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Abstract

The purpose of the thesis is to develop a model for the functional behaviour of neu-
rons in the primary motor cortex (M1) responsible for arm reaching movements. From
Georgopoulos neurophysiological data, we provide a first bundle structure compatible
with the hypercolumnar organization and with the position-direction selectivity of mo-
tor cortical cells. We then extend this model to encode the direction of arm movement
which varies in time, as experimentally measured by Hatsopoulos by introducing the
notion of movement fragments. We provide a sub-Riemannian model which describes
the time-dependent directional selectivity of cells though integral curves of the geomet-
ric structure we set up. The sub-Riemannian distance we define allows to implement a
grouping algorithm able to detect a set of hand motor trajectories. These paths, iden-
tified by using a kernel defined in terms of kinematic variables, are compatible with the
motor primitives obtained from neurophysiological results by spectral analysis applied
directly on cortical variables. In a second part of the work, we propose geodesics in this
space as an alternative model of models for arm movement trajectories. We define a
special class of curves, called admissible, on which to study the geodesics problem: we
provide a connectivity property in terms of admissible paths and the existence of normal
length minimizers. Admissible geodesics are used as a model of reaching paths, finding
a first validation through Flash and Hogan minimizing trajectories.
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Résumé

L’objectif de la thèse est de développer un modèle pour le comportement fonctionnel
des neurones du cortex moteur primaire (M1) responsables des mouvements d’atteinte
du bras. A partir des données neurophysiologiques de Georgopoulos, nous fournissons
une première structure de fibré compatible avec l’organisation en hypercolonnes et avec
la sélectivité position-direction des cellules corticales. Nous étendons ensuite ce modèle
pour encoder la direction du mouvement du bras qui varie dans le temps, comme mesuré
expérimentalement par Hatsopoulos en introduisant la notion de fragments de mouve-
ment. Nous fournissons un modèle sous-riemannien décrivant la sélectivité directionnelle
des cellules en fonction du temps via des courbes intégrales de la structure géométrique
que nous avons développée. La distance sous-riemannienne que nous définissons permet
ensuite d’implémenter un algorithme de clustering capable d’identifier un ensemble de
trajectoires de mouvements du bras. Ces trajectoires, identifiées à l’aide d’un kernel défini
en termes de variables cinématiques, s’avèrent compatibles avec les états de cohérence
de groupes de neurones détectés par des données neurophysiologiques. Ces derniers sont
représentés par des séquences de trajectoires obtenues au moyen d’un modèle d’analyse en
composantes principales appliqué directement à l’activité neuronale. Dans une seconde
partie du travail, nous proposons une classe des géodésiques dans cet espace comme
un modèle alternatif de modèles pour les trajectoires des mouvements du bras. Nous
définissons une classe spéciale de courbes, dites admissibles, sur lesquelles étudier le
problème des géodésiques: nous fournissons une propriété de connectivité en termes de
chemins admissibles et l’existence de minimiseurs de longueur normale. Les géodésiques
admissibles sont utilisées comme modèle de trajectoires d’atteinte, trouvant une première
validation à travers les trajectoires minimisant du Flash et Hogan.
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Introduction

The objective of the thesis is to study a model for the functioning of motor cortical cells
responsible for arm reaching movements. The model relies on empirical data existing
literature and gets inspiration from existing models of the visual cortex (e.g. [42], [131],
[130]). Our model focuses on the major areas responsible for controlling arm reaching
movements, mainly the arm area of the primary motor cortex (M1) and the premotor
area.

The work is essentially composed of two main parts. The first part introduces a
model of the motor cortex expressed via sub-Riemannian geometry. In the second part,
trajectories of movements are modelled as geodesics in this space.

A fundamental problem regarding the study of motor cortex deals with the informa-
tion conveyed by the discharge pattern of motor cortical cells. This is a quite difficult
topic if we compare it to sensory areas, indeed, for any specific sensory stimulus, there are
many inputs captured by photoreceptors and one output signal processed in the cortex.
In the motor system the flow of information is intricate, as inputs come from basal gan-
glia, cerebellum and fronto-parietal cortex and there are as many output signals directed
to interneurons and motorneurons of the spinal cord ([157], [32], [52]). Moreover, unlike
the sensory areas, in the motor system the existence of a notion of receptive profiles, or
in this case, of “actuator profiles”, is not established nor well understood. Nevertheless,
it is recognized that the cortex, including the motor area itself, has a modular structure
(see [89], [54], [118], [68]) and whose constituent modules, linked together simultaneously
or in series in time, are considered to be responsible for the broad domain of voluntary
movements ([59], [119]). With regard to the arm area of primates motor cortex, sev-
eral studies reveal how neuronal activity involves the processing of the spatial-motor
information (see for example [137], [71], [100], [31]). Starting from 1978, a pioneering
work has been developed by A. Georgopoulos, whose experiments allow to recognize at
least two main features of the arm area functional architecture. First, he discovered
that cells of this area are sensible to the position and direction of the hand movement
(see [64, 100] and [70, 137]): cells response is maximal when hand position and direction
coincide with a position and direction, characteristic of the cell. Secondly, the columnar
structure, which organizes motor cortical cells in columns corresponding to movement
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directions (see [72], [7], [68]). After the work of Georgopoulos, other experiments proved
that activity of neurons in the primary motor cortex correlates with a broader variety
of movement-related variables, including endpoint position, velocity, acceleration (see
for example [100], [116], [136]), as well as joint angles (see [6], [146]), endpoint force
[69], muscle tensions ([54], [147], [85]). It is also proved that the tuning for movement
parameters is not static, but varies with time ([11], [116], [38], [125]) and for this reason
Hatsopoulos et al. ([81, 133]) argue that individual motor cortical cells rather encode
“movement fragments”, i.e. movement trajectories.

Aim of the first part of the thesis is to propose a model inspired by the functional
architecture of the arm area of M1 referred to a set of cortical tuning parameters in
response to point-to-point reaching movements. We will start with a static model ex-
pressing the A. Georgopoulos’ data of directional selectivity and columnar organization.
We propose a first fiber bundle structure compatible with the hypercolumnar organiza-
tion of directionally tuned cells: to every point on the cortical surface coding for hand’s
position in the plane px, yq P R2 is associated a full fiber of possible movement directions.
As a result, a motor neuron can be represented by a point px, y, θq P R2�S1, where px, yq
denotes hand’s position in a two dimensional plane and θ denotes a movement direction
at position px, yq. The directional selectivity of motor cortical cells induces the vanishing
of the one-form

ω � � sin θdx� cos θdy (1)

over the tangent bundle of R2 � S1. The contact form (1) induces a sub-Riemannian
geometry whose horizontal space is the kernel of ω. Here, there is a remarkable analogy
between the structure of external features selected by the neurons in this area and the
the ones in the primary visual cortex (V1): both are characterized by the presence of
a hypercolumnar structure coding for position and orientation (see [90, 87] ). We also
refer to differential models of these structures, starting with Hoffmann [83], Petitot and
Tondut [131], Bressloff and Cowan [27], Citti and Sarti [41], just to name a few of the
main ones.

In addition to hand’s position px, yq and hand’s movement direction θ P S1, motor
cortical cells are selective of kinematic parameters evolving over time t, including hand’s
speed and acceleration, denoted by pv, aq ([65, 100], [11], [116], [136], [154], [150], [81,
133]). All of these variables give rise to the features space

M � R3
px,y,tq � S1

θ � R2
pv,aq. (2)

The choice of these variables and their differential constraints induce to consider the
following one-forms

ω1 � cos θdx� sin θdy � vdt, ω2 � � sin θdx� cos θdy, ω3 � dv � adt. (3)

We denote by DM the horizontal distribution belonging to the kernel of the above 1-
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forms. The vector fields generators of DM are given by

X1 � v cos θ
B

Bx
� v sin θ

B

By
� a

B

Bv
�

B

Bt
, X2 �

B

Bθ
, X3 �

B

Ba
(4)

with the metric which makes them orthonormal. In this model, we describe the cortical
selectivity of movement-related variables through integral curves of the sub-Riemannian
space M, in agreement with the coding of time dependent movement fragments experi-
mentally measured by Hatsopoulos et al. [81] and Churchland and Shenoy [38]. We also
compare our model with the area of V1 responsible for movement coding, which exhibits
analogous time-dependent receptive profiles [43].

We then validate the model as follows. We define the connectivity kernel

ωM pηi, ηjq � e�d
Mpηi,ηjq

2

, (5)

where pηi, ηjq P M and dM is the sub-Riemannian metric of the space. Equation (5) is an
estimate of the heat kernel, and we propose it as a model of the local connectivity between
the cortical tuning points ηi and ηj. We use this kernel, expressed in terms of kinematic
variables, and a spectral clustering algorithm to detect a set of hand trajectories. These
resulting paths are well in accordance with the ones obtained by Hatsopoulos et al. [81]
and by Kadmon Harpaz et al. [95] with a clustering algorithm applied directly on cortical
variables.

In the second part of our work, we study a model for arm reaching movements inspired
by phenomenological models of movement planning. The natural idea is to exploit the
sub-Riemannian metrics previously set up and look at geodesic models for arm movement
trajectories. The primary motor cortex is in fact one of the main brain areas involved
in voluntary movements, nevertheless the question on how the central nervous system
selects one specific trajectory of movement is not fully understood (we refer to [77], [138]
[96], [80], [124] for a general analysis of the problem). E. Todorov [148] argued that,
among all possible movements, the brain selects those that meet appropriate optimality
criteria. Currently, many models for goal-directed movements are based on optimality
principles, so that movements are selected to minimize a particular cost function (see
[84], [60], [152], [99], [57], [18], [16] and [61] as a review). One of the best-known model is
the minimum hand jerk criteria, developed by Flash and Hogan [60]. The cost function
to be minimized is the square of the rate of change of hand acceleration integrated over
the movement execution time:

1

2

» T
0

�
;x2 � ;y2

�
dt, (6)

where x and y are the time-varying hand positions in a Cartesian coordinate system.
Finding the minimum of the functional (6) is equivalent to assuming that one of the main
goals of reaching tasks is to produce the smoothest possible hand motion. The model
produces horizontal arm movements that globally fit well with experimental data and
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with the invariant patterns found in [2, 117]. Many phenomenological models have been
developed by inferring the cost function from behavioural data (see [9], [10], [16],[12],
[33], [91], [34]). The approach followed in these articles is the setting of a nonholo-
nomic sub-Riemannian control system (see F. Jean’s book [92] for a complete overview
of sub-Riemannian geometry and its applications to motion planning problems). Similar
instruments have been applied also for visual areas ([22], [21], [20], [50], [62]): illusory
contours and perceived curves elaborated in the cortical areas V1/V2 have been described
as geodesics of the neurogeometrical model of Petitot-Citti-Sarti [128], [41]. Geodesics
are minima of the length functional in the set of curves with fixed extrema. Their exis-
tence in sub-Riemannian setting is a well known fact (see Chow’s Theorem [36]), however
they present properties completely different from the Riemannian ones, due to the ex-
istence of abnormal geodesics (see [114]). Extensive literature is devoted to the study
of geodesics in the sub-Riemannian setting, we mention the work of Beals, Gaveau and
Greiner who solved the geodesic problem with explicit formulas for the Heisenberg group
[13], the works of Sachkov and Moiseev [110] and of Duits et al. [51] for geodesics in
the group of motions of a plane SE p2q and within SE pdq, Ardentov and Sachkov [8] for
geodesics in the Engel group and Bravo-Doddoli and Montgomery [25] for geodesics in
jet space. Abnormal geodesics are isolated geodesics that do not satisfy the differential
equation canonically associated with the geodesic variational problem ([114, 111], [29],
[144], [19], [115], [35]). Montgomery first provided an example showing the existence of
such abnormal minimizers ([111, 112]), also called as singular in this case. For distribu-
tion of rank 2, Liu and Sussmann [108] introduced a class of abnormal extremals which
are always locally length minimizing (see also [29] for the rigidity phenomena of singular
curves). Engel manifolds [113], which are 4-dimensional manifold together with a rank-2
distribution of growth p2, 3, 4q, are foliated by abnormal geodesics [144] (see also the
works [8], [17], [25] for a deepened study of geodesics in Engel group).

The purpose of the second part of our work is to propose a model of reaching via
sub-Riemannian geodesics inspired by the minimum-jerk model (6) and by a model
of functional architecture of the arm area of primary motor cortex M1. The energy
functional defined by Flash and Hogan (6) can be expressed as a first-order functional
in the space J 2 � J 2 pR,Rq of 2-jets. Geodesics in distributions of rank 2 have been
extensively studied (see e.g. the works [108], [8], [17]), but the space pM, DM, x�, �ygq

introduced in the first part of the thesis contains the J 2 space as a subgroup. Therefore,
we study the length functional in this spaceM, whose restriction to the J 2 space reduces
to the expression of the functional (6) in the J 2 space. We define a special class of
curves, named as admissible, on which to study the geodesics problem. Since Hörmander
condition is no more guaranteed for admissible curves, we prove a connectivity property
and the existence of a minimum path joining two arbitrary points of the space in terms
of admissible curves. Finally, we prove that admissible geodesics are regular (in the
sense of Definition 5.2 of [40], from [86]). To prove this result, we exploit the holonomy
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map introduced by Hsu [86] and the variational formulas for horizontal curves in graded
manifolds (we mainly refer to [74] and [40]). The regularity of admissible geodesics
implies that they are normal [114], so that they can be actually found as solutions of the
geodesics equations. We then presented a qualitative analysis of admissible geodesics,
showing how admissible curves allow to represent a wide variety of task-related reaching
movements.

The thesis is organized as follows. The first two chapters contain an overview of
the existing literature. Namely, the first chapter contains an outline of the structure of
the motor cortex, starting from neurophysiological data to phenomenological models of
movement. The second chapter deals with the main mathematical instruments on which
it is based our model. Chapter 3 describes our model for the functional architecture of
motor cortical cells expressed via sub-Riemannian geometry. In Chapter 4 we perform
a quantitative validation of the model comparing the proposed kernel with neurophysi-
ological data of motor primitives. Finally, Chapter 5 presents a model for arm reaching
trajectories as geodesics of the sub-Riemannian space.
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Résumé 3
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Chapter 1

Neurophysiology and
phenomenology of arm movements

The objective of this Chapter is to recall some of the main aspects of the neurophys-
iological and phenomenological literature of the arm area of motor cortex that will be
relevant to the formulation of our model. We start by providing some background on
the motor circuits, with a particular focus on the primary motor cortex. We will present
the problem of neural coding, first highlighting the properties of individual neurons (see
section 1.2), and then providing a more general perspective by including the activities
of cell populations (see section 1.3).

1.1 The motor areas

Movement is the result of information processing by a complex organization of motor
centers within the nervous system. There are four levels of motor control: the spinal
cord, the brainstem, the motor cortex and the associative cortex [97], [32]. As can
be seen in Figure 1.1, the hierarchy also contains two side loops: the basal ganglia
and the cerebellum, which interact with the hierarchy through connections with the
thalamus. In this way, the flow of information through the motor system has both a serial
organization, which enables communication between levels, and a parallel organization,
which consists of multiple pathways between each level. Damage to higher levels results
in deficits in motor planning, initiation, coordination, and so forth, but movement is
still possible. Because of the parallel nature of processing, paralysis is a relatively rare
outcome, produced by damage to the lowest level of the hierarchy.

Descending motor pathways arise from multiple regions of the brain and send ax-
ons down the spinal cord that innervate alpha motor neurons, gamma motor neurons,
and interneurons. The corticospinal tract is the main pathway for control of voluntary
movement in humans and it is composed of over a million of fibers. The fibers descend

13



14 1. Neurophysiology and phenomenology of arm movements

Figure 1.1: Schematic representation of motor circuits. Source: [97]

through the brainstem where the majority of them cross over to the opposite side of the
body. After crossing, the fibers continue to descend through the spine, terminating at
the appropriate spinal levels [79]. Voluntary movements require the participation of the
motor cortex and the association cortex. These areas are involved in the strategy, the
goal of the movement and the movement strategy that best achieves the goal, and in the
tactics, i.e. the sequences of muscle contractions, arranged in space and time, required
to smoothly and accurately achieve the strategic goal [14].

The motor cortex comprises three different areas of the frontal lobe: the primary mo-
tor cortex (Brodmann’s area 4 or M1), the premotor cortex (PM), and the supplementary
motor area (SMA). Figure 1.2 shows a schematic representation.

The primary motor cortex is located on the precentral gyrus and immediately ante-
rior to the central sulcus. Of the three motor cortex areas, stimulation of the primary
motor cortex requires the least amount of electrical current to elicit a movement. The
premotor cortex sends axons to the primary motor cortex as well as to the spinal cord
directly; it appears to be involved in the selection of appropriate motor plans for volun-
tary movements, whereas the primary motor cortex is involved in the execution of these
voluntary movements. Anyway, a strict distinction between these areas seems quite dif-
ficult to analyze, moreover, the transition from premotor to primary motor cortex is
gradual and it is object of discussion in [78]. The supplementary motor area is involved
in programming complex sequences of movements and coordinating bilateral movements.
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Figure 1.2: Principal cortical domains involved in the control of voluntary movement.
Areas 4 and 6 form the motor cortex. Source: [14].

Whereas the premotor cortex appears to be involved in selecting motor programs based
on visual stimuli or on abstract associations, the supplementary motor area appears to
be involved in selecting movements based on remembered sequences of movements.

1.2 The problem of motor coding

1.2.1 Role of the movement direction information

A pioneering work in the study of motor cortex was developed by A. Georgopoulos.
His experiments allowed to recognize that one of the key functions of the motor cortex
consists on the control of the direction of movement trajectory (see [70, 137]). Neuronal
activity was recorded and analyzed while monkeys moved their hands in uniformly dis-
tributed directions starting from the same point. These movements are called center-out
tasks. The intensity of a single cell discharge varied with the direction of movement
and it was highest for movements in a specific direction, called preferred direction (PD),
and progressively decreased while moving in direction far from the PD (see Figure 1.3
as a reference). This single cell behaviour is modelled in [70, 137] through a sinusoidal
function of the movement direction:

f pθq � b� k cos pθ � θPDq , (1.1)

where θPD represents the preferred direction of the cell, and the coefficient k denotes the
increase in discharge over the overall mean b at the preferred direction θPD. Equation
(1.1) is called directional tuning curve. Since PDs differed from different cells and a
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(a) (b)

Figure 1.3: (a) Variations in the frequency discharge of a motor cortical cell with the
movement directions. Rasters represent the impulse activity during five repetitions of
movements made in each of the eight directions indicated by the center diagram. Source:
[70]. (b) Clusters representation of the same cellular population with respect to eight
movement directions in 2D space. The neuronal population vector (broken arrow) points
approximately in the direction of the movement. Source: [67].

large proportion of arm-related cells were active during reaching movements, it was
hypothesized that the specification of a movement direction in space were due to the
engagement of a population of cells activity. Indeed, Georgopoulos et al. ([67], [71])
proposed to estimate the direction of movement via a weighted vectorial sum of cells
PDs

P pθq �
Ņ

i�1

θiPDwi pθq , (1.2)

where N is the number of cells in the population and wi is a symmetric function with
respect to the preferred direction θiPD of the i-th cell. It was found that the sum (1.2),
called neuronal population vector [73], approximates the direction of movement not only
during movement execution, but even before the movement start. Best predictions for
the upcoming direction of movement (see Table 2 of [71]) were made with weights of the
form

wθPD
pθq � pf pθq � bq {k � cos pθ � θPDq . (1.3)

Furthermore, two central articles published in 1984 [64] and 1988 [100] focused on
how motor cortical cells activity was also related with the position at which the hand is
actively maintained in space, supporting the importance of the arm area of motor cortex
in the coding of the spatial-motor information. In [64] a positional gradient tuning curve
was presented as

g px, yq � b� αx� βy, (1.4)

where the value of g px, yq denotes cell’s discharge rate at position px, yq with respect to
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an origin located at the central button of the center-out reaching apparatus; the quantity
b is the discharge rate in the origin and α, β are expressions of the slopes of cell discharge
per unit length along the x and y axes of the plane.

1.2.1.1 Columnar organization

The first studies regarding the anatomical columnar organization of the neocortex are
due to Mountcastle [118]. Inspired by these results, Georgopoulos [68] proved the exis-
tence of a functional columnar organization also for the arm area of motor cortex (see
Figure 1.4 and 1.5). Precisely the movement PD of cells is approximatively constant
for a penetration parallel to anatomical cortical columns and varies in the perpendicular
direction [63].

(a) (b)

Figure 1.4: (a) Movement direction selectivity of four neurons recorded along the histo-
logically identified penetration. The similarity of preferred directions for a penetration
parallel to the cortical columns is shown. Source: [68]. (b) Schematic illustration of the
projection of recording sites onto the cortical surface along anatomical columns. Open
and slashed circles denote recording and projected sites, respectively. Source: [72].

