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Analytics and optimization for emergency healthcare processes

by Cristiano FABBRI

This thesis deals with the analysis and management of emergency health-
care processes through the use of advanced analytics and optimization ap-
proaches. Emergency processes are among the most complex within health-
care. This is due to their non-elective nature and their high variability. These
characteristics make them ideal environments for the application of quanti-
tative data-driven techniques.

This thesis is divided into two topics related to emergency processes. The
first one concerns the core of emergency healthcare processes, the emergency
department (ED). In the second chapter, we describe the ED that is the case
study. This is a real case study with data derived from a large ED located in
northern Italy. In the next two chapters, we introduce two tools for support-
ing ED activities. The first one is a new type of analytics model. Its aim is
to overcome the traditional methods of analysing the activities provided in
the ED by means of an algorithm that analyses the ED pathway (organized
as event log) as a whole. The second tool is a decision-support system, which
integrates a deep neural network for the prediction of patient pathways, and
an online simulator to evaluate the evolution of the ED over time. Its pur-
pose is to provide a set of solutions to prevent and solve the problem of the
ED overcrowding.

The second part of the thesis focuses on the COVID-19 pandemic emer-
gency. In the fifth chapter, we describe a tool that was used by the Bologna lo-
cal health authority in the first part of the pandemic. Its purpose is to analyse
the clinical pathway (taking into account the services relevant to the manage-
ment of COVID-19 patients) of a patient and from this automatically assign
them a state. Physicians used the state for routing the patients to the cor-
rect clinical pathways. The last chapter is dedicated to the description of a
MIP model, which was used for the organisation of the COVID-19 vaccina-
tion campaign in the city of Bologna, Italy. It is powerful multi-scenario tool,
which made the organisation more effective and efficient.

HTTPS://WWW.UNIBO.IT/EN/HOMEPAGE
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Chapter 1

Introduction

Throughout the world, the organization, management and improvement of
health care systems is a major task for governments as well as a topic of par-
ticular public concern. Indeed, not only health care is a fundamental com-
ponent of the welfare provided to the population, but also it is above all a
fundamental right that must be guaranteed.

The organization of health services, however, is a task of extreme com-
plexity. On the one hand, this is due to the wide variety of services that
need to be made available, ranging from specialized outpatient clinics to pri-
mary care and surgery. On the other hand, complexity is related to the large
amount of resources (e.g. money, people and equipment) that are needed to
provide an adequate level of service. Moreover, the use of resources is likely
to increase due to phenomena such as the gradual aging of the population
(WHO, 2022) and the consequent increase in chronic diseases (Petrelli et al.,
2021). This factor has been compounded by the COVID-19 pandemics, which
has hit the world since 2019. This event not only created new challenges
for health systems, both clinically (Rehman et al., 2021) and organizationally
(Mohamed et al., 2022), but also showed the danger of resource scarcity in
health care. During the pandemic there was often a gradual suspension of
basic services (e.g. ambulatory care services or surgical care services) in or-
der to allocate resources for the emergency. The suspension of these services
had serious consequences not only in the pandemic peak period, but also af-
ter recovery (see for some examples Griewing et al., 2022, Alkharashi et al.,
2022, Dionisie et al., 2022 and Araja et al., 2022).

By taking into consideration the scenario just described, it becomes clear
that the ability to provide the best services to people through the rational
and efficient use of resources, which might otherwise fall short, is already a
key challenge for health systems around the world. The conjugation of these
aspects, which may be perceived as conflicting, could provide an opportunity
to avoid difficult choices in the future, even in the event of a resumption of
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COVID-19 pandemic emergency or in a similar situation.
The capability of successfully tacking such a challenge also comes through

the adoption of approaches, methodologies or disciplines that enable the de-
velopment of evolved decision support systems. Recent years have increas-
ingly seen the emergence of new techniques (e.g. Process Mining) or the
growing adoption of existing ones (e.g. Data Mining and Machine Learning)
based on data (Analytics) and supporting traditional Process Management
techniques (e.g. Lean Management or Agile project management). The latter,
although providing a number of qualitative general purpose solutions that
are effective in the general context, tend to be less effective on the particular
and high dynamic cases, such as the health care processes. In addition to an-
alytical techniques, which allow for the quantitative and objective analysis of
problems, the use of operations research techniques (e.g. combinatorial opti-
mization or simulation) allow us to transform the obtained data into insights
for better decision making.

To conclude, the correct combination of these techniques is a recipe for
building decision support systems (in each case subject to the control of the
human decision maker) that will enable the design and improvement of health
care systems, thus creating the right balance between quality and cost of ser-
vice.

1.1 Emergency and urgency services: a brief de-
scription

The health care processes and services provided within the various systems
differ one from each other. These differences may relate to multiple factors
such as the type of professional required, acceptable delay before the service
is provided, or the type of target patient. Regardless of other characteristics,
the first level of classification of health care processes concerns the difference
between elective care and non-elective care (Mans et al., 2015).

The first type covers all activities, services and processes whose planning
can be done in advance, involving patients who need care that can be delayed
(Gupta and Denton, 2008). Ambulatory care services, surgical care services
(the share of non-urgent surgery) or home care services can be found within
this group.

The second type deals with all those services dedicated to patients with
unexpected needs that cannot be organized in advance, but only at the time
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of their onset (Gupta and Denton, 2008). The most important processes, of
this second group, concern the emergency and urgency services. They af-
fect a large number of networks, organizational systems, and professionals
within emergency medicine, identified as the medical specialty dedicated to
treating, managing, and preventing unexpected injuries and illnesses (Schnei-
der et al., 1998). Patients who are treated within this specialty can be grouped
within two classes: urgent and emergent. The former includes patients with
problems that can be treated within a short period. The second, on the
other hand, concerns patients who need to be treated immediately (Mans et
al., 2015). Although several facilities contribute to make up the emergency-
urgency system (e.g. ambulance networks, trauma centers or emergency
surgery), the center is the emergency department (ED) (Hulshof et al., 2012).

The ED, also known as emergency room, is the facility dedicated to the
treatment and care of patients with unexpected or life-threatening injuries
and illnesses. Often, in addition to urgent and emergent patients, the non-
urgent class of patients who do not find an adequate response within the
primary care system (see Beaulieu et al., 2013) are also treated. Internally,
given the non-elective nature of the processes, illnesses treated and arrivals,
patients who show-up are organized through a prioritization process called
triage. The triage is a set of procedures, usually performed by a nurse, through
which a priority code (numerical or by color) is assigned to patients so that
the more clinically serious ones can be seen before the less serious one. Af-
ter the triage, the patient is examined by an ED physician1 and possibly dis-
charged or referred for further investigations until a complete clinical picture
is obtained.

Due to their nature, processes related to emergency and urgency are among
the most complex to manage within health care systems. The inability to plan
activities in advance means that there is a risk of under-utilization or over-
utilization of the resources, resulting in waste or poor service provided to
the patients. This issue makes this subject area the ideal candidate for the
application of advanced quantitative analytical and operational methods.

1This phase is known as visit or first visit.



4 Chapter 1. Introduction

1.2 A special case of emergency: the COVID-19
pandemics

Since 2019 a different kind of emergency has spread all over the world, namely
the COVID-19 pandemic. The infection was first identified in the Chinese city
of Wuhan in December 2019 (Lu et al., 2020), but soon spread to almost every
country in the world (Chen et al., 2020, C. Wang et al., 2020, Huang et al.,
2020). Later, on January 30th 2020, the COVID-19 outbreak was declared by
WHO as the sixth public health emergency of international concern, follow-
ing H1N1 (2009), polio (2014), Ebola in West Africa (2014), Zika (2016) and
Ebola in the Democratic Republic of Congo (2019) (Lai et al., 2020), and on
March 11th 2020 it was declared a pandemic. To deal with the emergency and
contrast its advance, in addition to using standard protocols, many govern-
ments around the world have decided to adopt increasingly harsh solutions,
from suspending all nonessential medical services (especially elective ones)
and the facial masks utilization, to the measure of lockdown (Onyeaka et al.,
2021). Independent of the clinical and organizational solutions implemented
by different countries, the most effective system in stopping the pandemic
has been vaccine development. The first versions passed clinical trials at the
end of October 2020 and then were administered to an increasing number of
people, enabling the resumption of all previously suspended clinical, work,
and social activities (Hadj Hassine, 2022).

In its early stages, the processes to face the pandemic had all the charac-
teristics of emergency processes. Activities were purely non-elective, with
uncertainty about arrivals, both in terms of time and numbers. Added to
this was the uncertainty about the correct clinical and organizational model
to be used to deal with this emergency, as it was different from those faced
in the recent past. The main goal at this stage was to find the best solutions,
at different levels, to slow the spread of the virus as it evolved, without any
possibility of planning ahead.

Subsequently, with the production of the first vaccine doses, the focus
shifted to organizing a mass vaccination campaign as quickly as possible.
This issue, unlike the previous one, takes on the characteristics of organizing
elective activities, such as ambulatory care services. The goal of this phase
was to produce plannings that were as effective and efficient as possible,
since increased vaccination coverage would have allowed normal activities
to resume sooner.

In conclusion, although the services in order to contrast the pandemic
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was for all intents and purposes managed as an emergency ones for most
of its duration, with the production of vaccines the problem shefted to the
management of an elective process. Again, the use of advanced tools enabled
better management of both phases.

1.3 Aims and objectives

The purpose of this thesis is to propose hybrid analytics and optimization
tools to support the activities of professionals (physicians, nurses or health
workers) working in emergency health systems. All the tools described in the
following chapters have been applied to real cases, and most of them have
been used as real support for practitioners.

In order to provide a clear methodological reference on which area each
tool that will be described covers, two theoretical models need to be refer-
enced. The first is the taxonomy proposed by Hulshof et al., 2012, in which
the authors combine health care application areas (e.g. emergency care ser-
vice, ambulatory care service) to decision-making and planning levels (e.g.
tactical planning, operational planning). The second model is the Analyt-
ics Maturity Models, in which, depending on the depth of data use by an
organization or tool, there are different impacts and costs (from Descriptive
Analytics to Cognitive Analytics) (Król and Zdonek, 2020).

The thesis is divided into two case studies, which have been the subject of
three years of work. Two tools were developed for both of them, in order to
support the activities. The first concerns a case study from a real ED, located
within the Italian territory. The second concerns the COVID-19 emergency
with reference to the context of the metropolitan city of Bologna in Italy.

1.3.1 Emergency Department case study

Chapter 2 The case study for which the two tools covered in chapters 3 and
4 were developed is presented in Chapter 2. First, a conceptual model of ED
operations is described, which is fundamental to understanding the prob-
lem. Next, a retrospective analysis of the ED and its internal organization is
provided.

Chapter 3 In Chapter 3 we propose a new type of diagnostic analytics model.
We start by explaining why traditional analytics systems tend to view ED
pathways and their support services (e.g., radiology) as separate elements.
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This fact, instead of providing the appropriate support, can lead to incorrect
consideration and a bad allocation of resources. The proposed tool, which
takes inspiration from simulation models, tries to overcome this critical issue
by analyzing the process as a whole.

Chapter 4 In Chapter 4 we propose a new Decision Support System (DSS)
based on the integration of a Deep Neural Network (predictive analytics)
and an online simulation (prescriptive and cognitive analytics with OR) tool
applied to the ED (Online operational planning). The purpose of this sys-
tem is to provide valuable support for the abatement of overcrowding, pos-
sibly before it occurs. The neural network is used to predict patients’ clinical
pathways by exploiting all information collected during the triage process.
Predicted pathways are used within a discrete-event simulator in order to
test different policies and to select the most appropriate one so as to decrease
overcrowding.

1.3.2 COVID-19 case study

Chapter 5 In Chapter 5 we present the organization of the response to the
pandemic emergency within the Italian city of Bologna. We describe the pa-
tients’ taking charge process and introduce an algorithm that gives them a
state, through which they are directed to the appropriate path (prescriptive
analytics for offline operational planning level). This tool gave a fast au-
tomatic way to manage the system and to define the best clinical strategy.
The analysis showed that the use of such tool helped healthcare profession-
als during the most difficult moment of the emergency (the first 6 months),
when swabs were scarce and information systems were still not adequate.

Chapter 6 In Chapter 6 we present the organization and scheduling of a
vaccination campaign during a pandemic emergency. We describe the deci-
sion process and introduce an optimization model, which showed a power-
ful multiscenario tool for scheduling a campaign in detail within a dynamic
and uncertain context (tactical planning). The solution of the model gave
the decision maker the possibility to test different settings and have a con-
figurable solution within few seconds, compared with the man-days of effort
that would have required a manual schedule.
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Chapter 2

Emergency department case study

This chapter introduces the case study which is the object of the next two
chapters. The proposed approaches have been tested on a data set derived
from real observations from one of the largest metropolitan ED of a northern
Italian region. The considered ED is classified as a second-level emergency
acceptance department (DEA 2), the highest complexity level within the Ital-
ian classification (see Italian Ministry of Health, 2008). Such an ED provides
a number of highly specialized services, and a 24/7 radiology.

In this chapter, after an introduction dedicated to the description of a
generic ED organizational model (Section 2.1), both the internal organiza-
tion of the ED (Section 2.2) and the historically relevant data (Section 2.3) of
the case study are described.

2.1 Introduction

All EDs include the same kind of human actors and resources such as doc-
tors, nurses, clinical staff, technicians, devices, beds and stretchers, all of
them interacting within similar processes. Therefore, in this section we present
a general model for describing an ED path and the interaction with the re-
sources. Although the case study under examination comes from an ED lo-
cated in Italy, the two approaches that will be presented during the next two
chapters are general and easily adapted to other contexts.

A patient within an ED follows a path that can be summarized as in Fig-
ure 2.1.

Each patient enters the ED either autonomously or with an ambulance.
In both cases, the triage phase starts as soon as possible, and a staff member,
usually a nurse, assesses the patient and registers their personal information
(name, age, sex, etc.) and clinical observations (oxygen saturation, blood
pressure, etc.). In addition to the structured information, nurses often fill
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ED

Entrance:
• Autonomously
• Ambulance

Triage Visit Service

Package

Check-up

Exit:
• Discharged

• SSO
• Hospitalized

• TAH
• . . .

FIGURE 2.1: General ED path

in a text box (nursing diary) with more detailed information about the pa-
tient, such as the type of injury or other diseases affecting the patient. This
unstructured textual information is often more relevant than the structured
one. For example, in the ED we considered, the nursing diary was filled for
every patient registered in the period from January 2018 to October 2019; in
the same period, the field “Main Problem” recorded a very generic informa-
tion (“other injury”) in more than 50% of the cases. After receiving a priority
during the triage phase, each patient is possibly placed in a waiting room. In
case the waiting time extends too much, as it may happen in overcrowded
EDs, some patients may leave without being seen (LWBS). After the waiting,
a patient is checked for the first time by a physician (Visit).

At the end of the visit, the physician either decides to discharge the pa-
tient or requests a further set of services, including, for example, X-ray ex-
ams, ultrasound, specialist visit, laboratory exams, therapies etc. In the fol-
lowing we will denote by “package” a set of services which are prescribed
together for the same patient without a predefined order. A check-up is per-
formed after each package is completed; during this check, the patient is re-
evaluated and the physician either discharges them or requests an additional
package. This loop can be repeated several times, until the physician has a
diagnosis.

Once patients receive the diagnosis, they may have different destinations:
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discharged, hospitalized, transferred to a Short-Stay Observation (SSO) area,
or transferred to another hospital (TAH). In the last three cases, the bed avail-
ability has a major impact on the patients’ length of stay (LoS).

2.2 Internal organization

In this section we present how the case study ED is organized.
After arrival, patients undergo the triage process, which is performed by

two nurses working in parallel. They can be helped by one more nurse dur-
ing period of overcrowding and who normally works as a flow manager.
During this phase, low-urgency patients with particular needs (e.g. eye prob-
lems) are enrolled in pathways called fast-track, and sent to a specialist.

After triage, patients await the visit in two rooms, outside of the ED area,
depending on whether or not they need stretchers. Then, depending on the
urgency, patients (not LWBS) can be visited in an high-urgency area (HUA)
or in a low-urgency area (LUA).

The first one is organized as an open-space area with 8 stretchers and
manned by 2 physicians, 3 nurses and 1 health worker who deals with the
movement of patients. This type of organization facilitates the monitoring of
multiple patients who need to be treated for a long time (tens of minutes),
after the visit itself. The area is always open and during the night (from 8PM
to 8AM) receives also low-priority patients, due to the closure of the LUA.

The second one is composed of 4 ambulatories served by 2 physicians, 2
nurses and 1 health worker who deals with the movement of patients. This
type of organization allows staff to change ambulatory at the end of a visit
(or check-up), so that it can be restored. In case of a very long queue of high-
urgency patients, they can be also admitted to these ambulatories. The area
is open from 8AM to 8PM.

In the event of the arrival of a severely-urgent patient, one physician and
one nurse are moved to a shock-room, where they can provide special care.

In addition to the other physicians, there are two other physicians who
work within ED in order to support special activities. The first one is an ex-
pert physician that works between 11AM to 7PM as support to other doctors
for patients with particular diseases or in case of problems. The second one
works 6PM to 12AM, in order to close clinical cases after LUA closing or
physicians’ change shift (8PM).

