10(GALI (4)),
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Figure 7.4: Time evolution of the distribution of the values of FLI (top) and FLIWB

(bottom) indicators for the whole set of 15684 initial conditions that survived up to
nmax = 108. The Birkhoff averaging leads to faster convergence towards zero of the
regular initial conditions, which are represented by the yellow band. Furthermore, the
width of such a band is narrower for FLIWB with respect to FLI . The red dashed
lines represent threshold values, defined by our algorithm, representing the attempt to
perform the binary classification in regular and chaotic initial conditions. (Simulation
parameters: (𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y = 32.0, ` = 0.1).
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log10(REM), and log10(FMA). The factor n−1 is included in the first two
indicators to observe a comparable evolution of values over time with the two
FLI indicators, since, ultimately, its presence does not alter the outcome of
these studies.

To carry out this task, we first construct a ground truth (GT) for different
sets of parameters for the 4d Hénon map, iterated for nmax = 108. The initial
conditions are then classified into a binary chaotic/regular classification scheme
using the LE indicator. An example is given in Fig. 7.5 where eight cases, the
same as those depicted in Fig. 7.1, are displayed. Dark colours identify regular
regions of the phase space, whereas lighter colours denote chaotic regions. It
is clearly seen that the frequency modulation and the presence of the cubic
non-linearity increase the extent of the chaotic areas of the phase space, also
generating regions in which regular and chaotic orbits are deeply intertwined.
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Figure 7.5: Distributions of log10(log10(LE)/n) for various 4d modulated Hénon
maps (the same cases shown in Fig. 7.1) with quadratic and cubic non-linearities. 300×
300 initial conditions, sampled on an uniform Cartesian grid in the x − y plane, are
tracked up to nmax = 108. It is possible to observe how the case for Y = 0.0, ` = 0.0,
corresponding to the absence of modulation and cubic non-linearities, lead to regular
motion almost everywhere, except for a small set of initial conditions. For the other
cases, extended regions of chaotic motion are visible. Note that the maximum value
registered in the color maps corresponds to numerical saturation.
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The GT classification is built from the distribution of the values of the dy-
namic indicator log10(log10(LE)/n) for nmax. The resulting distribution has a
main group of regular initial conditions with low value LE, and a second group
of chaotic initial conditions with higher value LE. Due to the large separa-
tion of these two clusters, a threshold value has been calculated to distinguish
them using a kernel density estimation method (KDE) [150, 151] with a Gaus-
sian kernel and different bandwidth values. This allows investigating the Mode
Tree [152] of the distribution, detecting its two main modes, and setting the po-
sition of the minimum of the distribution between them. It is worth stressing
that more refined approaches might be devised to detect the peaks or, equiv-
alently, cluster the indicator values, but they have not been considered in this
analysis. In fact, our focus is on the performance of the indicator in generating
a suitable distribution for the classification problem, even for low values of n,
not on designing a sophisticated algorithm to analyse the distribution of the
indicator, including its peculiarities.

An example of the GT construction process can be seen in Fig. 7.6. Stable
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Figure 7.6: Ground Truth construction for a modulated Hénon map. From left to
right: a survival plot of the initial conditions stable up to nmax = 108 (yellow is sta-
ble, purple is unstable); distribution of the LE indicator for all stable initial conditions,
evaluated at nmax; histogram of log10(log10(LE)/n), classified with a threshold evalu-
ated with a KDE-based procedure; binary classification of regular (yellow) and chaotic
(purple) initial conditions. (Simulation parameters: (𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y =

32.0, ` = 0.5).

initial conditions up to nmax are identified by direct tracking (first graph from
the left), and the value of the indicator LE is calculated for the set of stable
initial conditions (second graph from the left). At this stage, it is possible to
compute the distribution of LE and determine the threshold that separates the
peaks of the bimodal distribution (third plot from the left) and provides the cri-
terion to classify any given initial condition as regular of chaotic. Applying the
computed threshold, it is possible to generate a binary map with the resulting
classification (fourth plot from the left). The determination of the threshold
for the case shown is rather straightforward, as the large separation between
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the two peaks makes the actual value of the threshold not particularly relevant.
However, when n ≪ nmax the separation between the peaks decreases and the
threshold value becomes essential for an efficient classification of the initial con-
ditions.

Examples of the procedure for determining the threshold based on the in-
dicator distribution are shown in Fig. 7.7. In the top plot, the case of REM
is depicted (but it is representative of all other indicators except FMA). The
use of KDE with different bandwidth clearly shows how the two peaks of the
distribution can be detected. This allows the position of the threshold to be set
at the location of the minimum value of the distribution in between the two
peaks. The case of FMA is different since the distribution has three peaks and
the standard algorithm to determine the threshold must be adapted. Therefore,
KDE is used to determine the position of the three peaks, and the threshold is
set at the position of the minimum of the distribution in between the two peaks
with the largest amplitude.

This choice is somewhat arbitrary, but the features of the distribution clearly
indicate that the performance of the indicator is limited, with little possibility
of improving it. Indeed, the non-negligible fraction of initial conditions that
generate the part of the distribution in between the extreme peaks cannot be
clearly classified by the proposed approach, as some of them will turn chaotic,
whereas other regular if the indicator would be computed over a longer time
span.

Once the GT has been computed, we define as predictive performance of
a dynamic indicator the accuracy in reconstructing the binary classification in
the GT, that is, the ratio between the correctly labelled initial conditions and
the total number of stable initial conditions. Such a reconstruction is attempted
using the same strategy implemented for the determination of the GT, namely,
we consider the distribution of the dynamic indicator under consideration and
define a binary classification using a threshold computed via the KDE-based
approach. The resulting thresholds evaluated over time for REM and FMA
are visualized in detail in Fig. 7.8, while the results for the other dynamic indi-
cators are presented in Appendix 7.b.

The accuracy performance of the dynamic indicator is then evaluated for
various n < nmax. We expect a good-performing dynamic indicator to achieve
high accuracy values when it generates two separate groups, even when n ≪
nmax. Such behaviour, in fact, enables effective mode detection and consequent
effective GT reconstruction. In contrast, a poor-performing dynamic indica-
tor will need a longer tracking time before showing the presence of two sepa-
rate clusters, causing the threshold determination to be unable to separate the
chaotic from the regular initial conditions.

A global comparison of the classification performance of the seven dynamic
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Figure 7.7: Example of the KDE-based procedure for computing a threshold for
the binary classification (regular/chaotic) of initial conditions. Top: application to
log10(REM) (evaluated at n = 105). KDEs with various bandwidth are used until
the two main peaks of the bi-modal distribution are detected, the threshold is then
placed at the position of the minimum of the distribution between them. This proce-
dure is applied to all dynamic indicators except for FMA. Bottom: application of the
procedure to log10(FMA) (evaluated at n = 105), which clearly exhibits a three-mode
distribution. The procedure is applied so that it detects the three main modes of the dis-
tribution, and then sets the threshold at the minimum of the distribution between the
two modes at higher values. (Simulation parameters: (𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y =

32.0, ` = 0.5).
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Figure 7.8: Distribution of values of log10(REM) (left) and log10(FMA) (right) as
a function of time for a modulated 4d Hénon map. The red dashed lines represent
threshold values, defined by our algorithm shown in Fig. 7.7, representing our cri-
terion to distinguish regular and chaotic orbits. For low values of the iterations n,
the distribution of both indicators is in general represented by a uni-modal function.
For higher values of n, we can see the formation of two separate clusters in the case
of REM , making the distribution bi-modal. For FMA, we have in general a differ-
ent behaviour, as it tends to form a tri-modal distribution. (simulation parameters:
(𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y = 32.0, ` = 0.5).

indicators is carried out, and the accuracy achieved by the dynamic indicators
as a function of n is shown in Fig. 7.9, for different sets of parameter values for
the 4d Hénon maps.

When considering the Hénon maps with Y = 0.0, i.e., without frequency
modulation, a rather small fraction of chaotic orbits with a very mild depen-
dence on n of the accuracy of the various dynamic indicators is observed. Fur-
thermore, FMA differs from all other indicators, clearly showing poorer perfor-
mance in terms of accuracy. All other indicators have very similar performance,
the only difference being in the time at which a steplike increase in accuracy is
observed, which occurs for n = 103−104, corresponding to 4-5 orders of mag-
nitude lower than nmax. This sudden increase in accuracy is related to the time
required by dynamic indicators to generate a bimodal distribution that can be
efficiently analysed using our KDE-based procedure. In this sense, it should be
noted that GALI (4) is the most accurate indicator, as it reaches high accuracy
values even at very low values of n and the gradual increase does not occur in
the range of n shown in the graphs. In general, the behaviour observed for all
indicators (except FMA) shows that a rather accurate prediction of GT can be
achieved using the information provided by the indicators over a rather limited
number of turns.
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Figure 7.9: Time dependence of the accuracy achieved in reconstructing the Ground
Truth (computed for nmax = 108) by the various dynamic indicators for eight cases of
the 4d modulated Hénon maps (the same cases shown in Fig. 7.1), differing by cubic
non-linearities and frequency modulation.

In the case with Y = 32.0, i.e., with frequency modulation and a larger
fraction of chaotic orbits, the situation changes dramatically. Accuracy depends
rather strongly on n, suggesting that chaos detection requires a larger number of
turns to be accurate. In terms of the ranking of the indicators, FMA remains
the worst (this is certainly true for case (𝜔x0 , 𝜔y0) = (0.28, 0.31), while for
case (𝜔x0 , 𝜔y0) = (0.168, 0.201) a better performance is observed). REM
and GALI (4) , are the best values in a wide range of values of n. Furthermore,
they do not show any sudden jump in accuracy because of their well-behaved
distribution. Finally, we remark that beyond n = 106 − 107, the precision of
all indicators is very similar.

To provide a quantitative assessment of the performance of the dynamic
indicators, we define a performance estimate as

1
2

∫ 6

4
Accuracy(10x) dx , (7.29)

i.e., the integral of the accuracy achieved and displayed in Fig. 7.9 normalized
to the integral of the ideal case with unit accuracy throughout the turn inter-
val. The reasons for such a definition are twofold: First, it avoids the possible
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bias introduced by indicators that are more efficient in detecting the chaotic be-
haviour at low number of turns but that are not so efficient afterwards; second,
it probes the predictive power of the indicator by setting an upper bound that
is lower than the turn number used for determining the GT. Equation (7.29)
has been numerically evaluated using the trapezoidal rule and considering 50
values of n equally spaced on a logarithmic scale over the interval 104 − 106.
The performance estimate values for the dynamic indicators for the various
Hénon maps are reported in Table 7.1.