In [7], [122] and [72], the authors clarified that cells PDs arrangement had a periodic
structure (see Figure 1.5). More precisely, it was recorded a continuum of 500 µm in
depth with cells of similar preferred directions and it was measured a repeating columnar
pattern of similar PDs with a width of 50 to 100 µm and a repetition distance of almost
200 µm (see Figure 1.5a for a schematic representation). A fundamental aspect of the
above organization is that within each hypercolumn (i.e. assemblage of columns) of
radius 120 µm, the diversity of cells PDs was sufficient to represent any given direction
of reach ([122, 72]).

1.2.1.2 Heterogeneity of movement parameters

Subsequent proved that the arm area of the motor cortex is related to a more complex
and heterogeneous set of movement variables (see [96], [139] for a general review). John
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(a) (b)

Figure 1.5: (a) Schematic lattice model of the repeated, regular mapping of the preferred
directions in motor cortex. Adapted from [72]. (b) Motor cortical map of preferred
directions: each color denotes a cell’s PD within the unit circle. Image adapted from
[122].

F. Kalaska in [96] pointed out that the primary motor cortex acts as a controller that
specifies a particular parameter of the desired output. Then, the descending output
from M1 translates such a command signal into the resulting motor response. A fun-
damental class is formed by “extrinsic” or “hand-centered” parameters which typically
describe cortical activity with respect to hand’s movement. These variables mainly refer
to endpoint position, velocity and acceleration of the hand both in two-dimensional and
three-dimensional space (see [11], [64], [100],[116], [143]), in addition to the movement
direction variable. This class of parameters has been broadly used for the character-
ization of the spatio-temporal form of movement (see for example the work of Flash
and Hogan [60] and [58], [84]). There also exists a class of movement parameters which
relates cells activity to an “intrinsic” corporeal frame of reference, which can be for exam-
ple “joint-centered” or “muscle-centered” and which enables to describe cortical activity
with respect to events occurring at specific parts of a limb. These variables often concern
the dynamic aspects of movement or its causal forces, such as muscle tensions or force
limbs (see for example [141], [140], [147]).

Nevertheless, there is experimental evidence indicating some functional properties of
neurons across M1: cells activity recorded in the rostral part of primary motor cortex
appears to be more related to kinematic variables , whereas neural activity recorded
caudally on the precentral gyrus is thought to correlate with the temporal pattern of
force production and motor output (see [145], [81] and [96]). We specify that our work
will be focused on a space of kinematic parameters whose relation with cortical activity
is assumed to be well verified (see for instance [136]) and from which we will formulate
a neurogeometric model for the description of motor cortical cells organization.
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1.2.2 The coding of movement fragments

A seminal work of Graziano in 2002 [77] showed that complex and coordinated time-
evolving movements can be elicited by electrical stimulation even of a single neuron of
the motor cortex. Hence, beyond the wide spectrum of parameters that are encoded
within the motor cortex, there exists also a temporal dimension to which each neuron
results to be sensitive with respect to motor information ([11], [116], [125], [38],[133, 81]).

In particular, Hatsopolous [81] (see also [133]) highlighted that tuning to movement
parameters varies with time and proposed to describe the activity of neurons through
a trajectory encoding model. In his model, the probability of spiking of a neuron is
expressed as the exponential of the inner product between the “preferred velocity tra-
jectory” k⃗ and the normalized velocity trajectory of the hand v⃗ t0 of duration 400 ms, as
follows

p
�
spike pt0q |v⃗

t0
�
� exp

�
k⃗t0 � v⃗ t0 � γt0

	
. (1.5)

The vector k⃗ is named as “preferred velocity” since it maximizes the spike probability
when it is aligned to v̂t0 , whereas the parameter γ is an offset parameter of the model.
Note how for fixed instant of time t0 equation (1.5) reduces to equation (1.1) of Geor-
gopolous model. Indeed if k � |k| cos θPD, v � |v| cos θ, then

k � v � γ � |k| |v| cospθ � θPDq � γ.

Consequently the argument of the exponential in equation (1.5) is exactly the function
f in (1.1). The main difference is that now the same expression is considered at different
instants of time t0. In addition, equation (1.5) evaluates the output of a single cell in
response to a trajectory fragment as the probability of spiking a neuron. The preferred
path of the neuron is then obtained by integrating k⃗ over a time window which precedes
and follows the spike time t0. In the same work, it is also provided an extension to (1.5)
by including the average speed v̄t0 , and average position px̄t0 , ȳt0q of the hand trajectory:

p
�
spike pt0q |v⃗

t0 , v̄t0 , x̄t0 , ȳt0
�
� exp

�
k⃗t0 � v⃗ t0 � av̄t0 � bx̄t0 � cȳt0 � γt0

	
. (1.6)

Overall, Hatsopoulos [81] argues that M1 neurons are selective to a preferred “move-
ment fragment”: a short trajectory describing a combination of parameters evolving in
time (see also [133] and [124]). Figure 1.6a (from [81]) shows the temporal evolution of
preferred directions for two neurons where each direction of movement (being an unit
vector in R2) is represented by an angle in polar coordinates. Hence, in [81], the temporal
behaviour of directionally tuned cells is represented by a function

t ÞÑ pcospθptqq, sinpθptqqq P R2. (1.7)

At the bottom of Figure 1.6a, vectors of preferred directions are added together giving
rise to the movement fragment.
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Churchland and Shenoy [38] proposed an analogous model which describes the tem-
poral properties of motor cortical responses. Figure 1.6b displays the temporal variation
of the preferred directions of twelve M1 neurons during an instructed center-out reaching
task. In this paper, each direction of movement is expressed as a graph over a temporal
interval, as follows

t ÞÑ θ ptq P R. (1.8)

Through different representations of movement direction tuning, Hatsopoulos [81] and
Churchland and Shenoy [38] stressed the importance of time dependence on cell sensi-
tivity. In addition, both groups exploit a principal component analysis on a space of tra-
jectory templates allowing a finite dimensional basis over the heterogeneity of neuronal
patterns. In other words, even though neurons in M1 encode elementary movements,
thank to the intrinsic connectivity of the cortex, they can generate the rich variety of
complex motor behaviours.

In this thesis, we will provide a model able to describe the temporal dependence of
the selective tuning of motor cortical cells with a finite number of kinematic variables.
The differential constraints which relate these variables will be fundamental to give the
structure of the space.

1.3 Neural states and movement output

Until now we have provided an overview of the properties of individual neurons in re-
sponse to movement. Below we report the results of the work of Kadmon Harpaz et
al. [95] which analyzes the structure of the output of reaching movements in relation
to the dynamics of a cell population. The study showed that the neural activity reveals
coherent patterns represented in terms of movement trajectories, similar to the response
properties of individual neurons.

1.3.1 Movement decomposition in the primary motor cortex

In 2019, N. Kadmon Harpaz, D. Ungarish, N. Hatsopoulos and T. Flash [95] studied the
activity of neural populations in the primary motor cortex of macaque monkeys during
the performance of a random-target pursuit (RTP) task and a center-out reaching task.

The authors processed neural activity by identifying sequences of coherent behaviours,
called neural states, by means of a Hidden Markov model, i.e. a model which describes
a system transitioning between distinct states, related by a Markov process. The states
are hidden and can only be observed through the observations that are a probabilistic
process of the hidden states. In this article, the recorded spike trains are observations,
dependent on the hidden states that are assumed to reflect global changes in cortical
activity.
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(a) (b)

Figure 1.6: Temporal evolution of cells PDs through different representations. (a) Red
and blue arrows show the encoded PDs for movements before and after the measured
neuron firing rate, respectively. Below, the vectors of preferred directions added together
give rise to the preferred trajectories. The black directional paths show the similarity
of the encoded trajectories computed during a different task. Image adapted from [81].
(b) In the middle, change in PD expressed as continuous graphs for twelve M1 neurons.
Below is shown the mean strength of direction tuning, where time 0 is assumed to be
the strongest tuning instant. Above is represented the mean hand velocity profile whose
peak is aligned at time t � 0. Image adapted from [38].
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The neural states identified were found to be associated with motion trajectories,
coinciding with acceleration and deceleration phases with directional selectivity of the
entire reaching movement (see Figure 1.10). Trying to be clear, the following are some
key points of their analysis.

1. During center-out reaching movements, two neural states (color-coded in Figure
1.7) emerge by decomposing the bell-shaped speed profile at the maximum of the
tangential velocity.

Figure 1.7: Examples of a center-out task, with position (left) and speed profile (right)
colored according to the identified neural states. Black dot represents the starting posi-
tion [95].

2. During consecutive reaching tasks (displayed in Figures 1.8 and 1.9), each neural
state was associated with either accelerating or decelerating movement segments
executed towards a certain direction within the workspace. The obtained neural
states did not show selectivity to movement speed and amplitude (see in particular
Figure 1.8).

3. Transitions between neural states (color-coded in Figures 1.7, 1.8, 1.9) systemat-
ically coincided with minima and maxima points of the tangential velocity of the
end-effector, decomposing the movement into accelerating and decelerating phases
(see Figure 1.9).

Recently, studies of neural dynamics in the primate parietal cortex during arm move-
ments revealed three main states temporally coupled to the planning, execution and tar-
get holding epochs and, strikingly, execution was subdivided into distinct, arm acceleration-
and deceleration-related, states [49].

We stress that the observed segmentations in M1 were not directly predicted by
previously proposed models of kinematic parameters, such as for example the one of
Georgopoulos (see eq. (1.1)). Precisely, the authors tested six models that included
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Figure 1.8: Invariance of neural states to movement speed and amplitude [95].

Figure 1.9: (A) Position data of a RTP task segmented and colored according to the
decoded neural states. Each color represents a single state. (B) Corresponding speed
profiles, colored as in A. Filled circles represent the target locations, first target is colored
in red. Image taken from [95].
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tuning for: movement direction; movement direction gain modulated by speed; direction
of the acceleration vector; direction of the acceleration vector gain modulated by the
magnitude of the acceleration vector; both movement direction and direction of the
acceleration vector; or both movement direction and direction of the acceleration vector,
each gain modulated by the magnitude of the corresponding vector:

fri pt� τq � B0i �B1i cos pθ ptq � θPDi
q ; (1.9)

fri pt� τq � B0i �B1i∥v⃗ ptq∥ cos pθ ptq � θPDi
q ; (1.10)

fri pt� τq � B0i �B1i cos
�
θa ptq � θaPDi

	
; (1.11)

fri pt� τq � B0i �B1i∥a⃗ ptq∥ cos
�
θa ptq � θaPDi

	
; (1.12)

fri pt� τq � B0i �B1i cos pθ ptq � θPDi
q �B2i cos

�
θa ptq � θaPDi

	
; (1.13)

fri pt� τq � B0i �B1i∥v⃗ ptq∥ cos pθ ptq � θPDi
q �B2i∥a⃗ ptq∥ cos

�
θa ptq � θaPDi

	
. (1.14)

In the numbered list above (taken from [95]), fri denotes the instantaneous firing rate
of neuron i, τ the time lag between neural activity and kinematic output (taken to be
100ms), B0i the baseline firing rate, B1i and B1i modulation depths, whereas ∥v⃗ ptq∥ and
∥a⃗ ptq∥ represent the magnitude of the velocity and acceleration vectors, respectively, θ
and θa are the directions of the velocity and acceleration vectors, and θPD and θaPD

are the
preferred velocity and acceleration angles of neuron i. Nevertheless, the kinematic tuning
models used were not found to be significant in explaining the observed decomposition,
hence Kadmon Harpaz et al. [95] obtained a movement segmentation at the neural level,
but failed to recover the same decomposition by using existing models that incorporated
tuning kinematic variables.

In our thesis, in Chapters 3 and 4, we will provide a geometric structure which is
in agreement with both neural models incorporating kinematic variables and both the
above movement decomposition.

1.3.2 A topographic map of movements

Starting from 2000s, M.S.A. Graziano elaborated a very general perspective for the
comprehension of the cortical control of movement. As we briefly mentioned in section
1.2.2, in 2002 [77] he discovered that electrical stimulation of the motor cortex caused
monkeys to make coordinated, complex movements. The obtained results led him to
reconsider the traditional nature of the body map arranged across the cortical surface.
Indeed, he found that motor cortex topographic organization (see [4] and [76]) not only
included a somatotopic map of the body, but also a map of hand location in space and a
map of relevant actions. In particular, the last type of mapping revealed a partitioning
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Figure 1.10: Directional and acceleration selectivity of neural states in the RTP task.
Each column shows the position and normalized speed profiles of movement trajectories
corresponding to each of the neural states. Radial histograms show the mean directions
of all the trajectories within each state. Source: [95].

of regions dealing with different complex, ethologically relevant movements. This means
that the motor cortex organization reflects the complexity of a movement related to a
specific task. In Figure 1.11 (from [76]) we showed hand and arm representation and a
scheme of behavioural actions mapped into the motor cortex area. For the somatotopic
map of hand and arm, warm colors correspond to map locations in which the body part
is more strongly represented. Note how the hand and arm somatotopic maps overlap in
the reaching zone of action categories.

We point out that Graziano’s research allowed to extend previous neurophysiological
results, not to contrast them. In agreement with Hatsopoulos, he proved [3] that tuning
to a single movement parameter is too a simple model to account for the behaviour of mo-
tor cortical neurons (see also Figure 1.12). More in detail, he verified that given different
tasks and different movement sets, different types of tuning are obtained. For example,
it was analyzed how during free arm movements, when many movement parameters pre-
sumably contribute to the activity of neurons, the movement direction tuning made a
vanishing small contribution. However, when movements where tested on a center-out
task, directional tuning played a central role in the variation of neuronal activity, as it
was found in Georgopoulos experiments (see section 1.2.1 and [70, 73]). Graziano also
agreed with the work of E. Todorov [149], who claimed that the motor system adopts
an optimal control method: the cortex optimizes the control of task-relevant parameters
(see also [147] and [148] as a review). In this hypothesis, there is no single, preferred
parameter used for all tasks, but instead the parameters being specified by the optimal
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Figure 1.11: Overlapping motor cortical map organization. From left to right, somato-
topic representation of hand and arm onto the surface and action categories map. Source:
[76].

control strategy depend on the task being performed. As Scott reported in the review
[138], a crucial objective for understanding motor function is to connect the three levels
of the motor system: motor behaviour, limb mechanics and neural control. A very large
literature is present for all three distinct aspects, beginning with the authors cited so far
for neural models. In this thesis, for simplicity we will totally avoid the question of limb
mechanics, but we will attempt to provide a geometrical interpretation of phenomelogical
aspects of arm reaching movements, based on neural behaviour data.

1.4 Models of arm reaching movements

In this section, we give an overview on some mathematical models describing the phe-
nomenology of arm movements. We briefly outline the model constructed by T. Flash
and N. Hogan [60], which we will later recover as a special case of our model.

1.4.1 An overview

The motor cortex is one of the principal brain areas involved in voluntary movements,
nevertheless the question on how the central nervous system selects one specific trajec-
tory of movement is not fully understood (see [138] as a review). Movement planning
and control strategies are indeed not directly measurable, yet the observation of certain
invariant characteristics has provided many modelling insights on this topic (see also [77],
[96], [80], [124] for a general analysis of the problem). For example, for two-dimensional
arm reaching tasks, Abend et al. [2] and Morasso [117] found stereotypical patterns
of movement based on straight paths and bell-shaped velocity profiles, suggesting that
the central command for reaching gestures is formulated in terms of hand trajectories
in space. More generally, E. Todorov [148] argued that, among all possible movements,
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Figure 1.12: The map of movement fragments computed over a set of simultaneously
recorded M1 neurons by a multielectrode array placement. From [81].

the brain selects those that meet appropriate optimality criteria. Currently, there is a
wide variety of models of arm reaching trajectories based on optimality principles, so
that movements are selected to minimize a particular cost function (see [84], [60], [152],
[99], [57], [18], [16] and [61] as a review). One of the most well-known models in the
field of movement planning is the minimum hand jerk criterion, which was developed
by Flash and Hogan [60]. This model will be reviewed in the next section 1.4.2. The
minimum hand jerk criterion proposes that during the execution of arm movements, the
rate of change of acceleration of the hand should be minimized, resulting in smoother
and more efficient movements. Shortly after this article, Uno, Kawato and Suzuki [152]
proposed the minimum torque-change model, consisting of an objective function given
by the square of the rate of change of torque generated by muscles. Here, the cost func-
tion depends on the nonlinear dynamics of the musculoskeletal system. In a model of
2007, Biess, Liebermann and Flash [18] defined geometric properties (path and posture)
for three-dimensional pointing movements in terms of geodesic paths with respect to a
kinetic energy in a Riemannian configuration space. In this setting, they were able to
separately determine the geometrical and temporal movement features, allowing a uni-
fication of previous computational models. Although for the following cases the main
modelling subject is human locomotion, many phenomenological models have been de-
veloped by inferring the cost function from behavioural data (see [9], [10], [16],[12], [33],
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[91], [34]). The approach followed in these articles is the setting of a nonholonomic con-
trol system, whose underlying structure is defined in terms of sub-Riemannian geometry
(see F. Jean’s book [92] for a complete overview of sub-Riemannian geometry and its
applications to motion planning problems). The authors showed the existence of optimal
solutions, applied the Pontryagin maximum principle ([132]) to the control problem, and
finally compared the minimizing trajectories with the experimental data. In the present
work, following a procedure similar to [91], we will deduce an energy functional from
neurophysiological data (see [136] as a review) and provide a phenomenological model of
reaching arising from the sub-Riemannian geometry we set up.

1.4.2 The minimum jerk model

Flash and Hogan assume that movements are planned in terms of hand trajectories
rather than joint rotations. Their model is expressed by finding a minimum of an energy
function which takes into account the kinematic features of the motion: in moving from
an initial to a final position in a given time T , the criterion function to be minimized is
expressed by

1

2

» T
0

�
;x2 � ;y2

�
dt, (1.15)

where x and y represent the Cartesian coordinates of hand position. To find an extremum
of the unconstrained cost function, they exploited Euler-Poisson equation whose resulting
solution consists on a fifth order polynomial. They also applied Pontryagin maximum
principle for defining the necessary conditions for a minimum to exist [132].

Figure 1.13: Representation example of hand paths, speed and acceleration for uncon-
strained point-to-point movement. Dashed lines are the kinematic movements measured.
Source: [60].

Assuming that the motion begins and ends with zero velocity and acceleration, the
minimum of (1.15) is given by

x ptq � x0 � pxT � x0q
�
6τ 5 � 15τ 4 � 10τ 3

�
, y ptq � y0 � pyT � y0q

�
6τ 5 � 15τ 4 � 10τ 3

�
,

(1.16)
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where px0, y0q and pxT , yT q are the initial and final hand positions at t � 0 and t � T ,
and τ �

�
t
T

�
.

The model produces straight paths and smooth symmetric velocity profiles that are in
accordance with the experimentally observations made by Abend et al. [2] and Morasso
[117] (see Figure 1.13 as an example). The solution trajectories depend only on the initial
and final positions of the hand and movement time, therefore the optimal trajectory is
determined only by the kinematics of the hand in the task-oriented coordinates and is
independent of the physical system which generates the motion.
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Chapter 2

Notions of Sub-Riemannian
Geometry

In this Chapter we give the mathematical definitions and theorems required to develop
our study (we refer to [94, 106] and [5, 114] for a general presentation of the topic).

2.1 Background

2.1.1 Fiber bundles

Definition 2.1. A fiber bundle is a structure pE,M,F, πq, where:

� E andM are manifolds, called respectively total space and base of the fiber bundle;

� F can be a vector space or a group, called fiber ;

� π : E ÑM is a smooth surjective map, called projection, such that, for all p PM ,
the following properties hold:

– Ep :� π�1ppq is isomorphic to the set F , named as the fiber over p.

– There exists a neighbourhood U of p inM and a diffeomorphism χ : π�1pUq Ñ
U � F with the property that for every q P U , χ|Eq

: Eq Ñ tqu � F is an
isomorphism. The map χ is called local trivialization.

If the fiber F constitutes a real vector space and the local trivialization is a bijective
linear map, then the fiber bundle is called vector bundle.

By abuse of notation, sometimes the total space E is named as the fiber bundle over
M .

Fiber bundles are by definition locally a product of bases and fibers, but globally
they may have a more general structure.

31
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Example 2.1. One of the most common example is the Möbius strip, which is a vector
bundle of dimension 1 over the 1-sphere S1. Locally, around every point in S1, it looks
like U �R , where U is an open arc including the point, but the total bundle is different
from S1 � R (which is a cylinder instead).

The special case in which a fiber bundle is globally isomorphic to M � F is called
trivial.

Definition 2.2. Let pE,M,F, πq be a fiber bundle. A section of E is a differential map
σ :M Ñ E, such that π � σ � idM .

Examples of vector bundles above are the tangent bundle TM and the cotangent
bundle T �M over the differentiable manifold M .

Definition 2.3. A section of the tangent bundle TM over M is called a vector field on
M . A section of the tangent bundle T �M over M is called a 1-form on M .

2.1.2 Lie Algebras and Lie Groups

In this section we provide some basic definitions of the Lie group theory. All definitions
can be found in standard mathematical textbooks (e.g. [94], [151] and [105]).

