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Abstract

Our objective in this thesis is to study the structure of the space of group equiv-
ariant non-expansive operators (GENEOs). In particular, we explore the pseu-
dometric and topological properties of this space. We introduce the notions of
compactification of a perception pair, collectionwise surjectivity of a space of GE-
NEOs, and compactification of a space of GENEOs. We obtain some compactifi-
cation results for perception pairs and the space of GENEOs. We show that when
the data spaces are totally bounded and endow the common domains with metric
structures, the perception pairs can be embedded isometrically in compact ones.
Moreover, we show that when these conditions are satisfied, every collectionwise
surjective space of GENEOs admits a compactification. We also show that the
underlying embeddings are compatible.

An important part of the study of topology of the space of GENEOs is to
populate it in a rich manner. We introduce the notion of a generalized permutant
and show that this concept is useful in defining new GENEOs. The concept of
a generalized permutant extends the applicability of the techniques based on the
former idea of a permutant to the case when we might be working with distinct
perception pairs.

We define the analogues of some of the aforementioned concepts in a graph
theoretic setting, enabling us to use the power of the theory of GENEOs for the
study of graphs in an efficient way. We define the notions of graph perception pair,
graph permutant, and graph GENEO. We develop two models for the theory of
graph GENEOs. The first model addresses the case of graphs having weights as-
signed to the vertices, while the second one addresses the case of so called weighted
graphs, i.e., graphs with weights assigned to the edges. We prove some new results
in the proposed theory of graph GENEOs and show the power of our models by
describing their applications to the structural study of simple graphs.

We introduce the concept of a graph permutant and show that this concept

i



can be used to define new graph GENEOs between distinct graph perception pairs,
thereby enabling us to populate the space of graph GENEOs in a rich manner.
The richness of the techniques for defining GENEOs puts us in a better position
to shed more light on the structure of the space of GENEOs.
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Chapter 1

Introduction

The importance of equivariance in machine learning is widely recognized. The
use of equivariant operators allows one to incorporate domain knowledge into the
learning process and introduce symmetries in data space, thereby paving the way
not only to speeding up machine learning and reducing large dimensionality of
data but also to the introduction of new abstract representations [1, 2, 3, 4, 5].

From the epistemological perspective, equivariant operators can be interpreted
as observers that transform data into (usually simpler and more interpretable)
data. In our mathematical framework, we are interested in data observers that
are represented by functional operators transforming data in a regular and stable
way, while respecting the compatibility with the action of an underlying group
G of transformations, which describes the equivalence between data [6, 7]. The
essence of group equivariant operators lies in their commutativity with respect to
the action of G, and one of the most important regularity, viz. non-expansivity,
enables one to avoid instability and divergent behavior.

Our research focuses on the study of topological properties of these group equiv-
ariant non-expansive operators (GENEOs, for short). Such operators can be seen
as components of a new kind of neural networks as well as selected observers
whose expertise is leveraged to improve data analysis. The use of GENEOs opens
new possibilities in applications, making use of their ability to incorporate domain
knowledge in the analysis hierarchy. For example, a shallow and interpretable neu-
ral network based on GENEOs, viz., GENEOnet, has been recently proposed for
the efficient detection of protein pockets that can host ligands. In this method, a
set of GENEOs is allowed to fall on a collection of operators that process functions
representing various properties of a protein. Families of operators are networked
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through a convex combination and a specific parameter is used to generate binary
functions, where 1’s represent promising binding sites [8].

In some sense, GENEOs constitute a bridge between geometric deep learning
[9, 10] and topological data analysis. They make available a mathematical model
for the concepts of agent and observer, seen from a geometrical perspective. The
concept of a GENEO helps us affect a paradigm shift in data analysis from the
geometry of data to that of the space of observers, thereby enriching our under-
standing of geometric deep learning.

Moreover, GENEOs present interesting links with persistent homology and
allow one to get lower bounds for the natural pseudo-distance associated with the
action of a group of homeomorphisms [6]. Furthermore, the concept of GENEO is
useful in the architectural analysis of neural networks. Therefore, it is natural to
study the metric and topological properties of the spaces of GENEOs. This study,
coupled with our compactification results, could prove useful for the research in
artificial intelligence.

Formally speaking, GENEOs are maps between so-called perception pairs (Φ, G),
where Φ is a set of bounded real-valued maps defined on a non-empty set X and G
is a group of Φ-preserving bijections of X. The space Φ represents the signals or
measurements that the observer can interpret, while G is the equivariance group
associated with the action of the observer. The space Φ is naturally endowed with
a metric structure and endows X and G with suitable pseudo-metrics or metrics.
This reflects the epistemological assumption that any information (and hence any
quantitative structure) follows from physical measurements. It is interesting to
observe that some of the pseudo-metric and topological properties of Φ are propa-
gated to X and G, but not all. For example, if Φ is totally bounded, then so are X
and G [11, Theorem 1, Theorem 4], while there are simple examples of perception
pairs with compact Φ but incomplete X and G [6].

While the literature concerning equivariant neural networks is already exten-
sive, the topological research about them is still quite limited. Until now, most of
the attention has been devoted to what is called topological machine learning; i.e.,
the joint use of topology-based methods and machine learning algorithms [12], in
general terms. In this field, some research focuses on the study of so-called intrin-
sic topological features, which concerns the employment of topological features to
analyze or influence the machine learning model. In particular, some regularisation
techniques have been considered, such as topological autoencoders [13, 14] (based
on the idea of building networks that can simplify the data without changing their
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topology) or methods to simplify the topological complexity of the decision bound-
ary [15]. More fundamental principles of regularisation using topological features
have been investigated in [16]. The inclusion of topological features of graph neigh-
borhoods into a standard graph neural network (GNN) has been proposed in [17],
and the employment of GNNs to learn suitable filtrations have been examined in
[18]. Furthermore, topological techniques have also been used for model analysis in
machine learning. For example, topological analysis has been applied to evaluate
generative adversarial networks (GANs) by the concept of Geometry Score [19],
while neural persistence has been introduced as a complexity measure summariz-
ing topological features that arise when filtrations of the neural network graphs
are calculated [20]. The topological analysis of the decision boundary of a given
classifier has been considered in [21], and the topological information encoded in
the weights of convolutional neural networks (CNNs) has been studied in [22].

However, we stress that the development of the theory of GENEOs differs
greatly from these lines of research, which are not focused on equivariance con-
cerning arbitrary transformation groups and do not study the topology of suitable
operator spaces, but most of them consider the properties of individual techniques
and applications. In other words, the approach we are interested in is devoted to
studying the topological properties of a space of equivariant operators as a whole.
In this mathematical setting, the compactification problem can arise and admit
resolution, and it seems natural to devise techniques for defining a rich variety of
GENEOs.

In recent years, the need for an extension of Deep Learning to non-Euclidean
domains has led to the development of Geometric Deep Learning (GDL) [9, 10].
This line of research focuses on applying neural networks on manifolds and graphs,
so making available new geometric models for artificial intelligence. In doing that,
GDL uses techniques coming from differential geometry, combinatorics, and alge-
bra. In particular, it largely uses the concepts of group action and equivariant
operator [1, 2, 4, 23, 24, 25, 26, 27], which allow for a strong reduction in the
number of parameters involved in machine learning.

Topological Data Analysis (TDA) [28, 29, 30, 31, 32] is giving a contribution
to the development of GDL, grounding on the use of non-expansive equivariant
operators [7, 33]. The main idea is to benefit from classical and new results of TDA
to study the “shape” of the spaces of equivariant operators by employing suitable
topologies and metrics. The topological, geometric, and algebraic properties of
these spaces have an important role to play in the identification of the operators
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that are more efficient for our application purposes. We stress that the assumption
of non-expansivity is fundamental in this framework, since it guarantees that the
space of group equivariant non-expansive operators (GENEOs) is compact (and
hence finitely approximable), provided that the data space is compact for a suitable
topology [6]. We also observe that, from a practical point of view, non-expansivity
can be seen as the property of simplifying the metric structure of data. While
particular applications may require locally violating this property, we remark that
the usual long-term purpose of observers is the one of simplifying the available
information by representing it in a much simpler and more meaningful way.

The approach based on TDA has allowed us to start shaping a compositional
and topological theory for GENEOs. In particular, it has been proved that some
operations are available to combine GENEOs and obtain other GENEOs, including
composition, convex combination, minimization, maximization, and direct prod-
uct. The compositional theory based on such operations leads us to think of GE-
NEOs as elementary components that could be used to replace neurons in neural
networks [6, 34, 35]. This new kind of network could be much more transparent in
its behavior, because of the intrinsic interpretability of its components. Modular-
ity is indeed a key tool for interpretability in machine learning, since it can make
clear which processes control the behavior of artificial agents. The attention to
this property corresponds to the rising interest in the so-called “explainable deep
learning” [36, 37, 38].

To use GENEOs in applications, we need methods to build such operators
for the transformation groups we are interested in. If we restrict our attention
to linear operators, a constructive procedure is available for the case that the
functions representing our data have a finite domain X. This procedure is based
on the concept of “permutant”, i.e., a set of permutations of X that is invariant
under the conjugation action of the equivariance group G we are considering [39].
While the classical way of building equivariant operators requires integration on the
(possibly large) group G [40], this construction method may be based on a simpler
sum computed on a small permutant. We can prove that any linear GENEO can be
obtained as a weighted arithmetic mean related to a suitable permutant, provided
that the domains of the signals are finite and the equivariance groups transitively
act on those domains [41]. By replacing the weighted arithmetic mean with other
normalized symmetric functions, the method based on permutants can be easily
extended to the construction of non-linear GENEOs [35].

We serve the purpose of studying the structure of the space of GENEOs on

6



three fronts. First of all, we prove that the space of GENEOs can be embedded into
a compact space of GENEOs, under some mild conditions. Secondly, we extend
the definition of a permutant to that of a generalized permutant. This allows us to
define new GENEOs even if we are working with distinct perception pairs. Finally,
we define the concepts of graph GENEO and graph permutant which allow us to
apply the theory of GENEOs to the structural study of simple graphs.

Compactness of the space of GENEOs provides us with fundamental guarantees
in machine learning. It ensures, in addition to the existence of bounds, finite
approximability which is useful in computations and paves the way to the search
for efficient operators. In our model, everything stems from measurements, i.e.,
the data set Φ consisting of real-valued functions φ : X → R, which allows us not
only to define the equivariance group G but also suitable pseudo-metrics for X and
G. It is natural to expect the effect of metric and topological properties of Φ on
those of X and G. It is known that the total boundedness of Φ implies the total
boundedness of X and G. But not all the properties of Φ are propagated to X and
G; for example, one can easily construct compact data sets Φ with incomplete X
and G. Since compactness is very important in computations, one would like to
embed all the non-compact spaces in question into the compact ones. We formalize
the concepts of compactification of a perception pair and compactification of a space
of GENEOs, and show that a wide variety of spaces of GENEOs, along with the
underlying perception pairs, admit compactifications under some mild conditions.

We give our compactification results under the assumption that our data sets
are totally bounded and endow the common domains with metric structures; more-
over, we assume that the space of GENEOs under consideration is collectionwise
surjective, a notion that we introduce in this thesis. These assumptions are al-
ready satisfied in many practical applications. For example, if we are working
with a space Φ of grey-level images represented as matrices with values in the
interval [0, 1], then it is totally bounded.

Although the existence of a rich variety of GENEOs has implications for the
structure of their space, yet in order to apply the theory of GENEOs to solve
the practical problems, one needs to come up with techniques for defining new
GENEOs. The method based on the concept of a permutant is very useful in this
regard. But it has a serious limitation: it works only in the cases when we are
working with a single perception pair, whereas in applications, we need also to use
GENEOs between distinct perception pairs. We solve this problem by extending
the concept of a permutant to that of a generalized permutant, and show that this
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concept too can be used to define GENEOs.
The recent success of the theory of GENEOs in some industrial applications

[8] has motivated us to synthesize it with the theory of graphs. We develop two
analogous models dealing with graphs weighted on vertices or edges and apply
the aforementioned ideas to the structural study of simple graphs, focusing on the
important role that these graphs have in GDL [9] and generally in TDA [42, 43,
44, 45]. To this end, we devise a way of using GENEOs with graphs, defining the
concept of a graph GENEO. Moreover, we extend the definition of permutant to
the one of a graph permutant, showing how this new concept allows us to build
GENEOs between graphs. Our final purpose in developing the theory of graph
GENEOs is to devise a new technique to build operators that can transform graphs
according to our needs, and make these operators available as components for
applications in GDL.

Our theory of graph GENEOs differs in many respects from the recent work
on the use of Hom-complexes in the study of protein-protein interactions (PPIs).
Xiang Liu et al. (2022) [46] build Hom-complexes to gain insights into the structure
of graphs, while the series of nested Hom-complexes are constructed providing us
with multiscale representations of PPIs. Moreover, they use the concepts of graph
homomorphism and multihomomorphism. On the other hand, we apply our graph
GENEOs to the graphs under consideration, and the outcomes of these applications
are used to classify our graphs into various isomorphism classes. We hope that our
work will prove instrumental in solving many industrial problems.
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Chapter 2

Elements of the Theory of
GENEOs

In this chapter, we give a brief introduction to the theory of GE-
NEOs and speak about some of its recent applications. We will
include the most important results describing the topology of the
space of GENEOs that will be used frequently in the forthcoming
chapters [6, 11], along with a short description of a method to
build GENEOs based on the concept of a permutant [39].

Contents
2.1 The Mathematical Setting . . . . . . . . . . . . . . . . . 9

2.2 Topology of the Space of GENEOs . . . . . . . . . . . . 14

2.3 Permutants . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Supplementary Proofs . . . . . . . . . . . . . . . . . . . 16

2.1 The Mathematical Setting

The concept of a GENEO involves the auxiliary idea of a perception pair, which
is nevertheless important in its own right too. It consists of a data set along with
the corresponding equivariance group. The data set is made up of bounded real-
valued functions, often called measurements or signals, defined on a non-empty
set, and plays fundamental role in defining all the concepts used or introduced
in this thesis. First of all, we use this data set to define an equivariance group
consisting of bijections of the common domain of its members. This group acts
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on our data set through composition on the right. The common domain and the
equivariance group both are endowed with pseudo-metric structures, which in turn
furnish them with suitable topologies.

This preparation sets the stage for defining a GENEO between two not neces-
sarily distinct perception pairs. Precisely, a GENEO transforms the domain data
set into the codomain data set. Its non-expansivity is defined with respect to the
pseudo-metric structures on the data sets under consideration, while the equiv-
ariance consists in its commutativity with respect to the corresponding group
actions through the mediation of a homomorphism between the selected equivari-
ance groups. Finally, the set of all GENEOs with respect to this homomorphism
is endowed with a metric, and hence a topological, structure. It is precisely this
space that we refer to as the space of GENEOs, the study of whose topological
properties is the subject matter of our work. This study though will also be sup-
plemented with the consideration of alternative pseudo-metrics on the space of
GENEOs.

We will preserve, and elaborate upon, the notation used in [6] throughout this
thesis.

Let X be a non-empty set and consider the normed vector space (RXb , ∥ · ∥∞),
where

RXb := {φ : X → R | φ is bounded},

and ∥ · ∥∞ denotes the usual uniform norm given by

∥φ∥∞ := sup
x∈X

|φ(x)| , for every φ ∈ Φ.

Any metric subspace (Φ, DΦ) of (RXb , ∥ · ∥∞), where

DΦ(φ1, φ2) := ∥φ1 − φ2∥∞ = sup
x∈X

|φ1(x) − φ2(x)| , for every φ1, φ2 ∈ Φ,

endows X with the topology induced by the extended pseudo-metric

DX(x1, x2) := sup
φ∈Φ

|φ(x1) − φ(x2)| .