When patients cannot be discharged (e.g. they need therapy), but it is
not necessary that a physician monitor them or they have to wait for other
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services, they are moved to a waiting room within the ED. It is checked by a
nurse 24 hours a day.

In the area near to the ED, there are 3 radiology clinics, dedicated to the
ED, where patients who require X-Ray exams or ultrasounds are accepted. In
an other area of the hospital there are 1 MRI scan and 1 CT scan, which are
not dedicated, but the ED takes precedence.

Concerning laboratory exams, the samples of blood are taken from the
patient and sent by pneumatic mail. Physicians and nurses receive the results
through an IT system.

Moving to specialist visits, physicians are available for the ED 24 hours a
day (in presence during the day and through calling during the night). The
specialist checks the patient within the ED or in an other area, depending on
the discipline.

At the end of the pathways or a pack of services, the physicians checks
patients in most of cases within the LUA or HUA.

Once a patient has completed their urgency treatments and has received
a diagnosis, they may have different destinations:

• discharged, in case the there is no immediate need for further clinical
treatments or assistance;

• hospitalized, in case further complex clinical treatments are needed;

• transferred to a SSO, in case short stay observation and/or low inten-
sity care is needed;

• TAH;

• other possible results (including death).

2.3 Retrospective data analysis

In this section we analyze the available historical data from the ED at study.
We considered anonymized real information registered for patients treated
between January 1st 2018 and October 31st 2019, for a total of 109,201 accesses
1. Table 2.1 shows the number and percentage share of patients for each of
the 5 urgency codes, from the most to the least urgent.

Table 2.2 reports the different kind of pathways of each patient who en-
tered the ED, disaggregated by urgency code. Accordingly, we do not report

1all data were treated according to the European GDPR 2016/679
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Urgency Code Type of patients # %

1 Life-threatening patients 6193 5.7
2 Patients who need an urgent visit 27249 25.0
3 Patients who need a not-urgent visit 56381 51.6
4 Patients with minor injuries 19301 17.6
5 Patients who died before arrival 52 0.1

TABLE 2.1: Urgency codes: description, number and percent-
age share.

figures for patients who died before arrival. The table shows that most of the
patients follow the normal pathways, with the noticeable exceptions of those
following the fast-track path or leaving the ED before being seen (LWBS).
These patients are not further considered in our analysis, since they do not
use the ED resources and leave it after the triage. Therefore, we focus on the
remaining 81,771 accesses (49%Female and 51%Male), with an average age
of 55.6, which include patients who had normal pathways and who left be-
fore end-of-treatment (LBET); for the considered patients, we registered an
average of 122.4 daily accesses, with a median of 123, a minimum of 86 and
a maximum of 153.

Treatment Normal pathways LBET Fast-Track LWBS
Urgency Code

1 6193 0 0 0
2 26879 174 0 196
3 45767 282 94 10238
4 2419 57 12011 4814

Sum 81258 513 12105 15248

TABLE 2.2: Type of treatment based on urgency code

Figure 2.2 reports the daily (2.2a) and weekly (2.2b) trend of arrivals for
each urgency code. The figure shows that, while the trend of arrivals for each
urgency code is almost independent on the day of the week, it is strongly
affected by the hour of the day, with a peak in late morning, and 68% of
arrivals between 8AM and 8PM.

The main symptoms registered for the patients at triage are shown in Ta-
ble 2.3. In the majority of the cases, the nurse selected a generic “Other in-
juries” entry, and provided more unstructured information in the nurse diary.
This observation witnesses the importance of the nurse diary as a source of
valuable information for forecasting the patients’ pathways.
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(A) Daily trend of ar-
rivals

(B) Week trend of ar-
rivals

FIGURE 2.2: Trend of arrivals

Symptom Frequency

Other injuries 50.5
Trauma 17.2
Abdominal pain 8.7
Dyspnea 5.1
Chest pain 4.0
Stroke 3.1
Different from the previous 11.4

TABLE 2.3: Frequency of main symptoms

Table 2.4 shows the destination of patients after the ED pathway. From
the data it is possible to note that as the urgency increases, the percentage of
hospitalized or SSO also increases.

Urgency Code 1 2 3 4 Sum
Destination

Discharged 409 9424 32134 2199 44166
Hospedalized 2673 6092 4307 60 13132
LBET 0 174 282 57 513
Other 1100 2115 1700 67 4982
SSO 1851 8462 7142 83 17538
TAH 160 786 484 10 1440

TABLE 2.4: Type of patients’ destination after ED pathway
based on urgency code

Finally, Table 2.5 reports, disaggregated by urgency code, the average and
median waiting time for the first visit, and length-of-stay within the ED. The
waiting time for high-priority-code patients (especially urgency 1) is partially
overestimated due to poor quality of the data. Often, due to serious clinical
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conditions, this type of patients is admitted immediately and the start of the
examination is registered at a later stage.

Waiting time [min] LoS [min]
mean median mean median

Urgency Code

1 11 8 154 124
2 34 19 219 191
3 210 183 361 334
4 276 230 373 326
Total 139 77 298 263

TABLE 2.5: Patients’ waiting time and LoS
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Chapter 3

An algorithm for ED pathways
classification

In this chapter we present a new way to assess the ED performance. We start
with the description of the traditional analytics system and we show why
it can lead to a bad comprehension of the problems. Therefore we propose
a new algorithm, derived from the discrete event simulation paradigm, in
order to more effectively identify problems (e.g. bottlenecks) within the ED.
The analysis of the real case study, described in the previous chapter, shows
how this new technique provides to the stakeholders a clear vision of the
improvement areas.

3.1 Introduction

In recent years, EDs have been receiving more and more attention from gov-
ernments and the public. EDs, in fact, are one of the main gateways to the
healthcare system. Their mission is the management of emergency and ur-
gency treatments. Due to the impossibility of predicting arrivals, the non-
elective nature of the patients and the severity of the diseases treated, the
organisation of activities within the EDs is among the greatest challenges of
a healthcare system.

Another source of complexity comes from external activities. Often the
services provided in the EDs are not sufficient to clinically assess the patient,
so it is necessary to refer to external services. This is the case for services such
as radiology and laboratory, which are widely used in the EDs.

The combination of the described elements contributes to an environment
which is complex to assess as well as to organise. In linear processes, it is
easy to understand the activities that cause slowdowns or bottlenecks (see
Mans et al., 2015). However, when approaching a process in which activities
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overlap even partially, imputing a delay to one or the other becomes a diffi-
cult task. This criticality is exacerbated by traditional reporting and analytics
systems that tend to evaluate on the one hand global EDs times without as-
sessing the real impact of external services, and on the other hand external
services as if they were stand-alone and not part of a pathway. Looking at ex-
ternal activities outside the pathway context leads to overestimation of their
duration and leads to looking externally for the causes of long patients’ LoS.
A wrong understanding of the phenomenon has the effect of a sub-optimal
allocation of resources for improvement. For example, having incorrectly
determined that an activity frequently requested by the ED has a long lead
time, stakeholders will focus on reducing it, resulting in less improvement
than expected.

In order to overcome this class of problems, an algorithm will be pro-
posed in this chapter to assess the real impact of activities on the EDs path-
ways, while taking into account their overlap. This algorithm will provide
a new perspective on the study of blocking activities within a process. The
chapter is organized as follow. In Section 3.2 we report a literature review
that analyze the contribution on reporting and indicator systems. In Section
3.3 we propose an algorithm for dividing and classifying an ED pathway. In
Section 3.4 we present the results obtained by applying the algorithm to the
case study described in Chapter 2. Finally, in Section 3.5 we conclude the
chapter by proposing some possible developments of the work.

3.2 Literature Review

Process performance indicators are a fundamental part of the ED manage-
ment. Through their proper development, monitoring and evaluation, it is
possible to effectively respond to issues that may arise, often even before they
do.

This issue has been widely addressed in the literature. Studies can be
collected into two main branches: qualitative and quantitative tools.

Regarding the first stream, a remarkable approach, although not strictly
related to the ED environment, was proposed by Kaplan, Norton, et al., 2000.
In this work authors proposed a strategy map for building a strategic objec-
tive of an organization, in order to enhance the balanced scorecard.

In recent years, however, there has been mainly the spread of quantita-
tive methods. This growing adoption is due to the increasing availability
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of data and methods based on it (Dumas et al., 2013). In addition, the de-
velopment of Event Log based techniques (see Van der Aalst, 2016), such as
Process Mining (see Mans et al., 2015), has made it possible to break away
from traditional step-by-step analysis and focus on the whole process.

One among the most recent and noteworthy contributions of this area
is Cho et al., 2020. In this paper, the authors suggest multiple process per-
formance indicators for an ED which can be analyzed by using event logs
and which are based on the devil’s quadrangle, i.e., time, cost, quality, and
flexibility (see Dumas et al., 2013). These were applied to a real case study
from a tertiary hospital in Korea. Another paper that addresses the issue is
Rojas et al., 2019, in which Process Mining is used to determine which activi-
ties, sub-processes, interactions, and characteristics of episodes explain why
some episodes have a longer duration.

The problem of resource consumption and related metrics is addressed in
Müller et al., 2021, where authors execute a performance analysis and evalu-
ate quality improvements within an ED.

Outside the literature closely related to ED environment, the problem of
measuring process performance has been widely addressed from a quantita-
tive perspective. Starting from Kueng, 2000, where authors suggest to evalu-
ate business performance through an holistic process performance measure-
ment system, many other experiences have been proposed in many systems.
For example metrics applied to supply chain were proposed in Gunasekaran
and Kobu, 2007, other concerned banking environment in Wu, 2012 or ser-
vice in Vom Brocke, 2007.

As shown, the problem of metrics and monitoring systems is felt not only
within the ED, but also in many other contexts. In this chapter, a quantitative
system will be proposed, which will not only provide an accurate indication
of the elements of the ED process, but also be easy for non-technical stake-
holders to read.

3.3 Traditional analytics framework

The ED is not an easy system to analyze, due to its complexity in terms of
variability of the activities and clinical figures that can be involved in a pa-
tient’s pathways. In addition to physicians and nurses who work within the
ED, others specialists can be asked whether the patient has particular needs
(e.g. radiologist or ophthalmologist). Moreover, physicians often request
laboratory tests in order to check the patient’s clinical parameters.
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Such a system is usually assessed internally with some common KPIs, for
instance:

• Number of patients during a period of time (e.g. month, year), which
can be dis-aggregated by type of urgency;

• LoS, which is the time between triage and patient’s discharge;

• LWBS, which is the percentage (or absolute number) of patients who
leave the ED before being seen;

• Waiting time for the first visit;

• Percentage of hospitalized patients;

• Percentage of patients sent to the short-stay observation;

• National ED OverCrowding Study (NEDOCS) (see Weiss et al., 2004 for
the description)

• ...

Concerning the external services, they are usually assessed separately from
the ED path to which they belong to. Common measures are:

• Waiting time, which is the time between the ED physician’s request and
the beginning of the service;

• Execution time, which is the time to perform the service;

• Time to produce the medical report.

Although this last set of KPI is very useful for service providers, it may
not be sufficient to make an accurate assessment of the ED system, especially
to evaluate the actual impact on the pathway duration. This traditional ap-
proach does not take into account that the time of different services can over-
lap. Let us consider Figure 3.1 and suppose this scenario:

• t0 patient starts the visit;

• t1 physician requests a specialist visit;

• t2 visit ends;

• t3 specialist visit starts;

• t4 specialist visit ends.



3.4. Algorithm description 19

t0 t1 t2 t4
time

t3

ACTUAL
WAITING	TIME

SERVICE	TIME

WAITING	TIME

MASKED
WAITING	TIME

SERVICE	TIME

FIGURE 3.1: Example of interaction between services

With traditional analysis, this pathway is divided into two parts, with
different statistics:

• ED pathway with service time (t2 � t0);

• specialist visit, with waiting time (t3 � t1) and service time (t4 � t3).

The global pathway has different waiting and service time. Time from t1 to
t2 can be considered as "masked waiting time", since the patient is doing some-
thing, despite they are waiting for a consultation. Therefore, if we consider a
pathway as a whole the service time will be (t4 � t3) plus (t2 � t0), while the
"actual waiting" time will be (t3 � t2).

Furthermore, the services can be divided on the basis of the presence (e.g.
radiology) or absence (e.g. lab tests) of the patient. In the last case it is possi-
ble to perform the activities covering the waiting time.

In the following sections we propose an alternative approach.

3.4 Algorithm description

In this section we describe the algorithm that was used for the analysis. As
described in the previous section, evaluating service times, without consid-
ering the pathway is useful for those who have to provide a service, but does
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not provide any indication of which element is really blocking within the ED.
This problem has been addressed by building a system based on processes
instead of activities.

3.4.1 Data sources and log

Before proceeding with the description of the tool, it is necessary to list the
data sources and the related events. During an ED pathway, many different
type of physicians and IT systems can be involved. Therefore, the first part
of our work concerned the analysis and organization of information related
to ED pathways. Data sources can be classified into four types:

• Emergency Department Information Systems (EDIS), which contains
information relating to activities carried out within the emergency de-
partment (e.g. triage information) or physician notes on the patient;

• Laboratory Information System (LIS), which contains information about
the tests required for the patient;

• Radiological Information Systems (RIS), which contains information
about the radiological exams required for the patient;

• Information Systems of the Specialist (IIS), which contains information
about visits performed by various types of specialists.

Concerning the EDIS data source we collected these events:

Triage (ed1) identifies the end of the triage phase;

Beginning of visit (ed2) identifies the beginning of the first visit;

Discharge (ed3) identifies the end of the pathway.

Moving to the LIS, it is possible to identify:

Laboratory request (ed4) identifies the moment in which the doctor makes
the request for laboratory tests1;

Production of the laboratory report (ed5) identifies the moment when the doc-
tor receives the test results.

Concerning the RIS, we can observe:

1This timestamp is very close to the moment of taking the sample.
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Activity request (ed6) identifies the moment in which the doctor makes the
request for a radiological activity;

Beginning of activity (ed7) identifies the moment in which the activity starts;

End of activity (ed8) identifies the moment in which the activity ends;

Production of the medical report (ed9) identifies the moment when the doc-
tor receives the activity result.

Finally, the events that can be associated with the IIS are:

Activity request (ed6) identifies the moment in which the doctor makes the
request for a specialist activity;

Beginning of activity (ed7) identifies the moment in which the activity starts;

End of activity (ed8) identifies the moment in which the activity ends.

Unlike the RIS, the instant of production of the medical report is not recorded
in the IIS.

This types of events can be easily extended and adapted to specific needs
(e.g. take into account the time between a lab request and sample check-in).

All of these events were organized into an Event Log, which is a very
useful structure for process analysis (see Van der Aalst, 2016). The structure
we have obtained is the following:

• Case_ID, which is a patient identifier within the pathway;

• Event, which is the type of event that occurred to that patient, among
those described so far;

• Activity, which is the activity itself to which the event refers (e.g. Radi-
ological);

• Timestamp, which is when the event occurred;

• Place, which is when the event occurred;

• User who performed the activity.

The last two columns are not useful for the algorithm itself
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3.4.2 Limitations and assumptions

Working with data derived from real cases, some problems often arise that
have to be taken into consideration, so as not to affect the quality of the anal-
ysis conducted.

One of the biggest problems is the lack of data. This can happen both due
to the inability to record some events, and when, although this possibility
exists, it is not exploited. Concerning the first type and the case study, we
have identified four main missing data: the beginning of the triage phase,
the end of the first visit, the checks-up (see Figure 2.1) and the administra-
tion of the therapy within the ED, which presents the initial instant but not
the final one. As for the events not voluntarily compiled, we have found
the boarding start timestamp and some request for a minor part of activities
(about 10%), such as cardiology visit. The first one represents the moment
in which the physician considers the patient’s pathways complete, but this
cannot be discharged because they are waiting for the bed to be hospitalized.
In our case study we found that this event is reported by the physicians only
in 20% of hospitalized patients and only in 2019 (in 2018 this event could not
be reported). This is due to the fact that the physician in a stressful environ-
ment considers this activity to be of little value, despite the fact that boarding
time often represents a substantial share of the LoS of hospitalized patients.
As regards unregistered requests, this is due to the habit of making some of
them through paper. This fact prevents the evaluation of the waiting time
for these activities, but only the execution time of the same. For this class of
problems it was not possible to make objective assessments.