Performance estimates have been ranked in decreasing order, separating
the various cases considered in our analyses. GALI (4) turns out to be the
highest scorer in all cases, followed by REM . Then we find MEGNO and
FLIWB (x̂), while FMA tends to be the last in this ranking. The error associ-
ated with each performance estimate value is provided by the variation of the
accuracy whenever the automatic threshold value is varied by ±5%. This quan-
tity provides information on the robustness of the accuracy against perturbation
of the threshold: A small value indicates a high stability of the numerical val-
ues. It is also worth noting that the performance estimates of the best dynamic
indicators are correlated with small values of the corresponding error.

Important insights on the performance of the various indicators can be
gained by looking at the relative identification error in terms of false positive,
i.e., when a regular orbit is classified as chaotic, and false negative, i.e., when
a chaotic orbit is classified as regular. A false negative is almost unavoidable,
according to the behaviour shown in Fig. 7.3, unless the indicator is calculated
over a very large number of turns, which means accepting a very limited pre-
dictive power of the indicator. However, the behaviour of the two types of
errors reveals interesting features of the various indicators. An overview of
the dependence of false positive and false negative errors is shown in Fig. 7.10,
where relative errors are displayed as functions of the turn number for the map
configurations considered in the first row of Fig. 7.9.

The behaviour of the false positive error reveals a fundamental difference
between FMA and the other indicators. In fact, FMA shows an error value that
is only slightly dependent on the turn number and drops to small values for very
large n. For the other indicators, for a low number of turns, this type of error
is large, and then, around 104 turns, it drops essentially to zero. This feature
is related to the fact that, for a low number of turns, the bimodal structure
is not yet present. It is also worth noting that, for the case of FLIWB (x̂) the
Birkhoff averaging introduces a clear improvement by pushing the position of
the sudden drop to zero of the false positive error to a lower number of turns.

The false negative error increases sharply at a turn number close to that
corresponding to the abrupt decrease in the false positive error. After this turn
number, two behaviours are observed: In the first case, the error level is ap-
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Figure 7.10: Identification errors for the various indicators as a function of the number
of turns for the cases displayed in the first row of Fig. 7.9.

proximately constant until it drops to a low value after n ≈ 107. This value
is relatively close to that used to determine the GT, which indicates a limited
predictive power of the indicator. In the second case, the error level decreases
almost linearly as a function of n. This is the key to achieving good perfor-
mance and is the feature shown byREM andGALI (4). It should be noted that
FMA also behaves in this way, i.e., with a linear decrease in the false positive er-
ror. However, when the false negative error drops, a jump in the false positive
error is observed. This error then shows a decrease that is almost negligible up
to nmax. These characteristics, related to the characteristics of the distribution
of the FMA values, prevent this indicator from reaching a good performance
level.

As a last comment, these features are always present, but frequency modu-
lation strongly enhances the errors.

7.5 | Conclusions

In this chapter, various numerical indicators to identify the chaotic char-
acter of orbits of Hamiltonian systems have been presented and discussed in
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detail. The powerful Birkhoff averages were used to improve the convergence
rate of an indicator in the case of regular initial conditions. The goal of our
analysis is to evaluate the performance of the indicators in terms of accuracy in
the binary classification of an orbit identified by its initial conditions, as regu-
lar or chaotic. An important element in this assessment is whether the correct
classification can be achieved by using the information over a limited number
of turns, i.e., whether an early chaos detection can be effectively performed,
which is equivalent to probing the predictive power of dynamic indicators.

The dynamical system that has been selected as a test bed for perfor-
mance analyses is a 4d Hénon-like symplectic map, with or without cubic
non-linearity and with or without frequency modulation. This choice is justi-
fied by the relevant applications of this map to understand long-term stability
problems in particle accelerators. Several configurations have been consid-
ered and, for each case, a ground truth classification has been determined
with n = 108 iterations. The various indicators have been used to provide
an estimate of the classification performance with respect to ground truth as
a function of the number of turns used. The classification is based on the bi-
modal feature of the indicator value distributions, which points out two clusters
associated with regular and chaotic orbits. To define a classification threshold,
we use a KDE-based algorithm to determine the position of the distribution
minimum between the two modes.

A ranking of the performance of the various indicators has been estab-
lished, with GALI (4) slightly outperforming the other indicators in all cases
considered, immediately followed by REM . Then we find FLIWB and
MEGNO(LE). Modulation of the linear frequencies significantly reduces
the predictive power of each indicator. It should be noted that the identifi-
cation errors of the various indicators are largely dominated by the wrong
labelling of the initial conditions as regular.

The conclusions drawn for the case of the 4d Hénon-like map are generic
for a polynomial Hamiltonian system in a neighbourhood of elliptic fixed
points. Hence, these results can be particularly useful for applications such as
non-linear beam dynamics. The specific choice of an indicator to predict the
chaotic character should take into account the performance evaluated in our
analysis, as well as the computational efforts needed to compute the various
indicators. In this sense, REM could be a very interesting candidate due to its
good performance combined with computational efficiency, which is particu-
larly suitable for reducing the CPU time required for the numerical integration
of complex physical systems.
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Appendices

7.a | Computational costs for evaluating the indicators of
chaos

Evaluation of a dynamic indicator requires a variable amount of compu-
tational cost, which could affect the feasibility and efficiency of specific imple-
mentations or favour the usage of specific dynamic indicators. Here, we focus
our considerations on the specific case of a discrete map with a known analytic
expression for both the tangent and the inverse maps.

For LE, FLI , and MEGNO(LE), the main computational effort consists
of tracking the value of Ln (x), along the orbit of x. This implies the additional
memory requirement to store a matrix of size 2d × 2d and the execution of
matrix-matrix and matrix-vector multiplications at each iteration. It should
be noted that an important feature of these indicators is that their evaluation
at a target iteration number n also provides their value for all lower iteration
numbers. This feature frees up additional computational costs for the analysis
of the evolution of the dynamic indicator value over time.

GALI (k) requires the evaluation of Ln (x) to calculate the normalized k im-
ages of 𝜼 j with 1 ≤ j ≤ k. A practical and fast method for computing the
norm of external products in Eq. (7.23) is given in [116], where it is proven
that GALI (k) is equal to the product of singular values z j , of A, where A is a
2d × k matrix that reads

A =

©«
(

Ln (x)𝜼1
∥Ln (x)𝜼1∥

)
1

· · ·
(

Ln (x)𝜼k
∥Ln (x)𝜼k ∥

)
1

...
...(

Ln (x)𝜼1
∥Ln (x)𝜼1∥

)
2d

· · ·
(

Ln (x)𝜼1
∥Ln (x)𝜼1∥

)
2d

ª®®®®¬
. (7.30)

The singular values of A can be obtained by applying the Singular Value
Decomposition (SVD) method [153]. Note that the evaluation ofGALI (k) for
a target iteration number n also provides the values of 𝜼 j for all lower values of
n. However, for each n ≤ n for which we wish to evaluate GALI (k) , a specific
SVD calculation is required.

For the reversibility error indicator BF , it is possible to use Eq. (7.17) to
evaluate 𝚵BFn (x) with the possibility of exploring several realizations of b . This
requires the evaluation, for each iteration, of L−1n (x) or Ln (x), together with
the evaluation of the sum with a selected or a set of selected noise realizations.
This can lead to higher memory demands when several noise realizations or
the time evolution of the indicator needs to be evaluated. Furthermore, its
evaluation at a target iteration number n does not provide the values for n ≤ n,
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as each evaluation requires a different summation and noise realization. If the
map analysed is symplectic, the corresponding invariant defined in Eq. (7.20)
can be used, resulting in a computational effort comparable to the evaluation
of LE.

REM , conversely, involves very little computational effort, as it does not re-
quire the evaluation of Ln (x), but only the execution of the orbit computation
twice. This makes REM very attractive for applications in which no explicit
or analytical expression for the tangent map is available. However, the evalua-
tion of REM for a target iteration number n gives no information on its value
for lower iteration values, as its evaluation requires separate backtracking each
time.

Finally, for FMA, if the fundamental frequency is evaluated using FFT-
based methods (see, e.g., [138, 140]), considerable effort is required in terms
of memory usage, due to the necessity of storing the entire orbit of M (x, n),
then perform the algorithm. This is not the case if the fundamental frequency
is evaluated using the APA method (see, e.g., [138, 140]), as the mean can be
progressively evaluated without the need to store the entire orbit history.

Modern parallel computing architectures, such as those offered in Gen-
eral Purpose Graphics Processing Units (GPGPU) [154], follow the single-
instruction, multiple-data (SIMD) architecture, that is, they execute the same
operations over large data allocations, using thread wraps of hundreds of pro-
cessing cores.

To fully exploit the SIMD architecture, an algorithm must offer options for
scaling up parallelization without strong penalties in terms of memory manage-
ment or branching.

Tracking multiple initial conditions in discrete-time maps is one of the most
straightforward processes to implement in a SIMD architecture, as it can be
treated as a problem “embarrassingly parallel” [155], and multiple examples of
GPGPU applications can be observed, for example, in charged particle tracking
in accelerator physics [156–161].

The various indicators of chaos presented here offer, in general, a straight-
forward conversion to a SIMD approach, since it is immediately possible to
perform the tracking and the turn-after-turn dynamic indicator evaluation of
several initial conditions. This improvement alone enables mass processing of
initial conditions for large values of the turn number nmax, allowing various
types of statistical analysis.

However, an exception is given by FMA when evaluated using FFT-based
methods, as it requires one to keep track in memory of the orbit of any initial
condition and then perform numerical estimates of the fundamental frequen-
cies. Due to this requirement, scaling up the procedure to a large number of
turns or a large number of initial conditions may lead to memory limitations.
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To fully benefit from the SIMD architecture, we evaluated the fundamental fre-
quency via the APA method with Birkhoff weights, which does not require the
storage of the entire orbit but only the weighted mean phase advance, which
can be progressively evaluated without high memory requirements.

A similar limitation is present in the BF reversibility error, since its direct
evaluation, defined in Eq. (7.17) , requires maintaining track of the entire or-
bit when there is interest in evaluating different realizations of bn. In contrast,
REM offers a straightforward GPGPU approach, since it only requires explicit
forward and backward tracking, without the need to evaluate the tangent map.
We recall that REM evaluates only the first invariant from a single noise real-
ization, obtained by exploiting the numerical roundoff.