The space X is interpreted as the space where one makes measurements, and the
elements φ of Φ are called admissible measurements or signals. The function spaces
Φ are sometimes called data sets. Moreover, we set dom(Φ) := X.

We stress here that any pseudo-metric structure that we will be considering in
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our model stems from the specification of a space of measurements. This encapsu-
lates our assumption that data cannot be approached directly and are known only
through suitable measurements made by an observer endowed with specific goals
[6].

In our model, self-maps of the space X have an important role to play.

Definition 2.1.1. A map g : X → X is said to be a Φ−operation if the composite
function φg is an element of Φ for every φ ∈ Φ. A bijective Φ−operation is called
an invertible Φ−operation if g−1 is also a Φ−operation.

The set of all invertible Φ−operations is denoted by AutΦ(X); i.e.,

AutΦ(X) := {g : X → X | g is a bijection, and φg, φg−1 ∈ Φ, for all φ ∈ Φ},

and forms a group under the function composition. It acts on the space Φ through
the right action

ρ : Φ × AutΦ(X) → Φ, (φ, g) 7→ φg.

We say that a bijection f : X → X is an isometry of X if DX(f(x), f(y)) =
DX(x, y), for every x, y ∈ X, and denote the set of all isometries of X by Iso(X).

Let C(X,X) ⊇ Iso(X) denote the set of all continuous functions f : X → X.
The following pseudo-metric will be used frequently in the sequel.

d∞(f, g) := sup
x∈X

DX(f(x), g(x)), for every f, g ∈ C(X,X).

If Φ is rich enough to endow X with a metric structure, instead of a pseudo-metric
one, then d∞ is an extended metric, and is called the metric of uniform convergence
on C(X,X).

Definition 2.1.2. If G is a subgroup of AutΦ(X), then (Φ, G) is called a perception
pair.

Definition 2.1.3. We say that a perception pair (Φ, G) with dom(Φ) = X is
compact if Φ, G, and X are all compact.

The data set Φ endows AutΦ(X) with a pseudo-metric structure where the
(extended) pseudo-distance DAut is given by

DAut(f, g) := sup
φ∈Φ

DΦ(φf, φg), for every f, g ∈ AutΦ(X).
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Conversely, each group G ⊆ AutΦ(X) induces on the space Φ a pseudo-metric
dG : Φ × Φ → R:

dG(φ1, φ2) := inf
g∈G

DΦ(φ1, φ2g), for every φ1, φ2 ∈ Φ.

We call dG the natural pseudo-distance associated with the group G. This pseudo-
metric represents the ground truth in our model and allows us to compare functions
in the sense that it vanishes for the pairs of functions that are equivalent with
respect to the action of the group G representing the data similarities useful for
the observer [47, 48, 49].

It is known that each invertible Φ−operation is an isometry with respect to
DX ; that is, AutΦ(X) ⊆ Iso(X) [6, Proposition 2], though the reverse inclusion
does not hold in general [6, Remark 2.4]. But d∞ does not endow the space
(AutΦ(X), DAut) with any additional pseudo-metric structure:

DAut(f, g) := sup
φ∈Φ

DΦ(φf, φg)

= sup
φ∈Φ

sup
x∈X

|φf(x) − φg(x)|

= sup
x∈X

DX(f(x), g(x))

=: d∞(f, g),

for all f, g ∈ AutΦ(X). So, d∞ coincides with the pseudo-distanceDAut on AutΦ(X);
that is

d∞|AutΦ(X) = DAut.

In general, DAut is an extended pseudo-metric. But when (X,DX) is a metric
space, then so is (G,DAut): If g, h ∈ G are distinct functions, then there is an
x0 ∈ X such that g(x0) ̸= h(x0). Since DX is a metric,

0 < DX(g(x0), h(x0)) ≤ sup
x∈X

DX(g(x), h(x)) = d∞(g, h) = DAut(g, h),

whence DAut is a metric as well.

Definition 2.1.4. Let (Φ, G) and (Ψ, H) be perception pairs with dom(Φ) = X

and dom(Ψ) = Y , and T : G → H be a group homomorphism. A map F : Φ → Ψ
is said to be a group equivariant non-expansive operator (GENEO) with respect to
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T if
F (φ ◦ g) = F (φ) ◦ T (g), for every φ ∈ Φ, g ∈ G,

and
∥F (φ1) − F (φ2)∥∞ ≤ ∥φ1 − φ2∥∞, for every φ1, φ2 ∈ Φ.

A map F : Φ → Ψ satisfying the first condition is called T−equivariant or
a group equivariant operator (GEO), and it is called non-expansive if it satisfies
the second condition. For the sake of conciseness, we often write a GENEO as
(F, T ) : (Φ, G) → (Ψ, H).

The set Fall
T of all GENEOs (F, T ) : (Φ, G) → (Ψ, H) corresponding to a group

homomorphism T : G → H is a metric space with the distance function given by

DGENEO(F1, F2) = sup
φ∈Φ

DΨ(F1(φ), F2(φ)), for every F1, F2 ∈ Fall
T .

The natural pseudo-distance allows us to define another pseudo-metric on this
space:

DGENEO,H(F1, F2) := sup
φ∈Φ

dH(F1(φ), F2(φ)), for every F1, F2 ∈ Fall
T .

The spaces F ⊆ Fall
T of GENEOs prove instrumental in comparing data. For

example, one can consider the following pseudo-metric:

DF ,Φ(φ1, φ2) := sup
F∈F

DΨ(F (φ1), F (φ2)), for every φ1, φ2 ∈ Φ.

Conti et al. (2022) [35] give examples demonstrating how the use of GENEOs
increases our ability to distinguish between data.

Our objective is to obtain isometric embeddings of perception pairs and of
the spaces of GENEOs into compact ones while retaining the metric properties of
the original spaces. The reader is referred to [6, 11] for further details about the
concepts we have so far introduced in this section.

We will assume in Section 3.1 that the data set Φ is rich enough to endow the
common domain X with a metric structure. The first step towards constructing
our compactifications, under this assumption, is to consider the metric completion
of X. It is well known that every metric space (M,DM ) admits a unique metric
completion (M̂, D̂M̂ ) up to homeomorphisms. We can assume that the completion
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M̂ contains M ; i.e., we have the inclusion

j : M → M̂,

and the metric D̂M̂ is given by

D̂M̂ (x̂, ŷ) = lim
n→∞

DM (xn, yn),

where x̂, ŷ ∈ M̂ , and (xn)n∈N, (yn)n∈N are arbitrary sequences in M converging to
x̂ and ŷ respectively.

2.2 Topology of the Space of GENEOs

The geometric and topological properties of the space of GENEOs enable one
choose better the operators that are more useful in practical applications. For
example, compactness ensures the existence of a finite set of operators that can
represent the whole space in a reliable manner [6], while the introduction of Rie-
mannian structure paves the way for minimization of cost functions by means of
gradient descent methods [50]. Bergomi et al. [6] laid the foundations of a topo-
logical theory of the space of GENEOs. Retaining the notation of Section 2.1, we
recall the following results from [6, 11, 51] which will be used frequently in the
sequel. The proofs of the results that appear only in [11] will be given in Section
2.4 for the sake of completeness.

Proposition 2.2.1. [11, Proposition 1.2.10] Each function φ ∈ Φ is non-expansive,
and hence uniformly continuous with respect to DX .

Therefore, the topology τDX
induced by DX is finer than the so called initial

topology τin on X, which by definition is the coarsest topology on X with respect
to which all the signals φ ∈ Φ are continuous.

Theorem 2.2.1. [6, Supplementary Methods: Theorem 2.1] If Φ is totally bounded,
then τDX

coincides with τin.

Theorem 2.2.2. [11, Theorem 1] If Φ is totally bounded, then so is (X,DX).

Proposition 2.2.2. [6, Proposition 2] AutΦ(X) ⊆ Iso(X).

That is, each g ∈ G ⊆ AutΦ(X) is an isometry of X.
Recall that a subgroup of a topological group is topological, and
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Proposition 2.2.3. [51] If A is a subgroup of a topological group G, then clG(A)
is also a subgroup, and hence a topological subgroup of G.

This proposition will be used in conjunction with

Theorem 2.2.3. [6, Supplementary Methods: Theorem 2.7] AutΦ(X) is a topo-
logical group and the action ρ : Φ × AutΦ(X) → Φ is continuous.

Theorem 2.2.4. [11, Theorem 4] If Φ is totally bounded, then so is (G,DAut).

Proposition 2.2.4. [11, Proposition 1.2.20] If (X,DX) is a compact metric space,
then (Iso(X), d∞) is also compact.

Theorem 2.2.5. [11, Theorem 5] If Φ ⊆ RXb and (X,DX) are both compact metric
spaces, then AutΦ(X) is closed in Iso(X), and hence compact.

Theorem 2.2.6. [6, Theorem 7] The space (Fall
T , DGENEO) of GENEOs (F, T ) :

(Φ, G) → (Ψ, H) is compact whenever the spaces Φ and Ψ are compact.

2.3 Permutants

Conti et al. [35] give a method to build GENEOs by means of the concept of
a permutant. Roughly speaking, a permutant is a finite set of invertible data-
preserving operations that remains invariant under the conjugation action of the
equivariance group. The group action is then used to define new GENEOs on the
given perception pair. If G is a subgroup of AutΦ(X), then the conjugation map

αg : AutΦ(X) → AutΦ(X),

given by f 7→ g ◦ f ◦ g−1, g ∈ G, plays a key role in this technique.

Definition 2.3.1. Let H be a finite subset of AutΦ(X). We say that H is a
permutant for G if H = ∅ or αg(H) ⊆ H for every g ∈ G; i.e., αg(f) = g◦f ◦g−1 ∈
H for every f ∈ H and g ∈ G.

Example 2.3.1. Let Φ be the set of all functions φ : X = S1 = {(x, y) ∈ R2|x2 +
y2 = 1} → [0, 1] that are non-expansive with respect to the Euclidean distances
on S1 and [0, 1]. Let us consider the group G of all isometries of R2, restricted
to S1. If h is the clockwise rotation of ℓ radians for a fixed ℓ ∈ R, then the set
H = {h, h−1} is a permutant for G.
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Other examples of permutants will be given in Example 4.2.6, Example 4.2.7
and Proposition 4.2.1.

We recall the following result. As usual, in the following we will denote the set
of all functions from the set A to the set B by the symbol BA.

Proposition 2.3.1. Let (Φ, G) be a perception pair with dom(Φ) = X. If H is a
nonempty permutant for G ⊆ AutΦ(X), then the restriction to Φ of the operator
F : RX → RX defined by

F (φ) := 1
|H|

∑
h∈H

φ ◦ h

is a GENEO from (Φ, G) to (Φ, G) with respect to T , provided that F (Φ) ⊆ Φ.

The reader is referred to [11, 41, 35] for further details.

2.4 Supplementary Proofs

For the sake of completeness, we recall here the proofs of some results reported in
Section 2.2 that have been given only in [11].

Proof of Proposition 2.2.1. Let φ ∈ Φ and x1, x2 ∈ X. Then

|φ(x1) − φ(x2)| ≤ sup
φ′∈Φ

|φ′(x1) − φ′(x2)| = DX(x1, x2).

So φ : X → R is non-expansive.

Proof of Theorem 2.2.2. It suffices to show that every sequence (xi)i∈N in X ad-
mits a Cauchy subsequence [52]. Let us consider an arbitrary sequence (xi)i∈N

in X and an arbitrarily small ε > 0. Since Φ is totally bounded, we can find a
finite subset Φε = {φ1, . . . , φn} such that Φ =

⋃n
i=1BΦ(φi, ε), where BΦ(φ, ε) =

{φ′ ∈ Φ : DΦ(φ′, φ) < ε}. In particular, we can say that for any φ ∈ Φ there
exists φk̄ ∈ Φε such that ∥φ − φk̄∥∞ < ε. Now, we consider the real sequence
(φ1(xi))i∈N that is bounded because all the functions in Φ are bounded. From
Bolzano-Weierstrass Theorem it follows that we can extract a convergent subse-
quence (φ1(xih))h∈N. Then we consider the sequence (φ2(xih))h∈N. Since φ2 is
bounded, we can extract a convergent subsequence (φ2(xiht

))t∈N. We can repeat
the same argument for any φk ∈ Φε. Thus, we obtain a subsequence (xpj )j∈N of
(xi)i∈N, such that (φk(xpj ))j∈N is a real convergent sequence for any k ∈ {1, . . . , n},
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and hence a Cauchy sequence in R. Moreover, since Φε is a finite set, there exists
an index ȷ̄ such that for any k ∈ {1, . . . , n} we have that

|φk(xpr ) − φk(xps)| < ε, for all r, s ≥ ȷ̄.

We observe that ȷ̄ does not depend on k, but only on ε and Φε.
In order to prove that (xpj )j∈N is a Cauchy sequence in X, we observe that for

any r, s ∈ N and any φ ∈ Φ, by choosing a k such that ∥φ− φk∥∞ < ε we have:

|φ(xpr ) − φ(xps)| = |φ(xpr ) − φk(xpr ) + φk(xpr ) − φk(xps) + φk(xps) − φ(xps)|

≤ |φ(xpr ) − φk(xpr )| + |φk(xpr ) − φk(xps)| + |φk(xps) − φ(xps)|

≤ ∥φ− φk∥∞ + |φk(xpr ) − φk(xps)| + ∥φk − φ∥∞.

It follows that |φ(xpr ) − φ(xps)| < 3ε for every φ ∈ Φ and every r, s ≥ ȷ̄. Thus,
supφ∈Φ |φ(xpr ) − φ(xps)| = DX(xpr , xps) ≤ 3ε. Hence, the subsequence (xpj )j∈N

is a Cauchy sequence in X, and the theorem is proved.

Proof of Theorem 2.2.4. Let (gi)i∈N be a sequence in G and take a real number ε >
0. Given that Φ is totally bounded, we can find a finite subset Φε = {φ1, . . . , φn}
such that for every φ ∈ Φ there exists φh ∈ Φε for which DΦ(φh, φ) < ε.

Let us consider the sequence (φ1gi)i∈N in Φ. Since Φ is totally bounded, we
can extract a Cauchy subsequence (φ1gih)h∈N [52]. Then we consider the sequence
(φ2gih)h∈N. Again, we can extract a Cauchy subsequence (φ2giht

)t∈N. We can
repeat the same argument for any φk ∈ Φε. Thus, we are able to extract a
subsequence (gij )j∈N of (gi)i∈N such that (φkgij )j∈N is a Cauchy sequence for any
k ∈ {1, . . . , n}. For the finiteness of set Φε, we can find an index ȷ̄ such that for
any k ∈ {1, . . . , n}

DΦ(φkgir , φkgis) < ε, for every s, r ≥ ȷ̄.

In order to prove that (gij )j∈N is a Cauchy sequence, we observe that for any
φ ∈ Φ, any φk ∈ Φε, and any r, s ∈ N we have

DΦ(φgir , φgis) ≤ DΦ(φgir , φkgir ) +DΦ(φkgir , φkgis) +DΦ(φkgis , φgis)

= DΦ(φ,φk) +DΦ(φkgir , φkgis) +DΦ(φk, φ).

We observe that ȷ̄ does not depend on φ, but only on ε and Φε. By choosing a
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φk ∈ Φε such that DΦ(φk, φ) < ε, we get DΦ(φgir , φgis) < 3ε for every φ ∈ Φ and
every r, s ≥ ȷ̄. Thus, DAut(gir , gis) ≤ 3ε. Hence, the sequence (gij )j∈N is a Cauchy
sequence. Therefore, G is totally bounded.

Proof of Proposition 2.2.4. Let C(X,X) denote the metric space of all continuous
self-maps of X with respect to the metric d∞ given by

d∞(f, g) := sup
x∈X

DX (f(x), g(x)) , for every f, g ∈ C(X,X).

