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Abstract

Today’s data are increasingly complex and classical statistical techniques need growingly
more refined mathematical tools to be able to model and investigate them. Paradigmatic
situations are represented by data which need to be considered up to some kind of trans-
formation and all those circumstances in which the analyst finds himself in the need of
defining a general concept of shape. Topological Data Analysis (TDA) is a field which is
fundamentally contributing to such challenges by extracting topological information from
data with a plethora of interpretable and computationally accessible pipelines. We con-
tribute to this field by developing a series of novel tools, techniques and applications to
work with a particular topological summary called merge tree. To analyze sets of merge
trees we introduce a novel metric structure along with an algorithm to compute it, define
a framework to compare different functions defined on merge trees and investigate the
metric space obtained with the aforementioned metric. Different geometric and topolog-
ical properties of the space of merge trees are established, with the aim of obtaining a
deeper understanding of such trees. To showcase the effectiveness of the proposed metric,
we develop an application in the field of Functional Data Analysis, working with functions
up to homeomorphic reparametrization, and in the field of radiomics, where each patient
is represented via a clustering dendrogram.
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“What could he see, that I was missing?
It had to be the glasses.

So I made myself an identical pair. (Better, though)
And, with those on, I looked around.”

Gipi, La mia vita disegnata male, pg. 141
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1. General Introduction

When looking at two objects, one of the questions we may ask is: “Do these objects have
the same shape?”. To answer that question it is likely that we may picture ourselves
squinting our eyes or taking a step backwards so that the contours of the objects become
slightly blurred and we may better see which macroscopic features are shared among them.

These common behaviours unveil two linked and very interesting ideas behind the
concept of shape: first, two objects may be different but have the same shape, second,
to capture the shape of an object we need to neglect some information - possibly related
to uninteresting details - and capture the most prominent, characteristic attributes of the
object.

Whenever the notion of shape enters a data analysis situation, there is a clear need of
a more precise and formal mathematical formulation of the aforementioned ideas, often
application-driven. It is not surprising that two of the most powerful mathematical con-
cepts which inevitably are employed in doing so are the idea of transformation and the
notion of equivalence classes. A suitable class of transformations may be used to describe
which object should be regarded as equal: two objects have the same shape if they can
be transformed one in the other - e.g. if they become the same upon blurring their con-
tours. Then the set of all possible transformations, representations of an object, naturally
becomes the candidate for representing the shape of the object, and thus the statistical
atom of the subsequent analysis. In this case, the shape of a datum collects all the objects
we do not wish to distinguish and so it really represents some information which all the
possible representations of the datum share.

Modeling from scratch the space of shapes, talking about functions, distances, curves,
deformations of objects, and generalizing concepts like mean and variance, are all aspects
of the analysis which need to be carefully and formally addressed. Among the fields of
mathematics, the one which is most suited to describe and tackle those fundational chal-
lenges is geometry. All the aforementioned ideas have been extensively explored employing
a very diverse set of geometric notions: from spaces of landmark points (Kendall, 1977,
1984) and spaces of diffemorphisms (Trouvé, 1998; Younes, 1998; Dupuis et al., 1998) to
more high level works trying to establish a general framework to tackle these mathemati-
cal problems (Ripley and Grenander, 1995; Dryden and Mardia, 1998; Huckemann et al.,
2010), to very recent approaches relying on sheaves and Groethendieck topologies (Arya
et al., 2022). On top of such foundations, many interactions between geometry and data
analysis have been developed with increasing potential (Davis, 2008; Curry, 2014; Tralie,
2017; Bône, 2020; Pennec et al., 2019; Bronstein et al., 2021) to the point that terms like
“Geometric Statistics”, “Geometric Data Analysis” and “Geometric Machine Learning”
are commonly used and attract more and more researchers.

1.1 Topology and Data analysis

Topology is a branch of mathematics which has always been interested in classifying topo-
logical spaces considered by means of very large equivalence classes. In fact, one of the
most recent breakthroughs within the broad area of shape analysis is the diffusion of ap-
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plied topology techniques, which can be collected under the name of Topological Data
Analysis (TDA).

Consider for instance the case of homology and cohomology groups, which are basic
topology tools used to summarize some topological information of a space (Hatcher, 2000;
Munkres, 2018). The information they capture can be interpreted in terms of holes and
obstructions and in many cases is easily accessible from the computational point of view,
especially if considered with field coefficients. Moreover, these groups are invariant to
large sets of deformations of the base topological space, induced by homotopy equiva-
lence. These facts make homology an excellent starting point to build tools to extract
information from data considered up to some set of transformations. Indeed, one of the
most successful ideas in TDA relies on homology groups to extract information from data.
Suppose we are given a finite point cloud in Rn. The subspace topology of such object
is very poor, and the only information contained in homology groups is the number of
connected components, that is, the number of points. There are however many ways to
build topological spaces starting from a point cloud, which try to capture the “shape”
of such point cloud (Chazal and Michel, 2017). It is then quite natural to think that,
instead of comparing the information associated to the point clouds, one can compare the
information obtained from the topological spaces induced by the point clouds. Moreover,
such topological spaces are often dependent on one real parameter and thus one can obtain
a whole set of topological spaces parametrized by a subset of the real line - i.e. a filtra-
tion of topological spaces. Relationships between spaces obtained at different values of
the parameter in many cases allow for a very interesting approach: homology groups can
be tracked along the ordered family of topological spaces, capturing the most persistent
homological features that appear in this sequence. This idea is in fact the foundation of
persistent homology (Edelsbrunner and Harer, 2008).

This is just one well-established example of a more general pattern: topological spaces
are often understood in terms of information collected by polynomials and group structures
(groups of automorphisms, cohomology groups, groups of sections of vector bundles etc)
and these algebraic objects can be studied in order to better understand the underlying
topological spaces (Xu et al., 2019; Scoccola and Perea, 2022). We also point out that this
idea of following some quantity of interest along a filtration is so flexible that it does not
suit only topological approaches (Mémoli et al., 2022).

1.2 Statistics in non-Euclidean Spaces

A critical point raised by all the ideas presented in the previous section is how to represent
the (topological) information collected with different techniques so that it can be used to
answer data analysis questions related to classification, regression, clustering and, possibly,
uncertainty quantification. The amount of questions that can be answered is a direct
consequence of the mathematical structures that can be built in the spaces in which the
topological information is embedded.

The problem of carrying out statistical analysis for data which do not lie, at least
naively, in Rn, has always propelled many fruitful research investigations often relying on
the mathematical developments fostered by physics and engineering. Modeling points or
quantities bound by certain laws often involves calculation of differential quantities like
derivatives along some “direction”, and many of such differential problems involve con-
straints which greatly increase the modeling and computational complexity. The “curved”
and non-Euclidean nature of many constraints asks for non-trivial generalization of opera-
tions which are very well understood in linear spaces - and are pivotal in statistics - and go
from vector sums and directional derivatives, to the behaviour of all kinds of differential
operators.
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There are many examples of analyses carried out on data embedded in non-Euclidean
spaces, often exploiting a smooth manifold structure: functions up to reparametrizaion,
symmetric positive definite matrices (like covariance matrices, see Arsigny et al. (2006);
Moakher and Zéräı (2011); Pigoli et al. (2014)), sets of orthonormal vectors (James, 1976;
Turaga et al., 2011), rotation matrices, densities of probability distributions (Pegoraro
and Beraha, 2022), even patches of images (Carlsson et al., 2008) cannot be analyzed
using the linear structure of the ambient space but must be approached by considering
an appropriate mathematical structure. The situation becomes further challenging when
one cannot build a differential or even a topological structure which falls into the realm of
well-known and deeply studied geometrical objects like manifolds. In this case, ad-hoc and
meaningful tools and definitions must be carefully obtained in order to be able to work in
such spaces (Turner et al., 2014; Calissano et al., 2020; Garba et al., 2021).

The information represented by topological summaries presents, very often, two differ-
ent natures: a continuous nature - linked to the space in which the variables parametrizing
the families of topological spaces live e.g. R for the scenarios considered in the thesis - and
a discrete nature, derived from the discrete topological invariant which is summarized.
For instance, a persistence diagram, used to represent information related to homology
groups along a nested family of topological spaces, is a point cloud in R2 whose cardi-
nality represents the amount of “holes” which arise along the nested family of spaces and
whose - continuous - coordinates are the “times” at which such holes arise and get filled.
This combination creates highly non-Euclidean situations, with non-unique minimal paths
arising for any reasonable metric structure. Due to their importance, such challenges have
sparkled a great amount of strategies, approaches and developments on the representation
of topological information (Bubenik, 2015; Adams et al., 2017; Chazal et al., 2015; Mileyko
et al., 2011; Turner et al., 2014; Bubenik and Wagner, 2020; Che et al., 2021).

We would like to highlight another non-trivial facet of this broad topic: when em-
ploying a representation of data, it is fundamental to formally understand what kind of
information is really preserved by the representation itself and how can we “measure”
the interpretability of the framework. A very reasonable approach is to embed the data
themselves into some kind of metric space, where the metric employed has some clear and
desired behaviour, for instance coherent with the specific application at hand, and then
study the stability of the representation i.e. the continuity of the operator mapping the
data into the representation. In this way the analyst is sure that objects which he would
like to regard as similar, are indeed close in the representation space. The opposite it is
clearly not desirable in general: if two input data look very different, then their represen-
tation should be allowed to be closer together, otherwise our representation is (metrically)
equivalent to the space of original data, and not much is gained by employing it.

1.3 Merge Trees

In this thesis we focus on a particular topological summary called merge tree and in this
section we would like to briefly motivate such choice. This is clearly a very short and
introductory paragraph on this topic, as these motivations are going to be constantly
updated and reinforced throughout the thesis.

The first point is that merge trees are in some sense - and up to some minor technical
details -, very well established tools in many areas of science where analysts are accustomed
to using trees to infer information about different objects; for instance, phylogenetic trees
and hierarchical clustering dendrograms are frequently used by statisticians and other sci-
entists. The present thesis has been carried out in collaboration with a research group of
statisticians, and thus it was quite natural to start a topological investigation on objects
which they were very familiar with. While carrying out such investigation we could also
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appreciate two other facts about merge trees: first they are very effective visual summaries.
In many situations it is very simple to make a qualitative picture of the underlying datum
by looking at a merge tree. Second they offer the possibility to extract many other kinds of
local additional information from data in the form of functions defined on thetopological
features appearing along a filtration. This is a qualitative difference w.r.t. other topolog-
ical summaries like persistence diagrams, where the connections between elements of the
summary and the topological features is very unstable due to a process called the elder
rule.

1.4 Outline of the Dissertation

As already mentioned, in this thesis we contribute to the topics presented in the previous
sections of the introduction: we consider merge trees and establish novel ways in which
they can be fruitfully employed in data analysis situations, we define a metric framework
to compute distances between different merge trees and test such framework with two
applications, studying its stability properties.

The chapters collect the contributions of the manuscript dividing them between differ-
ent areas and different research perspectives.

• Chapter 2 introduces spaces of functions defined on merge trees, showing how they
enhance the possibilities given by such tree-shaped topological summaries, intro-
duces a metric which can be used to compare functions defined on different merge
trees and tests it with some simulations.

• Chapter 3 exploits the general results of the previous chapter to define a novel edit
distance between merge trees. The metric is then compared to already established
metric structures, highlighting pros and cons of our approach. The obtained metric
space is then investigated from the topological and metric point of view, proving
a series of results which lead to the existence of Frechét means and to some local
approximations of the space via Rn.

• Chapter 4 concentrates on the use of merge trees as topological summaries of real
valued functions in one real variable, proving stability properties and tackling a
benchmark case study in functional data analysis to show the effectiveness of the
topological approach when non-trivial re-parametrization procedures are needed for
the analysis.

• Chapter 5 stems from the need of analysing another kind of data: point clouds with
different cardinalities. Employing a tree representation of the point cloud which is
consistent with the meaning of the information contained in the point clouds, a data
set of patients is analysed in an unsupervised fashion. A modification of the metric
defined in Chapter 3 is employed, tailored on the considered application. Stability
properties are proven w.r.t. an interpretable metric between finite point clouds.

• Chapter 6 contains a computational investigation on a well established metric be-
tween merge trees. Such approach leads to a novel approximation procedure which
we use to evaluate a previous attempt on the same approximation task - highlighting
pros and cons of both numerical schemes. One of the theoretic results is key for the
comparison with the metric defined in Chapter 3.

• Chapter 7 concludes the dissertation drawing some general conclusions and suggest-
ing some other further research directions.
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1.5 Note to the reader: Structure of the Thesis

The thesis is organized in independent chapters. With this we mean that each chapter
is an investigation of standalone interest and could attract potentially different readers
and scientists. Accordingly, each chapter is endowed with a preliminary introduction
tailored on the audience which could be more interested on the topic, avoiding unnecessary
technicalities when possible. The notation is consistent through all the chapters, and so
redundant preliminaries can be skipped when going through the chapters followings their
numeration.

There are, however, “non-linear” relationships between the chapters. In particular:

• the stability result in Chapter 4 is used in Chapter 2, Chapter 3 and Chapter 5. It
is presented in Chapter 4 because it is part of the more general investigation related
to the statistical analysis of functions carried out in such chapter.

• The main theorems in Chapter 6 are used in in Chapter 3 to obtain relationships
between the interleaving distance and the distance defined in Chapter 3.

Moreover, the content of Chapter 5 is obtained in collaboration with other authors and
has marked applied nature: the case study considered is not a benchmark data set - as
in Chapter 4 -, but is on the frontiers of non-invasive cancer treatments. Thus, a good
portion of the chapter is devoted to the introduction and understanding of the clinical
problem and of the medical methodologies involved. The methodological novelties of the
chapter in terms of data analysis pipeline and merge trees are all contained in the section
“Methods” and in the appendices. This is in contrast with the other chapters, where the
theoretic content is always the focal point of the developments. In this chapter, instead,
it is the specific application that drives the theoretic analysis: the expertise of the other
collaborators on the clinical problem considered has fostered the introduction of a modified
version of the metric defined in Chapter 3 which greatly enhances the interpretability of
the pipeline. And such interpretability is of utmost importance to tackle an unsupervised
problem, like the one we consider.

As a general rule, the proofs of the results are contained in the appendices of every
chapters. The proofs which are left inline are either very short or are constructive proofs,
and so they may be useful to understand the following parts of the manuscript.

1.6 Note to the reader: previous works

This thesis is part of a double-degree program established by Politecnico di Milano and
Universitá di Bologna. In particular, it is meant as a one year extension of the PhD thesis
Pegoraro (2021a).

For the sake of clarity and for a better understanding of the original contributions of the
present work, we detail which sections do overlap with the previous thesis, which sections
have undergone substantial modifications, and which are completely original.

• Chapter 2: this chapter is partially overlapping with Chapter 2 in Pegoraro (2021a).
In particular:

– Section 2.4 shares the two main examples with Section 2.2 of Pegoraro (2021a).

– Section 2.6 shares most definitions and results with Section 2.4 of Pegoraro
(2021a). There are however some novel results and subtle modifications in the
definitions.
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– Section 2.8 is the same as Section 2.7 in Pegoraro (2021a) a part from some
minor details.

– Section 2.9 contains the results in Section 2.5.1 of Pegoraro (2021a) while all
other topics in Section 2.5 of Pegoraro (2021a) have been expanded and detailed
in Section 2.B.

The novelties of the chapter of present thesis include a completely new theoretical
background, stemming from most novel literature in TDA, a formal introduction of
function spaces on merge trees, which is now the main focus of the chapter and some
technical but not negligible differences in how the general edit distance is adapted
to work with such functions. Many details, examples, and figures have also been
added.

• Chapter 3 shares some content with Chapter 4 in Pegoraro (2021a). In particular:

– Section 3.6.2, Section 3.6.4, Section 3.6.5 and Section 3.6.6 are taken from,
respectively, Section 4.2, 4.3, 4.4 and 4.5 of Pegoraro (2021a) with only minor
changes.

Some of the most important results in this chapter are taken directly from Pegoraro
(2021a). However, the definition of the edit distance between merge trees is a nov-
elty of the present work and the aforementioned sections are used to infer properties
about the space of merge trees in a novel way. The notation and the background
which are used, in accordance with Chapter 2, are novel, as are the detailed com-
parisons with other metric structures for merge trees offering new perspective on
the edit distance presented. Original contributions include also the mapping decom-
positions, the local approximation results and most of the figures appearing in the
chapter.

• Chapter 4 is an in-depth revised version of Chapter 2 of Pegoraro (2021a):

– Section 4.3 is taken from Section 3.3 of Pegoraro (2021a) without significative
changes.

– Section 4.4 shares some results with Section 3.4 of Pegoraro (2021a), but the
general discussion is more detailed, referenced and expanded.

– Section 4.5 is roughly Section 3.5 of Pegoraro (2021a), with only some technical
details being different.

– Section 4.6 is a revised version of Section 3.6 in Pegoraro (2021a), and the
revision involves a novel definition of the pruning operator, a brand new proof
of the stability result - which contained some technical errors in Pegoraro
(2021a), and a series of novel results concerning the pruning process.

– Section 4.7.2 and Section 4.7.3 had already appeared in Section 3.8 of Pegoraro
(2021a) - up to some minor details.

– Section 4.8.1, Section 4.8.2 and Section 4.8.3 have only undergone marginal
modifications compared to Section 3.9.1 and 3.9.2 of Pegoraro (2021a).

The fundamental novelties of this chapter include the new proof of the stability
theorem, which was necessary due to some minor errors in the previous one. In
rewriting the proof a novel approach has been taken relying on previous works on
the interleaving distance between merge trees. Section 4.8.4 is also completely new
and it is a first attempt to establish statistical tools to interpret populations of merge
trees.
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• Chapter 5 and Chapter 6 are new.

1.7 Further Comments

The content of the main chapters of the thesis is also part of the following papers:

• Chapter 2: A Locally Stable Edit Distance for Functions Defined on Merge Trees
(Pegoraro, 2021c)

• Chapter 3: A Locally Stable Stable Edit Distance for Merge Trees (Pegoraro, 2021d)

• Chapter 4: Functional Data Representation with Merge Trees (with P. Secchi)(Pegoraro
and Secchi, 2021)

• Chapter 5: Imaging-based representation and stratification of intra-tumor Hetero-
geneity via tree-edit distance (with L. Cavinato, F. Ieva and A. Ragni) (Cavinato
et al., 2022)

• Chapter 6: A Graph-Matching Formulation of the Interleaving Distance between
Merge Trees (Pegoraro, 2021b).
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2. A Locally Stable Edit Distance for Functions De-
fined on Merge Trees

Abstract

In this chapter we define a novel metric structure to work with functions defined on merge
trees. The metric introduced possesses some stability properties and can be computed
with a dynamical integer linear programming approach. We showcase its feasibility and
the effectiveness of the whole framework with simulated data sets. Using functions defined
on merge trees proves to be very effective in situation where other topological data analysis
tools, like persistence diagrams, can not be meaningfully employed.

2.1 Introduction

Topological Data Analysis (TDA) is the name given to an ensemble of techniques which
are mainly focused on retrieving topological information from different kinds of data (Lum
et al., 2013). Consider for instance the case of point clouds: the (discrete) topology of a
point cloud itself is quite poor and it would be much more interesting if, using the point
cloud, one could gather information about the topological space data was sampled from.
Since, in practice, this is often not possible, one can still try to capture the “shape” of
the point cloud. The idea of persistent homology (PH) (Edelsbrunner and Harer, 2008) is
an attempt to do so: using the initial point cloud, a nested sequence of topological spaces
is built, which are heavily dependent on the initial point cloud, and PH tracks along this
sequence the persistence of the different topological features which appear and disappear.
As the name persistent homology suggests, the topological features are understood in terms
of generators of the homology groups (Hatcher, 2000) taken along the sequence of spaces.
One of the fundational results in TDA is that this information can be represented by a set
of points on the plane (Edelsbrunner et al., 2002; Zomorodian and on, 2005), with a point
of coordinates (x, y) representing a topological feature being born at time x along the
sequence, and disappearing at time y. Such representation is called persistence diagram
(PD). Persistence diagrams can be given a metric structure through the Bottleneck and
Wasserstein metrics, which, despite having good properties in terms of continuity with
respect to perturbation of the original data (Cohen-Steiner et al., 2007, 2010), provide
badly behaved metric spaces - with non unique geodesics arising in many situations. Var-
ious attempts to define tools to work in such spaces have been made (Mileyko et al., 2011;
Turner et al., 2012; Lacombe et al., 2018; Fasy et al., 2014), but this still proves to be an
hard problem. In order to obtain spaces with better properties - e.g. with unique means
- and/or information which is vectorized, a number of topological summaries alternative
to PDs have been proposed, such as: persistence landscapes (Bubenik, 2015), persistence
images (Adams et al., 2017) and persistence silhouettes (Chazal et al., 2015).

All the aforementioned machinery has been successfully applied to a great number of
problems in a very diverse set of scientific fields: complex shape analysis (MacPherson and
Schweinhart, 2010), sensor network coverage (Silva and Ghrist, 2007), protein structures
(Kovacev-Nikolic et al., 2016; Gameiro et al., 2014), DNA and RNA structures (Emmett
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et al., 2015; Rizvi et al., 2017), robotics (Bhattacharya et al., 2015; Pokorny et al., 2015),
signal analysis and dynamical systems (Perea and Harer, 2013; Perea et al., 2015; Maletić
et al., 2015), materials science (Xia et al., 2015; Kramár et al., 2013), neuroscience (Giusti
et al., 2016; Curto, 2016), network analysis (Sizemore et al., 2015; Pal et al., 2017), and
even deep learning theory (Hofer et al., 2017; Naitzat et al., 2020).

Related Works

Close to the definition of persistent homology for 0 dimensional homology groups, lie the
ideas of merge trees of functions, phylogenetic trees and hierarchical clustering dendro-
grams. Merge trees of functions (Pascucci and Cole-McLaughlin, 2003) describe the path
connected components of sublevel sets of a real valued function and are a particular case
of Reeb graphs (Shinagawa et al., 1991a; Biasotti et al., 2008), representing the evolution
of the sublevel sets of a bounded Morse function (Audin et al., 2014) defined on a path
connected domain. Phylogenetic trees and clustering dendrograms are very similar objects
which describe the evolution of a set of labels under some similarity measure or agglom-
erative criterion. Both objects are widely used respectively in phylogenetic and statistics
and many complete overviews can be found, for instance see Felsenstein and Felenstein
(2004), Garba et al. (2021) for phylogenetic trees and Murtagh and Contreras (2017),
Xu and Tian (2015) for clustering dendrograms. Informally speaking, while persistence
diagrams record only that, at certain level along a family of topological spaces some path
connected components merge, merge trees, phylogenetic trees and clustering dendrograms
encode also the information about which components merge with which (Kanari et al.,
2020; Curry et al., 2021). Usually tools like phylogenetic trees and clustering dendrograms
are used to infer something about a fixed set of labels, for instance an appropriate clus-
tering structure; however, we are more interested in looking at the information they carry
as unlabeled objects obtained with different sets of labels. For this reason most of the
metrics available for phylogenetic trees and clustering dendrograms are not valuable for
our purposes.

In the last years a lot of research sparkled on such topics, starting from the more general
case of Reeb graphs, to some more specific works on merge trees. Different but related
metrics have been proposed to compare Reeb graphs (Di Fabio and Landi, 2016; De Silva
et al., 2016; Bauer et al., 2020, 2014), which have been shown to posses very interesting
properties in terms of Morse functions on manifolds, connecting the combinatorial nature of
Reeb Graphs with deformation-invariant characterizations of manifolds which are smooth,
compact, orientable and without boundary. On the specific case of merge trees, there has
been some research on their computation (Pascucci and Cole-McLaughlin, 2003) and on
using them as visualization tools (wu and Zhang, 2013; Bock et al., 2017), while other works
(Beketayev et al., 2014; Morozov et al., 2013) started to build frameworks to analyze sets
of merge trees, mainly proposing a suitable metric structure to compare them, as do some
recent preprints (Gasparovic et al., 2019; Touli, 2020; Cardona et al., 2021). Some works
specifically tackle the problem of finding a suitable metric structure via edit distances
(Sridharamurthy et al., 2020; Wetzels et al., 2022), which however lack suitable stability
properties. The main issue with most of the proposed metrics is their computational
cost, causing a lack for examples and applications also when algorithms are available
(Touli and Wang, 2018). When applications and analysis are carried out due to the good
computational properties (Sridharamurthy et al., 2020; Wetzels et al., 2022), either the
employed metric does not have suitable properties and thus the authors must resort to
a “computational solution to handle instabilities” (Sridharamurthy et al. (2020), Section
1.2), or the stability properties of the metric are not studied. Recently, Curry et al.
(2022) proposed an approximation scheme for the interleaving distance between merge
trees, describing a procedure to obtain suitable set of labels to turn the original unlabeled
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problem into a labeled one. While the computational advantages of this approach are
outstanding, the reliability of the approximation is yet to be formally assessed - simulations
in Chapter 6 show that in some scenarios it may produce big errors. In the same work the
authors propose also the idea of decorated merge trees, which, philosophically, goes in the
same direction of the novelties presented in this manuscript. See Section 2.5.6.4 for more
details. Lastly, there is a recent preprint investigating structures lying in between merge
trees and persistence diagrams, to avoid computational complexity while retaining some
of the additional information provided by such objects (Elkin and Kurlin, 2020).

Instead of modifying the aforementioned metrics or other metrics for trees (Billera et al.,
2001; Feragen et al., 2012; Wang and Marron, 2007) in order to account for functions de-
fined on unlabelled trees, we follow the path of edit distances because of the computational
properties which they often possess, making them suited for dealing with unordered and
unlabelled trees (Hong et al., 2017). The computational issues raised by those kind of
trees are in fact a primary obstacle to designing feasible algorithms (Hein et al., 1995).
The edit distance we propose starts from usual tree edit distances (Tai, 1979; Bille, 2005)
but adds fundamental modifications in order to allow the comparison of functions defined
on different trees.

Main Contributions

The success of PDs highlighted before, strongly motivates the development of more refined
and computable techniques to work with merge trees, phylogenetic trees and clustering
dendrograms. Our contributions to such topic can be split into four points: first we
propose the use of functions defined on merge trees to enrich such trees with additional
information, second we propose a metric structure for the space of these enriched topo-
logical summaries, in the form of a novel edit distance between weighted (in a very broad
sense), unlabeled, unordered trees; third, we prove that this metric satisfies some stability
properties when considering particular functions defined on merge trees. Lastly we prove
some decomposition properties which are used in the supplementary material to develop
a dynamical integer programming algorithm to make this metric viable for a good range
of applications.

The framework we define in the present chapter is general enough to allow for a series
of developments which are carried out the other chapters of the thesis. Some of these
developments, in turn, contain results which have consequences also for the content of
this chapter. In particular, Chapter 3 exploits a particular case of the general framework
contained in the upcoming sections to induce a metric for merge trees and Chapter 4
develops a stability result for the metric defined in Chapter 3.

Outline

The chapter is organized as follows. In Section 2.2 and Section 2.3 we introduce all the
definitions needed for our dissertation, starting from most recent TDA literature, tackling
the problem of representing with a discrete summary - a merge tree - the merging pattern
of the path-connected components of a filtration of topological spaces.

Once merge trees are introduced, we use Section 2.4 to motivate the use of such objects
over more commonly used topological data analysis techniques. In Section 2.5 we formally
introduce the spaces of functions on merge trees. In high generality, with Section 2.6,
we tackle the problem of finding a suitable metric structure to compare such functions.
Section 2.7 details how the findings of Section 2.6 interact with the problem of comparing
functions defined on merge trees. In Section 2.8 we present some simulations and examples
to showcase the effectiveness of the proposed framework while in Section 2.9 we prove
some properties of the metric previously defined, which lead to the algorithm presented in
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Section 2.C. We end up with some conclusions in Section 2.10.
The appendix contains the proofs of results in Section 2.A, while Section 2.B and

Section 2.C contain theoretical and practical details needed to compute our edit distance.

2.2 Abstract Merge Trees

In TDA the main sources of information are sequences of homology groups with field
coefficients: using different pipelines a single datum is turned into a filtration of topological
spaces {Xt}t∈R, which, in turn, induces - via some homology functor with coefficients in
the field K - a family of vector spaces with linear maps which are usually all isomorphisms
but for a finite set of points in the sequence. Such objects are called (one-dimensional)
persistence modules (Chazal et al., 2008). Any persistence module is then turned into a
topological summary, for instance a persistence diagram, which completely classifies such
objects up to isomorphisms. That is, if for two persistence modules there exists a family of
linear isomorphisms giving a natural transformation between the two functors, then they
are represented by the same persistence diagram. The first part of this chapter studies
this very same pipeline but under the lenses of merge trees.

2.2.1 Preliminary Definitions

We start off by introducing the main mathematical objects of our research starting from
the scientific literature surrounding these topics. In this process we also point out where
there is no clear notation to be used and producing new definitions, with motivations, to
avoid being caught in the trap of using ambiguous terminology or overwriting existing and
established notation.

First we need to formally define a filtration of topological spaces. We do so in a
categorical fashion, following the most recent literature in TDA. Figure 2.1 illustrates
some of the objects we introduce in this section.

Definition 2.1 (Curry et al. (2022)). A filtration of topological spaces is a (covariant)
functor X· : R→ Top from the poset (R,≤) to Top, the category of topological spaces with
continuous functions, such that: Xt → Xt′, for t < t′, are injective maps.

Example Given a real valued function f : X → R the sublevel set filtration is given
by Xt = f−1((−∞, t]) and Xt<t′ = i : f−1((−∞, t]) ↪→ f−1((−∞, t′]).

Example Given a finite set C ⊂ Rn its the Céch filtration is given byXt =
⋃

c∈C Bt(c).
With Bt(c) = {x ∈ Rn | ∥ c− x ∥< t}. As before: Xt<t′ = i :

⋃
c∈C Bt(c) ↪→

⋃
c∈C Bt′(c).

Given a filtration X· we can compose it with the functor π0 sending each topological
space into the set of its path connected components. We recall that, according to standard
topological notation, π0(X) is the set of the path connected components of X and, given
a continuous functions q : X → Y , π0(q) : π0(X)→ π0(Y ) is defined as:

U 7→ V such that q(U) ⊂ V.

We use filtrations and path connected components to build more general objects which
are often used as starting points of theoretical investigations in TDA.

Definition 2.2 (Carlsson and Mémoli (2013); Curry (2018)). A persistent set is a functor
S : R → Sets. In particular, given a filtration of topological spaces X·, the persistent set
of components of X· is π0 ◦X·.

11
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Note that by endowing a persistence set with the discrete topology, every persistence set
can be seen as the persistence set of components of a filtration. Thus a general persistence
set S can be written as π0(X·) for some filtration X·.

Now we want to carry on going towards the definition of merge trees. The existing
paths for giving such notion relying on the language of TDA split at the definition of
persistence module. All such approaches however share similar notions of constructible
persistent sets (Patel, 2018) or modules (Curry et al., 2022). We report here the definition
of constructible persistent sets adapted from Patel (2018). The original definition in Patel
(2018) is stated for persistent modules (as defined in Patel (2018)) and it is slightly different
- see Remark 2.4.

Definition 2.3 (Patel (2018)). A persistent set S : R→ Sets is constructible if there is a
finite collection of real numbers {t1 < t2 < . . . < tn} such that:

• S(t < t′) = ∅ for all t < t1;

• for t, t′ ∈ (ti, ti+1) or t, t
′ > tn, with t < t′, then S(t < t′) is bijective.

The set {t1 < t2 < . . . < tn} is called critical set and ti are called critical values. If S(t)
is always a finite set, then S is a finite persistent set.

Remark 2.4. In literature there doesn’t seem to be an univocal way to treat the critical
values: in De Silva et al. (2016), Definition 3.3, constructibility conditions are stated
in terms of open intervals (due to the definition of Reeb cosheaves), in Patel (2018),
Definition 2.2, all the conditions are stated in terms of half-closed intervals [ti, ti+1), while
Curry et al. (2022) differentiates between the open interval (tn,+∞) i.e. t, t′ > tn, and
the half closed intervals [ti, ti+1). For reasons which will be detailed in Section 2.2.2, we
stated all the conditions following De Silva et al. (2016), with open intervals.

At this point we highlight two different categorical approaches to obtain merge trees.
Patel (2018) requires a persistence module to be a functor F : R → C with C being an
essentially small symmetric monoidal category with images (see Patel (2018) and references
therein). If then one wants to work with values in some category of vector spaces over
some field K, it is required that F (t) is always finite dimensional. A merge tree, for Patel
(2018), Example 2.1, is then a constructible persistence module with values in FSet, the
category of finite sets.

Curry et al. (2022) instead, states that a persistence module is a functor F : R→ VecK,
with VecK being the category of vector spaces over the field K. This definition seems to
be in line with the ones given by other works, especially in multidimensional persistence
(see for instance Scolamiero et al. (2017) and references therein). On top of that, Curry
et al. (2022) obtains a (generalized) merge tree as a display poset (see Definition 2.7) of a
persistent set. The constructibility condition on the persistence set then implies the merge
tree to be tame.

In our dissertation we find natural to work with objects which are functors, as the
merge trees defined in Patel (2018), but we require some properties which are closer to the
ones of constructible persistent sets, as in Definition 2.3. Thus, mixing those definitions,
we give the notion of an abstract merge tree.

Definition 2.5. An abstract merge tree is a persistent set S : R→ Sets such that there is
a finite collection of real numbers {t1 < t2 < . . . < tn} which satisfy:

• S(t) = ∅ for all t < t1;

• S(t) = {⋆} for all t > tn;

12
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• if t, t′ ∈ (ti, ti+1), with t < t′, then S(t < t′) is bijective.

The values {t1 < t2 < . . . < tn} are called critical values of the tree.
If S(t) is always a finite set, S is a finite abstract merge tree.

Assumption 2.6. From now on we will be always working with finite abstract merge trees
and, to lighten the notation, we assume any abstract merge tree to be finite, without explicit
reference to its finiteness.

We point out that two abstract merge trees π0(X·) and π0(Y·) are isomorphic if there
is a natural transformation αt : π0(Xt) → π0(Yt) which is bijective for every t. This
is equivalent to having the same number of path connected components for every t and
having bijections which make the following square commute:

Xt Xt′

Yt Yt′

αt αt′

for all t < t′.
We report one last definition from Curry et al. (2022) which will be needed in later

sections.

Definition 2.7 (Curry et al. (2022)). Given a persistent set S : R → Sets we define its
display poset as:

DS :=
⋃
t∈R

S(t)× {t}.

The set DS can be given a partial order with (a, t) ≤ (b, t) if S(t ≤ t′)(a) = b.

Given a persistent set S and its display posetDS we define h((a, t)) = t and π((a, t)) = a
for every (a, t) ∈ DS . From DS we can clearly recover S via S(t) = π(h−1(t)) and
S(t ≤ t′)(a) = b with a ≤ b. Thus the two representations are equivalent and, at any time,
we will use the one which is more convenient for our purposes. Note that this construction
is functorial: any natural transformation η : S → S′ between persistent sets, gives a map
of sets Dη : DS → DS′ with Dη((a, t)) = (ηt(a), t). Clearly Dη◦ν = Dη ◦Dν .

2.2.2 Critical Values

Before bridging between abstract merge trees and merge trees, we need to focus on some
subtle facts about critical values.

The first fact is that neither in Definition 2.3 nor in Definition 2.5 critical values are
uniquely defined. However, thanks to the functoriality of any persistence set, we can take
the intersection of all the possible sets of critical values to obtain a minimal (possibly
empty) one.

Proposition 2.8. Let S be a constructible persistence set and let {Ci}i∈I be a family of
finite critical sets of S. Then C =

⋂
i∈I Ci is a critical set.

Proof. Clearly C is a finite set, possibly empty. The thesis is then a consequece of the
following fact: if t /∈ C then there is ε > 0 such that S(t − ε < t + ε) is bijective. So we
can remove t from any critical set of S and still obtain a critical set.

Assumption 2.9. Leveraging on Proposition 2.8, any time we take any abstract merge
tree or a constructible persistent set and consider its critical values, we mean the elements
of the minimal critical set.

13
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(a) A filtration X·. (b) The abstract merge tree π0(X·).

(c) The display poset Dπ0(X·).

Figure 2.1: An example of a filtration along with its abstract merge tree and its display
poset. The colors are used throughout the plots to highlight the relationships between the
different objects.
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Consider an abstract merge tree π0(X·) and let t1 < t2 < . . . < tn be its (minimal

set of) critical values. Let it
′

t := Xt≤t′ : Xt → Xt′ . Given a critical value tj , due to the

minimality condition, we know that for ε > 0 small enough, at least one between π0(i
tj
tj−ε)

and π0(i
tj+ε
tj ) is not bijective.

We want to distinguish between two scenarios:

• if π0(i
tj+ε
tj ) is bijective, we say that topological changes in the persistence set (and

in the filtration) happen at tj ;

• if π0(i
tj+ε
tj ) is not bijective, we say that topological changes in the persistence set

(and in the filtration) happen across tj .

Definition 2.10. A constructible persistence set π0(X·) is said to be regular if all topo-
logical changes happen at its critical points.

Consider the following filtrations of topological spaces: Xt = (−t, t)
⋃
(1− t, 1+ t) and

Yt = [−t, t]
⋃
[1 − t, 1 + t] for t > 0 and X0 = Y0 = {0, 1}. For t < 0 the filtrations

are empty. The persistent sets π0(Xt) and π0(Yt) are two abstract merge trees and they
share the same set of critical values, namely {0, 1/2}. They only differ at the critical value
1/2: π0(X1/2) = {(−1/2, 1/2), (1/2, 1)}, while π0(X1/2) = {(−1/2, 1)}. In X· changes
happen across the critical values - π0(X1/3) ∼= π0(X1/2) and π0(X1/2) ≇ π0(X1), while in
Y· changes happen at the critical values - π0(Y1/3) ≇ π0(Y1/2) and Y1/2 ∼= Y1.

It is then clear that X· and Y· are not isomorphic as abstract merge trees; but at
the same time they differ only by their behavior at critical points. We are not interested
in distinguishing two such behaviors and for this reason we ask for a weaker notion of
equivalence between abstract merge trees. Coherently, the frameworks which we will build
in later sections are invariant to such weaker equivalence relationship.