7.b | Time dependence of dynamic indicators

When considering a large amount of initial conditions to determine the
properties of the corresponding orbits by means of dynamic indicators, it is
possible to obtain an accurate picture of the phase-space structures, such as
regions characterized by regular dynamics and regions where frequency mod-
ulation and non-linearities induce chaotic behaviour. In Fig. 7.11, the seven
chaos indicators computed for n = 105 are presented for a set of initial condi-
tions that turned out to be stable up to nmax = 108. All indicators highlight a
region of regular motion close to the origin and chaotic structures at higher am-
plitudes. Generally speaking, the various dynamic indicators reconstruct very
similar shapes for the regular and chaotic regions of the phase space, with the
exception of FMA. Indeed, this indicator provides a lot of structure even in-
side the region that is classified as regular by the other indicators, and in which
the values of the other indicators are to a high degree of accuracy constant. We
inspect the distribution of values of the various dynamic indicators, computed
at a large number of turns. It is possible to observe the formation of bimodal or,
as we shall see for the case of FMA, three-modal distributions. In Fig. 7.12, the
time evolution of the distribution of the indicator value is shown. The red lines
represent the threshold that we use to distinguish between regular and chaotic
orbits, whose definition was given in Section 7.4.3.

The indicators log10(LE)/n, FLI (x̂)/n, FLIWB (x̂), and MEGNO(LE)/n
have a comparable behaviour and globally tend to cluster regular orbits into
an ensemble peaked at near-zero values, whereas chaotic orbits are part
of another cluster featuring a large spread of values, which correspond to
indicator values that are orders of magnitude higher. To achieve a valid
overview of the value distribution, especially its tendency to create a bi-
modal distribution [148, 149], we will consider the logarithm of these three
indicators, i.e. log10(log10(LE)/n), log10(FLI (x̂)/n), log10(FLIWB (x̂)), and
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Figure 7.11: Color maps of the various dynamic indicators for a modulated 4d Hénon
map evaluated at n = 105. It can be seen how the indicators globally highlight the same
structures in phase space, with the exception of FMA, which also shows structures re-
lated to resonances. Note that an arrow at the top of the color bar means that pixels of
the top color correspond to a value equal to or greater than the top value. White pixels
correspond to initial conditions whose distance from the origin has exceeded a prede-
fined radius (rc = 102) during the tracking, before reaching the target iteration number
nmax = 108. (Simulation parameters: (𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y = 32.0, ` = 0.5).

log10(MEGNO(LE)/n).
By direct inspection of the colour maps in Fig. 7.12, it can be seen how these

four indicators generate bimodal distributions, with the peak corresponding to
regular orbits featuring a clear trend towards zero, and this trend appears to be
faster for log10(FLIWB (x̂)), and log10(MEGNO(LE)/n), due to the applied
filters. log10(FLI (x̂)/n) and log10(FLIWB (x̂)) feature an increasing spread of
values corresponding to chaotic orbits, a clear trend of the distribution of regu-
lar orbits toward zero. A similar trend is also observed in log10(log10(LE)/n)
and log10(MEGNO(LE)/n), however, the current numerical implementation
of LE suffers from numerical saturation for chaotic orbits that exhibit expo-
nential growth in the values of the tangent map. This results in a limitation for
the spread of values that can be observed for chaotic orbits at high numbers of
turns, but, ultimately, the distinction between clusters remains.

GALI (4) takes values in the interval [0, 1], corresponding to the range
of values of the volume of the 4d parallelotope, constructed by normalized
orthonormal displacements. The unit value is associated with the initial or-
thonormal displacement, whereas zero implies an exact chaos-induced align-
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Figure 7.12: Distribution of values of the various dynamic indicators as a function
of time for a modulated 4d Hénon map. For low values of the iterations n, the dis-
tribution is in general represented by a uni-modal function. For higher values of n,
we can see the formation of either two separate clusters, making the distribution bi-
modal, or an individual cluster with a significant tail. log10(FMA) constitutes an ex-
ception, as it evolves forming a tri-modal distribution (also shown in detail in Fig. 7.7,
bottom). The red dashed lines represent threshold values, defined by our algorithm,
representing our criterion to distinguish regular and chaotic orbits. (simulation param-
eters: (𝜔x0 , 𝜔y0) = (0.28, 0.31) , Y = 32.0, ` = 0.5).

ment of at least two displacement vectors along the direction of the maximum
Lyapunov exponent. Inspecting the indicator distribution in logarithmic scale,
i.e. log10(GALI (4)), highlights a bimodal distribution, where the peak corre-
sponding to the ensemble of regular orbits moves towards small values of the
indicator, following a power law distribution. Moreover, an ensemble of chaotic
orbits creates a tail distribution of values lower than the regular ensemble, thus
creating a second, smaller-amplitude peak in the indicator distribution. The
presence of the logarithm when evaluating the distribution of GALI (4) gener-
ates a numerical artefact. Indeed, certain chaotic orbits feature a 4d volume,
computed using the SVD method, that reaches values below numerical pre-
cision, which are consequently registered as zero. We assign to these initial
conditions a value of 10−64, which represents a product of 4 singular values
z j = 𝜖 ∼ 10−16 with extended precision. The cluster of these special initial
conditions generates yet another peak in the indicator distribution that is, nev-
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ertheless, irrelevant in future considerations about the classification of orbits.
The dynamic indicator REM is also considered on a logarithmic scale to

better understand its behaviour. The measured Euclidean distance for the case
of regular orbits ranges from a few orders of magnitude higher than the numer-
ical precision 𝜖 ∼ 10−16 for small values of n. These indicator values increase
with n following a power law (typically, the peak reaches 105 for n = 105)
due to the accumulation of the numerical error. Instead, for chaotic orbits, we
observe exponential growth that saturates to an almost constant value. This oc-
curs since chaotic orbits belong to an invariant bounded set of diameter D so
that the saturation value is about 𝜖−1D. Similarly to GALI (4) , we inspect the
indicator in logarithmic scale, i.e. log10(REM).

FMA is based on the evaluation of the Euclidean distance in the frequency
space of the fundamental frequencies computed over different time intervals.
If we inspect its distribution on logarithmic scale, we observe how the indi-
cator converges to a three-mode distribution. This configuration consists of
an ensemble of initial conditions rapidly converging to values close to numeri-
cal precision, an ensemble of initial conditions maintaining values above 10−5,
and a well-populated ensemble of initial conditions that connect these two en-
sembles (this distribution is also shown in Fig. 7.7, bottom). Inspecting the
logarithm of the indicator, i.e. log10(FMA), allows to inspect the full spread of
values achieved by the various orbits.
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(𝜔x , 𝜔y) = (0.28, 0.31)
Y = 0.0; ` = 0.0 Y = 0.0; ` = 0.5

log10(GALI (4)) 0.99700 ± 0.00014 log10(GALI (4)) 0.9956 ± 0.0002
log10(FLIWB (x̂)) 0.9966 ± 0.0005 log10(REM) 0.99423 ± 0.00004
log10(MEGNO(LE)/n) 0.9965 ± 0.0008 log10(log10(LE)/n) 0.99 ± 0.03
log10(REM) 0.99629 ± 0.00003 log10(FLIWB (x̂)) 0.99 ± 0.10
log10(log10(LE)/n) 0.99 ± 0.05 log10(FLI (x̂)/n) 0.9080 ± 0.0016
log10(FLI (x̂)/n) 0.94 ± 0.01 log10(MEGNO(LE)/n) 0.90 ± 0.14
log10(FMA) 0.8738 ± 0.0005 log10(FMA) 0.8797 ± 0.0004

(𝜔x , 𝜔y) = (0.28, 0.31)
Y = 32.0; ` = 0.0 Y = 32.0; ` = 0.5

log10(GALI (4)) 0.9453 ± 0.0014 log10(GALI (4)) 0.924 ± 0.002
log10(REM) 0.9329 ± 0.0003 log10(REM) 0.9096 ± 0.0003
log10(MEGNO(LE)/n) 0.93 ± 0.08 log10(MEGNO(LE)/n) 0.90 ± 0.09
log10(log10(LE)/n) 0.924 ± 0.011 log10(log10(LE)/n) 0.888 ± 0.015
log10(FLIWB (x̂)) 0.913 ± 0.007 log10(FLIWB (x̂)) 0.88 ± 0.02
log10(FMA) 0.869 ± 0.003 log10(FLI (x̂)/n) 0.843 ± 0.009
log10(FLI (x̂)/n) 0.863 ± 0.007 log10(FMA) 0.797 ± 0.005

(𝜔x , 𝜔y) = (0.168, 0.201)
Y = 0.0; ` = 0.0 Y = 0.0; ` = 0.5

log10(GALI (4)) 0.9896 ± 0.0004 log10(GALI (4)) 0.9909 ± 0.0004
log10(REM) 0.98682 ± 0.00009 log10(MEGNO(LE)/n) 0.99 ± 0.09
log10(FLIWB (x̂)) 0.986 ± 0.002 log10(REM) 0.98850 ± 0.00012
log10(log10(LE)/n) 0.981 ± 0.003 log10(FLIWB (x̂)) 0.988 ± 0.002
log10(FLI (x̂)/n) 0.980 ± 0.016 log10(log10(LE)/n) 0.99 ± 0.07
log10(FMA) 0.9319 ± 0.0010 log10(FLI (x̂)/n) 0.980 ± 0.015
log10(MEGNO(LE)/n) 0.9 ± 0.2 log10(FMA) 0.9510 ± 0.0009

(𝜔x , 𝜔y) = (0.168, 0.201)
Y = 32.0; ` = 0.0 Y = 32.0; ` = 0.5

log10(GALI (4)) 0.903 ± 0.003 log10(GALI (4)) 0.914 ± 0.003
log10(REM) 0.8880 ± 0.0004 log10(REM) 0.8915 ± 0.0004
log10(MEGNO(LE)/n) 0.87 ± 0.09 log10(MEGNO(LE)/n) 0.89 ± 0.11
log10(log10(LE)/n) 0.863 ± 0.016 log10(FMA) 0.881 ± 0.007
log10(FLI (x̂)/n) 0.849 ± 0.012 log10(log10(LE)/n) 0.88 ± 0.02
log10(FLIWB (x̂)) 0.849 ± 0.007 log10(FLIWB (x̂)) 0.870 ± 0.012
log10(FMA) 0.843 ± 0.004 log10(FLI (x̂)/n) 0.850 ± 0.017

Table 7.1: Performance estimate of the dynamic indicators for the various Hénon map
configurations, evaluated using Eq. (7.29) over the interval n = 104 − 106. Values are
ranked in decreasing order. It is clearly seen that GALI (4) is the highest scorer and
REM is the second-best scorer in most of the cases considered. The uncertainty in the
performance estimate is evaluated by applying a variation of the calculated thresholds
of ±5%.