It suffices to show that Iso(X) is closed in C(X,X), as it is relatively compact by
Arzelà-Ascoli theorem [53]. Let (fi)i∈N be a sequence in Iso(X) that converges to
some f ∈ C(X,X); we show that f ∈ Iso(X). Note that f(x) = limi→∞ fi(x) with
respect to DX , for each x ∈ X; indeed,

0 ≤ lim
i→∞

DX(f(x), fi(x)) ≤ lim
i→∞

d∞(f, fi) = 0.

So,

DX(f(x), f(y)) = DX( lim
i→∞

fi(x), lim
i→∞

fi(y))

= lim
i→∞

DX(fi(x), fi(y))

= lim
i→∞

DX(x, y)

= DX(x, y),

whence f preserves DX .
It immediately follows that f is injective. As for surjectivity, let x0 be an

arbitrary point of X; we show that x0 ∈ f(X). Consider the sequence (xn)n∈N

defined by setting xn+1 := f(xn). SinceX is compact, (xn)n∈N admits a converging
subsequence (xni)i∈N. Let ε > 0 be an arbitrary real number. Then there is
an n0 ∈ N such that DX(xni , xnj ) < ε for every i, j ≥ n0. If nj ≥ ni, then
DX(xni , xnj ) = DX(x0, xnj−ni), as f preserves DX . Hence, DX(x0, f(X)) :=
infx∈f(X)DX(x0, x) ≤ DX(x0, xnj−ni) = DX(xni , xnj ) < ε. From the arbitrariness
of ε, it follows that DX(x0, f(X)) = 0. As f preserves DX , it is continuous, and
f(X) then is compact. In particular, f(X) is closed, and hence x0 ∈ f(X).

Proof of Theorem 2.2.5. For the sake of conciseness, we will rephrase the proof
given in [11]. Consider the collection H of all non-empty compact subsets of the
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space NE(X,R) of all real-valued non-expansive functions on (X,DX), endowed
with the distance induced by the uniform norm. Of course, by Proposition 2.2.1,
NE(X,R) ⊇ Φ. We know that (H, dH) is a metric space, where dH is the usual
Hausdorff distance [54]. If g ∈ Iso(X), then the map Rg : Φ → RXb that takes
φ to φg is continuous (it indeed preserves the max-morm distance), and hence
Φg := {φg, φ ∈ Φ} ∈ H.

We now observe that if g, h ∈ Iso(X), then

dH(Φg,Φh) := max
{

sup
φ∈Φg

inf
ψ∈Φh

∥φ− ψ∥∞, sup
ψ∈Φh

inf
φ∈Φg

∥φ− ψ∥∞

}

= max
{

sup
φ∈Φ

inf
ψ∈Φ

∥φg − ψh∥∞, sup
ψ∈Φ

inf
φ∈Φ

∥φg − ψh∥∞

}

≤ max
{

sup
φ∈Φ

∥φg − φh∥∞, sup
ψ∈Φ

∥ψg − ψh∥∞

}
= sup

φ∈Φ
∥φg − φh∥∞

= sup
φ∈Φ

sup
x∈X

|φg(x) − φh(x)|

= sup
x∈X

sup
φ∈Φ

|φg(x) − φh(x)|

= sup
x∈X

DX(g(x), h(x))

= d∞(g, h).

Therefore, the map χ : Iso(X) → H that takes g to Φg is non-expansive and
hence continuous. Since AutΦ(X) = χ−1(Φ), such a group is the preimage of a
closed set under a continuous function. It follows that it is closed in Iso(X), and
hence compact.

19



20



Chapter 3

Compactification of Perception
Pairs and Spaces of GENEOs

In this chapter, we define the notions of compactification of a
perception pair, collectionwise surjectivity, and compactification
of a space of GENEOs, and give our compactification results.
Under the hypothesis that our data spaces are totally bounded and
endow the common domains with metric structures, we show that
our perception pairs and every collectionwise surjective space of
GENEOs admit compactifications. We require the underlying
embeddings to be compatible, and show that this requirement too
is satisfied by our constructions [55].
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3.1 The Compactification Problem

Compactness results provide us with fundamental guarantees in machine learning.
It is known that the space of all group equivariant non-expansive operators associ-
ated with a given group homomorphism is compact whenever the spaces of signals
are compact [6, Theorem 7]. In some sense, this result states that if the spaces
of data are compact, then the space of observers is compact too, provided that
suitable topologies are used. This ensures that, for any specified tolerance, there
is always a finite set of GENEOs in the space that can approximate the behavior
of each GENEO within any acceptable proximity.

Therefore, it is natural to seek embeddings of mathematical structures of inter-
est into compact ones. This process is called compactification in general topology.
Formally, a compact Hausdorff space K is a compactification of a given space A if
it contains a dense subspace D homeomorphic to A. In the case of metric spaces,
we require the underlying homeomorphism e : A → D ⊆ K to be an isometry.

In view of the widely recognized importance of compactifications, we seek con-
ditions under which a given space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) → (Ψ, H),
and the respective perception pairs (Φ, G), dom(Φ) = X and (Ψ, H), dom(Ψ) = Y ,
can be embedded isometrically into compact ones, where Fall

T denotes the topo-
logical space of all GENEOs between the perception pairs (Φ, G), (Ψ, H), with
respect to the homomorphism T : G → H. In this article, we ascertain which
spaces of GENEOs allow us to construct the surrounding compact spaces of GE-
NEOs isometrically containing the original ones. We prove that, in many practical
applications, every perception pair and an important class of spaces of GENEOs
can be viewed as parts of compact perception pairs and compact spaces of GE-
NEOs.

We will be assuming that our data sets Φ and Ψ are totally bounded and are
rich enough to endow X and Y , and therefore G and H respectively, with a metric
structure. Moreover, we will also assume that the collection {F (Φ) | F ∈ F ⊆ Fall

T }
covers the data set Ψ. These hypotheses will be recalled several times in order to
facilitate the reading.

Our approach, in brief, is as follows. The total boundedness of Φ ensures that
X is totally bounded (Theorem 2.2.2), and therefore, its metric completion X̂ is
compact. We extend the functions φ ∈ Φ to functions φ̂ : X̂ → R on the metric
completion X̂ (Section 3.2), and use the isometries g ∈ G to define the isometries
ĝ : X̂ → X̂ (Subsection 3.3.1). The set Φ̂, being isometric to the totally bounded
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space Φ is likewise totally bounded (Corollary 3.2.2), while the set Ĝ of all ĝ
may or may not be compact despite Φ being totally bounded [6]. We, therefore,
consider their closures Φ̂ and Ĝ in the complete space C(X̂,R) and the compact
space Iso(X̂) of isometries of X̂ respectively, and, constructing successively the
perception pairs (Φ̂, Ĝ), (Φ̂, Ĝ), and (Φ̂, Ĝ), we obtain the compatible embedding
of the original perception pair (Φ, G) into the compact perception pair (Φ̂, Ĝ)
(Subsection 3.3.2). If F is a space of GENEOs (F, T ) : (Φ, G) → (Ψ, H), then these
perception pairs allow us to define two suitable spaces F1 ⊆ Fall,1

T̂
and F2 ⊆ Fall,2

T̂

of GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) respectively
(Subsection 3.4.1 and Section 3.5). Under the covering assumption stated above,
we can define a suitable space F3 ⊆ Fall

T̂
of GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ),

while the closure of F3 = {F̂ : Φ̂ → Ψ̂ | F ∈ F} in the compact space Fall
T̂

serves
as the requisite compactification of the space F ⊆ Fall

T (Section 3.5).
Let (Φ, G), dom(Φ) = X and (Ψ, H), dom(Ψ) = Y be perception pairs and

F ⊆ Fall
T , where Fall

T denotes, as usual, the space of all GENEOs (F, T ) : (Φ, G) →
(Ψ, H) with respect to a fixed homomorphism T : G → H.

In this chapter, we will be assuming that

i) Φ and Ψ are totally bounded, and are rich enough to endow each of X and Y

with metric structures;

ii) the collection {F (Φ) | F ∈ F} covers Ψ.

We know that even if Φ and Ψ are compact, let alone being totally bounded,
X,G, Y , and H need not be compact [6], though Fall

T is indeed compact in that
case. Moreover, an arbitrary subspace F of Fall

T need not necessarily be compact
either. Since compactness is an important property, as it provides us with essential
guarantees in machine learning context, it is natural to prefer compact spaces in
practical applications. We therefore ask: If compactness of X,G, Y , and H is not
guaranteed even by the compactness of data sets Φ and Ψ, let alone their total
boundedness, can we at least prove that these spaces can be isometrically and
densely embedded in compact ones while the corresponding sought after compact
spaces preserve the former mutual relations between the original spaces? That
is, can we find compactifications of perception pairs? Furthermore, can we find
compactifications of the spaces of GENEOs? These notions need being made
precise, which we do in the sequel, and prove that our assumptions are sufficient
to grant the answer to this question in the affirmative.

23



Somewhat formally, given the perception pairs (Φ, G), dom(Φ) = X and
(Ψ, H), dom(Ψ) = Y and a space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) → (Ψ, H)
with respect to a fixed homomorphism T : G → H, we assume that the data sets
Φ and Ψ are totally bounded and rich enough to endow X and Y with metric
structures, and the collection {F (Φ) | F ∈ F} covers the space Ψ. Under these
assumptions, we find perception pairs (Φ∗, G∗), dom(Φ∗) = X∗ and (Ψ∗, H∗),
dom(Ψ∗) = Y ∗, a space F∗ ⊆ Fall

T ∗ of GENEOs (F ∗, T ∗) : (Φ∗, G∗) → (Ψ∗, H∗)
with respect to a fixed homomorphism T ∗ : G∗ → H∗, and isometric embeddings
j1 : X → X∗, j2 : Y → Y ∗, i1 : Φ → Φ∗, i2 : Ψ → Ψ∗, k1 : G → G∗, k2 : H → H∗,
and f : F → F∗. We require that the spaces Φ∗, G∗, X∗,Ψ∗, H∗, Y ∗ and F∗ are all
compact, and the following commutativity conditions are satisfied: i1(φ) ◦ j1 = φ

for every φ ∈ Φ, i2(ψ) ◦ j2 = ψ for every ψ ∈ Ψ; k1(g) ◦ j1 = j1 ◦ g for every
g ∈ G, k2(h) ◦ j2 = j2 ◦ h for every h ∈ H; i2 ◦F = f(F ) ◦ i1 for every F ∈ F ; and
k2 ◦ T = T ∗ ◦ k1.

These compatibility conditions formalize the requirement that the spaces Φ, G,
X, Ψ, H, Y and F do not lose any of their metric or topological properties while
being viewed as subspaces of Φ∗, G∗, X∗, Ψ∗, H∗, Y ∗ and F∗ respectively. In this
case, we say that (Φ∗, G∗), dom(Φ∗) = X∗ is a compactification of the perception
pair (Φ, G), dom(Φ) = X, and F∗ is a compactification of the space F of GENEOs.
We will give formal definitions in the forthcoming sections. Our assumptions here
are mild; in many practical applications, they are already satisfied.

Precisely, the intermediary results and constructions in Subsections 4.1 and
4.2 are aimed at proving that every perception pair (Φ, G), dom(Φ) = X, with
totally bounded Φ endowing X with a metric structure, admits a compactification
(Φ∗, G∗), dom(Φ∗) = X∗. Similarly, the Subsections 4.3 and 4.4 are devoted to
proving that every space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) → (Ψ, H) with
dom(Φ) = X and dom(Ψ) = Y such that the collection {F (Φ) | F ∈ F} covers Ψ
admits a compactification F∗, provided the data sets Φ and Ψ are totally bounded
and endow X and Y with metric structures. Again, this proof will require several
auxiliary constructions and corresponding results.

In order to set the stage for the requisite compactification of the perception
pair (Φ, G), dom(Φ) = X, we consider the unique metric completion X̂ of X,
and assume that X ⊆ X̂. Since X is totally bounded by Theorem 2.2.2, X̂ is
totally bounded by virtue of the isometric embedding j : X → X̂, and hence
compact. This serves as the sought after X∗ in our construction. Then we use the
measurements φ ∈ Φ and isometries g ∈ G to define the measurements φ̂ : Φ → R
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on the compact space X̂ and its corresponding isometries ĝ : X̂ → X̂.

3.2 The Extension of Signals

Let us consider a perception pair (Φ, G), dom(Φ) = X, with totally bounded Φ
endowing X with a metric structure, and denote the unique metric completion of
X by X̂. We can assume without loss of generality that X ⊆ X̂. There is a wealth
of results in analysis allowing one to extend specific real-valued functions from
X to X̂. With suitable modifications, they can be adapted to our mathematical
setting and one can easily prove

Proposition 3.2.1. Let (M,dM ) be a metric space, and S a subset of M . Then
every non-expansive map f : S → R admits a unique non-expansive extension
f̄ : S → R.

Since each φ ∈ Φ is non-expansive by Proposition 2.2.1, we have

Corollary 3.2.1. Each signal φ ∈ Φ can be uniquely extended to a non-expansive
signal φ̂ : X̂ → R, where X̂ is the completion of X = dom(Φ), by setting

φ̂(x̂) = lim
n→∞

φ(xn),

for any arbitrary sequence (xn)n∈N in X that converges to x̂ ∈ X̂.

Let us put
Φ̂ := {φ̂ : X̂ → R | φ ∈ Φ}.

Since the extensions φ̂ : X̂ → R of signals φ ∈ Φ are unique, we get a one-to-one
correspondence i : Φ → Φ̂ between signals in Φ and signals in Φ̂ given by

φ 7→ φ̂.

The notations RX̂b , Iso(X̂), d̂∞ and AutΦ̂(X̂) are self-explanatory. Clearly,
Φ̂ ⊆ RX̂b .

The set Φ̂ of extended signals induces the pseudo-metric DX̂ on the completion
X̂ given by

DX̂(x, y) := sup
φ∈Φ̂

|φ(x) − φ(y)| , x, y ∈ X̂.
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At this point, the completion X̂ appears to be equipped with the previously
defined metric D̂X̂ associated with the completion, and the pseudo-metric DX̂ . It
is worth investigating their relationship. We will prove later in this section that
these seemingly distinct functions are in fact numerically equal on X̂, thereby
establishing in addition that DX̂ is in fact a metric.

Before proceeding, we record another general proposition, omitting the easy
proof, which will be used frequently in the sequel:

Proposition 3.2.2. Let K be a compact topological space and A be dense in K.
If f is a continuous real-valued function on K, then

sup f(K) = sup f(A).

We are now ready to prove the following theorem:

Theorem 3.2.1. The correspondence i : Φ → Φ̂ defined by φ 7→ φ̂, for every
φ ∈ Φ, is an isometry.

Proof. The map i is surjective by construction; it will suffice to prove that it
preserves distances, i.e.,

∥i(φ1) − i(φ2)∥∞ = ∥φ1 − φ2∥∞,

for any φ1, φ2 ∈ Φ. Since X is dense in the compact topological space X̂, and
i(φ) = φ̂ is an extension of φ ∈ Φ, by Proposition 3.2.2 we have

∥i(φ1) − i(φ2)∥∞ := sup
x∈X̂

|φ̂1(x) − φ̂2(x)|

= sup
x∈X

|φ̂1(x) − φ̂2(x)|

= sup
x∈X

|φ1(x) − φ2(x)|

=: ∥φ1 − φ2∥∞,

for any φ1, φ2 ∈ Φ. Therefore, i is an isometry.

Corollary 3.2.2. The space Φ̂ := {φ̂ : X̂ → R | φ ∈ Φ} of extended signals is
totally bounded.

Remark 3.2.1. Let us consider the isometry i : Φ → Φ̂ and the inclusion j :
X ↪→ X̂. Since φ̂ extends φ, the following natural commutativity condition holds
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for each φ ∈ Φ:
i(φ) ◦ j = φ.