Given Z ⊂ R, clearly Z inherits an ordering from the one in R and we can consider Z
as a poset category. Thus, we can take the restriction to Z of any filtration of topological
spaces X· (and similarly of any persistent set) via the inclusion Z ↪→ R. We indicate this
restriction as X· |Z . Moreover, L is going to be the Lebesgue measure on R. Refer to
Figure 2.2a for a visual interpretation of the following definitions and propositions.

Definition 2.11. Two persistent sets π0(X·) and π0(Y·) are almost everywhere (a.e.)
isomorphic if there is a Lebesgue measurable set Z ⊂ R such that L(R−Z) = 0 and there
is a natural isomorphism α : π0(X· |Z)→ π0(Y· |Z). We write π0(X·) ∼=a.e π0(Y·).
Proposition 2.12. Being a.e. isomorphic is an equivalence relationship between persistent
sets.

Proof. Reflexivity and symmetry are trivial: the first one holds with Z = ∅ and the second
one holds by definition of natural isomorphism. Lastly, transitivity holds because any finite
union of measure zero sets is a measure zero set.

Now we prove that in each equivalence class of a.e. isomorphic abstract merge trees we
can always pick a regular abstract merge tree, which is unique up to isomorphism.

Proposition 2.13. For every abstract merge tree π0(X·) there is a unique (up to isomor-
phism) abstract merge tree R(π0(X·)) such that:

1. π0(X·) ∼=a.e. R(π0(X·));
2. R(π0(X·)) is regular.
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Proof. Let π0(X·) be an abstract merge tree with critical values t1 < . . . < tn. Suppose
that at tj changes happen across the critical value. Then we can fix ε > 0 such that
tj + ε < tj+1 and define X ′· with X ′

t = Xt for all t ̸= tj and X ′
tj = Xtj+ε. Now we need to

define the X ′· on maps:

• if t = tj and t < t′ ≤ tj + ε, X ′
t<t′ = (Xt′≤tj+ε)

−1 which is well defined as Xt′≤tj+ε

is an isomorphism;

• if t′ = tj , X
′
t<t′ = Xt≤tj+ε which is well defined as Xt′≤tj+ε is an isomorphism;

• otherwise X ′
t<t′ = Xt<t′ .

We need to check that X ′· is a regular abstract merge tree. First we have:

X ′
t,tj ◦X

′
tj ,t′ = Xt≤tj+ε ◦ (Xt′≤tj+ε)

−1 = Xt,t′ = X ′
t,t′

if t′ ≤ tj + ε, otherwise

X ′
t,tj ◦X

′
tj ,t′ = Xt≤tj+ε ◦Xtj+ε≤t′ = Xt,t′ = X ′

t,t′ .

The filtrationX ′· is regular at tj by construction asX ′
tj = Xtj+ε

∼= X ′
t′ for t

′ ∈ [tj , tj+ε].

Always by construction, it is a.e. isomorphic to X·: the natural transformation φ : X· →
X ′· is given by φt = Id : Xt → X ′

t for t ̸= tj and, in fact, it is defined on R− {t1, . . . , tn}.
If tj is the only critical value at which changes in X· happen across the value we are

done, otherwise consider tk such that changes in X· happen across tk. The same, by
construction, holds also for X ′·. Thus we can recursively apply the steps proposed up to

now on X ′· until we obtain an abstract merge tree R(π0(X·)) which is regular. This is

reached in a finite number of steps since the critical values are a finite set.
Uniqueness (up to isomorphism) follows easily.

Regular abstract merge trees are the functors we want to focus on, for they make many
upcoming definitions and results more natural and straightforward. With Proposition 2.13
we formally state that this choice is indeed consistent with the equivalence relationship
previously established.

A more detailed discussion on the topological consequences of the regularity condition
- in the particular case where X· is the sublevel set filtration of a real valued function -
can be found in Chapter 4.

2.3 Merge Trees

We introduce now the discrete counterpart of abstract merge trees, which (up to some
minor technical differences) are calledmerge trees by part of the scientific literature dealing
with these topics (Gasparovic et al., 2019; Sridharamurthy et al., 2020), while Curry et al.
(2022) refers to such structures as computational merge trees. Even thou we agree with
the idea behind the latter terminology, we stick with the wording used by Gasparovic et al.
(2019) and others. We do so for the sake of simplicity, as these objects will be the main
focus of the theoretic investigation of the manuscript. Before proceeding, we point out
that there is a third approach - on top of the categorical and the computational ones -
to the definition of merge trees, followed for instance by Morozov et al. (2013), which in
Curry et al. (2022) is referred to as classical merge trees. We avoid dealing with such
objects in our dissertation and any interested reader can find in Curry et al. (2022) how
that definition relates with the other ones we report.

Now we need some graph-related definitions.
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(a) An abstract merge tree π0(X·) (left) and the regular abstract merge tree R(π0(X·)) (right).

(b) A regular abstract merge tree R(π0(X·)).
(c) The merge treeM(R(π0(X·))). The brack-
ets at the end of the edges and the labels
U(p), U(q), U∞ refer to the canonical a.e. cov-
ering defined in Section 2.5.2.

Figure 2.2: On the first line we can see an example of an abstract merge tree which
is not regular (left) along with the regular abstract merge tree (right) obtained as in
Proposition 2.13. There is also highlighted the a.e. isomorphism between them: they are
isomorphic on R− {t2}. On the second line we find a regular abstract merge tree and the
associated merge tree built as in Proposition 2.19. The colors are again used to highlight
the relationships between the different objects.
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Definition 2.14. A tree structure T is given by a set of vertices VT and a set of edges
ET ⊂ VT × VT which form a connected rooted acyclic graph. We indicate the root of the
tree with rT . We say that T is finite if VT is finite. The order of a vertex v ∈ VT is the
number of edges which have that vertex as one of the extremes, and is called ordT (v). Any
vertex with an edge connecting it to the root is its child and the root is its father: this is the
first step of a recursion which defines the father and children relationship for all vertices
in VT . The vertices with no children are called leaves or taxa and are collected in the set
LT . The relation child < father generates a partial order on VT . The edges in ET are
identified in the form of ordered couples (a, b) with a < b. A subtree of a vertex v, called
subT (v), is the tree structure whose set of vertices is {x ∈ VT |x ≤ v}.

Note that, given a tree structure T , identifying an edge (v, v′) with its lower vertex v,
gives a bijection between VT − {rT } and ET , that is ET

∼= VT − {rT } as sets. Given this
bijection, we often use ET to indicate the vertices v ∈ VT −{rT }, to simplify the notation.

We want to identify merge trees independently of their vertex set, and thus we introduce
the following isomorphism classes.

Definition 2.15. Two tree structures T and T ′ are isomorphic if exists a bijection η :
VT → VT ′ that induces a bijection between the edges sets ET and ET ′: (a, b) 7→ (η(a), η(b)).
Such η is an isomorphism of tree structures.

Finally, we give the definition of a merge tree, slightly adapted from Gasparovic et al.
(2019).

Definition 2.16. A merge tree is a finite tree structure T with a monotone increasing
height function hT : VT → R ∪ {+∞} and such that 1) ordT (rT ) = 1 2) hT (rT ) = +∞ 3)
hT (v) ∈ R for every v < rT .

Two merge trees (T, hT ) and (T ′, hT ′) are isomorphic if T and T ′ are isomorphic as
tree structures and the isomorphism η : VT → VT ′ is such that hT = hT ′ ◦ η. Such η is an
isomorphism of merge trees. We use the notation (T, hT ) ∼= (T ′, hT ′).

With some slight abuse of notation we set maxhT = maxv∈VT | v<rT hT (v) and argmaxhT =
max{v ∈ VT | v < rT }. Note that, given (T, hT ) merge tree, there is only one edge of the
form (v, rT ) and we have v = argmaxhT .

The relationship between abstract merge trees and merge trees is clarified in Sec-
tion 2.3.1, but before going on we must introduce another equivalence relationship on
merge trees.

Definition 2.17. Given a tree structure T , we can eliminate an order two vertex, con-
necting the two adjacent edges which arrive and depart from it. Suppose we have two edges
e = (v1, v2) and e

′ = (v2, v3), with v1 < v2 < v3. And suppose v2 is of order two. Then, we
can remove v2 and merge e and e′ into a new edge e′′ = (v1, v3). This operation is called
the ghosting of the vertex v2. Its inverse transformation, which restores the original tree,
is called a splitting of the edge e′′.

Consider a merge tree (T, hT ) and obtain T ′ by ghosting a vertex of T . Then VT ′ ⊂ VT
and thus we can define hT ′ := hT |VT ′ .

Now we can state the following definition.

Definition 2.18. Merge trees are equal up to order 2 vertices if they become isomorphic
after applying a finite number of ghostings or splittings. We write (T, hT ) ∼=2 (T

′, hT ′).
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2.3.1 Regular Abstract Merge Trees and Merge Trees

In this section we study the relationship between abstract merge trees and merge trees.
We collect all the important facts on this topic in the following proposition. Figure 2.1b
and Figure 2.2c can help the reader going through the upcoming results.

Proposition 2.19. The following hold:

1. we can associate a merge tree without order 2 verticesM(R(π0(X·))) to any regular
abstract merge tree R(π0(X·));

2. we can associate a regular abstract merge tree F((T, hT )) to any merge tree (T, hT ).
Moreover, we haveM(F((T, hT ))) ∼=2 (T, hT ) and F(M(R(π0(X·))) ∼=a.e. π0(X·);

3. given two abstract merge trees X· and Y·, M(R(π0(X·))) ∼=M(R(π0(Y·))) if and
only if π0(X·) ∼=a.e π0(Y·).

4. given two merge trees (T, hT ) and (T ′, hT ′), we have F((T, hT )) ∼= F((T, hT )) if and
only if (T, hT ) ∼=2 (T

′.hT ′).

Proof. 1. WLOG suppose π0(X·) ∼= R(π0(X·)); we build the merge treeM(π0(X·)) =
(T, hT ) along the following rules in a recursive fashion starting from an empty set of
vertices VT and an empty set of edges ET . We simultaneously add points and edges
to T and define hT on the newly added vertices. Let {ti}ni=1 be the critical set of
π0(X·) and let π0(Xt) := at := {at1, . . . , atnt

}. Call ψt′
t := π0(Xt≤t′). Lastly, from

now on, we indicate with #C the cardinality of a finite set C.

Considering in increasing order the critical values:

• for the critical value t1 add to VT a leaf akt1 , with height t1, for every element

akt1 ∈ at1 ;

• for ti with i > 1, for every akti ∈ ati such that akti /∈ Im(ψti
ti−1

)), add to VT a leaf

akti with height ti;

• for ti with i > 1, if akti = ψti
ti−1

(asti−1
) = ψti

ti−1
(arti−1

), with asti−1
and arti−1

distinct

basis elements in ati−1
, add a vertex akti with height ti, and add edges so that

the previously added vertices

v = argmax{hT (v′) | v′ ∈ VT s.t. ψti
tv′ (v

′) = akti}

and
w = argmax{hT (w′) |w′ ∈ VT s.t. ψti

tw′ (w
′) = akti}

connect with the newly added vertex akti .

The last merging happens at height tn and, by construction, at height tn there is
only one point, which is the root of the tree structure.

These rules define a tree structure with a monotone increasing height function hT .
In fact, edges are induced by maps ψt′

t with t < t′ and thus we can have no cycles
and the function hT must be increasing. Moreover, we have ψtn

t (ati) = atn1 for every
i and t < tn and thus the graph is path connected.
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2. Now we start from a merge tree (T, hT ) and build an abstract merge tree π0(X·)
such thatM(π0(X·)) ∼= (T, hT ).

To build the abstract merge tree, the idea is that we would like to “cut” (T, hT ) at
every height t and take as many elements in the set of path connected components
as the edges met by the cut.

Let {t1, . . . , tn} be the ordered image of hT in R.

Then consider the sets vtj = {v
tj
i }i=1,...,ntj

= h−1
T (tj). We use the notation F((T, hT ))t :=

at := {at1, . . . , atnt
}. We define at1 = vt1 . For every ε > 0 such that t1 − t0 > ε, we

set at1+ε = at1 and consequently ψt′
t = Id for every [t, t′] ⊂ [t1, t2). Now we build

at2 starting from at1 and using vt2 . We need to consider vt2i ∈ vt2 . There are two
possibilities:

• if vt2i is a leaf, then we add vt2i to at1 ;

• if vt2i is an internal vertex with #child(vt2i ) > 1 - i.e. a merging point, we add
vt2i to at1 and then remove child(vt2i ) = {v ∈ VT | v is a children of vt2i }. Note
that, by construction child(vt2i ) ⊂ at1 and by hypothesis #child(vt2i ) > 1;

• if vt2i is an internal vertex with #child(vt2i ) = 1 - i.e. an order 2 vertex, we
don’t do anything.

By doing these operations for every vt2i ∈ v1, we obtain at2 . The map ψt2
t , for t ∈

[t1, t2) is then defined by setting ψt2
t (at1i ) = vt2i if at1i ∈ child(vt2i ) and ψt2

t (at1i ) = at1i
otherwise. To define at for t > t2 we recursively repeat for every critical value ti (in
increasing order) the steps of defining ati+ε equal to ati for small ε > 0 and then
adjusting (as explained above) ati according to the tree structure to obtain ai+1 and

ψ
ti+1

ti . When reaching tn we have vtn = {vtn1 } and we set at = vtn for every t ≥ tn.
We call this persistent set F((T, hT )). Note that, by construction:

• for every v ∈ VT we have v ∈ at for t ∈ [hT (v), hT (father(v));

• F((T, hT )) is regular;
• F((T, hT )) is independent from order 2 vertices of (T, hT );

• F((T, hT )) is an abstract merge tree.

Now we need to check that (T ′, hT ′) = M(F((T, hT ))) ∼=2 (T, hT ). WLOG we
suppose (T, hT ) is without order 2 vertices and prove (T ′, hT ′) =M(F((T, hT ))) ∼=
(T, hT ). Let π0(X·) = F((T, hT )).
As before, for notational convenience, we set at := π0(Xt) and ψ

t′
t := π0(Xt≤t′). By

construction, at ⊂ VT for every t. Which implies VT ′ ⊂ VT .
Consider now ati with ti critical value. To build π0(X·) elements a

ti−1

j , a
ti−1

k ∈ ati−1

are replaced by v in ati if and only if they merge with v in the merge tree (T, hT ):

(a
ti−1

j , v), (a
ti−1

k , v), with hT (v) = ti. The maps ψti
ti : ati−1

→ ati−1
are defined

accordingly to represent that merging mapping a
ti−1

j 7→ v and a
ti−1

k 7→ v. So an

element v′ stays in at until the edge (v′, father(v′)) meets another edge in (T, hT ),

and then is replaces by father(v′). As a consequence, we have a
ti−1

j , a
ti−1

k , v ∈ VT ′

and (a
ti−1

j , v), (a
ti−1

k , v) ∈ ET ′ .

Since (T, hT ) has no order 2 vertices then 1) VT =
⋃

i=1,...,n ati 2) VT = VT ′ 3)
id : VT → VT ′ is an isomorphism of merge trees.

20



Chapter 2. A Locally Stable Edit Distance for Functions Defined on Merge Trees

Now we consider π0(X·) regular abstract merge tree and prove F(M(R(π0(X·))) ∼=
π0(X·). Consider ti critical value, ε > 0 such that ti−1 < ti − ε and let vti = {v ∈
π0(Xti) |#π0(Xti−ε<ti)

−1(v) ̸= 1}. By construction, vti ⊂ VT , for every ti critical
value, with (T, hT ) =M(R(π0(X·)).
For every v ∈ π0(Xt), for any t ∈ R there is vtij ∈ vti for some ti, such that

π0(Xti≤t)(v
ti
j ) = v. Moreover the following element is well defined:

s(v) := max{w ∈ vti , ti critical value |π0(Xti≤t)(w) = v}

By construction we have v = π0(Xti≤t)(s(v)).

Let π0(Y·) = F(M(R(π0(X·))). Define αt : π0(Xt) → π0(Yt) given by v =
π0(Xti≤t)(s(v)) 7→ s(v). It is an isomorphism of abstract merge trees.

3. if π0(X·) ∼=a.e. π0(Y·), then R(π0(X·)) ∼= R(π0(Y·)) and then the merge trees
M(R(π0(X·)) andM(R(π0(Y·)) differ just by a change in the names of the vertices.
If M(R(π0(X·)) ∼= M(R(π0(Y·)) then F(M(R(π0(X·))) ∼= F(M(R(π0(Y·))) ∼=
R(π0(X·)) ∼= R(π0(Y·)).

4. the proof is analogous to the one of the previous point, with regularity condition
on abstract merge trees being replaced by being without order 2 vertices for merge
trees.

We point out an additional fact about order 2 vertices. Suppose that we were to remove
a leaf in a merge tree, the father of the deleted vertex may become an order two vertex. In
case that happens, such vertex carries no topological information, since the merging that
the point was representing, is no more happening (was indeed removed). And in fact the
abstract merge tree associated to the merge tree with the order 2 vertex and to the merge
tree with the order 2 vertex ghosted are the same by Proposition 2.19. Thus working up
to order two vertices is a very natural framework to work with merge trees. And this must
be taken into consideration when setting up the framework to deal with functions defined
on merge trees.

The proof of Proposition 2.19 carries this important corollary.

Corollary 2.20. Given a merge tree (T, hT ) and the abstract merge tree π0(X·) =
F((T, hT )), we have ET ↪→ Dπ0(X·) via (v, v′) 7→ (v, hT (v)).

2.3.2 Example

Consider the function f = | |x | −1 | defined on the interval [−2, 2]. Consider the sublevel
set filtration Xt = f−1((−∞, t]). The sublevel set Xt is an interval of the form [−1 −
t,−1 + t]

⋃
[1− t, 1 + t], for t ∈ [0, 1].

Consider then the abstract merge tree π0(X·). For any t ∈ [0, 1), the path connected
components are at = {at1, at−1}, with at1 = [1 − t, 1 + t] and at−1 = [−1 − t,−1 + t] and
for t ≥ 1, at2 = {[−2, 2]}. The critical points of the filtration are t1 = 0 and t2 = 1. The
maps are ati 7→ at

′

i and with i = −1, 1, for t ≤ t′ < 2; at1, a
t
−1 7→ at

′

2 for t < 2 ≤ t′ and the
identity for t, t′ ≥ 2.

The merge treeM(π0(X·)) = (T, hT ) associated to π0(X·) has a tree structure given by

a root, an internal vertex and two leaves - as in Figure 2.2c: if we call v1 := a01, v−1 := a0−1

and v2 := a22, the merge tree M(π0(X·)) is given by the vertex set {v1, v−1, v2, rT } and
edges e1 = (v1, v2), e2 = (v−1, v2) and e3 = (v2, rT ). The height function has values
hT (v1) = hT (v−1) = t− = 0, hT (v2) = 2 and hT (rT ) = +∞.
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(a) First point cloud. (b) First dendrogram.
(c) First PD.

(d) Second point cloud. (e) Second dendrogram.
(f) Second PD.

Figure 2.3: Data clouds, hierarchical clustering dendrograms and PDs involved in the first
example.

2.4 Why Using Trees

After having introduced abstract merge trees and merge trees to represent the evolution of
the path connected components of a filtration, we want to give some motivation to propel
the use of such topological summaries over persistence diagrams, in certain situations. We
give only two brief examples since a similar topic is already tackled for instance in Elkin
and Kurlin (2020), Smith and Kurlin (2022), Kanari et al. (2020),Curry et al. (2021) and
Curry et al. (2022).

2.4.1 Point Clouds

Given a point cloud C = {x1, . . . , xn} in Rn there are many ways in which one can build a
family of simplicial complexes (Edelsbrunner and Harer, 2008) whose vertices are given by
C itself and whose set of higher dimensional simplices gets bigger and bigger. A standard
tool to do so is the Vietoris-Rips filtration of C (Edelsbrunner and Harer, 2008), as are α
filtrations, Céch filtrations etc..

As we are interested only in path connected components we restrict our attention to 0
dimensional simplices (points) and 1 dimensional simplices (edges). With such restrictions,
many of the aforementioned filtrations become equivalent and amount to having a family
of graphs {Ct}t≥0 such that the vertex set of Ct is C and the edge between xi and xj
belongs to Ct if and only if d(xi, xj) < t. Thus, the set of edges of Ct′ contains the set
of edges of Ct, with t ≤ t′; while the set of vertices is always C. Note, for instance, that
the path connected components of Ct are equivalent to the ones of Xt/2 with X· being
the Céch filtration built in Section 2.2.1. Along this filtration of graphs, the closest points
become connected first and the farthest ones at last. It is thus reasonable to interpret
the path connected components of Ct as clusters of the point cloud C. In order to choose
the best “resolution” to look at clusters, i.e. in order to choose t and use Ct to infer the
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(a) Sublevel sets of a function (b) A function with its associated merge tree.

Figure 2.4: Merge Trees of Functions

clusters, statisticians look at the merge tree M(π0(Ct)t≥0), which is called hierarchical
clustering dendrogram. More precisely, M(π0(Ct)t≥0) is the single linkage hierarchical
clustering dendrogram. Note that π0(X·) is a regular abstract merge tree.

Suppose, instead, that we have the persistence diagram obtained from {π0(Ct)}t∈R≥0
.

Persistence diagrams are made of points in R2 whose coordinates (b, d) represent the value
of t at which a certain path-connected component appears and the value of t at which
that component merges with a component which appeared before b. Each point in the
point cloud is associated to a path connected component but, in general, we have no way
to distinguish between points of the diagram associated to path connected components
which are proper clusters and points of the diagrams associated to outliers.

Now, consider the single linkage dendrograms and the zero dimensional PDs obtained
from point clouds as in Figure 2.3. The persistence diagrams (in Figure 2.3c and Fig-
ure 2.3f) are very similar, in fact they simply record that there are four major clusters
which merge at similar times across the Vietoris-Rips filtrations of the two point clouds.
The hierarchical dendrograms, instead, are clearly very different since they show that in
the first case (Figure 2.3a, Figure 2.3b, Figure 2.3c) the cluster with most points is the
one which is more separated from the others in the point cloud; while in the second case
(Figure 2.3d, Figure 2.3e, Figure 2.3f) the two bigger clusters are the first that get merged
and the farthest cluster of points on the right could be considered as made by outliers. In
many applications it would be important to distinguish between these two scenarios, since
the two main clusters get merged at very different heights on the respective dendrograms.

These observations are formalized in Curry et al. (2021), with the introduction of the
tree realization number with is a combinatorial description of how many merge trees share
a particular persistence diagram. With hierarchical clustering dendrograms with n leaves,
such number is n!: all leaves are born at height 0, and so, at the first merging point, each
of the n leaves can merge with any of the n− 1 remaining ones. At the following merging
step we have n− 1 clusters and each one of them can merge with the other n− 2 etc..

2.4.2 Real Valued Functions

Given a continuous function f : [a, b] → R we can extract the merge tree M(π0(X·)),
with X· being the sublevel set filtration (see Section 2.2.1 and Section 2.3.2): we obtain
a merge tree that tracks the evolution of the path connected components of the sublevel
sets f−1((−∞, t]). For a visual example see Figure 2.4b. Chapter 4 shows that π0(X·) is
a regular merge tree.

We use this example to point out two facts. First PDs may not be able to distinguish
functions one may wish to distinguish, as made clear by Figure 2.5. Second, Proposition
1 of Chapter 4 states that if one changes the parametrization of a function by means of
homeomorphisms, then, both the associated merge tree and persistence diagram do not
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change. A consequence of such result is that one can shrink or spread the domain of the
function f : [a, b]→ R with reasonably regular functions, without changing its merge tree
(and PD). There are cases in which such property may be useful but surely there are times
when one may want to distinguish if an oscillation lasted for a time interval of 10−5 or 105.
As we will see in the following section, being able to embed in a topological representation
some kind of additional information about such oscillations, could help in dealing with
those situations.

2.5 Functions Defined on Display Posets

Now we formalize how we want to deal with functions defined on merge trees, devoting
much care to setting up a framework in accordance with the equivalence relationships
introduced in Section 2.2.2.

2.5.1 Metric Spaces

Following Burago et al. (2022), we briefly report the definitions related to metric geometry
that we need in the present work.

Definition 2.21. Let X be an arbitrary set. A function d : X × X → R is a (finite)
pseudo metric if for all x, y, z ∈ X we have:

1. d(x, x) = 0

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y).

The space (X, d) is called a pseudo metric space.
Given a pseudo metric d on X, if for all x, y ∈ X, x ̸= y, we have d(x, y) > 0 then d

is called a metric or a distance and (X, d) is a metric space.

Proposition 2.22 (Proposition 1.1.5 Burago et al. (2022)). For a pseudo metric space
(X, d), x ∼ y iff d(x, y) = 0 is an equivalence relationship and the quotient space (X, d)/ ∼
is a metric space.

Definition 2.23. Consider X,Y pseudo metric spaces. A function f : X → Y is an
isometric embedding if it is injective and d(x, y) = d(f(x), f(y)). If f is also bijective then
it is an isometry or and isometric isomorphism.

Definition 2.24. A pseudo metric d on X induces the topology generated by the open
balls Bε(x) := {y ∈ X | d(x, y) < ε}.

2.5.2 The Display Poset as a Pseudo-Metric Space

Now we start the proper discussion to build function spaces on display posets. We begin
by giving the notion of common ancestors for subsets of the display poset of an abstract
merge tree.

Definition 2.25. Given Q ⊂ Dπ0(X·), with suph(Q) <∞, then common ancestors of Q

is the set CA(Q) defined as:

CA(Q) = {p ∈ Dπ0(X·) | p ≥ Q}

If π0(X·) is regular then we have a well defined element minCA(Q) which we call the least
common ancestor LCA(Q).
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(a) A function f0. (b) The 0-dimensional persis-
tence diagram of f0.

(c) The merge tree of f0.

(d) A function f1. (e) The 0-dimensional persis-
tence diagram of f1.

(f) The merge tree of f1.

(g) A function f2. (h) The 0-dimensional persis-
tence diagram of f2.

(i) The merge tree of f2.

(j) A function f3. (k) The 0-dimensional persis-
tence diagram of f3.

(l) The merge tree of f3.

Figure 2.5: We compare four functions; they are all associated to the same PD but to
different merge trees. Functions are displayed in the first column and on each row we have
on the centre the associated PD and on the right the merge tree.
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The definition is well posed since {p ∈ Dπ0(X·) | p ≥ Q} is non empty if suph(Q) <∞.

Moreover it is bounded from below in terms of h. Clearly, if Q ⊂ Q′ ⊂ Dπ0(X·) then

inf CA(Q) ≤ inf CA(Q′).

Proposition 2.26. The display poset Dπ0(X·) of any abstract merge tree can be given a
pseudo-metric structure with the following formula:

d((a, t), (b, t′)) = t̃− t+ t̃− t′

with t̃ = inf{h(p) | p ∈ CA({(a, t), (b, t′)})}. If π0(X·) is regular then d is a metric.

Proof. First note that even if inf CA(Q), with Q ⊂ Dπ0(X·) and suph(Q) < ∞, may be

a set with more than one element, inf{h(p) with p ∈ Dπ0(X·) | p ≥ Q} is uniquely defined.

Moreover, consider p = (b, tb), q = (c, tc) ∈ inf CA(Q). For every (a, t) ∈ CA(Q) we know
π0(Xtb≤t)(b) = π0(Xtc≤t)(c) = a. Clearly tb and tc must be critical values otherwise we
can consider p′ > p and q′ > q with q′, p′ ≤ Q, which is absurd. But the same holds if
tb ̸= tc: suppose tb < tc ≤ h(Q) then p′ = (π0(Xtb<tb+ε)(b), tb + ε) (with ε > 0 small
enough) satisfies p < p′ and p′ ≤ Q, which is absurd. Thus tb = tc = ti critical value.

The map d : Dπ0(X·) × Dπ0(X·) → R≥0 is symmetric. For what have said before

d(p, q) = 0 if and only if p, q ∈ inf CA({p, q}) and h(p) = h(q) = ti critical value. This is
equivalent to p = (b, ti), q = (c, ti) ∈ Dπ0(X·) such that π0(Xti<ti+ε)(b) = π0(Xti<ti+ε)(c)
for every ε > 0.

Thus, if π0(X·) is regular we have d((b, ti), (c, ti)) = 0 if and only if p = q; in fact
Xti<ti+ε is an isomorphism for ε > 0 small enough.

Now we check the triangle inequality. Let p1, p2, p3 ∈ Dπ0(X·). And let ti = h(pi), Qij =

(pi, pj), qij = inf{h(p) with p ∈ CA(Qij)} and q = inf{h(p) with p ∈ CA({p1, p2, p3})}.
Consider P1 = CA({p1}). Clearly inf CA({p1, p2}) ⊂ P1 and inf CA({p1, p3}) ⊂ P1.

Thus either (1) q13 ≤ q12 (and q23 = q12) or (2) q12 < q13 (and q13 = q23) hold.
In case (1) holds:

q12− t1 = q12−q13+q13− t1 ≤ q12−q13+q13− t1+2q13−2t3 = q13− t1+q13− t3+q23− t3

Thus:
q12 − t1 + q12 − t2 ≤ q13 − t1 + q13 − t3 + q23 − t3 + q23 − t2

The proof in case (2) holds is analogous.

See Figure 2.6 for an example of a display poset with its pseudo metric structure.

Remark 2.27. Proposition 2.26 states that if π0(X·) is a regular abstract merge tree,
then via ET ↪→ Dπ0(X·), we can induce a metric on (T, hT ). It is not hard to see that this

is the shortest path metric on ET , with the length of an edge e = (v, v′) being given by
hT (v

′)− hT (v).

Remark 2.28. Given π0(X·) abstract merge tree, we have that the quotient of Dπ0(X·)
under the relationship x ∼ y iff d(x, y) = 0, is isometric as a metric space to DR(π0(X·)).

2.5.3 Functions Spaces on the Display Poset

Thanks to Proposition 2.26 any display poset of an abstract merge tree inherits the topol-
ogy generated by the open balls of the (pseudo) metric.

Consider now an abstract merge tree π0(X·) with critical set {t1, . . . , tn} and let
t ̸= ti for all i = 1, . . . , n. Consider p = (a, t) ∈ Dπ0(X·). We call tp = max{h(q) ∈
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Figure 2.6: A graphical representation of the display poset, with its a.e. covering - see
Section 2.5.2 - highlighted by the brackets at the extremes of the edges. Each such
covering is the mapped homeomorphically to R via the height function h. Note that
d((a, t2), (b, t2)) = 0 and {(a, t2), (b, t2)} = CA((c, t1), (d, t1)). The color scheme is coher-
ent with the one in Figure 2.1.

{t1, . . . , tn} with q < p} and tp = min{h(q) ∈ {t1, . . . , tn} with q > p}. An open ball of
radius ε > 0 is by definition:

Bε(p) := {q ∈ Dπ0(X·) | d(p, q) < ε}.

Consider now ε > 0, with tp ≤ t − ε < t + ε ≤ tp. Let p = (a, t) be a point such that
for every η > 0 small enough #X−1

t−η<t(p) = 1 and #X−1
t<t+η(Xt<t+η(p)) = 1. The ball of

radius ε around p is:

Bε(p) := {q ∈ CA({p}) |h(q) < t+ ε}
⋃
{q | p ∈ CA({q}) and h(q) > t− ε}.

Thus, for any point such p = (a, t) we can define the set:

U(p) := {q ∈ CA({p}) |h(q) < tp}
⋃
{q | p ∈ CA({q}) and h(q) > tp}

which is an open neighbor of p. If t > tn, then t
p =∞ and so we have:

U∞ := U(p) = {q ∈ CA({(⋆, tn)}) |h(q) > tn}.

Refer to Figure 2.6 to have a visual intuition for the following proposition.

Proposition 2.29. The map h : Dπ0(X·) → R is monotone, continuous and h |U(p) :

U(p)→ (tp, t
p) is an homeomorphism and an isometry.

Proof. Using the same notation of Proposition 2.26, we have:

|h((a, t))− h((b, t)) | = | t− t′ | ≤ t̃− t+ t̃− t′ = d((a, t), (b, t′)).
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Thus h is continuous. Monotonicity is trivial. Suppose now we have p = (a, t) and
(b, t′), (c, t′′) ∈ U(p) such that t′ = t′′ and b ̸= c. This is absurd since it implies that
either #X−1

t−ε<t(p) > 1 or X−1
t<t+ε(Xt<t+ε(p)) > 1 depending on whether t > t′ or t < t′,

respectively. Moreover h |U(p) is clearly surjective for h(Xt<t′(p)) = t′. Thus h |U(p) is a

bijective map. If (b, t′), (c, t′′) ∈ U(p), t̃ = inf{h(q) | q ∈ CA({(b, t′), (c, t′′)})} = min{t′, t′′},
which implies that h |U(p) is an isometry. And thus an homeomorphism.

Definition 2.30. The set U(Dπ0(X·)) := {U ⊂ Dπ0(X·) |U = U(p) for some p ∈ Dπ0(X·)}
is called the a.e. canonical covering of Dπ0(X·).

Remark 2.31. Recall that the sets U(p) are defined only for points p = (a, t) for which
there is K > 0 such that for every 0 < ε < K, we have #X−1

t−ε<t(p) = 1 and #X−1
t<t+ε(Xt<t+ε(p)) =

1.

Note that U(Dπ0(X·)) is finite by the finiteness of π0(X·). Moreover, if U(p), U(q) ∈
U(Dπ0(X·)) then either U(p) = U(q) or U(p)

⋂
U(q) = ∅.

In fact, for every t, t′ ∈ h(U), U ∈ U(Dπ0(X·)), the map π0(Xt≤t′) is injective on U ∩Xt

and U ∩Xt′ . But having (c, t′) ∈ U(p)
⋂
U(q) implies π0(Xt≤t′)(a) = π0(Xt≤t′)(b) = (c, t′)

for some (a, t) ∈ U(p) and (b, t) ∈ U(q). But then t′ ≥ tp, tq, which is absurd.
With the help of U(Dπ0(X·)) we want to induce a measure on the sigma algebra gen-

erated by the open sets of Dπ0(X·). For a display poset Dπ0(X·) we define the measure
µπ0(X·) as:

µπ0(X·)(Q) =
∑

U∈U(Dπ0(X·))

L(h(U
⋂
Q))

A graphical representation of such measure can be found in Figure 2.7a. Note that, if we
call D◦

π0(X·) =
⋃

U∈U(Dπ0(X·))
U , we have µπ0(X·)(Dπ0(X·) −D

◦
π0(X·)) = 0.

Proposition 2.32. µπ0(X·)(Q) =
∑

U∈U(Dπ0(X·))
L(h(U

⋂
Q)) induces a measure on the

sigma algebra generated by the open sets of Dπ0(X·).

Proof. We prove that µπ0(X·) is σ-additive. Let Xi, i ∈ N, be disjoint sets in the Borel

sigma algebra of Dπ0(X·); we need to prove that µπ0(X·)(
⋃

i∈NXi) =
∑

i∈N µπ0(X·)(Xi).
We have:

(
⋃
i∈N

Xi)
⋂
U = {p ∈ Dπ0(X·) | p ∈ Xi for some i and p ∈ U} =

⋃
i∈N

(Xi

⋂
U)

and so we are finished since L is σ-additive on h(U
⋂
Xi). Note that, if Q is in the Borel

sigma algebra of Dπ0(X·), being h an homeomorphism on U (due to Proposition 2.29),

h(U
⋂
Q) is always Lebesgue measurable in R.

In a similar fashion, consider a function f : Dπ0(X·) → R: by construction we have that

f is µπ0(X·)-measurable if f ◦ (h |U )
−1 is L-measurable on R for every U ∈ U(Dπ0(X·)).

So, given a µπ0(X·)-measurable function f : Dπ0(X·) → R we can define:∫
Dπ0(X·)

fdµπ0(X·) =
∑

U(p)∈U(Dπ0(X·))

∫ tp

tp

f ◦ (h |U(p))
−1dL.

Leveraging on this definition, we want to define a framework to work with functions
defined in some metric space (E, de). For reasons which will be clarified in the next section,
we want that inside the metric space E there is a reference element 0 such that the amount
of information contained in the value f(p) can in some sense be quantified as the distance
de(f(p), 0). So we make the following assumption.
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Assumption 2.33. We always assume that (E, de) is a metric space and that (E, ∗, 0) is
a monoid, i.e. that ∗ is an associative operation with neutral element 0.

We establish the following notation for any measure space (M,µ):

Lp(M,E) :=
{
f :M → E | d(f(·), 0) :M → R measurable and

∫
M
de(f(·), 0)pdµ <∞

}
/ ∼

with ∼ being the usual equivalence relationship between functions identifying functions up
to µ-zero measure sets. This space becomes a monoid and a metric space with (f+g)(p) :=
f(p) ∗ g(p) and:

dLp
(f, g) =

∫
M
de(f(·), g(·))pdµ.

To verify that dLp
is a metric is enough to see that dLp

(f, g) = 0 if and only if f and g
differ on µ-zero measure sets and prove the triangle inequality using that Lp(M,R) is a
normed space.

For the sake of brevity, in the following we do not write explicitly the request that
d(f(·), 0) is measurable and we imply it in the existence of its integral. Thus, we are
interested in the spaces:

Lp(π0(X·), E) :=
{
f : Dπ0(X·) → E |

∫
Dπ0(X·)

de(f(·), 0)pdµπ0(X·) <∞
}
/ ∼

Consider now π0(X·) and π0(Y·) such that π0(X·) ∼=a.e. π0(Y·). Let Z ⊂ R such that
α : π0(X· |Z)→ π0(Y· |Z) is a natural isomorphism and L(R−Z) = 0. Then α induces a
bijection between the display posets:

Dπ0(X· |Z) :=
⋃
t∈Z

π0(Xt)× {t}

and
Dπ0(Y· |Z) :=

⋃
t∈Z

π0(Yt)× {t}.

With an abuse of notation we call such bijection α : Dπ0(X· |Z) → Dπ0(Y· |Z).
Given f : Dπ0(Y·) → E we can clearly restrict it to Dπ0(Y· |Z) and thus we can pull it

back on Dπ0(X· |Z) with α:

Dπ0(X· |Z)
α−→ Dπ0(Y· |Z) ↪→ Dπ0(Y·)

f−→ E

We call such function α∗f .

Proposition 2.34. The rule f 7→ α∗f induces map α∗ : Lp(Dπ0(X·), E)→ Lp(Dπ0(Y·), E)
which is an isometry and a map of monoids.

Proof. Since L(R − Z) = 0 then both f ∈ Lp(Dπ0(Y· |Z), E) and α∗f ∈ Lp(Dπ0(X· |Z), E)

identify a unique equivalence class, respectively, in Lp(Dπ0(Y·), E) and Lp(Dπ0(X·), E).