8 | Analysis of the beam dynamics
in HL-LHC with dynamic in-
dicators

In this final chapter, we make use of the insights on the behaviour of dy-
namic indicators presented in the previous chapter to analyse the phase-space
properties of a realistic HL-LHC lattice. As modern tracking codes are able to
perform the tracking of many particles in parallel, thanks to the use of modern
GPU architectures, we can inspect numerous initial conditions and thus enable
new statistical analyses of the phase-space properties of the lattice.

From the analysis performed on the Hénon map, along with the perfor-
mance classification study, we know that the dynamic indicators GALI (k) and
REM are the most performant in quickly investigating the chaotic behaviour
of the orbits. Along with these indicators, we also include the FLI and FLIWB

indicators, which are also very useful for achieving a numerical estimate of the
maximal Lyapunov exponent, and the FMA indicator, to compare its results
with other indicators in the presence at different levels of modulation.

As the final goal of this line of research is to assess the relation between
the existence of large chaotic regions in the phase space to the occurrence of
Nekhoroshev-like diffusive behaviour, we therefore look forward to the infor-
mation provided by dynamic indicators, which might offer a more direct insight
about the presence of a Nekhoroshev-like long-term evolution.

The chapter is structured as follows. In Section 8.1, we provide specific
details on the implementation of the shadow particle method to evaluate dy-
namic indicators, as current tools do not offer an analytic expression of the
tangent map. In Section 8.2, we go into the technical details of the numerical
implementation of the dynamic indicators, as well as the details of the model
used for the analysis. In Section 8.3, we present the results of the analysis of
the phase-space properties of the HL-LHC lattice, and in Section 8.4, we dis-
cuss some characteristics of the indicators. Finally, in Section 8.5, we analyse
the details of the beam dynamics highlighted by the dynamic indicators, which
are of interest in the context of the Nekhoroshev-like scaling laws and in deter-
mining the time evolution of selected indicators. In Section 8.6, we conclude
the chapter with a summary of the results and a discussion of future work.



160 Analysis of the beam dynamics in HL-LHC with dynamic indicators

8.1 | Evaluation of dynamic indicators for complex
systems

In the previous chapter, we observed how some dynamic indicators, such
as FLI and GALI (k) , require the evaluation of the evolution of an initial dis-
placement using the tangent map DM (x, n). For a simple model, such as the
Hénon map, an analytic expression of DM (x, n) is available, enabling us to
directly evaluate expressions such as Eq. 7.10 directly.

Conversely, when realistic accelerator models are considered, which are the
result of the concatenation of the transfer maps of thousands of magnetic ele-
ments, it is currently not feasible to obtain a complete and practical application
of the analytic expression of the tangent map. This requires the use of numeri-
cal methods to evaluate the tangent map, which is a computationally expensive
task. An alternative method to evaluate the linear response of the system to a
small initial displacement is the use of a so-called “shadow particle” [162].

The shadow particle method consists of approximating the limit 𝜖 → 0,
which appears in the first row of Eq. (7.4) , with an 𝜖 of small but finite value,
performing orbit tracking of both the initial condition x0 and the displaced
initial condition y0 = x0 + 𝜖 𝝃 , and then evaluating the estimate 𝚵n (x) = yn−xn

𝜖
.

When tracking xn and yn, it is also necessary to reset the distance between
xn and yn to the initial value 𝜖 in all 𝜏 iterations, while maintaining the same
direction. This is done to avoid spurious effects in the evaluation of the lin-
ear response that could be caused by an excessive distance between the two
orbits [162], which is especially expected for chaotic orbits.

This periodically modified y′n, for a given value of 𝜏 , reads

y′0 = y0 ;
y′i =M (xi𝜏−1 , i𝜏 − 1)M (xi𝜏−2 , i𝜏 − 2) · · ·

· · ·M (x(i−1)𝜏 , (i − 1)𝜏)
[
x(i−1)𝜏 + 𝜖

y′i−1 − x(i−1)𝜏y′i−1 − x(i−1)𝜏
]
, 0 ≤ i ≤ n/𝜏 ,

(8.1)
which, for 𝜏 = 1, reduces to

y′0 = y0 ;

y′i = M (xi−1 , i − 1)
[
xi−1 + 𝜖

y′i−1 − xi−1y′i−1 − xi−1
]
.

(8.2)

Implementing this method in the definition ofFLI/n, FLIWB, andGALI (k)

is a straightforward task and ends with replacement of the evaluation of the
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tangent map DM (x, n) with the evaluation of a shadow particle for each dis-
placement direction 𝝃 we want to consider.

This estimation method has been widely used in the literature due to its
simplicity of implementation; however, in multiple studies [162, 163] it has
been highlighted how the choice of both the value of 𝜖 and the time interval 𝜏
between displacement resets to 𝜖 can significantly affect the final evaluation of
𝚵n (x) and consequently the dynamic indicators relying on it.

8.2 | Implementation of dynamic indicators in ac-
celerator tracking codes

8.2.1 | GPU parallel tracking of particles

As noted in Appendix 7.a, in the context of map tracking, single-particle
tracking falls into the category of “embarrassingly parallel” computational prob-
lems [155], that is, a problem that offers trivial parallelization opportunities on
many processing units. This is because the tracking of a single particle is in-
dependent of the tracking of other particles, since beam intensity-dependent
effects are neglected, and the only information that needs to be shared be-
tween different particles is the lattice information. This makes the tracking
of many particles a very suitable problem for parallelization in a GPU archi-
tecture, which is designed following the SIMD paradigm (Single Instruction
Multiple Data) [154].

Since 2021, a new symplectic tracking framework named Xsuite [164] has
been under development at CERN. Xsuite is a collection of Python pack-
ages that extends the features offered by the SixTrack code [165], following
modern programming paradigms and allowing efficient parallelization in both
CPU and GPU architectures by generating optimized C code on the fly. More
specifically, the Xtrack tracking package in Xsuite offers the possibility to track
particles in realistic accelerator lattices on GPU architectures, thus enabling
the tracking of large numbers of initial conditions at significantly shorter times.
The application of GPUs in accelerator physics simulations has already been
used in multiple studies, ranging from Hollow Electron Lens to charged parti-
cle tracking studies [156–161]. Among these various studies, the implementa-
tion of the GPU version of Xsuite was specifically used to enable new statistical
studies on Hollow Electron Lens [160].

The code structure of Xsuite allowed us to easily implement, within the
GPU workflow, the fundamental elements for the dynamic indicators’ evalua-
tion, such as the normalization of shadow particles, and it made it possible to
track a large amount of initial conditions. The possibility of tracking a large
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number of initial conditions is one of the main motivations of this study, as a
combination of large scans and dynamic indicators might lead to better insights
into the phase-space features of realistic accelerator lattices.

8.2.2 | Computational effort for evaluating chaos indicators

The dynamic indicators showcased in the previous chapter require differ-
ent computational efforts in terms of memory requirements or additional op-
erations needed, on top of a reference single-particle tracking mechanism. As
discussed in Appendix 7.a, considering these different requirements can favour
the choice of a specific dynamic indicator, depending on the analysis to be per-
formed and the available computational resources. We recall here the main
considerations for each indicator concerning the usage of the shadow-particle
method.

Current particle tracking frameworks do not offer practical tools for obtain-
ing an analytic expression of the tangent map. To overcome this issue, the
shadow particle method gives us a straightforward method to numerically eval-
uate the chaotic behaviour of a complex magnetic lattice made up of multiple
non-linear elements.

For FLI , the main computational effort consists in tracking the orbit of two
particles, namely the initial condition and the shadow particle, i.e. the initial
condition with an initial displacement included. This value increases if there is
interest in inspecting different initial displacements at the same time. Similarly,
GALI (k) requires the evaluation of k + 1 particles per initial condition, namely,
the unperturbed initial condition and k shadow particles with orthogonal dis-
placement.

REM and FMA do not need to track shadow particles. REM however re-
quires a forward and backward tracking, doubling the computational effort in a
way comparable to FLI . FMA, instead, only requires forward tracking to eval-
uate the fundamental frequency, that is, the tune, at different time intervals. De-
pending on the method used to evaluate the tune, memory requirements could
vary, for example, using FFT-based algorithms to evaluate the fundamental fre-
quency requires storing the complete orbit, while methods based on the aver-
age phase advance algorithm may be implemented without this need. Details
regarding this issue are discussed in the Appendix 7.a, as excessive memory
requirements may lead to the impossibility to rely on SIMD architectures due
to the current limits of GPU on board memory. In the context of this study,
we evaluated the tune using the average phase advance method with Birkhoff
weights proposed in [141], which provides superconvergence and can be evalu-
ated in a single forward tracking pass, without the need to store the entire orbit
history.
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8.2.3 | Models

For our studies, we used a realistic accelerator lattice implementation based
on version 1.4 of the HL-LHC layout and optics [166] of Beam 1. We per-
formed single-particle tracking without beam-beam interaction at top energy
7.0TeV. As we consider a configuration with colliding proton beams at top
energy, we have the machine tunes set at 𝜔x = 62.31, 𝜔y = 60.32 and 𝛽 ∗ set
at 0.15m at IP1 and IP5. The nominal emittance of the beam is set at 2.5µm.
The tracking simulation has its starting point set at IP3. At this location, the
𝛽 functions for the two planes are 𝛽x =117.83m and 𝛽y =219.64m. The
lattice implementation is based on the MAD-X code [167] and is available in
the Pymask repository [168].

The MAD-X magnetic lattice comprises 60 realizations (also called seeds)
of the magnetic field imperfections that have been measured in the various
magnets installed in the ring. These realizations are usually used to gather a
broad statistic of the results in a simulation experiment. These seeds offer a
good representation of different levels of non-linear effects, and they can be
used to study the impact of machine imperfections on the formation of chaotic
regions in the phase space.

From this set of 60 realizations, we picked two representative samples,
namely, the one scoring the best and worst dynamic aperture values on a track-
ing up to n = 105 turns. The dynamic aperture is defined as the volume of
the connected phase-space region where the particles exhibit a bounded mo-
tion for at least n turns [55, 169]. We evaluated the dynamic aperture using
a 100 × 100 uniform grid, sampling initial conditions in the x − y transverse
plane, with all other variables set to zero. The largest connected component of
initial conditions that survived tracking up to n = 105 turns was considered to
be in the dynamic aperture region.