Definition 2.4. A Lie algebra (over R) is a vector space b equipped with a bilinear map
r�, �s : b� b Ñ b, the Lie bracket, satisfying:

1. rX, Y s � � rY,Xs, for all X P b (anti-commutativity);

2. rrX, Y s , Zs � rrY, Zs , Xs � rrZ,Xs , Y s � 0, for all X, Y, Z P b (Jacobi identity).

Lemma 2.1. The space of vector fields Γ pMq on a differentiable manifold M , equipped
with the Lie bracket defined by

rX, Y s � XY � Y X, for all X, Y P Γ pMq ,

is a Lie Algebra.

Definition 2.5. If b is a Lie algebra, a linear subspace a � b is called a Lie subalgebra
of b if it is closed under Lie brackets.

A Lie subalgebra a is itself a Lie algebra with the same bracket operation of the Lie
algebra b.
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Definition 2.6. A Lie group G is a differentiable manifold endowed with a group struc-
ture, such that the maps

G�GÑ G (multiplication)

pg, hq ÞÑ g � h

and

GÑ G (inverse)

g ÞÑ g�1.

are smooth. If G and H are Lie groups, a Lie group homomorphism from G to H is a
smooth map F : GÑ H that is also a group homomorphism.

Definition 2.7. A Lie group G acts on a differentiable manifold M from the left if there
is a differentiable map

G�M ÑM

pg, xq ÞÑ gx,

such that g phxq � pg � hqx, @g, h P G, @x P M . An action from the right is defined
analogously.

Definition 2.8. Let G be a Lie group. For g P G, we have the left translation

Lg : GÑ G

h ÞÑ g � h

and the right traslation

Rg : GÑ G

h ÞÑ h � g.

Lg and Rg are diffeomorphism of G, pLgq
�1 � Lg�1 .

Definition 2.9. A vector field X on a Lie group G is called left invariant if

Lg� pXhq � Xg�h, for all g, h P G.

Lemma 2.2. Let G be a Lie Group, and let g be the set of all left invariant vector fields
on G. Then g is a Lie subalgebra of Γ pGq.

Definition 2.10. The Lie subalgebra g of all left invariant vector fields is called the Lie
algebra of the Lie group G and it is denoted by Lie pGq.
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Theorem 2.3. Let G be a Lie Group, and let g � Lie pGq. The evaluation map

g ÝÑ TeG

X ÞÝÑ Xe

is a vector space isomorphism.

Therefore, for each Lie Group G finite dimensional, there is a finite dimensional Lie
algebra intrinsically associated with it, with dimension equal to dim pGq.

Definition 2.11. Let G be a Lie Group. A one-parameter subgroup of G is a Lie group
homomorphism F : R Ñ G.

There are one-to-one correspondences among

tone-parameter subgroups of Gu ÐÑ Lie pGq ÐÑ TeG

In particular, a one-parameter subgroup is uniquely determined by its initial tangent vec-
tor in TeG. Let us recall the following definition (which is valid in general for manifolds,
not only for Lie groups)

Definition 2.12. Fixed a point g P G, an integral curve of X is a smooth curve γ : I Ñ
G, where I is an open real interval, such that γ1 ptq � Xγptq for all t P I. In the following,
we will assume that 0 P I. In this case, if γ p0q � g, we say that γ is an integral curve
starting at g.

In other words, an integral curve of a vector field X solves a system of first order
ordinary differential equations with initial condition:

$&
%
dγ

dt
ptq � X pγ ptqq , for t P I

γ p0q � g.
(2.1)

Theorem 2.4. Every one parameter subgroup of a Lie Group is an integral curve of a
left invariant vector field.

Definition 2.13. Let G be a Lie group G with Lie algebra g. We define the exponential
map by

exp : g ÝÑ TeG

X ÞÝÑ F p1q ,

where F is the one-parameter subgroup generated by X, or equivalently the integral
curve of X starting at the identity.

The exponential map is a diffeomorphism from some neighbourhood of 0 in g to a
neighbourhood of e in G. If G is simply connected, the exponential map is a global
diffeomorphism.
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2.2 Sub-Riemannian manifolds

Sub-Riemannian manifolds are generalizations of Riemannian ones. We will give a brief
overview to Riemannian metric structures on differentiable manifolds. The definitions
we will provide lend themselves to be then well adapted to the sub-Riemannian case.

2.2.1 Riemannian metrics

Definition 2.14. A Riemannian metric on a differentiable manifold M is given by a
scalar product on each tangent space TpM which depends smoothly on the base point p.
A Riemannian manifold is a differentiable manifold, equipped with a Riemannian metric.

In local coordinates, if a point p P M is determined by x ppq � px1, . . . , xnq, then
the metric pgij pxqqi,j�1,...,n is a positive definite symmetric matrix with components gij
which depend smoothly on p. Hence the scalar product of two tangent vectors

v �
ņ

i�1

vi
B

Bxi
, w �

ņ

j�1

wj
B

Bxj
, v, w P TpM,

in terms of the metric components is defined as

xv, wy :�
ņ

i,j�1

gij px ppqq v
iwj �

ņ

i,j�1

B
B

Bxi
,
B

Bxj

F
viwj (2.2)

and the length of v P TpM is given by

|v| :� xv, vy
1
2 .

As for the length of a curve, let ra, bs be a closed interval in R and γ : ra, bs ÑM be
a C1 curve. The length of γ is defined by

L pγq :�

» b
a

����dγdt ptq
���� dt,

which in local coordinates x pγ ptqq � px1, . . . , xnq can be computed by

L pγq :�

» b
a

gffe ņ

i,j�1

gij px pγ ptqqq 9xi ptq 9xj ptqdt,

with the abbreviation 9xi ptq :�
d

dt
pxi pγ ptqqq .

On a connected Riemannian manifold, any couple of p, q P M can be connected by a
piecewise smooth curve.
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Hence, on a Riemannian manifold, the distance between two points p, q can be defined:

d pp, qq :� inftL pγq : γ is a piecewise smooth curve with γ paq � p, γ pbq � qu.

Due to the connectivity assumption, the distance function d pp, qq is always well de-
fined and it satisfies the usual axoms:

(i) d pp, qq ¥ 0 for all p, q and d pp, qq ¡ 0 for all p � q,

(ii) d pp, qq � d pq, pq,

(iii) d pp, qq ¤ d pp, rq � d pr, qq (triangle inequality) for all points p, q, r PM .

2.2.2 Hörmander vector fields and sub-Riemannian structures

A sub-Riemannian manifold is a Riemannian manifold together with a constrain on al-
lowed directions over the tangent space (see for example Le Donne [104]). Such constrain
is referred as a distribution of the tangent bundle.

Definition 2.15. LetM be a differentiable manifold of dimension n. We call distribution
∆ a subbundle of the tangent bundle. ∆ is a regular distribution if at every point q PM
there exists a neighbourhood Uq � M of q and m linearly independent smooth vector
fields X1, � � � , Xm defined on Uq such that for any point p P Uq

Span
�
X1|p , . . . , Xm|p

�
� ∆p � TpM.

If the distribution is regular, the vector space ∆p, is called horizontal tangent space at
the point p. The distribution ∆ defined in this way is called horizontal tangent bundle
of rank m.

In the sequel we will always consider the following generalization of Riemannian
manifolds.

Definition 2.16. We will call degenerate Riemannian manifold a triple pM,∆, gq, where

1. M is a differentiable manifold,

2. ∆ is an horizontal tangent bundle of rank m

3. g is a metric defined on ∆

Definition 2.17. The metric g induces on the space a scalar product and a norm called
respectively horizontal scalar product and horizontal norm, as in definition (2.2).
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Remark 2.1. Let us explicitly note that in order to give the analogous definition of
scalar product in this setting, we have used the regularity of the distribution.

We stress the fact that in a Riemannian manifold the scalar product is defined on the
whole tangent space of each point of the manifold, whereas in a degenerate Riemannian
manifold the scalar product is defined in a precise subset of the tangent space.

For each ξ and each vector field Xj defined on Uξ will be represented as

Xj :�
ņ

k�1

ajkBk, j � 1, . . . ,m, (2.3)

in Uξ with m   n and ajk of class C8.

Remark 2.2. Since we are interested in local properties of the vector fields, we will
often assume that the vector fields X1, � � � , Xm are defined on the whole manifold M . If
the metric is not explicitly defined, we will implicitly choose the metric g which makes
the basis X1, . . . , Xm an orthonormal basis.

As we recalled in Lemma 2.1, the horizontal tangent bundle is naturally endowed
with a structure of Lie algebra through the bracket. Moreover, the commutator is a first
order vector field obtained as a difference of second order derivatives, so that there is a
kind of homogeneity on the second derivative that we will soon analyze.

Definition 2.18. We call Lie Algebra generated by X1, . . . , Xm and denoted as

L pX1, . . . , Xmq

the linear span of the operators X1, . . . , Xm and their commutators of any order.

Definition 2.19. By considering the following notations

∆0 � t0u

∆ � Span pX1, . . . , Xmq

∆2 � Span pXi, rXj, Xssq , Xi, Xj P ∆, Xs P ∆

� � �

∆k � Span pXi, rXj, Xssq , Xi, Xj P ∆k�1, Xs P ∆

� � �

We will say that a vector field X has degree k if X P ∆kz∆k�1. In this case we write
deg pXq � k.
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Remark 2.3. The degree is unique, indeed, if we consider the following vector fields in
R2 � S1 where points are denoted by ξ � px1, x2, θq:

X1 � cos pθq B1 � sin pθq B2, X2 � Bθ

their Lie bracket is rX1, X2s � sin pθq B1 � cos pθq B2 and X1 � � rX2, rX2, X1ss. Thus,
X1 is both in ∆ and ∆3, but for our definition the degree is 1.

Remark 2.4. Since m   n, in general

L pX1, . . . , Xmq

will not coincide with the Euclidean tangent plane. If these two spaces coincide, we will
say that the Hörmander condition is satisfied as we will see in the next Definition.

Definition 2.20. Let M be a regular manifold of dimension n and let pXjqj�1,...,m be a
family of smooth vector fields defined on M . If the condition

L pX1, . . . , Xmq|ξ � TξM � Rn , @ξ PM

is satisfied, we say that the vector fields pXjqj�1,...,m satisfy the Hörmander condition
and they are called Hörmander vector fields.

Remark 2.5. If this condition is satisfied at every point ξ we can find a number s such
that pXjqj�1,...,m and their commutators of degree smaller or equal to s span the space
at ξ. If s is the smallest of such natural numbers, we will say that the space has step s at
the point ξ. At every point we can select a basis tXj : j � 1, . . . , nu of the space made
out of commutators of the vector fields tXj : j � 1, . . . ,mu. In general the choice of the
basis will not be unique, but we will choose a basis such that for every point

Q �
ņ

j�1

deg pXjq (2.4)

is minima. The value of Q is called homogeneous dimension of the space. In general it is
not constant, but by simplicity in the sequel we will assume that s and Q are constant
in the considered open set. This assumption is always satisfied in a Lie group.

Example 2.2. The simplest example of family of vector fields is the Euclidean one:
Xi � Bi, i � 1, . . . ,m in Rn. If m � n, then the Hörmander condition holds, while it is
trivially violated if m   n.



2.2 Sub-Riemannian manifolds 39

Example 2.3. Let us consider the following vector fields in R3 where the points are
denoted as ξ � px, y, zq and

X1 � Bx � zBy, X2 � Bz.

Since rX1, X2s � �By, Hörmander condition is satisfied.

Example 2.4. If we consider the vector fields in R2 � S1 used in Remark 2.3 as the
generators of the Lie algebra, namely

X1 � cos pθq B1 � sin pθq B2 and X2 � Bϑ,

their commutator is
X3 � rX1, X2s � sin pθq B1 � cos pθq B2,

which is linearly independent of X1 and X2. Therefore, even in this case, X1, X2 are
Hörmander vector fields

Definition 2.21. A sub-Riemannian manifold is a degenerate Riemannian manifold
pM,∆, gq such that for every ξ in M there exists a basis X1, � � � , Xm of the horizontal
tangent bundle ∆ in a neighborhood of the point ξ satisfying the Hörmander condition.

Remark 2.6. Let us note that if for every ξ inM there exists a basis X1, � � � , Xm of the
horizontal tangent bundle ∆ in a neighborhood of the point ξ satisfies the Hörmander
condition, any other basis satisfies the same condition.

The geometry of the space is described through objects whose tangent vectors belong
to the fixed distribution ∆. In particular

Definition 2.22. Let pM,∆, gq be a sub-Riemannian manifold. A curve γ : r0, 1s ÑM
of class C1 is called horizontal, if and only if γ1 ptq P ∆γptq , @t P r0, 1s.

Let us explicitly note that the dimension of the distribution will be in general strictly
smaller than the dimension of its generated Lie algebra. We say that a distribution is of
type pm,nq if the horizontal distribution has dimension m and its generated Lie algebra
has dimension n. We also recall that the distribution ∆ generated by Hörmander vector
fields is called bracket-generating. Under this assumption, a connectivity properties holds
true,

Theorem 2.5. (Chow–Rashevskii [36]). If a subbundle ∆ of the tangent bundle of a
connected manifold M is bracket generating, then any couple of points can be joined by
a horizontal path.
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If the connectivity property is satisfied, it is possible to give a definition of distance
of the space. If we choose the Euclidean metric on the horizontal tangent bundle, we
can call length of any horizontal curve γ

L pγq �

» 1

0

|γ1 ptq| dt, (2.5)

where | � | denotes the horizontal norm introduced in Definition 2.17. Consequently, we
can define a distance as:

d pξ, ξ0q � inftL pγq : γ is an horizontal curve connecting ξ and ξ0u. (2.6)

This distance is also called Carnot-Carathéodory distance.
Let us now give a precise estimate of this distance.
As a consequence of Hörmander condition we can locally represent any vector in the

form

X �
ņ

j�1

ejXj.

The norm
b°m

j�1 |ej|
2 is equivalent to the horizontal norm expressed in Definition 2.17.

We can extend it as a homogeneous norm on the whole space setting:

}e} �

�
ņ

j�1

|ej|

Q

degpXjq

� 1
Q

, (2.7)

where Q has been defined in Remark 2.5.
Let us explicitly note that for every real number α, the norm in (2.7) is equivalent

to the norm

}e}α �
ņ

j�1

�
|ej|

Q
αdegpXjq


 1
αQ

. (2.8)

A standard choice of the norm is to choose α as the largest number such that Q
αdegpXjq

is

integer for every j.
Since the exponential mapping is a local diffeomorphism, we give the following

Definition 2.23. If ξ0 P Ω is fixed, we define canonical coordinates of ξ around a fixed
point ξ0, the coefficients e such that

ξ � exp

�
ņ

j�1

ejXj

�
pξ0q . (2.9)

We only enunciate that this representation can be used to give another characteriza-
tion of the distance
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Proposition 2.6. The distance defined in (2.6) is locally equivalent to

d1 pξ, ξ0q � }e} , (2.10)

where e are the canonical coordinates of ξ around ξ0 and }�} is the homogeneous norm
defined in (2.7).

Distance (2.10) is called homogeneous distance of the space.

2.3 Sub-Riemannian geodesics

2.3.1 Normal geodesics

We will recall here the Hamiltonian system which governs the subriemannian geodesic
flow (see also [114] section 1.5 and Appendix A for a more detailed description). Let us
consider a local frame pXaq

m
a�1 of vector fields for the distribution ∆ and its dual on the

cotangent bundle, given by PXa pq, pq � p pXa pqqq , q PM, p P T �
qM .

If gab pqq � xXa pqq , Xb pqqyq is the matrix of inner products defined by the horizontal

frame, let us consider gab pqq be its inverse matrix. Therefore gab is am�mmatrix-valued
function defined in some open set of M .

Proposition 2.7. If Pa and gab are the functions on T �M that are induced by a local
horizontal frame pXaq as just described, then the Hamiltonian is given by

H pq, pq �
1

2

¸
gabPa pq, pqPb pq, pq . (2.11)

Since Xa �
°
X i
a pxq

B
Bxi

is the expression for Xa relative to coordinates xi, then
PXa px, pq �

°
X i
a pxq pi, where pi :� P B

Bxi
.

In terms of the canonical coordinates pxi, piq P T
�M , the differential equations gov-

erning the geodesics flow, named normal geodesic equations, are given by

9xi �
BH

Bpi
, 9pi � �

BH

Bxi
. (2.12)

Definition 2.24. Solutions of (2.12) projected on M are called normal geodesics.

Normal geodesics are locally minimizing geodesics, indeed we recall the following

Theorem 2.8. (Montgomery [114]). Let pγ psq , p psqq be a solution of system (2.12) on
T �M , where γ psq is its projection on M . Then every sufficiently short arc of γ is a
minimizing subriemmannian geodesic. Moreover, γ is the unique minimizing geodesic
joining its endpoint.
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2.3.2 Regular and singular curves

Unlike the Riemannian enivronment, in sub-Riemannian geometry there exist minimiz-
ing curves for the length functional which are not solutions of the corresponding geodesic
equations (see for instance [111],[114], [29], [144]). This question motivates the following
brief outline on regular and singular curves. Below we will adopt the approach developed
by L. Hsu [86] (see also [39, 74]).

Let h be a Riemannian metric on the whole tangent bundle TM . We complete
X1, . . . , Xm be a basis of ∆p, p PM , by adding Xm�1, . . . , Xn that generates Vp � p∆pq

K.
We can therefore express a vector field V in terms of pXiq

n
i�1 :

V � VH � VV �
m̧

i�1

vHi
Xi �

ņ

j�m�1

vVjXj. (2.13)

According to the notations just provided, we express the notion of admissible vector field
given by G. Giovannardi [39].

Definition 2.25. Given a curve γ : I Ñ M , a vector field V along γ with compact
support in I is called admissible if it satisfies the following pn�mq linear first order
ordinary differential equations

V 1
V � �BVV � AVH , (2.14)

where B psq is a square matrix pn�mq � pn�mq and A psq is of order pn�mq � m,
with components

ari � xrγ1, Xis , Xry , brj � xrγ1, Xjs , Xry , r, j � m� 1, . . . , n

i � 1, . . . ,m.

We now introduce the concept of holonomy map first showed by Hsu [86] in 1991.

Definition 2.26. Let γ : I Ñ M be a horizontal curve and ra, bs � I. Fixed VH P
C1 ppa, bq ,∆q and VV paq � 0, let us consider the solution VV psq of ODE (2.14). The
holonomy map is defined as

Ha,b
γ : C1 ppa, bq ,∆q Ñ Vγpbq

VH ÞÑ VV pbq .

Definition 2.27. (Hsu [86]). In the above conditions, we say that γ restricted to ra, bs
is regular if the holonomy map Ha,b

γ is surjective. If the holonomy map is not surjective,
we say that γ is singular.
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G. Giovannardi provided a useful criterion of non-regularity of curves, which consists
on the following

Theorem 2.9. ([74]). The horizontal curve γ is singular restricted to ra, bs if and only
if there exists a row vector field Λ psq � 0 for all s P ra, bs that solves the following system#

Λ1 psq � Λ psqB psq

Λ psqA psq � 0.
(2.15)

Finally, we recall a theorem which clarifies some relations between the different types
of geodesics.

Theorem 2.10. ([114]). Every regular minimizing curve (i.e. regular geodesic) is nor-
mal.

As proved by Montgomery (see [114], section 5.3), the union between singular and
regular geodesics is the whole set of minimizers. Moreover, as we have just stated in the
previous theorem, regular minimizing geodesics are included in the normal ones. Nev-
ertheless, the converse inclusion is false in general, since it may exists normal geodesics
which are singular.
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Chapter 3

A sub-Riemannian model of M1
cells encoding movement direction

The goal of this Chapter is to propose a neurogeometrical model for the behaviour of
cells of the arm area of the primary motor cortex (M1). From Georgopoulos neural
models outlined in sections 1.2.1 and 1.2.1.1 ([70, 68]), we will first introduce a fiber
bundle structure which allows to describe the hypercolumnar organization of the cortical
area. On this setting, we will consider the selective tuning of M1 neurons of kinematic
variables of positions and directions of movement. We will then extend this model to
encode the direction of arm movement which varies in time, as experimentally measured
by Hatsopoulos [81] by introducing the notion of movement fragments (see section 1.2.2).
This leads to consider a higher dimensional geometrical structure where fragments will be
represented as integral curves. A fitting of parameters with neurophysiological data will
be described, and a comparison with the curves obtained through numerical simulations
and experimental data will be presented. Finally, we will compare our model with the
area of V1 responsible for movement coding, which exhibits analogous time-dependent
receptive profiles.

The Chapter is organized as follows. In section 3.1 we show a fiber bundle structure
emerging from Georgopoulos neural models in terms of hand’s position and movement
direction in the plane (see section 1.2.1). In section 3.2 we extend the model in order to
include other kinematic variables to which motor cortical cells are selective. In section
3.3, we integrate in a unified framework the preceding models by considering a 6D space
which codes time, position, direction of movement, speed and acceleration of the hand
in the plane. Finally, in section 3.4 we describe a fitting of parameters with neurophys-
iological data. In 3.4.2, we will compare our model with the area of V1 responsible for
movement coding, which exhibits analogous time-dependent receptive profiles.