Moreover, it is easy to see that the map α∗ is such that α∗(f + g) = α∗f + α∗g and
dLp

(f, g) = dLp
(α∗f, α∗g). Lastly, because α is a natural isomorphism, then (α−1)∗ yields

the opposite correspondence.

Proposition 2.34 implies that, for our purposes, we can always restrict ourselves to
considering regular abstract merge trees. Thus we make the following assumption.

Assumption 2.35. From now on we will always suppose that any abstract merge tree we
consider is regular.
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2.5.4 Local Representation of Functions

When comparing two functions f , g defined on different display posets, we face the problem
of combining together two kinds of variability: using language borrowed from functional
data analysis (see the Special Section on Time Warpings and Phase Variation on the
Electronic Journal of Statistics, Vol 8 (2), and references therein) and shape analysis
(Kendall, 1977, 1984; Dryden and Mardia, 1998) we have an “horizontal” variability, due
to the different domains (i.e. display posets), and a “vertical” variability which depends on
the actual values that the functions assume. It is reasonable that both kinds of variability
contribute to the final distance value: we have a cost given by the aligning the two display
posets - horizontal variability - and a cost arising from the different amplitudes of the
functions - vertical variability. In particular, we would like the horizontal variability to be
measured in a way which is suitable for abstract merge trees (for instance, it should posses
some kind of stability properties) and, similarly, the way in which the amplitude variability
is measured should assume a somehow natural form, related to the spaces Lp(Dπ0(X·), E).

In other words, given f : Dπ0(X·) → E and g : Dπ0(Y·) → E we want to align, deform
the display posets by locally comparing the information given by f and g and matching
the display posets in the more convenient way. The word locally is on purpose vague at
this stage of the discussion and should be thought as in some neighborhood of points of
the posets. To compare local information carried by functions, we need to embed such
objects in a common space so that differences can be measured.

First we formalize the procedure of obtaining local information from a function f :
Dπ0(X·) → E - Figure 2.7b can help in the visualization of such idea. Given Dπ0(X·)
display poset and its a.e. canonical covering, we have an isomorphism of metric spaces
and monoids:

Lp(π0(X·), E) ∼=
p⊕

U∈U(Dπ0(X·))

Lp(h(U), E)

where
⊕p means that the norm of the direct sum is the p-th root of the sum of the p-th

powers of the elements in the direct sum.
In this way we split up a function f on open disjoint subsets, without losing any

information. However, as in Figure 2.7, to compare different functions one may need to
represent this information on a finer scale and thus UDπ0(X·)

may not be the correct way

to split up f , which may need to be partitioned in smaller pieces. Thus we allow UDπ0(X·)

to be refined with particular collections of open sets.

Definition 2.36. A collection of open sets of Dπ0(X·) is an a.e. covering of Dπ0(X·) if it
covers Dπ0(X·) up to µπ0(X·)-zero measure set. An a.e. covering of Dπ0(X·) is regular if

it is made by disjoint, connected open sets, each contained in some U ∈ U(Dπ0(X·)).
Given O′ regular a.e. covering of Dπ0(X·), a refinement of O′ is a regular a.e. covering

O such that for every U ∈ O there is U ′ ∈ O′ such that U ⊂ U ′.

Given the display poset Dπ0(X·) of an abstract merge tree π0(X·) we collect all the

refinements of its a.e. canonical covering in the set Cov(π0(X·)).
Proposition 2.37. The set Cov(π0(X·)) is a lattice. It is a poset with the relationship
O < O′ if O is a refinement of O′ and for every couple of elements O, O′ there is a unique
least upper bound O ∨ O′ and a unique greater lower bound O ∧ O′. The operations are
defined as follows:

O ∨O′ := π0

( ⋃
U∈O′ or U∈O

U

)

O ∧O′ := {U ∩ U ′ |U ′ ∈ O′ and U ∈ O}.
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Proof. Let’s start with O ∨O′. It is clearly an a.e. covering. Moreover
⋃

U∈O′ or U∈O U is

clearly contained in
⋃

U∈U(Dπ0(X·))
U , and by functoriality we have that the set π0

(⋃
U∈O′ or U∈O U

)
is included in π0

(⋃
U∈U(Dπ0(X·))

U
)
. And the latter is equal to U(Dπ0(X·)). Thus O ∨O

′

is regular and clearly is refined by O and O′. Lastly, consider any O,O′ < O′′. Since the
sets of O′′ are disjoint and path connected (by construction), then any U ′′ ∈ O′′ contains
all the sets of O and O′ it intersects. Thus it contains a path connected component of
their union.

Now we turn to O ∧O′. All the sets in O ∧O′ are disjiont, open and path connected.
And they form an a.e. cover of Dπ0(X·) - otherwise a positive-measure set would be left

out by O or O′. Thus O ∧O′ is a regular a.e. covering which refines O and O′. Consider
O′′ such that O,O′ > O′′. Take U ′′ ∈ O′′. By construction there are U ∈ O and U ′ ∈ O′

with U ′′ ⊂ U ′, U . Thus U ′′ ⊂ U ∩ U ′. So O′′ < O ∧O′.

Given O ∈ Cov(π0(X·)) we have:

Lp(π0(X·), E) ∼=
p⊕

U∈O
Lp(h(U), E)

As already mentioned, to compare functions defined on different abstract merge trees
we want to embed all these representations of functions into one common metric space,
shared by all abstract merge trees. What we do is to consider Lp((a, b), E), for some
(a, b) ⊂ R and embed it into Lp(R, E) by extending f : (a, b)→ E to R with 0 ∈ E outside
(a, b). In this way we have an isometric embedding Lp((a, b), E) ↪→ Lp(R, E).

In the next definition we need the notion of the essential support of a function f :
(M,µ)→ E defined on a measure topological space (M,µ) and with values in (E, ∗, 0):

supp(f) =M −
⋃
{U ⊂M open | f |U = 0 µ− a.e.}

Definition 2.38. Given Dπ0(X·) and O ∈ Cov(π0(X·)), a local representation of a func-

tion in Lp(Dπ0(X·), E) on O is a function φO : O → Lp(R, E) such that supp(φ(U)) ⊂
h(U) for every U ∈ O.

Note that if, instead of splitting f on a finer scale, we want to look at the function on
a coarser level, we can do that. Consider O′ refinement of O; then for every V ∈ O:

φO(V ) =
∑

U∈O′ such that U⊂V

φO′(U)

2.5.5 Functions Defined on Merge Trees

Thanks to Proposition 2.34 we have seen that to work with functions defined on display
posets we can reduce to the case of regular abstract merge trees. This makes the upcoming
discussion much easier since, thanks to Proposition 2.19, we can associate a merge tree to
any regular abstract merge tree.

We have already seen that the metric d defined on the display poset Dπ0(X·) induces the
shortest path metric on the graph (T, hT ) =M(π0(X·)) via the inclusion ET ↪→ Dπ0(X·)
- see Proposition 2.19. Similarly, we can establish a correspondence between the edges ET

and the a.e. canonical covering U(Dπ0(X·)): informally speaking, each edge (v, v′) ∈ ET

corresponds to the open set U = {p ∈ Dπ0(X·) | v < p < v′} or U∞ = {p ∈ Dπ0(X·) | v < p}
if v′ = rT - as in Figure 2.2c.

As a consequence, a local representation of a function on U(Dπ0(X·)), i.e. φU(Dπ0(X·)) :

U(Dπ0(X·))→ Lp(R, E) induces a unique function φT : ET → Lp(R, E), and viceversa.
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Before proceeding we point out a fact which will be discussed with more details in
Section 2.7 and which brings together the idea of local representation of a function and
the need to work up to order 2 vertices. Consider M(π0(X·)) = (T, hT ) and (T ′, hT ′)
such that T ′ and T are equivalent up to order two vertices. We know that π0(X·) =
F((T ′, hT ′)) ∼= F((T, hT )) and that VT ↪→ Dπ0(X·) induces the a.e. canonical covering

U(Dπ0(X·)). The inclusion VT ′ ↪→ Dπ0(X·) induces another regular a.e. covering, always

with the rule (v, v′) ∈ ET 7→ U = {p ∈ Dπ0(X·) | v < p < v′}. This regular a.e. covering is

a refinement of U(Dπ0(X·)). Thus via splittings and ghostings we are able to change the
local representation of a function.

At this point we face the problem of defining a suitable (pseudo) metric framework
for objects of the form (T, hT , φT ), with φT : ET → Lp(R, E) such that supp(φT (e)) ⊂
[hT (a), hT (b)] for e = (a, b). Before dealing with such problem we take a brief detour to
make some examples of local representation of functions on merge trees.

2.5.6 Examples

In what follows, we present some examples of functions defined on display posets, to show
how they can be used to capture useful information about a filtration X·.

The general structure of the following examples is to consider a subcategory B of Top
and pick a function Θ : B → E. Then, f : Dπ0(X·) → E is obtained as f(a, t) = Θ(a). We

call φΘ
T the local representation of such function, and we prove that in all our examples the

information contained in the functions generalizes, in some sense, the notion of merge trees.
More formally, if (T, φΘ

T )
∼= (T ′, φΘ

T ′) then (T, hT ) ∼= (T ′, hT ′). Under such hypotheses a
metric to compare (T, φΘ

T ) and (T ′, φΘ
T ′) can be pulled back to compare objects of the form

(T, hT , φT ).
We immediately stress that many of the upcoming functions do not lie in Lp(Dπ0(X·), E),

for some Dπ0(X·), as:

lim
x→+∞

d(f ◦ (h |U∞)−1(x), 0) > 0.

However, in Section 2.7 we discuss how these examples can be modified to fit into the
proposed framework.

2.5.6.1 Merge Trees

Consider the special case of the constant function Θ1 : Top → R≥0, such that Θ1(s) = 1
for all sets s. That is f : Dπ0(X·) → R≥0 is defined by f((a, t)) = 1. As a consequence we

have f ◦ (h |U(p))
−1 = χ(tp,tp), for some p ∈ Dπ0(X·) and with χI being the characteristic

function over the set I ⊂ R. Consider nowM(π0(X·)) = (T, hT ); given e = (v, v′) ∈ ET ,

we have φT (e) = χ(tp,tp) = χ(ti,tj) with hT (v) = ti and hT (v
′) = tj . We call φΘ1

T the local
representation of the function f induced by Θ1 on Dπ0(X·).

Consider two functions (T, φΘ1

T ) and (T ′, φΘ1

T ′ ). Suppose there is η : VT → VT ′ isomor-
phism of tree structures such that φT ◦ η = φT ′ ◦ η. Then (T, hT ) ∼= (T ′, hT ′). In fact via
η, the support of φΘ1

T (e) coincide with the support of φΘ1

T ′ (η(e)). But the support is given
by the critical values of the filtration, that is, the value of the height function hT on the
extremes of the edge e.

Thus, via the function Θ1 ≡ 1, we have found another way to represent the information
contained in merge trees: (T, hT ) ∼= (T ′, hT ′) if and only if (T, φΘ

T )
∼= (T ′, φΘ

T ′).
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(a) A display poset Dπ0(X·) with the measure
µDπ0(X·)

. The orange shaded set is first inter-

sected with the open sets U∞, U(p) and U(q)
and then its Lebesgue measure is taken in R via
the height function h.

(b) A function f : Dπ0(X·) → R defined on the
display poset Dπ0(X·). With different colors we
have highlighted the restrictions of the function
on the different open sets of the canonical a.e.
covering.

(c) A function f : Dπ0(X·) → R defined on the
display poset Dπ0(X·) represented with the re-
strictions on a regular a.e. covering which refines
the canonical one.

(d) A function g : Dπ0(Y·) → R defined on
the display poset Dπ0(Y·) along with its restric-
tions on the canonical a.e. covering of Dπ0(Y·).
The refinement of the canonical a.e. covering of
Dπ0(X·) which appears in Figure 2.7c is much
more suited than the canonical a.e. covering in
Figure 2.7b to compare the two functions: on
U∞ and U∞ the functions are very similar, as
the are on U ′ and U(x), on U ′′ and U(y) and on
U(q) and U(z).

Figure 2.7: Measures and real valued functions defined on display posets. In every plot
but the upper left one, for visualization purposes the posets are represented as embedded
on the horizontal plane in R3 and plotted with thick lines. The vertical axis represents
the value of the functions. With different colors we have highlighted the restrictions of
the functions on different open sets. The colored dotted lines are are a qualitative visual
representation of the embedding (f : (a, b)→ R) 7→ (f ′ : R→ R) where f ′ extends f with
0 outside (a, b).
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2.5.6.2 Cardinality of Clusters

Consider now the case of a merge tree M(π0(X·)) = (T, hT ), with X· being the Céch
filtration of the point cloud {x1, . . . , xn}. Sensible information that one may want to track
down along π0(X·) is the cardinality of the clusters. Thus we can take Θc : FSets →
R≥0, defined on all finite sets (Fsets) considered with the discrete topology, defined as
Θc({xj,1, . . . , xj,nj

}) = nj . As a consequence, we have φΘ
T (e) = mχ[ti,tj), for some positive

cardinality m and some critical points ti, tj . Note that, clearly, supp(φΘc

T (e)) = [ti, tj ].

Thus if we have (T, φΘc

T ) ∼= (T ′, φΘc

T ′ ) then (T, hT ) ∼= (T ′, hT ′).

We now make a concrete example - Figure 2.8a and Figure 2.8b. Consider the finite set
{v−1 = −1, v0 = 0, v2 = 2} and build the abstract merge tree and the single linkage hier-
archical clustering dendrogram. Abstract merge tree is given by at = {{v−1}, {v0}, {v2}}
for t ∈ [0, 1), at = {{v−1, v0}, {v2}} for t ∈ [1, 2) and at = {{v−1, v0, v2}} for t ≥ t+ = 2.
With maps given by a 7→ b with a ⊂ b.

The associated merge tree (T, hT ) - see Figure 2.8a - can be represented with the
vertex set VT = {{v−1}, {v0}, {v2}, {v−1, v0}, {v−1, v0, v2}, rT }. The leaves are {v−1}, {v0}
and {v2}; the children of {v−1, v0} are {v−1} and {v0}, and the ones of {v−1, v0, v2} are
{v−1, v0} and {v2}. The height function hT is given by hT ({vi}) = 0 for i = −1, 0, 2,
hT ({v−1, v0}) = 1, hT ({v−1, v0, v2}) = 2 and hT (rT ) = +∞.

Consider Θc. The local representation φΘc

T of the induced function is thus the follow-

ing: φΘc

T ({vi}) = χ[0,1) for i = −1, 0, φΘc

T ({v2}) = χ[0,2), φ
Θc

T ({v−1, v0}) = 2χ[1,2) and

φΘc

T ({v−1, v0, v2}) = 3χ[2,+∞)}. See Figure 2.8b.

2.5.6.3 Measure of Sublevel Sets

Now consider U ⊂ Rm convex bounded open set, with U being its topological closure,
and let L be the Lebesgue measure in Rm. Let f : U → R be a tame (Chazal et al.,
2016) continuous function. Consider the sublevel set filtration Xt = f−1((−∞, t]) with
π0(Xt) = {U t

1, . . . , U
t
n}. Here the tameness condition is simply asking that π0(X·) is

a finite constructible persistent set, and thus a finite abstract merge tree. Call ψt′
t the

functions ψt′
t = Xt≤t′ . We set ΘL = L : B(Rn) → R≥0 with B(Rn) being the Borel

σ-algebra of Rn. So that we can always take: ΘL(U
t
i ) = L(U t

i ).

Proposition 2.39. If we have (T, φΘL
T ) ∼= (T ′, φΘL

T ′ ) then (T, hT ) ∼= (T ′, hT ′).

Proof. Let (T, hT ) being the merge tree representing π0(X·), and φΘL
T the local represen-

tation of the associated function. Since f is continuous, for and edge e = (v, v′) ∈ ET

spanning from height hT (v) = ti to hT (v
′) = tj , we can prove that supp(φΘL

T (e)) = [ti, tj ].

We know that v is associated to a connected component U ti
k , for some k. If v represents

the merging of two or more path connected components U ti−ε
k1

and U ti−ε
k2

, for some small

ε > 0, with L(U ti−ε
k1

),L(U ti−ε
k2

) > 0, then, since U ti−ε
k1

, U ti−ε
k2

⊂ U ti
k , we have L(U ti

k ) > 0.
Thus if we prove the statement for v leaf, we are done. So, suppose v is a leaf and consider
x0 ∈ U ti

k . We know f(x0) = ti. By the continuity of f , for every ε > 0 there is δ > 0 such

that if | |x− x0 | | < δ, then f(x0) ≤ f(x) < f(x0) + ε. Since {x ∈ U | | |x− x0 | | < δ}
is convex (and so path connected), then it is contained in ψti+ε

ti (U ti
k ). Moreover, since it

contains the non-empty open set {x ∈ U | | |x − x0 | | < δ}, we have L(ψti+ε
ti (U ti

k )) > 0

for every ε > 0. As a consequence, supp(φΘL
T (e)) = [ti, tj ].

Again we make a quick hands-on example. Consider the function f = | |x | − 1 |
defined on the interval [−2, 2]. Let π0(Xt) = π0(f

−1((−∞, t])). Let (T, hT ) be the merge
tree associated to the sequence π0(X·). Now we obtain the local representation φΘL

T (ei).
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We have φΘL
T (e1) = | 1 + t − 1 + t | = 2t for t ∈ [0, 1), and 0 otherwise. Clearly

φΘL
T (e1) = φΘL

T (e2). Lastly φ
ΘL
T (rT ) = 4χ[2,+∞).

2.5.6.4 Merge Trees with Homological Information

Lastly we propose a function Θp to combine homological information of different dimen-
sions (Hatcher, 2000) obtaining dendrograms which are closely related to the barcode
decorated merge trees defined by Curry et al. (2022). We consider the topological spaces
with p-th homology of finite type, that is, their p-th homology group is finitely gener-
ated, and collect all the spaces with finitely generated 1, . . . , p-th homology groups in
the set FTopp. Consider Θp : FTopp → N × . . . × N defined on a topological space U
as Θp(U) = (dim(H0(U ;K), . . . ,dim(Hp(U ;K)), with Hp(U ;K) being the p-th homology
group of U with coefficients in the field K. Note that, by definition, generators of homology
groups of U lie inside a connected component. In this way we are able to track if in a path
connected component there are some kind of holes arising or dying, and thus collecting
a more complete set of topological invariants which capture the shape of each connected
component, which could be useful in situations like the one depicted in Figure 2.8e. From
another point of view, at every step along a filtration, we are decomposing homological
information of a topological space by means of its connected components.

Note that we clearly have (T, φ
Θp

T ) ∼= (T ′, φ
Θp

T ′ ) implying (T, hT ) ∼= (T ′, hT ′). In fact

FTopp
Θp−−→ N× . . .×N π1−→ N is Θ1 - with π1 being the projection on the first component.

2.6 Dendrogram Edit Distance

The aim of the remaining part of the chapter is to define a (pseudo) metric structure that
allows us to work with all the machinery we defined up to this point. Since the properties
of the spaces Lp(Dπ0(X·), E) and Lp(R, E) are very much dependent on E, instead of

making assumptions on E and then evaluating their consequences on Lp(Dπ0(X·), E), we
take a step back and consider general functions φT : ET → W , trying to identify which
properties we need to impose on W to build our metric. In Section 2.6.2, starting from
such properties, we will recover information on E and Lp(Dπ0(X·), E).

2.6.1 Editable Spaces and Edits of Dendrograms

The approach we follow is to define a distance, for objects of the form (T, φT : ET →W ),
which is inspired by the Tree Edit Distances (Tai, 1979), but with substantial differences
in the edit operations. The philosophy of these distances is to allow certain modifications
of the base object, called edits, each being associated to a cost, and to define the distance
between two objects as the minimal cost that is needed to transform the first object into
the second with a finite sequence of edits. In this way, up to properly setting up a set of
edits, one can formalize the deformation of a tree comparing the local information induced
by the function defined on the edges. On top of that, edit distances frequently enjoy some
decomposition properties which simplify the calculations (Hong et al., 2017), which are
notoriously very heavy (Hein et al., 1995).

To begin with, let us make some hypotheses on the codomain of the functions φT :
ET →W .

Definition 2.40. A set W is called editable if the following conditions are satisfied:

(P1) (W,d) is a metric space

(P2) (W, ∗, 0) is a monoid (that is W has an associative operation ∗ with zero element 0)
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(a) Single linkage clustering dendrogram refer-
ring to the example in Section 2.5.6.2.

(b) In the context of the example in Sec-
tion 2.5.6.2, we see the sum of the weight func-
tions of the vertices going from v0 to the root
rT : φ

Θc

T ({v0}) + φΘc

T ({v0, v−1}). The dotted
lines represent critical values.

(c) The functions f and g in Section 2.7.4; with
ε = 0.3.

(d) In the context of the example in Sec-
tion 2.7.4, we report φΘL

T (v1) and φ
ΘL
T (v−0.5).

The dotted lines represent critical values.

(e) Two point clouds made by two clusters each
which cannot be separated by zero dimensional
homology, but present different within-cluster
homological information and can be distin-
guished by Θ1 defined in Section 2.5.6.4.

Figure 2.8: Plots referring to the examples in Section 2.5.6 and Section 2.7.4.
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(P3) the map d(·, 0) :W → R is a map of monoids between (W, ∗) and (R,+): d(x∗y, 0) =
d(0, x) + d(0, y).

(P4) d is ∗ invariant, that is: d(x, y) = d(z ∗ x, z ∗ y) = d(x ∗ z, y ∗ z)

Note that in property (P3), d(x ∗ y, 0) = d(x, 0) + d(y, 0), implies that x ∗ y ̸= 0.
Moreover (P3)-(P4) imply that the points 0, x, y and x ∗ y form a rectangle which can be
isometrically embedded in an Euclidean plane with the Manhattan geometry (that is, with
the norm | | · | | 1): d(x, x∗y) = d(0, y), d(y, x∗y) = d(0, x) and d(x∗y, 0) = d(0, x)+d(0, y).

Remark 2.41. The rationale behind properties (P1)-(P4) is mainly contained in the proof
of Theorem 2.49 and is linked with the properties of mappings, introduced in Section 2.6.4.
Some further insights on these properties is given in Section 2.7.

With these additional pieces of structure there are situations which we want to avoid
because they represent “degenerate” functions which introduce formal complications.

Definition 2.42. Given an editable space W and a tree-structure T , a proper weight
function is a weight function φT such that φT : ET → W and 0 ∈ φ(ET ) if and only if
ET = ∅ and VT = {⋆}. The couple (T, φT ) is an editable dendrogram.

Assumption 2.43. From now on we only work with editable spaces and we want to
consider exclusively proper weight functions. To lighten the notation, however, we omit to
write “proper” explicitly. Similarly we omit the word editable when referring to editable
dendrograms.

Definition 2.44. Given an editable space W the editable dendrogram space (T ,W ) is
given by the set of (editable) dendrograms (T, φT ) with (proper) weight functions such that
φT : ET →W .

Given an editable dendrogram space (D,W ), with (W, ∗, 0) editable space, we can define
our edits. All the edits are operations that can be done on the edges ET , or, equivalently,
on the vertices VT − {rT }, via the bijection ET

∼= VT − {rT } given by (v, v′) 7→ v.

• We call shrinking of a vertex/edge a change of the weight function. The new weight
function must be equal to the previous one on all vertices, apart from the “shrunk”
one. In other words, for an edge e, this means changing the value φ(e) with another
non zero value in W .

• A deletion is an edit with which a vertex/edge is deleted from the dendrogram.
Consider an edge (v1, v2). The result of deleting v1 is a new tree structure, with the
same vertices a part from v1 (the smaller one), and with the father of the deleted
vertex which gains all of its children. The inverse of the deletion is the insertion of
an edge along with its lower vertex. We can insert an edge at a vertex v specifying
the name of the new child of v, the children of the newly added vertex (that can be
either none, or any portion of the children of v), and the value of the weight function
on the new edge.

• Lastly, we generalize Definition 2.17, defining a transformation which eliminates an
order two vertex, connecting the two adjacent edges which arrive and depart from
it. Suppose we have two edges e = (v1, v2) and e′ = (v2, v3), with v1 < v2 < v3.
And suppose v2 is of order two. Then, we can remove v2 and merge e and e′ into a
new edge e′′ = (v1, v3), with φ(e

′′) := φ(e) ∗φ(e′). This transformation is called the
ghosting of the vertex. Its inverse transformation is called the splitting of an edge.
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(a) Starting and target weighted trees. (b) Deletions in red.

(c) Ghostings in yellow. (d) Shrinkings in green.

(e) Splittings in yellow.
(f) Insertions in red.

Figure 2.9: (b)→(e) form an edit path made from the left weighted tree in Figure 2.9a to
the right one. Each time the edges involved in the editing are highlighted with different
colors. In the following plot such vertices return black. This edit path can clearly be
represented with a mapping - Section 2.6.4 - made by couples (v, ”D”) for all the red
vertices in Figure 2.9b, (v, ”G”) for all the yellow vertices in Figure 2.9c, (v, w) for all the
vertices associated via the green color in Figure 2.9d, (”G”, w) for all the yellow vertices
in Figure 2.9c and (”D”, w) for all the red vertices in Figure 2.9f.
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A dendrogram T can be edited to obtain another dendrogram, on which one can apply
a new edit to obtain a third dendrogram and so on. One can think of this as composing
two edits e0, e1 which are not defined on the same dendrogram, since the second edit is
defined on the already edited dendrogram. This is what we mean by composition of edits.
Any finite composition of edits is referred to as an edit path. The notations we use are
functional notations, even if the edits are not operators, since an edit is not defined on the
whole space of dendrograms but on a single dendrogram. For example e1 ◦ e0(T ) means
that T is edited with e0, and then e0(T ) with e1. See Figure 2.9 for an example of an edit
path in the case of weighted trees - Section 2.6.2.3.

Lastly, note that, even if shrinking and deletions are classical edits, with shrinking
being usually referred to as relabeling, the ghosting edit is completely unusual and we are
not aware of any previous work employing it. However, such edit is fundamental for our
purposes and for the stability results contained in Section 2.7.3 and Chapter 4.

Definition 2.45. Dendrograms are equal up to order 2 vertices if they become isomorphic
after applying a finite number of ghostings or splittings. We write (T, φT ) ∼=2 (T

′, φT ′).

Definition 2.45 induces an equivalence relationship. The set of dendrograms inside
(T ,W ) that we want to treat as equal are exactly the equivalence classes given by Defi-
nition 2.45. We call (T2,W ) the space of equivalence classes of dendrograms in (T ,W ),
equal up to order 2 vertices.

2.6.2 Examples of Editable Spaces

Now we give some examples of editable spaces, including all the spaces which appear in
Section 2.5.6.

2.6.2.1 Curves in Editable Spaces

Consider an editable space E. Then the space of functions W := L1(R, E) is editable.
The function d is always non negative, so if properties (P3) and (P4) hold pointwise,

then they hold also for integrals. For instance we verify (P3) as follows:

dW (f∗W g, 0) =

∫
R
de(f(t)∗eg(t), 0)dt =

∫
R
de(f(t), 0)+de(g(t), 0)dt = dW (f, 0)+dW (g, 0).

This first example is pivotal, as it paves the way for treating the function spaces built
in Section 2.5.

2.6.2.2 Finite Products of Spaces

Consider two editable spaces E and E′, that is (E,⊙, 0E) and (E′, ⋄, 0E′) satisfying proper-
ties (P1)-(P4). Then (E×E′, ∗, (0E , 0E′)) is an editable space, with ∗ being the component-
wise operations ⊙ and ⋄, and the metric d on E × E′ being the (possibly weighted) sum
of the component-wise metrics of E and E′.

2.6.2.3 Positive Real Numbers

Clearly the set (R≥0,+, | · | ) is an editable space, as well as its subsets which are monoids,
like N. We call (T ,R≥0) the space of weighted trees. Such space is studied and used in
Chapter 3 to define a metric for merge trees, which are turned into weighted trees via the
rule wT ((v, v

′)) = hT (v
′)− hT (v), plus some non-trivial technical modifications.

Remark 2.46. This fact, along with the previous examples, implies that all the functions
Θ used in Section 2.5.6 have as codomain an editable space. However we still have the
problem that the local representation of functions φΘ

T do not take values in L1(R,R≥0),
L1(R,N), L1(R,N)× L1(R,N) because their integral is not finite on U∞.
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2.6.3 Costs of Edit Operations

Now we associate to every edit a cost, that is, a length measure in the space (T ,W ). The
costs of the edit operations are defined as follows:

• if, via shrinking, an edge goes from weight x to weight y, then the cost of such
operation is d(x, y);

• for any deletion/insertion of an edge with weight x, the cost is equal to d(x, 0);

• the cost of ghosting operations is | d(x ∗ y, 0)− d(x, 0)− d(y, 0) | = 0.

Definition 2.47. Given two dendrograms T and T ′ in (T ,W ), define:

• Γ(T, T ′) as the set of all finite edit paths between T and T ′;

• cost(γ) as the sum of the costs of the edits for any γ ∈ Γ(T, T ′);

• the dendrogram edit distance as:

dE(T, T
′) = inf

γ∈Γ(T,T ′)
cost(γ)

By definition the triangle inequality and symmetry must hold, but, up to now, this
edit distance is intractable; one would have to search for all the possible finite edit paths
which connect two dendrograms in order to find the minimal ones. On top of that, having
an edit which is completely “for free”, it is not even obvious that dE(T, T

′) > 0 for
some dendrograms. However, it is clear that dE induces a pseudo-metric on classes of
dendrograms up to order two vertices.

2.6.4 Mappings

Now we introduce a fundamental tool, called mapping, that, by parametrizing certain sets
of edit paths, makes dE computable and its properties more readily available. The idea
of mappings is not novel (Tai, 1979) and often it is a the key ingredient both for proofs
and calculations in Tree Edit Distances (Hong et al. (2017); Sridharamurthy et al. (2020);
Wetzels et al. (2022) and references therein), but we employ it with some key modifications.
From now on ”D” and ”G” will be used to indicate “deletion” and “ghosting”. Recall that
ET identifies the vertices VT − {rT }.

A mapping between T and T ′ is a set M ⊂ (ET ∪ {”D”, ”G”}) × (ET ′ ∪ {”D”, ”G”})
with the following properties:

(M1) consider the projection of the Cartesian product (ET∪{”D”, ”G”})×(ET ′∪{”D”, ”G”})→
(ET ∪ {”D”, ”G”}); we can restrict this map to M obtaining πT : M → (ET ∪
{”D”, ”G”}). The maps πT and πT ′ are surjective on ET ⊂ (ET ∪ {”D”, ”G”}) and
ET ′ ⊂ (ET ′ ∪ {”D”, ”G”}) respectively;

(M2) πT and πT ′ are injective;

(M3) M ∩ (VT × VT ′) is such that, given (a, b) and (c, d) ∈M ∩ (VT × VT ′), a > c, if and
only if b > d;

(M4) if (a, ”G”) (or (”G”, a)) is inM , let child(a) = {b1, .., bn}. Then there is one and only
one i such that for all j ̸= i, for all x ∈ Vsub(bj), we have (x, ”D”) ∈M (respectively
(”D”, x)); and there is one and only one c such that c = max{x′ ∈ sub(bi) | (x′, y) ∈
M for any y ∈ VT ′}.
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Conditions (M1)-(M2) are asking that every vertex in VT −{rT } is assigned to one and
only one “transformation”; (M3) ensures that the associations induced by M ∩ (VT ×VT ′)
respect the tree structures of T and T ′; lastly (M4) means that, once all vertices v appearing
in the couples (v, ”D”) or (”D”, v) in M are deleted, the points which are coupled with
G (that is (a, ”G”) or (”G”, a)) are all vertices of order two and therefore they can be
ghosted.

Remark 2.48. Properties (M1)-(M4) are not canonical properties of mappings, which
usually satisfy properties (M2) and (M4) (see Hong et al. (2017); Sridharamurthy et al.
(2020); Wetzels et al. (2022) and references therein). And this is caused by the introduction
of the ghosting edit. Accordingly, the way in which mappings parametrize edit paths in the
present work is completely novel and, for instance, it establishes some (partial) ordering
between the edits.

In what follows we use the properties of M to parametrize a set of edit paths in the
dendrogram space, starting from T and ending in T ′, which are collected under the name
γM . We call:

• γTd a path made by the deletions to be done in T , that is, the couples (v, ”D”),
executed in any order. So we obtain TM

d = γTd (T ), which, instead, is well defined
and not depending on the order of the deletions.

• One then proceeds with ghosting all the vertices (v, ”G”) inM , in any order, getting
a path γTg and the dendrogram TM := γTg ◦ γTd (T ).

• Since all the remaining points in M are couples, the two dendrograms T ′
M (defined

in the same way as TM , but starting from T ′) and TM must be isomorphic as tree
structures. This is guaranteed by the properties of M . So one can shrink TM onto
T ′
M , and the composition of the shrinkings, executed in any order is an edit path
γTs .

By definition:

γTs ◦ γTg ◦ γTd (T ) = T ′
M ,

and:
(γT

′

d )−1 ◦ (γT ′

g )−1 ◦ γTs ◦ γTg ◦ γTd (T ) = T ′

.
where the inverse of an edit path is thought as the composition of the inverses of the

single edit operations, taken in the inverse order.
Lastly, we call γM the set of all possible edit paths:

(γT
′

d )−1 ◦ (γT ′

g )−1 ◦ γTs ◦ γTg ◦ γTd .

obtained by changing the order in which the edit operations are executed inside γd, γg and
γs. Observe that, even if γM is a set of paths, its cost is well defined:

cost(M) := cost(γM ) = cost(γTd ) + cost(γTs ) + cost(γT
′

d ).

See Figure 2.9 for an example of a mapping between weighted trees.
Before moving on, we fix some notation and call Mapp(T, T ′) the set of all mappings

between T and T ′. This set is never empty, in fact M = {(v, ”D”) : v ∈ ET }∪ {(”D”, v′) :
v′ ∈ ET ′} is always a mapping between T and T ′. In other words one can always delete
all the edges of a dendrogram, and then insert all the edges of the other.
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Theorem 2.49 (Main Theorem). Given two dendrograms T and T ′, for every finite edit
path γ, exists a mapping M ∈ Mapp(T, T ′) such that cost(M) ≤ cost(γ).

A first corollary immediately follows.

Corollary 2.50. Since Mapp(T, T ′) is a finite set we have the following well defined
pseudo-metric:

dE(T, T
′) = inf{cost(γ) | γ ∈ Γ(T, T ′)} = min{cost(M) |M ∈ Mapp(T, T ′)}

which we will refer to as the edit distance between T and T ′.

A second corollary is obtained observing that, if a mapping has cost equal to zero, then
it must contain only ghostings.

Corollary 2.51. Given T and T ′ dendrograms, dE(T, T
′) = 0 if and only if T and T ′ are

equal up to order 2 vertices. In other words dE is a metric for dendrograms considered up
to order 2 vertices.

We close this section with a very useful couple of results which will be applied in the
next sections to work functions defined on merge trees and solve the issues presented in
Section 2.5.6 with the local representation of functions obtained in such section. We make
use of subT (v) as defined in Definition 2.14.

Proposition 2.52 (Extension/Truncation). Take (T, φT ) and (T ′, φT ′). Suppose rT and
rT ′ are of order 1 and there is a splitting {(v, rT )} → {(v, v′), (v′, rT )} and {(w, rT ′)} →
{(w,w′), (w′, rT ′)} giving the dendrograms (G, hG) and (G′, hG′). Suppose moreover that
φG((v

′, rT )) = φG′((w′, rG)), then dE(T, T
′) = dE(subG(v

′), subG′(w′)).

Proof. Consider a minimizing mapping M between G and G′.
Apply the deletions described by M both on G and on G′ obtaining the merge trees

GM and G′
M . After such deletions the vertices rG and rG′ are still in the resulting trees,

for they cannot be removed in any way. Moreover, if (v′, w′) /∈ M then neither v′ nor w′

can be deleted. In fact, for any 4 positive numbers n1, n2, n3, n4 we have:

|n1 + n2 − (n3 + n4) | ≤ n1 + n3 + |n2 − n4 |

thus instead of deleting v′ with cost n1 and w′ with cost n3 and then shrinking two edges
of the form e = (a, rG) and e

′ = (b, rG′) with weights n2 and n4 is better to merge (a, v′)
with (v′, rG) and (b, w′) with (w′, rG′) and then shrink them.

Thus, whatever edge of the form e = (a, rG) remains contains, as a merged edge, also
(v′, rG). And the same for e′ = (b, rG′). By construction e is matched with e′. Since
φGM

(e) = φG((v
′, rG)) ∗ . . . and φG′

M
(e) = φG((w

′, rG′)) ∗ . . ., when computing the cost of
shrinking e on e′, by (P4), φG((v

′, rG)) and φG((w
′, rG′)) cancel out.

Thus dE(T, T
′) = dE(G,G

′) = dE(subG(v
′), subG′(w′)).

The proof of Proposition 2.52 also yields the following corollary.

Corollary 2.53. Given (T, φT ) and (T ′, φT ′). If rT and rT ′ are of order 1, for any mini-
mizing mappingsM , then neither (v, rT ) or (w, rT ′) are deleted and we have #maxM = 1.
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2.7 Edit Distance Between Local Representation of Functions

This section has the multi-faceted role of connecting Section 2.6 to the initial goal of
comparing functions defined on merge trees and, possibly, further clarifying some points
which may require additional explanations or are yet to be addressed. Thus we touch on
the following topics:

1. in Section 2.7.1 we take a closer look at the correspondence between the edit oper-
ations and the local representations of functions;

2. in Section 2.7.2 we return on the issues we left unsolved in Section 2.5.6 and present
different ways in which the examples therein introduced can be framed into our
framework;

3. in Section 2.7.3 we briefly introduce, relying on results proved in Chapter 4, some
stability properties of dE when applied to functions defined on merge trees;

4. we close this section with Section 2.7.4, which contains a brief example showcasing
a very different behaviour between PDs and merge trees caused by the elder rule.

The remaining sections of the chapter, namely Section 2.8 and Section 2.9, are then
devoted to the simulations and to the computational aspects of the edit distance dE .