Even when activities are recorded correctly, the problem arises of evalu-
ating which activities have an impact on the ED pathways and which do not.
This is the case of hospitalized patients for whom a service was requested
before the end of the ED process and the result is ready later. In this case we
have decided to adopt the following policies:

• Radiological or specialist activities will be considered if they are com-
pleted before the end of the ED path, as it happens that although the
medical report arrives later, the response can reach the ED physician
through other channels, such as by telephone;

• Lab services will be considered if they are completed before the end of
the ED path.
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3.4.3 Algorithm philosophy and functioning

To explain the operating philosophy of the algorithm, let us take the Figure
3.2 for example. It shows an example of a possible ED pathway and it high-
lights how requesting external services impacts the patient’s LoS. The ED
pathway is represented as a line, with parallel lines indicating the required
services. The combination of the latter contribute to divide the ED path into
phases, which we have classified. The figure can be described as follow:

Beginning	
of	visit

Waiting	for	the	
first	visit

ED Triage

t0

Visit

Beginning
of	activity

Activity
request

Laboratory	
request

Activity
request

Production	of	the	
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Other	
time

End	of	
activity

Beginning
of	activity

Waiting	for	
a	service

LIS

RIS

IIS

Production	of	the	
medical	report

Execution	
time

Waiting	for	
the	medical	
report

Waiting	for	
laboratory	
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Other	
time
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activity

End	of	
visit

t2t1 t3 t4 t5 t6

Waiting	for
a	service

t7 t8 t9 t10

Discharge

time

Execution	
time

FIGURE 3.2: ED path example with the impact of external ser-
vices

• The patient enters the ED and is recorded during the triage at t0 (as pre-
viously described we do not know the exact moment of the beginning
of triage);

• After a wait, the patient starts the first visit with one of the ED physi-
cians t1;

• At end of the visit, the physician asks for some radiological exams and
lab tests t2 (the exact moment of the end of the visit is not recorded,
but after an interview with the operators it was decided to fix it at the
moment of the requests for the first package of services);
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• Although at this time the patient is waiting for both radiological ser-
vices and lab tests, it is decided to classify this state as "waiting for ser-
vice", since it is the radiological service that requires the patient’s pres-
ence;

• For the same reason, the time elapsed between t3 and t4, which is the
duration of the service, it is classified as "Execution time";

• At the end of the service, the patient has to wait for the production of
the medical report until t5 "Waiting for the medical report";

• Only at this point it can be said that the patient is "Waiting for laboratory
tests, until t6;

• We have classified the time between t6 and t7 as "Other time", that it is
time that the patient spends in the ED, but the activities performed are
not classified (e.g. check-ups, therapies);

• At t7, after a not-recorded check-up, the physician asks for one more
specialist service, therefore patient is in "Waiting for service" state until
t8 and then "Execution time" between t8 and t9;

• Finally, the patient remains in the "Other time" state until discharge.

The philosophy of the algorithm derives from that of discrete-event simula-
tion, in which an entity changes its state when an event occurs.

From the above description, it is possible to see the states into which the
patients’ pathways can be divided. In the list below they are ordered on the
basis of their priority, i.e. one state prevails over the ones below:

Visit (st1) in which time patient is undergoing the first visit;

Waiting for the first visit (st2) in which time patient is waiting for the first
visit;

Execution time (st3) in which time patient is undergoing the treatment;

Waiting for a service (st4) in which time patient is waiting for at least one
service service;

Waiting for the medical report (st5) in which time patient is waiting for at
least one medical report (it is possible only for radiological services);

Waiting for laboratory tests (st6) in which time patient is waiting for some
lab test;
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Other time (st7) in which time patient is within the ED, but if they are doing
something it is not classified.

This order can be easily modified or enriched and adapted to specific needs.

3.4.4 Classification algorithm

In this part we show the pseudo-code of the algorithm that process the logs
and defines the value of the state variable. Each state change is logged in
order to evaluate the system performance, even if two events occur in close
moments.

Algorithm 1 Algorithm to classify ED patients’ pathways

Input:

• Event log, event types and activities2 described in subsection 3.4.1
and within LOG;

• Patient’s last state variable as state;

States:

• State variables described in subsection 3.4.3;

Counting variables:

1. NES, which represents the number of services that the patient is
doing;

2. NWS, which represents the number of services that the patient is
waiting for;

3. NRS, which represents the number of medical reports that the pa-
tient is waiting for;

4. NLR, which represents the number of lab activity requests that the
patient is waiting for.

Let us define the operation of state comparison as follows:

• state1 == state2 if and only if state1 is equal to state2 and vice
versa;

• state1 < state2 if and only if state1 assumes a value with smaller
priority (see section3.4.3) than state2;

2Activity types for our tool are divided into: radiological, specialist and others.
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• state1 > state2 if and only if state1 assumes a value with greater
priority (see section3.4.3) than state2;

The Algorithm 1 describes the classification process. Starting from the triage
event, the algorithm tries to assign a specific state when the right event oc-
curs. Basically the state changes every time an event connected to a state with
higher priority occurs, or the requests pending in the current state end. The
algorithm iterates until the discharge event occurs.
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Algorithm 1

1: Input: state := void, NES := 0, NWS := 0, NRS := 0, NLR := 0,
cnt := 0, event := LOG.event[0], activity := LOG.activity[0]; ordered set:
LOG

2: while event! = ed3 do
3: if (event == ed1) then
4: state := st2;
5: else if (event == ed2) and (state == st2) then
6: state := st1;
7: else if (event == ed6) then
8: NWS := NWS + 1;
9: if (state == st1) or (state < st4) then

10: state := st4;
11: else if (event == ed7) then
12: NWS := NWS� 1;
13: NES := NES + 1;
14: if (state! = st3) then
15: state := st3;
16: else if (event == ed8) then
17: NES := NES� 1;
18: if (activity == Radiological) then
19: NRS := NRS + 1;
20: if (NES == 0) then
21: if (NWS! = 0) then
22: state := st4;
23: else if (NRS! = 0) then
24: state := st5;
25: else if (NLR! = 0) then
26: state := st6;
27: else
28: state := st7;
29: else if (event == ed9) then
30: NRS := NRS� 1;
31: if (NRS == 0) and (state == st5) then
32: if (NLR! = 0) then
33: state := st6;
34: else
35: state := st7;
36: else if (event == ed4) then
37: NLR := NLR + 1;
38: if (state == st1) or (state < st6) then
39: state := st6;
40: else if (event == ed5) then
41: NLR := NLR� 1;
42: if (NLR == 0) and (state == st6) then
43: state := st7;
44: cnt := cnt + 1
45: event := LOG.event[cnt];
46: activity := LOG.activity[cnt];
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3.5 Results

In this section we present the results obtained by the application of the algo-
rithm.

The test was conducted on the population described in Chapter 2, con-
sidering the pathways up to April 2019. To make the analysis more accurate
and centered on the information needs of ED stakeholders, we have decided
to divide the population as follows:

• With laboratory tests, i.e. patients who have at least one laboratory test
within the pathway;

• With services and without laboratory tests, i.e. patients who do not
have laboratory tests within the pathway, but they have at least one
service;

• Without any services or lab tests, i.e. patients who do not have labora-
tory tests or services.

This grouping was conceived by following an interview carried out with ED
stakeholders. They wanted to know how the lab time affected the ED path-
ways, because they thought this was the biggest problem in low-priority pa-
tient’ LoS. As for the other services, nurses and physicians stated that they
did not represent such a serious problem as they were requested less fre-
quently and had less temporal impact. In support of this thesis the following
aggregated data have been shown (Table 3.1). To evaluate how that time

Discipline Statistics Value [min]

Laboratory Average waiting time for test results 93.2
Radiology Average waiting time for services 28.6

Average execution time for services 13.4
Average production time of the medical report 21.5

Specialist Average waiting time for services 46.3
Average execution time for services 13.2

TABLE 3.1: Aggregate data regarding the performance of the
services provided to the ED

really impacts on the path of ED, we present the results obtained by the al-
gorithm in Table 3.1 and Figure 6.4. The first one shows the average time
patients spent in each state, based on their urgency and type of pathway.
The figure depicts the average percentage of time patients spent in each state
during their pathways.
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FIGURE 3.3: Average percentage of time patients spent in each
state during their pathways, based on their urgency and type

of pathway

As expected, as urgency decreases (from 1 to 4), both the absolute and rel-
ative impact of waiting for the first visit increases. This component becomes
prevalent starting from priority 3.

Analyzing paths that contain laboratory tests, it can be seen that the im-
pact of the laboratory is almost identical in absolute terms (from 54.5min for
high-urgency patients to 66.4 for low-priority patients). These values are far
from those proposed in the Table 3.1, from -42% for urgency 1 to -29%. Re-
gardless of the urgency, the time spent in this state is not the biggest after the
wait on the first visit. This share is in any case represented by the other time,
which also coincides with the prevailing share for urgency 1 and 2. Other
states can be considered as minority states, except for urgency 1.

Pathways with some services and without lab tests have the other time
as the prevailing state (from 48% for urgency 1 to 25% for urgency 4). This
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is numerically similar to what is shown for the previous sample. Obviously
the relative weight of other states has increased. An interesting observation
is that the mean LoS between the two samples considering same-urgency
pathways is the same except for the contribution of the laboratory. This is an
empirical demonstration of the correct functioning of the algorithm.

As far as the last type of itinerary is concerned, there is still a prevalence
of the other time, but numerically lower. At the same time the weight of
the visit is increased. This fact can be partially explained by the method
used to calculate the end of visit. As explained, the visit end timestamp not
being recorded, is assumed as the instant of sending requests or the start of
activities. Since these paths are without activity, the algorithm is led to report
the end of the visit later.

From the data it appears that the share that contributes to increase the
LoS is to be found within the organization of the ED (waiting for the first
visit and other time) and not in external services. Despite this fact, the share
connected to the laboratory can be relevant.

Concerning the performance, we implemented the algorithm in the Julia
language 1.0 (see Bezanson et al., 2017), and run it on a server with an AMD
Ryzen 7 2700C 8 Core processor, 64GB RAM under the Ubuntu Linux operat-
ing system. The system has been tested with a LOG composed of about 1.5M
and the run lasted about 60 minutes.

3.6 Conclusions

In this chapter we have described how performance is traditionally evalu-
ated within an ED and why this approach can lead to wrong assumptions
and decisions. An ED path can be made up of many activities, provided by
different professionals, which condition the LoS of the patients. The rela-
tionships between these activities are often not easy to assess, due to their
possible overlap.

In order to deal with this issue, we have proposed a new algorithm which
assesses the ED pathway as a whole and the actual impact of each service.
The philosophy behind this algorithm is similar to the discrete event simu-
lation paradigm. Patients’ pathways were organized within an event log, so
that it could be analyzed easily. We have designed a group of states in order
to classify every part of the pathway and the policies by which each event
triggers a state change.
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The analysis performed over every ED pathways recorded between 2018
and April 2019 has showed how the biggest part of patient’s LoS is spent
within the ED, regardless the urgency. However, we have shown that when-
ever laboratory testing is needed, a significant part of the pathway depends
on that activity.

Concerning future research, an evolution could focus on a better classi-
fication of the so called other time. Many events within the ED are badly
recorded, so it is difficult to know how much of this patient time is due to
waiting and how much to activities. Therefore, with a better work of data
entry, it is possible to have even better insights about bottlenecks and other
delays. Another possible evolution concerns the possibility of extending this
system and the underlying algorithm to other processes not strictly related
to ED. Although few healthcare processes have the same complexity as those
of ED, in many cases there is a coexistence of overlapping activities. There-
fore, the application of the algorithm described in this chapter could provide
a better perspective on areas for improvement.
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Chapter 4

On-line Strategy Selection for
Reducing Overcrowding in an
Emergency Department

Overcrowding is a well-known major issue affecting the behavior of an ED,
as it is responsible for patients’ dissatisfaction and has a negative impact on
the quality of workers’ performance. Dealing with overcrowding in an ED is
complicated by lack of its precise definition and by exogenous and stochastic
nature of requests to be served.

In this chapter, we present a Decision Support System based on the inte-
gration of a Deep Neural Network for dealing with the sources of uncertainty
(e.g. patients’ pathways) and a simulation tool to evaluate how specific man-
agement policies affect the ED behavior.

The DSS is designed to run on-line and to dynamically suggest the most
suitable policy to be implemented in the ED. Numerical results show that
a significant improvement in terms of overcrowding reduction can be ob-
tained by allowing dynamic selection among a limited set of simple policies
for queue management.

4.1 Introduction

The environment within the ED is one of the most complex in the entire
health care system. This is due to both the stochastic arrivals and the non-
elective nature of the activities performed. To cope with this complexity, pa-
tient admission is managed according to a priority-based policy (Leo et al.,
2016), of which triage is a key part. Data collected during the triage process
are useful for the whole ED pathway; as shown in Vance and Sprivulis, 2005,



34
Chapter 4. On-line Strategy Selection for Reducing Overcrowding in an

Emergency Department

triage nurses are capable of assessing the patient’s complexity in a reliable
and valid way.

Even in case the triage correctly assigns the level of care to each patient,
the performance of an ED may be affected by overcrowding (Jayaprakash
et al., 2009), arising when the demand for ED services exceeds the available
resources (Higginson, 2012). Overcrowding may have a negative impact on
different operational aspects, such as waiting times, LoS, increasing num-
ber of patient leaving without receiving care, increasing medical errors and
decreasing efficiency (Asplin et al., 2003). Overcrowding is a complex phe-
nomenon for which there exists no universally accepted definition and mea-
sure. The most common way to quantify ED overcrowding is the so-called
National ED OverCrowding Study (NEDOCS) indicator, proposed in Weiss
et al., 2004. This is a one-dimensional indicator that, based on the available
resources (e.g. ED beds, Hospital beds) and on the ED state (e.g. total patients
simultaneously present in the ED), returns the ED overcrowding score (from
“not busy” to “Dangerously Overcrowded”). Although NEDOCS is not suit-
able in some cases (H. Wang et al., 2014), it may be a useful indicator for
detecting areas where efforts have to be put for addressing congestion (e.g.,
total admits in the ED, total patients simultaneously present in the ED, num-
ber of respirators, longest admit time, etc.). More in general, different Opera-
tions Research and Operations Management approaches have been proposed
to face with overcrowding. A first class of actions affects the ED intake pro-
cess (Welch & Savitz, 2012), including techniques for allocating ambulances
within a network of EDs (Aringhieri et al., 2017), or for rerouting ambulances
to others hospitals in periods of crowding (Ambulance Diversion, see Lagoe
and Jastremski, 1990). A second possibility is to focus on the internal ED
patient flow, in order to use available resources efficiently. Although many
attempts for creating decision support system tools have been proposed in
recent years (Aboueljinane et al., 2013), their application within an ED en-
vironment is challenging. Indeed, forecasting patient pathways can be hard
(Rebuge & Ferreira, 2012) for different reasons, as large number of pathways
variants or missing information. Nevertheless, mining the patients’ pathway
is a key issue for improving the internal flow of patients in the ED, avoid-
ing waiting times or bottlenecks. The mining problem is typically addressed
either using Process Mining or by means of Machine Learning. These two
approaches exploit information from structured data, usually avoiding not-
structured ones. Process Mining exploits data in order to provide a path-
way representation (Mans et al., 2015). However, this technique tends to
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be ineffective (creation of very complex models) with high variety processes
(so-called Spaghetti processes), and this is the case of ED pathways. Never-
theless, in literature there are different attempts to avoid this problem. For
example, the authors in Duma and Aringhieri, 2020 propose an innovative ad
hoc process mining approach to discover patients’ paths, that tries to solve
the problem through an initial clustering of patients.
Conversely, Machine learning techniques, and artificial neural networks in
particular, have the capability of predicting the future pathway of a patient
(e.g Simeunović et al., 2017). This approach, unlike the previous one, makes
it possible to rely on extensive information about a patient (represented via a
set of attributes) to achieve higher accuracy predictions.

Once patients’ pathways are predicted, the next step is to use this infor-
mation to improve ED performance and avoid overcrowding. A commonly
used approach for addressing this task makes use of simulation (Günal and
Pidd, 2009; Paul et al., 2010), allowing the creation of what-if scenarios and
the selection of the best resource allocation policies to improve the patients’
flow. Traditional approaches use discrete-event simulation in an off-line con-
figuration (Jun et al., 1999), to assess how a specific policy performs. Re-
cently, alternative approaches based on agent based simulation have been
introduced (Z. Liu et al., 2017).

A first attempt of taking operational decisions in an ED based on real-time
prediction is proposed in Duma and Aringhieri, 2023, where an ED simulator
is used to evaluate the performance of a (fixed) pre-selected policy. The im-
plementation of this policy requires a real-time prediction of patients’ path-
ways, which is obtained by means of a process-mining discovery model ex-
ploiting structured data. The (fixed) policy to be implemented in the real ED
is then determined by evaluating a portfolio of possible policies according to
some performance indicators.

Approaches based on off-line simulation and decision making are in gen-
eral not fully satisfactory within a highly dynamical system such as an ED,
where an on-line approach trying to solve problems before they happen could
be preferable. The aim of this chapter is to propose a new DSS based on the
integration of a Deep Neural Network and a simulation tool to take decision
on-line. The neural network is used to predict patients’ clinical pathways
by exploiting all information, i.e., both structured and not-structured data,
collected during the triage process. Predicted pathways are used within a
discrete-event simulator aimed at on-line testing different policies and dynam-
ically selecting the most appropriate one, so as to decrease overcrowding. In
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other words, the tool is designed to react immediately to any undesired be-
havior of the system by switching management policy when needed. We
will focus on “normal” operating conditions, though the approach can be
re-trained and re-calibrated to handle exceptional circumstances (such as an
ongoing pandemic).

The result has been implemented and has been tested on a real case study
derived from the ED described in Chapter 2. The chapter is organized as fol-
low: Section 4.2 describes the context and data of the problem, with particu-
lar attention to the uncertainties that are addressed within the ED. Section 4.3
presents the prediction models developed to deal with uncertainties, while
Section 4.4 shows the integration of simulation and optimization. Finally,
Section 4.5 reports the results obtained with the DSS in our case study, and
Section 4.6 summarizes and concludes the chapter.