45
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3.1 Fiber bundle of positions and movement direc-

tions

As briefly exposed in section 1.2.1, Georgopoulos neurophysiological studies [70, 64]
experimentally verify that the basic functional properties of cellular activity in the arm
area of M1 involve directional and positional tuning. We therefore consider that a motor
cortical neuron can be represented by a point px, y, θq P R2�S1, where px, yq denotes cell’s
coding for hand’s position in a two dimensional space and θ represents cell’s preferred
direction at position px, yq. Moreover, as it is represented in Figure 1.4, cells with
similar preferred directions are organized in columns perpendicular to the cortical surface.
Directional columns are in turn grouped into hypercolumns (see Figure 1.5), each of
them coding for the full range of reaching directions. Hence, in this first model, we
propose to describe directionally tuned cells organization as a fiber bundle pE,M,F, πq
(see Definition 2.1), where

� M � R2 represents the cortical tuning for hand’s position in the plane;

� F � S1 represents the preferred directions of the cell in the plane;

� E is the total tuning space to which motor cortical cells are selective and it is
locally described by the product R2 � S1;

� π : E ÑM is a projection on the px, yq variables which acts as π px, y, θq � px, yq.

A section σ : M Ñ E represents the selection of a point on a fiber of possible move-
ment directions at position px, yq P M , namely, it associates the point px, yq to a point
px, y, θq � σ px, yq. A fiber Epx,yq � π�1px, yq � S1 corresponds to an entire hypercol-
umn. A schematic representation of the fiber bundle structure is shown in the right side
of Figure 3.1.

We recall that formula (1.1), which is equivalent of (1.5) for every fixed instant of
time, selects the maximum of the scalar product in the direction of the trajectory of
movement. This is equivalent to say that the spike probability is maximized if the scalar
product in the direction orthogonal to that of motion vanishes. For our model it will be
essential to consider this and to do so we will make use of the following definition. We
call 1-form a function ω � a1dx� a2dy which acts on a vector v as a scalar product:

ωpvq � xa, vy . (3.1)

In our case, to be compatible with equation (1.5), we will choose a � kK, where k
expressed cell’s preferred movement trajectory.

To proceed in our fiber bundle model, we will exploit the main differential constraints
which characterize the features selected by the single neurons of this area. The variable
encoded, or engrafted (in the sense adopted by Petitot [127] and Hubel [87]), in the fiber
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bundle is the angle of preferred movement direction, defined as θ � arctan2 p 9y, 9xq. From
here, we deduce the equality tan pθq � dy

dx
which can be expressed as sin θ dx � cos θ dy.

This expression is equivalent to the vanishing of the following 1-form

ω � � sin θ dx� cos θ dy, (3.2)

which selects the vector kKθ � p� sin θ, cos θ, 0q on the tangent space R2 � S1.

Figure 3.1: (Left) In the up, motor cortical map of preferred directions referred to
movements on a two-dimensional space (adapted from [122]). Colors denote preferred
directions within the interval r0, 2πs. A conventional zoom and a superimposition of the
lattice model (see Figure 1.5) have been made in order to visualize the directional map
referred to the size of the hypercolumns. (Right) Arm area of M1 modelled as a set of
hypercolumns. Here, the angle θ lies in the interval r0, 2πs and it is represented as an
arrow.

3.1.1 Neuronal population vector and distance

As we clarified, we are interested in the set of vectors on which the 1-form (3.2) vanishes,
or equivalently, on the orthogonal space to the one spanned by vector kKθ . This set iden-
tifies a two-dimensional subset of the tangent space at every point, called the horizontal
tangent space. It can be represented as

Dpx,y,θq � tα1X⃗1 � α2X⃗2 : α1, α2 P Ru, (3.3)
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where the generators are

X⃗1 � pcos θ, sin θ, 0q , X⃗2 � p0, 0, 1q . (3.4)

In terms of vector fields, they will be denoted respectively

X1 � cos θ
B

Bx
� sin θ

B

By
, X2 �

B

Bθ
. (3.5)

According to Chow’s Theorem (see [114] and [5] for a detailed analysis), vector fields
(3.5) induce on the space R2 � S1 a distance d in terms of Definition 2.6.

We saw in section 1.2.1 (see also [73, 67, 71]) that one estimate concerning the out-
put of a population of M1 cells is given by the neuronal population vector (1.2). Its
formula describes an expectation value weighted by the w-functions with respect to all
possible cells preferred directions θ1 P S1. Basically each cell assigns a contribution to
the output given by its own preferred direction modulated by the distance between the
actual direction of movement and cell’s preferred direction itself. As reported in [122],
within each hypercolumn the neuronal population vector ensures a good estimate of a
reaching direction. These results suggest that within each hypercolumn of M1 there is
a local and isotropic activity pattern characterized by the weight functions. We observe
that the weight (1.3) can locally be approximated through Taylor expansion by

cospθ � θ1q � 1�
|θ � θ1|2

2
� e�

|θ�θ1|2

2 .

Since for small values of θ the distance in the circumfrence is |θ � θ1|, this suggests
approximating the discrete formula (1.2) with the continuous correspective in which the
weight (1.3) is replaced with the exponential

P pθq �

» 2π

0

eiθ
1

e�
|θ�θ1|2

2 dθ1. (3.6)

This formula can also be exploited in our case. Indeed, if we denote by d the distance
induced by vector fields X1 and X2 (see Definition 2.6), we can provide an estimate of
the collective behaviour of cells tuning with respect to a selective point px, y, θq within
a hypercolumn of positions and directions of movement:

P px, y, θq :�

»
D

» 2π

0

gx,y,θ px
1, y1, θ1qω ppx, y, θq , px1, y1, θ1qq dx1dy1dθ1, (3.7)

whereD � R2 is a subset of a cortical module and the function px1, y1, θ1q ÞÑ gx,y,θ px
1, y1, θ1q

represents the single cell’s spike probability density in response to px, y, θq:

gx,y,θ px
1, y1, θ1q � expx,y,θq,px

1,y1,θ1qy. (3.8)
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The above equation is the analogue of Hatsopoulos model (1.6) only in relation to the
variables of position and direction of movement.

The new weighting function

ω ppx, y, θq , px1, y1, θ1qq � e�
d2ppx,y,θq,px1,y1,θ1qq

2 (3.9)

measures the closeness between the cellular selectivity of the points px, y, θq and px1, y1, θ1q.
Therefore, formula (3.9) is intended to express a core of connectivity (local, since it is
evaluated in a small cortical module) that is functional. We briefly mention that distance
d expressed in terms of (2.6) can be locally estimated by

d ppx, y, θq , px1, y1, θ1qq �
�
e41 � e42 � e23

� 1
4 , (3.10)

where

e1 � pθ1 � θq ppx1 � xq sin θ1 � py1 � yq cos θ1q , e2 � θ1 � θ

e3 � pθ1 � θq ppx1 � xq cos θ1 � py1 � yq sin θ1q .

Formula (3.10) follows from (2.7) (see also [121] and [114]).
We will see that the analogous for this area of formula (3.9) is provided by Bressloff-

Cowan [27] and Sarti-Citti [135] models in the visual cortex.

3.1.2 Comparison of the static model with primary visual cor-
tex V1

An analogy on the selectivity behaviour of external features with neurons in the primary
visual cortex area (V1) is evident. Briefly, simple cells of the primary visual cortex process
the orientation of image contours and are organized in a hypercolumnar structure: Hubel
and Wiesel [90, 87] discovered that to every retinal position (which is identified to the
visual cortical space through a conformal map) is associated a set of cells (hypercolumn)
sensible to all possible orientations. A simplified representation is shown in the right side
of Figure 3.2. Since the early ‘70s, a large number of differential models were developed
for visual cortex areas, starting with Hoffmann [83], Petitot and Tondut [131], Bressloff
and Cowan [27], Citti and Sarti [41], just to name a few of the main ones. Their models
describe the functional architecture of V1 trough geometric frameworks such as contact
bundles, jet bundles or Lie groups endowed with a sub-Riemannian metric.

In particular, the model expressed through the one-form (3.2) matches the one pro-
posed by Citti-Sarti in 2006 [41] for the description of image edge selectivity by V1 cells.
Likewise the visual system, the fiber bundle structure underlying motor cortical orga-
nization represents a key aspect for the modelling since its local architecture results to
be induced by neurophysiology ([68], [129]). Further, both for V1 and the arm area of
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Figure 3.2: (Left) Layout of orientation preferences in the visual cortex. At singular
points (pinwheels), all orientations meet. Source: [23]. (Right) V1 modelled as a set of
hypercolumns.

M1, the total space of the fiber bundle is three-dimensional, whereas the cortical layers
are of dimension two, so that a dimensional constraint has to be taken into account.
This problem has been intensively studied for the visual system and in this case, the
third dimension collapses onto the plane giving rise to orientation maps which have been
experimentally observed with optical images techniques (see [23] and [127] for a detailed
explanation). These maps typically contain regions where it is shown the distribution
of orientation tuning over the cortical layer. In V1, at singular points all θ values are
arranged like the spokes of a wheel, hence the name “pinwheel” maps. In Figure 3.2a,
the orientation preferences of simple cells in V1 are color coded and every hypercolumn is
represented by a pinwheel. For the motor cortex, a “directional map” is suggested from
Figure 1.5, for which PDs are repeatedly arranged on the motor cortical layer in such a
way that, within a given locale (hypercolumn), the full range of movement directions are
represented. Moreover, as distance increases away from the center of the hypercolumn
(black filled circle), up to the radius of the hypercolumn (120 µm), PDs diverge from
that at the center of the circle (see Figures 3.2 and 3.1 for a direct comparison). We add
that cells preferred directions in M1 are correlated across very small distances along the
tangential dimension (see [7]) and this type of arrangement is consistent with the smooth
variation of orientation preference observed in V1 (see [88]). Moreover, the radii of the
hypercolumns of arm area M1 and V1 are of the same order size and are respectively of
240 and 200µm.

In the visual area, the retinotopic structure is a mapping between the retina and
the primary visual cortices that preserves the retinal topology and it is mathematically
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described by a logarithmic conformal mapping [131]. From the image processing point
of view, the retinotopic mapping introduces a simple deformation of the stimulus image.
Hence, in V1 there is a proved geometrical correspondence between the hypercolumnar
structure of the area projected on its surface and the retinal plane. From this, not only
the fiber bundle is a natural representation of the cortical area, but also the passage
from the discrete hypercolumnar tiling to a continuous base plane can be justified to
some extent (Petitot and Tondut [131]). In the M1 case these identifications are more
complicate to achieve. In our model, we choose as a basis of the fiber bundle the cortical
tuning of the position of the plane. Hence M � R2. There is wide neural literature
supporting that M1 neurons encode hand positions (see e.g. [64], [100], [136], as well as
sections 1.2.1 and 1.2), but the way that these positions are mapped on the cortical plane
is not well understood. Possibly the position of the hand will be indirectly coded through
the command to the specific group of muscles which will implement the movement [137,
66]. In particular, according to [76] (see also [77], [4], [75]) the topographic organization
in motor cortex emerge from a competition among three mappings: somatotopic map
of the body; a map of hand location in space; a map of movements organization. Since
these maps preserve a principle of local similarity, and we are considering here very simple
hand movements, a fiber bundle structure in the position-directions is not inconsistent
with these data. On the other side, from a functional point of view, it is clear that
at every point of the 2D space the hand can move in any direction, and this aspect is
captured by a fiber bundle of directions on a 2D spatial bundle.

Another of the major difficulties and differences in modelling the functional architec-
ture of M1 is the absence of an analogue of the simple cells receptive profiles, which we
might call “actuator profiles”. Simple cells of visual areas are indeed identified by their
receptive field (RF) which is the domain, subset of the retinal plane, to which each cell
is sensible in response to a visual stimulus. Activation of a cell’s RF evokes the impulse
response, which is called the receptive profile (RP) of the cell. A widely used model
([93], [46], [107]) for the RP representation of a simple cell located at the retinal position
q and selective to the feature p, is in terms of Gabor filters ψpq,pq : R2 Ñ C,

ψpq,pq pxq � eip�xe�px�qq
2

. (3.11)

Although it is not well understood the presence or the definition of such functions for
M1, we argue that the action of primary motor cortical cells occurs in a comparable
way as in V1. This hypothesis is primarily supported by the tuning functions (1.1) and
(1.4) expressed by Georgopoulos (see 1.2.1 and [70, 137]) and through the trajectory
encoding model (1.6) provided by Hatsopoulos (see 1.2 and [81]). Their models share
the selective tuning of neurons by evaluating the alignment between an external input
variable and the individual cell’s preferred feature via a scalar product. Analogously
for V1, the linear term in (3.11) evaluates the aligning between cell’s selective feature p
with respect to the input x. Another fundamental contribution for the modelling of V1
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was developed by Bressloff and Cowan [27] (see also [28, 156]). Indeed, they were able
to prove the relationship between the local interactions within the hypercolumns of V1
and the generation of orientation tuning curves. More specifically, their model allows to
represent the stationary state of a population of simple cells through equation

a pϕ, rq �
µ

απ

» π
0

ωLOC pϕ, ϕ
1qσ pa pϕ, rqq dϕ1�

µβ

α

»
R
ωLAT psqσ pa pϕ, r � seϕqq ds, (3.12)

where ωLOC and ωLAT correspond to the strength of connections from the iso-orientation
patch within and between the hypercolumns of V1, respectively. The function a pϕ, rq
is the activity in an iso-orientation patch at the point r with orientation preference ϕ,
whereas σ paq is a smooth sigmoidal function of the activity a and α, µ are time and
coupling constants. The weight ωLOC represents the isotropic pattern of activity within
any one hypercolumn, and in [27], in the simplified case where the spatial frequencies
are not taken into account, it is modelled by

ωϕ
1

LOC pϕq �
1

2
pcos pϕ� ϕ1q � cos pϕ� ϕ1qq , ϕ, ϕ1 P S1. (3.13)

Equation (3.13) is the analogous of the weighting function (1.3) assumed by Georgopou-
los. In the work of Sarti and Citti [135] both contributions of ωLOC and ωLAT are
modelled by means of a single connectivity kernel given by

ω ppϕ, rq , pϕ1, r1qq � e�d
2
cppϕ,rq,pϕ

1,r1qq, pϕ, rq , pϕ1, r1q P SE p2q , (3.14)

where dc is the Carnot Carathéodory distance associated to the special Euclidean group
SE p2q � R2 � S1. Overall, both in V1 and M1 local interactions act as weighting
functions in the activity of a population of cells within a single hypercolumn. For the
motor area, this local connectivity gives rise to the neuronal population vector.

3.2 A 1D kinematic tuning model

In this section, we want to include to the previous model of positions and directions of
movement the temporal aspect related to motor cortical cells behaviour (see section 1.2
and [81, 133, 38]).

First, the parameters to which primary motor cortical cells are sensible during reach-
ing movements comprise a temporal variable (see 1.2 and also [65, 100]) together with
the speed, acceleration and position of the hand ([11, 100, 116, 154, 150]). For simplicity,
we will consider a one-dimensional space related only to one spatial variable, which we
will denote by x. In this setting, we consider the set of kinematic variables

J 2 � tpt, x ptq , 9x ptq , :x ptqq P R4| t ÞÑ x ptq P C2 pRq , t P Ru. (3.15)
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As a consequence, the space can be represented by the quadruple pt, x, v, aq P R4. As in
the previous section we will model the hypercolumnar organization ([118, 89]) through
a fiber bundle structure. We will denote pt, xq the couple of time and specific hand’s
position. These variables will define the base space of the bundle; hand’s velocity and
acceleration tuning will be denoted as pv, aq and will be considered the engrafted variables
on the fiber over the point pt, xq. Hence, the resulting structure is described by means
of a globally trivial fiber bundle represented by the product R2

pt,xq � R2
pv,aq � J 2.

We refer to equation (1.6) to recall that the spike probability of a neuron is maximized
in the direction of the movement fragment. Therefore, as in section 3.1, the choice of the
variables with their differential constraints induce the vanishing of the following 1-forms#

v dt� dx � 0

a dt� dv � 0.
(3.16)

The set where these forms vanishes is a subset of the tangent space to J 2 and it is given
by the vector fields which are orthogonal to both the 1-forms. This space is a distribution
D spanned by

X1 �
B

Bt
� v

B

Bx
� a

B

Bv
, X2 �

B

Ba
. (3.17)

3.3 A 2D kinematic tuning model of movement di-

rections

Now we aim at realizing a unified neurogeometrical framework that generalizes the pre-
ceding model of movement fiber bundle structures. We extend the one-dimensional
model by involving the movement direction variable as fundamental tuning feature to
which motor cortical neurons are selective. More specifically, we want to unify the fiber
bundle structure relating positions and directions of movement with the two-jet geometry
dealing with the selective behaviour of motor cortical cells to kinematic variables.

We will describe a sub-Riemannian model such that motor cortical cells selective
behaviour can be represented through integral curves of the cortical features space of
time, position, direction of movement, speed and acceleration. The resulting model
will present time dependent variables, which seems particularly natural for a model of
movement.

3.3.1 Integral curves and time dependent PD

We represent motor cortical cell tuning variables by the triple pt, x, yq P R3, which
accounts for a specific hand’s position in time. We also consider the variable θ P S1

which encodes hand’s movement direction, and the variables v and a which represent
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hand’s speed and acceleration along θ. The triple pt, x, yq P R3 is assumed to belong to
the base space of the new fiber bundle structure, whereas the variables pθ, v, aq P S1�R2

form the selected features on the fiber over the point pt, x, yq. We therefore consider the
6D features set

M � R3
pt,x,yq � S1

θ � R2
pv,aq, (3.18)

where this time the couple px, yq P R2 represents the cortical tuning for hand’s position
in a two dimensional space.

We emphasize again that expression (1.6) modulates the increase in the cortical
activity with respect to the movement trajectory. Therefore the differential constraints
operating on the variables to which M1 neurons are selective can be expressed by putting
together all the conditions already imposed in sections 3.1 and 3.2 by means of the
vanishing of the 1-forms (3.2) and (3.16). As a result, we will get the following equalities

ω1 � cos θ dx� sin θ dy � v dt � 0, ω2 � � sin θ dx� cos θ dy � 0, ω3 � dv � a dt � 0.
(3.19)

The one-form ω1 encodes the direction of velocity over time: the unitary vector pcos θ, sin θq
is the vector in the direction of velocity, and its product with p 9x, 9yq yields the speed.

As we already noted, conditions above are equivalent to find vector fields orthogonal
to ωi. Consequently, the associated horizontal distribution DM turns out to be spanned
by the vector fields

X1 � v cos θ
B

Bx
� v sin θ

B

By
� a

B

Bv
�

B

Bt
, X2 �

B

Bθ
, X3 �

B

Ba
. (3.20)

Horizontal curves of the space are integral curves of the vector fields X1, X2 and X3 and
are of the form

γ1 psq � α1 psqX1 pγ psqq � α2 psqX2 pγ psqq � α3 psqX3 pγ psqq , (3.21)

where the coefficients αi are not necessarily constants.
We recalled in section 1.2 that M1 cells are not selective to a single movement di-

rection, but the preferred movement direction varies in time [38, 81]. In particular, in
Figure 1.6b we reproduced data from [38], where the PD of a single M1 neuron was
represented as a curve dependent on time.

We propose the curves expressed in (3.21) as a model of the integrated selective
behaviour of M1 neurons. Note in particular that the t component of the horizontal
curve γ satisfies t1 � α1. This means that the coefficient α1 is a modulation of the
time, and can account for the difference between the external time and the perceived
one. By simplicity, we will assume that the two times coincide, therefore we will assume
α1 � 1 from now on. In the sequel we will see that it is possible to choose coefficients
in equation (3.21) which allow to recover the full fan of curves reproduced in Figure 1.6.
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The expression of 9θ described in (3.31) is the coefficient of the vector field X2 and the
expression of 9a described in (3.33) is the coefficient of the vector field X3:

9γ ptq � X1 pγ ptqq � 9θ ptqX2 pγ ptqq � 9a ptqX3 pγ ptqq . (3.22)

The functions t ÞÑ 9θ ptq and t ÞÑ 9a ptq represent, respectively, the rate of change of the
selective tuning to movement direction and acceleration variables.