2.7.1 Edits of Local Representation of Functions

Consider now M(π0(X·)) = (T, hT ) and a proper weight function φT with values in the
editable space L1(R,R≥0). We know that φT is equivalent to a local representation of a
function on U(Dπ0(X·)) - see Section 2.5.5 and Definition 2.38, which, in turns, amounts

to the datum of a function f in L1(Dπ0(X·),R≥0). By construction φT (e) = f ◦ (h |U )
−1 :

(t, t′)→ R≥0, with U ∈ U(Dπ0(X·)) being associated to the edge e and h being the height
function of Dπ0(X·).

Suppose that we want to split the edge e into e1 = (v, v′′) and e2 = (v′′, v′). We define
the novel weight function φT ′ as: φT ′(e1) = (φT (e)) | [t,t′′] and φT ′(e2) = (φT (e)) | [t′′,t′]
for some t′′ ∈ (t, t′). As already mentioned, ET ′ ↪→ Dπ0(X·) induces another regular a.e.
cover O given by the replacement of the open set U associated to e, with the open sets
(h |U )

−1((hT (v), hT (v
′′))) and (h |U )

−1((hT (v
′′), hT (v

′))), which are clearly contained in U .
In other words, it induces a refinement of U(Dπ0(X·)). Accordingly, the weight function

φT ′ is by construction obtained by restricting φT (e) onto such open sets. Thus the splitting
that we defined with the weight function φT ′ is equivalent to the local representation of f
obtained via the refinement O of U(Dπ0(X·)) induced by (T ′, hT ′). See also Figure 2.7.

Viceversa, if we start from (T ′, φT ′) and we ghost the vertex v′′ we return to the tree
structure T . The weight function φT on the new edge e = (v, v′), resulting from the
merging of e1 = (v, v′′) and e2 = (v′′, v′), is given by φT ′(e1) ∗ φT ′(e2) which is exactly
passing from the local representation of f on O to the one on U(Dπ0(X·)).

As we have just seen, we have defined a way of deforming dendrograms which accounts
for refinements or “coarsements” of local representation of functions.

Remark 2.54. We point out that, in general, shrinkings and splittings do not guarantee
that, starting from a local representation of f ∈ L1(Dπ0(X·), E), we end up with a local
representation of some other function after an edit. This may be a point which could be
improved by future works, but it does not represent a problem in terms of defining a metric
structure to compare f ∈ L1(Dπ0(X·), E) and g ∈ L1(Dπ0(Y·), E).
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2.7.2 Normalizing and Truncating Functions

We devote this section to describe a way in which the functions defined in Section 2.5.6
can fit into our framework.

Consider f, g : Dπ0(X·) → E. If ∥ f |U∞ − g |U∞ ∥L1(U∞,E)= ∞, then there is really no

point in comparing such functions and any attempt to embed those functions into L1(R, E)
implies losing infinite variability/information at least for one of the two functions. In fact,
at least one between f |U∞ and g |U∞ has norm equal to ∞ and any approximation we
make of that function with a function of finite norm, would be at infinite distance from
the original function. However, if we deem that the information contained in f |U∞ and
g |U∞ after a certain height is negligible, we can always extend f with 0 ∈ E after some
K ≥ maxhT , with M(π0(X·)) = (T, hT ). We indicate extension with f |U∞ · χ[maxhT ,K]

with an abuse of notation, and we refer to it as the truncation of f at height K. Then,
call f |K the function obtained as (f |K) |U := f |U for all U ∈ U(Dπ0(X·)), U ̸= U∞, and

(f |K) |U∞ := f |U∞ · χ[maxhT ,K]. Clearly f |K ∈ L1(Dπ0(X·), E).
The examples in Section 2.5.6, however allow also for a different approach. Suppose we

have f : Dπ0(X·) → E, g : Dπ0(Y·) → E and K ∈ R such that:

f ◦ (hf|Uf
∞
)−1(x) = g ◦ (hg|Ug

∞
)−1g(x)

for x > K. That is, f, g are definitively equal going upwards towards the roots. Then,
let (T, hT ) and (G, hG) be the merge trees associated to the sublevel set filtrations of
f and g respectiely. We can split ef = (v, rT ) ∈ ET into e′f = (v, v′), e′′f = (v′, rT )

and eg = (w, rG) ∈ EG into e′g = (w,w′), e′′g = (w′, rG), so that hf (v′) = hg(w′) = K.
Let (T ′, hT ′) and (G′, hG′) be the merge trees obtained with such splittings. If we call
φT ′ and φG′ the local representations of f on T ′ and g on G′, respectively, we have:
∥ φT ′(e′′f )− φG′(e′′g) ∥L1(R,E)= 0. Thus we are in the position to apply Proposition 2.52 to

T ′ and G′.
In other words, if we can modify the functions Θs so that

Θ ◦ (hf|Uf
∞
)−1(x) = Θ ◦ (hg|Ug

∞
)−1g(x)

for some K and x > K then dE(f, g) can be defined as dE(f |K , g |K). We will do so
requiring that Θ is definitively equal to some fixed constant.

Now we consider the different Θ employed in Section 2.5.6:

• Θ1: in this case we have Θ1 ≡ 1 and thus Θ1 is definitively constant and equal to 1;

• Θc: Θc is employed when we build clustering dendrograms and so definitively it
is equal to the cardinality of the starting point cloud. Thus we can normalize Θc

obtaining Θn
c which expresses the cardinality of the clusters as a percentage of the

cardinality of the point cloud i.e. the measure of the clusters wrt the uniform
measure on the point cloud. Clearly such function is definitively equal to 1;

• ΘL: when we start from a function f : X → R which is bounded and defined on
X ⊂ Rn bounded, then Xt = X for t big enough and so ΘL is definitively constant
and equal to ΘL(X). Again we can normalize ΘL, obtaining Θn

L which expresses
the measure of path connected components as a percentage of the measure of L(X).

• Θp: for this function it really depends on the chosen filtration and, in particular,
if there is the possibility of having homology classes with death time +∞ in p-
dimensional homology, p > 0. However, if Hp(U ;K) = 0, U ∈ π0(Xt) for all t big
enough, as is the case, for instance, with the Céch filtration, or other filtrations of a
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simply connected space, we have no issues. In fact we know that, by construction,
H0(U ;K) = K, U ∈ π0(Xt) for t big enough. Thus there is K big enough so that
Θp ≡ (1, 0) for x > K.

For what we have said previously then we can chooseK big enough and define dE(f, g) :=
dE(f |K , g |K) for any f induced by the normalized functions Θ1, Θ

n
c and Θn

L.
In other words, suppose that we want to work, for instance, with Θn

L to analyze a data
set of functions. For any couple of functions f : X → R and g : Y → R we obtain the
abstract merge trees π0(X·) and π0(Y·) with sublevel set filtrations and the corresponding
functions:

fΘ
n
L(p) = Θn

L((a, t)) = L(a)/L(X)

for p = (a, t) ∈ Dπ0(X·) and

gΘ
n
L(q) = Θn

L((b, t)) = L(b)/L(Y )

for q = (b, t) ∈ Dπ0(Y·). Then we choose K big enough Θn
L((a, t)) = 1 = Θn

L((b, t))
for t ≥ K. Thus we can truncate these functions from K upwards and obtain the local

representations φ
Θn

L
T and φ

Θn
L

G of the truncated functions. Note that supp(φ
Θn

L
T ((v, rT ))) =

[maxhT ,K] and supp(φ
Θn

L
G ((w, rG))) = [maxhG,K].

By Proposition 2.52, we are guaranteed that this truncation process:

1. does not depend on K, in the following sense. Suppose we have a third function
r : H → R such that rΘ

n
L(u) = Θn

L((c, t)) < 1 for some t > K. While fΘ
n
L and gΘ

n
L

can be truncated at height K, for rΘ
n
L we must consider some K ′ > K to compute

dE(f
Θn

L
|K′ , r

Θn
L

|K′). However, we have :

dE(f
Θn

L
|K′ , g

Θn
L

|K′) = dE(f
Θn

L
|K , g

Θn
L

|K);

2. moreover, comparing the truncated functions f
Θn

L
|K is exactly the same as comparing

the original functions fΘ
n
L with dE .

2.7.3 Stability

In this section we establish some stability properties for the metric dE when applied to
functions defined on merge trees. To do so, we leverage on the proof of Theorem 1 in
Chapter 4.

Developing stability results tailored to the different pipelines we present to obtain
functions defined on merge trees is a very broad topic which is outside the aim of the
present work. Such results, in fact, require to establish sufficient conditions both for the
merge trees to be similar and for Θ to be similar on portions of the merge trees which can
be matched together via low-cost mappings.

In this context we will deal with the more general of the two issues, removing the
problem about similarity of the values of Θ, which is very application-dependent, and
focus on how the functional framework we designed is able to handle similarity between
merge trees. In other words we consider Θ1, which is constant everywhere on the trees
and assess the stability properties of some functions φΘ1

T and φΘ1

T ′ obtained as topological
summaries of uniformly close scalar fields.

Being the edit distance a summation of the costs of local modification of trees, we
expect that the stability properties of dE are quite different from the ones of the bottleneck
distance between persistence diagrams, which is defined as the biggest modification ones
needs to match two persistence diagrams. Instead, we expect the edit distance to be
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dependent on the number of vertices in the merge trees but, at the same time, that the
cost of the local modifications we need to match the two merge trees go to 0. For this
reason we give the following definitions.

Definition 2.55. Given a constructible persistence module S : R → VecK, we define its
rank as rank(S) := #PD(S) i.e. the number of points in its persistence diagram. When S
is generated on K by an abstract merge tree π0(X·) we have rank(S) := #PD(S) = #LT ,
with (T, hT ) = M(π0(X·)) and may refer to rank(S) also as the rank of the merge tree
rank(T ). We also fix the notation dim(T ) := #ET .

Definition 2.56. Let f, g be tame functions defined on a path connected topological space
X. Define Xt = f−1((−∞, t]) and Yt = g−1((−∞, t]). Let T = M(π0(X·)) and T ′ =
M(π0(Y·)) be the merge trees associated to f and g respectively. A metric for merge trees
is locally stable if:

d(T, T ′) ≤ K(rank(T ) + rank(T ′)) ∥ f − g ∥∞

for some K > 0.

Now we prove that dE induces a locally stable metric on merge trees, via the relationship
(T, hT ) ∼= (T ′, hT ′) if and only if (T, φΘ1

T ) ∼= (T ′, φΘ1

T ′ ) that we find in Section 2.5.6.1.

Corollary 2.57 (of Theorem 1 in Chapter 4). Let f, g be tame functions defined on a
path connected topological space X and such that

supx∈X |f(x)− g(x)| ≤ ε.

Define Xt = f−1((−∞, t]) and Yt = g−1((−∞, t]). Let T = M(π0(X·)) and T ′ =
M(π0(Y·)) be the merge trees associated to f and g respectively.

Then, there exists a mapping M between VT and VT ′ such that:

• any deletion of an edge e = (v, v′) is such that hT (v
′)− hT (v) ≤ 2ε;

• for any edge (v, v′) which is shrunk on (w,w′) after all ghostings and deletions on
T and on T ′ we have |hT (v)− hT ′(w) | < ε and |hT (v′)− hT ′(w′) | < ε (if v′ ̸= rT
and w′ ̸= rT ′).

Theorem 2.58. Let f, g be tame functions defined on a path connected topological space
X and such that

supx∈X |f(x)− g(x)| ≤ ε.

Define Xt = f−1((−∞, t]) and Yt = g−1((−∞, t]). Lastly, let T =M(π0(X·)) and T ′ =

M(π0(Y·)) be the merge trees associated to f and g respectively. And let (T, φΘ1

T ) and

(T ′, φΘ1

T ′ ).
Then, there exists a mapping M such that cost(ei) < 2 · ε, for ei ∈M .

Proof. The proof is largely based on Theorem 1 in Chapter 4.
First notice that ∥ φΘ1

T ((v, v′)) ∥L1(R)= hT (v
′)−hT (v) = wT ((v, v

′)) - see Section 2.6.2.3.

Thus the cost of deleting v in (T,wT ) is the same as in (T, φΘ1

T ).
Second, consider the following cases:

1. if hT (v) < hT ′(w) < hT (v
′) < hT ′(w′):

∥ φΘ1

T ((v, v′))− φΘ1

T ′ ((w,w
′)) ∥L1(R)= |hT (v) + hT (w)− hT ′(w)− hT ′(w′) | ;
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2. if hT (v) < hT (v
′) < hT ′(w) < hT ′(w′):

∥ φΘ1

T ((v, v′))− φΘ1

T ′ ((w,w
′)) ∥L1(R)= wT ((v, v

′)) + wT ′((w,w′));

3. if hT (v) < hT ′(w) < hT ′(w′) < hT (v
′):

∥ φΘ1

T ((v, v′))− φΘ1

T ′ ((w,w
′)) ∥L1(R)= wT ((v, v

′))− wT ′((w,w′)).

Consider the same mapping M constructed in the proof of Theorem 1 in Chapter 4.
As in Corollary 2.57 M is such that:

• the deletions (v, ”D”) and (”D”, w) are always such that wT ′(w), wT (v) ≤ 2ε;

• for any edge (v, v′) which is shrink on (w,w′) after all ghostings and deletions on T
and on T ′ we have |hT (v)− hT ′(w) | < ε and |hT (v′)− hT ′(w′) | < 2ε.

As a consequence:

1. if hT (v) < hT ′(w) < hT (v
′) < hT ′(w′): costM ((v, w)) ≤ 2ε;

2. if hT (v) < hT (v
′) < hT ′(w) < hT ′(w′): since hT ′(w)−hT (v) < ε, then wT ((v, v

′)), wT ′((w,w′)) <
ε. So costM ((v, w)) ≤ 2ε.

3. if hT (v) < hT ′(w) < hT ′(w′) < hT (v
′): costM ((v, w)) ≤ 2ε.

2.7.4 Example: Merge Trees vs PDs

We close this section with one example which shows how the elder rule, via the instability
of the persistence pairs, makes very difficult to add pieces of information to persistence
diagrams in a stable way.

Consider the following functions, plotted in Figure 2.8c, defined on [−1, 2]:

f(x) = |x− 1 | + ε if x ≥ 0

f(x) = | 2x− 1 | if x < 0

and

g(x) = |x− 1 | if x ≥ 0

g(x) = | 2x− 1 | + ε if x < 0

for a fixed ε > 0.
Let (T, hT ) and (T ′, hT ′) be the merge trees associated to the sublevel set filtrations

of f and g; moreover let φΘL
T and φΘL

T ′ the two respective local representations of the
induced functions with ΘL being the Lebesgue measure on R. Note that ∥ f − g ∥∞= ε.
The local minima of the functions are the points {−0.5, 1}, with f(−0.5) = 0, f(1) = ε,
g(−0.5) = ε and g(1) = 0. Thus the merge trees have isomorphic tree structures: we
represent T with the vertex set {v−0.5, v1, v0, rT } and edges {(v−0.5, v0), (v1, v0), (v0, rT ′)};
and T ′ with vertices {v−0.5, v1, v0, rT ′} and edges {(v−0.5, v0), (v1, v0), (v0, rT ′)}. The height
functions are the following: hT (v−0.5) = 0, hT ′(v−0.5) = ε, hT (v1) = ε, hT ′(v1) = 0 and
hT (v0) = hT ′(v0) = 1 + ε.

Having truncated both functions at height 1+ ε, the weight functions (see Figure 2.8d)
are given by: φΘL

T (v−0.5)(t) = tχ[0,1)+χ[1,1+ε), φ
ΘL
T (v1)(t) = 2(t−ε)χ[ε,1+ε) and φ

ΘL
T ′ (v−0.5)(t) =

(t− ε)χ[ε,1+ε) and φ
ΘL
T ′ (v1)(t) = 2tχ[0,1) + 2χ[1,1+ε).
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The zero-dimensional persistence diagram associated to f (we name it PD0(f)) is given
by a point with coordinates (0,+∞), associated to the connected component [−t/2 −
0.5, t/2− 0.5] which is born at t = 0, and the point (ε, 1+ ε), associated to the component
[1− (t− ε), 1+ (t− ε)], born at level t = ε and “dying” at level t = 1+ ε, due to the elder
rule, since it merges an older component, being the other component born at a lower level.

For the function g, the persistence diagram PD0(g) is made by the same points, but
the situation is in some sense “reversed”. In fact, the point (0,+∞) is associated to the
connected component “centered” in 1, which is [1 − t, 1 + t], and the point (ε, 1 + ε), is
associated to the component “centered” in 0.5, that is [−(t− ε)/2− 0.5, (t+ ε)/2− 0.5].

The consequence of this change in the associations between points and the components
originating the points of the diagrams is that the information regarding the two compo-
nents, end up being associated to very different spatial locations in the two diagrams:
(0,+∞) and (ε, 1 + ε). And this holds for every ε > 0. Thus it seems very hard to
design a way to “enrich” PD0(f) and PD0(g) with additional information, originating
the “enriched diagrams” Df and Dg, respectively, and design a suitable metric d, so that
d(Df , Dg)→ 0 as ε→ 0.

Instead, if we consider the mapping M = {(v−0.5, v−0.5), (v1, v1), (rT , rT ′)} we have
dE((T, φ

ΘL
T ), (T ′, φΘL

T ′ )) ≤ cost(M) = 3ε.

2.8 Simulations

Now we use two simulated data sets to put to work the frameworks defined in Section 2.5
and Section 2.6 and the algorithm developed in Section 2.C. The examples are basic, but
suited to assert that dendrograms and the metric dE capture the information we designed
them to grasp. In particular, since examples in Section 2.4.1 and Section 2.4.2 already give
insights into the role of the tree-structured information, we want to isolate and emphasize
the key role of weight functions. We also deal with the problem of approximating the
metric dE when the number of leaves in the tree structures in the data set is too big
to be handled. The examples presented concern hierarchical clustering dendrograms and
dendrograms representing scalar fields.

In the implementations, dendrograms are always considered with a binary tree struc-
ture, obtained by adding negligible edges, that is edges e with arbitrary small d(φ(e), 0),
when the number of children of a vertex exceeds 2.

2.8.1 Pruning

In this section we propose a way of approximating the edit distance when the number of
leaves of the involved tree structures is too high.

If one defines a proper weight function with values in an editable space E coherently
with the aim of the analysis, then the value d(φT (e), 0) can be thought as the amount of
information carried by the edge e. The bigger such value is, the more important that edge
will be for the dendrogram. In fact such edges are the ones most relevant in terms of dE .
A sensible way to reduce the computational complexity of the metric dE , losing as little
information as possible, is therefore the following. Given ε > 0 and a dendrogram (T, φT ),
define the following 1-step process:

(Pε) Take a leaf l such that d(φT (l), 0) is minimal among all leaves; if two or more leaves
have minimal weight, choose l at random among them. If d(φT (l), 0) < ε, delete l
and ghost its father if it becomes an order 2 vertex after removing l.

We set T0 = T and we apply operation (Pε) to obtain T1. On the result we apply again
(Pε) obtaining T2 and, for n > 2, we proceed iteratively until we reach the fixed point
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Figure 2.10: Pruning of a weighted tree: in red the deletions and in yellow the ghostings.

of the sequence {Tn}, which we call Pε(T ). In this way we define the pruning operator
Pε : T → T . Note that the fixed point is surely reached in a finite time since the number
of leaves of each tree in the sequence is finite and non increasing along the sequence. More
details on such pruning operator applied on merge trees representing the path connected
components of the sublevel sets of real valued functions can be found in Chapter 4, showing
in the case of merge trees that the pruning operation can be interpreted quite naturally
in terms of function deformations.

If we define ∥ T ∥ as ∥ T ∥=
∑

e∈ET
d(φ(e), 0), we can quantify the (normalized) lost

information with what we call pruning error (PE): (∥ T ∥ − ∥ Pε(T ) ∥)/ ∥ T ∥.

2.8.2 Hierarchical Clustering Dendrograms

We consider a data set of 30 points clouds in R2, each with 150 or 151 points. Point clouds
are generated according to three different processes and are accordingly divided into three
classes. Each of the first 10 point clouds is obtained by sampling independently two
clusters of 75 points respectively from normal distributions centered in (5, 0) and (−5, 0),
both with 0.5 · Id2×2 covariance. Each of the subsequent 10 point clouds is obtained by
sampling independently 50 points from each of the following Gaussian distributions: one
centered in (5, 0), one in (−5, 0) and one in (−10, 0). All with covariance 0.5·Id2×2. Lastly,
to obtain each of the last 10 point clouds, we sample independently 150 points as done
for the first 10 clouds, that is 75 independent samples from a Gaussian centered (5, 0) and
75 from one centered in (−5, 0), an then, to such samples, we add an outlier placed in
(−10, 0).

Some clouds belonging to the second class and third classes are plotted respectively
in Figure 2.11a and Figure 2.11b. We obtain dendrograms induced by the single linkage
hiercarhical clsutering dendrograms, with the cardinality functions induced by Θn

c and
then resort to pruning because of the high number of leaves, but we still expect to be able
to easily separate point clouds belonging to the first and third classes (that is, with two
major clusters) from clouds belonging to the second class, which feature three clusters,
thanks to the cardinality information function defined in Section 2.5.6.2. All dendrograms
have been pruned with the same threshold, giving an average pruning error of 0.15.

We can see in Figure 2.11c that this indeed the case. It is also no surprise that per-
sistence diagrams do not perform equally good in this classification task, as displayed
in Figure 2.11d. In fact PDs have no information about the importance of the cluster,
making it impossible to properly recognize the similarity between data from the first and
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(a) Data from the sec-
ond class.

(b) Data from the third
class.

(c) Pairwise distances
with dendrograms.

(d) Pairwise distances
with PD.

Figure 2.11: Data and pairwise distance matrices involved in the hierarchical clustering
example.

third class. They are, however, able to distinguish clouds belonging to class two from
clouds belonging to class three since the persistence of the homology class associated to
the leftmost cluster in clouds belonging to class two is smaller compared to what happens
in clouds from the third class. The cluster centered in (−10, 0) and the one in (−5, 0) are
in fact closer when the first one is a proper cloud, than when it is a cluster made by a
single point.

2.8.3 Dendrograms of Functions

This time our aim is to work with dendrograms obtained from functions, adding the
(truncated) weight function induced by the Lebesgue measure of the sublevel sets ΘL and
using them to discriminate between two classes in a functional data set.

We simulate the data set so that the discriminative information is contained in the size
of the sublevel sets and not in the structure of the critical points. To do so, we reproduce a
situation which is very similar to the one shown by Sangalli et al. (2010) for the Berkeley
Growth Study data, where all the variability between groups in a classification task is
explained by warping functions. We fix a sine function defined over a compact 1D real
interval (with the Lebesgue measure) and we apply to its domain 100 random non linear
warping functions belonging to two different, but balanced, groups. Warpings from the
first group are more likely to obtain smaller sublevel sets, while in the second groups we
should see larger sublevel sets and so “bigger” weight functions defined on the edges. Note
that, being the Lebesgue measure invariant with the translation of sets, any horizontal
shifting of the functions would not change the distances between dendrograms.

The base interval is I = [0, 30] and the base function is f(x) = sin(x). The warping
functions are drawn in the following way. Pick N equispaced control points in I and then
we draw N samples from a Gaussian distribution truncated to obtain only positive values.
We thus have x1, . . . xN control points and v1, . . . , vN random positive numbers. Define
yi :=

∑i
j=1 vj . The warping is then obtained interpolating with monotone cubic splines

the couples (xi, yi). Being the analysis invariant to horizontal shifts in the functions, for
all statistical units we fix x0 = y0 = 0 for visualization purposes.

The groups are discriminated by the parameters of the Gaussian distribution from
which we sample the positive values vi to set up the warpings. For the first class we
sample N = 10 positive numbers from a truncated Gaussian with mean 3 and standard
deviation 2; for the second the mean of the Gaussian is 5 and the standard deviation is
2. Thus we obtain each of the first 50 functions sampling 10 values vi from the truncated
Gaussian centered in 3, building the warping function as explained in the previous lines,
and then reparametrizing the sine function accordingly. The following 50 functions are
obtained with the same pipeline but employing a Gaussian centered in 5. Note that, by
construction, all the functions in the data set share the same merge tree. We truncate the
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(a) Subset of functions col-
ored by classes.

(b) Few functions from the
first class.

(c) Subset of warping func-
tions colored by classes.

(d) Pairwise distances with
dendrograms.

(e) Pairwise distances with
L2 metric.

(f) Pairwise distances with
L2 metric on warping func-
tions.

(g) Correlation between den-
drograms and warping func-
tions metric.

(h) Correlation between
naive L2 and warping func-
tions metric.

Figure 2.12: Overview of the example of Section 2.8.3.
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functions induced by ΘL at height 1.
Examples of the warping functions can be seen in Figure 2.12c; the resulting functions

can be seen in Figure 2.12a. The key point here is that we want to see if the dendrograms
can retrieve the information contained in the warping functions. For this reason we com-
pare the L2 pairwise distances between such functions (see Figure 2.12f) and the pairwise
distances obtained with dendrograms (see Figure 2.12d). The visual inspection confirms
the close relationships between the two sources of information. Moreover, if we vectorize
the arrays given by the two matrices (considering only entries above the diagonal) and
compute the Fisher correlation, we get a score of 0.85 (see Figure 2.12g). Instead, a naive
approach with the L2 metric applied directly to the data set would capture no information
at all, as we can observe from Figure 2.12e and the Fisher correlation with the matrix
obtained from warping functions is 0.15 (see Figure 2.12h).

Note that, in general, the problem of finding warping functions to align functional data
is deeply studied and with no easy solution (see, for instance, the special issue of the
Electronic Journal of Statistics dedicated to phase and amplitude variability - year 2014,
volume 8 or Srivastava et al. (2011a)) especially for non-linear warping of multidimensional
or non-euclidean domains. Instead, dendrograms less sensitive to such dimensionality
issues, in the sense that they only arise in calculating the connected components and
measure of the sublevel sets.

2.9 Computing the Edit Distance: Decomposition Properties

In this last section we develop some results and formulations needed to obtain the algorithm
presented in the supplementary material, Section 2.C. These theoretical results allow to
recursively split up the calculations (following ideas found in Hong et al. (2017)) and
lead to the integer optimization problems defined in Section 2.B. The key point is that
the properties of editable spaces imply that we can locally look at differences between
subtrees and then use those pieces of information to compute the distance between two
dendrograms.

Name T2 the only representative without order 2 vertices inside the equivalence class
of T . One can always suppose that a dendrogram is given without order 2 vertices. Thus,
for notational convenience, from now on we suppose T = T2 and T ′ = T ′

2. To help us in
the calculations define a particular subset of mappings M2(T, T

′) ⊂ Mapp(T, T ′).

Definition 2.59. A mapping M ∈ Mapp(T, T ′) has maximal ghostings if (v, ”G”) ∈ M
if and only if v is of order 2 after the deletions in T and, similarly (”G”, w) ∈ M if and
only if w is of order 2 after the deletions in T ′.

A mapping M ∈ Mapp(T, T ′) has minimal deletions if (v, ”D”) ∈M only if v is not of
order 2 after applying all the other deletions in T and, similarly, (”D”, w) ∈M only if w
is not of order 2 after applying all the other deletions in T ′.

We collect all mappings with maximal ghostings and minimal deletions in the set
M2(T, T

′).

In other words we are always eliminating all the order 2 vertices which arise from
deletions and we are not deleting edges which we can shrink. The following lemma then
applies.

Lemma 2.60.

min{cost(M) |M ∈ Mapp(T, T ′)} = min{cost(M) |M ∈M2(T, T
′)}

In addition to that, we consider some particular subsets of ET × ET ′ which play a
fundamental role in what follows. Recall that, using ET

∼= VT − {rT }, we can induce
πT : ET × ET ′ → VT .
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A set M∗ ⊂ ET × ET ′ is in C∗(T, T ′) if:

(A1) the points in πT (M
∗) form antichains in VT (and the same for πT ′(M∗) in VT ′),

with respect to the partial order given by father > son. This means that any two
distinct vertices of T (respectively of T ′) which appear inM∗ are incomparable with
respect to “>”;

(A2) the projections πT :M∗ → VT and πT ′ :M∗ → VT ′ are injective.

Consider now M∗ ∈ C∗(T, T ′). Starting from such set of couples we build a set of edits
which form a “partial” mapping between T and T ′: each couple (x, y) ∈ M∗ means that
we do not care of what lies below x ∈ VT and y ∈ VT ′ and we need to define edits only
for the other vertices. The vertices below x and y will be taken care separately. In this
way M∗ is used as a “dimensionality reduction tool”: instead of considering the problem
of finding directly the optimal mapping between T and T ′, we split up the problem in
smaller subproblems, and put the pieces together using M∗. To formally do that, some
other pieces of notation are needed.

Let v ∈ ET . One can walk on the graph of the tree-structure T going towards any other
vertex. For any v ∈ ET , ζv is the shortest graph-path connecting v to rT . Note that this
is the ordered set ζv = {v′ ∈ VT | v′ > v}. Similarly, denote with ζx

′

x the shortest path on
the graph of T connecting x and x′. Note that min ζx ∩ ζx′ is the least common ancestor
between x and x′. This is because v is an ancestor of x iff v > x. In other words we have:
LCA(x, x′) = min ζx ∩ ζx′ .

By Property (A1), given x ∈ VT ∩ πT (M∗), there exist a unique ΩM∗(x) /∈ πT (M
∗)

such that:
ΩM∗(x) = min{LCA(x, x′) |x′ ∈ πT (M∗) and x ̸= x′}

And the same holds for y ∈ VT ′∩πT ′(M∗). For ease of notation we will often avoid explicit
reference to M∗ and write directly Ω(x).

With these bits of notation, given M∗ ∈ C∗(T, T ′), we build the “partial” mapping
α(M∗): is a mapping that ignores all the vertices which lie below every x, y such that
(x, y) ∈M∗. Figure 2.13 may help in following the upcoming paragraph. Consider v ∈ VT :

1. if (v, w) ∈M∗, then (v, w) ∈ α(M∗);

2. if there is not x ∈ VT such that v < Ω(x) or v > Ω(x), then (v, ”D”) ∈ α(M∗);

3. if there is x ∈ VT such that v > Ω(x) then (v, ”D”) ∈ α(M∗);

4. if there is x ∈ VT such that v < Ω(x):

(a) if v ∈ ζΩ(x)
x then (v, ”G”) ∈ α(M∗)

(b) if v < vi for some vi ∈ ζΩ(x)
x = {v0 < v1 < . . . < vn} then (v, ”D”) ∈ α(M∗);

(c) if v < x no edit is associated to v.

Remark 2.61. By Properties (A1) and (A2), the conditions used to build α(M∗) are
mutually exclusive. This means that each v ∈ VT satisfies one and only one of the above
conditions and so α(M∗) is well defined.

The idea behind α(M∗) is that, for all couples (x, y) ∈M∗, we want to turn ζ
Ω(x)
x and

ζ
Ω(y)
y into single edges of the form (x,Ω(x)) and (y,Ω(y)) respectively, and then shrink
one in the other. As we already anticipated, α(M∗) takes care of all the vertices in VT
and VT ′ , a part from the sets ∪(x,y)∈M∗{x′ ∈ ET |x′ < x} and ∪(x,y)∈M∗{y′ ∈ ET ′ | y′ < y}.
For this reason we say that α(M∗) is a partial mapping.

We state this formally with the next proposition.
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Figure 2.13: Given two weighted trees T (left) and T ′ (right) - which are the same of Fig-
ure 2.9a - we consider Tx = subT (x) and Gy = subT ′(y) and we use Theorem 2.63 to com-
pute dE(Tx, Ty), as in the algorithm in Section 2.B. The setM∗ = {(v, w), (v′, w′), (v′′, w′′)}
satisfies (A1),(A2). The set α(M∗) is made by the deletions/insertions indicated by the
red edges, the ghostings/splittings indicated by the yellow and the shrinkings given by

edges of the same color, different from red. To obtain T̃x and T̃ ′
y as in Proposition 2.62 all

the black vertices covered by shaded regions must be deleted.

Proposition 2.62. Consider T and T ′ and M∗ ∈ C∗(T, T ′). We obtain from such dendro-

grams, respectively, the dendrograms T̃ and T̃ ′ by deleting all the vertices
⋃

(x,y)∈M∗{x′ ∈
ET |x′ < x} and

⋃
(x,y)∈M∗{y′ ∈ ET ′ | y′ < y}. The set α(M∗) is a mapping in M2(T̃ , T̃

′).

Now we have all the pieces we need to obtain the following key result.

Theorem 2.63 (Decomposition). Given T , T ′ dendrograms:

dE(T, T
′) = min

M∗∈C∗(T,T ′)

∑
(x,y)∈M∗

dE(subT (x), subT ′(y)) + cost(α(M∗)) (2.1)

This result is the foundation of the bottom-up algorithm developed in the supplemen-
tary material, which is used in the upcoming simulations.

2.10 Discussion

In this chapter we develop a framework to work with functions defined on merge trees.
As motivated throughout the manuscript, we argue that these kinds of topological sum-
maries can succeed in situations where persistence diagrams and merge trees alone are
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not effective. They also provide a great level of versatility because of the wide range of
additional information that can be extracted from data. We define a metric structure on
some spaces of functions defined on merge trees which has suitable stability properties and
can be calculated by solving a set of smaller and easier subproblems. This metric proves
to be feasible if the number of leaves is not too high and we carry out some examples to
showcase its effectiveness in situations which are of interest in different branches of data
analysis.

The are however some drawbacks in the framework presented in this chapter:

• the computational complexity involved in computing the metric is surely an issue.
Such complexity however is justified by the stability properties satisfied by the metric
and it is lower than exact methods available for other stable metrics;

• the deformation between two functions is not guaranteed to always produce a func-
tion at the intermediate steps i.e. the metric is not intrisic in the space of functions
defined on merge trees. This may limit the statistical tools that can be defined in
this space: should Frechét means exists, for instance, it is not guaranteed that they
are functions.

The generality of the work however opens up many possible research, some of which
are already investigated in other works:

• we think that the properties of the editable spaces can be relaxed; however, the
algorithm presented in this manuscript may need to be adapted to the properties of
the chosen weight space;

• starting from the edit distance presented in this chapter a metric for merge trees
via the edit distance between weighted trees is developed and studied - also in
relationship with other metrics for merge trees - in Chapter 3. Its stability properties
are assessed in Chapter 4;

• interactions with the more general case of Reeb Graphs can be investigated, possibly
following the decomposition presented in Stefanou (2020);

• applications of data analysis with merge trees via the framework defined in this
chapter and in Chapter 3 can be found for instance in Chapter 4 and Chapter 5. Such
analyses show that interpretable statistics able to discriminate between persistence
diagrams and merge trees could be very useful and could provide new topological
characterization of data which is inaccessible via PDs.
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Appendix

Outline of the Appendix

In Section 2.A the are the proofs of the results appearing in this chapter. The remaining
part of the Appendix is devoted to the algorithm which computes dE : in Section 2.B we
develop a LIP formulation of the metric dE and use it in Section 2.C to write a bottom-up
algorithm to compute the distance; the feasibility of the algorithm is then assessed with
some simulations in Section 2.D.

2.A Proofs

Proof of Theorem 2.49.

To lighten the notation we use the following symbols:

• the edit induced by (v, ”D”) is called vd and v−1
d stands for (”D”, v).

• the edit induced by (v, ”G”) is called vg and v−1
g stands for (”G”, v).

• the edit induced by (v, v′) is called vφ,φ′ with φ being the original weight function,
and φ′ the weight function after the shrinking.

We know that the set of finite edit paths between two dendrograms is nonempty.
Suppose that γ is a finite edit path. This means that γ is the composition of a finite set

of edits. We indicate such ordered composition with γ =
∏N

i=0 ei with ei edit operation.
We would like to change the order of the edit operations without raising the cost and
changing the extremes of the edit path. This is not always possible. However we can work
it around in the useful cases using properties (P1)-(P4). In particular, we would like to
know when we can commute a generic edit ei in the following situations:

• vd ◦ ei and ei ◦ v−1
d

• vg ◦ ei and ei ◦ v−1
g .

Moreover we want to reduce the edit path to max one edit for any vertex of T and T ′.
We divide the upcoming part of the proof in subsections, each devoted to different

combinations of edits.

vd and v−1
d

When we delete or insert one vertex, we are modifying the tree structure at the level of
its father and its children. Therefore, we are only taking into account operations on the
father, on the vertex himself or on the children of the deleted/inserted vertex.

• vd ◦ v′g with v son of v′, can be safely replaced with vd ◦ v′d. Instead of ghosting
the father and then deleting the whole edge, we can delete both edges one by one;
conserving the length of the path (P3). If v is father of v′ then we can safely commute
the operations.
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• vd ◦ v−1
g can be replaced with v′φ,φ′ with v′ father of v (after the insertion) and φ′

properly defined not to raise the cost of the path. In fact we are inserting v on an
edge and then deleting it. This can obviously be achieved by shrinking the original
edge (without changing the path length - (P4)).

• similarly, vd ◦ v′−1
g with v′ to be father of v can again be replaced safely by a proper

shrinking: instead of inserting a point in an edge, and deleting then the edge below,
we can directly shrink the original edge (P4). If v′ is to be inserted below v this is
the same situation, but seen from the point of view of the son of v.

• vd ◦ vφ,φ′ can be replaced by vd potentially diminishing the length of the path, but
surely not raising it (P1).

• v′g ◦ v−1
d . If v′ is the father of v, this edit can be replaced with just v′φ,φ′ with

appropriate weights: we are inserting an edge under a vertex which (in this case)
becomes of order two and is ghosted. We can directly modify the edge without
changing the length of the path (P4). If v′ is the vertex which would become son of
v, we can simply shrink v to obtain the same result without raising the cost (P4).

• v′−1
g ◦ v−1

d , with v′ to appear on the edge inserted with v−1
d cannot commute (oth-

erwise can always commute), but can be replaced by two insertions: instead of
inserting an edge and then splitting it, we can directly insert two smaller edges;
without changing the cost of the path (P3).

• vφ,φ′ ◦ v−1
d can be replaced with an insertion directly with weight φ′, possibly short-

ening the path (P1).

• consider v′−1
d ◦ vd with v′ to be inserted with, as father, the father of v; if the

children of v′ are different from the children of v, this operation cannot commute.
If the children are the same, it can be changed with a shrinking of v, reducing the
length of the path by at most cost(v′−1

d ) + cost(vd) (P1).

vg and v−1
g

Like in the previous case, we only take into account transformations concerning the father
and the son of the added/ghosted order two vertex.

• vg ◦ v′g, with v and v′ being on adjacent edges, can commute (P2).