The total boundedness of Φ̂ allows us to prove the following crucial statement.

Proposition 3.2.3. On X̂, DX̂ = D̂X̂ .

Proof. Since Φ̂ is totally bounded, DX̂ induces on X̂ the initial topology with
respect to Φ̂ by Theorem 2.2.1. Moreover, by Corollary 3.2.1 the functions in Φ̂
are continuous with respect to D̂X̂ as well. Hence, the topology induced by D̂X̂

is finer than the topology induced by DX̂ . This directly implies that DX̂ is a
continuous function with respect to D̂X̂ . Then, we have

D̂X̂(x̂, ŷ) := lim
n→∞

DX(xn, yn) = lim
n→∞

DX̂(xn, yn) = DX̂(x̂, ŷ)

where x̂, ŷ ∈ X̂, and (xn)n∈N, (yn)n∈N are sequences in X converging to x̂ and ŷ

respectively, with reference to the topology induced by D̂X̂ .

So, DX̂ is a metric. As pointed out in Section 2.1, this directly implies that
the pseudo-metric D̂Aut induced by Φ̂ on AutΦ̂(X̂) is also a metric.

3.3 The Isometries of the Completions

Perception pairs are made up of a data set along with the corresponding equivari-
ance groups. Given a perception pair (Φ, G), dom(Φ) = X with totally bounded
Φ endowing X with a metric structure, we seek to construct a compact perception
pair (Φ∗, G∗), dom(Φ∗) = X∗. The metric completion X̂ of X already provides us
with the requisite compactification X∗. We have constructed an intermediary data
set Φ̂ and now we turn our attention to the construction of an auxiliary topological
group Ĝ ⊆ AutΦ̂(X̂), isometric to the given group G ⊆ AutΦ(X), whose closure
G∗ = Ĝ in the compact space Iso(X̂) finally serves our purposes.

3.3.1 The Induced Bijections

Let us consider as before a perception pair (Φ, G), dom(Φ) = X with totally
bounded Φ endowing X with a metric structure. Each g ∈ G ⊆ AutΦ(X) ⊆ Iso(X)
induces a self-map ĝ : X̂ → X̂ on the metric completion X̂ by the following
association:

ĝ(x̂) := lim
n→∞

g(xn),
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where (xn)n∈N is a sequence in X converging to x̂ ∈ X̂. The sequence (g(xn))n∈N

is a Cauchy sequence since g is an isometry by Proposition 2.2.2. Also, if (yn)n∈N

is another sequence in X converging to x̂, then as g is an isometry, we have

0 = lim
n→∞

DX(xn, yn) = lim
n→∞

DX(g(xn), g(yn)),

whence
g(yn) → lim

n→∞
g(xn)

as well. So, the function x̂ 7→ limn→∞ g(xn) is well defined.
Moreover, note that ĝ|X = g.

Proposition 3.3.1. The map ĝ : X̂ → X̂ defined by setting

ĝ(x̂) := lim
n→∞

g(xn),

where (xn)n∈N is a sequence in X converging to x̂ ∈ X̂, is bijective for every g ∈ G,
and ĝ−1 = ĝ−1.

Proof. Let x̂1, x̂2 ∈ X̂ with x̂1 ̸= x̂2, and (x1,n)n∈N and (x2,n)n∈N be sequences in
X converging respectively to x̂1 and x̂2. As g is an isometry,

0 ̸= D̂X̂(x̂1, x̂2) := lim
n→∞

DX(x1,n, x2,n)

= lim
n→∞

DX(g(x1,n), g(x2,n))

=: D̂X̂(ĝ(x̂1), ĝ(x̂2)),

whence ĝ(x̂1) ̸= ĝ(x̂2) and ĝ is injective.
As for surjectivity, let g ∈ G. If ŷ ∈ X̂, then there is a sequence (yn)n∈N in

X such that yn → ŷ in X̂. As g−1 exists, we can put xn := g−1(yn), for each
n ∈ N. Since g−1 is an isometry and (yn)n∈N is a Cauchy sequence, (xn)n∈N

too is a Cauchy sequence; so it converges to some x̂ ∈ X̂. Of course, ĝ(x̂) :=
limn→∞ g(xn) = limn→∞ yn = ŷ, and hence ĝ is surjective.

Also, the equality ĝ(x̂) = ŷ just proved can be rewritten as

ĝ−1(ŷ) = x̂.

But at the same time, as g−1 ∈ G, by definition we have

ĝ−1(ŷ) = ĝ−1( lim
n→∞

yn) = lim
n→∞

g−1(yn) = lim
n→∞

xn = x̂.
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By the arbitrariness of ŷ ∈ X̂, we get

ĝ−1 = ĝ−1.

The following important property will be used frequently in the sequel.

Proposition 3.3.2. For each φ ∈ Φ and each g ∈ G,

φ̂ĝ = φ̂g.

Proof. As g ∈ AutΦ(X), φg ∈ Φ. So, if x̂ ∈ X̂ and (xn)n∈N is a sequence in X

converging to x̂, we compute:

φ̂ĝ(x̂) = φ̂(ĝ(x̂))

= φ̂( lim
n→∞

g(xn))

= lim
n→∞

φ(g(xn))

= lim
n→∞

φg(xn)

= φ̂g( lim
n→∞

xn)

= φ̂g(x̂).

By the arbitrariness of x̂, we have the proposed equality.

Corollary 3.3.1. For each g ∈ G, ĝ ∈ AutΦ̂(X̂) ⊆ Iso(X̂).

Proof. Let φ̂ ∈ Φ̂. As g ∈ G ⊆ AutΦ(X), φg ∈ Φ; so, φ̂ĝ = φ̂g ∈ Φ̂ by Proposition
3.3.2; whence ĝ is a Φ̂−operation. Since ĝ−1 = ĝ−1 (Proposition 3.3.1), by applying
Proposition 3.3.2 again to g−1 ∈ G, we infer that ĝ−1 is a Φ̂−operation too; whence
ĝ ∈ AutΦ̂(X̂).

The inclusion AutΦ̂(X̂) ⊆ Iso(X̂) is stated in Proposition 2.2.2.

Proposition 3.3.3. For each g, h ∈ G,

ĝĥ = ĝh.

Proof. Let x̂ ∈ X̂, and (xn)n∈N be a sequence in X converging to x̂ in X̂. Then,
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by recalling the definitions of ĥ and ĝ, we have

ĝĥ(x̂) = ĝ(ĥ(x̂))

= ĝ( lim
n→∞

h(xn))

= lim
n→∞

g(h(xn))

= lim
n→∞

gh(xn)

= ĝh(x̂),

whence by the arbitrariness of x̂, the proposition is proved.

Let us put
Ĝ := {ĝ : X̂ → X̂ | g ∈ G}

.

Remark 3.3.1. Clearly, îdX = idX̂ ∈ Ĝ.

Corollary 3.3.2. Let (Φ, G), dom(Φ) = X be a perception pair with totally
bounded Φ endowing X with a metric structure. Then the set Ĝ := {ĝ : X̂ →
X̂ | g ∈ G} is a subgroup of AutΦ̂(X̂).

Proof. It will suffice to show that Ĝ is closed under composition and computation
of the inverse. The first property follows from Proposition 3.3.3, since if ĝ, ĥ ∈ Ĝ,
then ĝĥ = ĝh ∈ Ĝ. The second property follows from Proposition 3.3.1, since if
ĝ ∈ Ĝ, then ĝ−1 = ĝ−1 ∈ Ĝ.

Remark 3.3.2. Corollary 3.3.2 implicitly states that (Φ̂, Ĝ) is a perception pair.

Note that AutΦ̂(X̂), and therefore Ĝ ⊆ AutΦ̂(X̂), are pseudo-metric spaces
with the pseudo-metric D̂Aut : AutΦ̂(X̂) × AutΦ̂(X̂) → R given by

D̂Aut(ĝ, ĥ) := sup
φ̂∈Φ̂

DΦ̂(φ̂ĝ, φ̂ĥ), for every ĝ, ĥ ∈ AutΦ̂(X̂).
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Moreover,

D̂Aut(ĝ, ĥ) := sup
φ̂∈Φ̂

DΦ̂(φ̂ĝ, φ̂ĥ)

= sup
φ̂∈Φ̂

sup
x̂∈X̂

∣∣∣φ̂(ĝ(x̂)) − φ̂(ĥ(x̂))
∣∣∣

= sup
x̂∈X̂

sup
φ̂∈Φ̂

∣∣∣φ̂(ĝ(x̂)) − φ̂(ĥ(x̂))
∣∣∣

= sup
x̂∈X̂

DX̂(ĝ(x̂), ĥ(x̂)).

Therefore, if ĝ, ĥ ∈ AutΦ̂(X̂) and D̂Aut(ĝ, ĥ) = 0, then DX̂(ĝ(x̂), ĥ(x̂)) = 0
for every x̂ ∈ X̂. Since Φ̂ endows X̂ with the metric structure induced by the
coinciding metrics DX̂ and D̂X̂ (Proposition 3.2.3), ĝ(x̂) = ĥ(x̂) for every x̂ ∈ X̂,
and hence ĝ = ĥ. It follows that Ĝ, and therefore Ĝ ⊆ AutΦ̂(X̂), are metric spaces.

Proposition 3.3.4. The correspondence k : G → Ĝ given by k(g) := ĝ is an
isometry.

Proof. The map k is injective: If g, h ∈ G differ at some x ∈ X, ĝ(x) ̸= ĥ(x) as
well, and k(g) = ĝ ̸= ĥ = k(h). Also, the definition of Ĝ immediately implies that
k is surjective.

We show that k preserves distances. By Corollary 3.3.1, the real-valued func-
tion f : X̂ → R defined by setting

f(x̂) := DX̂(ĝ(x̂), ĥ(x̂)), for every x̂ ∈ X̂,

is continuous for every ĝ and ĥ in Ĝ, since each isometry is by definition a contin-
uous map.

Let ĝ, ĥ ∈ Ĝ; then by Propositions 3.2.2, we have

D̂Aut(ĝ, ĥ) = sup
x̂∈X̂

DX̂(ĝ(x̂), ĥ(x̂))

= sup
x∈X

DX̂(ĝ(x), ĥ(x))

= sup
x∈X

DX(g(x), h(x))

=: DAut(g, h),

as required.
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Corollary 3.3.3. If G is complete, then Ĝ is compact.

Proof. Recall that the space Φ of admissible signals was assumed to be totally
bounded; whence by Theorem 2.2.4, G is totally bounded, and being complete by
hypothesis, it is compact. As k : G → Ĝ is an isometry, Ĝ is compact as well.

Remark 3.3.3. The assumption here that G is complete cannot be removed. It is
easy to give an example of a perception pair (Φ, G) where Φ is compact but G is not
complete [6]. For example, if Φ is the compact space of all 1-Lipschitz functions
from X = S1 = {(x, y) ∈ R2 : x2 + y2 = 1} to [0, 1], and G is the group of all
rotations ρ2πq of X of 2πq radians with q a rational number, then the topological
group G is not complete. Moreover, in this case X̂ = X, and the topological group
Ĝ = G is not compact either.

It is easy to see that the embeddings j : X → X̂ and k : G → Ĝ satisfy the
following natural commutativity condition.

Proposition 3.3.5. For each g ∈ G,

k(g) ◦ j = j ◦ g.

That is, for each g ∈ G and each x ∈ X,

ĝ(x) = ĝ(x).

Remark 3.3.4. We observe that ĝ is the only map in AutΦ̂(X̂) with ĝ|X = g. It
is indeed easy to show that for any g ∈ AutΦ̂(X̂) such that g|X = g, the equality
g(x̂) = ĝ(x̂) holds for every x̂ ∈ X̂.

Before proceeding, we stress that while X̂, by definition, is a complete topo-
logical space, the topological spaces Φ̂ and Ĝ, in general, are not complete.

3.3.2 The Embedding of Perception Pairs

We are now ready to show that every perception pair (Φ, G), dom(Φ) = X can be
embedded in a compact perception pair (Φ∗, G∗), dom(Φ∗) = X∗, provided that
the space Φ of signals is totally bounded and (X,DX) is a metric space.

We have so far obtained only an isometric image Ĝ of G. The group G is chosen
arbitrarily; so G and Ĝ may or may not be closed in AutΦ(X) and ̂AutΦ(X)
respectively. Similarly, the space Φ̂, being isometric to Φ, need not necessarily
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be compact. However, the space C(X̂,R) is complete; so, Φ̂, the closure of Φ̂
in C(X̂,R), being closed, is complete as well. Also, Φ̂, being isometric to the
totally bounded space Φ (Theorem 3.2.1), is totally bounded, and so is its closure.
Consequently,

Proposition 3.3.6. Let (Φ, G), dom(Φ) = X be a perception pair with totally
bounded Φ endowing X with a metric structure. Then the metric space Φ̂ ⊆ RX̂b
is compact.

The data set Φ̂ endows X̂ with a pseudo-metric structure where the pseudo-
distance is given by

DX̂(x̂1, x̂2) := sup
φ∈Φ̂

|φ(x̂1) − φ(x̂2)| , for every x̂1, x̂2 ∈ X̂.

Proposition 3.3.7. On X̂, DX̂ = DX̂ ; so DX̂ is a metric.

Proof. Let x̂1, x̂2 ∈ X̂. By applying Proposition 3.2.2 to the continuous function
f(φ) := |φ(x̂1) − φ(x̂2)|, we get:

DX̂(x̂1, x̂2) := sup
φ∈Φ̂

|φ(x̂1) − φ(x̂2)|

= sup
φ̂∈Φ̂

|φ̂(x̂1) − φ̂(x̂2)|

=: DX̂(x̂1, x̂2).

As x̂1, x̂2 ∈ X̂ are arbitrary, we have the proposed equality.

In view of Proposition 3.3.7, the symbol Iso(X̂) can be used without any am-
biguity about the underlying metric.

By Theorem 2.2.3, the set Aut
Φ̂

(X̂) ⊆ Iso(X̂) of all invertible Φ̂-operations is
a topological group with respect to the topology induced by the pseudo-distance
D̂Aut : Aut

Φ̂
(X̂) × Aut

Φ̂
(X̂) → R:

D̂Aut(g, h) := sup
φ∈Φ̂

D
Φ̂

(φ ◦ g, φ ◦ h), for every g, h ∈ Aut
Φ̂

(X̂).
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If g, h ∈ Aut
Φ̂

(X̂), then

D̂Aut(g, h) = sup
φ∈Φ̂

D
Φ̂

(φ ◦ g, φ ◦ h)

= sup
φ∈Φ̂

sup
x̂∈X̂

∣∣∣φ(g(x̂)) − φ(h(x̂))
∣∣∣

= sup
x̂∈X̂

DX̂(g(x̂), h(x̂))

= sup
x̂∈X̂

DX̂(g(x̂), h(x̂)).

Therefore, if D̂Aut(g, h) = 0, then DX̂(g(x̂), h(x̂)) = 0 for every x̂ ∈ X̂. Since DX̂

is a metric, g(x̂) = h(x̂) for every x̂ ∈ X̂, whence g = h. So, (Aut
Φ̂

(X̂), D̂Aut) is a
metric space.

Proposition 3.3.8. Every ǧ ∈ AutΦ̂(X̂) is a Φ̂−operation.

Proof. Let φ ∈ Φ̂ and ǧ ∈ AutΦ̂(X̂). We show that φǧ ∈ Φ̂.
There is a sequence (φ̂n)n∈N in Φ̂ such that φ̂n → φ. As ǧ is a bijection of X̂

by Proposition 2.2.2, we have

∥φ̂nǧ − φǧ∥∞ = ∥φ̂n − φ∥∞;

whence φ̂nǧ → φǧ in the space C(X̂,R). As ǧ is a Φ̂−operation, (φ̂nǧ)n∈N is a
sequence in the space Φ̂ ⊆ C(X̂,R). Consequently, φǧ ∈ Φ̂.