3.3.2 Time-dependent neuronal population vector

By analyzing the following commutation relations

rX1, X2s � v sin θ
B

Bx
� v cos θ

B

By
�: X4, rX3, X1s �

B

Bv
�: X5,

rX5, X1s � cos θ
B

Bx
� sin θ

B

By
�: X6,

(3.23)

we observe that pXiq
6
i�1 are linearly independent. Therefore, all pXiq

3
i�1 belonging to D

M

together with their commutators span the whole tangent space at every point, meaning
that Hörmander condition is fulfilled. As we recalled in Chapter 2, thanks to Hörmander
condition it is possible to define a metric dM in the whole cortical feature space M in
terms of the Carnot-Carathéodory distance:

dM pη0, η1q � inf tl pγq : γ is a horizontal curve connecting η0 and η1u , (3.24)

where η0, η1 P M and where the metric g defined on DM is the one which makes
X1, X2, X3 an orthonormal basis. The definition of a distance (3.24) allows to formally
consider the analogous of the population vector (3.7) defined in section 3.1.1. Indeed,
we will call as time dependent neural population vector an estimate of the collective
behaviour of cells tuning around a cortical module centered at point η0 P M. We define
it by means of the following

PM pη0q :�

»
E

hη0 pηqωM pη0, ηq dη, (3.25)

where E � M is a neighbourhood of η0 and the weighting function

ωM pη0, ηq � e�d
Mpη0,ηq

2

(3.26)

encodes an estimate of the local connectivity between the cortical tuning points η0 and
η. The function η ÞÑ hη0 pηq corresponds to the contribution provided by the variable η
in the population coding. As in Hatsopoulos model (1.6), it is the spike probability of a
neuron in response to the input variable η0:

hη0 pηq � exη0,ηy. (3.27)
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The definition of (3.26) embodies the same meaning as the weighting function (3.9)
showed in the “static” model and in the models for visual areas (see equations (3.13),
(3.14) in 3.1.2 defined in [27] and [135]). It represents the local interactions between cells
within a cortical module by means of a distance of the cortical feature space.

3.4 Parameters fitting and numerical results

In this section, we validate our model through some numerical simulations compared
with experimental data from [81] and [38]. We then compare our model with another
model for motion encoding by V1 cells.

3.4.1 Time dependent direction selectivity as local integral curve

In section 3.3.1 we propose integral curves of vector fields (3.20) as a good model for the
time dependent selected PD by M1 neurons. We will now validate the model by an ad
hoc choice of the parameters.

An optimal time window for analyzing the shifts in preferred directions is approx-
imately considered to be given by ∆T � 400 msec [81]. In this temporal interval m
observations have been made at instants of time t1, � � � , tm and the measured preferred
directions can be denoted by �

θpt1q, � � � , θptmq
	
. (3.28)

We can represent (3.28) through a continuous graph by representing the variable θ as a
function of time (as it is shown in [38], see Figure 1.6b):

θ : r�T, T s Ñ S1. (3.29)

This is equivalent of assuming that at every instant of time the preferred movement
directions are respectively described by the unitary vectors��

cospθpt1qq, sinpθpt1q
�
, � � � ,

�
cospθptmqq, sinpθptmqq

�	
. (3.30)

A movement fragment was visualized in Figure 1.6a taken by [81]. Here we display the
same image ordering the temporal axis from left to right as it is more usual.

As for the temporal behaviour of the selective tuning of a single cell’s PD, we observe
that it can be linear, as it is shown for example by the black curve of Figure 1.6b. For
this case we will model the function (3.29) through a polynomial of degree one (shown
in Figure 3.4 left), which is identified through its first derivative. In Figure 1.6b we also
see the presence of even curves, symmetric with respect to the interval where they are
defined (as for example the green one). These will be described as polynomials of order
two (see also Figure 3.4 middle). Finally there are odd curves, which will be represented
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Figure 3.3: Change in cell’s PD over time. Here, we ordered the temporal axis of Figure
1.6 (adapted from [81]).

Figure 3.4: Linear, quadratic and cubic modelling functions (3.29) for the encoding of a
cell’s PD which spreads over time.

as third order polynomials (see also Figure 3.4 right). In this way, polynomials of degree
1, 2, 3, provide good models of the PD curves experimentally measured.

In Figure 3.5 we represent the temporal behaviour of the selective tuning of a single

cell’s PD through the third order polynomial function θ ptq � �π
4

�
t
T

�3
. On the right, we

exhibit the associated unit vector pcos θ ptiq , sin θ ptiqq, according to the visualization of
[81]. Blue and red arrows depict the preferred movement directions before and after the
time of strongest tuning, which we set to zero to be in accordance with the representation
of [38].

Figure 3.5: (Left) Modelling function θ ptq � �π
4

�
t
T

�3
, t P r�T, T s with T � 0.2s for an

example of a cortical cell’s tuning PD in time. Red and blue dots indicate the PDs which
are represented as arrows in the right plots. (Right) Associated vector representations
by means of (3.30) over the temporal axis and over the px, yq plane.
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As a consequence, we assume there exist parameters ki such that

9θ ptq � k0 � k1t� k2t
2, (3.31)

and that all curves in the variable θ satisfying (3.22) will be characterized by these three
parameters.

As briefly recalled in section 1.2 (see as well [11], [125], [143]), motor cortical cells
activity is highly correlated to endpoint velocity. Since in the works of Morasso ([117],[2])
it is shown that for point-to-point movements (see also Flash and Hogan model [60])
hand’s speed profile typically has a bell-shaped trend (as it is depicted also in the top
of Figure 1.6b), we posit to characterize the function t ÞÑ vptq by an even polynomial of
fourth order. Hence, it is conceivable to characterize the speed profile by the setting of
parameters ji which identify the map t ÞÑ 9a ptq in this way

9a ptq � j0 � j2t
2. (3.32)

Equation (3.32) is formulated so that the velocity profile is symmetrical with respect to
the y�axis and the maximum speed is reached at time t � 0 aligning with that of the PD
selection. In order to obtain a bell shape velocity profile, in which v p�T q � v pT q � 0
and a p�T q � a pT q � 0, we choose the expression of t ÞÑ 9a ptq as

9a ptq �
4v0
T 2

�
3

�
t

T


2

� 1

�
(3.33)

Consequently that of the velocity is

v ptq � v0

��
t

T


4

� 2

�
t

T


2

� 1

�
. (3.34)

To recover the fan in [38] (see Figure 1.6b), we note that the curves have been re-
ordered in such a way to have the same direction and velocity at the point t � 0.
The whole set of curves, with the prescribed initial condition η0 P M at time t � 0,
represents more precisely the cortical cells selectivity with respect to position, direction
of movement, speed and acceleration:#

9γ ptq � X1 pγ ptqq � pk0 � k1t� k2t
2qX2 pγ ptqq � pj0 � j2t

2qX3 pγ ptqq

γ p0q � η0.
(3.35)

Figure 3.6 shows a family of integral curves in which we let vary the parameter k2
and we set to zero k0, k1. All curves are characterized by a speed component having a
bell-shaped profile, according to equation (3.34), whose maximum value occurs at time
t � 0. This time is conceived to be the instant of a cell’s strongest tuning with respect



3.4 Parameters fitting and numerical results 59

Figure 3.6: Model example of M1 cells temporal selective tuning as a family of 20
integral curves solutions of system (3.35). (Left). Above and below, speed and movement
direction components solutions over the temporal window r�0.2, 0.2ss. Different curves
correspond to different values of k2, whereas k0, k1 are set to 0. The speed function is
given by (3.34), with v0 � 25 cm/s at time t � 0. (Right) Fan of curves projections over
the variables px, y, θq, px, y, vq and pt, y, θq.

Figure 3.7: Other model examples of M1 cells tuning patterns. In the top first row,
the function t ÞÑ 9θ ptq is assumed to be a polynomial of degree one and each solution
of (3.35) corresponds to a different value of the parameter k1 of equation (3.31). In the
second row, the temporal behaviour of the movement direction variable is assumed to be
linear and we let vary the parameter k0.
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to the speed and movement direction variables, and, in correspondence of it, all curves
meet at point px, yq � p0, 0q with tangent θ set to 0 (see red and black dots of the plots
in Figure 3.6).

Let us emphasize that only curves with polynomial coefficients are considered, so
that each of these trajectories can also be identified as a point in a higher dimensional
space. Indeed, the initial tuning variable η0 P M, the time threshold T , together with the
coefficients pk0, k1, k2, j0, j2q P R5 which define the trend of the direction and velocity of
motion with respect to η0, form a space of dimension twelve. In particular, the dimension
of the structure is of the same order as the one outlined by the principal components
analysis performed in [38] and in [81]. We underline that in the “static” simplified model
presented in section 3.1, a point of the space is assumed to be a neuron characterized
by its positions and directions of movement. In this context, a point of the previous
structure corresponds to an “instantaneous” cell selective movement parameter. Here,
in the temporal bundle, the selective behaviour of a single neuron is represented by a
whole trajectory expressed as a solution of (3.35). We show a simplified representation of
the new fiber bundle in Figure 3.8, where we have depicted only the px, y, θq components
to facilitate a comparison with Figure 3.1 and to directly observe the extension of the
temporal model with respect to the static one. The central arrow in the left graph
of Figure 3.8 has the same meaning as those depicted in the previous “static” fiber
bundle, but now, as seen in the right part of the image, the fiber has a higher dimension
representing the spread of time-selective behaviour.

3.4.2 Comparison with the time dependent receptive profiles
in V1

We will now compare the model of movement in the arm area of cortex M1 with models of
movement coded in the visual cortex V1. We stress that the analysis on the comparison
between visual and motor cortical cells is not based on their functionality. Visual cells
are indeed characterized by their receptive profiles which detect features of the visual
stimulus; on the other hand, cells in M1 are characterized by “actuator profiles” and
whose properties have been synthesized in 1.2.1 and 1.2. The analogy is based on the
coding of their related features, and on the structure of the functional geometry of the
two areas.

We briefly recalled in the Introduction and in 3.1.2 that simple cells in V1 detect
positions, local orientations, however complex cells also encode parameters of movement
via their receptive profiles ([48, 47]). For a given fixed position and orientation, cells
receptive profiles sensible to movement are represented as a family of RPs varying in
time (see [93], [47]): �

RP pt1q, � � � , RP ptmq
	
. (3.36)

This complex receptive profile can be modelled as a curve in the space of 2D profiles.
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Figure 3.8: Kinematic model for time-dependent directionally tuned M1 cells. We only
represent the px, y, θq components of system (3.35) applied for movement direction tuning
which linearly changes over time. Left, fixed a PD at the central point, a solutions pattern
which spreads over a temporal window is represented. Right, over each cell’s selective
tuning point px, yq at time t � 0, there is a fiber of different patterns having strongest
tuning for a preferred movement direction which spans the interval r0, 2πs.
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The graph of a continuous curve of receptive profiles

RP : r�T, T s Ñ R2 (3.37)

has been represented by G. Cocci [43] as a 3D volume defining a higher-dimensional
profile selective of time frequency and velocity parameters (see Figure 3.9).

Figure 3.9: Time course of a simple cell’s RP. (Left) A simple cell’s RF, represented in
the second row as a curve of 1D RP vaying in time. The representation is analogous
to the one used for the analysis on PD vectors which vary over time in M1 (see Figure
3.3). (Right) Representation of a 3D-continuum receptive profile. It is the analogous of
directionally tuned cells behaviour depicted in Figure 1.6b. Source: [43].

The variation of the RP from one frame to the next encodes the velocity of move-
ment. Hence, we argue that the model of M1 (3.4.1) is analogous, but more general to
the model of movement in V1, since we coded the variation of a cell’s preferred movement
direction not only via the first derivative, but via higher order derivatives. Accordingly,
the movement-receptive profile family was represented in Cocci’s model as a fiber bun-
dle, with a base formed by position and time selective behaviour pq1, q2, tq and with
engrafted variables pθ, vq, accounting for the orientation and velocity tuning over the
point pq1, q2, tq. For θ fixed, there is therefore a one-parameter family of RPs depending
on the velocity variable (as depicted in Figure 3.10 left). This is the analogous of the fan
of curves with varying PDs we represented in Figure 3.8 left, for a given fixed central PD.
Then, in the model of movement for V1, the entire fan is obtained by varying orientation
and position variables (see Figure 3.10 right), from which a total space of dimension five
arises.
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Figure 3.10: (Left) Representation of a cell’s RP over time. (Right) Schematization of
the spatio-temporal fiber bundle of V1. For each spatio-temporal point px, y, tq there is
a two dimensional fiber of possible local detected orientations θ and local velocity v. See
Figure 3.8 for a direct comparison with M1. Images from [43].
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Chapter 4

Spatio-temporal grouping model for
M1

In this Chapter, we will proceed with the sub-Riemannian model for M1 cells by focus-
ing on the coding of directional trajectories. Neural activity shows coherent behaviours
represented in terms of movement trajectories pointing to a specific pattern of movement
decomposition (see section 1.3.1 from [95] and Figures 1.7, 1.8, 1.9 as references). Here,
we will test this pattern through the neurogeometrical model proposed in Chapter 3 ap-
plied to classical techiques of spectral clustering ([126]). By the use of a sub-Riemannian
distance expressed in terms of kinematic variables, we will show how the set of move-
ment trajectories extracted from the grouping algorithm are in accordance with the
neural states obtained by Kadmon Harpaz et al. [95].

In this Chapter we consider the coherent behaviours of neural activity obtained in
[95] directly on neural data and recover it in terms of kinematic parameters. As recalled
in section 1.3.1, the authors clarified that they tried to obtain the neural decomposition
in fragments using various distances proposed in literature. However, none of these
distances were successful in yielding the desired neural decomposition. The authors recall
a list of all the distances that were tried (found in equations (1.9)-(1.14)) and they all
failed to produce the correct classification. This failure can have two explanations: either
the considered kinematic parameters are not sufficient to recover the decomposition, and
more parameters are coded in the brain, or a more complex distance is needed.

We show that with our distance which takes into account the differential relations
between the variables exactly provides the same decomposition. The algorithm we apply
here is a variant of k-means which considers the presence of this distance: first we
perform a change of variables induced by the distance and then we apply the k-means
in the new variables. This provides an answer to the problem we posed above, and
clarifies that the set of kinematic variables considered up to now is sufficient to recover
the cortical decomposition, and it is most probably the set of parameters to which this

65
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area is sensible.

We have organized the Chapter as follows. In section 4.1, we will explain the results
of movement decomposition from the perspective of a grouping problem. To do so, we
will provide a brief overview of clustering methods in section 4.1.1. In section 4.2 we
define an affinity matrix in the feature space M and we provide the main steps of the
clustering algorithm. In 4.2.1 we give an estimate of the distance dM defined in (3.24)
which will characterize the affinity matrix. Finally, in 4.3 we present some results on the
trajectories decomposition into movement fragments, comparing them with the work of
Kadmon Harpaz et al. [95].

4.1 Movement decomposition as a grouping problem

In this section we will reinterpret the movement decomposition introduced by Hatsopou-
los et al. [81] and Kadmon Harpaz et al. [95] as a grouping problem, with respect to a
natural distance associated to the space introduced in the previous Chapter. Hatsopoulos
et al. [81] and Churchland et al. [38] analyzed the response properties of single neurons,
while Kadmon Harpaz et al. [95] examined the cell population in M1 at local population
level, but proposed similar decompositions in fragments. The authors observed an abrupt
change in population spike activity at changes in the properties of velocity differences:
precisely, changes in direction of movement or changes in monotonicity (which can be
captured by changes in the sign of acceleration). On the other hand, spike activity was
consistent at the acceleration and deceleration phases. As a result, the movement tra-
jectory is segmented into coherent patterns, which are short pattern trajectories, called
fragments (see Figure 1.10 as a reference, from [95]). The authors also noted that the
same decomposition into trajectories can not be obtained with any distance present in
literature (see Equations (1.9)-(1.14)). The problem of identifying cortical activity pat-
terns and the associated phenomenological primitives has been diffusively studied in the
visual cortex for the identification of perceptual units. Starting from the Gestalt theory
[101], it is clear that it is possible to express the grouping principles as geometrical rules.
The same geometric features have been observed in the region of V1 where the group-
ing takes place. The most classical model describing the cortical activity is the mean
field equation of Ermentrout and Cowan [53] and Bressloff and Cowan [26], [27]. This
equation models the evolution of the cortical activity depending on a connectivity kernel
and stationary states can be studied by means of eigenvalues methods (see section 3.1.2
and equation (3.12)). Sarti and Citti [135] proved a relation between the stable states
of Bressloff and Cowan equation and perceptual units of the visual input in V1. We also
refer to the works of Faugeras et al. [55], Cocci et al. [44], Favali et al. [56]. The main
result is to relate emergent states of Bressloff and Cowan differential equation and visual
perceptual units. In particular, the model in [135] provided a biological basis for the
results of perceptual clustering in scene description through kernel principal component
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analysis.
In perfect analogy, we will relate the neural states found in [95] to elementary tra-

jectories obtained via a clustering algorithm. Following the approach of Citti and Sarti
[135] and Cocci et al. [44], the decomposition of neural activity into movement fragments
as in [95] will be recovered through a dimensionality reduction technique expressed in
terms of the subriemannian distance defined in section 3.3.2. The considered distance
will be used to define the kernel (3.26), which is related to the local connectivity of a neu-
ron in response to the input variable η0, but it is expressed only in terms of kinematic
variables. In this way we strongly related the neural activity and a purely kinematic
distance, and we justify the fact that the moving fragments in [95] are obtained via a
clustering algorithm, only based on kinematic variables.

4.1.1 Spectral clustering and dimensionality reduction

Clustering methods based on graphs and spectral analysis have been applied success-
fully for data analysis in several science fields ranging from statistics, computer science,
biology, social science, or psychology (e.g. [142], [1], [37]). A vast literature is available
on the theoretical and practical aspects of several clustering algorithms (see e.g. [153]
as a summary of the most known techniques). A key idea of these methods is that they
partition the set of data in disjoint subsets: each one containing homogeneous data with
respect to a suitable distance function. Precisely the given data S � txiu

n
i�1 � X will be

partitioned in disjoint subset Si � S homogeneous with respect to the distance d, and
such that

�k
i�1 Si � S. This partition induces a new lower dimensional representation

induced by the chosen similarity criterion of the original data, where each element is an
element Si of the partition. A classical method is the k-means algorithm. The objective
of k-means is to minimize the sum of squared Euclidean distances between each data
point and its closest centroid, which is the representative point for the cluster it belongs
to. The k-means assigns each data point to the closest centroid, based on the Euclidean
distance between the data point and the centroid, and it iteratively updates the centroid
for each cluster by taking the mean of all the data points assigned to that cluster. The
final result is a partition of the objects into k clusters, with each object being assigned
to a unique cluster [102].

Another typical example is a representation of the partition in terms of the first
eigenvalues of the matrix containing distances of any couple of points, called affinity
matrix ([155]). Precisely the elements aij of the affinity matrix A only depend on the
similarity of point xi to point xj, and a possible expression of them will be

aij � e�d
2pxi,xjq, (4.1)

where d is a suitable distance over the considered space.
Principally, there exist two classes of spectral clustering techniques [103]: methods for
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locality-preserving embeddings of large data sets, that project the data points onto the
eigenspaces of the affinity matrices ([45], [15], [134]), and methods for data segregation
and partitioning, that basically perform an additional clustering step taking as input the
projected data set ([126], [155], [142], [109], [123]).

We briefly recall the work of Perona and Freeman [126] who addressed the problem of
perceptual grouping by reducing the complexity of scene description, since we will apply
a clustering technique inspired by their work. A visual scene composed by n points,
can be analyzed via a distance d which gives rise to an affinity matrix A (4.1) with a
complexity of order Opn2q. They approximated the matrix A as a sum of matrices of
rank 1 and complexity n, so as to drop the computational complexity from Opn2q to
Opnq. More specifically, the considered approximation is the following

p � argminp̂

ņ

i,j�1

paij � p̂ip̂jq
2 . (4.2)

Perona and Freeman proved that the minimizer p (4.2) of the Frobenius norm is the first

eigenvector v1 of the matrix A with largest eigenvalue λ : p � λ
1
2
1 v1.

Then the same problem is applied to the vector space orthogonal to p1: the minimizer
will correspond to the second eigenvector, and iteratively the others eigenvectors are
recovered. The dimensionality reduction is obtained by selecting only k eigenvectors,
where k   n, and the salient objects in the scene correspond to the eigenvectors with
the largest eigenvalues.

In order to obtain a more stable algorithm and to reduce error due to noise, the
affinity matrix can be suitably normalized. Many normalizations have been proposed
(e.g. [30], [123], [142]): one of the most widely applied is the one presented by Meila
and Shi [109] since it reveals properties of the underlying affinity matrix by ways of the
Markov chain, providing a probabilistic foundation of the clustering algorithm. Indeed,
the authors defined a Markov-type matrix P as follows

P � D�1A, D diagonal matrix, di �
ņ

j�1

aij. (4.3)

In general the matrix P will not be symmetric, but its eigenvalues are real, positive and
smaller than one, while the eigenvectors have real components ([103], [45]). The cluster-
ing properties of the eigenvectors of P can be better understood in the following ideal
case. Suppose the given data S can be represented as a disjoint union of k connected
components Si with the property that the distance between pairs of points in a set Si
is strictly less than the distance between points in different components. Let A be the
affinity matrix A representing the similarity between pairs of points in S having distance
d. The resulting normalized matrix P is a block diagonal matrix with k non-zero eigen-
values, each of which is equal to 1. The corresponding eigenvectors of these eigenvalues
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are piecewise constant indicator functions of the partitions. This means that the eigen-
vectors indicate the presence or absence of each point in each connected component. If
the affinity matrix A is already a block matrix, the improvement induced by the mul-
tiplication by D can be neglected. Further, the diffusion map theorem shows that the
Euclidean distance in the coordinates induced by the projection onto the eigenspace is
equivalent to the distance used to define the affinity matrix ([103], [45]). This means that
the clustering result obtained by applying the k-means algorithm to the data projected
onto the eigenspace will be the same as the result obtained by applying the k-means
algorithm to the data directly in the affinity matrix space. For this reason, a k-means
algorithm in this coordinates will provide the classification for our problem. In particu-
lar, a simple and efficient algorithm has been proposed in [98], which can be summarized
as follows

1. Consider a data set S.

2. Build the affinity matrix A using definition (4.1). Define P as in (4.3) (if A is
already a block matrix, P � A).

3. Solve the eigenvalue problem PU � λU , where U is the matrix formed by the
column eigenvectors tuiu

n
i�1.