4.2 Problem context and Data

In Chapter 2 we have described how different EDs include common features
and resources. Based on the model proposed in Section 2.1, in this section
we describe the uncertainties within an ED that must be taken into account
within the DSS. Although the case study under examination comes from an
ED located in Italy, the model itself is general and the proposed DSS can be
easily adapted and used within many other EDs.

4.2.1 Uncertainty Model

In order to timely detect and react to overcrowding, one has to know how
the ED will evolve in the next future. We describe the evolution of the ED
system by observing its state, characterized by a set of measurable variables
at a given time, and by forecasting the future value of those variables. As the
evolution of those figures depends both on internal actions and on exoge-
nous stochastic events, one has to deal with different sources of uncertainty,
namely:

1. uncertainty on arrivals;

2. uncertainty on pathways (temporal sequence of first visit, service pack-
ages and checks-up until the patients’ discharge);

3. uncertainty on duration of visits, checks-up, and services that make up
the packages;
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4. uncertainty on the effect of internal actions performed on the system.

Indeed, the evolution of ED state is strongly influenced by the temporal
distribution of the future patients’ arrivals, as well as by the patients’ path-
ways and by the duration of each specific activity of the pathway.

Formally, let us assume we are interested in modeling uncertainty over a
set of n patients, for an Emergency Department operating with m1 possible
packages (see Figure 2.1). We will proceed by introducing, for each patient i,
multiple random variables and in particular:

• a random variable Ti with support R+, representing the arrival time for
the patient;

• a random variable Xi representing the information collected on the pa-
tient at triage time. This variable is a vector of values associated with a
fixed set of attributes, thus its support depends on the type of informa-
tion that are collected;

• a sequence of random variables {Yij}j with support M = {1, . . . m},
representing the sequence of packages (i.e. the pathway) for the patient;

• a random variable Dijk with support R+, representing the time for the
k-th service, in the j-th package, for the i-th patient.

Part of our analysis (see Section 4.3) will be devoted to determine reasonable
distributions and correlations for these variables.

We note that all sources of uncertainty are exogenous, i.e., they are not
affected by sequencing decisions. On the other hand, the overall behavior
of the ED (including performance indicators such as the number of patient
waiting for a visit) depends on the complex interplay between the uncertain
factors and the operated choices. For this reason, improving the performance
of an ED requires to forecast these sources of uncertainty, to assess their im-
pact, and to define how to search for an optimal policy.

4.2.2 DSS Architecture

In the following sections we will propose a DSS composed of subsystems to
deal with the previous sources of uncertainty. In particular we will present:

• an arrival time generator, based statistical approaches, for the first source
of uncertainty;

1This number takes into account one more package which is the end of the pathway
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• a Deep Neural Network to predict present patients pathway;

• a service duration generator, based on statistical approaches, for the
visit duration;

• a discrete-event simulator to evaluate how specific management poli-
cies affect the ED behavior.

All data-driven approaches (i.e., the statistical models and the neural net-
work) are meant to be calibrated over available historical data.

4.3 Predictive model

In this section we present the techniques adopted to address the first three
sources of uncertainty. The analysis can be applied to any ED, provided the
necessary information is available.

There is major distinction in terms of predictive problems between pa-
tients that have already entered the ED (for which triage information has
already been collected) and patient that might arrive in the future (for which
no information has been observed). We will discuss the two cases separately.

4.3.1 Predicting pathways for patients within the ED

For patients that have already entered the ED, the most relevant aspect to be
predicted is expected pathway (or what is left of it), which affects, e.g., ac-
tivity queues, patients’ LoS and ED global overcrowding. Thus, predicting
pathways is a key issue for modelling the behaviour of the ED, though be-
ing a challenging task. Indeed, since an ED typically offers many services,
the number of potential pathways for a patient is very large as the num-
ber of possible combinations of service packages grows exponentially with
the pathway length. Additionally, many pathways are similar, since they in-
clude many common services (possibly, in a different order), thus increasing
uncertainty in the prediction task.

From a formal perspective, this implies that the probability distribution
for the package sequences (i.e. {Yij}j) has a very large support, complex cor-
relations, and some of the conditioning attributes (i.e. Xi) are systematically
missing for specific samples. This makes probability estimation and data
generation particularly complex.
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In order to deal with this problem, an AI-based approach is used to fore-
cast the actual pathways. The approach makes use of available patient’s in-
formation, and predicts the packages of services for a patient one at a time
(see Figure 2.1), until the whole pathway is determined. This is coherent
with the metric that we adopt for evaluating the accuracy of our prediction,
which considers the accuracy in predicting the next package, right after the
current one. In addition, the proposed solution is easier that an alternative
approach in which the entire pathway is forecast in one step, as the number
of service packages is much smaller than the number of their combinations
into pathways.

Formally, we adopt a factored approximation for the distribution of all
possible package sequence. In particular, we approximate the distribution of
possible sequences with a product of probabilities:

P(Yi,1) ’
j=2..

P(Yi,j+1 | {Yi,j0}j0=1..) ' P({Yij}j) (4.1)

In practice, when sampling the next package we use as an input to the es-
timator the sequence of all packages observed or generated so far for the
considered patient. A specific package value (say Yij = ?) is used to the
denote the end of sequence.

In addition to the path taken so far (sequence of service packages), our
prediction is based on a number of additional inputs/conditioning factors,
i.e. Xi from our probabilistic model. These variables correspond to informa-
tion that is systematically collected at triage time, namely:

• Age;

• Sex;

• Patient’s urgency (triage code);

• Text in the nurse’s diary.

In order to use these features within a Deep Neural Network (DNN), a pre-
processing step is needed. All categorial attributes (i.e. sex and urgency)
are represented using a one hot or label encoding; in our implementation,
we use methods available in the scikit-learn library (Pedregosa et al., 2011).
Finally, the nurse’s diary consists of free text and requires preprocessing for
being used. To this aim, we consider a Natural Language Processing (NLP)
approach based on a Bag-of-words model. We have tested three alternatives
for processing the text:
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1. a combination of the Python Natural Language Toolkit (NLTK)(Bird
et al., 2009) for normalizing the text (e.g., removing stop words) and
scikit-learn for creating tokens and word n-grams;

2. the same approach as above, plus a stemming step, performed via the
the Snowball algorithm for the Italian language (see Bird et al., 2009);

3. an open source tokenizer based on a version of the Bidirectional En-
coder Representations from Transformers (BERT)(Devlin et al., 2018)
for the Italian language2 , implemented using the PyTorch framework
(see Paszke et al., 2019).

A comparison of these approaches will be discussed in the Benchmark sec-
tion.

All features are fed as input to our Machine Learning model, which is a
Feed-forward Deep Network classifier, implemented in PyTorch. In particu-
lar we adopt a simple architecture using ReLU neurons for all hidden layers
and a SoftMax activation for the output layer.

The model is trained to approximate the probability of the next package,
conditioned on the information encoded by the model input. This setup it
easier to sample the next package at random, with a distribution defined by
the model output. A deterministic behavior can be obtained by considering
the class (i.e. the package) with the highest estimated probability as the only
prediction. We will consider both these operating modes in our experimental
evaluation.

Known Modeling Limitations

A known limitation of our factorized approach consists in its inability to ac-
count for future packages when making predictions: correlations between
such packages may arise due to hidden variable, e.g. the actual patient ail-
ment at arrival time. However, in practice packages (i.e. groups of services)
are assigned based on information that becomes available only as a result of
the services themselves. For example, a medical exam may reveal additional
information, which is then used to define the next package for the patient.
For this reason, we expect our factorization to be a reasonably good approx-
imation. Preliminary experiments we performed to train a model for the
non-factored distribution seem to confirm this conjecture.

2The repository is located at
https://huggingface.co/dbmdz/bert-base-italian-xxl-cased

https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
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Moreover, in our historical dataset, prescribed packages are affected by
service availability in addition to the patient condition (e.g. a particular exam
or medical specialist may not be available at a specific time). Since we are not
providing availability information as input to our model, these effects will act
as noise on the training distribution thus making the learning problem more
complex.

Lastly, it is necessary to mention how the use of machine learning tech-
niques could be complex for an external audience (e.g. physicians). Neural
networks can appear like black boxes, the results of which are difficult to un-
derstand. Therefore, their use can be perceived as an act of faith. For this
reason, it becomes essential to prove their usefulness and value beyond rea-
sonable doubt.

4.3.2 Predicting arrivals and pathways for future patients

Since no observed information is available about patient that might enter
the ED in the future, we need to predict both their arrival times an their
pathways.

In an emergency department, arrivals are not scheduled in advance (not
elective), hence, they are best modeled as a stochastic phenomenon. Never-
theless, the large amount of historical data that is typically available allows
us to forecast with good approximation the number of patients who will ar-
rive during a specific time period.

Under the reasonable hypothesis that, for a limited time interval (e.g.,
one hour), arrivals are independent and occur with constant mean rate, the
arrival count is well described by a Poisson process (see Bell and Wagner,
2019). An analysis of our dataset confirmed the validity of this assumption,
and showed that using time-dependent rates consistently leads to better es-
timates. In particular, the rate seems to be driven by three factors: the hour
of day, the day of week, and the month, the first having by far the largest
impact. Figure 2.2a shows the average number of arrival lh as a function of
the hour of the day h.

Accordingly, in our DSS we modeled arrivals as independent events, fol-
lowing an exponential distribution with time-depended rate, i.e.

P(Ti+1 � Ti) = lhe�lh(Ti+1�Ti) (4.2)

Where lh is the hour of the day. By assuming T1 = 0, this is sufficient to
characterize the full arrival time sequence.
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As a consequence of our modeling choice, the number of arrivals per hour
is a Poisson process, with rate dependent on the hour of the day. This is rel-
evant, since it allowed us to calibrate lh values by simply computing means
over historical data. Formally, let {t̄i}n

i=1 be the sequence of historical arrival
times for a set of n patients; then we have:

lh =
1
|H| |{Ti | hour(t̄i) 2 [h, h + 1)}| (4.3)

where hour(T) is the hour of the day for the arrival of the i-th patient, the |·|
refers to the cardinality of a set, and H is the support for h, i.e. the 24 possible
values for the hour of the day.

Moving to the problem of predicting the pathways, we generate those by
adopting a simple statistical approach.

• First, we generate urgency code by sampling from a discrete probability
distribution, that has been calibrated by computing historical frequen-
cies for all urgency code values.

• Then, we sample packages (i.e. all {Yij}j) recursively according to Equa-
tion (4.1), using conditional probabilities that have been calibrated via
historical frequencies, computed separately for each urgency code.

The alternative would be to build a data generator for the Xi distribution,
then use then neural approach. However, this approach introduces an addi-
tional source of noise. In principle, we could have introduced additional con-
ditioning factors that are easy to determine even within a simulation, such as
the hour of the day, the day of the week and the month. However, in our case
study, we did not observe strong influence of these drivers on the prediction.

4.3.3 Predicting activities duration

The status of the ED also depends on the duration of services, which influ-
ences the availability of resources, the patients flow and waiting time.

We adopted a simple statistical approach to model and sample service du-
ration. In particular, we use parameterized distributions (e.g. Normal, Log-
Normal, etc.), without any conditioning factor. We estimate the distribution
type (from a pre-defined set) and the distribution parameters via classical
approaches (e.g. sample mean and sample variance computation) over his-
torical data. In our case we evaluated that the LogNormal distribution was
the best for this purpose.
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Limitations

Given the highly dynamic environment of an ED, it may happen that du-
ration information for service is not properly registered, thus reducing data
quality. Typical issues arise, for example, for services that are not registered,
or are only partially registered (e.g., the staring time but not the ending time
are registered), or are registered in a wrong way. These issues can be handled
by means of a preprocessing step, aimed at identifying outliers, activities
with incomplete information, etc.

4.4 Simulation-Optimization DSS

In this section we present the logic of our DSS: it includes a simulation tool
which integrates the aforementioned predictors and can be used to test a
portfolio of alternative policies for managing the ED. By selecting the best
policy, the DSS performs an optimization of the ED.

4.4.1 DSS functional architecture

Each predictor of the DSS addresses a specific source of uncertainty. Those
predictors are embedded within a simulator, so as to model the dynamic
behavior of the ED, including patients flow, resources utilization, and the
evolution of queues.

We have developed a discrete-event simulator of the ED. The simulator
takes in input the actual state of the ED (hour of the day, availability and sta-
tus of the resources, length of the associated queues, patients within the ED
and their features) and uses the predictors to forecast the system evolution
under a specific policy. The simulator functional scheme is shown in Fig-
ure 4.1. Through the DNN new packages are assigned so as to complete the
pathways of the patients within the ED. Meanwhile, new arrivals are gen-
erated by the arrival predictor, and the corresponding pathways are defined
through the process described in section 4.3.2. Each service of the paths is
assigned a duration through the procedure 4.3.3. Both types of pathways
are passed to the discrete-event simulator and used to evaluate the evolution
of the ED system. The simulator was implemented within SimPy (“SimPy:
Discrete event simulation for Python”, 2002), a process-based discrete-event
simulation framework based on Python.
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ED State:
• Time
• Present patient (pathways, 

triage characteristics etc.)
• Resource state (availability, 

queues etc.)
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• Pathways distribution
• ID Urgency distribution

Deep Learning Model for present 
patients’ future pathways

Future ED state

Discrete-event simulator:
• New patient generator
• Present patients’ future 

pathways

FIGURE 4.1: DSS functional scheme

The DSS is designed with the goal of identifying the most suitable policy
to be implemented in the real system. To this aim, it must replicate the ED be-
haviour, while evaluating the impact of alternative policies. Indeed, the DSS
allows the decision maker to test different policies and to choose the most
appropriate one based on suitable metrics. Figure 4.2 shows integration of
the DSS with the ED system. The DSS tool is triggered every Dz time units,
when it is fed with the actual status of the Real-ED. It simulates the behavior
of the ED under different policies, for a time interval DT, denoted as search
depth. Each simulation is repeated w times, so as to obtain statistically rel-
evant information. The simulation returns, after a limited time, the selected
policy to the policy-maker (red arrow), who can either accept or reject the
proposal.

DSS Tool 
 
 
 
 
 

• Policy 1  
• Policy 2 
• … 
• Policy n 
Number of repetition (ω) 

Selected policy 

Real ED 
 
 
 
 

 
Δz 

ΔT 

DSS Tool 
 
 
 
 
 

• Policy 1  
• Policy 2 
• … 
• Policy n 
Number of repetition (ω) 

Selected policy 

ΔT 

Time 

FIGURE 4.2: Integration between ED and DSS Tool

Parameters DT and w affect the computing time needed to run the sim-
ulation. Clearly, having a fast answer is mandatory in order to be able to
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implement the suggested policy before the real ED has changed too much.
In addition, using a too large DT value is counterproductive, as the resulting
prediction is mostly based on hypotheses about future arrivals. Concerning
the trigger time Dz, the lower the value of this parameter, the better the un-
certainties of prediction are addressed. However, if the trigger time is too
short, the implemented policy can change too often, thus confusing the deci-
sion maker.

4.4.2 Alternative policies

Since overcrowding is the major issue we want to approach by means of our
DSS, when selecting the best policy to implement within the ED we consider
a KPI which is a proxy of overcrowding, as detailed in the next section. Our
framework is easily adaptable in case the decision maker is interested in op-
timizing a different KPI.

We consider alternative policies which are related to the way in which
queues are handled, and select the one which performs at best with respect
to our KPI. In detail, each patient can be prescribed one or more services
within the current package. Services typically require the access to some
scarce resource, and are associated with queues where patients wait for the
resource to be available. Each patient requiring multiple services (within the
same package) is assigned to the queue of the service having the shortest
(expected) waiting time. The expected waiting time depends on the charac-
teristics of other patients in the same queue, their forecast service times, and
on the queue handling policy. In our DSS, we implemented three policies
for selecting the next patient to be served. In all cases, priority is given ac-
cording to the urgency code. In order to avoid patients starvation, the ED
implements a mechanism to push forward patients who are experiencing a
too long waiting time. This is obtained by increasing the urgency of a pa-
tient who has spent a certain amount of time in a queue. Ties are broken as
follows:

Policy 1 selects the patient with smallest expected time for the not yet per-
formed services of the current package, breaking ties by smallest ex-
pected time for future packages. This policy gives priority to patients
who are likely to complete their current service package shortly, and
can be useful in case of overcrowding.
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Policy 2 selects the patient with largest expected time for the not yet per-
formed services of the current package, breaking ties by largest ex-
pected time for future packages. This policy gives priority to patients
with long expected service times and can be useful to process resource-
demanding patients when the ED is not under pressure.

Policy 3 selects the next patient according to a FIFO rule. This policy is com-
monly used in EDs, including the one in our case study.

Regardless of the selected policy, a patient cannot change the queue to
which they are assigned and moved to a different queue (before being served).
This constraint follows from the design of hospitals, where ambulatories for
different services can be far from each other, and moving a patient can take
time.

In our analysis of the real case, we will also consider an additional policy
that intentionally violates this constraint, i.e. where we assume that a patient
can change their queue (in no time). Although this additional possibility is
in general infeasible, its evaluation provides an optimistic estimate of the ED
performance. It should be kept in mind that an implementation of such a
policy could however require a redefinition of the hospital layout and logis-
tics. We will refer to this policy as fixed-queue relaxation (FQR) policy in rest
of this chapter.