See Fig. 8.1 for a visualization of these two seeds. The resulting survival
plot for the tracking done up to n = 105 turns is reported, where one can see
how the different realizations lead to a different portrait in the phase space.

To inspect the performance of the dynamic indicators, we sampled initial
conditions on a uniform Cartesian grid of 300×300 particles in the x−y plane,
with transverse moments px and py set to zero. The boundaries of the Cartesian
grid were manually selected based on the scan results presented in Fig. 8.1, to
have a square region of interest (ROI) focused on the dynamic aperture region
highlighted at n = 105. The boundary of the selected ROI is coloured red.

The longitudinal variable Z was set at three values to inspect different levels
of tune modulations induced by synchrotron motion, respectively, at 0.0m, at
0.15m, which is halfway close to the bunch separatrix, and at 0.3m, which is
very close to the bucket separatrix. See Fig. 8.2 for an illustration of the chosen
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Figure 8.1: Survival plot up to n = 105 turns of two different seeds of a realistic HL–
LHC lattice of Beam 1, without beam-beam interaction, at 7.0TeV. The two seeds
achieved, the worst and best dynamic aperture value out of the selection of 60 seeds
available. The initial conditions consist of a 100×100 grid over the x−y plane. A region
of interest (ROI) is highlighted in red on the two survival plots, and represents the
choice of boundaries for the finer sampling we performed for our dynamic indicator
analysis.

Z values, which are based on the tracking results of multiple initial conditions
with different initial Z values and x , px , y , py set to zero.

8.3 | Chaos detection studies

The dynamic indicators presented in the previous section, namely FLI/n,
FLIWB, GALI (k) , REM , and FMA, were evaluated for the HL-LHC lattices
up to n = 105 turns. The results of the evaluation of these indicators are pre-
sented in the following sections.

Note how we present most of the value distributions on a logarithmic scale,
since the indicators are expected to follow either a power-law distribution or an
exponential one. The logarithmic scale allows us to better inspect the tails of
the distribution and the general tendencies of these indicators to create bimodal
distributions, with the sole exception of FMA, which, as we have seen from
the results in the previous chapter when considering a modulated Hénon map,
tends to generate a trimodal distribution.
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Figure 8.2: Tracking of initial conditions with different Z values up to n = 103 on the
HL-LHC lattice with best seed. The tracking highlights the classic structure, with the
hyperbolic fixed points placed at Z ∼ ± 0.36m. The three black crosses represents the
three choices of Z0 we decided to inspect in our dynamic indicator study.

8.3.1 | Overview of the chaotic regions of the HL-LHC lattice

The inspected 300 × 300 Cartesian grid of initial conditions considered in
the selected ROIs gives us an overview of the phase space that ranges from zero
amplitude to approximately 5 𝜎 units of amplitude.

An initial overview of how the phase space is structured is shown in Fig. 8.3,
where we report a survival plot for the various configurations of the HL-LHC,
in terms of the seed used and the value of Z0 considered, tracked up to n = 105

turns. We can see in the various colour maps a well-defined connected re-
gion of initial conditions stable up to 105 turns. Outside this connected region,
we observe different structures of unstable initial conditions depending on the
value of Z0. We can observe how, as the value of Z0 increases, the boundary
between stable and unstable initial conditions becomes less sharp.

We can now inspect these six HL-LHC configurations with chaos indicators
and see what structures they highlight within the region where the particles sur-
vive up to n = 105 turns. In Fig. 8.4, we present a colour map of the values of
log10(FLI(x̂)/n) evaluated in the six configurations. We can see, as expected,
how chaotic regions, corresponding to the higher values of the indicator, occur
at the borders of the stable region, showing, for the case of certain configura-
tions, isolated structures that resemble islands of stability, with regular initial
conditions within. These structures can be related to non-linear resonance ef-
fects. On the contrary, the internal core region is fully constituted by initial
conditions with regular behaviour.
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Figure 8.3: Survival plot up to n = 105 turns for all six configurations of the realistic
HL-LHC lattice model considered. The realization given by the seed causes strong
changes in the phase space structure, while the initial value of Z0 is related to different
levels of erosion of the stable boundary.
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Figure 8.4: log10(FLI(x̂)/n) evaluated at n = 105 for all six configurations of the real-
istic HL-LHC lattice model considered. The size of the chaotic structures highlighted
by the indicator appears to be strongly correlated to Z0.
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Figure 8.5: Colour maps of the various dynamic indicators for a realistic HL-LHC
lattice, evaluated at n = 105. It can be seen how the indicators globally highlight
the same structures in phase space, with the exception of FMA, which also shows
additional structures. (HL-LHC lattice used: worst seed, Z0 =0.3m.)

The size and shape of the chaotic regions appear to depend on both the
seed and the initial value of Z0. We can see how increasing Z0 contributes to
slightly enlarging the size of chaotic regions, since the introduction of stronger
longitudinal dynamics causes more modulation effects in the transverse plane,
leading to more chaotic initial conditions.

In Fig. 8.5, we present an overview of the various dynamic indicators in the
analysis evaluated for one of the HL-LHC lattices, in the form of colour maps
evaluated at n = 105. We can see how the various dynamic indicators, with
the exception of FMA, tend to highlight the same regions of chaos, giving a
coherent overall evaluation of the phase-space chaoticity. The exception given
by FMA will be commented on in a later section.

In Fig. 8.6, we present an overview of the evolution of the value distribution
of the various dynamic indicators for different values of n. We can see that, in
general, dynamic indicators tend to converge into a bimodal distribution, with
the sole exception of FMA, which instead converges into a trimodal distribu-
tion. This tendency confirms what we observed in the previous chapter on the
modulated Hénon map.
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Figure 8.6: Distribution of values of the various dynamic indicators as a function of
time for a realistic HL-LHC lattice. For low values of the number of turns n, the
distribution is in general represented by a uni-modal function. For higher values of
n, we can see the formation of either two separate clusters, making the distribution
bi-modal, or an individual cluster with a significant tail. log10(FMA) constitutes an
exception, as it evolves forming a tri-modal distribution. (HL-LHC lattice used: worst
seed, Z0 =0.3m.)
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8.4 | Some features of dynamic indicators

8.4.1 | FLI dependence on the initial displacement

FLI , by definition, depends on the initial choice of the direction of the
unitary displacement vector b , which implies that different structures can be
highlighted in the phase space.

To assess the magnitude of these differences, in Fig. 8.7, we compare the
calculated values of log10(FLI), calculated at n = 105 with an initial displace-
ment along one of the six orthonormal vectors, namely x̂ , p̂x , ŷ , p̂y , Ẑ , and 𝛿.
The comparison is made against the mean value computed for the six possible
initial displacements, and the standard deviation is also presented.

It is possible to see how the different choice of initial displacement high-
lights different structures in the regular region, whereas chaotic regions tend to
assume the same final value. This difference is also highlighted by the standard
deviation since the chaotic regions at the border of the stable domain generally
show a low standard deviation, whereas the stable regions at lower amplitude
have higher values.

This result is expected, since chaotic initial conditions are characterized by a
large maximal Lyapunov exponent, which leads different initial displacements
to eventually align along it after a high enough number of turns. In contrast,
regular initial conditions do not exhibit this preferential direction and lead to a
different value of FLI depending on the choice of the initial displacement.

8.4.2 | Use of Birkhoff weights with FLI

To quantify the convergence improvements given by the Birkhoff weights,
we compare the values obtained for FLI at different times for one of the HL-
LHC lattices, using either the standard approach that considers the mean in
Eq. (7.10) , that is, FLI/n, or the weighted mean based on the use of Birkhoff
weights as in Eq. (7.12) , that is, FLIWB.

In this analysis, we consider two ensembles of regular and chaotic particles
that have been classified by means of the value of the FLI indicator computed
for n = 105 turns. Inevitably, this evaluation does not reach the level of reli-
ability achieved by the ground truth evaluated in the previous chapter, which
was evaluated at n = 108. Therefore, there could be some misclassified parti-
cles in our sampling. To overcome this issue as much as possible, we consider
regular particles those that have reached a final value of log10(FLI/n) < −4.5,
and, as chaotic particles, we consider those that have reached a final value of
log10(FLI/n) > −2.5. This arbitrarily thresholding is based on the expected
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Figure 8.7: Overview of FLI evaluated at n = 105 using as initial displacement any
of the six base vectors x̂ , p̂x , ŷ , p̂y , Ẑ , and 𝛿. The two colour maps on the left show
the mean and the standard deviation of all six evaluations of FLI , the others show the
values of FLI for each of the six initial displacements as relative difference from the
mean value. (HL-LHC lattice used: best seed, Z0 =0.3m.)

properties of the dynamic indicator FLI and considers a subset of initial con-
ditions that have already manifested clear regular or chaotic behaviour at 105

turns, while excluding those that do not yet have a clear classification.
The sets are then used to inspect the time evolution of both FLI/n and

FLIWB, to assess possible classification improvements in the latter compared to
the first. These improvements can be, for example, an increased convergence
rate in the indicator value or an increased spread between the values of regular
and chaotic initial conditions.

In Fig. 8.8 (left), the comparison between the two indicators is made for
a subset of the set of regular initial conditions. It is possible to observe how,
for regular initial conditions, Birkhoff averaging does not seem to significantly
improve the convergence rate, although it does introduce a constant shift to-
wards a smaller indicator value gap that improves the overall performance of
the indicator.

In Fig. 8.8 (right), we show the comparison for the subset of chaotic initial
conditions. In this case, a saturation region is observed for the indicator value
of the order of 10−3 − −10−4 for both indicators. When this value is reached,
both indicators oscillate around it. However, the slope with which this non-
zero value is reached is different for the two indicators and is higher in absolute
value for FLI/n than for FLIWB. This, combined with the fact that both indi-
cators showed a similar convergence rate for regular initial conditions, suggests
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Figure 8.8: Time evolution of FLI computed using either a standard mean (FLI/n)
or the Birkhoff averaging (FLIWB). Left plot: indicators computed for a set of 100
regular initial conditions, the fit highlights an almost identical convergence rate for
the two indicators, although the Birkhoff averaging introduces a constant shift towards
a smaller indicator value, which represents already an improvement. Right plot: in-
dicators computed for a set of 100 chaotic initial conditions. A slight difference in
convergence rate is observed for low n values, before reaching a saturation value of the
indicator of the order of 10−3−−10−4. (HL-LHC lattice used: worst seed, Z0 =0.3m.)

a greater difference in the convergence rate of regular and chaotic initial con-
ditions for FLIWB, compared to that of FLI/n. We must also point out how
some chaotic initial conditions exhibit large fluctuations in FLIWB before the
saturation point, reaching values comparable to the regular initial conditions.