4. Order the couples tpλi, uiqu
n
i�1 such that λi is decreasing.

5. Plot the first k-ordered eigenvectors (k ¤ n) which will form the clusters for the
decomposition.

4.2 The spectral clustering method in the feature

space M
In this section we apply the spectral clustering algorithm in the cortical feature space
M defined in Chapter 3 in order to recover the classification presented in [95]. We will
then study its applications to grouping the kinematic points along a series of movement
trajectories through the spectral analysis related. We will introduce two main novelties.
Firstly, we will provide a local estimate of the distance dM (3.24) to define a connectivity
kernel in terms of the kinematic space M. Secondly, we will show that the salient groups
obtained due to spectral clustering are in agreement with the neural results present
in [95]. The eigenvectors of the affinity matrix will be short movement trajectories,
coherently with the concept of movement fragments stated by Hatsopoulos et al. [81,
133].

In order to measure distances between points in M, we use the connectivity kernel
ωM pηi, ηjq defined as in (4.1) as
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ωM pη0, ηq � e�d
Mpη0,ηq

2

, η0, η P M, (4.4)

where dM is defined in (3.24). As recalled before, this connectivity kernel is the same as
the one we introduced in section 3.3.2 through Equation (3.26).

Hence, given a set of reaching paths, we discretize (4.4) by means of the real symmetric
affinity matrix A:

A � ωM ppxi, yi, θi, vi, ai, tiq , pxj, yj, θj, vj, aj, tjqq , (4.5)

that contains the connectivity information between all the kinematic variables of the
reaching trajectory. We obtain a data set, on which we apply the algorithm provided in
section 4.1.1.

4.2.1 Local estimate of distance dM

In this section we will provide a local estimate of the distance dM defined in (3.24), using
an approximation result due to Nagel Stein Wainger [121], and recalled in (2.7).

The space
�
M, DM, dM

�
is defined in terms of the vector fields introduced in (3.20).

According to Definition 2.19, we compute the degree of each of these vector fields and of
their commutators (3.23):

X1, X2, X3 P D
M, so that degpX1q � degpX2q � degpX3q � 1

X4 � rX1, X2s, X5 � rX3, X1s, so that degpX4q � degpX5q � 2

X6 � rX5, X1s � rrX3, X1s, X1s, so that degpX4q � 3.

Applying equation (2.4), the homogeneous dimension is Q �
°n
j�1 deg pXjq � 10.

The homogeneous norm of a vector X �
°6
j�1 ejXj defined in (2.7) reduces in this

case to }e}α � }pe1, � � � , e6q}, with

}e}α �
6̧

j�1

�
|ej|

10
αdegpXjq

	 1
α10

, α �
5

3
. (4.6)

In order to define a homogeneous distance in M, according to (2.9), we have to
express every point in terms of its canonical coordinates.

Equation (3.21) takes the explicit form$'&
'%

9γ psq � e1X1 � e2X2 � e3X3 � e4X4 � e5X5 � e6X6

γ p0q � px0, y0, θ0, v0, a0, t0q

γ p1q � px1, y1, θ1, v1, a1, t1q .

(4.7)
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If ei are defined in this way, then by formula (2.10) the distance becomes

dH pη0, η1q � }e}α . (4.8)

Remark 4.1. Given the expression of the family of constant positive coefficients tciu
6
i�1,

the homogeneous distance between two points η0, η1 P M reduces to

dH pη0, η1q �

�
3̧

i�1

ci |ei|
6 �

5̧

i�4

ci |ei|
3 � c6 |e6|

2

� 1
6

. (4.9)

In our experiments, we will use the distance (4.9). However, to avoid complicating
the notation, given the local equivalence of the distances dM and dH, we will simply refer
to dM.

Let us now provide an explicit expression of the coordinates ei, by integrating system
(4.7).

Remark 4.2. Using the explicit expression of the vector fields pXiq
6
i�1 we obtain that

the system (4.7) can be explicitly represented as

9γ psq �e1X1 � e2X2 � e3X3 � e4X4 � e5X5 � e6X6 �

�e1

�
�������

v cos θ
v sin θ

0
a
0
1

�
������
� e2

�
�������

0
0
1
0
0
0

�
������
� e3

�
�������

0
0
0
0
1
0

�
������
� e4

�
�������

v sin θ
�v cos θ

0
0
0
0

�
������
� e5

�
�������

0
0
0
1
0
0

�
������
� e6

�
�������

cos θ
sin θ
0
0
0
0

�
������
.

In this way we get

9γ1 psq � 9x � e1v cos θ � e4v sin θ � e6 cos θ

9γ2 psq � 9y � e1v sin θ � e4v cos θ � e6 sin θ

9γ3 psq � 9θ � e2

9γ4 psq � 9v � e1a� e5

9γ5 psq � 9a � e3

9γ6 psq � 9t � e1.

We immediately obtain

e1 � t� t0, e2 � θ � θ0, e3 � a1 � a0, e5 � pv � v0q �
t� t0
2

pa� a0q . (4.10)
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Hence, by calling x̃ � x cospθq � y sinpθq and ỹ � x sinpθq � y cospθq, we get

9γ̃1psq � e1v � e6 � ỹe2 , 9γ̃2psq � e4v � x̃e2.

Therefore, by integrating 9γ̃1 and 9γ̃2 between 0 and 1 we obtain the expressions of
x̃1 � x̃0 and ỹ1 � ỹ0, and subsequently e4 and e6.

In particular, if e2 � 0 the two equation decouple. Since v is a polynomial, e4 and e6
turn out to be

e4 � �
12 pỹ1 � ỹ0q

6 pv0 � v1q � e1e3
�

12 ppx1 � x0q sin θ0 � py1 � y0q cos θ0q

6 pv0 � v1q � e1e3
,

e6 � px̃1 � x̃0q �
e1
12

p6 pv0 � v1q � e1e3q

� px1 � x0q cos θ0 � py1 � y0q sin θ0 �
e1
12

p6 pv0 � v1q � e1e3q .

If e2 � 0, the system is a standard oscillator, with polynomial forcing term. Hence it
can be directly integrated to find e4 and e6.

Remark 4.3. In the context of the grouping problem, it is important to assign meaning
to the constant coefficients ci of exponential coordinates (4.9). From a neural viewpoint,
we know that neurons are selective of a restricted temporal window, typically around
400ms [81]. The experiments reported in [95] (see Figures 1.7, 1.8, 1.9) show that this
temporal window captures neural state transitions. Hence, the use of a weighting factor
ci for the temporal increment in the exponential coordinates can capture this temporal
organization and can help to separate the neural signals into coherent groups. To ensure
this property, and also because the temporal variable includes information about velocity
and acceleration, a good strategy is to weight the temporal increment more heavily. In
the experiments we will present in section 4.3 we will use a large coefficient c1 for the
temporal increment e1, while leaving the other coefficients equal to 1.

4.3 Results of movement decomposition into move-

ment fragments

In this section we show some examples in which connectivity kernel (4.4) is applied to a
set of movement paths and speed profiles. We will then analyze how the decomposition
obtained through the spectral analysis of the corresponding affinity matrix (4.5) is in
agreement with the neural states obtained by Kadmon Harpaz et. al [95].
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4.3.1 Results

4.3.1.1 Test 1: Center-out tasks

As a first category of tests, we will analyze trajectories of movement performing a center-
out task (see e.g. the one represented in Figure 1.7, from [95]). Motion paths are very
simple, but also widely used for neural experiments and phenomenological models of
reaching movements (recall Georgopoulos’ results in 1.2.1 and the model of Flash et al.
in 1.4.2).

We begin by presenting a “synthetic” example of a center-out task by making use of
the equations of Flash and Hogan model (1.16).

Figure 4.1: Reaching path and speed profile of a center-out task. (Left) Reaching path
over the px, yq plane. (Right) Speed profile over the pt, vq plane. The red dot represents
the movement starting position.

The “idealized” movement trajectory, as in the representation of paper [95], is char-
acterized by two graphs, one on the px, yq plane, the reaching path, and one on the pt, vq
plane, corresponding to the speed profile. The red dot identifies the starting point of
the movement. In this very simple case, movement direction is constant with only one
target point to be reached and just one maximum point of the speed profile.

The connectivity kernel (4.4) when applied to the kinematic variables of the task rep-
resented in Figure 4.1 forms an affinity matrix which is clearly divided into blocks (see
Figure 4.2). These blocks are the eigenvectors associated to the two major eigenvalues
of the affinity matrix and represent the clusters of the pattern of movement decomposi-
tion. By projecting the eigenvectors over the reaching trajectory, it turns out that these
correspond precisely to the acceleration and deceleration phases of the movement task.

We show below another very similar example from the paper [95] (see Figure 1.7 as
a reference).

This is again a center-out movement trajectory in which the only difference from the
previous case is that the path on the px, yq plane is almost constant, and the velocity
profile is no longer perfectly symmetric. We provide an approximation of the image in
Figure 4.3.

The decomposition results using kernel (4.4) are shown in Figures 4.4 and 4.5:
acceleration-phase is orange-colored and deceleration-phase is blue-colored as the neural
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Figure 4.2: Spectral clustering on the trajectory movement of Figure 4.1 based on con-
nectivity kernel (4.4). (Left) The Affinity matrix (4.5). Yellow-colored areas represent
points of higher affinity. (Right) Eigenvectors projections over the reaching trajectory.

Figure 4.3: Reaching path and speed profile of a center-out task: approximation of
Figure 1.7. (Left) Reaching path over the px, yq plane. (Right) Speed profile over the
pt, vq plane. The red dot represents the movement starting position.

Figure 4.4: Spectral clustering. (Left) The Affinity matrix (4.5). Yellow-colored areas
represent points of higher affinity. (Right) Eigenvectors projections over the reaching
trajectory.
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states represented in Figure 1.7.

Figure 4.5: Reaching trajectory segmentation according to the spectral analysis of (4.5)
(see also Figure 4.4). Eigenvectors identify acceleration and deceleration trajectories
according with the experimental results of [95]. See Figure 1.7 for a direct comparison.

4.3.1.2 Test 2: straight trajectories changing movement direction

In this test we again consider optimal and ideal movements that satisfy the equations of
Flash and Hogan’s model (see Equations (1.16)). Let us consider a movement of a hand
that, starting from an initial point, reaches the targets shown in blue one by one, again
by means of straight paths and bell-shaped velocity profiles. For each of the two targets
to be reached, there is a change in direction of 150 and 135 degrees. We therefore re-test
the kernel (4.4) on the kinematic points of the trajectory depicted in Figure 4.6.

Figure 4.6: Three consecutive point-to-point reaching trajectories according to Flash and
Hogan model. (Left) Reaching path over the px, yq plane. (Right) Speed profile over the
pt, vq plane. The red dot represents the movement starting position, and the blue ones
the targets to be reached.

The corresponding affinity matrix is displayed in Figure 4.7 and on the right is the
graph of the eigenvalues arranged in descending order. The affinity matrix is divided
into six blocks, as are the larger eigenvalues.
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Figure 4.7: Spectral clustering on the trajectory movement of Figure 4.6 based on con-
nectivity kernel (4.4). (Left) The Affinity matrix (4.5). Same notations as Figures 4.2
and 4.4. (Right) Eigenvalues plot.

Analogous to the previous case, we obtain a decomposition of the trajectory which
splits velocity profiles in proximity to speed extrema: the eigenvectors extracted corre-
spond to either accelerating or decelerating movement fragment coupled with a specific
direction. Six distinct colours are used for the clusters identified by the eigenvectors
(partly taken from the paper [95], Figure 5b). The eigenvectors identify a decomposition
of movement into fragments consistent with the results expressed in [95] (Figure 4.8).

Figure 4.8: Global path and speed decomposition into fragments according to the spectral
analysis of (4.5).

4.3.1.3 Test 3: simulation of Figure 1.8

In this test, we apply the spectral algorithm described in 4.2 on an approximate trajectory
of Figure 1.8. The analyzed motion is represented in Figure 4.9.

In [95], the experiment performed by the monkey consists of reaching several targets
one after the other. Here, a trajectory is extrapolated that starts from a fixed point (red
point in Figure 4.9), arrives at a second target (blue point in Figure 4.9) and comes to
an end. As before, the red dot identifies the starting point of the movement, but this
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Figure 4.9: Reaching path and speed profile of a random target pursuit task: approxi-
mation of Figure 1.8. The red dot represents the movement starting position, while the
blue one represents the first target to be reached.

time there is an intermediate target to be reached represented by a blue dot. This point
corresponds in the velocity profile to a local minimum. There are also two local maxima
having distinct velocity intensities. The kernel (4.4), which gives an estimate of the
connectivity between the kinematic points of the trajectory, identifies an affinity matrix
divided into four blocks (see Figure 4.10). Each block identifies an eigenvector that we
project onto the motion trajectory (see Figure 4.11). The eigenvectors represented, are
those associated with the largest eigenvalues shown in the right-hand graph of Figure
4.10.

Figure 4.10: Spectral clustering. (Left) Affinity matrix over the simulated random target
pursuit task of Figure 4.9. (Right) The eigenvalues plot. Note the first four eigenvalues:
these are those associated with the eigenspaces of the four blocks of the affinity matrix.

This provides a partition of the trajectory into sub-trajectories, only using kinematic
parameters. In order to compare these trajectories with trajectory fragments obtained
in [95], we note that the values of movement direction θ and acceleration a are almost
constant on the recovered sub-trajectories, and that neurons are invariant with respect
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Figure 4.11: (a) Eigenvectors projections over the reaching trajectory. Eigenvectors
identify acceleration and deceleration phases coupled with a movement direction within
a specific time window. (b) Resulting movement decomposition into distinct trajectory
fragments.

to time and position (e.g. [81], [95]). Hence we perform a new clustering with respect
to the distance dM restricted to the θ and a variables, in the space of sub-trajectories.
The resulting clusters appropriately group acceleration and deceleration phases, as well as
phases with constant direction. The eigenvectors colored in green denote the acceleration
phase, those colored in orange the deceleration phase. The resulting decomposition
pattern displayed in Figure 4.12 is in agreement with the experimental result of [95]
shown in Figure 1.8.

In this test, we will also validate the choice of our distance by considering the same
trajectory subjected to random noise. It is indeed common for neurons to be susceptible
to changes in activity including errors. In Figure 4.13 we have represented random
noise in terms of pairs of points and orientation, i.e. for each point px, yq (outside the
movement trajectory) we also represent its movement direction θ. The same applies to
the plane pt, vq, with orientation given by a. Despite the addition of noise, the clustering
algorithm still recognizes the fragments encoded in the previous test. For simplicity, they
were all colored red, but each represents a different cluster and the noise is considered a
separate partition that does not affect the second space-time invariance grouping.

The usefulness of the sub-Riemannian distance lies in the fact that if two segments
have different orientation angles, both in the px, yq and pt, vq planes it succeeds in distin-
guishing them into two different clusters as the two segments belong to distinct parallel
planes.
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Figure 4.12: Resulting reaching trajectory segmentation according to spatio-temporal
invariant clusters. Acceleration and deceleration phases are respectively identified. . See
Figure 1.8 for a direct comparison.

Figure 4.13: Spectral clustering over the reaching profile with the adding of noise. Each
plot represents a cluster (red-colored) identified by the sub-Riemannian distance dM.
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4.3.1.4 Test 4: simulation of Figure 1.9

Here we test the segmentation obtained through distance dM over the random target
pursuit task represented in Figure 1.9 (see [95]). This time, the path taken by the
monkey’s arm follows various changes in direction and speed, and the execution time
is longer. Similarly to the previous test, we implement the clustering procedure on an
approximation of Figure 1.9, shown in 4.14.

Figure 4.14: Reaching path and speed profile of a random target pursuit task: approxi-
mation of Figure 1.9. The red dot represents the movement starting position.

We discretize kernel (4.4) by applying it to the points of the trajectory in Figure 4.14.
This first step identifies the affinity matrix represented in 4.15. The eigenvector analysis
of the matrix leads, as in previous tests, to a segmentation of the global trajectory near
the maxima and minima of the velocity profile. Clustering in eigenvectors corresponds
to sub-trajectories, each of which encodes a phase of acceleration or deceleration and a
constant direction of movement (see the blocks of the affinity matrix and Figure 4.16).

Figure 4.15: Affinity matrix (4.5) and eigenvalues plot.

After this step, we perform a second spectral clustering based on the distance dM in
the sub-trajectory space, using the variables pθ, aq only. In agreement with the neural
states caught from article [95], the decomposition obtained (see Figure 4.17) codes for
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transitions occurring in proximity to speed extrema, and the eigenvectors are associated
with either accelerating or decelerating segments coupled with similar directional selec-
tivity. To facilitate the comparison, we used the same color-coding of Figure 1.9. In
this second grouping, the first eigenvector (orange-colored) embodies deceleration states
for movements which go “down to the right”. The green-colored eigenvector encodes for
acceleration phases with movements still “down to the right” directed. The third eigen-
vector (violet-colored) codes for accelerating phases with movement directions which are
mostly “up to the left” directed, belonging to the second quadrant. The blue-colored
eigenvector retains deceleration phases with movement paths belonging to the second
quadrant.

Figure 4.16: Eigenvectors projections over the reaching trajectory. Distinct colors are
used to represent the sub-trajectories extracted from the first clustering. The subdivision
of sub-trajectories into four groups comes from the second clustering based on distance
dM over the pθ, aq variables.

Figure 4.17: Global path and speed decomposition using distance dM across the cluster-
ing steps. The clusters of movement fragments are shown in orange, green, violet and
blue as representatives of the groups depicted in Figure 4.16. See Figure 1.9 for a direct
comparison.

These clustering steps allow us to classify movement fragments based on a choice of
a space of kinematic variables that are encoded in the cortex and a connectivity kernel.
In particular, we emphasize that by working only on kinematic variables we recover
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the same neural classification acquired by electrode array. Hence, we argue that the
distance dM is adequate, not only because of the properties of the kinematic space,
but also because of the classification in sub-trajectory fragments given by the clustering
algorithm, which has a neural foundation. We emphasize how instead the distances
tested in the paper [95] (see the list recalled in 1.3.1) did not justify the classification
results into movement trajectories. We therefore introduced a distance that allows to
perform a kernel component analysis which is the phenomenological counterpart of the
neural PCAs provided by Kadmon Harpaz et al [95].



Chapter 5

A model of reaching via
sub-Riemannian geodesics

In this Chapter, we propose a model of arm reaching movements expressed in terms
of geodesics in the subriemannian space we set up in Chapter 3. We will choose a set
of kinematic variables to which motor cortical cells are selective with the purpose of
modelling the specific task of reaching. Minimizing trajectories will be recovered as
suitable geodesics of the geometric spaces arising from the selective behaviour of M1
neurons. We will then extend this model by including the direction of arm movement.
On this set, we will define a suitable sub-Riemannian metric able to provide a geometric
interpretation of two-dimensional task-dependent arm reaching movements.

The structure of the Chapter is the following. In section 5.1 we develop our model
of reaching through the analysis of admissible geodesics. Section 5.2 presents part of the
results where we provide a geometric interpretation of some task-dependent arm reaching
movements.

5.1 Admissible geodesics for reaching tasks

The goal of this section is to develop a model inspired by the neurogeometrical and
phenomenological frames recalled in Chapter 1 (sections 1.2, 1.4) and Chapter 3 to
describe reaching tasks. Starting from optimal arm reaching trajectories of Flash and
Hogan model (recalled in section 1.4.2), we will lift the problem in the higher dimensional
geometric structure introduced in 3.2 and 3.3. In this setting, the functional (1.15) will
become an energy functional, whose minima coincide with geodesics. In section 5.1.2, we
will refer to the sub-Riemannian geometry set in section 3.3 by analyzing a special case
of the associated geodesics problem. These curves will allow a wider variety of reaching
movements to be represented.
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84 5. A model of reaching via sub-Riemannian geodesics

5.1.1 Kinematic model of 1D motions

In this section, we express the functional introduced by Flash and Hogan in terms of
the sub-Riemannian jet space introduced in section 3.2. Minima of functional (1.15) will
coincide with geodesics in this space. We will be interested in curves which are lifting
of mono-dimensional trajectories. This property will lead to consider only curves in the
family of horizontal ones having a non vanishing component along the vector field X1.
We also refer to [12] for a similar nonholonomic system for modelling human locomotion.