4.5 Empirical evaluation

In this section we present the quantitative results of the introduced DSS and
provide a detailed analysis of its capabilities, based on a real-world use case.

4.5.1 Digital twin of the real ED

The integration of the developed DSS with the real ED requires a preliminary
phase of fine tuning, and a non-negligible investment in terms of time, hu-
man and financial resources. In order to perform such a tuning and assess
the capability of the system before the integration is performed, we show the
effect of the tool on the system through a second simulation model, which in our
experiments plays the role of the the real system in Figure 4.2. This digital
twin (DTS) is implemented as a discrete-event simulator, but one intended
to be a accurate approximation of the real ED: for this reason, while it is fed
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with historical observations of the past ED behavior, i.e., real arrivals, pa-
tients’ features (urgency, triage information etc.), clinical pathways, duration
of the activities, and resource availability information.

The digital twin can be configured either with the same policy used within
the real ED, so as to assess the accuracy in replicating the latter, or with dif-
ferent policies, so as to evaluate their impact.

The experiments performed on our case study showed that the digital
twin, in the former configuration, provide an accurate approximation of the
real ED. The mean LoS recorded within this system and the real one, for the
whole available period (from January 2018 to October 2019), differ of 2%, and
they have a similar resource occupation (global mean error 5%).

Once we have verified the good accuracy on the digital twin, we can
switch to the second configuration, which is used to replace the real ED in
or tuning and experiments, so as to estimate the impact of the proposed DSS.

4.5.2 Functional assumptions

In this section we describe some assumptions introduced in our analysis.
These in order to manage the lack of some data and the unpredictable im-
pact of post-ED services.

While a detailed information on the duration is available for all services
in each package, this is not the case for check-ups, i.e., visits taking place
right after each package of services. For this reason, based on empirical ob-
servation, the duration of each check-up is set to 15 minutes.

Although we only consider the patients’ pathways within the ED, the
availability of resources beyond the ED may have an impact on the LoS within
the ED itself. A relevant case is bed-blocking, which can force a patient to
remain within the ED after their pathway is terminated since no immediate
hospitalization is possible. Our DSS has no effect on activities beyond the
ED. However, in order to have a fair comparison with the real behaviour of
the system, in the following analysis all figures are obtained by assuming
that, after the last registered activity, each patient may have an extra waiting
time in the ED depending on their pathway and final destination.

4.5.3 Performance of the Pathway Predictor

We now evaluate the performance, in terms of accuracy, of the two path-
way predictors embedded within the DSS. For training and testing purposes,
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we considered all historical data but those from 01/10/2019 to 15/10/2019,
which were reserved for evaluating the DSS.

Performance of the Predictor for Patients within the ED

Concerning patients within the ED, our historical data includes 3,704 distinct
pathways. Among them, the 130 most frequent pathways cover 90% of the
occurrences; these pathways are composed by 46 different packages of ser-
vices. This step allowed us to considerably reduce the number of pathway
variants, still covering the vast majority of the historical observations. Ac-
cordingly, the Deep Learning Classifier predicts the next package of services
within these 46 variants.

In order to train, validate and test the classifier, the dataset was randomly
diveded into three parts with a ratio 80-10-10. As previously mentioned, the
dataset includes both structured and textual information, as well as the pre-
viously prescribed packages of services. Concerning the text processing, we
used n-grams with length up to two, so as to represent semantic concepts
such as “not-something”. At the end of processing, we obtained three differ-
ent vocabularies (one for each preprocessing approach described in section
4.3.1) with a different number of terms. For each considered vocabulary, we
tested different configurations of the DNN in terms of number of layers, their
size, and training parameters. In our study, we did not observe significant
improvements by using more than 4 layers. Table 4.1 reports, for each vo-
cabulary, the best network setup and the associated accuracy result over the
test set, computed by using the predictor in a deterministic fashion (i.e. by
treating as the output class the one with the largest estimated probability).

Approach 1 2 3
Parameter

Vocabulary size 42034 34932 8919
Layer size 4004, 2000, 500, 46 4004, 6500, 2500, 46 6004, 3500, 1500, 46
Opt. alg. Adam Adam Adam
Batch size 32 32 32
Epochs 10 3 1
Learning rate 0.005 0.005 0.005
Test set accuracy 55% 54% 62%

TABLE 4.1: Predictor results based on the NLP approach

The results show that the accuracy levels of all approaches are very sat-
isfactory, and that Approach 3 provides the best performances. In the next
section, we will show that the obtained accuracy prediction performance are
appropriate and allow us to obtain a reliable DSS built on top of the predictor.
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Performance of the Predictor for Future Patients

As previously described, regarding this type of patients we know nothing,
then we have to make assumptions. The most important one concerns the
number of access that will arrive in the next future.

As shown in Figure 2.2a, there is a very clear pattern and the hour of the
day has strong predictive power. Analyzing the standard deviation in Figure
4.3, this fact is evident. Looking at figure 2.2b seems that there is a decreasing
trend during weekdays, but it is rather weak.

FIGURE 4.3: Arrivals mean and std. during the day

For instance we show in Figure 4.4 which Poisson distribution has a good
fitting with arrivals at 2AM, 11AM, 2PM and 8PM, and after our analysis it
can be extended to other hours. In order to quantify how good the distribu-

FIGURE 4.4: Poisson distribution fitting with arrival at different
hour of the day

tions is, we splitted the data-set into two parts with a ratio 80-20 (training-
test). We found a global (over all hours) Mean Absolute Error (MAE) over
the training set of 1.64 and test set 1.68.
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4.5.4 DSS performance

In this section we study the performance of the DSS tool under three metrics
that are relevant for a decision-maker:

• accuracy in predicting the ED future state (number of present patients)

• accuracy in selecting the best policy over a set of possible policies

• capability of improving the ED performance

In the following, all experiments were carried out with a number of sim-
ulation repetitions w = 50. A preliminary tuning process showed that this
value provides a good accuracy while requiring a short execution time (less
than 10 seconds).

ED future state prevision

In order to evaluate the accuracy in predicting the ED future state, we ran-
domly selected 100 different ED days and took snapshots of the ED state at
2AM (the time when ED has a minimum value of overcrowding), 11AM (one
hour after the arrival peak, and decisions have a critical effect on overcrowd-
ing), 2PM (typically, the hour of maximum overcrowding), and 8PM (a sec-
ond critical time in the day, due to the staff change of shift). These snapshots
were used to initialize the ED state, and to predict the number of patients
in the ED after 1, 2, and 3 hours by following the third policy described in
Section 4.4.2, i.e., the one currently used in our ED. The obtained predictions
were compared with the real historical values.

In Table 4.2 we report the accuracy in prediction, measured in Mean Ab-
solute Error (MAE), between the number of predicted patients and the ob-
served figure. Data are reported separately for each of the three approaches
introduced in Section 4.5.3, both in their deterministic and stochastic version
(the best configuration has been underlined in yellow).

The results show that our approaches are capable of producing tight pre-
dictions, as MAE values are smaller then their std counterparts. The best
accuracy is obtained with Approach 1 in the deterministic mode, and with
Approaches 2 and 3 in stochastic mode. In all cases, the performance wors-
ens by increasing the search depth DT, thus showing that 3 hours is probably
is a too long time period for being simulated.
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# patients MAE Appr. 1 MAE Appr. 2 MAE Appr. 3
Hour DT mean std Det. Stoc. Det. Stoc. Det. Stoc.

2AM 1 18.3 5.5 1.6 1.7 1.9 1.8 1.8 1.8
2 16.6 5.7 2.7 2.9 3.0 2.8 3.0 2.9
3 15.2 5.9 2.8 3.0 3.3 3.0 3.2 3.0

11AM 1 30.2 8.2 3.2 3.4 3.9 3.5 3.7 3.0
2 31.5 7.7 4.5 4.6 5.9 5.0 5.7 5.8
3 30.3 7.8 5.4 5.5 7.2 6.8 7.1 7.1

2PM 1 32.2 7.1 2.4 2.4 3.2 2.5 3.2 2.6
2 32.6 7.4 3.9 4.0 5.3 3.9 5.2 4.0
3 31.3 6.4 4.0 4.3 5.7 4.2 5.6 4.3

8PM 1 26.1 6.1 2.7 2.6 3.2 2.7 3.1 2.7
2 26.3 6.6 3.6 3.6 3.9 3.9 3.7 3.8
3 25.0 6.2 4.0 4.4 4.4 4.4 4.3 4.4

TABLE 4.2: ED future state prediction results: historical data
and Mean Absolute Error of the considered prediction ap-

proaches.

Best policy prediction for improving the ED performance

The ED performance can be evaluated under different metrics whose rele-
vance varies for different stakeholders. A first performance indicator we
consider is overcrowding, for which a good proxy is given by the average
number of patients within the ED. Overcrowding affects the stress level of the
operators and hence the quality of the service provided within the ED. From
the patient’s perspective, a very relevant indicator is instead represented by
the overall length of stay. Clearly, under the reasonable assumption that ar-
rivals are independent on the ED state, these indicators are two faces of the
same phenomenon: the smaller the average length of stay of patients, the
smaller the average number of patients in the ED. However, while number
of patients can be measured for each instant, thus being a meaningful fig-
ure even for small time intervals, the average length of stay is typically some
hours; thus, its value is meaningful only when a sufficiently large time in-
terval is considered. As the simulated interval (search depth) DT is much
smaller than the average length of stay, within the DSS we use the average
number of patients in the simulated interval, computed as

cavg =

R
DT c(t)dt

DT
.

Our DSS is aimed at minimizing this internal KPI through policy selection.
In order to evaluate the accuracy in selecting the best policy in portfolio
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of available strategies, we designed a second set of experiments using the
same setting (100 days and four snapshots) as that in the previous section. In
particular, for each day and snapshot, we first run the DSS for each policy and
determine the best one according to the internal KPI; then, we “run” the real
ED (i.e., we run its digital twin) in the same setting, and determine the best
policy for the real system. In our tests, we assume that policy maker of our
DTS always accepts and follows the DSS suggested policy. Finally, we count
the number of times in which the resulting strategies coincide, meaning that
the DSS was able to identify the best policy for the real ED. Table 4.3 reports
the results obtained with different values of DT = {1, 2, 3} hours for both
the deterministic and the stochastic versions of the DSS. As may be expected,
performances get worse when increasing the value of DT. In addition, the
results confirm that Approach 3 in the stochastic operating mode provides
the best policy prediction, with more than 80% of success for 1 and 2 hours.

Approach 1 Approach 2 Approach 3
DT % Det. % Stoc. % Det. % Stoc. % Det. % Stoc.

1 73.00 70.00 72.50 76.00 75.00 82.00
2 73.50 71.00 75.50 71.50 77.50 82.00
3 62.00 67.50 69.50 62.50 68.50 73.50

TABLE 4.3: Accuracy of each approach in identifying the best
policy.

Improving performance

In this section we present the experiments performed in order to evaluate the
capability of the DSS to improve the ED performance. For this aim, we set-up
an experimental environment replicating the configuration depicted in Fig-
ure 4.2, where we replaced the real ED by its DTS. The system was populated
with data of the patients arrived between 01/10/2019 and 15/10/2019; this
interval, which was excluded from the previous experiments. We tested the
DSS for the whole period of 15 days, thus evaluating the potential cumu-
lative effect of decision. Following the indication provided by the previous
experiments, the DSS embedded Approach 3 for the predictor.

Our first order of business is to determine the best setting for parameters
DT and Dz. To this aim, we tested the DSS in both the deterministic and
stochastic configurations, for different values of DT and Dz. Tables 4.4 and 4.5
show the results in terms of mean number of patients within the ED during
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the 15 days. The best value for each Dz is highlighted in yellow, while the
best overall in green.

DT Real 30min 60min 120min 180min 240min
Dz

30min 44.36 38.58 37.85 37.24 41.23 42.40
1h 44.36 37.14 37.17 36.20 35.46 34.40
2h 44.36 37.30 38.71 37.15 35.34 35.80
3h 44.36 37.26 38.77 35.80 34.58 35.59
4h 44.36 41.44 42.52 41.68 40.82 38.79

TABLE 4.4: Dz vs DT, Det. configuration

DT Real 30min 1h 2h 3h 4h
Dz

30min 44.36 38.20 39.51 37.61 43.86 42.06
1h 44.36 37.44 34.60 37.50 35.35 35.63
2h 44.36 38.37 37.74 35.40 36.44 35.93
3h 44.36 37.73 38.31 36.63 35.23 35.44
4h 44.36 41.47 42.68 42.52 46.35 38.23

TABLE 4.5: Dz vs DT, Stoc. configuration

Table 4.4 shows that in general the best results are obtained when DT �
Dz (obtained with the deterministic configuration), although in all cases the
DSS is able to reduce the mean number of persons compared to the real ED.

Figure 4.5 plots the number of patients in the real ED and the same figure
obtained through the DSS, in the best Deterministic configuration ( DT = 4h,
Dz = 1h), and in the best Stochastic configuration ( DT = 1h, Dz = 1h).
Summarized statistics, also reporting the average Length of Stay (in minutes)
and Waiting time (W.T. in minutes), can be found in Table 4.6.

The results confirm that, although internally optimizing the mean num-
ber of patients, the DSS also considerably improves over the real ED for what
concerns the LoS and W.T. of patients. In Table 4.7 the mean and median LoS
of patients are disaggregated by urgency code, showing that introducing the

Indicator Real Det. Stoc. Det. gain % Stoc. gain %

Cavg 44.36 34.40 34.60 -22.45 -22.00
LoS [min] 322 263 268 -18.29 -16.80
W.T. [min] 146 128 139 -12.68 -4.86

TABLE 4.6: 15 days analysis results
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FIGURE 4.5: Comparison between the real trend of the patients
present and those obtained with DSS

DSS has a major impact on the low priority patients, without affecting the
(already short) LoS of urgent ones. Table 4.8 shows the mean and median
Waiting time of patients disaggregated by urgency code and it proves how
the DSS has good effect especially on high priority patients.

Real LoS [min] Det. LoS [min] Stoc. LoS [min]
mean median mean median mean median

Urgency Code

1 173 144 174 146 176 158
2 261 224 242 203 245 206
3 385 356 290 276 295 288
4 379 280 273 263 290 262

TABLE 4.7: LoS performance in minutes on the basis of the pa-
tients’ urgency

In order to asses the quality of our results, we evaluate the average num-
ber of patients within the ED obtained by applying the (ideal) policy which
can move patients through different queues, as many times as needed and
with null transfer time (FQR). This figure reduces the Cavg from 34.40 to 33.02,
showing that only a marginal improvement could be obtained by a redefini-
tion of the hospital layout and logistics.

Finally, we run the DSS for each day of the period individually, for both
the Deterministic and Stochastic configurations in their best settings. Table
4.9 shows the mean number of patients within the ED, highlightning the
best figure each day. In all but two cases the DSS provides a considerable
improvement; in the remaining two days, the DSS results are only slightly
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Real W. T. [min] Det. W.T. [min] SM W.T. [min]
mean median mean median mean median

Urgency Code

1 9 6 2 1 3 1
2 35 33 22 21 30 28
3 223 197 201 191 218 195
4 312 176 289 200 291 201

TABLE 4.8: Waiting time performance in minutes on the basis
of the patients’ urgency

worse than the historical ones, thus confirming the robustness of the pro-
posed approach.

Day Real Det. Stoc. Det. gain % Stoc. gain %

2019-10-01 50.28 47.34 47.55 -5.85 -5.43
2019-10-02 47.78 43.12 43.40 -9.75 -9.17
2019-10-03 49.78 43.97 45.45 -11.67 -8.70
2019-10-04 43.24 39.82 41.87 -7.91 -3.17
2019-10-05 38.25 34.17 33.70 -10.67 -11.90
2019-10-06 48.24 46.88 48.94 -2.82 1.45
2019-10-07 62.54 62.88 62.99 0.54 0.72
2019-10-08 32.13 27.98 28.77 -12.92 -10.46
2019-10-09 26.28 21.25 22.16 -19.14 -15.68
2019-10-10 33.03 28.17 29.47 -14.71 -10.78
2019-10-11 39.69 30.51 30.47 -23.13 -23.23
2019-10-12 42.58 33.68 33.67 -20.90 -20.93
2019-10-13 52.15 46.25 49.02 -11.31 -6.00
2019-10-14 63.44 63.84 63.60 0.63 0.25
2019-10-15 36.15 33.24 33.63 -8.05 -6.97

TABLE 4.9: Daily analysis results

4.6 Conclusions

In this chapter we described a decision support system to improve the per-
formance of an ED by addressing the serious problem of overcrowding. This
is a complex task as it involves a non-univocal definition of the metrics to be
considered, and includes stochastic events.

The DSS includes 4 main elements, namely a predictor for patients ar-
rivals, a predictor for the patients pathways, a predictor for activities dura-
tion, and a discrete-event simulator. The DSS implements and tests different
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policies and returns the one which provides the best expected performance.
In addition to structured information collected at triage, the predictor for the
patients pathways also exploits unstructured information from the nurse’s
diary, processed through a Natural Language Processing module.

An experimental application of the DSS to a digital twin of a major real ED
in norther Italy has demonstrated that an online selection of the best policy
makes it possible a relevant reduction of the number of patients within the
ED, as well as their Length of Stay.