• vg ◦ v′−1
g , with v and v′ being on adjacent edges, can commute provided we define

carefully the splitting v′−1
g (P2).

• vg ◦ vφ,φ′ means that we are shrinking a vertex before ghosting it. However, we can
achieve the same result, without increasing the path length, by ghosting the vertex
at first, and then shrinking its son (P1)-(P4).

• v′φ,φ′ ◦ v−1
g either with v′ = v, or with v father of v′, can be replaced with an

appropriate shrinking of the (future) son of v, and then an appropriate insertion of
v′ without changing the length of the path (P3)-(P4).

• vg ◦ v′d with v father of v′ cannot be commuted and cannot be replaced by a similar
operation which inverts ghosting and deletion.
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vw,w′

• vφ′,φ′′ ◦ vφ,φ′ can be replaced by vφ,φ′′ which is either conserving or shortening the
path (P1).

• v−1
φ,φ′ = vφ′,φ.

Thanks to these properties we can take a given path γ =
∏

i=0,...,N ei and modify the
edit operations in order to obtain the following situation:

• the first operations are all in the form vd; this can be achieved because vd ◦− can be
always rearranged, potentially by changing the path as shown before and shortening
it. Of course there can be only one deletion for each vertex of T ;

• then we have all the edits in the form vg; since vg ◦ − is exchangeable any time but
when we have vg ◦ v′d, this is not a problem. Observe that all order two vertices
which were not deleted can be ghosted (at most one time);

• in the same way we can put last all the paths in the form v−1
d and before them v−1

g .
All the new vertices appearing with the insertion of edges and the splitting of edges
with order two vertices are all nodes which remain in T ′ and which are not further
edited;

• in the middle we are left with the shrinking paths. Since we can substitute vφ,φ′ ◦
vφ′,φ′′ with vφ,φ′′ , we can obtain just one single transformation on a vertex.

Thus
γ = (γT

′

d )−1 ◦ (γT ′

g )−1γTs ◦ γTg ◦ γTd .

with:

• γTd =
∏
vd

• γTg =
∏
vg

• γTs =
∏
vφ,φ′

• (γT
′

g )−1 =
∏
v−1
g

• (γT
′

d )−1 =
∏
v−1
d

is such that γ(T ) = γ(T ) = T ′ and cost(γ) ≤ cost(γ). The key point is that γ can be
easily realized as a mapping in the following way:

• (v, ”D”) ∀vd ∈ γTd

• (v, ”G”) ∀vg ∈ γTg

• (v, v′) ∀vφ,φ′ ∈ γTs , where v′ is the renaming of v, with weight given by φ′.

• (”G”, v) ∀v−1
g ∈ (γT

′

g )−1

• (”D”, v) ∀v−1
d ∈ (γT

′

d )−1
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■

Proof of Lemma 2.60.

Any order 2 vertex which is not ghosted is paired with another order 2 vertex. Ghosting
both of them does not increase the cost of the mapping.

■

Proof of Proposition 2.62.

Condition (M2) coincide with condition (A2). Condition (M3) is clearly satisfied be-
cause of the antichain condition (A1). Consider a vertex v ∈ ET . The only case in which
v is not edited is when v < x with x ∈ vT ∩ πT (M∗). However, in this case, v does not

appear in T̃ , and thus (M1) is satisfied. Moreover, all and only order 2 vertices, after the
deletions, are ghosted, and (M4) follows .

■

Proof of Theorem 2.63.

Let M ∈M(T, T ′) such that dE(T, T
′) = cost(M).

We note that father > son induces a partial order relationship also on the pairs given
by coupled points in M : (x, y) > (v, w) if x > v and y > w. In fact, by property (M3),
x > v if and only if y > w. So we can select (xi, yi), the maxima with respect to this
partial order relationship. Thus, we obtain (x0, y0),...,(xn, yn) which form an antichain
(both in VT and VT ′).

Clearly M∗ = {(x0, y0),...,(xn, yn)} ∈ C∗(T, T ′). Now we build α(M∗) and compare
the cost of its edits with the ones in M . Let x̄ = LCA(xi, xj). Since x̄ > xi, xj , it is
not coupled in M . Since xi and xj are coupled, x̄ cannot be ghosted, so it is deleted in
M . Any point x above x̄ is deleted for the same reasons. So the edits above x̄ are shared
between α(M∗) and M .

In α(M∗) we ghost any point between x̄ and xi (and the same for xj) and this is not
certain to happen in M (some points could be deleted). Nevertheless, even in the worst
case, these ghostings are guaranteed not to increase the distance. For instance, suppose
xi < x < x̄ is deleted in M and ghosted by α(M∗), then:

d(xi ∗ x, yi) ≤ d(xi ∗ x, yi ∗ x) + d(yi ∗ x, yi) = d(xi, yi) + d(x, 0)

by properties (P1)-(P4). Since α(M∗) ∈M2(T̃ , T̃
′) by Proposition 2.62, we have:∑

(x,y)∈M∗

dE(subT (x), subT ′(y)) + cost(α(M∗)) ≤ cost(M)

Now we prove the other inequality.

Consider M∗ which realizes the minimum of the right side of Equation (2.1), and Mi

which realizes dE(sub(xi), sub(yi)) with (xi, yi) ∈ M∗. We build a mapping M collecting
edits in the following way: for every x′ ∈ ET if x′ ∈ sub(xi), we take the edit associated to
it from Mi, otherwise we know that it is edited by α(M∗), and we take it from there; the
set of these assignments givesM ∈M2(T, T

′) whose cost is exactly
∑

(xi,yi)∈M∗ cost(Mi)+

cost(α(M∗)). This gives the second inequality.
■

2.B Computing the Edit Distance: Dynamical Integer Linear Pro-
gramming problems

We want to use Theorem 2.63 to write a dynamical, integer linear optimization algorithm
to calculate dE : by translating Theorem 2.63 into a Integer Linear Programming (ILP)
problem, we obtain a single step in a bottom-up procedure.
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2.B.1 Notation

We are given two dendrograms T, T ′ inside some dendrogram space (T , E). Our objective
is to write down Equation (2.1) as a function of some binary variables.

Consider x ∈ VT and y ∈ VT ′ . Along with keeping the notation defined in Section 2.9,
define Tx := subT (x) and Ty := subT ′(y), Nx := dim(Tx) = #ET and Ny := dim(Ty) =
#ET ′ . In particular, given v ∈ VTx

, the sequence v0 = v < v1 < . . . < rT indicates the
points in ζv. Thus vi will be a vertex vi > v. The same with w ∈ VTy

.

2.B.2 Relaxing the Optimization Problem

We would like to findM∗ ∈ C∗(Tx, Ty) minimizing Equation (2.1) for Tx and Ty, but this is
a difficult task. In fact, as evident in the construction of α(M∗), a setM∗ ∈ C∗(Tx, Ty) has
the role of pairing segments of dendrograms: if (v, w) ∈M∗, then the paths ζ

Ω(v)
v and ζ

Ω(w)
w

are paired and then shrunk one on the other by α(M∗). However, the points Ω(v) and
Ω(w) depend on the whole set M∗, and not simply on the couple (v, w). Modeling such
global dependence gives rise to non-linear relationships between coupled points, and so
leading to a non linear cost function, in terms of points interactions, to be minimized. For
this reason we “weaken” the last term in Equation (2.1), allowing also mappings different
from α(M∗) to be built from M∗. In other words we minimize over M∗ ∈ C∗(Tx, Ty) the
following equation: ∑

(v,w)∈M∗

dE(subTx
(v), subTy

(w)) + cost(β(M∗)) (2.2)

where β(M∗) is such that:

• β(M∗) ∈M2(T̃x, T̃y) (with the notation obtained from Proposition 2.62 replacing T
and T ′ with Tx and Ty respectively);

• the set of vertices coupled by β(M∗) is exactly M∗: M∗ = β(M∗) ∩ VTx
× VTy

.

Since, by construction M∗ = α(M∗) ∩ VT × VT ′ and by Proposition 2.62, α(M∗) ∈
M2(T̃x, T̃y), minimizing Equation (2.1) or Equation (2.2) gives the same result.

2.B.3 Setup and Variables

Suppose we already have Wxy which is a Nx×Ny matrix such that (Wxy)v,w = dE(Tv, Tw)
for all v ∈ ETx

and w ∈ ETy
. Note that:

• if x and y are leaves, Wxy = 0.

• if v, w are vertices of Tx, Ty, then Wvw is a submatrix of Wxy.

The function to be optimized is defined on the following set of binary variables: for
every v ∈ ETx

and w ∈ ETy
, for vi ∈ ζv, vi < rTx

, and wj ∈ ζw, wj < rTy
, take a binary

variable δv,wi,j . We use δ to indicate the matrix of variables (δv,wi,j )v,w,i,j .

The mapping β(M∗) is built according to the variables δv,wi,j = 1: we write a constrained

optimization problem such that having δv,wi,j = 1 means pairing the segments ζ
vi+1
v (that

is, the sequence of edges which starts with (v, v1) and ends with (vi, vi+1)) and ζ
wj+1
w , and

shrinking one in the other in the induced mapping.
In order to pair and shrink the segments ζ

vi+1
v = {v = v0, v1, . . . , vi+1} and ζ

wj+1
w we

need to define a set of edits β(M∗) adding the following edits:

• all the points vk ∈ ζvi+1
v with 0 < k < i+ 1 are ghosted, that is (vk, G) ∈ β(M∗);
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• if v′ < vk for some 0 < k < i+ 1, then (v′, D) ∈ β(M∗);

• if v′ ≥ vi+1 and v′ ̸= rT , then (v′, D) ∈ β(M∗)

• (v, w) ∈ β(M∗).

Of course analogous edits must be induced on vertices in Ty. Thus, the edit (v, w) ∈
β(M∗), along the edit paths induced by β(M∗), means: shrinking the edge (v, vi+1) onto
(w,wj+1)). Recall that, if δv,wi,j = 1, we do not need to define edits for subTx

(v) and

subTy
(w) since, by assumption, we already know dE(Tv, Tw).

2.B.4 Constraints

Clearly, not all combinations of δv,wi,j are acceptable, in that the set β(M∗) is not always a

mapping with M∗ ∈ C∗(Tx, Ty): for instance segments could be paired multiple times. To
avoid such issues, we build a set of constraints for the variable δ.

For each v′ ∈ VTx
we call Φ(v′) := {(v′′, i) ∈ VT × N | v′ = v′′i ∈ ζ

v′′
i+1

v′′ }. In an analogous
way we define δ(w′) for w′ ∈ VTy

. Call K the set of values of δ such that for each leaf l in
VTx

: ∑
v′∈ζl

 ∑
(v′′,i)∈Φ(v′)

∑
w,j

δv
′′,w

i,j

 ≤ 1 (2.3)

and for each leaf l′ in VTy
:

∑
w′∈ζl′

 ∑
(w′′,j)∈Φ(w′)

∑
v,i

δv,w
′′

i,j

 ≤ 1 (2.4)

The following proposition clarifies the properties of any value of δ ∈ K.

Proposition 2.64. If δ ∈ K:

• the couples (v, w) such that δv,wi,j = 1 define a set M∗ ∈ C∗(Tx, Ty);

• the edits induced by all δv,wi,j = 1 give a mapping β(M∗) in M2(T̃x, T̃y). With T̃x, T̃y
being obtained from Tx and Ty as in Proposition 2.62.

Proof. Having fixed a leaf l, the constraint in Equation (2.3) allows for at most one path
ζ
vi+1
v ⊂ ζl to be kept after the editing induced by all the variables equal to 1. Moreover if
(v′′, i) ∈ Φ(v) ∩ Φ(v′), then v = v′′i = v′. Thus, variables are added at most one time in
Equation (2.3) and Equation (2.4). Which means that for any a ∈ VTx

, we are forcing that
a can be an internal vertex or lower extreme of at most one path ζ

vi+1
v such that δv,wi,j = 1.

In other words if two “kept” segments ζ
vi+1
v and ζ

v′
i′+1

v′ (i.e. with δv,wi,j = δv
′,w

i′,j = 1) intersect

each other, it means that they just share the upper extreme vi+1 = v′i′+1. These facts
together imply that (if the constraints are satisfied) the edits induced on Tx by δv,wi,j = 1

and δv
′,w′

i′,j′ = 1 are always compatible: if v′′ ∈ VsubT (vi) then it is not touched by (the edits

induced by) δv
′,w′

i′,j′ = 1 (and the same exchanging the role of v′ and v), if v′′ is equal or above

vi+1 and/or v′i′+1, then it is deleted in any case. Lastly, by noticing that if δv,wi,j ∈ Φ(v′)

then δv,w
′

i,j′ ∈ Φ(v′) for all other possible w′ and j′, we see that every segment ζvi
v is paired

with at most one segment ζ
wj
w , and viceversa.

As a consequence, for any vertex v′ in any of the tree structures, at most one point on
the path ζv′ is coupled in M∗, guaranteeing the antichain condition. Moreover, any point
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of Tx which is in πTx
(M∗) is assigned to one and only one point of T ′

y and viceversa. The

edits induced by δ = 1 clearly satisfy properties (M2)-(M4). Passing to T̃x and T̃y, also
(M1) is satisfied.

Remark 2.65. If for every δv,wi,j = 1, vi+1 = Ω(v), then β(M∗) = α(M∗).

2.B.5 Objective Function

Having built a mapping β(M∗) using the binary variables, we want to define a cost func-
tions which computes the cost of such mapping depending on δ.

Consider v ∈ ETx
and interpret δv,wi,j = 1 as coupling the segments ζ

vi+1
v and ζ

wj+1
w ;

then v is coupled with some w ∈ ETy
if C(v) :=

∑
i,w,j δ

v,w
i,j = 1 and is ghosted if G(v) :=∑

{i,v′ | v∈ζv′
i

v′ }

∑
w,j δ

v′,w
i,j = 1. The vertex v is instead deleted if D(v) := 1−C(v)−G(v) = 1.

We introduce also the following quantities, which correspond to the cost of shrinking ζ
vi+1
v

on ζ
wj+1
w :

∆v,w
i,j = d

 ∑
v′∈ζvi

v

φTx
(v′),

∑
w′∈ζwj

w

φTy
(w′)


Note that the above sums are taken inside the editable space E.

The function which computes the cost given by coupled points is therefore:

FC(δ) :=
∑

v,w,i,j

∆v,w
i,j · δ

v,w
i,j

The contribution of deleted points is: FD(δ)− F−(δ), where

FD(δ) :=
∑
v∈Tx

D(v) · d(φTx
(v), 0) +

∑
w∈Ty

D(w) · d(φTy
(w), 0)

and

F−(δ) :=
∑
v∈Tx

C(v) · | | subTx
(v) | | +

∑
w∈Ty

C(w) · | | subTy
(w) | |

where the “norm” of a tree T is | |T | | =
∑

e∈ET
d(φ(e), 0).

Finally, one must take into account the values of dE(Tv, Tw), whenever v and w are
coupled; this information is contained in (Wxy)v,w:

FS(δ) :=
∑
v,w

(Wxy)v,w ·

∑
i,j

δv,wi,j


Proposition 2.66. With the notation previously introduced:

dE(Tx, Ty) = min
δ∈K

FC(δ) + FD(δ)− F−(δ) + FS(δ) (2.5)

Proof. The contribution of coupled points is FC(δ) and the contribution of deleted points
is FD(δ)− F−(δ).

The cost of β(M∗) is: F β(δ) := FC(δ) + FD(δ) − F−(δ). Lastly, FS(δ) takes into
account the value of dE(Tv, Tw), if v and w are coupled. By Theorem 2.63, combined with
Proposition 2.64, the solution of the following optimization problem:

min
δ∈K

FS(δ) + F β(δ) (2.6)

is equal to dE(Tx, Ty).
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Remark 2.67. A solution to Problem Equation (2.5) exists because the minimization
domain is finite and there are admissible values; it is not unique in general.

2.C Computing the Edit Distance: Bottom-Up Algorithm

In this section the results obtained in Section 2.9 and the formulation established in Sec-
tion 2.B are used to obtain the algorithm implemented to compute the metric dE between
dendrograms. Some last pieces of notation are introduced in order to describe the “bottom-
up” nature of the algorithm.

Given x ∈ VT , define len(x) to be the number of vertices in ζx and len(T ) = maxv∈VT
len(v).

Therefore, lvl(x) = len(T )− len(x). Lastly, lvlT (n) = {v ∈ VT | lvl(v) = n}
The key property is that: lvl(x) > lvl(v) for any v ∈ sub(x). Thus, if Wxy is known for

any x ∈ lvlT (n) and y ∈ lvlT ′(m), then for any v, w in VT , VT ′ such that lvl(v) < n and
lvl(w) < m, Wvw is known as well. With this notation we can write down Algorithm 1.

Algorithm 1. Bottom-Up Algorithm.

Result: dE(T, T
′)

1 initialization: N = len(T ), M = len(T ′), n = m = 0;
2 while n ≤ N or m ≤M do
3 for (x, y) ∈ VT × VT ′ such that lvl(x) ≤ n and lvl(y) ≤ m do
4 Calculate (WrT rT ′ )x,y solving Problem (2.5);
5 end
6 n = n+ 1; m = m+ 1;

7 end
8 return (WrT rT ′ )rT ,rT ′

We end up with a result to analyze the performances of Algorithm 1 in the case of
dendrograms with binary tree structures.

Proposition 2.68. Let T and T ′ be two dendrograms with full binary tree structures with
dim(T ) = #ET = N and dim(T ′) =M .

Then dE(T, T
′) can be computed bu solving O(N ·M) ILP problems with O(N · log(N) ·

M · log(M)) variables and O(N +M) constraints.

Proof. In a full binary tree structure, at each level l we have 2l vertices. Let L = len(T )
and L′ = len(T ′). We have that, for any vertex v ∈ VT at level l, the cardinality of the
path from v to any of the leaves in subT (v) is L− l and the number of leaves in subT (v)
is 2L−l.

So, given v ∈ VT at level l and w ∈ VT ′ at level l′, to calculate dE(subT (v), subT ′(w))
(having already Wvw) we need to solve a integer linear problem with 2L−l · (L− l) · 2L′−l′ ·
(L′ − l′) variables and 2L−l + 2L

′−l′ linear constraints.
Thus, to calculate dE(T, T

′), we need to solve (2L+1 − 1) · (2L′+1 − 1) linear integer
optimization problems, each with equal or less than 2L · L · 2L′ · L′ variables and equal
or less that 2L + 2L

′
constraints. Substituting L = log2(N) and L′ = log2(M) in these

equations gives the result.

Note that binary dendrograms are dense (with respect to dE) in any dendrogram space
as long as for any ε > 0, there is x ∈ (E, ∗, 0) such that d(x, 0) < ε. So this is indeed a
quite general result.

2.C.1 Example

Here we present in details the first steps of the Algorithm 1, used to calculate the distance
between two merge trees.
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We consider the following couple of merge trees. Let (T, hT ) be the merge tree given by:
VT = {a, b, c, d, rT }, ET = {(a, d), (b, d), (d, rT ), (c, rT )} and wT (a) = wT (b) = wT (d) = 1,
wT (c) = 5; the merge tree (T ′, hT ′) instead, is defined by: VT ′ = {a′, b′, c′, d′, rT ′}, ET ′ =
{(a′, d′), (b′, d′), (d′, rT ′), (c′, rT ′)} and wT ′(a) = 1, wT ′(b) = wT ′(c) = 2 and wT ′(d) = 3.

Step: n = m = 0

This step is trivial since we only have couples between leaves, like (a, a′), which have trivial
subtrees and thus dE(subT (a), subT ′(a′)) = 0.

Step: n = m = 1

The points x ∈ VT with lvlT (x) ≤ 1 are {a, b, c, d} and the points y ∈ VT ′ with lvlT ′(y) ≤ 1
are {a′, b′, c′, d′}. Thus the couples (x, y) which are considered are: (d, d′), (d, a′), (d, b′),
(d, c′) and (a, d′), (b, d′), (c, d′). The couples between leaves, like (a, a′) have already been
considered.

Couple: (d, d′) Let Td = subT (d) and Td′ = subT ′(d′). The set of internal vertices
are respectively ETd

= {a, b} and ETd′ = {a′, b′}. For each vertex v < root in each subtree,
where “root” stands for d or d′, roots of Td and Td′ respectively, we have ζv = {v0 = v, v1 =

root}. Thus, the binary variables we need to consider, are the following: δa,a
′

0,0 , δa,b
′

0,0 , δ
b,a′

0,0

and δb,b
′

0,0 . The quantities ∆v,w
i,j are given by: ∆a,a′

0,0 = 0, ∆a,b′

0,0 = 1, ∆b,a′

0,0 = 0 and ∆b,b′

0,0 = 1.
Thus:

FC(δ) = 0 · δa,a
′

0,0 + δa,b
′

0,0 + 0 · δb,a
′

0,0 + δb,b
′

0,0

While:

FD(δ) = (1− δa,a
′

0,0 − δ
a,b′

0,0 ) ·1+(1− δb,a
′

0,0 − δ
b,b′

0,0 ) ·1+(1− δa,a
′

0,0 − δ
b,a′

0,0 ) ·1+(1− δa,b
′

0,0 − δ
b,b′

0,0 ) ·2

and:

F−(δ) = (δa,a
′

0,0 + δa,b
′

0,0 ) · 0 + (δb,a
′

0,0 + δb,b
′

0,0 ) · 0 + (δa,a
′

0,0 + δb,a
′

0,0 ) · 0 + (δa,b
′

0,0 + δb,b
′

0,0 ) · 0

and:
FS(δ) = δa,a

′

0,0 · 0 + δa,b
′

0,0 · 0 + δb,a
′

0,0 · 0 + δb,b
′

0,0 · 0

Lastly the constraints are:

δa,a
′

0,0 + δa,b
′

0,0 ≤ 1; δb,a
′

0,0 + δb,b
′

0,0 ≤ 1; δa,a
′

0,0 + δb,a
′

0,0 ≤ 1; δa,b
′

0,0 + δb,b
′

0,0 ≤ 1

A solution is given by δa,a
′

0,0 = δb,b
′

0,0 = 1 and δa,b
′

0,0 = δb,a
′

0,0 = 0, which entails FC(δ) = 1,

FD(δ) = 0, F−(δ) = 0 and FS(δ) = 0 and dE(Td, Td′) = 1.

Couple: (d, a′) Obviously: dE(subT (d), subT ′(a′)) = | | subT (d) | | . All the couples
featuring a leaf and an internal vertex (that is, a vertex which is not a leaf), such as (d, b′),
(a, d′) etc. behave similarly.

Step: n = m = 2

The points x ∈ VT with lvlT (x) ≤ 2 are {a, b, c, d, rT } and the points y ∈ VT ′ with
lvlT ′(y) ≤ 2 are {a′, b′, c′, d′, rT ′}. Thus the couples (x, y) which are considered are (d, rT ′),
(rT , d

′), (rT , rT ′) and then the trivial ones: (rT , a
′), (rT , b

′), (rT , c
′) and (a, rT ′), (b, rT ′),

(c, rT ′). Some couples have already been considered and thus are not repeated.
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Couple: (d, rT ′) Let Td = subT (d) and T
′ = subT ′(rT ′). The set of internal vertices

are respectively ETd
= {a, b} and ETd′ = {a′, b′, c′, d′}. Thus, the binary variables we need

to consider, are the following: δa,a
′

0,0 , δa,a
′

0,1 , δa,b
′

0,0 , δ
a,b′

0,1 , δ
a,c′

0,0 , δ
a,d′

0,0 , δb,a
′

0,0 , δ
b,a′

0,1 , δ
b,b′

0,0 , δ
b,b′

0,1 δb,c
′

0,0 ,

and δb,d
′

0,0 .

The quantities ∆v,w
i,j are given by: ∆a,a′

0,0 = 0, ∆a,a′

0,1 = 3, ∆a,b′

0,0 = 1, ∆a,b′

0,1 = 4, ∆a,c′

0,0 = 1,

∆a,d′

0,0 = 2, ∆b,a′

0,0 = 0, ∆b,a′

0,1 = 3, ∆b,b′

0,0 = 1, ∆b,b′

0,1 = 4, ∆b,c′

0,0 = 1 and ∆b,d′

0,0 = 2. The function

FC(δ) is easily obtained by summing over δv,wi,j ·∆
v,w
i,j .

While:

FD(δ) = (1− δa,a
′

0,0 − δ
a,a′

0,1 − δ
a,b′

0,0 − δ
a,b′

0,1 − δ
a,c′

0,0 − δ
a,d′

0,0 ) · 1 + . . .+ (1− δa,d
′

0,0 − δ
b,d′

0,0 ) · 3

and:

F−(δ) = (δa,a
′

0,0 + δa,a
′

0,1 + δa,b
′

0,0 + δa,b
′

0,1 + δa,c
′

0,0 + δa,d
′

0,0 ) · 0 + . . .+ (δa,d
′

0,0 + δb,d
′

0,0 ) · 3

and:
FS(δ) = (δa,a

′

0,0 + δa,a
′

0,1 ) · 0 + (δa,b
′

0,0 + δa,b
′

0,1 ) · 0 + . . .+ δa,d
′

0,0 · 3 + δb,d
′

0,0 · 3

Lastly the constraints are:

δa,a
′

0,0 + δa,a
′

0,1 + δa,b
′

0,0 + δa,b
′

0,1 + δa,c
′

0,0 + δa,d
′

0,0 ≤ 1

δb,a
′

0,0 + δb,a
′

0,1 + δb,b
′

0,0 + δb,b
′

0,1 + δb,c
′

0,0 + δb,d
′

0,0 ≤ 1

δa,a
′

0,0 + δa,a
′

0,1 + δb,a
′

0,0 + δb,a
′

0,1 + δa,d
′

0,0 + δb,d
′

0,0 ≤ 1

δa,b
′

0,0 + δa,b
′

0,1 + δb,b
′

0,0 + δb,b
′

0,1 + δa,d
′

0,0 + δb,d
′

0,0 ≤ 1

δa,c
′

0,0 + δb,c
′

0,0 ≤ 1

In this case there are many minimizing solutions. One is given by: δa,a
′

0,1 = δb,c
′

0,0 = 1 and

all other variables equal to 0. This value of δ is feasible since the variables δa,a
′

0,1 and δb,c
′

0,0

never appear in the same constraint. This value of δ entails FC(δ) = 3 + 1, FD(δ) = 2,
F−(δ) = 0 and FS(δ) = 0, and thus dE(Td, T

′) = 6.

Another solution can be obtained with: δa,d
′

0,0 = δb,c
′

0,0 = 1 and all other variables equal

to 0. Also this value of δ is feasible since the variables δa,d
′

0,0 and δb,c
′

0,0 never appear in the

same constraint. This value of δ entails FC(δ) = 2+1, FD(δ) = wT ′(a′)+wT ′(b′) = 1+2,
F−(δ) = | | subT ′(d′) | | = 3 and FS(δ) = dE(subT (a), subT ′(d′)) = | | subT ′(d′) | | = 3,
and thus dE(Td, T

′) = 3 + 3− 3 + 3 = 6.

Couple: (rT , d
′) This and the other couples are left to the reader.

2.D Computing the Edit Distance: Numerical Simulations

In this last section, the feasibility of the algorithm presented in Section 2.C is assessed by
means of some numerical simulations.

To get some concrete ideas of proper runtimes needed to calculate distances, we fix
the number of leaves n and for 100 times the following procedure is repeated: generate
two random samples of n points from the uniform distribution on a compact, real interval,
take their single linkage hierarchical dendrograms (with weight function equal to the weight
function wT ) and compare them with dE . This whole pipeline is repeated for any integer
n in the interval [5, 20]. In Figure 2.D.1 there are the average runtimes as a function of the
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Figure 2.D.1: Graph of the computational times as function of the number of leaves.
The curves represent running times to calculated dE between couples of merge trees,
averaged over 100 random couples of trees, with shaded regions including intervals of +/−
one standard deviation. “Building time” means the time spent by Python to setup the
ILP problems. “Solving time” is the time used by the solver to solve the LIP problems.
“Total time” is the time spent computing the distance using parallel computing of the ILP
problems: both for the building and solving steps.

number of leaves of the involved binary trees. The standard deviations over the repetitions
are also reported, which show a quite large band around the mean. The different curves
in Figure 2.D.1 concern the portion of time effectively spent by the solver to compute the
solution of the ILP problems, and the amount of time employed to setup such problems.
All code is written in Python and thus this second part of the runtimes can likely be
greatly reduced by using more performing programming languages. The green line of total
time is computed parallelizing the for loop in Algorithm 1. Note that dendrograms with
the same number of leaves may end up having different tree-structures and so different
dimensions. This is the main reason for the big shaded regions around the mean. If the
trees were aggregated by dimension, the standard deviation of runtimes would decrease.
Nevertheless, in applications, the only thing one can reasonably control is the number of
leaves (which is given by the number of minima in the function, the number of clusters in
a dendrogram, etc.) and for this reason the trees are aggregated as in Figure 2.D.1.

The computations are carried out on a 2016 laptop with Intel(R) processor Core(TM)
i7-6700HQ CPU @ 2.60GHz, 4 cores (8 logical) and 16 GB of RAM. The employed ILP
solver is the freely available IBM CPLEX Optimization Studio 12.9.0.
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Abstract

In this chapter we define a novel edit distance for merge trees. Then we consider the
metric space obtained and study the properties of such space obtaining completeness and
compactness results, the existence of Frechét Means and local approximations by means
of euclidean spaces. Whilst doing so, we explore the geodesic structure of the space of
merge trees, stratifying trees by means of their dimension and decomposing geodesics
along different strata. All these results contribute to understanding how the different
strata interact, which is pivotal for the development of more refined tools and techniques
for merge trees.

3.1 Introduction

Topological Data Analysis (TDA) is a particular set of techniques within the field of
geometric data analysis which aim at including topological information into data analysis
pipelines.

Topological information is usually understood in terms of generators of homology
groups (Hatcher, 2000) with coefficients in some field. With persistent homology these
generators are extracted along a filtration of topological spaces to capture the shape of the
initial datum, typically a function or a point cloud, at “different resolutions” (Edelsbrun-
ner and Harer, 2008). To proceed with the analysis, this ordered family of vector spaces
is then represented with a topological summary. There are many different kinds of topo-
logical summaries such as persistence diagrams (Edelsbrunner et al., 2002), persistence
images (Adams et al., 2017), persistence silhouettes (Chazal et al., 2015), and persistence
landscapes (Bubenik, 2015). Each of these summaries live in a space with different prop-
erties and purposes: for instance persistence diagrams are highly interpretable and live in
a metric space, persistence landscapes are embedded in a linear space of functions, but
the embedding is not closed under linear combinations, persistence images are instead
obtained as vectors in Rn, making them suitable for many Machine Learning techniques.

Along with the aforementioned summaries, there are also tree-shaped objects called
merge trees. Merge trees arise naturally within the framework of TDA when dealing with
zero dimensional homology groups, as they capture the merging structure of path con-
nected components along a filtration of topological spaces. Originally, such objects stem
out of Morse Theory (Milnor, 2016) as a topological summary related to Reeb graphs (Shi-
nagawa et al., 1991b; Biasotti et al., 2008) and are frequently used for data visualization
purposes (wu and Zhang, 2013; Bock et al., 2017). Analogously, other different but related
kinds of trees like hierarchical clustering dendrograms (Murtagh and Contreras, 2017) or
phylogenetic trees (Felsenstein and Felenstein, 2004) have also been used extensively in
statistics and biology to infer information about a fixed set of labels. The uprising of
TDA, however, has propelled works aiming at using trees and Reeb graphs as topological
summaries in data analysis contexts and thus developing metrics and frameworks to ana-
lyze populations of such objects (Beketayev et al., 2014; Morozov et al., 2013; Gasparovic
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et al., 2019; Touli, 2020; Sridharamurthy et al., 2020; Wetzels et al., 2022; Di Fabio and
Landi, 2016; Bauer et al., 2020).

Returning to the typical TDA pipeline, once a topological representation suitable for
the analysis is chosen the tools that can be employed are a direct consequence of the
properties of the space the summaries live in, as for any other data analysis situation.
For instance, many statistical techniques rely on the linear structure of Euclidean spaces:
typical examples are linear regression and principal components analysis (PCA). However,
there are many examples of analyses carried out on data not lying (at least naively) in
Rn or other vector spaces. Quotient spaces of functions up to reparametrization, point
clouds up to isometries, probability distributions, matrices up to some kind of base change
etc. all require complex mathematical frameworks to be treated, since even things like
moving from one point to another must be carefully defined. For these reasons there has
been a lot of effort in generalizing statistical tools for data living outside Euclidean spaces.
The most commonly considered generalization is the case of data being sampled from
Riemannian manifolds - often Lie Groups - (Pennec, 2006; Pennec et al., 2019; Pennec,
2018; Huckemann and Eltzner, 2018; Huckemann et al., 2010; Jung et al., 2012; Fletcher,
2013; Patrangenaru and Ellingson, 2015), where the richness of the Riemannian structure is
fundamental to develop techniques and results. The situation becomes further challenging
when one cannot build a differential or even a topological structure which falls into the
realm of well-known and deeply studied geometrical objects like manifolds. In this case
ad-hoc, meaningful tools and definitions must be carefully obtained in order to be able
to work in such spaces (Mileyko et al., 2011; Leygonie et al., 2021; Calissano et al., 2020;
Miller et al., 2015; Garba et al., 2021).

Related Works

The works that have been dealing with the specific topic of merge trees can be divided into
two groups: the first group is more focused on the definition of a suitable metric structure
on merge trees and the second is more focused on the properties of merge trees and their
relationships with persistence diagrams. The first group, in turns, splits into works dealing
with the interleaving distance between merge trees and other metrics with very strong -
universal - theoretical properties (Beketayev et al., 2014; Morozov et al., 2013; Touli and
Wang, 2018; Gasparovic et al., 2019; Touli, 2020; Curry et al., 2022; Cardona et al., 2021),
and metrics which are more focused on the computational efficiency (Sridharamurthy et al.,
2020; Wetzels et al., 2022; Pont et al., 2022) at the cost of sacrificing stability properties
and trying to mitigate the resulting problems with pre-processing and other computational
solutions. The second group of articles, instead, investigates structural properties of merge
trees, answering questions like how many merge trees share the same persistence diagram
(Kanari et al., 2020; Curry et al., 2021), defining function spaces on merge trees - Chapter 2
- and obtaining other structures which lie in between persistence diagrams and merge trees
(Elkin and Kurlin, 2020).

Main Contributions

The aim of this chapter is to propose a novel metric for merge trees and to investigate
some geometric properties of the resulting metric space of merge trees. Such investigation
is intended as a first step into the development of statistical tools to analyze sets of such
objects, in analogy with what has already been done for persistence diagrams (Mileyko
et al., 2011; Turner et al., 2014; Bubenik and Wagner, 2020; Che et al., 2021) and other
kinds of trees (Billera et al., 2001; Miller et al., 2015; Garba et al., 2021).

The metric which is proposed is based on a more general edit distance between weighted
(in a broad sense) trees which is developed in Chapter 2: such chapter contains the main
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theoretic results which allow us to define the new distance and the algorithm which is used
to compute it. This edit distance is very different from other edit distances which have
been proposed for merge trees for two reasons: 1) it does not measure differences between
trees in terms of persistence pairs (as opposed to Sridharamurthy et al. (2020) and Pont
et al. (2022)) but in terms of edge length, resulting in a different way in which variability
between trees is captured; 2) the edit operations which characterize this distance are more
flexible than the usual ones, with some operations being a complete novelty with respect
to the existing literature on general edit distances. This on one side causes a higher
computational cost, but allows for suitable stability properties, which are investigated and
proved in Chapter 4.

As already mentioned, the general aim of our geometric investigation is to obtain a
better understanding of the local behaviour of the metric space of merge trees, to better
grasp the mathematical and statistical possibilities offered by that space. In particular,
we focus our geometric analysis on three directions. First we obtain a series of topological
results which lead to the definition of 0-dimensional summaries of empirical distributions
of merge trees, via their Frechét means - sometimes called Karcher means - (Karcher,
1977): these objects generalize the widely used euclidean means and can be seen as the
most basic statistics employed in data analysis, but that can provide important results
even outside the euclidean context (Davis, 2008; Pennec, 2018). Second, we start studying
the metric structure of the space of merge trees, with results on the local uniqueness of
its geodesic paths. Third we provide some tools to have a local linear approximation of
the space of merge trees, via a decomposition of its geodesics along different strata of the
space.

Outline

This chapter is organized as follows. Section 3.2, Section 3.3 and Section 3.4 contain the
preliminary definitions needed in the chapter, which are collected from previous works in
the field. In the latter one, in particular, we review the definition of the edit distance
between weighted trees, which we use in Section 3.5 to define a metric structure for merge
trees which is therein compared with other established metrics for merge trees. In Sec-
tion 3.6 we discuss some geometric properties of the metric space obtained, with particular
focus on geodesic structure, compact sets, Frechét Means and local approximations of the
space of trees via some euclidean space. In Section 3.7 we draw some conclusions.

3.2 Preliminary Definitions - Merge Trees

This is the first of three preliminary sections to our work. Here, following Patel (2018),
Curry et al. (2022) and Chapter 2 we introduce most of the objects we need for our inves-
tigation, reporting definitions which are well established in TDA. The other preliminary
sections will focus on recalling metric geometry terminology/results and the edit distance
defined in Chapter 2.

Figure 3.2.1 illustrates some of the objects we introduce in this section.

Definition 3.1 (Curry et al. (2022)). A filtration of topological spaces is a (covariant)
functor X· : R→ Top from the poset (R,≤) to Top, the category of topological spaces with
continuous functions, such that: Xt → Xt′, for t < t′, are injective maps.

Example Given a real valued function f : X → R the sublevel set filtration is given
by Xt = f−1((−∞, t]) and Xt<t′ = i : f−1((−∞, t]) ↪→ f−1((−∞, t′]).
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(a) A filtration X·. (b) An abstract merge tree π0(X·).

(c) A regular abstract merge tree π0(X·).
(d) The merge treeM(π0(X·)) with π0(X·) as
in Figure 3.2.1c.

Figure 3.2.1: On the first line we see an example of a filtration along with its abstract
merge tree. in In the bottom line there are a regular abstract merge tree and the associated
merge tree. The colors are used throughout the plots to highlight the relationships between
the different objects.
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Example Given a finite set C ⊂ Rn its the Céch filtration is given byXt =
⋃

c∈C Bt(c).
With Bt(c) = {x ∈ Rn | ∥ c− x ∥< t}. As before: Xt<t′ = i :

⋃
c∈C Bt(c) ↪→

⋃
c∈C Bt′(c).