We conclude

Corollary 3.3.4. Given a perception pair (Φ, G), dom(Φ) = X with totally
bounded Φ endowing X with a metric structure, we have Ĝ ⊆ AutΦ̂(X̂) ⊆ Aut

Φ̂
(X̂).

Proof. The first inclusion is given by Corollary 3.3.2. As for the second, let ǧ ∈
AutΦ̂(X̂). By Proposition 3.3.8, ǧ is a Φ̂−operation. As AutΦ̂(X̂) is a group,
ǧ−1 ∈ AutΦ̂(X̂), and again by Proposition 3.3.8, is a Φ̂−operation. Consequently,
ǧ ∈ Aut

Φ̂
(X̂), and by the arbitrariness of ǧ, we have the second inclusion.

Remark 3.3.5. Corollary 3.3.4 implicitly states that (Φ̂, Ĝ) is a perception pair.

Let Ĝ and AutΦ̂(X̂) respectively denote the closures of Ĝ and AutΦ̂(X̂) in the
space Iso(X̂) of all isometries of (X̂,DX̂). Recall that the topology on Iso(X̂) is
given by the restriction to Iso(X̂) of the metric d̂∞ defined on C(X̂, X̂) by setting
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d̂∞(f, g) := supx̂∈X̂ DX̂(f(x̂), g(x̂)), for every f, g ∈ C(X̂, X̂). Note also that the
isometries of X̂ with respect to the metric DX̂ coincide with those induced by the
metric DX̂ (Proposition 3.3.7).

Corollary 3.3.5. Ĝ ⊆ AutΦ̂(X̂) ⊆ Aut
Φ̂

(X̂) ⊆ Iso(X̂).

Proof. The last inclusion is given by Proposition 2.2.2. As we have seen at the
beginning of Section 3.1, X̂ is compact, and Φ̂ is compact by Proposition 3.3.6. It
follows from Theorem 2.2.5 that Aut

Φ̂
(X̂) is a closed subspace of Iso(X̂). Since

Ĝ ⊆ AutΦ̂(X̂) ⊆ Aut
Φ̂

(X̂) (Corollary 3.3.4), we have the first two inclusions.

Remark 3.3.6. Corollary 3.3.5 directly implies that the closure of Ĝ in Aut
Φ̂

(X̂)

coincides with Ĝ, i.e., with the closure of Ĝ in the space Iso(X̂). Similarly the
closure of AutΦ̂(X̂) in Aut

Φ̂
(X̂) coincides with AutΦ̂(X̂).

Incidentally, Proposition 2.2.4 and Corollary 3.3.5 also give that the spaces Ĝ
and AutΦ̂(X̂) are compact.

Proposition 3.3.9. The groups Ĝ and Ĝ are both topological subgroups of the
compact group Aut

Φ̂
(X̂).

Proof. By Corollary 3.3.5, we have Ĝ ⊆ Ĝ ⊆ Aut
Φ̂

(X̂). By Theorem 2.2.3,

Aut
Φ̂

(X̂) is a topological group. So, Ĝ and Ĝ, being subgroups of a topological
group are likewise topological. The compactness of Aut

Φ̂
(X̂) is given by Theorem

2.2.5.

We can now state

Theorem 3.3.1. Given any perception pair (Φ, G), dom(Φ) = X with totally
bounded Φ endowing X with a metric structure, the perception pair (Φ̂, Ĝ), dom(Φ̂) =
X̂ is compact.

Proof. Propositions 3.3.6 and 3.3.9 together give the assertion.

Definition 3.3.1. We say that the perception pair (Φ, G) with dom(Φ) = X is
isometrically embedded into the perception pair (Φ∗, G∗) with dom(Φ∗) = X∗ if
there are isometric embeddings j∗ : X → X∗, i∗ : Φ → Φ∗, and k∗ : G → G∗

such that the images j∗(X), i∗(Φ), and k∗(G) are all dense in X∗, Φ∗, and G∗

respectively, and the following commutativity conditions are satisfied: i∗(φ)◦j∗ = φ
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for every φ ∈ Φ and k∗(g) ◦ j∗ = j∗ ◦ g for every g ∈ G. If (Φ∗, G∗) is compact, it
is said to be a compactification of (Φ, G).

With this definition at our disposal, we summarize

Theorem 3.3.2. Every perception pair (Φ, G), dom(Φ) = X, with totally bounded
Φ endowing X with a metric structure, admits a compactification (Φ∗, G∗), with
dom(Φ∗) = X∗.

Proof. Put Φ∗ := Φ̂ and G∗ := Ĝ in Theorem 3.3.1.

3.4 GENEOs and Completions

Our next goal is to construct compactifications of the spaces F ⊆ Fall
T of GENEOs

(F, T ) : (Φ, G) → (Ψ, H) with the property that the images F (Φ), F ∈ F form
a cover for the data set Ψ, while maintaining the assumptions that Φ and Ψ are
totally bounded and endow X and Y with metric structures. We have shown,
under these assumptions, that the perception pairs (Φ, G), dom(Φ) = X and
(Ψ, H), dom(Ψ) = Y can be embedded nicely into the perception pairs (Φ̂, Ĝ),
dom(Φ̂) = X̂ and (Ψ̂, Ĥ), dom(Ψ̂) = Ŷ , respectively, through the compatible
isometries (j1, j2) : (X,Y ) → (X̂, Ŷ ), (i1, i2) : (Φ,Ψ) → (Φ̂, Ψ̂), and (k1, k2) :
(G,H) → (Ĝ, Ĥ). We are now in a position to use the GENEOs (F, T ) : (Φ, G) →
(Ψ, H) to define new GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ). Our construction will be
further extended to the GENEOs (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) →
(Ψ̂, Ĥ) later.

3.4.1 The Induced GENEOs

Given the perception pairs (Φ, G), dom(Φ) = X and (Ψ, H), dom(Ψ) = Y and a
homomorphism T : G → H with totally bounded Φ and Ψ endowing X and Y

with metric structures respectively, let (F, T ) : (Φ, G) → (Ψ, H) be a GENEO in
F ⊆ Fall

T . We put
F̂ (φ̂) := F̂ (φ),

and
T̂ (ĝ) := T̂ (g),

where φ ∈ Φ, g ∈ G, and F ∈ F ⊆ Fall
T .

The maps F̂ : Φ̂ → Ψ̂ and T̂ : Ĝ → Ĥ are clearly well defined, since the maps
i1 : Φ → Φ̂ (taking φ to φ̂) and k1 : G → Ĝ (taking g to ĝ) are injective. Moreover,
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Remark 3.4.1. The map F̂ is injective if and only if F ∈ F is an injection. As
i2 : Ψ → Ψ̂ is injective, we have

F̂ (φ̂1) = F̂ (φ̂2) ⇐=⇒
def

F̂ (φ1) = F̂ (φ2) ⇐⇒ F (φ1) = F (φ2),

for every φ1, φ2 ∈ Φ. The injectivity of i1 : Φ → Φ̂, together with these equiva-
lences, gives the assertion.

Recalling Propositions 3.3.2 and 3.3.3, we prove

Proposition 3.4.1. The map F̂ : Φ̂ → Ψ̂ is a GENEO with respect to T̂ : Ĝ → Ĥ.

Proof. It is easy to see that T̂ : Ĝ → Ĥ is a group homomorphism: If a, b ∈ G,
then

T̂ (âb̂) = T̂ (âb)

= T̂ (ab)

= ̂T (a)T (b)

= T̂ (a)T̂ (b)

= T̂ (â)T̂ (b̂).

Similarly, if φ ∈ Φ, g ∈ G, and F ∈ F , we have:

F̂ (φ̂ĝ) = F̂ (φ̂g)

= F̂ (φg)

= ̂F (φ)T (g)

= F̂ (φ)T̂ (g)

= F̂ (φ̂)T̂ (ĝ).

So, F̂ is T̂−equivariant.

Now, let φ1, φ2 ∈ Φ. As i1 : Φ → Φ̂ and i2 : Ψ → Ψ̂ are isometries (Theorem
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3.2.1) and F : Φ → Ψ is non-expansive,

DΨ̂(F̂ (φ̂1), F̂ (φ̂2)) = DΨ̂(F̂ (φ1), F̂ (φ2))

= DΨ(F (φ1), F (φ2))

≤ DΦ(φ1, φ2)

= DΦ̂(φ̂1, φ̂2)

whence F̂ is non-expansive.

Let us put
F1 := {F̂ : Φ̂ → Ψ̂ | F ∈ F},

and define a map f1 : F → F1 by setting

f1(F ) := F̂ .

The set Fall,1
T̂

⊇ F1 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to the
homomorphism T̂ : Ĝ → Ĥ is a metric space with the distance function D1

GENEO
given by

D1
GENEO(F ′, F ′′) := sup

φ̂∈Φ̂
DΨ̂(F ′(φ̂), F ′′(φ̂)), for every F ′, F ′′ ∈ Fall,1

T̂
.

Proposition 3.4.2. The correspondence f1 : F → F1 is an isometry with respect
to the distances DGENEO and D1

GENEO.

Proof. The map f1 is surjective by construction. Let F1, F2 ∈ F be distinct
GENEOs; i.e., there is a φ ∈ Φ such that F1(φ) ̸= F2(φ). As i2 : Ψ → Ψ̂ is
injective, F̂1(φ̂) := F̂1(φ) ̸= F̂2(φ) =: F̂2(φ̂), whence f1(F1) := F̂1 ̸= F̂2 =: f1(F2),
and f1 : F → F1 is injective.

We now show that f1 preserves distances. If F1, F2 ∈ F , by applying Propo-
sition 3.2.2 to the real-valued continuous function f(φ̂) := DΨ̂(F̂1(φ̂), F̂2(φ̂)), we
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get

D1
GENEO(F̂1, F̂2) := sup

φ̂∈Φ̂
DΨ̂(F̂1(φ̂), F̂2(φ̂))

= sup
φ∈Φ

DΨ̂(F̂1(φ̂), F̂2(φ̂))

= sup
φ∈Φ

DΨ̂(F̂1(φ), F̂2(φ))

= sup
φ∈Φ

DΨ(F1(φ), F2(φ))

=: DGENEO(F1, F2),

as i2 : Ψ → Ψ̂ is an isometry by Theorem 3.2.1. So, the bijection f1 is an
isometry.

From the definitions of F̂ and T̂ , it is already clear that the following natural
commutativity conditions are trivially satisfied:

Proposition 3.4.3. For each F ∈ F ,

i2 ◦ F = f1(F ) ◦ i1, (i.e., F̂ (φ) = F̂ (φ̂) for every φ ∈ Φ)

and
k2 ◦ T = T̂ ◦ k1 (i.e., T̂ (g) = T̂ (ĝ) for every g ∈ G).

3.4.2 Preservation of Pseudo-distances

In this subsection, we show that the embeddings i : Φ → Φ̂, k : G → Ĝ, and
f1 : F → F1 preserve the pseudo-distances dG, DGENEO,H and DF ,Φ.

Lemma 3.4.1. The embeddings i : Φ → Φ̂ and k : G → Ĝ preserve the natural
pseudo-distance.

Proof. Let φ1, φ2 ∈ Φ; then since ĝ ∈ Ĝ ⇐⇒ g ∈ G, Theorem 3.2.1 and
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Proposition 3.3.2 imply that

dĜ(φ̂1, φ̂2) := inf
ĝ∈Ĝ

DΦ̂(φ̂1, φ̂2ĝ)

= inf
ĝ∈Ĝ

DΦ̂(φ̂1, φ̂2g)

= inf
g∈G

DΦ(φ1, φ2g)

=: dG(φ1, φ2).

Proposition 3.4.4. The embedding f1 : F → F1 preserves the pseudo-distances
DGENEO,H and DF ,Φ.

Proof. Let F1, F2 ∈ F . As φ̂ ∈ Φ̂ ⇐⇒ φ ∈ Φ, from Lemma 3.4.1 and the
definition of F̂ , (F ∈ F), we have

D̂GENEO,Ĥ(F̂1, F̂2) := sup
φ̂∈Φ̂

dĤ(F̂1(φ̂), F̂2(φ̂))

= sup
φ̂∈Φ̂

dĤ(F̂1(φ), F̂2(φ))

= sup
φ∈Φ

dH(F1(φ), F2(φ))

=: DGENEO,H(F1, F2).

Also, if φ1, φ2 ∈ Φ, then by Theorem 3.2.1 and Proposition 3.4.2 we have

D̂F̂ ,Φ̂(φ̂1, φ̂2) := sup
F̂∈F̂

DΨ̂(F̂ (φ̂1), F̂ (φ̂2))

= sup
F∈F

DΨ̂(F̂ (φ1), F̂ (φ2))

= sup
F∈F

DΨ(F (φ1), F (φ2))

=: DF ,Φ(φ1, φ2).

40



3.5 Compactification of the Spaces of GENEOs

We can now extend our construction from (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) to (F̂ , T̂ ) :
(Φ̂, Ĝ) → (Ψ̂, Ĥ) and (F̂ , T̂ ) : (Φ̂, Ĝ) → (Ψ̂, Ĥ) successively, while maintaining
the assumptions of Section 3.4. First, we show that F̂ : Φ̂ → Ψ̂ induces a non-
expansive T̂ -equivariant map F̂ : Φ̂ → Ψ̂; then we will use the assumption that
the family of sets {F (Φ) | F ∈ F} covers Ψ to define a group homomorphism
T̂ : Ĝ → Ĥ with respect to which F̂ remains equivariant.

Let us define a map F̂ : Φ̂ → Ψ̂ as follows. Let φ ∈ Φ̂; then there is a sequence
(φ̂n)n∈N in Φ̂ such that φ̂n → φ with respect to the uniform norm. As F̂ is non-
expansive, (F̂ (φ̂n))n∈N is a Cauchy sequence in Ψ̂ ⊆ Ψ̂; so it converges to some ψ
in the complete space Ψ̂. Let us put

F̂ (φ) := ψ.

That is,
F̂ ( lim

n→∞
φ̂n) := lim

n→∞
F̂ (φ̂n).

Note that since F̂ is non-expansive, the map F̂ does not depend on the sequence
(φ̂n)n∈N converging to φ, and is therefore well defined. Moreover, F̂ |Φ̂ = F̂ .

Proposition 3.5.1. The map F̂ : Φ̂ → Ψ̂ is a GENEO with respect to T̂ : Ĝ → Ĥ.

Proof. Let φ1, φ2 ∈ Φ̂; then there are sequences (φ̂1,n)n∈N and (φ̂2,n)n∈N in Φ̂ such
that φ̂1,n → φ1 and φ̂2,n → φ2. Recalling that F̂ is non-expansive, we compute:∥∥∥F̂ (φ1) − F̂ (φ2)

∥∥∥
∞

=
∥∥∥ lim
n→∞

F̂ (φ̂1,n) − lim
n→∞

F̂ (φ̂2,n)
∥∥∥

∞

= lim
n→∞

∥∥∥F̂ (φ̂1,n) − F̂ (φ̂2,n)
∥∥∥

∞

≤ lim
n→∞

∥φ̂1,n − φ̂2,n∥∞

=
∥∥∥ lim
n→∞

φ̂1,n − lim
n→∞

φ̂2,n
∥∥∥

∞

= ∥φ1 − φ2∥∞;

so, F̂ is non-expansive.
Let φ ∈ Φ̂ and ĝ ∈ Ĝ. Then there is a sequence (φ̂n)n∈N in Φ̂ such that φ̂n → φ

with respect to the uniform norm; consequently, φ̂nĝ → φĝ. As F̂ is T̂−equivariant
(Proposition 3.4.1) and the action of Ĥ on Ψ̂ is continuous (Theorem 2.2.3), we
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have

F̂ (φ ◦ ĝ) = F̂ ( lim
n→∞

φ̂n ◦ ĝ)

= lim
n→∞

F̂ (φ̂n ◦ ĝ)

= lim
n→∞

(F̂ (φ̂n) ◦ T̂ (ĝ))

= ( lim
n→∞

F̂ (φ̂n)) ◦ T̂ (ĝ)

= F̂ (φ) ◦ T̂ (ĝ),

whence F̂ is T̂−equivariant and the proposition is proved.