The presented DSS is ready for being used in the ED of our case study.
In addition, as the prediction-simulation modules implement a quite general
framework, we expect the adaptation of the DSS to other EDs to require lim-
ited effort.

The first area for future development, which is directly linked to an actual
use of the tool, concerns the evaluation of the results obtained following a
partial rejection of the tool "suggestions" by the decision-maker. This would
make it possible to assess the rejection rate with which performance would
still be improved. Such a parameter would be useful, since in the real case
the decision maker might not always accept the tool "advice", due to clinical
reasons.

The study on the selection rate of each policy is another interesting area
for improvement. This indicator and the organisational patterns in which a
given strategy is selected would make it possible to reduce the set of strate-
gies to be tested by excluding those historically less effective in that condi-
tion.

Expanding the set of available policies appears to be an other promising
direction of future research. This can be obtained by pre-defining additional
policies, or, in a more challenging perspective, by allowing the system to
discover its own policies through learning. Concerning the first strategy, it
might be worth starting with strategies already known in the literature for
their effectiveness, such as the First Consultation Priority Rule or the Second
Consultation Priority Rule(see Cildoz et al., 2018 and Cildoz et al., 2019). For
the second area, reinforcement learning (see Sutton and Barto, 2018) appears
to be the right approach for the construction of an agent, which learns im-
provement strategies on its own, after the definition of a set of rules.
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Chapter 5

Organization of the response to a
pandemic emergency: a classifier
for COVID-19 patients

In this chapter we present the organization of the response to a pandemic
emergency, through the coordination of different companies. We describe the
process of taking a patient in charge and introduce an algorithm that gives
each patient a state, through which they are directed to the appropriate path.
This tool gave a fast automatic way to manage the system and to define the
best clinical strategy. Analysis of a real case study on COVID-19 pandemic in
Bologna, Italy, showed that the use of such tool helped healthcare profession-
als during the most difficult moment of the emergency (the first 6 months),
when swabs were scarce and information systems were inadequate.

5.1 Introduction

Since December 2019 COVID-19 pandemics has spread all over the world,
with a huge impact on healthcare systems and processes. Many different au-
thorities have had to direct efforts to address this emergency, by taking hard
decisions, such as the interruption the surgical activities and the cancellation
of appointments of outpatients.

Italy has been among the first, and one of the most severely affected coun-
tries in the world (La Rosa et al., 2021), especially in the northern area where
first cases were recorded. Due to this unfortunate situation, the northern
regions of the country were the first to develop systems to cope with the
emergency.

This is the case of the Metropolitan Area of Bologna City. Bologna is the
capital of Emilia-Romagna Region, one of the regions in which COVID had a
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greater impact since the beginning (fifth greatest number of cases in Italy; the
third during the first 5 months of the emergency), 1.9 Million of cases in Oc-
tober 2022, and the second greatest number of deaths, over 18,000 in October
2022 (according to Dong et al., 2020 and Ritchie et al., 2020). Emilia-Romagna
has a population of 4.47 Million people and almost a fifth of it lives in the
Metropolitan Area of Bologna City (about 870,000 inhabitants). In Emilia-
Romagna seven Local Health Authorities (LHA)s are in charge of providing
services to the population. The LHA of Bologna is composed of 6 territo-
rial districts and 9 hospitals. Within the same city there are two other pub-
lic organization which provide clinical services to the population: IRCCS1

Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola (AOSP)
and IRCCS Istituto Ortopedico Rizzoli (IOR). AOSP provides many different
types of services and it is the seat of School of Medicine of the University
of Bologna. IOR is a well-known organization dedicated to the treatment of
orthopedic diseases. In addition to public companies, in Bologna there are
many private hospitals. This huge environment makes Bologna one of the
biggest and complex healthcare system in Italy.

From the first of March 2020 Italian government has gradually closed all
activities, until the beginning of lockdown (March 9th), in order to face the
emergency and avoid overcrowding in hospitals. In particular, people were
instructed to stay at home and go to the emergency department (ED) only in
severe cases. This fact created two results:

• people did not know what to do if they suspected they were COVID-19
positive;

• sick people waiting at home risked a worsening of their conditions.

Moreover, supplies of swabs for detecting the disease were scarce at the be-
ginning of the pandemic.

In order to face these problems, since the beginning of April 2020, Bologna
LHA and other Bologna health companies organized a coordinated response.
The goal was to intercept positive patients2 as soon as possible and then send
them to the most appropriate pathways. A key element of this system was
an automatic tool to assess patients’ pathways and assigning them a state
denoting theirs features. Through this classification is possible to manage

1This is a title granted by the Italian Ministry of Health to biomedical institutions of rel-
evant national interest. An organization with the title of IRCCS has to dedicate a relevant
part of its activity to the scientific research.

2At the beginning a patients were considered positive based on the symptoms, while
later, when supplies of swabs increased, they were considered sick after the test.
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thousands of people, without human intervention. This chapter focuses on
this classification tool, which is based on an algorithm, and describes the way
it supported the process by providing a quick and coordinate response to one
of the most difficult LHAs challenge.

5.2 Literature Review

Since the end 2019, when COVID-19 was identified and named (Lai et al.,
2020), health systems have tried to find the appropriate way to deal with the
emergency, pending the development of a vaccine. Efforts were aimed at two
management drivers: clinical and logistics. A comprehensive review of these
first attempts is described in Ochani et al. (2021).

Concerning the clinical efforts, the scientific community initially focused
its attention on understanding the modes of transmission and the conta-
giousness of the virus (see Van Doremalen et al., 2020). Subsequently, the
method for detecting positive patients became the major concern, with the
development of the correct technique for carrying out swabs and serological
tests (see To et al., 2020, Agulló et al., 2021 and Sharma et al., 2021). The
last challenge concerned how to treat positive patients from a clinical point
of view, in terms of clinical tools and drugs (see Bhimraj et al., 2020 and
Drożdżal et al., 2021). Scientists from many disciplines (including operations
research, management science or Statistics) approached this issue from dif-
ferent points of view.

One of the first problems that were addressed concerns the prediction of
the trend of new positive cases, taking into account the restrictions adopted
by governments. This problem was approached through two main models:
statistical models and machine learning models. Concerning the first ap-
proach a remarkable attempt was proposed by ArunKumar et al. (2021), who
studied the dynamics of cumulative COVID-19 cases in 16 countries through
Auto-Regressive Integrated Moving Average, and Seasonal Auto-Regressive
Integrated Moving Average models. Concerning the second approach, that
often makes it possible to overcome the necessary assumptions of statistical
models, we can find the contribution of Alassafi et al. (2022) who proposed
a deep learning model to develop a prediction model for the spread of the
COVID-19 outbreak to and throughout Malaysia, Morocco and Saudi Arabia.
Another interesting contribution came from Cinaglia and Cannataro (2022),
who proposed a new way for analyzing the epidemic trends of COVID-19,
based on combined neural networks and Rt estimation.
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Another topic of interest are swabs and their management. For example
in Garnett et al. (2020), the authors evaluated the utility of different swabs
and transport mediums for the molecular detection of SARS-CoV-2. In Benoni
et al. (2022), the authors evaluated the cost-effectiveness of different strate-
gies to ascertain COVID-19 recovery in healthcare workers. In Aringhieri
et al. (2022), the authors have raised the problem of digital contact tracing;
they introduced a new optimization problem, which is the daily problem of
collecting swab tests at home in such a way to guarantee a timely testing to
people notified by the app to be in contact with a positive case. Other major
contributes analyzes the management of swabs from a clinical point of view
only.

By analyzing the literature, however, we see that there is a lack of mod-
els that propose an integrated organizational response to the emergency. To
the best of our knowledge, there are no algorithms that generate the state of
patients by starting from an event log, in order to support the system organi-
zation.

5.3 Reaction to the COVID-19 emergency of the
Local Health Authority of Bologna

As many other cities in northern of Italy, Bologna was strongly affected by
COVID from the very first moment. The first official case was recorded in
February 29th 2020, and since that date COVID has spread like a wave. Fig-
ure 5.1 shows the trend of COVID positive patients, as daily new cases and
cumulative number until November 13th 2022 (figures 5.1.a and 5.1.b) and
the focus on 2020 (figures 5.1.c and 5.1.d). As shown, the number of cases
recorded during the year 2020 is significantly lower than those recorded dur-
ing 2021 and 2022 (-69% and -94%). This is due to two different factors: SARS-
CoV-23 new variants have increased transmissibility compared the original
one (McLean et al., 2022); at the beginning, the stocks of swabs, to iden-
tify COVID patients, were scarce, therefore anyone with symptoms and their
contacts were considered positive and isolated.

When the first case was recorded, Bologna organized a response similar
to the one for adopted other virological emergencies, through the activation
of two different subjects.

3Name of the virus causing the COVID-19 disease.
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FIGURE 5.1: Trend of COVID positive patients in Bologna

The first one is the Department of Public Health (DPH), that is a part of
the Bologna LHA and whose tasks include discovering new cases and moni-
toring existing ones. From March 2020 to April 2020, this activity was carried
out by telephone without the aid of a specialized IT system. Patients iden-
tified as possible SARS-CoV-2 positive were isolated at home until clinically
healed, just like their contacts who were evaluated and finally isolated. This
system soon became very complex to manage, due both to the network of
contacts to manage concerning each individual case, and to the large num-
ber of places where the cases were identified (ED, Hospitalization, at-home
etc...).

The second subject involved from the beginning in the management of
COVID was the Department of Infectious Diseases, that is a part of AOSP
and which is in charge of managing severely ill patients and carrying out
studies on the virus. Due to the high number of hospitalized patients, many
other departments (also from other companies) were soon involved to sup-
port COVID-19 hospitalized patients.

As previously described, after March 2020 the Italian government gradu-
ally closed all activities, until the beginning of lockdown (March 9th), in order
to face the emergency and avoid overcrowding in hospitals. People were in-
structed to stay at home and go to the ED only in severe cases. Through this
intervention, the spread of COVID was partially arrested, but at the same
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time the patients waiting at home when eventually hospitalized had a much
more serious clinical condition.

In order to be more effective in facing the emergency, at the beginning of
April 2020 Bologna LHA and the other public and private health companies
organized a network of response and implemented a rollback strategy.

First of all, companies involved general practitioners (GP) as first gate
for patients. When a patient had symptoms, they could report it to the GP
who reported it to the DPH via an ad-hoc IT system. A clinical algorithm
was implemented within this system, in order to evaluate the severity of the
patient’s symptoms. For more serious patients, GPs could organize an ap-
pointment within a special COVID clinic. This organization made it possible
to intercept and treat patients before they got worse. Through the same IT
system, GPs could report when a patient was clinical healed (without symp-
toms)

On the other side, companies reorganized the hospital network as a whole,
with the departments organized based on the severity of hospitalized pa-
tients, from the intensive cares to isolation structures. This organization
made it possible to rationalize resources by moving patients to less complex
settings once they were better.

This strategy made Bologna more effective in terms of capability to face
the emergency, but this new system was much more complex to be manage,
due to the large number of subjects, different organization and IT systems in-
volved. Moreover, the number of patients kept growing, making it difficult
to follow their clinical paths. To face this issue, we developed a new sys-
tem which followed and classified patients’ pathways. The basic idea was
to organize the information into a single event log and assign a state to the
patients based on this. The state was used by DPH in order to group patients
and assign the to a specific service (e.g. swab agenda).

5.4 Classifier

In this section we describe the Classifier tool we used to support the emer-
gency system. It was developed so as to organize the information in a such
way that is accessible, reliable and useful to take decisions. This was an hard
task, due to two reasons:

• Sparse patients’ information through different organizations’ DBs;

• Information systems not designed for this type of management.
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These issues were overcome through close collaboration with IT departments,
who helped us select and structure the information needed.

5.4.1 State variables

Considering the process and the environment described so far, we decided to
split whole patients’ state into three different variables, in order to simplify
patients management and avoiding a huge number of combination:

• Logistic variable;

• Virological variable;

• Serological variable.

The Logistic variable combines information about patient’s position and
clinical picture, in order to know where they are and how they are. We de-
signed seven different values that this variable can assume:

At home with symptoms (LS1) identifies a patient who is not within an hos-
pital (they can be in a nursing home) now, but they were reported as a
symptomatic case;

At home without symptoms (LS2) identifies a patient who is not within an
hospital (they can be in a nursing home) now, and they were not re-
ported as a symptomatic case;

At home clinically healed (LS3) identifies a patient who is not within an
hospital (they can be in a nursing home) now, and they healed from
her/his symptoms (reported by the GP or DPH);

Within an ED (LS4) identifies a patient who is within an ED now;

Hospitalized (LS5) identifies a patient who is within an hospital now;

Waiting for a medical appointment (LS6) identifies a patient awaiting sched-
uled access to a COVID clinic;

Closed (LS7) identifies a patient who passed away.

Patients in LS4, LS5 and LS6 states implicitly have clinical symptoms.
The Virological variable describes patients’ state from the point of view

of the swabs performed. We designed six different values that this variable
can assume:
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Negative for SARS-CoV-2 (VS1) identifies a patient who had at least a swab
performed and who has never had a positive swab;

Positive for SARS-CoV-2 (VS2) identifies a patient whose last swab is posi-
tive;

Healing (VS3) identifies a previous positive patient whose last swab is neg-
ative;

Healed (VS4) identifies a previous positive patient whose last two swabs are
negative;

Deceased (VS5) identifies a patient who passed away;

Unknown (VS6) identifies a patient who has not had any swabs yet.

The Serological variable describes patients’ state from the point of view
of the serological tests performed. The serological tests are used to identify
the presence of antibodies fighting a virus, in this case the SARS-CoV-2 virus.
This test identify the presence of two types of antibodies: IgG and IgM. IgG
are antibodies produced days after infection and provide the memory and
immune defence. IgM are the first antibodies to be produced in response to
an infection; their presence indicates a recently developed infection.

We designed four different values that this variable can assume:

Negative (SS1) identifies a patient who has at least a serological performed
and who has never had a positive serological;

Positive for IgG (SS2) identifies a patient whose last serological is positive
for IgG;

Positive for IgM (SS3) identifies a patient whose last serological is positive
for IgM;

Unknown (SS4) identifies a patient who has not had any serologicals yet.

It is possible that a serological test could be positive for both IgG and IgM.
In this case the patient is considered as "Positive for IgM", because it means
that there is an ongoing infection.

5.4.2 Logs

Within a clinical pathways, particularly the COVID ones, many different
physicians are involved (e.g. GPs, specialists of different organizations) through
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different hospitals. This particular organization creates a lot of data spread
across different databases. We have studied all information and selected only
the information that is relevant to describe a patient’s state.

All data selected were structured in an event log, that is the basis of the
algorithm described in the next section. The events considered are listed be-
low, grouped by data source.

DPH source
DPH database contains information about patients with a possible COVID-
19 infection. This database is managed by physicians of the DPH. In this
source we can find these events:

• Patient reporting (e1) - event triggered when a patient is reported as a
possible COVID-19 infected to LHA (also a GP could report a patient);

• Reporting of symptoms (e2) - event triggered when the patient at home
reports suffering from symptoms

• Reporting of no symptoms (e3) - event triggered when the patient at
home reports that they do not suffer from symptoms

• Clinically healing (e4) - event triggered when the MD/GP reports that
the patient at home is clinically healed;

Patients Registry
Patients Registry contains all patient’s personal data. This database is useful
to know if a patient is passed away outside an hospital:

• Patient deceased (e5) - event triggered when a patient dies outside an
hospital.

ED sources4

ED database contains information about ED access, diagnosis and how the
access ends. We consider only access with diagnosis related to SARS-CoV-2.
For this database we can have these events:

• Beginning of ED access (e6) - event triggered when a patient enters the
ED;

• Ending of ED access with hospitalization (e7) - event triggered when a
patient is discharged and needs hospitalization;

4This repository changes based on the organization being considered, but the events are
the same.
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• Ending of ED access without hospitalization (e8) - event triggered when
a patient is discharged and does not need hospitalization;

• Ending of ED access with death (e9) - event triggered when a patient
dies in the ED.

Patients hospitalization sources4

Patients hospitalization database contains information about the beginning
and the ending of hospitalization, the hospitalization setting (e.g. “COVID
high intensity”) and how the hospitalization ends. For this database we can
have these events:

• Beginning of Hospitalization (e10) - event triggered when a patient is
hospitalized;

• Changing of Hospitalization (e11) - event triggered when a patient is
discharged, but starts another hospitalization within another hospital;

• Ending of Hospitalization with death (e12) - event triggered when a
patient dies during the hospitalization;

• Ending of Hospitalization (e13) - event triggered when a patient is dis-
charged.

Laboratory Information System (LIS)
LIS contains information about swabs and serological tests. We consider only
the positive and negative ones:

• Positive swab (e14) - event triggered when a patient receives a positive
swab;

• Negative swab (e15) - event triggered when a patient receives a nega-
tive swab;

• IgG-Positive Serological test (e16) - event triggered when a patient re-
ceives a IgG-Positive Serological test;

• IgG-Negative Serological test (e17) - event triggered when a patient re-
ceives a IgG-Negative Serological test;

• IgM-Positive Serological test (e18) - event triggered when a patient re-
ceives a IgM-Positive Serological test;
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• IgM-Negative Serological test (e19) - event triggered when a patient
receives a IgM-Negative Serological test.