Despite these isolated oscillations, the improvement brought about by the
Birkhoff averages can be appreciated by comparing the evolution of the value
distribution of log10(FLI/n) and log10(FLIWB) reported in Fig. 8.6, since
there the time evolution of the value distribution is shown for all the initial
conditions shown in Fig. 8.5. The part of the distribution corresponding to
the regular initial conditions reaches its peak (yellow band) and moves toward
zero with increasing n. However, the displacement towards zero is faster for
FLIWB, and the peak is also narrower, potentially allowing for a better classi-
fication method, as seen in the previous chapter. It should be stressed that, as
already mentioned, the lower values of FLIWB are not due to a steeper slope,
but to a constant initial offset. In both graphs, a faint trace of a peak is visible
that corresponds to the indicator value of about 10−3. This feature is remark-
ably similar for the two indicators, as already seen in Fig. 7.4.

When applied to a modulated Hénon map, as discussed in Section 7.4.2,
the Birkhoff weights applied to FLI provided a slight improvement in the con-
vergence of regular initial conditions to zero, as well as an overall benefit in
highlighting the two separate clusters of initial conditions. In the current con-



172 Analysis of the beam dynamics in HL-LHC with dynamic indicators

text, this difference in convergence was not appreciated to a comparable extent;
however, a slight improvement was observed in cluster sharpness and separa-
tion, suggesting that Birkhoff weights still offer a certain improvement with
respect to the plain FLI classification of chaotic orbits.

8.4.3 | Dependence of FMA from the longitudinal dynamics

As observed in Appendix 7.b, the chaotic structures highlighted by FMA
are very different from those highlighted by the other dynamic indicators. This
is due to the fact that FMA is generally sensitive to tune changes, which are
not necessarily related to chaotic dynamics, but rather related to the presence
of resonances or tune modulation.

To further highlight this characteristic of FMA, we can observe how the
indicator is particularly sensitive to the presence of longitudinal dynamics. In-
deed, the longitudinal dynamics couples with the transverse one, also intro-
ducing tune modulation via a finite value of the chromaticity. In Fig. 8.9, we
present FMA evaluated for the best seed for three values of Z0, and we com-
pare the resulting structures with those highlighted by FLIWB. Two essential
features can be observed. The first is that the chaotic regions at the border of
the stable region resemble very much for the two indicators, which show that
their behaviour is similar. The second is a strong difference between the two
indicators in the region close to the vertical axis. This difference grows sig-
nificantly as a function of Z0. With increasing values of Z0 the chaotic region
detected by FMA extends toward the origin along the vertical axis. Further-
more, the width of this chaotic region increases with Z0. It is quite clear that
the chaotic behaviour detected by FMA is an artefact related to the presence of
a strong modulation of the tunes. In this sense, this observation suggests that
the use of FMA to identify chaotic regions in phase space is taken with a grain
of salt whenever modulation of linear tunes is present.

Another feature emerges when considering the evolution of the distribution
of indicator values as a function of time. In fact, if we compare the evolution of
the value distribution of FMA, we can observe, in Fig. 8.5, how FMA evolves
into a trimodal distribution for one of the lattices around n = 104. Unlike the
other dynamic indicators, which show a tendency to create a bimodal distribu-
tion.

8.4.4 | General performance of REM

In the previous chapter, the performance of different dynamic indicators
was evaluated using a modulated Hénon map and applying a clustering ap-
proach to detect chaotic orbits. This analysis showed that theREM indicator is



Some features of dynamic indicators 173

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.0 m

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.15 m

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.3 m

−10

−8

−6

−4

−2

lo
g

1
0
(F
M
A

)

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.0 m

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.15 m

0 2 4 6

x0 [σ units]

0

2

4

y 0
[σ

u
n

it
s]

Best seed, ζ0 = 0.3 m

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

lo
g

1
0
(F
L
I
W
B

(x̂
))

Figure 8.9: log10(FMA) (top row) and log10(FLIWB (x̂)) (bottom row) evaluated on
the same seed for three values of Z0 at n = 105. The differences between the two
indicators are enhanced with larger values of Z0.

capable of highlighting chaotic structures faster than Lyapunov-based dynamic
indicators such as FLIWB. Mainly because of its ability to distinguish regular
orbits from chaotic ones in a well-defined bimodal distribution, as the numeri-
cal error is quickly amplified by the chaotic character of the orbits.

When applying REM to the HL-LHC lattices, we observe a similar be-
haviour, i.e. the ability to clearly highlight chaotic regions in the phase space.
In Fig. 8.5, we can qualitatively compare the results obtained by REM , calcu-
lated for an example seed, with those obtained with FLIWB. We can observe
howREM tends to highlight chaotic regions qualitatively sharper than FLIWB,
reproducing the same behaviour observed in the modulated Hénon map, al-
though, for this analysis, we lack the possibility to define a ground truth to be
used to compare the results of the various indicators.

The behaviour of the distribution of the indicator values can be appreci-
ated by comparing the evolution of the value distribution of log10(REM) and
log10(FLIWB) as a function of time, as shown in Fig. 8.6. In fact, log10(REM)
tends to a bimodal distribution much faster than log10(FLIWB) and in such a
way that a threshold to detect chaotic initial conditions would be almost inde-
pendent of n. Therefore, we can conclude that the promising performance
of REM in highlighting chaotic structures in the phase space, along with its
straightforward numerical implementation, makes it a very interesting tool for
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studying phase-space structures in realistic accelerator lattices.

8.5 | Analysis of the beam dynamics using dynamic
indicators

8.5.1 | Considerations on stability time and Lyapunov time

It is of interest to inspect the average value of the Lyapunov time TL, that
is, the inverse of the maximum Lyapunov exponent [163], for different values
of the amplitude in the x − y space. The maximum Lyapunov exponent is
estimated directly by the dynamic indicators FLI/n or FLIWB. In particular,
we are interested in evaluating whetherTL follows a Nekhoroshev-like scaling
law, which would indicate that the chaotic regions are those contributing to the
diffusion-like process that has been introduced in the proposed framework. In
other words, we want to inspect whetherTL scales with the amplitude I of an
initial condition, as in Eq. (1.45) . This study is motivated by the well-known
fact that the dynamic aperture follows a Nekhoroshev-like evolution [57], dis-
cussed in Section 3.6, which implies a scaling law that describes an exponential
reduction in the stability timeTs of the initial conditions as a function of their
initial action I .

To make use of our numerical simulation data and inspect Ts and TL as
functions of the initial radius r =

√︁
x2 + y2 of an initial condition, we evaluated

the mean values of Ts and TL for a set of initial conditions in the amplitude
interval [r−Δr/2, r+Δr/2] and the angular sector comprised between [0, 𝜋/2].
The mean values of Ts and TL are then calculated for each interval and the
resulting values are plotted as a function of r. Note that for our Nekhoroshev-
like scaling laws, I and r are related by I = r2.

To evaluate an optimal choice for Δr , we first calculate the mean values of
Ts andTL for a range of values of Δr , and compare the resulting curves directly.
We then select the value of Δr as the best compromise between statistical fluc-
tuations and loss of information. In Fig. 8.10, we present the results of this
analysis for bothTs andTL, applied to one of the realizations of the HL-LHC
lattice. We can see that the best compromise is achieved for Δr = 0.2𝜎 , which
is the value used in the following.

To estimate the Lyapunov time TL, we can use FLI/n or FLIWB, as both
provide an estimate of the maximal Lyapunov exponent and therefore of TL.
In Fig. 8.11, we present the results of this analysis for the same seed of the HL-
LHC lattice. For regular orbits, the maximal Lyapunov exponent is zero and,
therefore, TL is infinite. For chaotic orbits, however, the maximal Lyapunov
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Figure 8.10: Mean values ofTs andTL as a function of r for some values of Δr. The
best compromise between statistical fluctuations and loss of information is achieved
for Δr = 0.2𝜎.

exponent is finite and thereforeTL is finite as well. However, since the FLI/n
and FLIWB dynamic indicators are evaluated at a finite time n, it is inevitable
to observe a non-zero value of the maximal Lyapunov exponent, and hence
a finite value of TL, also for regular orbits. This can be observed in Fig. 8.11,
since for values of r corresponding to the regular regions of the phase space,
i.e. close to zero, TL as computed using FLI/n tends to 105, the maximum
number of turns used in the numerical simulations. The situation is different
for the case of FLIWB. In fact, thanks to its superconvergence properties, it
provides the same mean TL value as FLI/n for r in the chaotic regions, i.e.
it corresponds to large values of r. Moreover, it provides higher values of TL
for r corresponding to regular regions. Based on this observation, we will use
FLIWB to deriveTL in the following.

When comparing directlyTL andTs, as shown in Fig. 8.12, we can observe
that the two times exhibit a similar behaviour with respect to r : they both ex-
hibit a saturated plateau for low r , corresponding to the region dominated by
regular orbits, and an exponential decay beyond certain values of the radius,
which varies in sharpness and position depending on the value of Z0. In the
same figure, we also show different evaluations of TL based on FLIWB, evalu-
ated at different values of n, which clearly show how the value ofTL for regular
orbits increases with the value of n, while the value of TL for chaotic orbits
converges to a value that can be considered true. Another important feature is
clearly seen in the same figure, namely thatTL extends over a reduced range of
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Figure 8.11: Mean values of TL as a function of r with Δr = 0.2𝜎 for three values
of the Z0 variable. The results presented refer to FLI/n and FLIWB, both evaluated
at n = 105. For high values of r , the two indicators provide similar results, while
for low values of r , FLIWB provides a higher value of TL. This is linked to the faster
convergence rate of FLIWB to the true value of the indicator, and hence of the maximal
Lyapunov exponent. The grey line indicates the number of stable initial conditions that
are inside the interval [r − Δr

2 , r +
Δr
2 ] and the angular sector comprised in the interval

[0, 𝜋/2], that are used to evaluate the mean. The change of slope corresponds to the
transition between the stable region and the unstable one.

r values. This is due to the choice that the indicator values have been evaluated
only for orbits that are stable up to 105 turns, which clearly explains why, on
the other hand,Ts extends over a wider range of r values.