Let us put
F2 :=

{
F̂ : Φ̂ → Ψ̂ | F ∈ F

}
,

and define a map f2 : F1 → F2 by setting

f2(F̂ ) := F̂ .

The set Fall,2
T̂

⊇ F2 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to the
homomorphism T̂ : Ĝ → Ĥ is a metric space with the distance function D2

GENEO
given by

D2
GENEO

(
F ′, F ′′) := sup

φ∈Φ̂
D

Ψ̂

(
F ′(φ), F ′′(φ)

)
, for every F ′, F ′′ ∈ Fall,2

T̂
.

Proposition 3.5.2. The correspondence f2 : F1 → F2 is an isometry with respect
to the distances D1

GENEO and D2
GENEO.

Proof. The map f2 : F1 → F2 is surjective by construction. Also, if F̂1, F̂2 ∈ F1

are distinct, i.e., there is a φ̂ ∈ Φ̂ with F̂1(φ̂) ̸= F̂2(φ̂), then f2(F̂1)(φ̂) = F̂ 1(φ̂) ̸=
F̂ 2(φ̂) = f2(F̂2)(φ̂) since we respectively have F̂ 1|Φ̂ = F̂1 and F̂ 2|Φ̂ = F̂2; whence
f2(F̂1)(φ̂) ̸= f2(F̂2)(φ̂) and f2 is injective as well.

If F̂ 1, F̂ 2 ∈ F2 ⊆ Fall,2
T̂

, by applying Proposition 3.2.2 to the real-valued con-
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tinuous function f(φ) := D
Ψ̂

(
F̂ 1 (φ) , F̂ 2 (φ)

)
, we get

D2
GENEO

(
F̂ 1, F̂ 2

)
:= sup

φ∈Φ̂
D

Ψ̂

(
F̂ 1 (φ) , F̂ 2 (φ)

)
= sup

φ̂∈Φ̂
D

Ψ̂

(
F̂ 1 (φ̂) , F̂ 2 (φ̂)

)
= sup

φ̂∈Φ̂
DΨ̂

(
F̂1 (φ̂) , F̂2 (φ̂)

)
=: D1

GENEO

(
F̂1, F̂2

)
as DΨ̂ and D

Ψ̂
both are restrictions of the distance induced by the uniform norm

on RYb to Ψ̂ and Ψ̂ respectively. So, the bijection f2 is an isometry.

As F̂ |Φ̂ = F̂ for each F ∈ F , by Proposition 3.4.3 we have

Proposition 3.5.3. For each F ∈ F ,

i2 ◦ F = (f2 ◦ f1(F )) ◦ i1.

That is, for every φ ∈ Φ,
F̂ (φ) = F̂ (φ̂).

Let us now utilize the assumption that {F (Φ) | F ∈ F} covers Ψ to define a
homomorphism T̂ : Ĝ → Ĥ. First we need

Definition 3.5.1. We say that a space F ⊆ Fall
T of GENEOs (F, T ) : (Φ, G) →

(Ψ, H) is collectionwise surjective if for each ψ ∈ Ψ, there exist an Fψ ∈ F and a
φψ ∈ Φ such that Fψ(φψ) = ψ; that is,

⋃
F∈F F (Φ) = Ψ.

The key property of collectionwise surjective spaces of GENEOs is given in

Theorem 3.5.1. If the space F ⊆ Fall
T of GENEOs (F, T ) : (Φ, G) → (Ψ, H) is

collectionwise surjective, then the homomorphism T is non-expansive.

Proof. Let a, b ∈ G; then as F is collectionwise surjective and each F ∈ F is a
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GENEO, we have

DAut(T (a), T (b)) := sup
ψ∈Ψ

DΨ(ψT (a), ψT (b))

= sup
ψ∈Ψ

DΨ(Fψ(φψ)T (a), Fψ(φψ)T (b))

= sup
ψ∈Ψ

DΨ(Fψ(φψa), Fψ(φψb))

≤ sup
ψ∈Ψ

DΦ(φψa, φψb)

≤ sup
φ∈Φ

DΦ(φa, φb)

= DAut(a, b).

For the rest of this section, the spaces F ⊆ Fall
T will be assumed to be col-

lectionwise surjective. Clearly, F1 := {F̂ : Φ̂ → Ψ̂ | F ∈ F} is collectionwise
surjective whenever F is so, since F̂ψ(φ̂ψ) = F̂ψ(φψ) = ψ̂ for every ψ ∈ Ψ.

Theorem 3.5.1 implies

Corollary 3.5.1. The homomorphism T̂ : Ĝ → Ĥ is non-expansive.

Corollary 3.5.1 allows us to define a map T̂ : Ĝ → Ĥ unambiguously: Let g ∈ Ĝ

and (ĝn)n∈N be a sequence in Ĝ that converges to g in Ĝ. As T̂ is non-expansive
and Ĥ is a complete metric space, the sequence (T̂ (ĝn))n∈N in Ĥ converges to a
unique element h ∈ Ĥ. We put

T̂ (g) := h.

That is,
T̂
(

lim
n→∞

ĝn
)

:= lim
n→∞

T̂ (ĝn).

Note that T̂ |Ĝ = T̂ . So, the commutativity condition k2 ◦ T = T̂ ◦ k1 (i.e.,
T̂ (g) = T̂ (ĝ) for every g ∈ G) in Proposition 3.4.3 can be rephrased as

Proposition 3.5.4. k2 ◦ T = T̂ ◦ k1 (i.e., T̂ (g) = T̂ (ĝ) for every g ∈ G).

We observe that the map T̂ : Ĝ → Ĥ preserves the group structure:

Theorem 3.5.2. The function T̂ : Ĝ → Ĥ is a group homomorphism.
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Proof. Let a, b ∈ Ĝ, and (ân)n∈N, (b̂n)n∈N be sequences in Ĝ converging respec-
tively to a, b in Ĝ. Recalling the continuity of the composition of functions on
AutΦ̂(X̂) and AutΨ̂(Ŷ ) (Theorem 2.2.3) and the definition of T̂ , we compute

T̂
(
ab
)

= T̂
(

lim
n→∞

ân lim
n→∞

b̂n
)

= T̂
(

lim
n→∞

ânb̂n
)

= lim
n→∞

T̂ (ânb̂n)

= lim
n→∞

T̂ (ân)T̂ (b̂n)

= lim
n→∞

T̂ (ân) lim
n→∞

T̂ (b̂n)

= T̂
(

lim
n→∞

ân
)
T̂
(

lim
n→∞

b̂n
)

= T̂ (a)T̂ (b).

Therefore, T̂ is a group homomorphism.

The next claim allows us to pass from T̂−equivariance to T̂−equivariance.

Theorem 3.5.3. Every GENEO F̂ ∈ F2 ⊆ Fall,2
T̂

is T̂−equivariant as well. Hence(
F̂ , T̂

)
:
(
Φ̂, Ĝ

)
→
(
Ψ̂, Ĥ

)
is a GENEO for each F ∈ F .

Proof. Let φ ∈ Φ̂, g ∈ Ĝ, and (ĝn)n∈N be a sequence in Ĝ converging to g. Recalling
the fact that F̂ is a GENEO for T̂ (and in particular a non-expansive, and hence
continuous, map) by Proposition 3.5.1, the continuity of the actions of Aut

Φ̂
(X̂)

and Aut
Ψ̂

(Ŷ ) respectively on Φ̂ and Ψ̂ (Theorem 2.2.3), and the definition of T̂ ,
we compute

F̂ (φ̄ḡ) = F̂
(
φ lim
n→∞

ĝn
)

= F̂
(

lim
n→∞

φĝn
)

= lim
n→∞

F̂ (φĝn)

= lim
n→∞

F̂ (φ)T̂ (ĝn)

= F̂ (φ) lim
n→∞

T̂ (ĝn)

= F̂ (φ)T̂
(

lim
n→∞

ĝn
)

= F̂ (φ)T̂ (g).
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Because of Theorems 3.5.2 and 3.5.3, we can now consider F2 as a set of
GENEOs from

(
Φ̂, Ĝ

)
to
(
Ψ̂, Ĥ

)
with respect to T̂ , and denote this set by F3 to

make clear that we are taking the homomorphism T̂ instead of T̂ .
The set Fall

T̂
⊇ F3 of all GENEOs from (Φ̂, Ĝ) to (Ψ̂, Ĥ) with respect to T̂ is

a metric space with the distance function D3
GENEO given by

D3
GENEO(F ′, F ′′) := sup

φ∈Φ̂
D

Ψ̂
(F ′(φ), F ′′(φ)), F ′, F ′′ ∈ Fall

T̂
.

Moreover, since the data sets Φ̂ and Ψ̂ are compact, the space (Fall
T̂
, D3

GENEO) is
compact as well [6, Theorem 7]. Consequently,

Proposition 3.5.5. The closure cl(F3) of F3 ⊆ Fall
T̂

in the compact space Fall
T̂

is
compact.

As the definitions of D2
GENEO and D3

GENEO do not depend on the reference
homomorphisms T̂ and T̂ respectively, we observe that the identity from F2 to F3

is an isometry.
Propositions 3.4.2 and 3.5.2 together give

Proposition 3.5.6. The correspondence f : F → F3 given by

f := f2 ◦ f1

is an isometry.

Therefore, we can rephrase Proposition 3.5.3 as

Proposition 3.5.7. For each F ∈ F ,

i2 ◦ F = f(F ) ◦ i1 (i.e., F̂ (φ) = F̂ (φ̂) for every φ ∈ Φ).

We can now state the main result in this paper by introducing the following
definition:

Definition 3.5.2. A compact space F∗ ⊆ Fall
T ∗ of GENEOs (F ∗, T ∗) : (Φ∗, G∗) →

(Ψ∗, H∗) with dom(Φ∗) = X∗ and dom(Ψ∗) = Y ∗ is said to be a compactification
of a space F ⊆ Fall

T of GENEOs (F, T ) : (Φ, G) → (Ψ, H) with dom(Φ) = X and
dom(Ψ) = Y , if the perception pairs (Φ∗, G∗) and (Φ∗, G∗) are compactifications of
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(Φ, G) and (Ψ, H) respectively, and there is an isometric embedding f of F in F∗

as a dense subspace, such that the following commutativity conditions are satisfied:
i2 ◦ F = f(F ) ◦ i1, for each F ∈ F , and k2 ◦ T = T ∗ ◦ k1.

Theorem 3.5.4. Every collectionwise surjective space F ⊆ Fall
T of GENEOs

(F, T ) : (Φ, G) → (Ψ, H) with dom(Φ) = X and dom(Ψ) = Y admits a com-
pactification F∗, provided the data sets Φ and Ψ are totally bounded and endow X

and Y with metric structures.

Proof. It follows from Theorem 3.3.2 and Propositions 3.5.4, 3.5.5, 3.5.6, and 3.5.7,
by setting F ∗ := F̂ , T ∗ := T̂ , and F∗ := cl(F3) ⊆ Fall

T̂
.
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Chapter 4

Generalized Permutants and
Graph GENEOs

In this chapter, we present two models for graph GENEOs. The
first model considers graphs weighted on the edges and the second
one addresses the case of graphs weighted on the vertices. We
introduce the notion of a generalized permutant and show how it
can be used to define new GENEOs in the set theoretic setting.
Finally, defining and utilizing the concept of a graph permutant,
we show how the second model for graph GENEOs can be used
to study the structure of simple graphs [56].
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We establish a bridge between Topological Data Analysis and Geometric Deep
Learning, adapting the topological theory of group equivariant non-expansive op-
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erators (GENEOs) to act on the space of all graphs weighted on vertices or edges.
This is done by showing how the general concept of GENEO can be used to trans-
form graphs and to give information about their structure. This requires the
introduction of the new concepts of generalized permutant and generalized per-
mutant measure and the mathematical proof that these concepts allow us to build
GENEOs between graphs. The analysis of some simple case studies illustrates
the possible use of our operators to extract structural information from graphs.
This work is part of a line of research devoted to developing a compositional and
geometric theory of GENEOs for Geometric Deep Learning.

Section 4.1 introduces and describes the new concepts of generalized permutant
and generalized permutant measure, proving that each of them can be used to
build a GENEO (Theorems 4.1.1 and 4.1.3). In Section 4.2 we introduce the
concepts of vertex-weighted/edge-weighted graph GENEO and illustrate our new
mathematical model with several examples. Section 4.3 is devoted to case studies
showing how graph GENEOs enrich our understanding of the structure of simple
graphs.

4.1 Generalized Permutants in the Set-theoretical Set-
ting

In this section, we introduce a generalization of the concept of a permutant to the
case when we may have distinct perception pairs, and show that the new concept
we introduce here too can be used to populate the space of GENEOs.

Definition 4.1.1. Let (Φ, G), dom(Φ) = X and (Ψ,K), dom(Ψ) = Y be per-
ception pairs and T : G → K be a group homomorphism. A finite set H ⊆ XY

of functions h : Y → X is called a generalized permutant for T if H = ∅ or
g ◦ h ◦ T (g−1) ∈ H for every h ∈ H, and every g ∈ G.

In this case, we have the following commutative diagram:

X
g // X

Y

h

OO

T (g) // Y

h′=g◦h◦T (g−1)

OO

We observe that the map h 7→ g ◦ h ◦ T (g−1) is a bijection from H to H, for
any g ∈ G.
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Definition 4.1.1 extends Definition 2.3.1 in two different directions. First of all,
it does not require that the origin perception pair (Φ, G) and the target perception
pair (Ψ,K) coincide. Secondly, it does not require that the elements of the set
H are bijections. In Section 4.3.2 we will see how the concept of generalized
permutant can be applied.

Example 4.1.1. Let X,Y be two nonempty finite sets, with Y ⊆ X. Let G be
the group of all permutations of X that preserve Y , and K be the group of all
permutations of Y . Set Φ = RX and Ψ = RY . Assume that T : G → K takes
each permutation of X to its restriction to Y . Define H as the set of all functions
h : Y → X such that the cardinality of Im h is smaller than a fixed integer m.
Then H is a generalized permutant for T .

In the following two subsections, we will express two other ways to look at
generalized permutants, beyond their definition. To this end, we will assume that
two perception pairs (Φ, G), (Ψ,K) and a group homomorphism T : G → K are
given, with dom(Φ) = X and dom(Ψ) = Y .

4.1.1 Generalized Permutants as unions of equivalence classes

In view of Definition 4.1.1, we can define an equivalence relation ∼ on XY :

Definition 4.1.2. Let h, h′ ∈ XY . We say that h is equivalent to h′, and write
h ∼ h′, if there is a g ∈ G such that h′ = g ◦ h ◦ T (g−1).

It is easy to see that ∼ is indeed an equivalence relation on XY .

Proposition 4.1.1. A subset H of XY is a generalized permutant for T if and
only if H is a (possibly empty) union of equivalence classes for ∼.

Proof. Assume that H is a generalized permutant for T . If h ∈ H and h ∼
h′ ∈ XY , then the definition of the relation ∼ and the definition of generalized
permutant imply that h′ ∈ H as well, and therefore H is a union of equivalence
classes for ∼. Conversely, if H is a union of equivalence classes for the relation
∼, h ∈ H and g ∈ G, then g ◦ h ◦ T (g−1) ∈ H, since g ◦ h ◦ T (g−1) ∼ h. As a
consequence, H is a generalized permutant for T .