We will then define admissible curves, as follows

Definition 5.1. A curve γ : r0, T s Ñ J 2 is called admissible if it is of the form

9γptq � X1 � j ptqX2. (5.1)

Here, the function t ÞÑ j ptq represents the magnitude of jerk, the rate of change of
acceleration.
If we choose a metric on the distribution D which makes X1 and X2 orthonormal, the
length functional on admissible curves reduces to

l pγq �

» T
0

a
1� j2 ptq dt. (5.2)

We propose here this new functional as a good model for voluntary arm reaching
movements, since it provides the same solutions as the one presented in [60]. Indeed, its
associated energy functional is

Epγq �
1

2

» T
0

�
1� j2 ptq

�
dt. (5.3)

Since jptq � ;xptq on a lifted curve, there is a strong relation between this functional and
the one proposed by Flash and Hogan (1.15). In order to be able to compare, we will
give some geometric properties of the model.

Remark 5.1. As outlined in section 2.3.2, there could exist minimizers of the length
functional which are not solution of the associated hamiltonian system. Sussmann in
[144] provided a technique for producing abnormal extremals of arbitrary sub-Riemannian
structures on four-dimensional manifolds having a two-dimensional bracket-generating
distribution. This result can be applied to our settings, implying that integral curves of
the vector field X2 are singular geodesics. Also Byant and Hsu (see [29], Propositions 2.1
and 3.2) explicitly computed their non regularity in the Engel group. Moreover, integral
curves of X2 are the only singular curves that can be found. Consequently, admissible
geodesics on this setting are non singular.
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5.1.1.1 Normal geodesics in the two-jets bundle

Below we will look at some properties of normal geodesics that will be useful in analyzing
the admissible ones. Since we are in a Lie group, it is not restrictive to consider geodesics
starting from the origin, and obtain all the others by applying the action of the group.

Proposition 5.1. A normal geodesic γ starting from 0 is a solution of the following
ODE:

γ1 �

�
vpx � ap�pxt� pvp0qq � pt

�
X1 �

�
px
t2

2
� pvp0qt� pap0q

�
X2 � (5.4)

� ptX1 � pap0qX2 � pvp0qpaX1 � tX2q � px

�
vX1 � atX1 �

t2

2
X2



,

for suitable real constants pt, px, pvp0q, pap0q.

Proof. As recalled in Proposition 2.7, normal geodesics solve a ODE system expressed
in terms of the cotangent coordinates pt, x, v, a, pt, px, pv, paq P T

�J 2. Since we chose a
metric which makesX1, X2 orthonormal, the Hamiltonian governing the sub-Riemannian
geodesic flow on J 2 is

H �
1

2

�
pvpx � apv � ptq

2 � p2a
�
, (5.5)

whose normal geodesic equations are expressed by$'''''''''''''&
'''''''''''''%

p1t � 0

p1x � 0

p1v � �px pvpx � apv � ptq

p1a � �pv pvpx � apv � ptq

t1 � vpx � apv � pt

x1 � v pvpx � apv � ptq

v1 � a pvpx � apv � ptq

a1 � pa.

(5.6)

In this way, for the dual variables it holds

pt � pt p0q , px � px p0q , p1v � �pxt
1, p1a � �pvt

1 � pxtt
1 � pvp0qt

1,

so that

pv � �pxt� pvp0q, pa � px
t2

2
� pvp0qt� pap0q. (5.7)
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In addition,
vpx � apv � pt � vpx � ap�pxt� pvp0qq � pt. (5.8)

As a consequence, the equation satisfied by the observed variables reduces to

γ1 � pvpx � apv � ptqX1 � paX2 ��
vpx � a p�pxt� pvp0qq � pt

�
X1 �

�
px
t2

2
� pvp0qt� pap0q



X2.

Proposition 5.2. A geodesic γ starting from 0 solution of ODE (5.6) is a horizontal
curve. If we call α1 and α2 the coefficients of X1 and X2, respectively, we have

γ1 � α1X1 � α2X2,

with α2
1 � α2

2 � C, where C is a strictly positive constant.

Proof. Starting from geodesics equation (5.4) we immediately obtain that

dα2
1

ds
� 2α1α

1
1 � 2α1pv

1px � a1pv � ap1vq � 2α1papv � �2pap
1
a � �

dα2
2

ds
.

Proposition 5.3. If a geodesic γ connecting two points 0 and ξ1 in the interval r0, T s
is represented as in the previous proposition, then

lpγq � T
b
pα2

1 � α2
2q.

5.1.1.2 Admissible geodesics for center-out movements

The kinematic properties of one dimensional motions do not depend on the movement
direction. Here, we propose how one dimensional movements, which can accordingly
reflect a center-out reaching task, are realized by means of admissible geodesics in the
2-jet structure considered.

Therefore, we need to restrict the study of geodesics which are admissible curves. In
particular, it is no more clear if the connectivity property still holds true. We will fix
an initial value set to the origin, tp0q � xp0q � vp0q � ap0q � 0, arbitrary final values
px1, v1, a1q � p0, 0, 0q and we will show the existence of an admissible curve γ connecting
them. We remark that the time T defined in the functional (5.2) is free a priori. However,
in the case of connecting two points of the space with an admissible curve, the arrival
time is automatically fixed. Therefore, below we will assume to fix the final time and,
without loss of generality, set it equal to 1.
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Proposition 5.4. If we fix the initial value ξ0 � pt0, x0, v0, a0q � 0⃗ and an arbitrary
final value ξ1 � p1, x1, v1, a1q, then there exist coefficients e0, e1, e2 such that

9γptq � X1 � pe0 � e1t� e2
t2

2
qX2

satisfies γp0q � ξ0 and γp1q � ξ1.

Proof. It is a direct computation that the expression

γ1psq � X1pγpsqq �

�
e0 � e1tpsq � e2

t2psq

2



X2pγpsqq

implies t1 � 1, so that we can identify the evolution parameter s with the time parameter
t and replace the tangent vector γ1 with the classical 9γ. For the other components of 9γ
it holds $'&

'%
9x � v

9v � a

9a � e0 � e1t� e2
t2

2
.

(5.9)

By integrating (5.9) and imposing the boundary conditions γ p0q � 0 and γ p1q � ξ1, the
matrix of coefficients D of the linear integrated system (5.9) is invertible, hence proving
a direct connectivity result.

Consequently, it is possible to define a distance referred to admissible curves:

da pξ0, ξ1q � inf tl pγq : γ is an admissible curve connecting ξ0 and ξ1u , (5.10)

where pξ0, ξ1q � pp0, 0, 0, 0q , p1, x1, v1, a1qq .

Let us first estimate this distance in terms of the classical Carnot Carathéodory dis-
tance d:

Proposition 5.5. If pξ0, ξ1q � pp0, 0, 0, 0q , p1, x1, v1, a1qq, then

d pξ0, ξ1q ¤ da pξ0, ξ1q . (5.11)

In addition, da p0, ξ1q ¤ k }D�1} |ξ1|, where k is an absolute constant and D is the matrix
associated to the integrated system (5.9).

Proof. The first assertion immediately follows from the definition, whereas for the second
one we have

da p0, ξ1q ¤

» 1

0

c
1�

�
e0 � e1t� e2

t2

2

	2
dt ¤ k

��D�1
�� p1� |a1| � |v1| � |x1|q.
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Of course it is not clear if the minimum is achieved or not. However, it exists at any
time a (horizontal) curve which is admissible.

In the following, we will prove that the minimum is attained.

Remark 5.2. A common strategy to show the existence of minimum for the length
functional is to study the same problem for the associated energy functional. Indeed,
from Montgomery [114], it is proved that for a fixed time T , length functional minimizers
parameterized with constant speed coincide with those of the energy functional. However,
in this context we cannot directly apply this proposition, since the set on which the
minimum is computed is different (see Equation 5.10).

Proposition 5.6. In a compact neighbourhood of the origin, there exists a minimal ad-
missible curve (i.e. an admissible geodesic) connecting two points 0 and ξ1 � p1, x1, v1, a1q .

Proof. Let us consider the length functional lpγq �
³1
0

a
1� jptq2 dt with boundary values

γp0q � 0, γp1q � ξ1 and take a minimizing succession γn connecting 0 and ξ1 such that
l pγnq Ñ inf l. As the functional is uniformly bounded, by Ascoli-Arzelà theorem there
exists a sub-succession γnj

which uniformly converges to a curve γ joining 0 and ξ1.
Hence, by the semi-continuity of the length integral it holds l pγq ¤ lim infj l pγjq, from
which it follows that the minimum is attained.

Remark 5.3. Admissible curves are regular (see Remark 5.1) and hence normal (see
Theorem 2.10), this means that we can search for admissible geodesics through system
(5.6). Moreover, it is possible to explicitly find admissible curves solutions of (5.6) in a
neighbourhood of the origin.
Let us assume that tp0q � xp0q � vp0q � ap0q � 0. For every pt ¡ 0, there exist a δ ¡ 0
and T ¡ 0 such that, for every px, pv, pa satisfying |px|, |pv|, |pa| ¤ δ, the geodesic found
in Proposition 5.1 is an admissible geodesic for every t ¤ T .

Since we are assuming vp0q � ap0q � 0 and pt is a strictly positive constant, the
function h defined by h psq � pt � v psq px � a psq pv psq is different from 0 in a neigh-
bourhood of the origin. Following the approach used in [24] for the study of geodesics in
jet spaces, we make a reparameterization of system (5.6) by considering the change of
variable d

dt
� 1

hpsq
d
ds
, so that

9pa :�
dpa
dt

� �pv, 9pv � �px, 9px � 0, 9pt � 0. (5.12)

It is therefore immediate that pa is a polynomial of degree two in the variable t. Moreover,
since

9h �
papv
h

� �
pa 9pa
h

, we get that 9ph2q � � 9pp2aq.

In this way, h2 � p2a � p2t � pap0q
2 in a neighbourhood of the origin. As a consequence,

we can express h as a function of pa, for every t such that p2t � pap0q
2� paptq

2 ¥ 0, which
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means for every t such that

p2t � pap0q
2 � ppx

t2

2
� pvp0qt� pap0qq

2 ¥ 0. (5.13)

We will choose T as the largest value of t for which (5.13) is satisfied. For such values
of t, we can express h as h ptq �

a
p2t � pap0q2 � p2a ptq. We therefore obtain

9a :�
da

dt
�

pa ptqa
p2t � pap0q2 � p2a ptq

. (5.14)

Through (5.12) and (5.14), system (5.6) is integrable and the associated solution is an
admissible curve.

Remark 5.4. If we fix the same boundary conditions expressed in Flash and Hogan
model (see Figure 1.13 in 1.4.2), from a qualitative study of (5.14), we can already have
a representation of the computed trajectories (see e.g. Figure 5.1). Indeed, by considering
a movement which starts and ends at null velocity and acceleration, since the sign of 9a
solely depends on pa which is a polynomial of degree 2, we get an acceleration profile
which has three distinct zeros and one sign change. Hence the bell-shaped speed profile
is recovered.

Proposition 5.7. The energy functional E defined in (5.3) attains its infimum on the
set of minimal admissible geodesics.

Proof. Following the same approach used for example in [114], if we call σ an admissible
curve between 0 and ξ1, by Cauchy-Schwarz inequality we get

l pσq2 �

�» 1

0

1 � } 9σ ptq} dt


2

¤

» 1

0

} 9σ ptq}2 dt � 2E pσq , (5.15)

where equality holds if and only if } 9σ ptq} is constant. From Proposition 5.6, we know
there exists a minimal admissible geodesic γ joining 0 and ξ1, from which we obtain that

E pγq �
l pγq2

2
¤
l pσq2

2
¤ E pσq .

Therefore, for every minimizing admissible geodesic γ and any admissible curve σ, we get
E pσq ¥ E pγq. The equality l pγq2 � l pσq2 can hold if and only if σ is also a geodesic. So,
unless σ is also an admissible geodesic, we have E pγq   E pσq. Finally, since admissible

geodesics are normal, it holds E pγq � lpγq2

2
proving that E really attains the infimum in

d2a
2
.
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We have proved that the length and energy functionals have (up to a constant) the
same minima also for the family of admissible curves. In this way, we are truly reduced
to analyze the functional studied by Flash and Hogan.

We modelled as admissible geodesics those center-out movements whose kinematic
properties are in accordance with the ones experimentally observed in the physical space.
Moreover, singular geodesics would exactly interpret those “non-admissible” physical
reaching trajectories, since they would be obtained by varying arm’s acceleration without
changing arm’s velocity, nor position.

5.1.2 Kinematic model of 2D motions

We now refer to the geometrical setting described in section 3.3, from which we will
extend the previous model of reaching by including two-dimensional movement trajec-
tories. Let us now arrange the Hamiltonian setting which allows to analyze the set of
normal geodesics.

Definition 5.2. Let pXiq
3
i�1 be the vector fields (3.20). The fiber-linear functions on

the cotangent bundle PXi
: T �M Ñ R defined by PXi

pη, pq � p pXi pηqq are called the
momentum functions for Xi.

In terms of cotangent coordinates px, y, t, θ, v, a, px, py, pt, pv, pθ, paq P T
�M we can

write

PX1 � v cos θpx � v sin θpy � apv � pt, PX2 � pθ, PX3 � pa. (5.16)

Since we have selected on the distribution DM the metric gM which makes pXiq
3
i�1

orthonormal, the Hamiltonian function (see Proposition 2.7) simply reduces to the sum of
squares of the momentum functions relative to the frame pXiq

3
i�1. We therefore enunciate

the following

Proposition 5.8. ([114]). The Hamiltonian governing the sub-Riemannian geodesic
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flow on M is H � 1
2

�
P 2
X1

� P 2
X2

� P 2
X3

�
and the normal geodesic equations are given by$'''''''''''''''''''''''&

'''''''''''''''''''''''%

p1x � 0

p1y � 0

p1t � 0

p1v � �pcos θpx � sin θpyq pv pcos θpx � sin θpyq � apv � ptq

p1θ � v psin θpx � cos θpyq pv pcos θpx � sin θpyq � apv � ptq

p1a � �pv pv pcos θpx � sin θpyq � apv � ptq

x1 � v cos θ pv pcos θpx � sin θpyq � apv � ptq

y1 � v sin θ pv pcos θpx � sin θpyq � apv � ptq

t1 � pv pcos θpx � sin θpyq � apv � ptq

v1 � a pv pcos θpx � sin θpyq � apv � ptq

θ1 � pθ

a1 � pa.

(5.17)

Our purpose will be to identify suitable subsets of normal geodesics in order to provide
a phenomenological description for some relevant task-reaching movements.

5.1.2.1 Admissible geodesics: reaching targets with prescribed directions

In this section we will model a cognitive reaching task in which it is required to grasp a
target in a specific hand orientation, knowing the initial hand configuration. We claim
that the lifted curves of the space could represent the arm reaching trajectories, and, as
we did for center-out reaching movements, we will consider integral curves of the hori-
zontal distribution with a non vanishing component along the vector field X1.

We will then look for admissible curves, as follows

Definition 5.3. A curve γ : r0, 1s Ñ M is called admissible if it is of the form

9γptq � X1 � k ptqX2 � j ptqX3. (5.18)

Here, the function t ÞÑ k ptq represents the Euclidean curvature over the path px, yq,
whereas the function t ÞÑ j ptq describes the rate of change of acceleration.

We then search for admissible curves joining arbitrary couples of points in the cortical
feature space M.

Proposition 5.9. If we fix a constant k P R and we consider arbitrary values pη0, η1q �
pp0, x0, y0, θ0, v0, a0q , p1, x1, y1, θ1, v1, a1qq P M, then there exist constant coefficients j0, j1, j2, j3
such that
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9γptq � X1 � kX2 �

�
j0 � tj1 � j2

t2

2
� j3

t3

3!



X3 (5.19)

satisfies γp0q � η0 and γp1q � η1.

Proof. Analogously to Proposition 5.4, equation (5.19) sets up system$''''''&
''''''%

9x � v ptq cos pθ ptqq

9y � v ptq sin pθ ptqq
9θ � k

9v � a ptq

9a � j0 � j1t� j2
t2

2
� j3

t3

3!

(5.20)

which can be explicitly integrated. By imposing initial and final conditions for the joining
of points η0, η1, the integrated equations give rise to a linear system in the variables
pjiq

3
i�0. It is a direct computation to verify that the matrix associated to the integrated

system is invertible and hence to prove the existence of coefficients pjiq
3
i�0 for equation

of (5.19).

Thanks the connectivity property above exposed, it is possible to define a distance
referred to admissible curves in the connected space M:

dMa pη0, η1q � inf tl pγq : γ is an admissible curve connecting η0 and η1u , (5.21)

where pη0, η1q � pp0, x0, y0, θ0, v0, a0q , p1, x1, y1, θ1, v1, a1qq P M and the length l is given
by

l pγq �

» 1

0

a
1� k2 ptq � j2 ptq dt, (5.22)

with γ solution of (5.18).
For reader convenience, we outline that the energy functional on admissible curves

in M reduces to

Epγq �
1

2

» 1

0

�
1� k2 ptq � j2 ptq

�
dt. (5.23)

We can directly observe that for constant movement directions, the functional (5.23)
reduces to the functional (5.3) of Flash and Hogan.

Now we will show that admissible curves can be found as solutions of system (5.17).
To do so, we will prove that admissible curves are regular, in the sense of Definition 2.27.

As recalled in section 2.3.2, L. Hsu gave a characterization for a curve to be regular by
means of the holonomy map (see Definition 2.26) and G. Giovannardi proved a criterion
for identifying singular curves (Theorem 2.9). By applying these results to our case, we
verify that even if we considered the whole sub-Riemannian setting, integral curves of
X2 or X3 (those whose directions point along the fiber) are singular (see Remark 5.5 and
5.6 for the computations). We prove the regularity of admissible curves in Remark 5.7.
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Remark 5.5. Let γ : r0, 1s Ñ M be an integral curve of the vector field X3. Then γ is
singular.

Proof. After splitting X3 along γ in its horizontal and vertical part

X3H �
3̧

i�1

vHi
Xi , X3V �

6̧

j�4

vVjXj, (5.24)

a direct computation shows that the admissibility system expressed through the matrix
form (2.14) is given by

V 1
V psq � �A psq

�
�vH1 psq
vH2 psq
vH3 psq

�
, where A �

�
�0 0 0
1 0 0
0 0 0

�
 (5.25)

for vH1 , vH2 , vH3 P C
1
0 pp0, 1qq. Then the image of the holonomy map (2.26) is equal to

VV p1q �

�
� 0

�
³1
0
vH1 psq ds
0

�
, (5.26)

from which we deduce that the holonomy map is not surjective. Hence γ is singular.

Remark 5.6. A horizontal curve γ : r0, 1s Ñ M solution of γ1 � k psqX2 � j psqX3,
where k and j are different from zero, is singular.

Proof. As before, a straightforward computation reveals that the matrices A and B of
the admissibility system (2.14) are given by

A �

�
��k psq 0 0

j psq 0 0
0 0 0

�
 B �

�
� 0 0 �kpsq

vpsq

0 0 0
k psq v psq 0 0

�
. (5.27)

To prove the singularity of γ, we will apply Theorem 2.9. We will verify if there exists a
row vector field Λ psq � 0 for all s P r0, 1s that solves system (2.15). Since it must hold
ΛA � 0, if Λ is of the form Λ psq � pλ1 psq , λ2 psq , λ3 psqq, then

�k psqλ1 psq � j psqλ2 psq � 0. (5.28)

Hence,

ΛB �
�
λ1, λ2, λ3

��� 0 0 �kpsq
vpsq

0 0 0
k psq v psq 0 0

�
�

�
λ3k psq v psq , 0, �λ1

kpsq
vpsq

	
, (5.29)
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which implies that $'&
'%
λ11 psq � λ3 psq k psq v psq

λ12 psq � 0

λ13 psq � �λ1 psq
kpsq
vpsq

.

(5.30)

Consequently, λ2 is constant and from (5.28) and (5.30) we can integrate λ3. Therefore,
for any choice of λ2 � 0, we find a row vector Λ solution of (2.15) whose components are
not null. The curve γ is therefore singular.

Remark 5.7. The admissible curve γ : r0, 1s Ñ M solution of γ1 � X1 � k psqX2 �
j psqX3 is regular.

Proof. In this case, the matrices of system (2.14) are

A �

�
��k psq 1 0

j psq 0 1
0 0 0

�
 B �

�
� apsq

vpsq
0 �kpsq

vpsq

0 0 0
k psq v psq �1 0

�
.

Then, as in the previous remark, we look for a row vector field Λ � 0 which solves system
(2.15). Since it must be ΛA � 0, we have that Λ is of the form Λ psq � p0, 0, λ psqq.
Hence,

ΛB �
�
0, 0, λ psq

��� apsq
vpsq

0 �kpsq
vpsq

0 0 0
k psq v psq �1 0

�
�

�
λ psq k psq v psq , �λ psq , 0

�
.