Given a filtration X· we can compose it with the functor π0 sending each topological
space into the set of its path connected components. We recall that, according to standard
topological notation, π0(X) is the set of the path connected components of X and, given
a continuous functions q : X → Y , π0(q) : π0(X)→ π0(Y ) is defined as:

U 7→ V such that q(U) ⊂ V.

Definition 3.2 (Carlsson and Mémoli (2013); Curry (2018)). A persistent set is a functor
S : R → Sets. In particular, given a filtration of topological spaces X·, the persistent
set of components of X· is π0 ◦ X·. A one dimensional persistent module is a functor
S : R→ VecK with values in the category of vector spaces VecK.

By endowing a persistent set with the discrete topology, every persistence set can be
seen as the persistence set of components of a filtration. Thus a general persistent set S
can be written as π0(X·) for some filtration X·.

Based on the notion of constructible persistent sets found in Patel (2018) and Curry
et al. (2022) one then builds the following objects.

Definition 3.3 (Chapter 2). An abstract merge tree is a persistent set S : R→ Sets such
that there is a finite collection of real numbers {t1 < t2 < . . . < tn} which satisfy:

• S(t) = ∅ for all t < t1;

• S(t) = {⋆} for all t > tn;

• if t, t′ ∈ (ti, ti+1), with t < t′, then S(t < t′) is bijective.

The values {t1 < t2 < . . . < tn} are called critical values of the tree and there is always
a minimal set of critical values - Chapter 2. We always assume to be working with such
minimal set.

If S(t) is always a finite set, S is a finite abstract merge tree.

Consider an abstract merge tree π0(X·) and let t1 < t2 < . . . < tn be its (minimal set

of) critical values and let it
′

t := Xt≤t′ : Xt → Xt′ . Take ε > 0 small. We have that at least

one between π0(i
tj
tj−ε) and π0(i

tj+ε
tj ) is not bijective. So we have the following definition.

Definition 3.4 (Chapter 2). An abstract merge tree π0(X·) is said to be regular if π0(i
tj+ε
tj )

is bijective for every critical value tj and for every ε > 0 small enough.

Assumption 3.5. From now on we consider only regular abstract merge trees. In Chap-
ter 2 it is shown that this choice is non-restrictive.

Now we introduce merge trees with the approach found in Chapter 2 - from which
we take the upcoming definitions. A combinatorial object, called tree structure, is intro-
duced, and we add to it some height values with a function. Similar approaches can be
found in most of the scientific literature dealing with such topics (Gasparovic et al., 2019;
Sridharamurthy et al., 2020; Wetzels et al., 2022; Pont et al., 2022).
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Definition 3.6. A tree structure T is given by a set of vertices VT and a set of edges
ET ⊂ VT × VT which form a connected rooted acyclic graph. We indicate the root of the
tree with rT . We say that T is finite if VT is finite. The order of a vertex v ∈ VT is the
number of edges which have that vertex as one of the extremes, and is called ordT (v). Any
vertex with an edge connecting it to the root is its child and the root is its father: this is the
first step of a recursion which defines the father and children relationship for all vertices
in VT . The vertices with no children are called leaves or taxa and are collected in the set
LT . The relation child < father generates a partial order on VT . The edges in ET are
identified in the form of ordered couples (a, b) with a < b. A subtree of a vertex v, called
subT (v), is the tree structure whose set of vertices is {x ∈ VT |x ≤ v}.

Given a tree structure T , identifying an edge (v, v′) with its lower vertex v, gives a
bijection between VT −{rT } and ET , that is ET

∼= VT −{rT } as sets. Given this bijection,
we often use ET to indicate the vertices v ∈ VT − {rT }, to simplify the notation.

To identify merge trees independently of their vertex set the following isomorphism
classes are introduced.

Definition 3.7. Two tree structures T and T ′ are isomorphic if exists a bijection η : VT →
VT ′ that induces a bijection between the edges sets ET and ET ′: (a, b) 7→ (η(a), η(b)). Such
η is an isomorphism of tree structures.

Then, we can give the definition of a merge tree.

Definition 3.8. A merge tree is a finite tree structure T with a monotone increasing
height function hT : VT → R ∪ {+∞} and such that 1) ordT (rT ) = 1 2) hT (rT ) = +∞ 3)
hT (v) ∈ R for every v < rT . The set of all merge trees is calledMT .

Two merge trees (T, hT ) and (T ′, hT ′) are isomorphic if T and T ′ are isomorphic as
tree structures and the isomorphism η : VT → VT ′ is such that hT = hT ′ ◦ η. Such η is an
isomorphism of merge trees. We use the notation (T, hT ) ∼= (T ′, hT ′).

With some slight abuse of notation we set maxhT = maxv∈VT | v<rT hT (v) and argmaxhT =
max{v ∈ VT | v < rT }. Note that, given (T, hT ) merge tree, there is only one edge of the
form (v, rT ) and we have v = argmaxhT .

Definition 3.9. Given a tree structure T , we can eliminate an order two vertex, connecting
the two adjacent edges which arrive and depart from it. Suppose we have two edges e =
(v1, v2) and e′ = (v2, v3), with v1 < v2 < v3. And suppose v2 is of order two. Then, we
can remove v2 and merge e and e′ into a new edge e′′ = (v1, v3). This operation is called
the ghosting of the vertex. Its inverse transformation is called the splitting of an edge.

Consider a merge tree (T, hT ) and obtain T ′ by ghosting a vertex of T . Then VT ′ ⊂ VT
and thus we can define hT ′ := hT |VT ′ .

Now we can state the following definition.

Definition 3.10. Merge trees are equal up to order 2 vertices if they become isomorphic
after applying a finite number of ghostings or splittings. We write (T, hT ) ∼=2 (T

′, hT ′).

We report a result summarizing the relationship between abstract merge trees and
merge trees. The main consequence of such result is that merge trees considered up to
order 2 vertices are an appropriate discrete tool to represent the information contained in
regular abstract merge trees. Figure 3.2.1b and Figure 3.2.1d can help the reader going
through the following proposition.

Proposition 3.11 (Chapter 2). The following hold:
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1. we can associate a merge tree without order 2 vertices M(π0(X·)) to any regular
abstract merge tree π0(X·);

2. we can associate a regular abstract merge tree F((T, hT )) to any merge tree (T, hT ).
Moreover, we haveM(F((T, hT ))) ∼=2 (T, hT );

3. given two merge trees (T, hT ) and (T ′, hT ′), we have F((T, hT )) ∼= F((T, hT )) if and
only if (T, hT ) ∼=2 (T

′, hT ′).

Remark 3.12. The explicit construction ofM and F can be found in the proof of Propo-
sition 4 in Chapter 2.

3.3 Preliminary Definitions - Metric Spaces

Following Burago et al. (2022), we give a brief overview of the well-established metric
geometry definitions we need in the present work.

Definition 3.13. Let X be an arbitrary set. A function d : X × X → R is a (finite)
pseudo metric if for all x, y, z ∈ X we have:

1. d(x, x) = 0

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y).

The space (X, d) is called a pseudo metric space.
Given a pseudo metric d on X, if for all x, y ∈ X, x ̸= y, we have d(x, y) > 0 then d

is called a metric or a distance and (X, d) is a metric space.

Proposition 3.14 (Proposition 1.1.5 Burago et al. (2022)). For a pseudo metric space
(X, d), x ∼ y iff d(x, y) = 0 is an equivalence relationship and the quotient space (X, d)/ ∼
is a metric space.

Definition 3.15. Consider X,Y pseudo metric spaces. A function f : X → Y is an
isometric embedding if it is injective and d(x, y) = d(f(x), f(y)). If f is also bijective then
it is an isometry or and isometric isomorphism.

Definition 3.16. A pseudo metric d on X induces the topology generated by the open
balls Bε(x) := {y ∈ X | d(x, y) < ε}.

Having a topology enables us to talk about continuity properties and in particular we
can consider continuous curves γ : [a, b]→ X.

Definition 3.17. Given a continuous curve γ : [a, b] → X with (X, d) a pseudo metric
space, one can define its length as:

L(γ) = sup
a=t0<...<tn+1=b

n∑
i=0

d(γ(ti), γ(ti+1))

If L(γ) is finite then γ is rectifiable.

Definition 3.18. A pseudo metric d on X is intrinsic if d(x, y) = inf{L(γ : [a, b] →
X) | γ continuous , γ(a) = x, γ(b) = y}. The space (X, d) is then called a length space.
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Definition 3.19. Given a length space (X, d) a geodesic is a continuous curve γ : [a, b]→
X such that for every t there is an interval [a′, b′], a′ < t < b′, such that d(γ(a′), γ(b′)) =
L(γ | [a′,b′]). Up to reparametrizing γ this can be written as d(γ(t′), γ(t′′)) = λ | t′′ − t′ | for
some λ > 0 and for every t, t′′ ∈ [a′, b′]. If [a′, b′] = [a, b] then γ is a minimal geodesic. If
there is always a minimal geodesic connecting two points, X is a geodesic space.

Before proceeding we recall some last topological and metric definitions we use in the
following.

Definition 3.20. Consider a pseudo metric space (X, d).

• X is contractible if there is x ∈ X with F : [0, 1] × X → X continuous such that
F (0, p) = p and F (1, p) = x for every p ∈ X;

• X is totally bounded is for every ε > 0 there is a finite collection of points x1, . . . , xN
such that X =

⋃N
i=1Bε(xi);

• X is complete if every Cauchy sequence converges; in pseudo metric spaces, a set
which is complete and totally bounded is also compact and viceversa (Theorem 1.6.5.
in Burago et al. (2022));

• X sequentially compact if every sequence in X admits a convergent subsequence.
In pseudo metric spaces it is equivalent to compactness (Theorem 1.6.5. in Burago
et al. (2022));

• X is locally compact if for every point x ∈ X there is an open set U and a compact
set K such that x ∈ U and U ⊂ K.

3.4 Weighted Trees Edit Distance

In this section we introduce the last pieces of notation we need to define the merge tree
edit distance. In Section 3.4.1 report how Chapter 2 builds a metric for weighted trees and
in Section 3.4.2 we recall from Chapter 2 a fundamental combinatorial object which will
be used throughout the chapter.

3.4.1 Weighted Trees and Edits

Definition 3.21. A tree structure T with a weight function wT : ET → R>0 is called
weighted tree. The set of all weighted trees is called (T ,R≥0).

Given a weighted tree (T,wT ) we can modify its edges ET
∼= VT −{rT } with a sequence

of the following edit operations:

• we call shrinking of a vertex/edge a change of the weight function. The new weight
function must be equal to the previous one on all vertices, apart from the “shrunk”
one. In other words, for an edge e, this means changing the value wT (e) with another
non zero value in W .

• A deletion is an edit with which a vertex/edge is deleted from the dendrogram.
Consider an edge (v1, v2). The result of deleting v1 is a new tree structure, with the
same vertices a part from v1 (the smaller one), and with the father of the deleted
vertex which gains all of its children. The inverse of the deletion is the insertion of
an edge along with its lower vertex. We can insert an edge at a vertex v specifying
the name of the new child of v, the children of the newly added vertex (that can be
either none, or any portion of the children of v), and the value of the weight function
on the new edge.
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• Lastly, we can remove or add order two vertices via the ghosting and splitting edits,
which have already been defined in Definition 3.9.

The set of all weighted trees considered up to ghostings and splittings is called (T2,R≥0).
A weighted tree T can be edited to obtain another weighted tree, on which one can

apply a new edit to obtain a third tree and so on. Any finite composition of edits is called
edit path. See Figure 3.4.1 for an example of an edit path. The set of finite edit paths
between T and T ′ is called γ ∈ Γ(T, T ′).

The cost of the edit operations is defined as follows:

• the cost of shrinking an edge is equal to the absolute value of the difference of the
two weights;

• for any deletion/insertion, the cost is equal to the weight of the edge deleted/in-
serted;

• the cost of ghosting is zero.

The cost of an edit path is the sum of the costs of its edit operations. Putting all the
pieces together, the edit distance dE between weighted trees is defined as:

dE(T, T
′) = inf

γ∈Γ(T,T ′)
cost(γ)

where Γ(T, T ′) indicates the set of edit paths which start in T and end in T ′. In Chapter 2
it is proved that dE is a metric on the space of weighted trees considered up to order two
vertices.

Remark 3.22. It would be natural to try to define a family of metrics indexed by integers
p ≥ 1 by saying that the costs of an edit path the p-th root of sum of the costs of the edit
operations to the p-th power. But now we can easily see that for any p > 1 this has no
hope of being a meaningful pseudo metric for weighted trees. In fact, consider the case of
a weighted tree made by two vertices and one edge with weight 1. The cost of shrinking
the p-metric would be ∥ 1 ∥p= 1. At the same time one can split it in half with 0 cost
and the cost of shrinking this other tree would be ∥ (1/2, 1/2) ∥p< 1. Splitting the segment
again and again will make its shrinking cost go to 0. In other words all weighted trees, if
considered up to order 2 vertices, would be at distance zero from the tree with no branches.

3.4.2 Mappings

Given an edit path between two weighted trees, its cost is often invariant up to many
permutations of the edits. To better work in such environment, we start considering paths
up to some permutation of the edits. The objects called mappings, as defined in Chapter 2,
help us in doing this, as well as making the metric dE more tractable. For this reason
now we report their definition. As in Chapter 2, ”D” and ”G” are be used to indicate
“deletion” and “ghosting”. Some novel notation is established and it is highlighted via
Remark 3.23 to help the reader.

A mapping between T and T ′ is a set M ⊂ (ET ∪ {”D”, ”G”}) × (ET ′ ∪ {”D”, ”G”})
satisfying:

(M1) consider the projection of the Cartesian product (ET∪{”D”, ”G”})×(ET ′∪{”D”, ”G”})→
(ET ∪ {”D”, ”G”}); we can restrict this map to M obtaining πT : M → (ET ∪
{”D”, ”G”}). The maps πT and πT ′ are surjective on ET ⊂ (ET ∪ {”D”, ”G”}) and
ET ′ ⊂ (ET ′ ∪ {”D”, ”G”}) respectively;
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(a) Starting and target weighted trees. (b) Deletions in red.

(c) Ghostings in yellow. (d) Shrinkings in green.

(e) Splittings in yellow.
(f) Insertions in red.

Figure 3.4.1: (b)→(e) form an edit path made from the left weighted tree in Figure 3.4.1a.
Each time the edges involved in the editing are highlighted with different colors. In the
following plot such vertices return black. This edit path can clearly be represented with a
mapping - Section 3.4.2 - made by couples (v, ”D”) for all the red vertices in Figure 3.4.1b,
(v, ”G”) for all the yellow vertices in Figure 3.4.1c, (v, w) for all the vertices associated via
the green color in Figure 3.4.1d, (”G”, w) for all the yellow vertices in Figure 3.4.1c and
(”D”, w) for all the red vertices in Figure 3.4.1f.
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(M2) πT and πT ′ are injective;

(M3) M ∩ (VT × VT ′) is such that, given (a, b) and (c, d) ∈M ∩ (VT × VT ′), a > c, if and
only if b > d;

(M4) if (a, ”G”) (or (”G”, a)) is inM , let child(a) = {b1, .., bn}. Then there is one and only
one i such that for all j ̸= i, for all x ∈ Vsub(bj), we have (x, ”D”) ∈M (respectively
(”D”, x)); and there is one and only one c such that c = max{x′ ∈ sub(bi) | (x′, y) ∈
M for any y ∈ VT ′}. In other words, if (a, ”G”) ∈ M , then a becomes an order 2
vertex after applying all the deletions induced by (b, ”D”) ∈M .

We call Mapp(T, T ′) the set of all mappings between T and T ′.
As in Chapter 2, we use the properties ofM ∈ Mapp(T, T ′) to parametrize a set of edit

paths starting from T and ending in T ′, which are collected under the name γM .

• γTd a path made by the deletions to be done in T , that is, the couples (v, ”D”),
executed in any order. So we obtain TM

d = γTd (T ), which, instead, is well defined
and not depending on the order of the deletions.

• One then proceeds with ghosting all the vertices (v, ”G”) inM , in any order, getting
a path γTg and the dendrogram TM := γTg ◦ γTd (T ).

• Since all the remaining points in M are couples, the two dendrograms T ′
M (defined

in the same way as TM , but starting from T ′) and TM must be isomorphic as tree
structures. This is guaranteed by the properties of M . So one can shrink TM onto
T ′
M , and the composition of the shrinkings, executed in any order is an edit path
γTs .

By definition:

γTs ◦ γTg ◦ γTd (T ) = T ′
M ,

and:
(γT

′

d )−1 ◦ (γT ′

g )−1 ◦ γTs ◦ γTg ◦ γTd (T ) = T ′

.
where the inverse of an edit path is thought as the composition of the inverses of the

single edit operations, taken in the inverse order.
Lastly, we call γM the set of all possible edit paths:

(γT
′

d )−1 ◦ (γT ′

g )−1 ◦ γTs ◦ γTg ◦ γTd .

obtained by changing the order in which the edit operations are executed inside γd, γg and
γs. Observe that, even if γM is a set of paths, its cost is well defined:

cost(M) := cost(γM ) = cost(γTd ) + cost(γTs ) + cost(γT
′

d ).

Remark 3.23. For notational convenience, we collect in MD all the deletions of M , in
MG all the ghostings and in C(M) all the shrinking edits.

See Figure 3.4.1 for an example of a mapping between weighted trees. We conclude
this section by recalling that Chapter 2 proves that given two weighted trees T and T ′,
for every finite edit path γ ∈ Γ(T, T ′), there exists a mapping M ∈ Mapp(T, T ′) such that
cost(M) ≤ cost(γ).

Lastly, consider M2(T, T
′) ⊂ Mapp(T, T ′) defined as follows.

77



Chapter 3. A Locally Stable Edit Distance for Merge Trees

Definition 3.24 (Chapter 2). A mapping M ∈ Mapp(T, T ′) has maximal ghostings if
(v, ”G”) ∈M if and only if v is of order 2 after the deletions in T and, similarly (”G”, w) ∈
M if and only if w is of order 2 after the deletions in T ′.

A mapping M ∈ Mapp(T, T ′) has minimal deletions if (v, ”D”) ∈M only if v is not of
order 2 after applying all the other deletions in T and, similarly, (”D”, w) ∈M only if w
is not of order 2 after applying all the other deletions in T ′.

We collect all mappings with maximal ghostings and minimal deletions in the set
M2(T, T

′).

Lemma 3.25 (Chapter 2).

min{cost(M) |M ∈ Mapp(T, T ′)} = min{cost(M) |M ∈M2(T, T
′)}

3.5 Merge Trees Edit Distance

In this section we finally exploit the notation established in the previous parts of the
chapter and results obtained in Chapter 2 to obtain a (pseudo) metric for merge trees.

3.5.1 Truncating Merge Trees

The aim of this part of the chapter is to bridge between merge trees and weighted trees, in
order to induce a metric on merge trees by means of the edit distance defined in Section 3.4.
the general idea is that we want to truncate the edge going to infinity of a merge tree to
obtain a weighted tree. Clearly, many details need to be taken care of, as the metric needs
to be well defined and the practical consequences of any truncation process need to be
formally addressed.

Starting from a merge tree (T, hT ) it is quite natural to turn the height function hT
into a weight function wT via the rule wT ((v, v

′)) := hT (v
′) − hT (v). The monotonicity

of hT guarantees that wT take values in R>0. However, we clearly have an issue with
the edge (v, rT ) as hT (rT ) = +∞. To solve this issue we need some novel tools - see
Figure 3.5.1. First consider the set of merge trees MT and build the subset MT K :=
{(T, hT ) ∈ MT | maxhT ≤ K}, for some K ∈ R. Then define the truncation operator as
follows:

TrK :MT K −−−−−−−−−→ (T ,R≥0)

(T, hT ) 7→ (T, hK) 7→ (T,wT )
(3.1)

with hK(v) = hT (v) if v < rT and hK(rT ) = K. Then we set wT ((v, v
′)) = hK(v′) −

hK(v). To avoid wT ((v, rT )) = 0, if maxhT = K, we take (T, hT ) 7→ (T ′, hT ′) 7→ (T ′, wT ′)
with T ′ obtained from T via the removal of rT from VT and (v, rT ) from ET . The map
hT ′ is hT |VT ′ . Then wT ′((v, v′)) := hT ′(v′)− hT ′(v).

In other words with TrK we are fixing some heightK, truncating the edge (argmaxhT , rT )
at height K, and then obtaining a positively weighted tree, as in Figure 3.5.1. To go back
with (TrK)−1 we “hang” a weighted tree at height K and extend the edge (v, rT ) to +∞.
We formally state these ideas in the following proposition. We leave the details of the
proof to the reader.

Proposition 3.26. The operator TrK :MT K → (T ,R≥0) can be inverted via (T,wT ) 7→
Tr−1

K ((T,wT )) = (T ′, hT ′) with the following notation: the tree structure T ′ is obtained
from T via adding rT ′ to VT and (rT , rT ′) to ET and ghosting rT if it becomes an order
2 vertex. Then we have hT ′(rT ) = K (if it is not ghosted, i.e. if it is of order greater
than 2), hT ′(rT ′) = +∞ and, recursively, for (v, v′) ∈ ET , hT ′(v) = hT ′(v′)− wT ((v, v

′)).
Clearly Tr−1

K (TrK((T, hT ))) ∼= (T, hT ). Thus MT K
∼= (T ,R≥0) as sets, for every K ∈ R.

Moreover TrK((T, hT )) ∼2 TrK((T ′, hT ′)) if and only if (T, hT ) ∼2 (T
′, hT ′).
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(a) Two merge trees T and T ′.

(b) A graphical representation of the weighted
trees TrK(T ) and TrK(T ′). Roughly speaking,
the merge trees T and T ′ are recovered sending
the two roots back to infinity.

Figure 3.5.1: A graphical representation of the truncation operator.

3.5.2 Edit Distance For Merge Trees

Consider (T, hT ), (T
′, hT ′) ∈ MT and select K such that (T, hT ), (T

′, hT ′) ∈ MT K . Let
(G,wG) = TrK((T, hT )) and (G′, wG′) = TrK((T ′, hT ′)). Lastly, set:

dK((T, hT ), (T
′, hT ′)) := dE((G,wG), (G

′, wG′)).

Despite being a promising and natural pseudo metric, dK is not defined on the whole
MT and, on top of that, it is not clear if its value depends on the K we choose. Leveraging
on the following result taken from Chapter 2 we solve these issues and prove that we can
use dK to define a metric onMT .

Proposition 3.27 (Chapter 2). Take (T,wT ) and (T ′, wT ′). If rT and rT ′ are of order 1
and there is a splitting {(v, rT )} → {(v, v′), (v′, rT )} and {(w, rT ′)} → {(w,w′), (w′, rT ′)}
giving the weighted trees (G, hG) and (G′, hG′), such that: wG((v

′, rT )) = wG′((w′, rG)),
then dE(T, T

′) = dE(subG(v
′), subG′(w′)).

Thus we define the edit distance between merge trees as follows.

Theorem 3.28 (Merge Tree Edit Distance). Given two merge trees (T, hT ), (T
′, hT ′) ∈

MT K , then dK(T, T ′) does not depend on K.
Thus, for any couple of merge trees inMT , we can define the merge tree edit distance

dE((T, hT ), (T
′, hT ′)) := dK((T, hT ), (T

′, hT ′))

for any K ≥ max{maxhT ,maxhT ′}.

Proof. Consider (T, hT ) and (T ′, hT ′) such that maxhT < K ′ and maxhT ′ < K ′. Consider
(G,wG) = TK′((T, hT )) and (G′, wG′) = TK′((T ′, hT )). For any K such that maxhT <
K < K ′ and maxhT ′ < K < K ′ there is a splitting of (v, rG) ∈ EG with a vertex w
and a splitting of (v′, rG′) with a vertex w′ such that the obtained weighted trees (R,wR)
and (R′, wR′) satisfy: wR((w, rG)) = wR′((w′, rG′)). Thus by Proposition 3.27 we obtain
dE(G,G

′) = dE(R,R
′) = dE(subR(w), subR′(w′)). Moreover, subR(w) = TrK((T, hT )) and

subR′(w′) = TrK((T ′, hT ′)).
Being K,K ′ arbitrary we have that dK((T, hT ), (T

′, hT ′)) does not depend on K, for
K > max{maxhT ,maxhT ′}. We need to prove the case K = max{maxhT ,maxhT ′}.
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Let (G,wG) = TK((T, hT )) and (G′, wG′) = TK′((T, hT )), for K
′ > K. And consider

now the weighted tree ⋆ = ({⋆}, w(∅) = 0),
We have that dE(G, ⋆) =

∑
e∈EG

wG(e) and dE(G
′, ⋆) =

∑
e∈EG′ wG′(e). Thus by the

reversed triangle inequality - Proposition 3.43:

| dE(G, ⋆)− dE(G′, ⋆) | = K ′ −K ≤ dE(G,G′),

So we have:
dE(TK′((T, hT )), TK((T, hT ))) = K ′ −K.

and we can set K = max{maxhT ,maxhT ′} and take K ′ → K to finish the proof.

By Proposition 3.26 we also have the following corollary of Theorem 3.28.

Corollary 3.29. The distance dE is a pseudo metric onMT and a metric onMT / ∼2:
given two merge trees (T, hT ) and (T ′, hT ′), dE((T, hT ), (T

′, hT ′)) = 0 if and only if
(T, hT ) ∼2 (T

′, hT ′) if and only if F((T, hT )) ∼= F((T ′, hT ′)) (by Proposition 3.11) .

Remark 3.30. Theorem 3.28 and Corollary 3.29 have a series of important implications.
First, they say that (MT K/ ∼2, dE) is isometric and isomorphic to (T2, dE) and thus, if
we have a subset of merge trees contained inMT K/ ∼2, for some K, we can map them in
(T2, dE) via TrK and carry out our analysis there. Second, suppose we are given a merge
tree T ′′ with maxhT ′′ > K. For any two merge trees T, T ′ with K ≥ maxhT ,maxhT ′,
we can consider K ′ ≥ maxhT ′′ and compute dE(T, T

′′) = dK′(T, T ′′) and dE(T
′, T ′′) =

dK′(T ′, T ′′). But we do not have to compute again dK′(T, T ′) for we have dE(T, T
′) =

dK′(T, T ′) = dK(T, T ′). Lastly, putting all the pieces together, the metric dE can be pulled
back as a metric on regular abstract merge trees.

We close this section with the following remark.

Remark 3.31. A more naive approach could have been to model each merge tree as a
triplet (G,wG, hT (v)) ∈ (T ,R≥0) × R, with v = argmaxhT and G = subT (v) - i.e. to
record the height of the last merging point in T and then remove (v, rT ) from ET . Then
one could define a pseudo metric onMT via the rule:

d((T, hT ), (T
′, hT ′)) = |hT (v)− hT ′(v′) | + dE((G,wG), (G

′, wG′)).

but this leads to unpleasant and unstable behaviors, as in Figure 3.5.2. Such behaviors do
not appear with the definition we have given.

Assumption 3.32. Coherently with Theorem 3.28 and Remark 3.30, to avoid overloading
the notation, from now on always assume that we have fixed K big enough for our purposes.
For instance, when we take a merge tree (T, hT ) we always imply that we have fixed K >
maxhT and indicate with (T,wT ) the weighted tree TrK((T, hT )).

3.5.3 Editing a Merge Tree

We devote this section to explore with some easy examples the definitions given in Sec-
tion 3.5.1 and Section 3.5.2.

First note that, by construction, TrK((T, hT )) is a representation of the merge tree
(T, hT ) coherent with the metric dE and thus can be used also to visually compare two
merge trees. We can then consider a merge tree (T, hT ) and edit (T,wT ) according to
the rules in Section 3.4.1: via shrinking, deletions and ghosting of vertices and the inverse
operations. We look at the results of the edits in light of the merge tree (TrK)−1((T,wT )).
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(a) Two merge trees T (left) and T ′ (right).

(b) The two merge trees T (left) and T ′ (right) in
Figure 3.5.2a represented as triplets of the form
(G,wG, hT (v)). The shaded red edges represent
the merge trees T and T ′, which are removed to
obtained the weighted trees. The height values
hT (v) are colored in red. The red edges repre-
sent deletions and the green arrows couple the
remaining edges, giving a mapping. The cost
of such mapping is given by the height differ-
ences |hT (v) − hT ′(f ′) | plus the two deletions
and the weight differences between the coupled
edges (which visually appear to be very small).
Clearly such distance is inflated by having to ac-
count both for |hT (v) − hT ′(f ′) | and for the
deletion of (v′, f ′).

(c) The weighted trees TrK(T ) (left) and
TrK(T ′) (right) with K = t′3, obtained from the
merge trees T and T ′ as in Figure 3.5.2a. The
red edges represent deletions and the green ar-
rows couple the remaining edges, giving a map-
ping. The cost of such mapping is given by the
weight differences between the coupled edges.
Note that the weight difference between (v, rT )
and (v′, rT ′) - i.e. hT (v) − hT ′(v′) - is surely
smaller than the cost of deleting (v′, f ′)

.

Figure 3.5.2: A situation in which the metric defined in Remark 3.31 shows an unnatural
behavior, while dK still behaves naturally.
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Let (T, hT ) =M(π0(X·)) and consider an edge e = (v, v′) ∈ ET , with t = hT (v) and
t′ = hT (v

′). Since the height of the root is fixed and equal to K, shrinking e reducing
its weight by some value ε > 0 (with ε < wT (e)) amounts to “moving upwards” subT (v

′)
by ε, that is changing hT (v

′′) 7→ hT (v
′′) + ε - as in Figure 3.4.1c→Figure 3.4.1d or in

Figure 3.5.4a and Figure 3.5.4c (left). Having ε > wT (e) means deleting e. Similarly,
increasing wT (e) by ε, amounts to lowering subT (v

′) by ε - as it partially happens in
Figure 3.4.1f inserting the red internal vertex. Consider now the splitting of the edge e
into e1 = (v, v′′) and e2 = (v′′, v′) with T ′ being the novel tree structure and wT ′(e1) = ε1
and wT ′(e2) = ε2 - as for any of the yellow vertices in Figure 3.4.1e. We must have εi > 0
and wT (e) = ε1 + ε2. This clearly induces a well defined height function hT ′(v′′). The
merge tree (T ′, wT ′) differs from (T,wT ) by the order two vertex v′′, while the height
function on VT ′ −{v′′} is still the same. And, accordingly, the associated regular abstract
merge trees are the same π0(X·) = F((T, hT )) ∼= F((T ′, hT ′)). Thus we have changed the
graph structure of T without changing the topological information it represents.

3.5.4 Stability

The behavior of the merge trees edit distance shown in Section 3.5.3 turns out to be
fundamental to obtain a stability result for dE , which is proved in Chapter 4.

Stability results are usually understood in terms of interleavings between persistence
modules (Chazal et al., 2008): the distance one measures between (a summary of) the
persistence modules should not deviate too much from the interleaving distance between
the modules themselves. The rationale behind these ideas follows from the fact that given
two functions f, g : X → R with suitable properties and such that ∥ f−g ∥∞< ε, then their
sublevel set filtrations induce ε-interleaved persistence modules via homology functors.
Moreover, interleaving distances are taken as reference because they are universal among
the metrics bounded from above by ∥ f − g ∥∞ (Lesnick, 2015; Cardona et al., 2021): for
any other metric d on persistence modules/multidimensional persistence modules/merge
trees such that d(Sf , Sg) ≤∥ f − g ∥∞ then d(Sf , Sg) ≤ dI(Sf , Sg), with Sf , Sg being the
persistence modules/multidimensional persistence modules/merge trees representing f, g
and dI being the interleaving distance between them. Thus a good behavior in terms of
interleaving distance implies a good handling of pointwise noise between functions and so
also interpretability of the metric.

For this reason we report the following definitions, which are originally stated by Mo-
rozov et al. (2013) with a different notation.

Definition 3.33 (adapted from Morozov et al. (2013)). Given X· filtration and ε > 0,
we define Xε· as Xε

t := Xt+ε and Xε
t≤t′ := Xt+ε≤t′+ε.

Consider two abstract merge trees π0(X·) and π0(Y·). Two natural transformations
α : π0(X·)→ π0(Y

ε· ) and β : π0(Y·)→ π0(X
ε·) are ε-compatible if:

• βt+ε ◦ αt = π0(Xt≤t+2ε)

• αt+ε ◦ βt = π0(Yt≤t+2ε).

The interleaving distance is thus defined is follows.

Definition 3.34 (Morozov et al. (2013)). Given π0(X·) and π0(Y·) abstract merge trees,
their interleaving distance is:

dI(π0(X·), π0(Y·)) = inf{ε > 0 | ∃α, β ε− compatible}.

We also say that π0(X·) and π0(Y·) are dI(π0(X·), π0(Y·))-interleaved.
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Being the edit distance a summation of the costs of local modification of trees we expect
that dE cannot be bounded from above by the interleaving distance between merge trees
as is the case, for instance, with the bottleneck distance between persistence diagrams
(Morozov et al., 2013): such metric in fact is defined as the biggest modification ones
needs to optimally match two persistence diagrams. Instead, a suitable stability condition
would be for the edit distance to be dependent on the number of vertices in the merge
trees but, at the same time, that the cost of the local modifications we need to match the
two merge trees goes to 0 as their interleaving distance get smaller and smaller.

Definition 3.35 (Chapter 2). Given a constructible persistence module S : R → VecK,
we define its rank as rank(S) := #PD(S) i.e. the number of points in its persistence
diagram. When S is generated on K by a regular abstract merge tree π0(X·) we have
rank(S) := #PD(S) = #LT , with (T, hT ) =M(π0(X·)) and may refer to rank(S) also
as the rank of the merge tree rank(T ). We also fix the notation dim(T ) := #ET .

Definition 3.36. Given π0(X·) and π0(Y·) ε-interleaved abstract merge trees; a metric
for merge trees is locally stable if:

d(T, T ′) ≤ C(rank(T ) + rank(T ′))ε

for some C > 0.

In view of this definitions we can rewrite the following theorem from Chapter 4 and
obtain the local stability as an easy corollary.

Theorem 3.37 (Chapter 4). If there are α, β ε-compatible maps between two abstract
merge trees trees π0(X·), π0(Y·), then there exist a mapping M between T =M(π0(X·))
and G =M(π0(Y·)) such that costM ((a, b)) ≤ 2ε for every (a, b) ∈M .

Corollary 3.38. Since for a merge tree (T, hT ) we have #VT ≤ 2#LT and rank(T ) =
#LT , then dE is locally stable.

3.5.5 Comparison with Other Distances For Merge Trees

In this section we want to compare dE with other definitions of distances between merge
trees which appeared in literature. In this way we can better portrait which is the vari-
ability between merge trees which is captured by the proposed edit distance.

First, we go through the different definitions which have been employed, some in deeper
detail and some in a more qualitative fashion, and in the end we point out two facts which
are shared by many of the metrics considered.

3.5.5.1 Interleaving Distance (Morozov et al., 2013) and Metrics for Persis-
tence Diagrams

We start by comparing dE with the interleaving distance between merge trees, which we
have already introduced. Thanks to the relationships between the interleaving distance
and the bottleneck distance between persistence diagrams we are also able to interpret the
results we obtain in terms of PDs.

Proposition 3.39. We always have dI(T,G) ≤ dE(T,G).

Putting together Proposition 3.39 and Theorem 3.37 we obtain:

dI(T,G) ≤ dE(T,G) ≤ 2(dim(T ) + dim(G))dI(T,G).
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This inequalities are in line with our expectations: when editing a merge tree we need to
produce a local modification for each vertex of the merge tree adds up all the contribu-
tions. While the interleaving distance, in some sense, measures the maximum cost of the
modifications that we have to make. The multiplicative factor 2, instead, is caused by
the use of weights wT to compare edges, instead of heights hT to compare vertices. Topic
which we discuss in Section 3.5.5.4. However, we anticipate the following fact: the bound
found in Proposition 3.39 cannot be improved. Consider f : I → R and g(x) = f(x) + h
for some fixed h ∈ R, and let X· be the sublevel set filtration of f and Y· of g. Tak-
ing (T, hT ) and (G, hG) as the merge trees representing π0(X·) and π0(Y·), we have
dI(T,G) = dE(T,G) = h.

We can use Proposition 3.39 also to compare the behaviors of the Wasserstein and
Bottleneck distance between persistence diagrams and the edit distance dE between merge
trees.

Given two diagrams D1 and D2, the expression of such metrics is the following:

Wp(D1, D2) =

(
inf
γ

∑
x∈D1

||x− γ(x)||p∞

)1/p

where γ ranges over the functions partially matching points between diagrams D1 and D2,
and matching the remaining points of both diagrams with the line y = x on the plane (for
details see Cohen-Steiner et al. (2007)). In other words we measure the distances between
the points of the two diagrams, pairing each point of a diagram either with a point on the
other diagram, or with a point on y = x. Each point (also called persistence pair) can be
matched once and only once. The minimal cost of such matching provides the distance.
The case p =∞ is usually referred to as the bottleneck distance dB.

In Morozov et al. (2013) it is shown that:

dB(PD(T ), PD(G)) ≤ dI(T,G)

with PD(T ) being the persistence diagram associated to the merge tree T . Thus, the
bottleneck distance is a stable metric for merge trees.

On the other hand we clearly have:

dW1
(PD(T ), PD(G)) ≤ (rank(T ) + rank(G))dB(PD(T ), PD(G))

which means that the 1-Wasserstein distance between persistence diagrams is locally sta-
ble.

Thus we have:

dW1
(PD(T ), PD(G)) ≤ (dim(T ) + dim(G))dE(T,G)

and this bound cannot be improved: as with the interleaving distance, consider f : I → R
and g(x) = f(x)+h for some fixed h ∈ R, nd let X· be the sublevel set filtration of f and
Y· of g. Taking (T, hT ) and (G, hG) as the merge trees representing π0(X·) and π0(Y·),
we have dW1

(PD(T ), PD(G)) = h(rank(T ) + rank(G)) and dE(T,G) = h.
It is thus evident that working with weights wT (e) instead of persistence pairs, as

persistence diagrams do, creates big differences in how the variability between trees is
captured by these two metrics. This topic is further discussed in Section 3.5.5.4 as such
differences are shared also with other upcoming metrics.