4.1.2 Generalized Permutants as unions of orbits

The map α : G×XY → XY taking (g, f) to g ◦ f ◦ T (g−1) is a left group action,
since α(idX , f) = idX ◦f ◦T (id−1

X ) = f and α(g2, α(g1, f)) = α(g2, g1◦f ◦T (g−1
1 )) =

51



g2 ◦(g1 ◦f ◦T (g−1
1 ))◦T (g−1

2 ) = (g2 ◦g1)◦f ◦T ((g2 ◦g1)−1) = α(g2 ◦g1, f). For every
f ∈ XY , the set O(f) := {α(g, f) : g ∈ G} is called the orbit of f . By observing
that O(f) is the equivalence class of f in XY for ∼, from Proposition 4.1.1 the
following result immediately follows.

Proposition 4.1.2. A subset H of XY is a generalized permutant for T if and
only if H is a (possibly empty) union of orbits for the group action α.

The main use of the concept of generalized permutant is expressed by the
following theorem, extending Proposition 2.3.1.

Theorem 4.1.1. Let (Φ, G), dom(Φ) = X and (Ψ,K), dom(Ψ) = Y be perception
pairs, T : G → K a group homomorphism, and H be a generalized permutant for
T . Then the restriction to Φ of the operator F : RX → RY defined by

F (φ) := 1
|H|

∑
h∈H

φ ◦ h

is a GENEO from (Φ, G) to (Ψ,K) with respect to T provided F (Φ) ⊆ Ψ.

Proof. Let φ ∈ Φ and g ∈ G. Then by the definition of a generalized permutant
and the change of variable h′ = g ◦ h ◦ T (g−1), we have

F (φ ◦ g) := 1
|H|

∑
h∈H

(φ ◦ g) ◦ h

= 1
|H|

∑
h∈H

φ ◦ g ◦ h ◦ T (g−1) ◦ T (g)

= 1
|H|

∑
h′∈H

φ ◦ h′ ◦ T (g)

= F (φ) ◦ T (g)

whence F is equivariant.
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If φ1, φ2 ∈ Φ, then

∥F (φ1) − F (φ2)∥∞ =

∥∥∥∥∥∥ 1
|H|

∑
h∈H

φ1 ◦ h− 1
|H|

∑
h∈H

φ2 ◦ h

∥∥∥∥∥∥
∞

= 1
|H|

∥∥∥∥∥∥
∑
h∈H

(φ1 ◦ h− φ2 ◦ h)

∥∥∥∥∥∥
∞

≤ 1
|H|

∑
h∈H

∥φ1 ◦ h− φ2 ◦ h∥∞

≤ 1
|H|

∑
h∈H

∥φ1 − φ2∥∞

= 1
|H|

|H| ∥φ1 − φ2∥∞

= ∥φ1 − φ2∥∞

whence F is non-expansive, and hence a GENEO.

4.1.3 Generalized permutant measures

As shown in [41], the concept of a permutant can be extended to the one of a
permutant measure, provided that the set X under consideration is finite. This
is done by using the following definition, referring to a subgroup G of the group
Aut(X) of all permutations of the set X, and to the perception pair (RX , G).

Definition 4.1.3. [41] A finite signed measure µ on Aut(X) is called a permutant
measure with respect to G if each subset H of Aut(X) is measurable and µ is
invariant under the conjugation action of G (i.e., µ(H) = µ(gHg−1) for every
g ∈ G).

With a slight abuse of notation, we will denote by µ(h) the signed measure
of the singleton {h} for each h ∈ Aut(X). The next example shows how we can
apply Definition 4.1.3.

Example 4.1.2. Let us consider the set X of the vertices of a cube in R3, and
the group G of the orientation-preserving isometries of R3 that take X to X. Set
T = idG. Let π1, π2, π3 be the three planes that contain the center of mass of X and
are parallel to a face of the cube. Let hi : X → X be the orthogonal symmetry with
respect to πi, for i ∈ {1, 2, 3}. We have that the set {h1, h2, h3} is an orbit under
the action expressed by the map α defined in Section 4.1.2. We can now define a
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permutant measure µ on Aut(X) by setting µ(h1) = µ(h2) = µ(h3) = c, where c
is a positive real number, and µ(h) = 0 for any h ∈ Aut(X) with h /∈ {h1, h2, h3}.
We also observe that while the cardinality of G is 24, the cardinality of the support
supp(µ) := {h ∈ Aut(X) : µ(h) ̸= 0} of the signed measure µ is 3.

The concept of permutant measure is important because it makes available an
important representation result for linear GENEOs. But first we need

Definition 4.1.4. [40] Let X be a finite set and G be a subgroup of Aut(X). We
say that G acts on X transitively if for every x1, x2 ∈ X there is a g ∈ Aut(X)
such that g(x1) = x2.

Theorem 4.1.2. [41] Assume that G ⊆ Aut(X) acts transitively on the finite set
X and F is a map from RX to RX . The map F is a linear group equivariant non-
expansive operator from (RX , G) to (RX , G) with respect to the homomorphism
idG : G → G if and only if a permutant measure µ exists such that F (φ) =∑
h∈Aut(X) φ ◦ h−1 µ(h) for every φ ∈ RX , and

∑
h∈Aut(X) |µ(h)| ≤ 1.

We now state a definition that extends the concept of permutant measure.

Definition 4.1.5. Let X and Y be finite nonempty sets. Let us choose a subgroup
G of Aut(X), a subgroup K of Aut(Y ), and a homomorphism T : G → K. A finite
signed measure µ on XY is called a generalized permutant measure with respect to
T if each subset H of XY is measurable and µ

(
g ◦H ◦ T (g−1)

)
= µ (H) for every

g ∈ G.

Definition 4.1.5 extends Definition 4.1.3 in two different directions. First of all,
it does not require that the origin perception pair (RX , G) and the target percep-
tion pair (RY ,K) coincide. Secondly, the measure µ is not defined on Aut(X) but
on the set XY .

Example 4.1.3. Let X and Y be nonempty finite sets, with Y ⊆ X. Let G be
the group of all permutations of X that preserve Y , and K be the group of all
permutations of Y . Set Φ = RX and Ψ = RY . Assume that T : G → K takes each
permutation of X to its restriction to Y . For any positive integer m, define Hm

as the set of all functions h : Y → X such that the cardinality of Im h is equal to
m. For each h ∈ Hm, let us set µ(h) := 1

m|Hm| . Then µ is a generalized permutant
measure with respect to T .

We can prove the following result, showing that every generalized permutant
measure allows us to build a GENEO between perception pairs.
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Theorem 4.1.3. Let X and Y be finite nonempty sets. Let us choose a subgroup
G of Aut(X), a subgroup K of Aut(Y ), and a homomorphism T : G → K. If µ is
a generalized permutant measure with respect to T , then the map Fµ : RX → RY

defined by setting Fµ(φ) :=
∑
f∈XY φ ◦ f µ(f) is a linear GEO from (Φ, G) to

(Ψ,K) with respect to T . If
∑
f∈XY |µ(f)| ≤ 1, then F is a GENEO.

Proof. It is immediate to check that Fµ is linear. Moreover, by applying the change
of variable f̂ = g ◦ f ◦T (g−1) and the equality µ

(
g ◦ f ◦ T (g−1)

)
= µ(f), for every

φ ∈ RX and every g ∈ G we get

Fµ(φ ◦ g) =
∑
f∈XY

φ ◦ g ◦ f µ(f)

=
∑
f∈XY

φ ◦ g ◦ f ◦ T (g−1) ◦ T (g) µ(g ◦ f ◦ T (g−1))

=
∑
f̂∈XY

φ ◦ f̂ ◦ T (g) µ(f̂)

= Fµ(φ) ◦ T (g)

since the map f 7→ g ◦ f ◦ T
(
g−1) is a bijection from XY to XY . This proves that

Fµ is equivariant.
If
∑
f∈XY |µ(f)| ≤ 1,

∥Fµ(φ)∥∞ =

∥∥∥∥∥∥
∑
f∈XY

φ ◦ f µ(f)

∥∥∥∥∥∥
∞

≤
∑
f∈XY

∥φ ◦ f∥∞ |µ(f)|

≤
∑
f∈XY

∥φ∥∞ |µ(f)|

= ∥φ∥∞
∑
f∈XY

|µ(f)|

≤ ∥φ∥∞.

This implies that the linear map Fµ is non-expansive, and concludes the proof of
our theorem.

The condition |supp(µ)| ≪ |G| is not rare in applications (cf., e.g., Example
4.1.2) and is the main reason to build GEOs by means of (generalized) permu-
tant measures, instead of using the representation of GEOs as G-convolutions and
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integrating on possibly large groups.
In the following, we will apply the aforementioned concepts to graphs. For

the sake of simplicity, we will drop the word “generalized” and use the expression
“graph permutant”.

4.2 GENEOs on Graphs

The notions of perception pair, permutant, and GENEO can be easily applied in
a graph-theoretic setting. In this section, we develop a model for graphs with
weights assigned to their vertices (vw-graphs, for short), and another for graphs
with weights assigned to their edges (ew-graphs, for short), often called "weighted
graphs" in literature. Our vertex model has implications for the rapidly growing
field of graph convolutional neural networks, while the edge model we propose
owes its significance to the widely recognized importance of weighted graphs.

As a graph [57] we shall mean a triple Γ = (VΓ, EΓ, ψΓ), where ψΓ assigns to
each edge of EΓ the unordered pair of its end vertices in VΓ. Since we only consider
simple graphs (i.e. with no loops and no multiple edges) we write e = {A,B} to
mean ψΓ(e) = {A,B}. Let us recall that an automorphism g of Γ is a pair
g = (gV , gE), where gV : VΓ → VΓ and gE : EΓ → EΓ are bijections respecting
the incidence function ψΓ. The group Aut(Γ) of all automorphisms of Γ induces
two particular subgroups, here denoted as Aut(VΓ) and Aut(EΓ), of the groups of
permutations of VΓ and of EΓ. We represent permutations as cycle products.

For any k ∈ N, put
Nk := {1 ≤ i ≤ k | i ∈ N}.

Let a graph Γ = (VΓ, EΓ, ψΓ) with n vertices and m edges be given. By fixing an
indexing of the vertices (resp. edges), we can identify Aut(VΓ) (resp. Aut(EΓ))
with some subgroup of Sn (resp. Sm), for the sake of simplicity. Analogously, a real
function defined on VΓ (resp. EΓ) will be represented as an n-tuple (resp. m-tuple)
of real numbers. Anyway, we shall denote vertices (resp. edges) by consecutive
capital (resp. lowercase) letters and not by numerical indexes.

In this section, we will consider a space ΦVΓ of real valued functions on VΓ, as
a subspace of Rn endowed with the sup-norm ∥ · ∥∞; i.e., the real valued functions
φ ∈ ΦVΓ on the vertex set VΓ are given by column vectors φ = (φ1, φ2, · · · , φn)
of length n. Analogously, the symbol ΦEΓ will refer to a subspace of Rm endowed
with the sup-norm; i.e., the real valued functions φ ∈ ΦEΓ on the edge set EΓ are
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given by column vectors φ = (φ1, φ2, · · · , φm) of length m.
Let G be a subgroup of the group Aut(VΓ) (resp. Aut(EΓ)) corresponding

to the group of all graph automorphisms of Γ. By the previous convention, the
elements of G can be considered to be permutations of the set Nn (resp. Nm).

4.2.1 GENEOs on graphs weighted on vertices

The concepts of perception pair, GEO/GENEO, and (generalized) permutant can
be applied to vw-graphs.

Definition 4.2.1. Let ΦVΓ be a set of functions from VΓ to R and G be a subgroup
of Aut(VΓ). If (ΦVΓ , G) is a perception pair, we will call it a vw-graph perception
pair for Γ = (VΓ, EΓ, ψΓ), and will write dom(ΦVΓ) = VΓ.

Definition 4.2.2. Let (ΦVΓ1
, G1) and (ΦVΓ2

, G2) be two vw-graph perception pairs
and T : G1 → G2 be a group homomorphism. If F : ΦVΓ1

→ ΦVΓ2
is a GEO (resp.

GENEO) from (ΦVΓ1
, G1) to (ΦVΓ2

, G2) with respect to T , we will say that F is a
vw-graph GEO (resp. vw-graph GENEO).

Definition 4.2.3. Let (ΦVΓ1
, G1) and (ΦVΓ2

, G2) be two vw-graph perception pairs
and T : G1 → G2 be a group homomorphism. We say that H ⊆ VΓ1

VΓ2 is a
vw-graph permutant for T if αg(H) ⊆ H for every g ∈ G1; that is, αg(f) =
g ◦ f ◦ T (g−1) ∈ H for every f ∈ H and g ∈ G1.

Let us consider some examples of vw-graph perception pairs, vw-graph GE-
NEOs and vw-graph permutants.

A

B

C

D

p

qr

s

t

Figure 4.2.1: The graph of Example 4.2.1.

Example 4.2.1. Consider the graph Γ = (VΓ, EΓ, ψΓ) with vertex set VΓ =
{A,B,C,D} and edge set EΓ =

{
p = {A,B}, q = {B,C}, r = {C,D}, s = {A,D},
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t = {B,D}
}

(see Fig. 4.2.1). Its automorphism group Aut(VΓ) is given by

Aut(VΓ) = {idN4 , (A,C), (B,D), (A,C)(B,D)}.

Let
G = {idN4 , δ = (B,D)},

and ΦVΓ be the subspace of R4 given by

ΦVΓ := {φ = (φ1, φ2, φ3, φ4) ∈ R4 | φ1 + φ3 = 0}.

Clearly, φ ◦ δ = (φ1, φ4, φ3, φ2) ∈ ΦVΓ for all φ ∈ ΦVΓ; so, (ΦVΓ , G) is a vw-graph
perception pair for Γ.

The next example shows that we can have different perception pairs with the
same graph and the same group.

Example 4.2.2. Let G be as in Example 4.2.1 and

ΦVΓ = {φ = (φ1, φ2, φ3, φ4) ∈ R4 |
∑
i∈N4

(φi)2 ≤ 1}.

Then (ΦVΓ , G) is a vw-graph perception pair.

We can now define a simple class of GENEOs.

Example 4.2.3. Let (ΦVΓ , G) be as in Example 4.2.1 and a map F be defined by

F (φ) = (φ1/d1, φ
2/d2, φ

3/d3, φ
4/d4), φ ∈ ΦVΓ , and d1, d2, d3, d4 ∈ [1,∞).

If, for all φ = (φ1, φ2, φ3, φ4) ∈ ΦVΓ and g ∈ G, we have F (φ ◦ g) = F (φ) ◦ g,
then (

φ1

d1
,
φ4

d2
,
φ3

d3
,
φ2

d4

)
=
(
φ1

d1
,
φ4

d4
,
φ3

d3
,
φ2

d2

)

whence d2 = d4; and the requirement that F (φ) ∈ ΦVΓ entails d1 = d3.
Moreover,

∥F (φ1) − F (φ2)∥∞ ≤ 1
min{d1, d2}

∥φ1 − φ2∥∞ ≤ ∥φ1 − φ2∥∞

for all φ1 = (φ1
1, φ

2
1, φ

3
1, φ

4
1), φ2 = (φ1

2, φ
2
2, φ

3
2, φ

4
2) ∈ ΦVΓ, whence F is non-

expansive.
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Therefore, the map F defined above is a vw-graph GENEO if and only if d1 =
d3 and d2 = d4.

We now prepare for the first instances of graph permutants in Examples 4.2.6
and 4.2.7.