GP sources
GP database contains information about patient healing reported by GP and
medical appointment scheduled by GP:

• Clinically healing (e4) - event triggered when the MD/GP reports that
the patient at home is clinically healed (repeated);

• Scheduling medical appointment (e20) - event triggered when a GP ar-
ranges a scheduled medical appointment for a patient;

Others sources
Information spread in different databases. For instance a medical appoint-
ment can be provided by different users depending on priority level and each
of them has a different database.

• Providing medical appointment (e21) - event triggered when a medical
appointment is provided.

The event log we obtained has a structure based on Van der Aalst (2016)
studies, so this and the algorithm described in the next section can be applied
with a small number of modifications to many other systems5. Within the
event log each row represents a specific event that happened to a specific
patient and it has the following attributes:

• Case_ID, which is a patient identifier;

• Event, which is the type of event that occurred to that patient, among
those described so far;

• Timestamp, which is when the event occurred;

• Place, which is when the event occurred;

• User6 who performed the activity.
5It is also easily add other event type, in order to customize the system.
6Not always filled.
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5.4.3 Classification algorithm

In this part we show the pseudo-code of the classification algorithm that pro-
cess the logs and defines the value of the state variables. The algorithm is
divided into 3 parts, one for each variable type. In each of the three parts
a patient starts with the last known state7 and it changes based on the new
recorded event. Each state change is logged in order to evaluate the system
performance, even if two events occur in close moments.

Algorithm 2 Algorithm to find the value of the patient’s logistic variable

Input:

• Event log described in subsection 5.4.2 as LOG;

• Patient’s last Logistic variable as state;

• Logistic variables described in subsection 5.4.1.

Algorithm 2 is based on the analysis of the patient’s last state and the last
event that occurs. For example, a patient who is identified as being within
an ED (LS4) and for whom the new event records a discharge home (e8), is
transitioned to the state of "at home with symptoms" (LS1). The choice of
LS1 state is due to the fact that it is likely that the patient is not yet clinically
healed after the ED pathway, but their symptoms are not severe enough to
be hospitalized.

On the other hand an hospitalized patient (LS5), who is discharged (e13),
changes the state into "at home without symptoms" (LS2). Indeed, a hospi-
talized patient is only discharged when they are completely healed of symp-
toms.

Algorithm 3 Algorithm to find the value of the patient’s virological variable

Input:

• Event log described in subsection 5.4.2 as LOG;

• Patient’s last Virological variable as state;

• Virological variables described in subsection 5.4.1.
7For new patients, a combination of LS2-VS6-SS4 is assigned as default states.
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Algorithm 2
1: for event 2 LOG do
2: if (state != LS7) then
3: if (event == e5) or (event == e9) or (event == e12) then
4: state := LS7;
5: else if ((event == e1) or (event == e14) or (event == e15) or

(event == e16) or (event == e17) or (event == e18) or (event == e19)) and
(state == void) then

6: state := LS2;
7: else if ((event == e7) or (event == e10) or (event == e11)) and

(state != LS5) then
8: state := LS5;
9: else if (event == e6) and (state != LS4) then

10: state := LS4;
11: else if (event == e2) and ((state == void) or (state == LS2) or

(state == LS3)) then
12: state := LS1;
13: else if (event == e3) and ((state == void) or (state == LS1)) then
14: state := LS2;
15: else if (event == e4) and ((state == void) or (state == LS1) or

(state == LS2)) then
16: state := LS3;
17: else if (event == e20) and (state != LS4) and (state != LS5) then
18: state := LS6;
19: else if (event == e21) and (state == LS6) then
20: state := LS1;
21: else if (event == e13) then
22: state := LS2;
23: else if (event == e8) then and ((state == LS4)
24: state := LS1;
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Algorithm 3
1: for event 2 LOG do
2: if (event == e14) and (state != VS2) then
3: state := VS2;
4: else if (event == e15) and (state == VS2) then
5: state := VS3;
6: else if (event == e15) and (state == VS3) then
7: state := VS4;
8: else if (event == e15) and ((state == VS6)or(state == void)) then
9: state := VS1;

10: else if (event == e5) or (event == e9) or (event == e12) then
11: state := VS5;
12: else if state == void then
13: state := VS6;

Algorithm 3 works similarly to Algorithm 2. For example, a patient in the
positive state (VS2), who receives a negative swab (e15) switches to a healing
state (VS3). Then, with a new negative swab (e15), they will pass into healed
state (VS4).

Algorithm 4 Algorithm to find the value of the patient’s serological variable

Require:

• Event log described in subsection 5.4.2 as LOG;

• Patient’s last serological variable as state;

• Serological variables described in subsection 5.4.1.

Algorithm 4
1: for event 2 LOG do
2: if (event == e18) and (state != SS3) then
3: state := SS3;
4: else if (event == e16) and (state != SS2) then
5: state := SS2;
6: else if ((event == e17) or (event == e19)) and (state != SS1) then
7: state := SS1;
8: else if state == void then
9: state := SS4;
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Algorithm 4 analyzes serological test events and states. For example a
patient who is not positive for IgM (SS3) and they receive an IgM-positive
serological test (e18) and then they assume the state of positive for IgM (SS3).

5.4.4 Architecture and performance

We implemented the algorithm in the Python 3 language8 (Van Rossum and
Drake, 2009), and run it on a server with an AMD Ryzen 7 2700C 8 Core
processor, 64GB RAM under the Ubuntu Linux operating system. The pro-
cessing time has to be divided into two different moment:

1. First running

2. Daily running

The first one concerns the events processing when the tool was adopted the
first time (April 14th 2020), with a huge number of patients and events. In
particular the event log had the size of 100,000 events recorded for 31,000
patients and it was processed in 5 hours.

After we have created the first list of states, we have decided to run the al-
gorithm every day during the night9, in order to process the events recorded
during the day (mean number of 1,900 events). In this case the process lasted
about 20 minutes.

5.5 Impact

In this section, we present how the tool was used to support the organisation
response to the COVID-19 emergency and how it improved performance.

5.5.1 Patient management

As previously described, based on the combination of the three variables, pa-
tients were referred to the appropriate pathway. The pathway organization
changed during pandemic months in order to adapt it to the latest clinical
indications. In Table 5.1 we show the pathways and their variables that were
used for the longest time during 2020.

8This is not the best choice for this type of algorithm, but the technical conditions in terms
of data availability make it the simplest.

9We decided to run the algorithm once a day because it was compliant with our goal, but
in view of the low processing time, this number could have been higher.
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As can be seen, pathways are very different, but they can divided into
three different groups, based on their goals:

1. Organization of the serological agenda (1-2)

2. Organization of the swabs agenda (3-4-5)

3. Patient monitoring (6-7)

The proper definition of the first group was of paramount importance
during the first four months of the emergency, when swabs were scarce and
LHA needed to filter patients before organizing swab appointments.

The second group concerns the organization of the swabs agenda, for sus-
pected COVID patients. During the first part of the emergency, not all pa-
tients were swabbed, but if they had symptoms and they were not at risk of
aggravation, they were simply isolated. In case of need, an appointment was
arranged in the COVID clinics.

The third group concerns the patients monitoring, in order to end the
isolation or check, through a telephone interview, at-home patients.

In addition to the listed pathways, the use of the tool made possible to
keep track of patients who would otherwise had been lost (e.g. homeless).
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5.5.2 System performance

Concerning the performance of the system, it can be analyzed from a quali-
tative and a quantitative point of view.

First, the level of service offered to the patient must be considered. Through
centralized data and state management, it is possible to know with certainty
where a patient is at any time. This prevents a patient from being sent to one
pathway while being taken care of in another. For example, in the first part
of the pandemic it happened that patients, who had been hospitalized, were
contacted for follow-up by DPH, who did not know their state.

Another improved aspect was the efficiency of the offered service. Before
the development of the classifier, grouping patients according to the appro-
priate pathways could take hours (sometimes even days), since they were
performed by hand by an operator. This led to a very slow management of
cases, with the risk of non-interception of possible positives and aggrava-
tion of patients. Through the classifier, every day the patients were grouped
automatically and each operator could concentrate on the group of their per-
tinence, without any preliminary operation.

The last qualitative measure concerns the ability of the system to adapt to
changes. During the months of 2020 (and beyond), the guidelines regarding
COVID were changed. This led to the system having to reorient itself several
times. Through the use of the classifier, these changes were more effectively
implemented.

From a quantitative point of view, it is difficult to measure how much the
classifier provided support. This is due to two aspects: the guidelines on
how to treat COVID-19 patients have changed; the available resources have
changed over time. Nevertheless, we do provide some measures as a proxy
for how the system performed before and after (April 14th 2020, until Decem-
ber 31st 2020) the classifier was adopted. Table 5.2 shows statistics about the
time in days between interception of patients and first swab/serological10.
As can be seen, after the introduction of the classifier, the time to the first

Classifier adoption Mean Median Dv_Std
Before classifier 15.8 8.5 83.3
After classifier 2.9 1.4 4.8

TABLE 5.2: Time in days between interception of patients and
first swab or serological

10Patients with the first event being hospitalization were excluded, as the swab was car-
ried out for them as a screening
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swab/serological has dropped significantly. Furthermore, a smaller standard
deviation indicates more standardized and structured pathways.

An other interesting indicator is the number of events (see section 5.4.2)
within patients’ pathways11 (Table 5.3). As it can be seen, although different

Classifier adoption Mean Median Dv_Std
Before classifier 5.0 4.0 3.7
After classifier 3.3 2.0 3.0

TABLE 5.3: Number of events within patients’ pathways

types of paths involving many different actors and events were introduced
in April, an increase in events was avoided through state management.

5.6 Conclusions

In this chapter we have described the initial difficulties in dealing with a
global pandemic, in a complex context such as the healthcare one. The un-
certainties derive from the lack of knowledge of effective protocols both from
a clinical and organizational point of view. This complexity increases within
a system with different companies which use different IT systems.

It is in such a context that the healthcare system of the city of Bologna
found itself operating in February 2020, when the COVID emergency hit the
world. To overcome these difficulties, we have introduced a classifier which,
starting from the patient’s pathway (organized as event log), could deduce a
unique state. Through the state, physicians could assign the patients to the
correct clinical and organizational solution. Such a tool was only possible
through a great deal of preliminary information centralization and structur-
ing work.

This tool has allowed the LHA of Bologna and the other healthcare com-
panies to adapt effectively and efficiently to the emergency in short time.
Furthermore, after December 2020 with the arrival of vaccines and the intro-
duction of a new IT system for DPH, the algorithm has become the core of
COVID patient management.

11A patient’s pathway consider each COVID event related to that patient.
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Chapter 6

A decision support system for
scheduling a vaccination campaign
during a pandemic emergency: the
COVID-19 case

1

In this chapter we present the organization and scheduling of a vaccina-
tion campaign during a pandemic emergency. We describe the decision pro-
cess and introduce an optimization model, which showed a powerful multi-
scenario tool for scheduling a campaign in detail within a dynamic and un-
certain context. The solution of the model gave the decision maker the pos-
sibility to test different settings and have a configurable solution within few
seconds, compared with the man-days of effort that would have required a
manual schedule. Analysis of a real case study on COVID-19 vaccination
campaign in northern Italy showed that the use of such optimized solution
allowed to cover the target population within a much shorter time interval,
compared to a manual approach.

6.1 Introduction

Scheduling a vaccination campaign during a pandemic emergency is a hard
organizational task. We have a limited amount of vaccine shots and a fore-
cast of availability in the next weeks, which is extremely uncertain. As in
the case of the COVID-19, vaccines can be of several types, each one with
its own prescribed delay between consecutive shots, and prescribed target

1The results of this chapter appears in: C.Fabbri, P.Ghedini, M.Leonessi, E.Malaguti,
P.Tubertini, "A decision support system for scheduling a vaccination campaign during a
pandemic emergency: The COVID-19 case", Computers & Industrial Engineering, 177, 2023



78
Chapter 6. A decision support system for scheduling a vaccination

campaign during a pandemic emergency: the COVID-19 case

population based on age or clinical status. Hence, among the several groups
of individuals which are candidate to receive the vaccine, one has to decide
which individuals and when inoculate the vaccine, and has to organize and
schedule the associated operations.

The COVID-19 vaccination campaign has been a task of great complex-
ity for national and LHAs since December 2020. As for the Italian context,
decisions relative to the planning and implementation of the COVID-19 vac-
cination campaign are taken at three main decision levels: the national board,
composed by the Ministry of Health and the COVID commissioner; the re-
gional coordination center; and the Local Coordination Center (LCC). The
national board was a reference point for regional representatives in charge
of monitoring the progress of procurement, vaccination and surveillance and
responsible for strategic decision in terms of:

• volume of COVID-19 vaccines purchased from pharmaceutical compa-
nies (e.g. Comirnaty, Spikevax, Vaxzevria, Janssen);

• delivery schedule of purchased doses;

• guidelines for the vaccination campaign, including target age groups
to be vaccinated, potential starting date for each age group or target
population campaign (e.g. extremely vulnerable people), compatibility
between age group or target population campaign and COVID-19 vac-
cines (e.g. Vaxzevria incompatible for extremely vulnerable people);

• schedule and case mix of supplies distributed among the twenty-one
regional health authorities;

• weekly and daily target vaccination volumes for each regional health
authority.

The regional coordination centers were the reference entity for the regional
vaccination points in charge of monitoring the progress of procurement, vac-
cination and surveillance within the region. The regional center operated as
an organizational bridge between national instructions and guidelines and
local operational implementation. At this level decisions were taken in terms
of:

• regional starting date for each age group campaign according to na-
tional guidelines;

• weekly and daily target vaccination volumes for each LHA;
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• booking system to be used for each age group or target population cam-
paign.

LCCs were in charge of the operational coordination in terms of work teams,
ordering and making vaccines and other necessary products available, and
highlighting any operational problems. LHA oversaw the operational imple-
mentation of COVID-19 vaccination campaign. At this level decisions were
taken in terms of:

• number of vaccination points to be opened and geographical distribu-
tion in order to maximize the coverage of each catchment area;

• characterization of vaccination facilities per vaccination campaign (e.g.
mass vaccination facilities for younger people, hospital clinics for ex-
tremely vulnerable people, proximity clinics for elderly people);

• maximum volume of daily vaccinations planned for each clinic based
on layout capacity, workforce availability (medical, nursing and admin-
istrative staff) and stock availability of COVID-19 vaccines;

• configuration of booking diaries for each vaccination campaign;

• implementation of proactive invitation campaigns for extremely vul-
nerable people.

This chapter focuses in particular on the decisions taken at the third level,
concerning the LCC’s operations, for which a decision support tool based on
a Mixed-Integer Linear Programming (MILP) model is developed.

6.2 Literature Review

The development of vaccines was the most effective tool for controlling the
COVID-19 pandemic emergency. However, efficiently exploiting this op-
portunity created new management challenges, calling for quantitative ap-
proaches.

The first challenge faced by the scientific community concerned the pri-
oritization of people to access vaccination. This decision is important in par-
ticular at the beginning of a campaign with a new vaccine, due to the low-
capacity production. A review of modeling methods to optimize the alloca-
tion strategies based on different utility measures has been conducted by K.
Liu and Lou (2022). A relevant attempt has been performed by Shim (2021)
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who proposed a model that aims to obtain the best vaccine allocation in order
to optimize three alternatives objectives such as infections, deaths and life ex-
pectation. A data-driven model of COVID-19 transmission to deal with the
vaccination prioritization problem has been proposed for the Chinese con-
text by Han et al. (2021). The problems of choosing the best candidates for
the vaccination not only on the basis of age has been considered by Książek
et al. (2022), who propose two MILPs , one focusing on the social groups and
the second one on territorial units.

Another relevant topic involved the vaccine supply chain (VSC). Geor-
giadis and Georgiadis (2021) addressed the problem of minimizing the total
cost of VSC trough a MILP, by simultaneously addressing the planning of
vaccine supply chains, and the planning of daily vaccinations in the avail-
able vaccination centers. Ibrahim et al. (2022) introduced a multi-product
MILP vaccine supply chain model for supporting planning, distribution, and
administration of different vaccines, having different conservation and dis-
tribution requirements. Tavana et al. (2021) developed a mathematical pro-
gramming approach for fair distribution in developing countries, taking into
account the different vaccine storage conditions. A specific item of VSC is the
facility location problem. Soria-Arguello et al. (2021) focused on the cross-
dock warehouse selection in Mexico in order to minimize costs, while Tang
et al. (2022) realized a bi-objective MILP to choose vaccination point, while
considering both the economic and service quality criteria.

Bertsimas et al. (2021) proposed an integrated method that considers both
prioritization and supply chain through a novel data-driven approach.

Moving to operational issues, Zhang et al. (2022) addressed an overall op-
timization of the appointments organization, while considering four differ-
ent objectives: fixed costs for opening a vaccination site, total travel distance
of vaccine recipients, total appointment rejection cost, and total tardiness
cost. Small instances were addressed through a MILP, while a matheuristics
algorithm was used for larger ones.