We end this section with a brief simulation study to better showcase the differences
between dI and dE . The idea behind the simulation can be understood via Figure 3.5.3a.
For i = 0, . . . , 9, let gi : [0, 11]→ R be such that gi ≡ 0 on [0, 11]− [i+ 1/3, i+ 2/3] while,
on [i+1/3, i+2/3], gi is the linear interpolation of (i+1/3, 0), (i+1/2, 1) and (i+2/3, 0).
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Then, for i = 0, . . . , 9, define Gi as Gi ≡ 0 on [0, 11]− [i+2/3, i+1], while, on [i+2/3, i],
Gi is the linear interpolation of (i+ 2/3, 0), (i+ 3/4, 5) and (i+ 1, 0).

Then fi, i = 0, . . . , 9, is obtained as follows:

fi = Gi +

9∑
j=0

gj .

See Figure 3.5.3a to better visualize this data set: we have a constant set of lower peaks
at height 1 and an higher peak with height 5 which is shifting left to right as i increases.
In this way we are just changing the left-right distribution of the smaller peaks wrt the
highest one.

We obtain obtain the associated merge trees and then compute the pairwise distances
between the merge trees with dE . The results are represented in Figure 3.5.3d: the shortest
edit path between the i-th merge tree and i + 1-th is given by the deletion of one leaf in
each tree to make the disposition of leaves coincide between the to trees. The more the
peaks’ disposition is different between the two trees, the more one needs to delete leaves in
both trees to find the path between them. Note that the first function (the one in which
the highest peak is the second peak) and the last function (the one in which the highest
peak is the second-last peak) can be obtained one from the other via a y-axis symmetry
and translation. Similarly, the second function is equal, up to homeomorphisms of the
domain, to the third-last one, etc. (see also Chapter 4, Proposition 4.11). Thus the merge
trees are the same. To sum up the situation depicted in the first row of Figure 3.5.3d, first
we get (left-to-right) farther away from the first merge tree, and then we return closer to
it. This intuition is confirmed by looking at the MDS embedding in R2 of the pairwise
distance matrix (see Figure 3.5.3e - note that the shades of gray reflect, from white to
black, the ordering of the merge trees). The discrepancies between the couple of points
which should be identified are caused by numerical errors.

First, it is very easy to observe that all such functions can’t be distinguished by per-
sistence diagrams, since they all share the PD in Figure 3.5.3c. Second, the interleaving
distance between any two merge trees representing two functions fi and fj is 1/2 if i ̸= j
and 0 otherwise. Thus the metric space obtained with dI from the data set {fi}9i=0 is
isometric to the discrete metric space on 5 elements, where each point is on the radius 1
sphere of any other point.

We point out that there are applications in which it would be important to separate
f0 and f4 more than f0 and f1, because they differ by “an higher amount of edits”: for
instance in Chapter 5 merge trees are used to represent tumors, with leaves being the
lesions, and it is well known in literature that the number of lesions is a non-negligible
factor in assessing the severity of the illness (Ost et al., 2014), and thus a metric more
sensible to the cardinality of the trees is more suitable than dI .

3.5.5.2 Edit Distance Between Merge Trees (Sridharamurthy et al., 2020)
and Wasserstein Distance (Pont et al., 2022)

The edit distance in Sridharamurthy et al. (2020) is similar to classical edit distances,
with the edit operations being restricted to insertion and deletion of vertices and with a
relabeling operation which is equivalent to our shrinking operation. There is however the
caveat that vertices are in fact understood as persistence pairs (m, s), withm being the leaf
representing the local minimum giving birth to the component and s the internal vertex
representing the saddle point where the components merge with an earlier born component
and thus dies according to the elder rule. There is thus a one-to-one correspondence
between persistence pairs in the merge tree and in the associated persistence diagram.
Editing a vertex m implies editing also its saddle point s: deleting (m, s) means deleting

85



Chapter 3. A Locally Stable Edit Distance for Merge Trees

(a) The functions f0, f3 belonging to the simulated data set decribed in Section 3.5.5.1.

(b) The merge trees (Tf0 , hf0) and (Tf3 , hf3) associated to the functions in Figure 3.5.3a.

(c) The persistence diagram
representing the functions in
Figure 3.5.3a. The point (0, 1)
has multiplicity equal to the
number of local minima minus
1.

(d) Matrix of pairwise distances
of the merge trees obtained
from {fi}10i=0.

(e) Multidimensional Scaling
Embedding in R2 of the ma-
trix of pairwise distances shown
in Figure 3.5.3d. The shades
of gray describe, from white to
black, the ordering of the trees.

Figure 3.5.3: Plots related to the simulated scenario presented in Section 3.5.5.1.
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all vertices m′ such that their persistent pair (m′, s′) satisfies s′ < s. If then s becomes
of order 2, it is removed. In particular the authors highlight the impossibility to make
any deletion - with the word “deletion” to be understood according to our notation - on
internal vertices, without deleting a portion of the subtree of the vertex. So they cannot
delete and then insert edges to swap father-children relationships. To mitigate the effects
of such issue, as a preprocessing step, they remove in a bottom-up fashion all saddles
s ∈ VT such that wT ((s, s

′)) < ε for a certain positive threshold ε. All persistent pairs of
the form (m, s) are turned into (m, s′). Such issue is further discussed in Section 3.5.5.5.

Two merge trees are then matched via mappings representing these edit operations. To
speed up the computations, the set of mappings between the trees is constrained so that
disjoint subtrees are matched with disjoint subtrees. The cost of the edit operation on an
edit pair (m, s) is equal to the edit operation being applied on the corresponding points in
the associated persistence diagrams with the 1-Wasserstein distance: deleting a persistent
pair has the cost of matching the corresponding point to the diagonal and relabeling a
persistent pair with another in the second tree has the cost of matching the two points of
the two diagrams - see (Sridharamurthy et al., 2020) Section 4.3.1.

A closely related metric between merge trees is the Wasserstein distance defined in Pont
et al. (2022), which extends the metric by Sridharamurthy et al. (2020) producing also
further analysis on the resulting metric space of merge trees by addressing the problem of
barycenters and geodesics. In this work the authors rely on a particular branch decomposi-
tion of a merge tree, as defined in Wetzels et al. (2022), from which they induce the branch
decomposition tree (BDT - Pont et al. (2022), Section 2.3) used to encode the hierarchical
relationships between persistence pairs. A branch decomposition is roughly a partition of
the graph T of a merge tree (T, hT ) via ordered sequences of adjacent vertices (Wetzels
et al., 2022). The chosen branch decomposition is the one induced by the elder rule and
persistence pairs. Edit operations on such BDTs entail improved matchings and deletions
between persistence pairs. To obtain the (squared) 2-Wasserstein distance the vertices of
two BDTs are match and the resulting costs are squared and then added. However, the
authors then explain that with this first definition geodesics cannot by found via linear
interpolation of persistence pairs for the hierarchical structure of the merge tree can be
broken. To mitigate that, they employ a normalization which shrinks all the branches on
[0, 1], irrespective of their original persistence - Pont et al. (2022), Section 4.2 - leading
to simple geodesics obtained with linear interpolation between persistence pairs. To miti-
gate for this invasive procedure they introduce yet another preprocessing step artificially
modifying small persistence features to reduce the normalization effects.

Some of the limitations of this approaches are listed in Pont et al. (2022), Section
7.3. Wetzels et al. (2022), Section 3.3 adds on that with further details and examples.
Namely, the restricted space of possible matchings between trees - which is key to obtain
the computational performances of the metrics - forces unstable behaviors: issues with
saddle swaps (see Pont et al. (2022), Section 4.4 and Fig. 10) and instability of persistence
pairs, so that elder ruled-based matchings may force very high persistence features to be
matched with other very high persistence features even in situations where this implies
making many unreasonable changes in the tree structures as in Figure 3.5.5f (see also
Wetzels et al. (2022), Figure 1, Figure 2 b), Section 3.3, and Pont et al. (2022), Section 7.3).
Moreover, Pont et al. (2022) does not address the interactions between the normalization
and the two preprocessing steps.

3.5.5.3 Branch Decomposition-Independent Edit Distances for Merge Trees
(Wetzels et al., 2022)

The workWetzels et al. (2022) starts from the shortcomings of Sridharamurthy et al. (2020)
and Pont et al. (2022) trying to overcome them. Namely it defines branch decompositions,
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(a) Two merge trees T (left) and T ′ (right).
We first delete (e′, f ′) and then edit T with the
shrinking defined by (v, v′).

(b) The same merge trees as in Figure 3.5.4a -
with some edges drawn at different angles for
visualization purposes. We edit T matching the
persistence pair (c, v) with (c′, v′) according to
Sridharamurthy et al. (2020); Pont et al. (2022).

(c) The results of the edits applied on T in Fig-
ure 3.5.4a (left) and in Figure 3.5.4a (right)

.

Figure 3.5.4: A comparison between the weight based edits on which is based dE , and the
persistence based edits in Sridharamurthy et al. (2020); Pont et al. (2022).

- for instance, the perstence pairs of Sridharamurthy et al. (2020), induce one such branch
decomposition - and in order to avoid issues related with the instability of the persistence
pairs, Wetzels et al. (2022) introduce also the possibility to optimize the chosen branch
decomposition. The only big issue with such approach is that it does not define a metric
on the space of merge trees, for the triangle inequality is not satisfied - see Wetzels et al.
(2022) Theorem 2 and Figure 3.

3.5.5.4 Heights vs Weights

In this section we try to better understand the different behavior of dE when compared to
the persistence-based metrics presented in the previous sections. The basic idea is that wT

encodes the reciprocal positions of the merging points, instead of having the persistence
pairs being free to move independently - at least locally - inside a constrained space.

Consider for instance the merge trees in Figure 3.5.2b: the persistence pairs are (c, v)
and (d, rT ). The pairs of the rightmost tree instead are (c′, v′), (e′, f ′) and (d′, rT ′). Delet-
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ing (e′, f ′) according to Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al.
(2022) amounts to deleting e′ according to our framework. Instead, shrinking (v, rT ) on
(v′, rT ′), after the deletion of (e′, f ′), for us means lengthening (v, rT ) by t2 − t′2 and so
lowering v and all the vertices below v by the same amount, as in Figure 3.5.4a. On
the other hand, matching the persistence pair (c, v) with (c′, v′) for Sridharamurthy et al.
(2020); Pont et al. (2022) is equivalent to shifting the edge (c, v) downwards towards (c′, v′)
leaving all other vertices fixed, as in Figure 3.5.4b. We can compare the results of such
edits in Figure 3.5.4c.

Thus, given a persistence pair (m, s) inside a merge tree, corresponding to the point
(b, d) inside the persistence diagram, moving s upwards by some ε > 0 such that hT (s)+ε <
hT (s

′) costs ε in terms of the other edit distances, of the interleaving distance and in terms
of the 1-Wasserstein distance between persistence diagrams and leaves all other points with
the same height. In terms of the edit distance dE , instead, moving s upwards by ε > 0
shortens the edge above s keeping all other edges of a fixed lengths and thus moves the
vertices upwards by ε.

We can interpret this fact as the metrics in Morozov et al. (2013), Sridharamurthy
et al. (2020) and Pont et al. (2022) better capturing similarities between trees via the
location of their vertices in terms of heights; while dE better captures the “shape” of the
tree i.e. relative positions of its vertices, being less sensible on the height variability since
you can move more vertices at one. And this is exactly what happens in the example
f : I → R and g(x) = f(x) + h - as in Figure 3.5.4: we have dW1

(PD(T ), PD(G)) =
dE(T, T

′)(dim(T ) + dim(G)).

3.5.5.5 Stability vs Preprocessing

As already mentioned, the metrics in Sridharamurthy et al. (2020) and Pont et al. (2022)
lack stability properties which means that there are certain situations in which such metrics
measure variability between the trees which is undesirable as they may perceive as very
far trees which are in fact very close in terms of interleaving distance. In particular they
are unable to model “saddle swaps”, that is, with our terminology, deleting and inserting
internal vertices to change father-children relationships. As noted also by the authors
themselves, this issue needs to be addressed in some way. To do so authors resort to a
computational solution implemented as a preprocessing step: they fix a threshold ε > 0 for
any couple of persistence pairs (m, s) and (m′, s′) with s′ > s and s′ − s < ε, they change
(m, s) into (m, s′) merging the two saddle points - in a bottom-up recursive fashion.

In this section, we produce a brief investigation of such procedure, which is absent in
the aforementioned works. We represent the possible outcomes of this preprocessing in
Figure 3.5.5. All merge trees in Figure 3.5.5 are drawn with colors representing persistence
pairs, and similar colors yields persistence pairs with the same persistence throughout the
whole figure. They ideally should be matched by the metrics to achieve optimal distances
as the differences between edges of different colors could be arbitrary big.

In Figure 3.5.5a (left) we suppose that the edges marked with a red cross represent
distances between saddles smaller or equal than ε > 0, thus we recursively merge each
saddle point with the higher one, starting from the bottom and going upwards. In this
way we obtain the merge tree T ′ in Figure 3.5.5a (right) which is then used as input for
the metric.

In Figure 3.5.5b we see two merge trees T and G such that their interleaving distance is
ε+ ε′, for we need to move points of T upwards by ε+ ε′ to match persistence pairs of the
same color in G. Their edit distance dE would be 3(ε+ ε′) for we need to delete and then
insert back three small edges in T to swap father-children relationships in a suitable way.
Note that one can replicate analogous situations to make the interleaving distance between
the two merge trees high at will: informally speaking it is enough to add other persistence
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pairs as needed and force matchings between pairs in very “different positions”.
In Figure 3.5.5c we see a possible output of the preprocessing routine. If the prepro-

cessing threshold is bigger than ε and ε′ then the pre-processed trees T ′ and G′ are equal.
This in some sense is the desired output of the authors of Sridharamurthy et al. (2020) and
Pont et al. (2022) for now their metric can match the colors of the persistence pairs. They
suggest that such loss of variability - d(T ′, G′) = 0 even if T ≇2 G - could be mitigated
by adding to the distance between the preprocessed trees the fixed threshold as many
times as there are saddles merging in the procedure. Note that, if this artificial addition
approximately matches the variability artificially removed from the pairs attached to the
orange vertical pair, it introduces artificial variability at the level of the branches attached
to the brown edge, for they do not need any modification to be matched correctly.

In Figure 3.5.5d, instead, we suppose that the preprocessing threshold is smaller than
ε and ε′. The metrics then are forced to match persistence pairs with different colors
causing an excess of variability which is pictured with red edges in the figure. We point
out that, depending on the weights of the persistence pairs involved, these edges could be
of arbitrary length.

In Figure 3.5.5e we represent a last possible output of the preprocessing procedure,
which is a situation in which the threshold we fix is greater that ε′ but smaller then ε.
This is possibly the worst scenario: pairs are matched in an optimal way but we have
introduced a lot of artificial variability, symbolized with red edges, in G. Again, because
of additive phenomena caused by recursive saddle merging, these edges can be arbitrarily
long.

Note that the preprocessing does not fix the issues presented in Figure 3.5.5f, in Wetzels
et al. (2022), Figure 1, Figure 2 b), Section 3.3, and Pont et al. (2022), Section 7.3.

To conclude, we point out the following fact. We deem fundamental to have metrics
being able to measure different kinds of variability in a data set, especially if the infor-
mation captured is interpretable, however, any attempt to adapt our edit distance dE to
work with heights instead of weights, would face the problem of coherently define deletion
edits. While it seems reasonable to have wT ((v, v

′)) as a cost to delete and edge - for
instance, this cost amounts to the persistence of the feature if (v, v′) is a persistence pair
- any change in the height of v′ changes the weight of (v, v′) and thus the cost of its dele-
tion, invalidating all the results about mappings in Chapter 2 and the algorithm therein.
Similarly, adapting Sridharamurthy et al. (2020) or Pont et al. (2022) to handle saddle
swaps, would mean at least removing from their mappings, the property that would be
(M3) in our notation, creating many issues from the theoretical and computational point
of view. In fact, internal edges are not really available in the representation used by such
metrics, where all points are instead understood as part of a persistence pair.

3.6 The geometry of (MT , dE)

Now we start the investigation of the metric space of merge trees. The structures that we
are going to build up throughout the section can all be seen in Figure 3.6.1 and Figure 3.6.2.

As already stated in the Introduction, this investigation has the general goal of under-
standing, at least partially, the local geometry of the metric space (MT , dE). To achieve
this goal, we stratify merge trees according to their dimension and explore the behaviour of
the space along these strata and across these strata. As a first result, the topological prop-
erties which are obtained in terms of within-in strata completeness and compactness lead
to the existence of Frechét Means, which are very important objects for non-Euclidean
statistics (see Section 3.6.5). On the other hand, the decomposition of geodesic paths
along different strata leads to the local-approximation result in Section 3.6.7. Such result
is very promising in terms of the development of statistical techniques like regression and
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(a) A merge tree T (left) with its pre-processed
version (right) according to the procedure in
Sridharamurthy et al. (2020); Pont et al. (2022).

(b) Two merge trees T and G which are going to
be preprocessed as in Section 3.5.5.5.

(c) A possible output of the preprocessing: the
preprocessing threshold is bigger than ε and ε′.

(d) Another possible output of the preprocess-
ing: the preprocessing threshold is smaller than
ε and ε′.

(e) The last possible output of the preprocessing:
the preprocessing threshold is smaller than ε and
but bigger than ε′.

(f) As noted by Wetzels et al. (2022) and Pont
et al. (2022), metrics which are based on per-
sistence pairs may force unnatural scenarios like
deleting all the pairs with the red cross, in order
to match the orange and the brown persistence
pairs of T , respectively, with the orange and the
brown of G. Instead, it would be much more
natural to match the orange and the brown ones
according to the green arrows and then match-
ing the other pairs according to colors.

Figure 3.5.5: Plots related to Section 3.5.5.591
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principal components analysis and immediately leads to a simple approximation scheme
for Frechét Means - whose properties are not assessed in the present work. Clearly, the
picture is far from being complete and many questions remain open: for instance the pos-
sibility of doing differential calculus in the space of merge trees or retrieving more global
information like the quantification - in some measure-related terms - of the well-behaved
trees still need to be studied.

3.6.1 Merge Trees, Weighted Trees and Order 2 Vertices

Recall that MT is the space of merge trees up to isomorphism, T (abbreviation for
(T ,R≥0)) is the space of weighted trees,MT / ∼2 and T2 are the respective quotient spaces
for merge tree and weighted trees up to order 2 vertices. Moreover, by Section 3.5.2, we
have the isometry (MT K , dE) ∼= (T , dE) for any K ∈ R, with this isomorphism of metric
spaces passing to (MT K/ ∼2, dE) ∼= (T2, dE).

Both for weighted trees and for merge trees we indicate with T2 the only representative
without order 2 vertices inside the equivalence class of T ; if needed in the discussion, we
call such equivalence class [T ]. We have already seen that dE(T, T

′) = 0 iff T ∼2 T
′.

This is equivalent to saying that, if we consider the topological spaces (MT , dE) and
(MT / ∼2, dE) (or (T , dE) and (T2, dE)), respectively with the pseudo-metric and the
metric topology, then (MT / ∼2, dE) is the metric space induced by the pseudometric dE
of MT via metric identification i.e. x ∼ y iff d(x, y) = 0. In particular, the projection
on the quotient Π : MT → MT / ∼2 preserves distances and so open balls. In other
words we can focus our attention on T and MT , to avoid formal complications given
by equivalence classes, and most topological result obtained for such space will hold also
for T2 and MT / ∼2. In particular, since Bε(T ) = Bε(T

′) for any T ∼2 T
′ - recall that

Bε(T ) = {T ′∣∣dE(T, T ′) < ε} - to obtain local topological results we can always assume
T = T2.

In a similar fashion we focus our attention on the space of weighted trees and then point
out how to extend the results to merge trees via a suitable isometry (MT K , dE) ∼= (T , dE).
On top of that, we also exploit the following trivial fact.

Proposition 3.40. Given a merge tree (T, hT ) then for every ε > 0 there is K ∈ R such
that Bε(T ) ⊂MT K .

3.6.2 Subspaces

To start things, off there is a natural notion of dimension for weighted trees, which we
have already introduced and used. We have defined dim(T ) = #ET , that is, the number
of edges in the tree structure T . To induce a suitable notion of dimension in T2 we do as
follows: dim([T ]) = infT ′∈[T ] dim(T ′), which entails dim([T ]) = dim(T2).

We take the exact same definitions also for any merge tree (T, hT ). Note that dim(T ) =
dimTrK(T ) for any K > maxhT .

Now we can consider trees grouped by dimension.

Definition 3.41. T N = {T | dim(T ) ≤ N} for any N ∈ N. The subspaces T N
2 , MT N

andMT N/ ∼2 are defined analogously.

Understanding how these strata interact with each other and how we can navigate
between them can shed some light on the structure of these metric spaces.

3.6.3 From Edits to Geodesics

Thanks to Corollary 2.50 we know that there are always edit paths which attain the metric
dE between two weighted trees.
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Figure 3.6.1: A mapping M with the associated geodesic and the dashed arrows which
represent the (T −→ T ′)-decomposition via the canonical representation of M (see Sec-
tion 3.6.7): starting from T , the red arrow represents the deletion of e1 and e2, the
following green arrow shrinks the green edges e3 and e5, the yellow double headed arrow
is a length 0 jump between two trees equal up to the splitting induced by the yellow
vertex and then the red arrow pointing in T ′ represents the insertion of the red edge
e′4. The vector −−→v∇M represents the geodesic paths from T for TM and thus is given
by: −wT (e1)e1 − wT (e2)e2 − ae3 + 0e4 + be5 = (−wT (e1),−wT (e2),−a, 0, b) ∈ RT ,
with a, b > 0 which give the shrinking that ends in TM . The vector ←−−v∇M , intead,
goes from T ′ to T ′

M and accounts just for the deletion of e′4. The double headed yel-
low arrow then identifies TM and T ′

M modulo order 2 vertices. So ←−−v∇M is given by
0e′1 + 0e′2 + 0e′3 − wT ′(e′4)e

′
4 + 0e′5 = (0, 0, 0,−wT ′(e′4), 0) ∈ RT ′

.
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Figure 3.6.2: A qualitative and synthetic representation of the structures introduced in
Section 3.6. All the tree are contained in T 4, i.e. they have at most four edges. The
two different shades of blue separates the trees in T 3 - light blue, trees with ≤ 3 edge -
and the trees with 4 edges - blue. Each tree is represented by a black dot in this space
and can be visualized inside a grey cloud. In the left “page” of the blue surface we see a
geodesic represented by a green arrow, which progressively shrinks an edge - the green one
- up to deleting it and obtaining a tree in T 3 ∩ T 4. On the right “page”, instead, we see
two trees joined by two optimal mappings: the one represented by the red arrows which
deletes the red edge - and so goes through T 3 ∩ T 4 - and the regrows it swapping two
children, and the green one which instead shrinks the two green edges with the direction
given by the arrows. In the light blue region we see a weighted tree T with a yellow open
neighborhood which represents BKT /2(T ) and is homeomorphic via logT and expT to an

open neighborhood of the origin in RT
>T ⊂ R3.
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Consider an optimal edit path en◦. . .◦e1(T ) = G; now we show that it can be seen as the

discretization of a continuous curve γ : [0, 1] → T at points tj =
∑j

i=1 cost(ei)/dE(T,G).
Set t0 = 0.

Pick an edit ei and let T ′ be T ′ = ei−1 ◦ . . . ◦ e1(T ). We have dE(T
′, ei(T

′)) = cost(ei).
Suppose ei is a deletion or the shrinking of an edge e = (v, v′) and let C be the weight of
e after ei or C = 0 if ei is a deletion.

We define γi : [ti−1, ti)→ T as γi(t) = T ′
t with T ′

t
∼= T ′ as tree structures and

wT ′
t
(e) = wT ′(e) +

(t− ti−1)

ti − ti−1
(C − wT ′(e)).

Note that, for t ∈ [ti−1, ti) and ε > 0 such that ti + ε ∈ [ti−1, ti), we have:

dE(γi(t), γi(t+ ε)) = |wT ′(e) +
(t− ti−1)

ti − ti−1
(C − wT ′(e))− (wT ′(e) +

(t+ ε− ti−1)

ti − ti−1
(C − wT ′(e))) |

=
ε

ti − ti−1
|C − wT ′(e) | .

Thus for every ti−1 = t1 < . . . < tm = ti we have:

m−1∑
j=1

dE(γi(t
j), γi(t

j+1)) |C−wT ′(e) | =
m−1∑
j=1

tj+1 − tj
ti − ti−1

|C−wT ′(e) | = |C−wT ′(e) | = cost(ei)

As a consequence, the length of γi is cost(ei). Moreover we can define γi(1) = T ′. Note
that γi is continuous.

If instead of ei being a deletion we consider an insertion, we define γi(t) = γ′i(1−t) with
γ′i being obtained from the deletion e−1

i . Lastly, if ei is a ghosting we define γi(t) = ei(T
′)

for all t ∈ [ti−1, ti]. In this case the length of γi is 0.
Thus let γ : [0, 1]→ T be γn ◦ . . . γ1. Note that:

ti − ti−1 =

i∑
j=1

cost(ej)/dE(T,G)−
j−1∑
j=1

cost(ej)/dE(T,G) = cost(ei)/dE(T,G)

Consider now t < t′ ∈ [0, 1]. If t, t′ ∈ [ti−1, ti] we have

dE(γ(t), γ(t
′)) =

t′ − t
ti − ti−1

cost(ei) = (t′ − t)dE(T,G).

If instead t ∈ [ti−1, ti] and t
′ ∈ [tj−1, tj ], with i < j, we have:

dE(γ(t), γ(t
′)) =dE(γ(t), γ(ti)) + dE(γ(tj−1), γ(t

′)) +

j−1∑
k=i

dE(γ(tk), γ(tk+1))

=dE(T,G)

(
ti − t+

j−1∑
k=i

tk+1 − tk + t′ − tj−1

)
= dE(T,G)

(
t′ − t

)
.

Thus γ is a minimizing geodesic, as in Definition 3.19 and, moreover, it induces a geodesic
in the quotient under ∼2. Note that if we have (T, hT ) and (G, hG) merge trees, then
embedding them in the in the space of weighted trees, we can obtain the same results.
From now on, with an abuse of notation, with the term geodesic we indicate either a
minimal edit path or the curve obtained from the minimal edit path as explained above.

Chapter 2, shows that for any pair of weighted trees the distance between them is given
by the length of a path γM , with M being a mapping between the two trees. Moreover,
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looking at how mappings parametrize finite edit paths, we see that if T, T ′ ∈ T N , then
there is at least a geodesic between them which does not exit T N . By considering T2 and
T ′
2 we obtain the same consequence for T N

2 . Clearly all these things hold true also for
merge tree, via isometries. We sum up these facts with the following proposition.

Proposition 3.42. The spaces (T , dE), (T2, dE), (T N , dE), (T N
2 , dE), (MT , dE), (MT / ∼2

, dE), (MT N , dE) and (MT N/ ∼2, dE) are geodesic spaces.

3.6.4 Topology

Topology plays a central role when investigating the properties of a space. For instance,
being able to characterize or identify open, closed and in particular compact sets is fun-
damental to work with real valued operators defined on such space.

We establish the following notation for weighted trees: ∥ T ∥=
∑

e∈ET
wT (e), so that

the reversed triangle inequality in the case of weighted trees has the following form.

Proposition 3.43. Given T , T ′ weighted trees, we have:

| ∥ T ∥ − ∥ T ′ ∥ | ≤ dE(T, T ′)

If we have two weighted tree T ∼2 T
′ then ∥ T ∥=∥ T ′ ∥ and thus Proposition 3.43

holds also in T2. Instead ∥ T ∥ is not well defined for merge trees as it depends on the
embedding TrK .

Given C > 0, we have B(C) := BC({⋆}) = {T ∈ T | ∥ T ∥< C}. We also establish the
notation: B(C)N := B(C)

⋂
T N .

The following result presents some topological properties of the space T and its sub-
spaces T N . By Section 3.6.1, all the results which follow hold also for the quotient spaces
T2 and T N

2 .

Theorem 3.44. For any N ∈ N:

1. (T , dE) is contractible.

2. (T , dE) is not locally compact.

3. (T N , dE) is locally compact.

Theorem 3.44 states that our spaces are “without holes”, that is we can continuously
shrink the whole space onto the tree with one vertex and no edges and so T and T N are
contractible. As predictable T has at every point issues with losing compactness because
of the growing dimension of the trees. However, now we see that these compactness issues
can be solved by setting an upper bound on the dimension, which means working in T N .
We can further characterize the subspaces T N (and T N

2 ) with the following results.

Theorem 3.45. The metric spaces (T N , dE) and (T N
2 , dE) are complete.

By Section 3.6.1, these results also pass to the quotient via ∼2.
We report the Hopf-Rinow-Cohn-Vossen Theorem which we exploit to conclude this

section.

Theorem 3.46 (Theorem 2.5.28 in Burago et al. (2022)). For a locally compact length
space X the following are equivalent:

• X is complete;

• every closed metric ball in X is compact;
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• every geodesic γ : [0, a)→ X can be extended to a continuous path γ̄ : [0, a]→ X;

• there is a point p ∈ X such that every shortest path γ : [0, a) → X with γ(0) = p
can be extended to a continuous path γ̄ : [0, a]→ X.

Thanks to Theorem 3.45 we can apply Theorem 3.46 and conclude that the closed balls
Bε(T )N in (T N , dE) and Bε(T )N in (T N

2 , dE) are compact for any ε > 0. In particular,

the sets B(C)N in (T N , dE) and B(C)N in (T N
2 , dE) are compact sets.

Now we take care of merge trees.

Corollary 3.47. For any N ∈ N:

1. (MT , dE) is not locally compact.

2. the closed balls Bε(T )N in (MT N , dE) and Bε(T )N in (MT N/sim2, dE) are com-
pact for any ε > 0.

Proof. These results follow from Proposition 3.40.

1. Consider (T, hT ) ∈ MT and Bε(T ). Take K such that Bε(T ) ⊂ MT K . Then
Bε(T ) ∼= Bε(TrK(T )) which is not compact.

2. The result is proven reasoning as in the previous point, observing that Bε(T )
N ∼=

Bε(TrK(T ))N .

3.6.5 Frechét Means

In this section we take the next step in the understanding of the spaces (T , dE) and
(MT , dE), focusing on the Frechét means of a set of trees. Relying heavily on the results
obtained in Section 3.6.4 we obtain that these objects exists in (T , dE), (T2, dE), (MT , dE)
and (MT / ∼2, dE).

Frechét means are objects of particular interest in data analysis, as they are defined as
the minimizers of operators which look for central points in the distribution of a random
variable and thus can be used as 0-dimensional summaries of such distribution. More
formally, given X random variable with values in (M,dM ) metric space, a p−Frechét
mean is defined as argminq∈MEX(dM (q, x)p) - if it exists. Often, this definition is given
with p = 2 but, at this point we have no reasons to make this choice. In this work we
deal with empirical distributions, which amount to considering the case of a finite sets of
merge trees.

As generalization of the idea of “average”, or 0-dimensional summary of a random
variable, Frechét means are among the most used statistics and data analysis for manifold
valued data (Davis, 2008) but not only (Turner et al., 2014; Calissano et al., 2020), and
are used as starting points to build more refined tools (Pennec, 2018).

Proposition 3.48. Given T1,. . ., Tn weighted trees and p > 0; then exist at least one T
such that:

T = argmin
T

∑
i

dpE(T, Ti)

Proof. Since F(T ) :=
∑

i d
2
E(T, Ti) is a continuous real valued function, if we can re-

strict the minimization domain in some compact subset of T , we obtain the result, since
continuous functions preserve compactness.
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First we know that, if T exists, then ∥ T ∥≤
∑

i ∥ Ti ∥2. Otherwise F({⋆}) < F(T ),
with {⋆} being the tree with no edges. Lets call Ni = dim(Ti) and N =

∑
iNi. Consider T

such that #LT = R with R > N . For all i, any geodesic between T and Ti deletes at least
R−#LTi

edges of T . Since #LTi
≤ Ni, we have

∑
iR−#LTi

>
∑

iR−#Ni > R(n− 1).
This implies that there is at least one leaf of T which is deleted all the times. Then, if we
delete it, we obtain T ′ such that, for all i, dE(T

′, Ti) < dE(T, Ti).
Thus, the number of leaves of T cannot exceed N . But this immediately implies that,

if it exists, dim(T ) < 2N .
Since we have a bound on the norm and the dimension of T , we can restrict the

optimization domain on a compact set, which means that T exists.

Corollary 3.49. Given T1,. . ., Tn merge trees and p > 0; then exist at least one T such
that:

T = argmin
T

∑
i

dpE(T, Ti)

Proof. As in Proposition 3.48 we can obtain BC({⋆}) ⊂ MT and N such that T ∈ BN
C .

Then we can apply Proposition 3.40 and conclude the proof via compactness.

Thus, for any finite set of trees, we can minimize the function T 7→
∑

i d
p
E(T, Ti),

obtaining a p-Frechét Mean of the subset.
Being p-Frechét Means important objects for data analysis, it is quite natural to look at

the problem of their numerical approximation. In Section 3.6.7.1 we exploit Section 3.6.6
and Section 3.6.7 to give a simple numerical scheme to achieve that, but whose properties
are yet to be studied.

Before carrying on, we make the following claim which is still to be investigated.

Claim 3.50. Given T1,. . ., Tn weighted trees, if Ti ∈ T N , then there is at least one Frechét
mean T such that T ∈ T N .

This claim is supported by the fact that T N are geodesic spaces, and thus is reasonable
that we do not need to increase the dimension to find a Frechét mean.

3.6.6 Metric Structure

When working outside linear spaces there are many definitions that must be reinterpreted
and generalized to work where no linear structure is available. In the case of manifold, the
most common way to do so is exploiting locally the linear structure of the tangent space and
to focus on the geodesic nature of straight lines in linear spaces. For instance in Geodesic
Principal Component analysis (Huckemann et al., 2010), principal components are replaced
by geodesic minimizing the average distance from data points and orthogonality if verified
in the tangent space at the barycenter. Moreover the geodesic structure of a space is strictly
connected to its curvature in the metric geometry sense (Bridson and Haefliger, 2013), also
called Alexandrov’s curvature (Definition 4.1.2. in (Burago et al., 2022)), which in turns
is often used to show convergence of statistical estimation algorithms (Sturm, 2003; Miller
et al., 2015; Chakraborty and Vemuri, 2015).

For these reasons we want to get a better understanding of the metric structure of the
tree space, with particular attention to its geodesic paths, to see if there is, at least locally,
there is some regularity/well behaved structure to be exploited for future works.

Since the cost of geodesic paths with the metric dE is often invariant up to many
permutations of the edits, we explore the metric structure of T assuming the point of view
of mappings.

The first thing that we prove is that (T , dE), (T2, dE), (MT , dE) and (MT / ∼2, dE) are
not well behaved in terms of curvature/geodesic structure, in fact we have non-uniqueness
issues arising in every neighbor of every tree.
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Proposition 3.51. For every T ∈ T , for every ε, exists T ′ ∈ T such that T and T ′ are
connected by multiple minimizing mappings and dE(T, T

′) < ε.

Proof. It is enough to attach to any of the leaves of T a pair of equal branches of length
less than ε/2 each, obtaining T ′. WLOG let l1, l2 be the two added leaves and let x be
their father in T ′.

Then we can build two mappings M and M ′ such that: M ∩M ′ = {(v, v) for all v ∈
VT , v ̸= x}, (”D”, l1), (”D”, l2), (x, x) ∈ M and (”D”, l1), (x, l2), (”G”, x) ∈ M ′. The cost
of both mappings is ε.

Remark 3.52. In the present work we are not interested in going into the details of
Alexandrov’s curvature, however we point out that by Proposition 1.4 in Chapter II of
Bridson and Haefliger (2013), (T2, dE) cannot be of bounded curvature as this implies
local uniqueness of geodesics. This holds also for (T N

2 , dE) as all permutations of deletions
and all permutations of shrinkings produce different geodesics.

The set of points in whose neighbors there are non-unique minimizing mappings (and
so geodesics) is therefore the whole space. Now we want to get a better understanding of
the origins of these problems. Looking at Figure 3.6.3, we see two reasons which are at
the roots of this non-uniqueness:

• similarity between subtrees of the same tree;

• exchange of father-son relationships through the deletion of internal edges.

In Figure 3.6.3d, Figure 3.6.3e and Figure 3.6.3f we find an example of non uniqueness
arising because of similar subtrees, and also in the proof of Proposition 3.51 we see this
problem in action between subtrees made by a branch each.

In Figure 3.6.3a, Figure 3.6.3b and Figure 3.6.3c on the other hand, we can see unique-
ness being broken by topological changes made with internal edges: if we need to change
lengths of branches sometimes it can be less expensive to make topological changes like
deleting internal edges, and regrowing them to swap children. When this kind of mapping
is as expensive as adjusting the children we have of course multiple mappings. To hope
to achieve some kind of general uniqueness for mappings we must therefore prevent these
things to happen.

We call:

kT = min
v,v′∈VT−LT ,v ̸=v′

dE(subT (v), subT (v
′))

Lastly let mT = mine∈ET
wT (v) and KT = min{mT , kT }.

We want to prove that for trees with KT > 0, if we don’t go too far, at least on internal
vertices, minimizing mappings with certain properties are uniquely determined. But we
need some preliminary results and tools.

Remark 3.53. Given M ∈ Mapp(T, T ′), thanks to property (M3), C(M) can be given the
partial order: (a, b) ≤ (c, d) iff a ≤ c iff b ≤ c.

3.6.6.1 Sequences of Edges

We start with the following definition.

Definition 3.54. Given a weighted tree T , a sequence of edges is an ordered sequence of
adjacent edges {e1, . . . , en}. Which means that we have e1 < . . . < en, according to the
order induced by the bijection ET ↔ VT−{rT } and that ei and ei+1 share a vertex. We will
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(a) Two merge trees (T, hT ) and (G, hG).

(b) One geodesic between the merge trees in Fig-
ure 3.6.3a given by the deletions of the red edges.
Such merge trees are identical up to swapping
the two “central” branches.

(c) One geodesic between the merge trees in Fig-
ure 3.6.3a given by the green shrinkings high-
lighted in the plot.

(d) Two weighted trees (T,wT ) and (G,wg).

(e) One geodesic between the weighted trees in
Figure 3.6.3d given by the green shrinkings high-
lighted in the plot and the yellow ghosting.

(f) One geodesic between the weighted trees in
Figure 3.6.3d given by the green shrinkings high-
lighted in the plot and the yellow ghosting.