The curves shown so far are obtained by a process of averaging of the raw
data. To better understand the actual situation, the distributions ofTL andTs as
functions of r are shown in Fig. 8.13. There, the distributions are represented
using a colour map, and the mean values are highlighted by the red curves.
We can observe how the distributions feature a spread that correlates with the
value of r , i.e. it shrinks towards small values of r and grows with increasing
values of r. For the case ofTs, this effect is really striking, since for the values
of r corresponding to the stable region of phase space, the distribution of Ts
is a delta centred on the value of 105. In fact, the behaviour of the width of
the distributions is not a surprising feature, since the value of r is somewhat
correlated with the presence of regular or chaotic orbits.

It is worth noting that given the shape of the distributions, the mean value
does not correspond to the most probable one, i.e. the position of the maxi-
mum of the distribution. Therefore, we have evaluated the curves that repre-
sent the most probable values of Ts and TL and used them for the following
analyses. However, it turned out that the results of the fit discussed below are
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much less stable and because of this observation, the use of the most probable
value of the distributions ofTs orTL was abandoned, and the use of the mean
value was retained for the rest of the analyses.

We now want to study the possibility of fitting a Nekhoroshev-like function

T =T0 exp

[
−

(
I∗
I0

) 1
2^

]
(8.3)

to bothTL andTs, and analyse both the fit goodness and the dependence of the
values of T0, I∗, and ^ for the various combinations of realizations and values
of Z0. As this scale law ranges over multiple orders of magnitude, we consider
the logarithm ofT , and fit the following function:

log(T ) = log(T0) −
(
I∗
I0

) 1
2^

. (8.4)

We first perform an initial brute-force search on a grid of values ofT0, I∗0 ,
and 1/(2^), and then perform a more refined search around the best values
found in the first step using the least squares method. The initial coarse-grained
search is motivated by the non-linear nature of the fit, which makes it difficult to
find the best values of the parameters with a simple gradient-descent method.

As we have seen in Figs. 8.12 and 8.13, and as we discussed previously, the
evaluation ofTL andTs is inevitably affected by the nature of numerical simu-
lations that are carried out over a finite number of turns, in our case n = 105.
Because of this, when performing the fit, we have to consider only the fraction
of the data that does not show any saturation, which is determined by the finite
number of turns used in numerical simulations.

To make an accurate selection of the numerical data to be used for the fit,
we perform the fit on various data sets selected near the region of transition
between the regular and chaotic regimes. We then choose the data cut that
provides the best fit, using as a figure of merit the reduced 𝜒 2 of the fit.

Figure 8.14, shows the result of the fitting procedure ofTL andTs, applied
to two HL-LHC realizations, both with Z0 = 0.3m. We can see how different
choices of data selection lead to differences in the values of the fit parameters,
and the optimal choice of the data selection, and hence of the fit parameters, can
be made considering the value of the reduced 𝜒 2, which is also shown. Note
that the value of the reduced 𝜒 2 is evaluated on the logarithmic equation (8.4) .

We use the reduced 𝜒 2 as a figure of merit to select the best data cut that
does not include saturated samples or exclude chunks of unsaturated data. We
select an initial data cut at a r value that exhibits a clear saturation behaviour,
that is, a value of Ts equal to 105 or a value that oscillates around 105 for TL.
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Next, we evaluate the reduced 𝜒 2 by gradually increasing the starting value
of r , in steps of 0.1 𝜎 , following a gradient descent-like procedure until we
find a local minimum. We can see how the reduced 𝜒 2 value shows a rapid
decrease as we remove saturated data, and after the local minimum, only a
minor variation is observed.

In Table 8.1, we report the fit parameters obtained for the six combinations
of HL-LHC lattice realizations and the variable Z0 we have considered. We can
observe how, in general, the fit routine obtains small error estimates for all data
sets onTs. However, for the case ofTL, small errors are observed for all cases
except for Z0 = 0.0m, probably because of the small extent of chaotic regions,
due to the absence of longitudinal-induced transverse tunes modulation.

We can also observe that in the fit of Ts, the exponent 1/(2^) has a com-
parable value for the six configurations considered. This is an interesting fea-
ture, since ^ is a parameter related to the dimensionality of the phase space
and is therefore expected to be a constant for all the different seeds. Similarly,
I∗ shows a coherent behaviour, as it appears to be strongly correlated with the
choice of the seed, while the value of Z0 does not induce very relevant variations
of I∗.

Regarding the fit ofTL, except for the case with Z0 = 0.0m, we can observe
how the values of 1/(2^) are comparable only for the same seed, the best seed
being the closest to the value achieved for the corresponding fit ofTs. Further-
more, I∗ has values that are compatible with each other within the fit errors and
comparable to the case of the fit ofTs. All this suggests that the scaling laws for
Ts and TL are not necessarily the same and, as we will see shortly, this can be
related to similar results in the literature.

In the work of Morbidelli et al. [170], an overview of the relationship be-
tween Lyapunov timeTL and macroscopic instability time is presented, a con-
cept that can be connected to our measure of stability time Ts. In particular,
the authors distinguish between two different regimes, depending on the char-
acteristics of the Hamiltonian dynamical system under study and the possible
presence of low-order resonances overlapping together.

The first regime is called resonance overlapping regime, and is characterised by
the presence of overlapped low-order resonances. In this case,Ts is expected to
have a polynomial relationship withTL, i.e. Ts ∼ T 𝛽

L , with some positive 𝛼 , 𝛽 .
The second regime is called the Nekhoroshev regime, and it is shown by the au-
thors how such a regime cannot follow a universal polynomial relation between
Ts andTL, but could instead follow an exponential one, i.e. Ts ∼ exp(TL). This
indicates that there is no universal relationship between Ts and TL, as the ac-
tual regime depends on the specific characteristics of the Hamiltonian system
under study.

If we assume, as we have done so far and verified using the data of numerical
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Ts fit Z0 = 0.0m Z0 = 0.15m Z0 = 0.3m

Worst
seed

1/(2^) 2.94 ± 0.02 3.0 ± 0.2 3.03 ± 0.08
I∗ 131 ± 2 119 ± 7 109 ± 5

log10(T0) −1.23 ± 0.04 −0.95 ± 0.08 −0.81 ± 0.06
Red. 𝜒 2 0.069 0.021 0.014

Best
seed

1/(2^) 2.9997 ± 0.0004 3.03 ± 0.07 3.00 ± 0.08
I∗ 220 ± 40 208 ± 28 206 ± 23

log10(T0) −2.2 ± 0.3 −1.9 ± 0.3 −1.819 ± 0.004
Red. 𝜒 2 0.086 0.055 0.028

TL fit Z0 = 0.0m Z0 = 0.15m Z0 = 0.3m

Worst
seed

1/(2^) 1 ± 3 1.88 ± 0.01 1.9 ± 0.1
I∗ 2500 ± 1600 100 ± 40 104 ± 31

log10(T0) −3 ± 17 1.9 ± 0.3 1.5 ± 0.3
Red. 𝜒 2 0.049 0.010 0.014

Best
seed

1/(2^) 1.5 ± 1.0 2.94 ± 0.08 2.7 ± 0.1
I∗ 1700 ± 400 108 ± 25 98 ± 27

log10(T0) −4 ± 5 1.1 ± 0.3 1.5 ± 0.3
Red. 𝜒 2 0.018 0.003 0.016

Table 8.1: Results of the fit of a Nekhoroshev-like scaling law on Ts and TL data ob-
tained from the six combinations of HL-LHC realizations and Z0 values considered.
The error reported is that associated to the fit procedure and represents the standard
deviation of the fit parameters evaluated by the least-squares method. The reduced
𝜒 2 is also reported.

simulations, that bothTs andTL follow a Nekhoroshev-like scaling law, we can
derive the following relation between the two quantities, namely:

Ts
T0,s

= exp

[(
I∗,s
I∗,L

)1/2^s (
log

TL
T0,L

) ^L/^s]
. (8.5)

If ^L/^s = 1, we can recover a polynomial relation between Ts and TL of
the form Ts = 𝛼T 𝛽

L , with 𝛼 = T0,s/(T0,L) (I∗,s/I∗,L)
1/2^s and 𝛽 = (I∗,s/I∗,L)1/2^s.

If, on the other hand, ^L/^s ≠ 1, the relation assumes the form Ts =

𝛼 exp
(
𝛽 log

(
TL/T0,L

) ^L/^s) , with 𝛼 = T0,s and 𝛽 = (I∗,s/I∗,L)1/2^s. It is worth
noting that in our case the exponential relation between Ts and TL includes a
dependence on the logarithm of TL, which is nonetheless different from the
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regimes described in Ref. [170]. The parameters of the relation found in the
numerical simulations performed using the HL-LHC magnetic lattices are
listed in Table 8.2.

RelationTs,TL Z0 = 0.0m Z0 = 0.15m Z0 = 0.3m

Worst
seed

^L/^s 2 ± 6 1.56 ± 0.08 1.56 ± 0.09
𝛼 (5.9 ± 0.5) × 10−2 (1.1 ± 0.2) × 10−1 (1.6 ± 0.2) × 10−1
𝛽 (1.6 ± 3.1) × 10−4 1.4 ± 1.6 1.1 ± 1.0

Best
seed

^L/^s 2.0 ± 1.3 1.03 ± 0.03 1.13 ± 0.06
𝛼 (0.7 ± 0.5) × 10−2 (1.2 ± 0.7) × 10−2 (1.51 ± 0.01) × 10−2
𝛽 (2.2 ± 2.0) × 10−3 7 ± 6 9 ± 8

Table 8.2: Parameters of the relation between Ts and TL obtained from the fit pa-
rameters reported in Table 8.1. All the parameters are evaluated assuming the case
^L/^s ≠ 1.

The parameters found show sizeable differences between the various cases,
confirming the difference in dynamics and the fact that the relationship be-
tween Ts and TL is strongly model dependent. It should also be noted that
the values of the parameters for the case Z0 = 0.0 exhibit strong differences
from those obtained for Z0 ≠ 0 values. This can be mainly related to the fit
performance obtained for the fit of the Nekhoroshev law onTL for these cases.