To the best of the authors knowledge, in this manuscript we present the
first MILP model for scheduling a vaccination campaign, while minimizing
the vaccination delay, that has been applied in a real setting and for which
a solution optimized through a mathematical programming approach has
been implemented in a large campaign.
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6.3 COVID-19 vaccination campaign for the Local
Health Authority of Bologna

In the following sections we describe a MILP model used to support the op-
erational programming of the COVID-19 vaccination campaign for the pop-
ulation of Bologna LHA. This LHA is responsible of health management and
health services provision in Bologna, a major city in northern Italy. As al-
ready described, this is one of the largest health agencies in Italy by size,
its territory includes 46 municipalities for a population of over 870,000 in-
habitants, and it is divided into 6 territorial districts, each one headed by
a director, including the urban area of the city, a plain exurban area, and a
mountainous area. The activities of the coordination center of the Bologna
LHA for the COVID-19 vaccination campaign were structured according to
a planning approach based on the sequential activation of vaccination sub-
campaigns. Each sub-campaign was characterized by a priority grade and
the definition of target population (age group or pathology-related) decided
at a nation level.

The sub-campaigns were based on a appointment scheduling and book-
ing paradigm where appointment slots for vaccination were made available
to the population for self booking through multiple channels (online, tele-
phone, de-visu at booking desks or pharmacies). In addition, a compatibil-
ity matrix was given for each campaign, defining the kind of vaccines that
could be used for the target population. A summary of sub-campaign data
for Bologna LHA is reported in Table 6.1.

Sub-campaign Population Comirnaty Vaxzevria Spikevax Janssen
OVER 80 63714 X

75-79 35278 X X
OVER 70 + VULN. 69126 X X

OVER 60 34962 X X X
OVER 65 24548 X X X
FRAGILE 15752 X
OVER 55 39306 X X
OVER 50 30426 X X
OVER 40 68756 X X
OVER 18 78586 X X
OVER 12 127506 X

TABLE 6.1: Compatibility matrix for each population group
and vaccines.

From an operational point of view, the LCC had therefore the responsi-
bility to define the best distribution of the openings on the agenda for each
sub-campaign, while taking into consideration the territorial proximity of the
vaccination centers to the population, so as to vaccinate the largest possible
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number of citizens in the shortest time. In defining the appointment slots
to be made available, it was necessary to take into account a series of oper-
ational constraints: (i) availability of vaccine doses in stock, (ii) maximum
capacity of available vaccination sites and (iii) availability of medical, assis-
tance and administrative staff for the management of the vaccination points.

The programming flow of the vaccination sub-campaigns was structured
as follows. The regional coordination center, following the input of the na-
tional board, outlined the guidelines of the sub-campaign (population group,
starting date and booking channels), and communicated them to the LCC
that was responsible for operational implementation. The operational im-
plementation of campaign programming for LHA of Bologna can be distin-
guished in two phases, an initial one (phase 1) in which no support tool was
available, and a second one (phase 2) in which a mathematical programming
model acted as a pivot in the decision-making process.

The phase 1 decision-making process was essentially based on the defini-
tion of the weekly vaccine doses budget available for each of the 6 territorial
districts. The vaccine doses budget available was defined by the LHA of
Bologna Operations Research team based on the forecasts of deliveries. The
task of each District Director was then to identify and verify the availability
of the territorial vaccination centers and coordinate the representatives of the
other involved departments to check the availability of staff for shifts cover-
age. Once a proposal was formulated, each District Director communicated
to the Operations Research team the appointment time slots to be opened
which were checked to assess the consistency with respect to the stock avail-
ability. The validated appointment slots plan was then sent in configuration
to guarantee bookability through the indicated booking channels. The dura-
tion of this decision-making process could take from 3 to 5 days with a time
requirement of at least 6 hours for the development of a proposal of appoint-
ment slots to be opened being consistent with the availability of the vaccina-
tion centers for the second doses. A summary of the phase 1 decision-making
process is describe in Figure 6.1.

The phase 2 decision-making process was activated with the "OVER 70
+ vulnerable people" vaccination sub-campaign, and envisaged a substantial
revolution thanks to the availability of a decision support tool based on a
MILP model. The tool allowed the decision maker to schedule a vaccination
campaign in few minutes. The campaign specifications were translated into
quantitative parameters by the Operations Research team that was respon-
sible for feeding the optimization model with data of the demand to be met
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(in terms of vaccination coverage), the available vaccination sites, their maxi-
mum vaccination capacity per shift, the plan of first and second doses already
foreseen by previous sub-campaigns and the forecast of the weekly delivery
volumes of vaccine. The hypothesis of vaccination sub-campaign schedule
of each district, as computed by the model, was sent to each District Director
who was therefore relieved from the tasks of elaborating a proposal and veri-
fying compatibility. This way, the entire process of planning and configuring
appointment slots could be completed in two days with a substantial risk er-
ror reduction. A summary of the phase 2 decision-making process is describe
in Figure 6.2. The MILP model described in the next section was defined and
used to support this planning activity.

Regional input

LCC OR Team

District Directors OR Team

Sub-campaign
input

Vaccine
doses budget

Hand-made
proposed solution

Modified
solution

Configurable solution

FIGURE 6.1: Decision flowchart phase 1

Regional input

LCC OR Team District DirectorsSub-campaign
input

Model
solution

Validated or
modified solution

Configurable solution

FIGURE 6.2: Decision flowchart phase 2
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6.4 Problem formulation and MILP model

A MILP model was developed in order to support the COVID-19 vaccina-
tion campaign, by identifying the calendar of opening agendas in line with
stock availability and forecast, type of vaccine that can be used by target age
group, sub-district demand, divided according to proximity to vaccination
hubs and desired coverage rate. The objective of the model is to cover the
whole demand in the shortest time, by minimizing a suited function of de-
lay. More in detail, we are given a set S of facilities where the vaccine can
be administered, a set T of possible time slots, a set of districts D, each one
with an associated demand Qd, a set V of vaccines and a set Z defining the
possible vaccine mixes2 to be offered at a slot. We plan over a set G = 1, . . . , n
of days; for each slot t 2 T, we denote by gt the corresponding day; for each
day g, we denote by Tg ⇢ T the time slots of day g.

Parameters
Cst = capacity of facility s at slot t
Qd = demand for district d 2 D
rvz = share of vaccine v in mix z
arrvg = delivery of vaccine v for day g
av1 = initial stock of vaccine v
Dv = second shot delay for vaccine v

Decision variables

ystz =

(
1 if slot t at facility s is activated with a vaccine mix z
0 otherwise

xstz = number of first shots of vaccine mix z allocated on facility s
at slot t

avg = number of shots of vaccine v available at day g

2A vaccine mix refers to a set of vaccines, and their percentage, provided together during
a specific opening. For example, when Vaxzevria was used, Comirnaty was also provided
(in varying percentages depending on the campaign), for people with specific diseases.
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Let f (gt) be a generic non-decreasing function penalizing the elapsed
time associated with day gt. A MILP model for scheduling the vaccine cam-
paign reads

min Â
s2S

Â
t2T

Â
z2Z

f (gt)xstz (F.O)

s.t

Â
z2Z

ystz  1 8s 2 S, 8t 2 T (6.1)

ystz + ystz  1 (6.1 bis)

8s 2 S, 8((z, t), (z, t)) 2 E

xstz  Cstystz 8s 2 S, 8z 2 Z, 8t 2 T (6.2)

Â
z2Z

Â
v2z

Â
t:gt+Dv=gt

xstzrvz  Cst � Â
z2Z

xstz (6.2 bis)

8s 2 S, 8t 2 T

Â
s2Sd

Â
t2T

Â
z2Z

xstz � Dd 8d 2 D (6.3)

avg + arrvg�1+ (6.4)

�Â
s2S

Â
t2Tg

Â
z2Z

xstzrvz �Â
s2S

Â
t2T(g�Dv)

Â
z2Z

xstzrvz = avg+1

8g 2 G \ {1, n}, 8v 2 V

xstz 2 Z+ 8s 2 S, 8g 2 G, 8t 2 T, 8z 2 Z (6.5)

ystz 2 {0, 1} 8s 2 S, 8g 2 G, 8t 2 T, 8z 2 Z (6.6)

avg 2 Z+ 8v 2 V, 8g 2 G (6.7)

The objective function minimizes the cumulative elapsed time of first shots,
weighted by the penalty function f (gt). Constraints (6.1) impose that each
slot t in a facility is assigned to no more than one vaccine-mix z, while con-
straints (6.1 bis) define incompatibility constraints among vaccine-mix and
slots at the same facilities, where E is the list of such incompatible pairs.
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These constraints are imposed for slots taking place in the same day, in order
to avoid possible confusion. Inequalities (6.2) impose capacity constraints for
the first shots and link the binary slot activation variables with the integer x
variables. Similarly, (6.2 bis) impose capacity constraints, taking into account
that the capacity available at slot t is reduced by the number of second shots
for a vaccine v for which first shots were dispensed Dv days in advance. Con-
straints (6.3) impose that the demand of each district d is completely satisfied
through slots allocated to facilities within the district. Constraints (6.4) de-
fine the stock of vaccine at the end of each day. In particular, the LHS of these
constraints sums-up the current stock, the deliveries, and subtracts quanti-
ties related with first and second shots, which equals the stock at the next
day, appearing in the RHS. Finally, (6.5), (6.6) and (6.7) define the domain of
the variables.

6.5 Algorithm

The model presented in Section 6.4 was used to organize the vaccination cam-
paign, starting from the "OVER 70 + vulnerable people" sub-campaign. There-
fore, a basis for direct evaluation of the performance improvement compared
with a manual solution is not available. Nevertheless, we have developed a
simple heuristic algorithm that mimics the strategy adopted for designing
the vaccination campaigns before the model was developed, and provides
an alternative realistic scenario for the vaccination campaigns organization.

The algorithm considers the same parameters as the MILP model, and
computes a feasible solution, by following an iterative approach similar to
the one used by experts. The objective is the same as for the MILP model, i.e.,
assigning all the demand in the shortest time while satisfying the constraints
described in the previous section.

The pseudo-code in Algorithm 5 describes the optimization process. Start-
ing from the district with largest (yet unsatisfied) demand, the algorithm tries
to assign a specific number of vaccine shots (the remaining demand or a mul-
tiple of the facility capacity) in the first available time slot. This requires to
check the facility capacity and the dose availability at the slot and at the time
for the second shot. When an assignment is performed, the demand, and ca-
pacities are updated and a new district is considered. The algorithm iterates
until the demand of all districts is satisfied.
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Algorithm 5
Input: demands Dd, 8d 2 D; ordered sets: facilities S, time slots T,
vaccine-mix Z;
while 9d 2 D : Dd > 0 do

pick district d with largest demand Dd
PACK  []
if Dd  100 then

PACK  Dd
else

PACK  [100, 80, 60, 50] . facilities opening multiples
for t 2 T do

for pack 2 PACK do
for s 2 Sd do

for z 2 Z do
try to allocate pack shots of z on facility s at slots t and

t + Dtz
if feasible then

update Dd
update capacity of s at t and t + Dtz
Break

6.5.1 Use of the MILP model and heuristic algorithm

In order to allow a fair comparison between the MILP model, which was
used in practice to schedule the campaigns in Bologna, and the algorithm
that mimics a manual solution, the latter was run on the same data and by
following the same procedure.

We run each method (MILP or algorithm) starting from the first day of
the first campaign, with the real stock availability. For each subsequent cam-
paign which started before the previous one was concluded, the actual avail-
ability of vaccine doses and the actual capacity at vaccination centers was
computed by deducting the resources allocated to the previous campaign. In
this respect, the output of each campaign was used as an input of the follow-
ing ones. In addition, since some campaigns were performed before those
scheduled through the MILP model, and other campaigns were performed
in parallel with those considered in this study (e.g., rest homes residents), we
removed the corresponding doses from the warehouse availability.
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6.6 Results

We implemented the MILP model in the Julia language (Bezanson et al.,
2017) with the JuMP package (Dunning et al., 2017), a domain-specific mod-
eling language for mathematical optimization embedded in Julia. JuMP uses
a generic solver-independent interface provided by the MathOptInterface
package, making it easy to change between a number of open-source and
commercial solvers. The resulting model was solved with the GuRoBi MILP
solver on a server with an Intel Xeon Gold 6230 processor, 16GB RAM under
the CentOS Linux operating system. As already mentioned, our goal is to
vaccinate the largest number of people in the shortest time.

During the period between 09/04 and 08/07 a constant evaluation of
LHAs efficiency was performed by both the Regional Coordination Center
and the National board. Comparing the progress of the LHA of Bologna vac-
cination campaign with respect to the regional one (Source Open data Com-
missioner Structure), the vaccinations performed by the LHA covered a share
of 20.5%. The number of vaccinations performed by the LHA of Bologna was
slightly higher than the supply provided (equal to 19.8% according to the re-
gional distribution criterion of vaccine supplies). The resulting overproduc-
tion of 3.5% in the given evaluation horizon can be considered as an efficiency
indicator with respect to other regional LHAs. During the same period the
National and Regional Coordination Centers provided weekly production
targets for each LHA that were, for LHA of Bologna, equal to 606668 vacci-
nations to be performed. The total number of vaccinations performed by the
LHA of Bologna in the given period has been equal to 613568 exceeding the
production by 1.1%, also in this case, the vaccination campaign supported by
the MILP model proved to be efficient.

Table 6.2 shows detailed information for each considered campaign, com-
paring the timings obtained with the MILP model and the greedy heuristic
algorithm. The table reports the population size, the campaign starting date,
the date when the last individual was vaccinated and the mean waiting time
(M.W.T). We see that at the beginning the two solutions have a similar mean
waiting time but then we have a divergent trend 3.

The performance degradation of the algorithm is due to a domino effect
that leads to an accumulation of delay, in particular in presence of second
shots and limited vaccine supplies. In the dynamic context of a vaccination

3the OVER 60 campaign started before the OVER 65 campaign due to supply and policy
changes.
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DATA MILP ALGORITHM
Campaign Population Start date End date M.W.T. End date M.W.T.

OVER 70 + VULN. 69126 11/04/2021 15/05/2021 18 21/05/2021 17.8
OVER 60 34962 29/04/2021 27/06/2021 18.4 03/06/2021 18.7
OVER 65 24548 13/05/2021 30/05/2021 7 14/06/2021 15.4
FRAGILE 15752 14/05/2021 06/06/2021 12.3 23/06/2021 20.6
OVER 55 39306 01/06/2021 15/06/2021 4.3 14/07/2021 10.6
OVER 50 30426 08/06/2021 27/06/2021 6.7 22/07/2021 8.8
OVER 40 68756 13/06/2021 20/07/2021 13.7 25/08/2021 42.3
OVER 18 78586 01/07/2021 20/08/2021 23.6 02/11/2021 67.1

TABLE 6.2: Solution comparison for each campaign

campaign, greedy choices, which can look good in the short time, have a
negative impact on future opportunities.

Over the whole considered population of 361462 individuals, the average
waiting time (in days) for the MILP solution is 60.4 days, while this figure is
almost 17 days larger for the algorithm, with an average waiting time of 77.0
days.

Figure 6.3 show how the number of vaccine shots evolves over time. The
algorithm solution has higher peaks but it is less regular and has troubles in
assigning the first shots for the month of July, mainly for lack of capacity in
the vaccination facilities. The MILP solution, instead, is more regular and the
whole campain has an earlier termination date.

FIGURE 6.3: Vaccine shots trend

Figure 6.4 represents the stock evolution over time for each vaccine from
11/04/2021 to 30/06/2021, and it confirms that the algorithm performance
deterioration is not due to stock availability.

The picture show that the consumption rate for Comirnaty is faster in the
model solution as soon as there is a delivery. Moreover, Comirnaty trend
consumption in the model solution is regular while in the algorithm solution
a surplus stock is being accumulated. The stock of Vaxzevria follows a simi-
lar trend in both solutions, but in the algorithm solution there is long period
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of out-of-stock. Finally, Spikevax and Janssen have a limited impact on the
vaccination campaign.

FIGURE 6.4: Stock trend for vaccine

6.7 Conclusions

In this chapter we have described the decisions that need to be taken for
organizing a vaccination campaign during a pandemic, subject to strict con-
straints on availability of vaccine doses and limited capacity at vaccination
centers. The design of the campaign is made even more difficult by the mix
of different vaccines with diverse second dose delay and target population.
In the specific case of the COVID-19 pandemic, the effectiveness of the deci-
sion process was jeopardized by the extreme uncertainty concerning not only
the forecast of the resources, but also the target population for each vaccine,
which in some cases was changed from morning to night.

These difficulties made necessary to develop a fast multi-scenario tool
to support the scheduling of campaigns. To this aim, we have introduced
an optimization model which gave the decision maker the possibility to test
different settings and have a configurable solution within a few seconds. A
manual solution would have required about two working days with higher
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error probability, poor control of all the constraints and low flexibility, and
also showed of lower quality in our analysis.

This tool allowed the Bologna LHA to perform over the regional request
and face a challenging problem in a emergency condition, minimizing or-
ganization times. Currently, this tool is used to support the organization of
vaccination of post-second shots. This is certainly a less complex problem,
from a computational point of view, but it still represents a priority objective
for the LHA.

The introduction of stochastic elements within the model could be a promis-
ing direction. The most obvious area for this improvement could be the area
of supplies. By introducing such an improvement, it would be possible to
make impact forecasts over a longer time span and have more robust solu-
tions, even in different start-up scenarios.
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