Example 4.2.4. Let Γ = (VΓ, EΓ, ψΓ) be the cycle graph C4 with VΓ = {A,B,C,D}.
Its automorphism group is given by

Aut(VΓ) = {idN4 , α = (A,B,C,D), α2, α3, (A,C), (B,D), (A,B)(C,D), (A,D)(B,C)}

and
G = {idN4 , α, α

2, α3}

is a subgroup of Aut(VΓ).
If ΦVΓ is the same as in Example 4.2.1, then (ΦVΓ , G) is not a vw-graph per-

ception pair. However, if we define

ΦVΓ = {φ = (φ1, φ2, φ3, φ4) ∈ R4 | φ1 + φ3 = 0 = φ2 + φ4}

then (ΦVΓ ,Aut(VΓ)), and therefore (ΦVΓ , G), are vw-graph perception pairs.

Example 4.2.5. Let G be as in Example 4.2.4 and

ΦVΓ = {φ ∈ R4 | ∥φ∥∞ ≤ 1}.

Then (ΦVΓ , G) is a vw-graph perception pair.

Example 4.2.6. Let G be as in Example 4.2.4 and

H = {h1 = (A,B)(C,D), h2 = (A,D)(B,C)} ⊆ Aut(VΓ).

Then H is a vw-graph permutant for T = idG.

Example 4.2.7. Let Γ be as in Example 4.2.4 and

G = {idN4 , α
2, (A,B)(C,D), (A,D)(B,C)}

be the Klein 4-group contained in Aut(VΓ). If

H = {(A,C), (B,D)} ⊆ Aut(VΓ)
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then H is a vw-graph permutant for T = idG.

As usual, in the following we will denote by Kn the complete graph on n

vertices.

Proposition 4.2.1. Let Γ := Kn and H ⊆ G = Aut(VΓ) ∼= Sn be the set of all
transpositions of VΓ. Then H is a vw-graph permutant for T = idG.

Proof. Let f ∈ H and g ∈ G; we show that g ◦f ◦g−1 ∈ H. Let us put f := (A,B)
for some A,B ∈ VΓ, C := g(A) and D := g(B). Then

g ◦ f ◦ g−1(C) = g ◦ f(A) = g(B) = D

g ◦ f ◦ g−1(D) = g ◦ f(B) = g(A) = C.

While if L ∈ VΓ is different from both C and D, then as g is bijective, g−1(L) ̸=
g−1(C) = A and g−1(L) ̸= g−1(D) = B. We thus have

g ◦ f ◦ g−1(L) = g ◦ g−1(L) = L

whence g ◦ f ◦ g−1 = (C,D) ∈ H, as required.

As stated in Theorem 4.1.1, the concept of a vw-graph permutant can be used
to define vw-graph GENEOs.

Example 4.2.8. Let (ΦVΓ , G) be the same as in Example 4.2.5 and H be the same
as in Example 4.2.6. Set F (φ) = 1

2(φ◦h1 +φ◦h2). Then F (ΦVΓ) ⊆ ΦVΓ; therefore
by Theorem 4.1.1, F is a vw-graph GENEO.

4.2.2 GENEOs on graphs weighted on edges

The concepts of perception pair, GEO/GENEO, and (generalized) permutant can
be applied to ew-graphs as well.

Definition 4.2.4. Let ΦEΓ be a set of functions from EΓ to R and G be a subgroup
of Aut(EΓ). If (ΦEΓ , G) is a perception pair, we will call it an ew-graph perception
pair for Γ = (VΓ, EΓ, ψΓ), and will write dom(ΦEΓ) = EΓ.

Definition 4.2.5. Let (ΦEΓ1
, G1) and (ΦEΓ2

, G2) be two ew-graph perception pairs
and T : G1 → G2 be a group homomorphism. If F : ΦEΓ1

→ ΦEΓ2
is a GEO (resp.

GENEO) from (ΦEΓ1
, G1) to (ΦEΓ2

, G2) with respect to T , we will say that F is
an ew-graph GEO (resp. ew-graph GENEO).
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Definition 4.2.6. Let (ΦEΓ1
, G1) and (ΦEΓ2

, G2) be two ew-graph perception pairs
and T : G1 → G2 be a group homomorphism. We say that H ⊆ EΓ1

EΓ2 is an
ew-graph permutant for T if αg(H) ⊆ H for every g ∈ G1; that is, αg(f) =
g ◦ f ◦ T (g−1) ∈ H for every f ∈ H and g ∈ G1.

The group Aut(Γ) of all graph automorphisms of a graph Γ induces a particular
subgroup Aut(EΓ) of the group Sm of all permutations of EΓ. The elements of
Aut(EΓ) can be considered to be those permutations of EΓ that directly correspond
to the permutations of VΓ defining all graph automorphisms of Γ.

If Γ = Kn, the group Aut(Γ) is isomorphic to Sn, and we have

Sn ∼= Aut(VΓ) ∼= Aut(EΓ) ⊆ Sm.

Therefore, we will consider Aut(Γ) and Aut(EΓ) to be the same in this case.
Let us consider some examples of perception pairs and GENEOs in the context

of ew-graphs.

Example 4.2.9. Let Γ = K4 = (VΓ, EΓ, ψΓ) with

VK4 = {A,B,C,D}

EK4 =
{
p = {A,B}, q = {B,C}, r = {A,C}, s = {A,D}, t = {B,D}, u = {C,D}

}
(see Fig. 4.2.2), and consider the group G = {idEΓ , δ = (r s)(q t)} ⊆ Aut(EΓ)
together with the space ΦEΓ = {φ = (φ1, φ2, φ3, φ4, φ5, φ6) | φ1 + φ6 = 0} ⊆ Rm

of the functions with opposite values on the two edges fixed by the elements of G.
Clearly, φ ◦ δ ∈ ΦEΓ, and (ΦEΓ , G) is an ew-graph perception pair.

A

B C

D

rp

q

u

s

t

Figure 4.2.2: The complete graph K4.
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Example 4.2.10. Let (ΦEΓ , G) be as in Example 4.2.9 and consider the map F

defined by

F (φ) := (φ1/d1, φ
2/d2, φ

3/d3, φ
4/d4, φ

5/d5, φ
6/d6),

φ ∈ ΦEΓ , and di ≥ 1, ∀i ∈ N6.

In order that F (φ) ∈ ΦEΓ we should have d1 = d6, and the requirement that F
be equivariant with respect to G entails d3 = d4 and d2 = d5.

Moreover, a simple computation shows that

∥F (φ1) − F (φ2)∥∞ ≤ 1
min{d1, d2, d3}

∥φ1 − φ2∥∞

≤ ∥φ1 − φ2∥∞

for all φ1 = (φi1 / i ∈ N6), φ2 = (φi2 / i ∈ N6) ∈ ΦEΓ, whence F is non-expansive.
Therefore, the map F defined above is an ew-graph GENEO if and only if

d1 = d6, d2 = d5, and d3 = d4.

The proof of the following proposition follows the one of Prop. 4.2.1.

Proposition 4.2.2. Let Γ := Kn and H ⊆ G = Aut(EΓ) ∼= Sn be the set of all
edge permutations corresponding to transpositions of VΓ. Then H is an ew-graph
permutant for T = idG.

4.3 Case Studies

We illustrate the model of Section 4.2.2 and show how graph GENEOs allow us to
extract useful information from graphs. This can be done by “smart forgetting” of
differences: by some sort of average, but keeping the same dimension of the space
of functions (as in Sect. 4.3.1) or by dimension reduction (as in Sect. 4.3.2).

4.3.1 Subgraphs of K4

The choice of a permutant determines how different functions are mapped to the
same “signature” by the corresponding GENEO. In this subsection, we consider
functions on the edge set of a complete graph Kn, taking values that are either 0
or 1; this means that each such a function identifies a subgraph of Kn. A GENEO
will, in general, produce functions that can have any real value, so not representing
subgraphs anymore. With the aim of getting equal results for “similar” subgraphs,
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we have chosen as a permutant the set of edge permutations produced by swapping
two vertices in any possible way.

Let Γ be the complete graph K4 (Fig. 4.2.2) with ΦEΓ := R6. We have

S4 ∼= Aut(K4) ∼= Aut(EK4) ⊆ S6.

The subset

H := {(q, r)(s, t), (p, q)(s, u), (p, t)(r, u), (p, r)(t, u), (p, s)(q, u), (q, t)(r, s)}

of G = Aut(EK4) consisting of permutations of EK4 induced by all transpositions
of VK4 is an ew-graph permutant for T = idG by Prop. 4.2.2. Therefore, the
operator F : R6 → R6 defined by

F (φ) := 1
6
∑
h∈H

φ ◦ h

is an ew-graph GENEO.

000000
000000

000100
101211

000110
211332

000111
222444

010100
222222

101011
444444

101111
545655

110100
433332

111000
444222

111100
545433

111111
666666

Figure 4.3.1: The subgraphs of K4 up to isomorphisms, the 6-tuples representing
each of them (above) and their F4-codes (multiplied by 6, below).
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Subgraphs of K4 can be represented by elements of

Φ4 :=
{
φ = (φ1, · · · , φ6) ∈ ΦEK4

| φr ∈ {0, 1}, r ∈ N6
}

and the restriction F4 of F to Φ4 ⊆ ΦEK4
can be used to draw meaningful com-

parisons between them (see Fig. 4.3.1).

Definition 4.3.1. We say that the image F4(φ) is an F4−code for the subgraph
φ ∈ Φ4 of K4.

Definition 4.3.2. We say that an F4−code c1 is F4−equivalent to an F4−code c2,
and write c1 ∼4 c2, if c2 is the result of a permutation of c1.

Clearly, ∼4 is an equivalence relation.

Definition 4.3.3. We say that φ′ := (φ6, · · · , φ1) is the reversal of φ := (φ1, · · · , φ6)
∈ ΦEK4

.

Definition 4.3.4. Let φ1, φ2 ∈ ΦEK4
. We say that φ1 and φ2 are complementary

if φ1 + φ2 = (1, · · · , 1)

We wrote a simple program to compute all F4-codes and found that

1. Naturally enough, isomorphic subgraphs have F4-equivalent codes. There-
fore, in some cases, it suffices to consider only the 11 non-isomorphic sub-
graphs of K4.

2. Complementary subgraphs have complementary codes.

3. There is only one case, up to graph isomorphisms, in which non-isomorphic
subgraphs of K4 have F4-equivalent codes: φ1 := (1, 1, 1, 0, 0, 0) and φ2 :=
(0, 0, 0, 1, 1, 1) with F4(φ1) := (4, 4, 4, 2, 2, 2)/6 and F4(φ2) := (2, 2, 2, 4, 4, 4)/6.
In this case, the graphs are complementary as well, which explains why we
have equivalent codes despite the graphs being non-isomorphic. Moreover,
φ1 and φ2 are reversals of each other, and so are the corresponding codes.

4. If φ1 ∈ Φ4 is a reversal of φ2 ∈ Φ4, then F4(φ1) is a reversal of F4(φ2).

We wrote a program to compute F5−codes for the 34 non-isomorphic subgraphs
of K5 as well and found that they were never F5−equivalent. A similar statement
holds for the complete graph K3.
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4.3.2 Graph GENEOs for C6 and C3

A more drastic way of quotienting differences away is dimension reduction of the
space of functions. In this subsection, we use the generalized notion of permutant
(Sect. 4.1), by mapping the edges of a small, auxiliary graph to the edges of the
graph of interest. Note that we have great freedom, in that we are not bound to
stick to graph homomorphisms.

Let X := (VX , EX , ψX) be the cycle graph C6 (see Fig. 4.3.2) with

VX := {A,B,C,D,E, F},

EX := {a = {A,B}, b = {B,C}, c = {C,D}, d = {D,E}, e = {E,F}, f = {A,F}}

and Y := (VY , EY , ψY ) be the cycle graph C3 with

VY := {G,H, I},

EY := {g = {G,H}, h = {H, I}, i = {G, I}}.

Their automorphisms groups respectively are the dihedral groups

D6 := {α, β | α6 = β2 = (βα)2 = 1},

D3 := {γ, δ | γ3 = δ2 = (δγ)2 = 1},

where α := (a, b, c, d, e, f), β := (a, f)(b, e)(c, d), γ := (g, h, i), and δ := (g, i).
Let us put ΦEX

:= R6, ΦEY
:= R3; also put G := Aut(EX) = D6 and

K := Aut(EY ) = D3 and consider the group homomorphism T : G → K given by
T (α) := γ and T (β) := δ.

There are 216 functions p : EY → EX and the equivalence class of each is an
ew-graph permutant Hp (Sect. 4.1.1). For the sake of conciseness, we will denote
the function p := {(g 7→ e1), (h 7→ e2), (i 7→ e3)} simply by p := e1e2e3. For
example, p := {(g 7→ c), (h 7→ a), (i 7→ f)} will be written as p := caf.

The ew-graph permutants Hp, p ∈ EEY
X are of four possible sizes:

1. There is only 1 ew-graph permutant with 2 elements. It corresponds to the
function aec.

2. There is only 1 ew-graph permutant with 4 elements. It is induced by bfd.
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3. There are 5 ew-graph permutants with 6 elements each that correspond to
the functions aaa, abc, ace, add, and afb.

4. There are 15 ew-graph permutants with 12 elements each that correspond
to the functions aab, aac, aad, aae, aaf, abd, acb, acd, adb, adc, baa, bad,
bca, bce, and bdb.

A B

C

DE

F

G H

I

a

b

c

d

e

f

hi

g

Figure 4.3.2: The cycle graphs C6 and C3.

Considering only the weights in {0, 1}, we wrote programs for computing the
ew-graph GENEOs corresponding to the functions aec and bfd. Similar computa-
tions can be made for the rest of the functions listed above. This detailed analysis
on particular functions raised a number of questions and conjectures that we plan
to study in the near future.
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Conclusions

We have shown that when the spaces of measurements are totally bounded and rich
enough to ensure that any two points can be distinguished by our measurements,
we can always embed our perception pairs and the space of GENEOs into compact
perception pairs and compact spaces of GENEOs, provided that the set of our
operators is collectionwise surjective. This result makes available a sound basis
for further research concerning spaces of GENEOs, and paves the way for possible
applications of the theory.

Of course, the computation costs might be higher while working with compact-
ifications, but that should not be considered to be a drawback. In fact, in practical
applications, one does not necessarily need to work with compactifications in an
explicitly concrete manner. The mere recognition that certain spaces of GENEOs
can be nicely embedded in compact ones is all that one needs most of the time.

Our research has raised several questions as well. For example, it is not clear
whether the assumption of collectionwise surjectivity could be removed or made
milder. Furthermore, we could wonder if our approach could be extended to the
case whenX and Y are endowed with a pseudo-metric instead of a metric structure,
thereby extending the range of applicability of our constructions. We are planning
to follow these lines of research in the near future.

GENEOs represent the possibility to formalize observer dependence in Ma-
chine Learning processes, one step towards Explainable AI [36, 37, 38]. On the
other hand, they are precisely defined mathematical tools; as such, they were first
conceived in a topological setting for TDA. In the same environment, permutants
turn out to be effective gears for the production of GENEOs. The ever-growing use
of graphs in data representation and Geometrical Deep Learning [9, 58, 59, 60, 61]
motivated the present extension to the graph-theoretical domain, mirroring an
analogous generalization already carried out in Topological Persistence [62].

The extension to graphs was performed here on two different lines: the first
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sees data as functions defined on the vertices of a graph; this is perhaps the
most common use of graphs in Machine Learning. The second development line
deals with functions defined on the graph edges; this is best suited for processing
filtered graphs and for comparing different graphs with the same vertex set. In
both models, we applied a graph-theoretical analogue of a generalized definition
of permutant.

The examples studied here are just meant to show some realizations of the
abstract concepts we introduced: our goal was mainly to establish a solid math-
ematical background. Extensions to digraphs, and possibly to hypergraphs, will
follow. We hope that experimenters, interested in concrete applied problems, will
make good use of the flexibility and modularity of this theory, for translating
their viewpoints and biases into the language of GENEOs and permutants in the
graph-theoretical setting as well.

The C++ programs used here are available at the repository:
https://gitlab.com/patrizio.frosini/graph-geneos.
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