Of all the cases inspected, neglecting those with Z0 = 0.0m because of their
high uncertainty in the parameters, we see that the one with the best seed and
Z0 = 0.15m appears to have the ratio ^L/^s comparable to one, if we consider
the propagated uncertainty. If we then compute the corresponding parameters
𝛼 and 𝛽 for this specific case, we have, respectively, 𝛼 = (0.2 ± 3.3) × 10−9
and 𝛽 = 7 ± 6. Note that 𝛼 is compatible with the zero value, which implies
a degeneracy of the polynomial law. This degeneracy is already visible in the
large error affecting the value of 𝛼 evaluated for case ^L/^s ≠ 1. This degen-
eracy might suggest an insufficient amount of information in the available data
for performing this kind of parametric estimation. Future investigations will
consider a different sampling of the initial conditions to reconstruct the depen-
dence ofTL andTs on the radius with higher resolution at the most significant
amplitudes.

8.5.2 | Time evolution ofGALI (k) for chaotic orbits

The GALI (k) indicators depend on the value of the parameter k that as-
sumes the values 2 ≤ k ≤ 2N , where N is the number of degrees of freedom
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of the system, which, in our case, is N = 3. For k = 6 we find that the choice
for the linearly independent initial displacements corresponds to the six base
vectors x̂, ŷ, p̂x, p̂y, Ẑ , and 𝛿, and there is a single indicator. On the other
hand, for lower values of k, we can select the subspace of initial displacements
among several possibilities and explore the chaotic behaviour of the system in
that specific subspace.

The choice of k has consequences on the convergence rate of the indicator
for regular and chaotic orbits. A complete overview of the different expected
behaviours ofGALI (k) for different values of k is given in [171] where a number
of Hamiltonian systems are presented and considered in detail.

If the orbit is chaotic,GALI (k) converges to zero exponentially fast with the
law

GALI (k) ∝ exp [−t ((_1 − _2) + (_1 − _3) + · · · + (_1 − _ k))] , (8.6)

where _1 is the largest Lyapunov exponent and _2 > _3 > · · · > _ k are the
next k−1 Lyapunov exponents in decreasing order. If we assume _1 ≫ _2, we
see that the exponential decay ofGALI (k) is bounded by exp(−tk_1).

In contrast, if the orbit is regular, GALI (k) varies with time according to
different laws depending on the value of k and the choice of displacements.
That is, we have

GALI (k) ∝


constant if 2 ≤ k ≤ N

1
t2(k−N )−m if N < k ≤ 2N and 0 ≤ m < k − N
1
tk−N

if N < k ≤ 2N and m ≥ k − N
. (8.7)

Let us now consider the behaviour ofGALI (k) for an ensemble of 10 chaotic
initial conditions, obtained from the worst seed configuration and Z0 = 0.3m,
which scored a close to identical value with the FLIWB (x̂) dynamic indicator
evaluated at n = 105, suggesting a similar maximal Lyapunov exponent. A
mean of an ensemble of particles is considered in order to reduce the fluctua-
tions of individual conditions and highlight the evolution trend of the dynamic
indicator. We expect both GALI (2) and GALI (4) to exhibit a similar expo-
nential decay, regardless of the choice of displacement, withGALI (4) showing
a decay rate roughly double that of GALI (2). To verify this, we pick the 10
initial conditions with a value greater than 10−3 with FLIWB (x̂), evaluated at
n = 105, as such value is related to chaotic behaviour.

The results are shown in Fig. 8.15. The mean values of GALI (2) and
GALI (4) follow an exponential decay in agreement with expectations. All dis-
placement choices exhibit the same decay with a different offset. Note that
the pair ( Ẑ , 𝛿) exhibits a faster decay rate compared to the other displacement
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choices GALI (2). GALI (6) is also reported for the sake of comparison of the
decay rates.

8.6 | Conclusions and future work

In this chapter, we used a set of dynamic indicators to study the beam dy-
namics generated by a realistic accelerator magnetic lattice. Given the ability of
dynamic indicators to provide information on the chaotic character of the dy-
namics, they can be used to probe the long-term dynamics of charged particles
in a circular accelerator, in order to gain insights on the phase-space structures
and the scaling laws governing the beam dynamics, which are closely linked to
stability and diffusive behaviour.

Five indicators have been considered, namely FLI/n, FLIWB, GALI (k) ,
REM , and FMA, based on the experience gained from the study of the dy-
namics generated by the Hénon map. The computational aspects and numer-
ical implementation of these indicators have been discussed, and they were
then tested on an HL-LHC realistic accelerator lattice, and the information
provided by each indicator was discussed, also with emphasis on their features.

We have observed that the REM indicator performs mostly as expected,
while the FMA is strongly affected by the tune modulation induced by the
longitudinal motion that couples with the transverse one by means of the non-
zero chromaticity. In a way, this is comparable to the behaviour observed on
the modulated Hénon map in the presence of tune modulation.

The indicators have also been used to attempt a detailed characterization
of the beam dynamics. We have observed how the Lyapunov time, provided
with improved convergence rates by FLIWB, can be used to inspect the pres-
ence of a Nekhoroshev-like scaling law for the dynamics, and how such value
is related to both the lattice realizations and the longitudinal dynamics. This
suggests that such a concept can indeed be used to inspect the presence of ex-
tended chaotic structures in the phase space, which might be related to long-
term Nekhoroshev-like diffusive behaviour. Furthermore, the time evolution
of the indicators GALI (k) has been studied for chaotic initial conditions, high-
lighting some properties, while its use to study the geometry of regular orbits
will be the topic of future studies.
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Figure 8.14: Results of the fit of TL and Ts for two HL-LHC realizations (top row,
worst seed with Z0 = 0.3m; bottom row, best seed with Z0 = 0.3m). Multiple slices of
data are considered close to the transition point at which the data begins to manifest
clear saturation due to the finite tracking time. The best fit is chosen by considering
the minimum of the reduced 𝜒 2 for the various data cuts considered. This minimum
value is highlighted with a vertical red dashed line. The values of the fit parameters for
the various cuts are also shown.
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Figure 8.15: Mean value evolution ofGALI (2) andGALI (4) for various displacement
choices, and of GALI (6) . An ensemble of 10 chaotic initial conditions with similar
FLIWB (x̂) evaluated at n = 105 was considered. The mean value of the three GALI
indicators follow an exponential decay, which is in agreement with the expected be-
haviour for chaotic orbits. GALI (4) shows roughly double the decay rate ofGALI (2) .
The displacement choice ( Ẑ , 𝛿) in GALI (2) has a decay rate faster than the other
choices. (HL-LHC lattice used: worst seed, Z0 =0.3m.)
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Conclusions

In this thesis, we reviewed a novel diffusive framework for describing the
long-term behaviour of the betatron motion in circular accelerators. The
framework consists of a Fokker-Planck model with a diffusive coefficient hav-
ing a functional form related to the stability-time estimate of the Nekhorohsev
theorem. Such a framework has the purpose to provide better insights on the
evolution of the beam distribution, as well as to provide a better understanding
on the formation of beam halo and of the scaling laws governing beam losses.

To test the functional form of the diffusion coefficient, consistent with the
stability time estimate of the Nekhoroshev theorem, we have proposed and
scrutinized through detailed numerical simulations an optimal measurement
protocol, which uses collimator scans with a specific pattern and timing. This
protocol consists of separating the measured loss signal into a global current
and a recovery current, and reconstructing the global current to normalize the
recovery current. The performance of the protocol was simulated in various
configurations and found to be capable of reconstructing the parameters of the
diffusion coefficient with good accuracy, especially when performed in a phase-
space region where the diffusion coefficient has an exponential evolution. The
protocol was also shown to provide useful information on possible shortcom-
ings in the data set used for the analysis, such as a high uncertainty band in the
global current reconstruction or a reconstructed value of I∗ that indicates that
the probed phase space region is outside the optimal interval.

A variant of this protocol was then applied on existing LHC Run 2 collima-
tor scan data, which were collected using a non-optimized protocol. Despite
the non-ideal measurement protocol used, we were able to analyse BLM loss
signals during collimator scans and obtain a promising reconstruction of recov-
ery currents, indicating a behaviour that is compatible with a Nekhoroshev-like
diffusive dynamics. To address missing information in the dataset, we adapted
key features of our fitting procedure, leading to good reconstruction perfor-
mance and insight into the global diffusive behaviour of the LHC beam halo.
As some collimator scans carried out in the LHC 2022 run were performed
using our proposed optimal protocol, we expect to be able to more accurately
characterize non-linear diffusive behaviour, which will be the outcome of fu-
ture work.

Another application of this general diffusive framework was the analysis of
the long-term effects of beam-beam wire compensators on beam losses. The
promising results obtained in the various fit reconstructions provided, in gen-
eral, positive insight on the beam-halo dynamics, suggesting that the wires do
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not have unwanted side effects on the beam dynamics and that our diffusive
model might be a promising tool to assess these long-term effects. Here, as
well, future studies will be performed using the recent data collected during
the 2022 LHC run, which were collected using a better approach that allows
keeping under control the beam-halo evolution.

Regarding the domain of single-particle effects, we considered the analysis
of the performance of dynamic indicators aimed at detecting chaotic behaviour
in the orbits of symplectic dynamical systems. After measuring the classifica-
tion performance of various indicators on a modulated Hénon map, we have
determined which are the best performing ones, in terms of correctly assessing
the chaotic character of an orbit using a minimal number of turns. On the ba-
sis of the findings of these studies, the best indicators have been applied to the
study of the beam dynamics in realistic magnetic lattices of the LHC luminosity
upgrade.

This analysis provided some interesting elements on the connection be-
tween Nekhoroshev scaling laws for stability times and the presence of large
chaotic regions in the phase space, in terms of Lyapunov time, measured
by means of the FLIWB dynamic indicator. In fact, it has been possible
to show that both the stability time and the Lyapunov time follow the same
Nekhoroshev-like scaling law, although with different model parameters. More-
over, theGALI dynamic indicator was used to first inspect its time dependence
for chaotic orbits, while the analysis of the geometry of the orbits is a topic of
future studies.

In general, the less known dynamic indicators explored in these studies pro-
vided interesting results that are worthy of further inspection and will eventually
be included in the toolbox of an accelerator physicist.

The research line presented in this thesis still requires more steps and de-
velopments to be considered fully complete. As we look forward to the present
and future measurement opportunities offered at the CERN LHC, we hope to
be able to confirm and consolidate the initial promising results achieved here.

Collimator scans performed following our requirement, as well as new
beam-beam wire compensator measurements, will provide new data to be
studied and used to assess the consistency of our proposed diffusive frame-
work. This, along with further developments, shall provide better insights into
the complex topic of non-linear beam dynamics and beam-halo formation.
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