This means that λ1 psq � 0 and λ psq � 0, therefore the unique solution to system (2.15)
is Λ � 0. This enables to conclude that admissible curves are regular.

Through Remark 5.7 we have proved that admissible curves are regular, therefore
solutions of the hamiltonian system (5.17), as stated by Theorem 2.10. As we did in
Remark 5.3 in section 5.1.1.2, we can explicitly represent solutions of (5.6) which are
admissible in a neighbourhood of the origin (see Remark 5.8).

Remark 5.8. Let us assume that η0 � 0⃗ P M. For every pt ¡ 0, there exist a constant k,
a δ ¡ 0 and T ¡ 0 such that, for every px, py, pθ, pv, pa satisfying |px|, |py|, |pθ|, |pv|, |pa| ¤
δ, the solution of system (5.17) is an admissible geodesic for every t ¤ T . We define the
function ψ psq � v psq pcos pθ psqq px � sin pθ psqq pyq�a psq pv psq�pt and we parameterize
the equations with respect to t by setting d

dt
� 1

ψpsq
d
ds
. Since we assumed v p0q � a p0q �

θ p0q � 0 and pt ¡ 0, the function ψ is strictly positive and pθ � k in a neighbourhood
of the origin. Hence, the function pa is a polynomial of degree two in the variable
t in a neighbourhood of η0. Moreover, since 9ψ � � 1

ψ
ppθ 9pθ � pa 9paq, we obtain that
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ψ2 � p2θ � p2a � p2t � k2 � pa p0q. We can therefore express ψ as a function of pθ, pa for
every t such that

p2t � k2 � pap0q
2 � pθptq

2 � paptq
2 ¥ 0. (5.31)

By choosing T as the largest value of t for which 5.31 is satisfied, we can express ψ as
ψ ptq �

a
p2t � k2 � pap0q2 � pθptq2 � paptq2, for every t ¤ T . We therefore obtain

9θ ptq �
pθ ptqa

p2t � k2 � pap0q2 � pθptq2 � paptq2
, 9a ptq �

pa ptqa
p2t � k2 � pap0q2 � pθptq2 � paptq2

.

Remark 5.9. The same techniques used in 5.1.1.2 (see Proposition 5.6 and 5.7) can
be applied to prove that the inf in (5.21) is a minimum and that minimizing sets for
the energy and length functional coincide. In this way, it is still possible to consider
admissible geodesics for the space M.

Admissible curves in the fiber bundle structure are those that allow to move from one
fiber to another. We point out how the choice of variables is based on neurophysiological
and physiological findings. Indeed, θ and a are the variables engrafted in the motor
cortex, while the kinematic variables describe movement in the external world space.

5.1.2.2 Geodesics between sets

In this section, we will analyze a more general situation. Indeed, we would like to model
the circumstance where the object to be reached does not require a particular orientation
with which to be grasped, or it is indifferent how to grasp it in terms of acceleration. In
this case we will impose that the second extreme of the geodesic belong to a set. As a
result the movement trajectory will be defined as the minimizing geodesic between two a
priori known sets, obtained by fixing the px, y, t, vq P R4 components and by varying the
directions and accelerations pθ, aq P S1 � R variables. This method is the same adopted
by B. Franceschiello in [62] for the modeling of illusory contours in the visual system.
Below we will show the main definitions and statements.

Definition 5.4. Let F0 � M be a compact and non empty set. We define the distance
function from F0 as

dM,F0
a pηq � inf

η0PF0

dMa pη0, ηq , (5.32)

where dMa pη0, ηq is the distance referred to admissible curves (see 5.21) in the cortical
space M.

Definition 5.5. Let F0, F1 � M be compact and non empty sets. We define the distance
function between F0, F1 as

dMa pF0, F1q � inf
η1PF1

dM,F0
a pη1q , (5.33)

where dM,F0
a is the distance function from F0 defined in (5.32).
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Remark 5.10. It is clear that if F0 and F1 respectively reduce to tη0u and tη1u, then
distance dMa pF0, F1q turns out to be dMa pη0, η1q, for which we outline the existence of a
minimum in Remark 5.9.

Definition 5.6. In the same conditions of Definition 5.5, we call admissible geodesic
with extrema in the sets F0 and F1 the admissible curve γ : r0, 1s Ñ M such that
γ p0q P F0, γ p1q P F1 and which realizes the minimum in (5.33).

Due to the compactness of F0 and F1, it is immediate to prove the following

Proposition 5.10. In the same conditions of Definition 5.5, there exists an admissible
curve with extrema in F0 and F1 for which the minimum in (5.33) is attained

Proof. We can find two sequences, respectively pη0qn in F0 and pη1qn in F1, such that
dMa ppη0qn , pη1qnq tends to d

M
a pF0, F1q. Since pη0qn and pη1qn are bounded in a compact

set, there exist two sub-successions pη0qnj
, pη1qnj

in F0 and F1 which uniformly converges

to η0 and η1, respectively. A geodesic between pη0, η1q exists, as recalled in Remark 5.10,
and attains its minimum in (5.33).

5.2 Results

This section is dedicated to some experimental simulations for the solution of systems
(5.6) and (5.17). Our goal is to provide a neurogeometrical interpretation of some task-
dependent arm reaching movements using properties of geodesics established in 5.1.1.2,
5.1.2.1 and 5.1.2.2. As we have already observed, system (5.17) contains the solutions of
system (5.6) as particular cases. In general, we always consider the most general possible
system, but when considering movement gestures such as center-out, we can also reduce
to the solutions of the system (5.6). For each of the cases we analyze, we will assume a
fixed initial and final position, together with a null velocity at the beginning and at the
end of the movement. First of all, in section 5.2.1, we recognized that solutions of (5.6)
and (5.17) projected on the 2D plane coincide with the Flash and Hogan functional,
introduced on the basis of experimental evidence (see [60] and [2, 117]). In order to fall
in the assumptions adopted in Flash and Hogan model, we will impose to the equations
for the 2D case (5.17) the constraint θ1 � 0. A reaching problem can indeed require a
specific direction of grasping the target object, not necessarily coincident with the one
at the beginning of the movement. For the last mentioned analysis, we will assume that
the object can be reached with an arbitrary direction of the hand. Hence, from the set of
geodesics connecting each couple of points, we will detect the minimimun path according
to Definition 5.4. In section 5.2.2.2, we will consider an interval of possible directions
also for the starting position. The mimimum path will be modelled as the geodesics
between the sets representing the conditions at the extremes (this concept is formally
expressed in Definition 5.6).
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Numerically we solve the geodesics problem by the use of a shooting method (see
[120] for further details), as follows.

(SHM) We want to solve Hamilton’s equations (represented in (5.6) and (5.17)) with
boundary conditions

pγi p0qqi�1,...,k � α0 , pγi pT qqi�k�1,...,n � α1. (5.34)

We search for a vector β0 P Rn�k, which is the vector of unknown initial conditions,
such that, the γβ0 is a solution of the hamiltonian system, (5.6) or (5.17), with initial
conditions

pγi,β0 p0qqi�1,...,n � pα0, β0q satisfies pγi,β0 pT qqi�k�1,...,n � α1. (5.35)

Finding the initial condition β0 is equivalent of finding the zeros of a function of the
variable β0

G pβ0q � pγi,β0 pT qqi�k�1,...,n � α1. (5.36)

Remark 5.11. In the tests that follow, we consider an interval r0, T s where we chose
properly the extremum T so that the functions s ÞÑ h psq � pt � v psq px � a psq pv psq
and s ÞÑ ψ psq � v psq pcos pθ psqq px � sin pθ psqq pyq � a psq pv psq � pt together with their
derivatives were not null. Therefore, we are truly reduced to analyze geodesics of the
space in accordance to their definition of admissibility, as expressed in 5.1 and 5.3. More-
over, in this way the solution of the initial value problem is regular, without singularities.
A different problem, which is the largest interval on which the solution are regular, has
been investigated by U. Boscain et al. in [21] in the context of the SE(2) group.

5.2.1 Comparison with Flash and Hogan model

We analyze a task for which a final target is assumed to be achieved in a smooth way
starting at zero speed and acceleration. Conditions at the extremes relative to velocity
and acceleration match the ones analyzed by Flash and Hogan model. Hence, in the
same notations of problem (SHM) and referring to geodesics equations (5.6), we assume

α0 � pt0, x0, v0, a0q � p0, x0, 0, 0q and α1 � pt1, x1, v1, a1q � p1, x1, 0, 0q . (5.37)

In the above conditions (5.37), an admissible curve exists (see Proposition 5.4) and has a
bell-shaped speed profile (see Remark 5.4). In the left part of Figure 5.1, a representation
concerning the trajectory, speed and acceleration profiles is shown.

Analogously for the two-dimensional case, by considering system (5.17) with con-
straint θ1 � 0 and boundary values

α̃0 � pt0, x0, y0, θ0, v0, a0q � p0, 0, 0, θ0, 0, 0q , α̃1 � pt1, x1, y1, v1, a1q � p1, x1, y1, 0, 0q .
(5.38)
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Figure 5.1: Left. Solution’s projection of system (5.6) over the pt, xq, pt, vq, pt, aq planes,
with extremes conditions (5.37). Right. Solution’s projection of system (5.17) over
the px, yq, pt, vq, pt, aq planes, with extremes conditions (5.38) and movement direction
θ � 5

6
π. Red and black dots respectively denote initial and final hand’s position.

we obviously find the same curves of the predicted paths and trajectories of Flash and
Hogan model (see Figures 5.1 and 1.13 for a direct comparison).

Our setting allows to take into account even more general situations. For instance, we
can consider a movement which does not require to start or end with a fixed acceleration.
In the same conditions as before, we can replace α̃0 with ᾱ0 :� pt0, x0, y0, θ0, v0, ā0q �
p0, 0, 0, θ0, 0, ā0q, where ā0 is supposed to be varying over an interval ra10, a

2
0s, so that

it is possible to analyze a range of possible initial accelerations. Then, for any choices
of ā0, we solve through (SHM) problem (5.17) with initial value ᾱ0 and final value α̃1

and, from the set of solutions, we select the geodesic with minimum length according to
distance (5.32). In this context, the fiber of possible choices is assumed to be the one
represented by the vector field X3. In the same way, we could also think of replacing
α̃1 with ᾱ1 :� pt1, x1, y1, v1, ā1q � p1, x1, y1, 0, ā1q, where ā1 P ra11, a

2
1s. In Figure 5.2 a

representation example of these situations is shown. The red-colored curve represents
the geodesic from a point to a set as in Definition 5.4. In this case, it clearly appears how
the geodesic results to be the curve which minimizes the rate of change of acceleration
over the whole speed profile. This is due to the fact that the curvature over the path
px, yq is constantly null, therefore formula (5.22) measures the length of a path only by
taking into account the the tangent over the velocity function t ÞÑ v ptq.

5.2.2 Task-dependent boundary conditions

In this section, we generalize the class of center-out movements by exploring a set of
reaching tasks which include a temporal change on the movement direction variable. We
refer to subsections 5.1.2.1 and 5.1.2.2 for the formal arrangement of the problem.
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Figure 5.2: Solutions projections referred to system (5.17) with constraint θ1 � 0 over
the px, yq and pt, vq planes. The red-colored path represents the geodesic with minimum
length according to (5.32). Left. Initial conditions are given by ᾱ0 �

�
0, 0, 0, π

6
, 0, ā0

�
,

where ā0 P
�
3π
10
, 2π

5

�
; final condition is assumed to be fixed at point α̃1, as in (5.38).

Right. Initial condition is represented by α̃0 �
�
0, 0, 0, π

6
, 0, 3π

8

�
; final conditions are

ᾱ1 � p1, x1, y1, 0, ā1q, where ā1 varies over the interval
�
�2π

5
,�3π

10

�
.

5.2.2.1 Reaching targets with prescribed directions

The simulations we present aim at computing reaching movements in which the final
target is assumed to be grasped with a certain orientation θ1. Moreover, an initial hand
orientation θ0 is assumed to be given. As we did in section 5.2.1, we set up (SHM) by
considering system (5.17) and conditions at the extremes represented by

α̂0 � pt0, x0, y0, θ0, v0, a0q � p0, x0, y0, θ0, 0, a0q , α̂1 � p1, x1, y1, θ1, 0, a1q . (5.39)

Proposition 5.9 ensures that an admissible curve connecting α̂0, α̂1 exists, therefore we
look for the missing initial conditions β̂0 � ppt0 , px0 , py0 , pθ0 , pv0 , pa0q which solve the

initial value problem (5.17) with
�
α̂0, β̂0

	
as initial datum and which satisfy equation

(5.36). Some examples representing the paths and velocity profiles are shown in Figure
5.3.

Even in this context, we can discuss upon the choice of initial and final accelerations.
For instance, if we want to grasp an object by slowly decelerating, we loose something
in terms of optimal length. Indeed, if there is a choice in terms of final accelerations
in order to reach a target, the minimum path will not be the one with the smoothest
features in the pt, vq plane. As it is shown in Figure 5.2.2.1, if we compare those velocity
profiles with increasingly steeping final accelerations, we see that those with a1 more
close to the t�axis provide smoother and longer curves. Referring to the px, yq plane,
the minimum path highlighted in red is associated with a euclidean length greater than
the others. This is due to the high speeds reached which, given a fixed window of times,
determine a longer path to be taken. The same reasoning also apply for an interval of
choices referred to initial accelerations.
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Figure 5.3: Reaching paths and speed profiles with boundary conditions 5.39. From
left to right, the assumed extreme conditions for hand’s orientations pθ0, θ1q are

�
π
3
, π
8

�
,�

π
6
, 3π

4

�
,
�
π
4
, π
�
. Accelerations couple pa0, a1q, from left to right, are

�
π
3
,�9π

20

�
,
�
π
3
,�π

4

�
,�

9π
20
,�π

3

�
.

Figure 5.4: Reaching paths and speed profiles with boundary conditions as in Figure
5.3, with final acceleration varying in intervals

�
�7π

16
,�π

3

�
,
�
�π

3
,�π

6

�
,
�
�3π

8
,�π

4

�
. The

red-colored path represents the geodesic with minimum length according to (5.32).



5.2 Results 101

5.2.2.2 Reaching targets with arbitrary directions

In this section, we will continue the analysis by focusing on the variation of parameters
with respect to the movement direction. We point out that if we make varying both initial
and final conditions it means that we are looking for a geodesic between sets, as well as if
we fix an extremum and we study an interval of choice for the other boundary condition,
we are searching for a geodesic from a set. We are formally considering Definitions 5.5
and 5.4 analyzed in section 5.1.2.2. In a first case, we consider the cognitive situation in
which there exists a range of possible movement directions in order to achieve the final
target. Hence, we assume the following conditions at the extremes

α̂0 � p0, x0, y0, θ0, 0, a0q , α̂θ1 � p1, x1, y1, θ1, 0, a1q , θ1 P
�
θa, θb

�
. (5.40)

Figure 5.5: Reaching paths and speed profiles with boundary conditions 5.40. The initial
movement directions θ0 are, from left to right, π

3
, π
4
, 2π

3
, whereas the final ones θ1 vary on

intervals
�
0, π

2

�
,
�
π, 5π

4

�
,
�
0, π

2

�
. The assumed extreme conditions for hand’s accelerations

pa0, a1q are
�
3π
8
,�3π

8

�
,
�
π
3
,�3π

8

�
,
�
π
3
,�3π

8

�
. The red colored path is the geodesic with

minimum length according to (5.32).

For any choice of θ1 P
�
θa, θb

�
, we solve through (SHM) the Hamiltoniam system

(5.17) and we find out the geodesic connecting each couple of points given by α̂0 and α̂
θ
1.

Finally, we apply (5.32) in order to catch the minimum path from the interval
�
θa, θb

�
.

Some examples are represented in Figure 5.5, where the geodesics found according to
Definition 5.4 are red-colored. The geodesics account for a combination of minimum cost
in terms of the spreading of curvature over the px, yq and pt, vq planes, as it is inherited
from Definition 5.22. As we can expect, if we assume a freedom of choice even for the
initial movement directions, as in the following boundary conditions

α̂θ0 � p0, x0, y0, θ0, 0, a0q , α̂
θ
1 � p1, x1, y1, θ1, 0, a1q , θ0 P

�
θa, θb

�
, θ1 P

�
θc, θd

�
, (5.41)

the resulting geodesics turn out to be curves near to be straight paths which account
for the minimum difference between the starting and ending directions, as it is shown in
Figure 5.6.
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Figure 5.6: Reaching paths and speed profiles with boundary conditions (5.41). Initial
and final hands movement directions θ0, θ1 are assumed to be varying in

�
0, π

2

�
,
�
� π

12
, 5π
12

�
and

�
π
2
, π
�
,
�
11π
18
, 10π

9

�
. Accelerations pa0, a1q �

�
3π
8
,�3π

8

�
. The highlighted path is the

minimum in length according to (5.33).



Conclusions

In this work, we proposed a geometric setting to explain the neural behaviour of the
motor arm area M1. By getting inspiration from Georgopoulos neural models [70, 68],
we provided a fiber bundle structure which is able to describe the hypercolumnar or-
ganization of the cortical area and the position-direction selectivity of motor cortical
cells. On this structure, we extended the selective tuning of M1 neurons of kinematic
variables by especially focusing on their temporal behaviour ([81], [38]). In fact, primary
motor cells do not encode single “static” movement parameters, but entire movement
trajectories that evolve over time, expressed as fragments of movement, as attested by
the experimental data of Hatsopoulos et al. [81] and Churchland et al. [38]. This led
to consider a higher dimensional geometric structure whose elements represent move-
ment fragments: these are described as integral curves of the geometric setting with
sub-Riemannian metrics. The distance we defined in this space is used to characterize a
kernel which models the cortical connectivity between selective kinematic variables of the
neurons. Such connectivity kernel allowed to recover a set of hand movement trajectories
by means of a spectral clustering algorithm. The eigenvectors found from the affinity
matrix decompose movement trajectories into movement fragments of acceleration or
deceleration with a specific plane direction. These trajectories are well in accordance
with the motor patterns measured in Kadmon Harpaz et al. [95] and Hatsopoulos et al.
[81]. Therefore, in this work, we showed how it is possible to obtain these same trajec-
tory patterns through a connectivity kernel with sub-Riemannian distance. Hence, we
provided a purely kinematic classification that identifies coherent patterns of movement
fragments. However, for the purpose of neural modelling, it must be taken into account
that each neuron is active for a certain time window and that its response is temporally
([81]) and spatially ([95]) invariant. In this thesis, we bypass this problem by adding
a clustering step to group together sub-trajectories having similar trend in movement
direction and acceleration variables. This procedure is very simple and performs correct
grouping in terms of movement fragments, nonetheless this mechanism has no neural
foundation. In perspective, to model a neural structure, it should be involved the com-
plete space of trajectory fragments, also by taking into account the time windows for
which each neuron is selective. In this way, the grouping algorithm should be obtained
through a distance realized in terms of a space of trajectory fragments.
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In a second part of the work, we exploited the neurogeometrical model of functional
architecture of M1 to propose a model of arm reaching movements. The work took Flash
and Hogan’s phenomenological model as a point of reference. Their model is based on
the selection of a cost function whose minima are found to be in good agreement with the
simplest and smoothest motion trajectories. In this thesis, we recovered the minimizing
trajectories found by Flash and Hogan as geodesics in an Engel-type manifold. Specifi-
cally we considered only a specific class of curves, called admissible, which are lifting of
mono-dimensional paths. For these curves, we provided a connectivity property and the
existence of length minimizers. Admissible geodesics represent our model for center-out
type movements. We then extended the previous model by considering admissible curves
into a new non-nilpotent subriemannian structure. In this second part, we proved the
same results of connectivity property and questioned the existence of abnormal minimiz-
ers, showing that admissible geodesics are regular, hence normal. Finally, we presented
a qualitative analysis on how admissible geodesics allow to recover a broader variety of
reaching tasks.

Our model, both for the predominantly neural and phenomenological parts, gradually
leads to a shift from a space mainly described by kinematic points to a space of movement
trajectories. In the future, we believe it would be interesting to expand the model
to a space of movement trajectories, where admissible distances and variations can be
defined. This could be of neural support, as it could better explain the data presented in
Hatsopoulos et al. [81], Churchland et al. [38], Hocherman et al. [82], Kadmon Harpaz
et al. [95] that strongly support the role of movement trajectories in motor encoding.
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for curves of fixed degree. Advances in Differential Equations, 27(5/6):333–384,
2022.

[41] Giovanna Citti and Alessandro Sarti. A cortical based model of perceptual com-
pletion in the roto-translation space. Journal of Mathematical Imaging and Vision,
24(3):307–326, 2006.

[42] Giovanna Citti and Alessandro Sarti. Neuromathematics of vision, volume 32.
Springer, 2014.

[43] Giacomo Cocci. Spatio-temporal models of the functional architecture of the visual
cortex. 2014.

[44] Giacomo Cocci, Davide Barbieri, Giovanna Citti, and Alessandro Sarti. Cortical
spatiotemporal dimensionality reduction for visual grouping. Neural computation,
27(6):1252–1293, 2015.
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