Figure 3.6.3: Two examples of merge trees or weighted trees which admit different
geodesics.
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use the notation [v, v′] to indicate a sequence of edges which starts in the vertex v and ends
with the vertex v′, with v < v′. Note that, if we write down [v, v′] using ET ≃ VT − {rT },
v is included in the sequence, while v′ is the first excluded vertex. The sequence [v, v′] is
said to be continuous if all the vertices v′′ with v < v′′ < v′ are of order 2. A maximal
continuous sequence [v, v′] is a continuous sequence such that v is not of order 2 and if v′

is of order 2, then v′ is the root of the tree.

Now we want to give another definition to help us describing interactions between
sequences of edges and mappings. Suppose we have a weighted tree T and we delete an
edge. Then we have a natural identification of all the other edges with edges within the
newly obtained tree: each edge which is not deleted still has the same extremes and weight
in the new tree, a part from the ones which share one vertex with the deleted one. In this
latter case we simply have a replacement for the lower or upper extreme of the edge, but
the identification with an edge of the new tree is still uniquely determined in a natural
way.

Definition 3.55. Given weighted trees T and T ′ and a mapping M ∈ Mapp(T, T ′), a
sequence [v, v′] is said to be (partially) deleted by M if all (some) of its edges are deleted
by M . And it is said to be coupled by M if:

1. it is not partially deleted by M

2. after the deletions it becomes a continuous sequence (note that v′ could be deleted
and thus replaced by another vertex)

3. all vertices v′′ with v < v′′ < v′ are ghosted, but the extremes of the sequence are not

4. v ∈ πT (C(M)).

Note that an edge is a trivial sequence of edges, and an edge is coupled if is it not
deleted and its extremes are not ghosted.

Given (v, w) ∈ C(M), one can restrict M to sub(v) and sub(w), obtaining M|(v,w) =
{(a, b) ∈ M |a ≤ v or b ≤ w)} ∈ Mapp(sub(v), sub(w)) and, as for M , we can consider
projections πT : C(M) → VT . When restricting a mapping intuitively the cost cannot
grow, as proven by the following lemma.

Lemma 3.56. Consider M ∈ Mapp(T ′, T ) and (v, w) ∈ C(M). We can restrict the
mappingM toM|(v,w) ∈ Mapp(subT (v), subT ′(w)) and cost(M|(v,w)) ≤ cost(M). Moreover
if v is an order 2 vertex and there is v′ < v with [v, v′] being a continuous sequence
completely deleted by M , then we can also consider M|(v′,w) and we have cost(M|(v′,w)) ≤
cost(M).

With these definitions we prove a series of technical lemmas which will lead us to the
formulation of Theorem 3.60. These lemmas provide characterizations of how mappings
with small cost associate sequences of edges between trees.

Lemma 3.57. LetM,M ′ ∈ Mapp(T, T ′) with cost(M), cost(M ′) < mT . Consider [w1, w2], [w3, w4] ⊂
ET ′ disjoint sequences of edges coupled by M . If [w1, w2] is deleted by M ′, then [w3, w4] it
cannot be deleted by M ′.

Using Lemma 3.57 we can prove the following stronger result.

Lemma 3.58. ConsiderM andM ′ mappings with cost(M), cost(M ′) < mT . If a sequence
of edges [w,w′] ⊂ ET ′ is coupled by M , then it cannot be deleted by M ′.

Moreover the deletions on T ′ shared between M and M ′, turn T ′ to a tree, whose repre-
sentative without order two vertices has the same tree structure of T (up to isomorphisms
of tree structures).
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At this point we have enough results to start going into the details of the comparison
between two mappings M and M ′ with “small cost”.

Lemma 3.59. Consider M,M ′ ∈ Mapp(T ′, T ) with cost(M), cost(M ′) < KT /2. Let T ′′

be the tree obtained from T ′ applying the deletions in MD
⋂
M ′

D. Induce mappings N and
N ′ from T ′′ to T removing respectively from M and M ′ the deletions already done. Then
the followings hold:

• given v ∈ VT ′, suppose we have (v, x) ∈ C(M) and (v, x′) ∈ C(M ′); if at least one
between x and x′ is not a leaf, then x = x′;

• if [v, v′] ⊂ ET ′′ is a maximal continuous sequence then there exist one and only one
(v′′, x) ∈ C(N) and one and only one (v′′′, x′) ∈ C(N ′) with v ≤ v′′, v′′′ < v′. If
either x or x′ is not a leaf, then x = x′;

• if x is not a leaf in T and we have (v, x) ∈ M and (v′, x) ∈ M ′, then v < v′ or
v ≥ v′ hold. Suppose v < v′; then [v, v′] is a continuous sequence in T ′′;

• if we have (v, x) ∈ M and (v, x′) ∈ M ′ with x ̸= x′, both leaves. Then x and x′ are
siblings.

3.6.6.2 Main Result

Putting the pieces together, we can prove the following theorem.

Theorem 3.60. Consider M,M ′ ∈ Mapp(T ′, T ) with cost(M), cost(M ′) < KT /2. Then
we can obtain a mapping M ′′ ∈ Mapp(T ′, T ) such that M ′′

D =MD
⋂
M ′

D and cost(M ′′) ≤
cost(M), cost(M ′). Moreover M ′′ is uniquely determined on the internal vertices of T .

We conclude this section with the following corollary which follows easily from Theo-
rem 3.60, representing a uniqueness results for deletion-minimizing mappings.

Corollary 3.61. Given T, T ′ with dE(T, T
′) < KT /2 there is at least one mapping M

such that for any other mapping M ′′ - with cost(M ′′) < KT /2 - we have MD ⊂ M ′′
D

and cost(M) ≤ cost(M ′′). Moreover, if M and M ′ both satisfy this property, then they
coincide on deletions, ghostings and all the couplings with internal vertices of T . Clearly,
M , M ′ ∈M2(T, T

′) and all leaves of T are coupled with leaves of T ′.

With Corollary 3.61 we have almost obtained what we wanted: understanding at which
point around a merge tree the curvature of the metric space starts behaving badly (see
Remark 3.52), with metric pathologies as the non-uniqueness of length-minimizing paths
arising. By further restricting the neighborhood of T , taking into account also the differ-
ences between siblings, we reach the desired uniqueness of mappings.

Corollary 3.62. Consider T, T ′ andM,M ′ ∈M2(T, T
′) satisfying the properties of Corol-

lary 3.61. Let KLT
= minl,l′∈LT ,father(l)=father(l′) |wT (l)−wT (l

′) | . Then, if cost(M), cost(M ′) <
KLT

/2, M =M ′.

Thus, if we set KT := min{KT ,KLT
}, we have only one mapping inM2(T, T

′) satisfying
the property in Corollary 3.61 for every T ′ ∈ BKT /2(T ). And such mapping is optimal.

Remark 3.63. All the results in this section are based on local neighbors of weighted trees.
Thus they all extend to merge trees via Proposition 3.40.

102



Chapter 3. A Locally Stable Edit Distance for Merge Trees

3.6.7 Decomposition of Mappings and Local Isometries

In Section 3.6.6 we have proven that for certain merge trees we have a regular neighborhood
where strong uniqueness properties hold. The next step that we want to take is to relate a
general geodesic to such neighborhood and to see if the can establish some canonical way
in which we can represent how these paths navigate through the different strata in the
the space of merge trees. In particular, in this section first we find a way to decompose
any mapping via a pair of straight lines each lying in an euclidean space with the 1-norm
∥ · ∥1 and then prove that this decomposition induces an isometry with an euclidean space
when we are in regular neighborhood previously mentioned.

We start introducing a partial order on equivalence classes of tree structures up to
order 2 vertices: we say that T ′ < T , with T ∼2 T

′, if VT ⊂ VT ′ . The contravariant way in
which this relationship is stated follows what is done in Chapter 2 for coverings of display
posets, meaning that T ′ “refines” T . Given a mapping M ∈ Mapp(T ′, G′) with T ′ ≤ T
and G′ ≤ G, then we can restrict it to T and G obtaining M | (T,G) := {(a, b) ∈ M | a ∈
VT or b ∈ VG}. Note that in general M | (T,G) is not a mapping between T and G.

Given a tree structure T we define RT := {v : ET → R}. Any element in RT may be
referred to as a vector. We say the two such sets RT and RG are isomorphic if and only if
T ∼= G as tree structures. Similarly we define RT

≥0. Any weighted tree (T,wT ) can clearly

be seen as wT ∈ RT
≥. Conversely, any v ∈ RT

≥0 gives a weighted tree (T, v).
Consider now a mapping M ∈ Mapp(T, T ′) containing only shrinkings. This implies

that T ∼= T ′ as tree structures and thus, up to renaming the vertices in T ′ via the iso-
morphism induced by M , such mapping can be represented by the vector wT ′ − wT for
wT + (wT ′ − wT ) = wT ′ and ∥ wT ′ − wT ∥1= cost(M).

Consider this time the general case of any mapping M ∈ Mapp(T, T ′); we can obtain
TM and T ′

M by applying all deletions and ghostings on T and T ′ and then C(M) ∈
Mapp(TM , T

′
M ) contains all the shrinkings. Clearly C(M) can be represented by a vector

in RTM ∼= RT ′
M , but, in general, we have no trivial way to bridge consistently between T

and TM in order to establish a relationship between RT and RTM (and the same for T ′).
Lets call TD the tree obtained from T by applying all deletions of the form (a, ”D”) in

M . Then clearly TD ≤ TM . Our next objective is to find a way to extend C(M) on TD.
Recall that, given T ′ ≤ T and G′ ≤ G and M ′ ∈ Mapp(T ′, G′), M ′

| (T,G) is the restriction

of M ′ to (ET ∪ {”D”, ”G”})× (ET ′ ∪ {”D”, ”G”}).

Definition 3.64. Given a mapping M ∈ Mapp(T,G) and T ′ ≤ T and G′ ≤ G an ex-
tension of M is a mapping M ′ ∈ Mapp(T ′, G′) such that M ′

| (T,G) = M . An extension

is non-trivial if for every v ∈ VT ′ such that v /∈ VT , (v, ”G”) /∈ M ′. And the same for
w ∈ VG′ such that w /∈ VG.

We point out that non-trivial extensions are defined as we are not interested in extend-
ing a mapping by simply ghosting the added vertices.

To simplify certain situations we take T and T ′ without order 2 vertices, and later we
will use the subset of mappings M2(T, T

′) ⊂ Mapp(T, T ′) (see Definition 3.24), since they
are defined so that TM and T ′

M are without order 2 vertices.

Proposition 3.65. Consider a mappingM ∈ Mapp(T,G), with T = T2 and G = G2, with
no deletions. Given T ′ ≤ T , there is always a non trivial extension M ′ ∈ Mapp(T ′, G′) of
M , for some G′ ≤ G.

Proof. Consider v ∈ VT ′ . Let u(v) = min{v′ ≥ v | v′ ∈ VT } and l(v) = max{v′ ≤ v | v′ ∈
VT }. Note that for every v ∈ VT ′ , l(v) and u(v) always exists: if v ∈ VT then l(v) = u(v) =
v; if v /∈ VT then it is of order 2, and so l(v), u(v) are well defined. Note that [l(v), u(v)]
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is a maximal continuous sequence: all the vertices l(v) < v′ < u(v) are of order 2 and
[l(v), u(v)] correspond to an edge in ET . For every v

′ ∈ [l(v), u(v)] set

λ(v′) =

∑
l(v)≤e<v′ wT ′(e)∑

l(v)≤e<u(v)wT ′(e)
∈ [0, 1]

where and edge e = (a, b) satisfies e ≤ v′ if a ≤ v′.
The number λ(v′) uniquely identifies v′ ∈ [l(v), u(v)] and, moreover, if v′′ < v′, λ(v′′) <

λ(v′). Let (l(v), w), (u(v), w′) ∈ M . Pick v′ ∈ [l(v), u(v)], l(v) < v′ < u(v), we split
(w,w′) ∈ EG with a vertex wv′ so that w((w,wv′)) = λ(v′). In a recursive way, for all
v′ ∈ [l(v), u(v)], l(v) < v′ < u(v), taken in any order, we recursively insert an onrder 2
vertex in [w,w′] so that λ(wv′) = λ(v′). And then add the couple (v′, wv′) to M . Let M ′

be the mapping obtained at the end of this process and G′ the resulting refinement of G.
Consider now a =

∑
l(v)≤e<u(v)wT ′(e). Then for every l(v) ≤ v′ ≤ u(v) we have

v′ 7→ λ(v′)a gives a point in [0, a]. Similarly let b = wG((w,w
′)). Every point wv′ can be

mapped to λ(wv′)b ∈ [0, b]. This gives ordered sequences of points a1 = 0 < . . . < an+1 = a
and b1 = 0 < . . . < bn+1 = b. For every i we have ai = λia with λi = λ(vi) (assuming vi
corresponds to ai) and similarly bi = λib. Consider now:

∑
l(v)≤v′≤u(v)

costM ′((v′, wv′)) =

n∑
i=1

| ai+1 − ai − (bi+1 − bi) | =
n∑

i=1

| (λi+ 1− λi)a− (λi+1 − λi)b |

= | a− b |
n∑

i=1

(λi+1 − λi) = | a− b | (1− 0) = costM ((l(v), w))

Thus M ′ is a non trivial extension of M .

Note that, if we are in the hypotheses of Proposition 3.65, then M ′ can be represented
by the vector wT ′ − wG′ ∈ RT ′ ∼= RG′

.
Consider now M ∈ M2(T, T

′). Obtain TM and T ′
M by applying all deletions and

ghostings on T and T ′. Then we are in the conditions to apply Proposition 3.65 on
C(M) ∈ Mapp(TM , T

′
M ). Let TD obtained from T by applying all deletions of the form

(a, ”D”) ∈M . Then TD ≤ TM and thus we can obtain a mapping M ′ ∈Mapp(TD, T
′′
M ) -

with T ′′
D ≤ T ′

M - extending C(M) on TD as in Proposition 3.65. Thus, if we add to M ′ all
the deletions contained inM , we obtain a mapping ∇M ∈ Mapp(T, T ′′) for some T ′′ ≤ T ′.
Note that since the construction of ∇M is well defined (see the proof of Proposition 3.65),
so is T ′′.

Definition 3.66. Given T and T ′ weighted trees andM ∈M2(T, T
′), ∇M ∈ Mapp(T, T ′′)

- with T ′′ ≤ T ′ - is called the canonical representation of M .

Take now M ∈ M2(T, T
′) and ∇M ∈ Mapp(T, T ′′); consider wT ∈ RT and wT ′ ∈ RT ′

.
By construction, for every e = (v, v′) ∈ ET , either v is deleted or v is coupled by ∇M and
thus we can consider −−→v∇M ∈ RT such that −−→v∇M (e) = wT (e) if v is deleted or −−→v∇M (e) =
wT ′(e)− wT (e) if (v, w) ∈ ∇M . Similarly set the vector ←−−v∇M ∈ RT ′

as ←−−v∇M (e) = wT ′(e′)
if e′ = (w,w′) ∈ ET ′ is deleted or ←−−v∇M (e′) = 0 otherwise. Using the same notation of the
previous paragraph, note that wT ′ −←−−v∇M ∼2 T

′
M ∼2 T

′′
D. Thus, we have that:

• cost(M) = cost(∇M) =∥ −−→v∇M ∥1 + ∥ ←−−v∇M ∥1;

• wT +−−→v∇M ∼2 wT ′ −←−−v∇M ∼2 T
′
M .
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We point out that we are using ∇M in a very “directional” way: we are using it to
infer the vector −−→v∇M ∈ RT , but ←−−v∇M ∈ RT ′

just depends on M . That is the idea driving
the following definition.

Definition 3.67. A (T −→ T ′)-decomposition of a mapping M ∈ M2(T, T
′) is a couple of

vectors v ∈ RT and w ∈ RT ′
such that:

• wT + v ∼2 wT ′ − w ∼2 T
′
M , with T ′

M obtained from T ′ applying all deletions of the
form (”D”, a) ∈M ;

• cost(M) =∥ v ∥1 + ∥ w ∥1.

Clearly −−→v∇M and ←−−v∇M give a (T −→ T ′)-decomposition of M .
The idea behind (T −→ T ′)-decompositions of mappings is to locally approximate (T2, dE)

with Rn, for some n and with the 1-norm ∥ · ∥1. For a visual interpretation of this fact
see Figure 3.6.1. The approximation around T goes as far as RT allows and when the
geodesics change strata then also this approximation stops. However, note that not all
vectors in RT give the decomposition of a geodesic since in general ∥ v ∥1≥ dE(wT , wT +v).

If we call RT
>T := {v ∈ RT | v + wT ∈ RT

>0} (with RT
≥T defined analogously), via the

canonical representation of mappings in M2(T, T
′) we have found the following correspon-

dence:
logT : T N ×M2(T, ·)→ RT

≥T

so that logT ((T
′,M)) = −−→v∇M with M ∈ M2(T, T

′). This correspondence can clearly be
reversed via:

expT : RT
≥T → T N ×M2(T, ·)

for any vector in RT
≥T identifies a unique couple (T ′,M), with T ′ represented by wt + v.

We have that:
∥ logT ((T ′,M)) ∥1≤ cost(M)

with the equality holding if T ′ ∼= wT + logT ((T
′,M)). While:

∥ v − v′ ∥1≥ dE(expT (v), expT (v′))

for any v, v′ ∈ RT
≥T .

Lastly, note that if two mappings M and M ′ share the same deletions on T then the
supports of wT + −−→v∇M and wT + −−−→v∇M ′ - i.e. the components where the vectors are not
zero - coincide.

Corollary 3.68. Consider now T ∈ T N with KT /2 > 0 and N = dim(T ), BKT /2(T )
N and

BKT /2(0) := {v ∈ RT
>T | ∥ v ∥1< KT /2}. Take T ′ ∈ BKT /2(T )

N : since no deletions can be
made on T , then also no deletions can be made on T ′. Which means that T ′

M = T ′ and, by
Corollary 3.61, there is only one mapping in M2(T, T

′) with cost less then KT /2. We call
such mapping MT ′. Thus if we define, with an abuse of notation, logT : BKT /2(T )

N →
BKT /2(0) as logT (T

′) := logT ((T
′,MT ′)) we obtain an injective map.

Similarly, consider any v ∈ BKT /2(0): v satisfies Corollary 3.61 as it represents a

mapping with no deletion and with cost less then KT /2. Thus v represents the unique
minimizing mapping - in BKT /2(0) - between T and wT + v.

In other words, logT and expT are inverse to each other and give isometries between
BKT /2(T )

N and BKT /2(0).

The idea behind the terminology employed is justified by Corollary 3.68: when we can
meaningfully reduce minimizing mappings in M2(T, T

′) to a subset with just one element
MT ′ , then expT and logT can be restricted to logT (T

′) := logT ((T
′,MT ′)). Such maps
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are then in analogy to the log and exp maps for Riemannian manifolds as we obtain local
homeomorphism (in fact, an isometry) between Bε(T )

N and an open set in Rn - with the
∥ · ∥1-norm - for any weighted tree with KT > 0. Clearly, 1) we need restrict to trees
with bounded dimension, 2) even in this case this does not hold for all trees and so we
are far from having a well behaved structure like the Riemannian one. We leave for future
works further investigation of such neighborhoods to assess how they can be exploited to
establish extrinsic statistical techniques by projecting trees in this “tangent” structure.
Such investigation should also aim at studying the relationship between BKT /2(T )

N and
BKT /2(0) when N > dim(T ), to see if it can be stratified in a fruitful way.

3.6.7.1 Approximation of Frechét Means

In this last section we exploit the results previously obtained in Section 3.6.7 to give an
approximation scheme for the Frechét mean of a finite set of merge trees.

Consider now a finite set of weighted trees {T, T1, . . . , Tn} and the minimizing mappings
Mi ∈M2(T, Ti).

Moreover for every i consider −−−→v∇Mi
, ←−−−v∇Mi

, a (T −→ Ti)-decomposition of Mi. We know
that:

F(T ) :=
n∑

i=1

dE(T, Ti)
p =

n∑
i=1

(∥ −−−→v∇Mi
∥1 + ∥ ←−−−v∇Mi

∥1)p

≥ min
v∈RT

≥T

n∑
i=1

(∥ v −−−−→v∇Mi
∥1 + ∥ ←−−−v∇Mi

∥1)p

Thus if we solve:

arg min
v∈RT

≥T

n∑
i=1

(∥ v −−−−→v∇Mi
∥1 + ∥ ←−−−v∇Mi

∥1)p (3.2)

we obtain a weighted tree T ∗ in RT
≥0 such that F(T ∗) ≤ F(T ). Clearly we can recur-

sively repeat the same procedure:

1. compute Mi ∈M2(T, Ti) minimizing mapping for every i = 1, . . . , n;

2. compute −−−→v∇Mi
, ←−−−v∇Mi

, a (T −→ Ti)-decomposition of Mi every i = 1, . . . , n;

3. solve Equation (3.2) to obtain T ∗ and replace T with T ∗.

Remark 3.69. With p = 1 we get:

arg min
v∈RT

≥T

n∑
i=1

∥ v −−−−→v∇Mi
∥1 +

n∑
i=1

∥ ←−−−v∇Mi
∥1= arg min

v∈RT
≥T

n∑
i=1

∥ v −−−−→v∇Mi
∥1

thus the solution of Equation (3.2) is the pointwise median of {logT ((Ti,Mi))}i=1,...,n =
{−−−→v∇Mi

}i=1,...,n in the “tangent space” RT
≥T .

We leave to future works a rigorous study of Equation (3.2) and of the properties of
the approximation scheme just proposed. In particular, we believe that the approximation
scheme can be framed in terms of a gradient descent algorithm upon establishing differ-
ential calculus in the space of merge trees, following what has been done for persistent
homology (Leygonie et al. (2021), Leygonie et al. (2021)).
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3.7 Discussion

In this chapter we introduce a novel edit distance for merge trees, we compare it with
existing metrics for merge trees establishing stability properties and then face the problem
of geometric characterization of the space of merge trees endued such distance. Our
geometric investigation covers the following directions: 1) to establish some compactness
results to prove the existence of Frechét means, which are objects of great interest in non-
Euclidean statistics, 2) start understanding the geodesic structure of such space 3) working
with decomposition of geodesics to obtain local approximation of the space of merge trees
via euclidean spaces. Thanks to previously introduced parametrizations of geodesic paths,
we obtain the existence of Frechét means, along with introducing an approximation scheme
for such objects and prove local uniqueness of geodesics modulo some permutations of the
involved edits.

Natural further developments of this work would be to study the possibility of estab-
lishing differential calculus on the space of merge trees, deepen the understanding of the
logarithm and exponential map we defined, and obtaining a natural measure in such space
to quantify now many trees have a well behaved neighborhood and how many not. As
a byproduct of those investigations, we believe that the proposed approximation scheme
for Frechét Means could be better understood and extrinsic statistical techniques - like
regression or L1-norm principal component analysis - defined via the local approximation
of the tree space could be obtained.
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Appendix

3.A Proofs

Proof of Proposition 3.39.

Proof. Let π0(X·) and π0(Y·) be two regular abstract merge trees which are represented
by the merge trees (T, hT ) and (G, hG), which we represent as weighted trees via the some
TrK .

Introduction - Display Posets For ease of notation, we introduce the following
objects.

Definition 3.70 (Curry et al. (2022)). Given a persistent set S : R→ Sets we define its
display poset as:

DS :=
⋃
t∈R

S(t)× {t}.

The set DS can be given a partial order with (a, t) ≤ (b, t) if S(t ≤ t′)(a) = b.

Let Dπ0(X·) and Dπ0(Y·) be the display posets induced by π0(X·) and π0(Y·). We call
hπ0(X·) the height function of Dπ0(X·) and hπ0(Y·) the height function of Dπ0(Y·).

Introduction - Couplings The content of this part of the proof is taken from Chap-
ter 6.

We leverage on the notion of couplings between merge trees defined in Chapter 6.
Before recalling such definition that we highlight a subtle difference in merge trees as
defined in Chapter 6 wrt respect to the definition we give here. In Chapter 6 the edge
going to infinity which we require in our merge trees - (v, rT ) with hT (rT ) = ∞ - is not
needed and thus such edge is removed. In other words, a merge tree (T, hT ) is the sense
of Chapter 6 is such that ordT (rT ) > 1 and hT (rT ) ∈ R. we state the results in Chapter 6
with the notation of the present chapter.

Given C ⊂ VT × VG and the projection πT : VT × VG → VT , we define the multivalued
map ΛT

C : VT → VT as follows: ΛT
C(v) = maxv′<v πT (C) if #{v′ ∈ VT | v′ < v and v′ ∈

πT (C)} > 0 or ΛT
C(v) = ∅ otherwise. A coupling between the merge trees (T, hT ) and

(G, hG) - with the definition given in the present chapter - is then a set C ⊂ VT − {rT } ×
VG − {rG} such that:

(C1) #maxC = 1 or, equivalently, #maxπT (C) = #maxπG(C) = 1

(C2) the projection πT : C → VT is injective (the same for G)

(C3) given (a, b) and (c, d) in C, then a < c if and only if b < d

(C4) a ∈ πT (C) implies #ΛT
C(a) ̸= 1 (the same for G).
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Similarly to mappings each couple in C is associated to a cost, and ∥ C ∥∞ is defined as
the highest of such costs. In Chapter 6 it is proven that dI(T,G) ≤∥ C ∥∞ for all couplings
C.

Define the following functions as in Chapter 6:

• define φT
C : VT → VT so that φT

C(x) = min{v ∈ VT | v > x and #Λ(v) ̸= 0}. Note
that since the set {v ∈ VT |v > x} is totally ordered, φT

C(x) is well defined;

• similarly, define δTC : VT → VT , defined as δT (x) = min{v ∈ VT
∣∣v ≥ x and v ∈

πT (C)};

• set γTC : VT − DT
C → VG to be γTC(x) = argmin{g(w) | (v, w) ∈ C, v < x}, if

#{g(w) | (v, w) ∈ C, v < x} > 0, or γTC(x) = ∅. If #{g(w) | (v, w) ∈ C, v < x} > 0,
by (G), γTC(x) is uniquely defined. Note that γTC(φ

T
C(x)) is well defined for any

v ∈ VT ;

• lastly, set ηTC(x) := γTC(φ
T
C(x)).

To lighten the notation, when clear from the context, we may omit subscripts and
superscripts. The costs of a coupling are defined in Chapter 6 as follows.

• if (x, y) ∈ C, costC(x) = |hT (x)− hG(y)|;

• if x /∈∈ πT (C), we have two different scenarios:

– if #Λ(x) = 0, then costC(x) = max{(hT (φ(x))− hT (x)) /2, hG(η(x))− f(x)};
– if #Λ(x) > 1, we have costC(x) = |hT (x)− hG(w) | with (δ(x), w) ∈ C;
– zero otherwise.

Lastly, in Chapter 6 it is shown that, via C one can induce

αC : Dπ0(X·) → Dπ0(Y·) and βC : Dπ0(Y·) → Dπ0(X·)

such that
costC(v) = |hπ0(Y·)(αC(v))− hπ0(X·)(v) |

for any v ∈ VT and

costC(w) = |hπ0(X·)(βC(w))− hπ0(Y·)(w) |

for any w ∈ VG.

Main body of the proof We now want to establish relations between mappings
between TrK((T, hT )) and TrK((G, hG)) - with K > maxhT ,maxhG - and couplings
between (T, hT ) and (G, hG). When working with TrK((T, hT )) and TrK((G, hG)) we can
apply the following result from Chapter 2.

Corollary 3.71 (Chapter 2). Given (T,wT ) and (T ′, wT ′) weighted trees. If rT and rT ′

are of order 1, for any minimizing mappings M , then neither (v, rT ) or (w, rT ′) are deleted
and we have #maxM = 1.
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Given a minimizing mapping M ∈ M2(T, T
′), thanks to Lemma 3.25, we have that

a ∈ πT (M) implies #ΛT
M (a) ̸= 1 (the same for G). In fact (C4) is equivalent to having

no vertices of order two after deletions and ghostings. This means that CM := C(M) =
{(a, b) ∈M | a ∈ VT and b ∈ VG} is a coupling.

Conversely, given a minimizing coupling C, the set

MC := C
⋃
{(a, ”D”) | a /∈ πT (C) and #ΛT

C(a) ̸= 1}⋃
{(”D”, b) | b /∈ πG(C) and #ΛG

C(b) ̸= 1}⋃
{(a, ”G”) | a /∈ πT (C) and #ΛT

C(a) = 1}⋃
{(”G”, b) | b /∈ πG(C) and #ΛG

C(b) = 1}

is a mapping. Clearly MCM
=M and CMC

= C.
Now we prove the following lemma.

Lemma 3.72. Let f : [a,K] → [b,K] be a monotone function such that f(K) = K,
K ∈ R. For every {x1 < . . . < xn+1 = K} ⊂ [a,K]:

max
i=1,...,n+1

d(f(xi), xi) ≤
n∑

i=1

| d(xi, xi+1)− d(f(xi), f(xi+1)) | (3.3)

Proof. Let vi = f(xi) − xi. And let m ∈ {1, . . . , n + 1} be such that | f(xm) − xm | =
max | f(xi)− xi | .

Then we set:

v1 =vm + ε1

v2 =vm + ε1 + ε2

. . .

vi =vm +

i∑
j=1

εj

. . .

vn =vm +

n∑
j=1

εj .

Thus we can write Equation (3.3), which we need to prove, as:

| vm | ≤
∑
i

|xi − f(xi)− (xi+1 − f(xi+1)) | =
∑
i

| vi − vi+1 | =
n∑

i=1

| εi+1 | .

Clearly we have some constraints on εi, in fact:

xi + vm +

i∑
j=1

εj ≤ xi+1 + vm +

i+1∑
j=1

εj

which means:
xi − xi+1 ≤ εi+1.

In particular xn + vn = xn = 1 means that vm +
∑n

j=1 εj = 0 i.e. −vm =
∑n

j=1 εj .
Thus:

| vm | = |
n∑

j=1

εj | ≤
n∑

i=1

| εi+1 | .
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Consider now a leaf l ∈ LT and take ζl = {p ∈ VT | v ≥ l}. Consider the interval
[hT (l),K]. The map v ∈ ζl 7→ hT (v) gives a 1 : 1 correspondence between ζl and a finite
collection of points in [hT (l),K]. We define f(hT (v)) = hπ0(Y·)(αC(v)) for v ∈ ζl − {rT }.
And f(K) = K. Note that αC is constructed such that αC(v) = w if (v, w) ∈ C. Thus
f(hT (v)) ≤ K for v ∈ ζl.

We extend f on [hT (l),K] via linear interpolation. Since αC is monotone wrt the
partial order on Dπ0(X·), then f is monotone on [hT (l),K].

Now consider T and apply on it all the deletions and ghostings which involve points
which are not in ζl. We call {v1 = l < . . . < vn+1 = rT } the coupled points in ζl. Then:

|hT (vi)− hT (vi+1)− f(hT (vi))− f(hT (vi+1)) | ≤ costMC
([vi, vi+1] 7→ [αC(vi), αC(vi+1)])

(3.4)
With costMC

([vi, vi+1] 7→ [αC(vi), αC(vi+1)]) being the cost of the edits associated to points
vi ≤ p ≤ vi+1 and αC(vi) ≤ q ≤ αC(vi+1). In fact we have equality in Equation (3.4) the
there are no deletions for any p ∈ VT such that vi ≤ p ≤ vi+1 and any q ∈ VT ′ such that
αC(vi) ≤ q ≤ αC(vi+1). Otherwise the total cost of the deletions and shrinking exceeds
|hT (vi)− hT (vi+1)− f(hT (vi))− f(hT (vi+1)) | since:

|n1 + n2 − (n3 + n4) | ≤ n1 + n3 + |n2 − n4 |

with ni ∈ R≥0. Lastly note that |hT (vi)− f(hT (vi)) | = costC(v).
By Lemma 3.72, we have:

max costC(vi) =maxhT (vi)− f(hT (vi))

≤
n∑

i=1

|hT (vi)− f(hT (vi)) + f(hT (vi+1)− hT (vi+1) |

≤costMC
([l, rT ] 7→ [w, rG])

(3.5)

with (v, w) ∈MC and v = min ζl ∩ πT (C).

Conclusion Let ∥ C ∥∞= costC(x). WLOG x ∈ VT . Then x ∈ ζl for some l ∈ LT .
By applying Equation (3.5) we obtain the result.

■

Proof of Theorem 3.44.

By Section 3.6.1 we can consider only weighted trees such that T2 = T .

1. Given λ ∈ [0, 1] and T ∈ T we define λ · T to be the tree obtained by shrinking
each edge of T by a factor of λ i.e. if w′ is the weight function of λ · T , we have
w′(v) = λ · w(v).
Now considerM ∈ Mapp(T, T ′). We callMλ the same mapping but inside Mapp(λ ·
T, λ · T ′). Since we can take λ outside the cost of all the edits, then cost(Mλ) =
λ · cost(M). In other words dE(λ · T, λ · T ′) ≤ λ · dE(T, T ′) < dE(T, T

′).

This of course implies that F : [0, 1]×T → T , such that F (t, T ) = t·T is continuous,
and so T is contractible.

2. We prove that given for any tree T and any ε > 0, Bε(T ) is not complete. Build
the following Cauchy sequence: let T0 = T and obtain the tree Tn by attaching
to a leaf of Tn−1 a pair of edges, each with length ε

2·2n . Consider n > m, then
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dE(Tn, Tm) ≤ ε
∑n

k=m 2−k which is arbitrarily small as n,m increase. Thus {Tn} is
a Cauchy sequence. Moreover dE(T, Tn) ≤ ε

∑n
k=0 2

−k ≤ ε and thus {Tn} ⊂ Bε(T ).

Suppose that exists T ′ such that Tn → T ′. By construction we know #VTn
→ ∞.

Let Mn ∈ Mapp(Tn, T
′) minimizing mapping. Clearly cost(Mn) → 0. For ease of

notation we call Cn := C(Mn) and Dn := (Mn)D.

By definition #Cn ≤ K = dim(T ′). We know that all the vertices in VTn
− VT

have one sibling since they are added as couples. This means that, even if we take
away K vertices, at least one out of every pair of the remaining siblings will be
deleted once dim(Tn) > dim(T ′). Of course cost(Mn) ≥ cost(Cn) + cost(Dn) and
so cost(Dn)→ 0.

But cost(Dn) > ε · 12
∑n

K
1
2n and so it does not go to zero.

This shows that C = Bε(T ) is not compact. In fact {Tn} ⊂ C is a Cauchy sequence
but it is not converging.

3. We need to prove local compactness and we do so via sequential compactness.

Consider T ∈ T N and {Tn} ⊂ Bε(T ) with ε < minv∈VT
wT (v).

If we consider an edge l = (v, v′) in T , along the sequence Tn we know that l will
never get wholly deleted. It might be split, shrunk but it will never disappear.

We fix a sequence of mappings Mn such that Mn ∈ Mapp(T, Tn) and cost(Mn) =
dE(T, Tn). For any edge l = (v, v′) in T , with v < v′, we consider the set El

n = {ekn}
such that ekn ∈ Mn edits the edge l. With that we mean: shrinkings of l, splittings
inserting points w with v < w < v′ (note that these appear only after the shrinkings),
insertion of edges in points w with v ≤ w ≤ v′. Of course for each n, we might have
e1n, e

2
n,... acting on the same edge. While there can be at most one shrinking on l

for each n, there can be multiple insertions or splittings; of course this number is
uniformly bounded because of the dimension constraints.

For a fixed n we have a natural order between splittings, given by the height at
which the new point is inserted, and a similarly induced partial ordering between
insertions. Insertion are comparable with respect to this partial order if they happen
at different heights. We fix a random order on insertions happening at the same
vertex so that all insertions are completely ordered. For a fixed l we partition these
edits into Shn, Sn

k and Ink′,k, which, for each n, collects the elements in El
n which

are respectively the shrinking, the k-th splitting and the k-th insertion at the k′-th
inserted vertex. One can set k′ = 0 being the index of v, and k′ = −1 being the
index of v′.

We know that for each edge l:

• Sh = ∪nShn is at most countable, and the sequence given by the different
weights of l obtained through the shrinkings, is a sequence in [L − ε, L + ε],
with L the original length of l. Then we can extract a converging subsequence.

• Sk = ∪nSn
k is at most countable, then the ratio of the distance in height

between v and the splitting point, over the length of l (after the shrinking of
the n-th mapping) form a sequence in [0, 1]. So we can extract a converging
subsequence in [0, 1]. In other words we can find a subsequence of edits which
converges to a certain splitting.

• Ik′,k = ∪nInk′,k is at most countable for every k, k′; the length of the inserted

edges form a sequence in [0, ε]. So for every k, k′ we can extract a converging
subsequence.
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If some of the sets defined above are finite we discard from the sequence the indexes
n which appear in the collection of edit, being it Sh, Sk or Ik,′k. Note that, by the
dimension bounds, we have a finite number of such sets, for a finite number of edges.

Thus, for every edge l, we proceed in this way:

(a) since Sh is countable we extract a converging subsequence of shrinkings.

(b) starting from k = 1, from the subsequence just obtained we extract a converg-
ing subsequence of splitting locations. Starting from this sequence we repeat
the extraction procedure for k = 2, then recursively till we reach k such that
Sk is empty. Again if, for some k, Sk is finite, we simply discard elements of
the subsequence appearing in Sk.

(c) lastly, from the last set of indexes we obtained, we extract from Ik′,k a con-
verging subsequence of insertions for every k and k′; working on k and k′ as in
the previous point. In a finite number of steps we reach I

k̂′,k̂
such that for all

k′ > k̂′ and k > k̂, Ik,k′ = ∅.

Given any ordering on the edges, we recursively apply this for every l, and obtain a
subsequence which, with an abuse of notation, we still call {Tn}.
We fix n and take for every edge the edits in Shn ∪k Sn

k ∪k′,k I
n
k′,k. If we take the

uninio of such edits over the edges l we obtain a mapping Nn for every n. The
mapping Nn is defined on T and by construction is contained in Mn. Note that
Nn collects all the edits which are applied by Mn on T that is all the shrikings and
splitting, plus all the insertions which are made directly on the vertices of T or on
the splittings already applied. In other words Mn−Nn is made by insertions which
are applied on edges which are obtained by other insertions.

Call STn the tree obtained from T with the edits in Nn. Then clearly Nn ∈
Mapp(T, STn). For what we have said, Tn can be obtained from STn with the
edits in Mn −Nn, which are only a particular case of insertions.

By construction, any edit in Nn is part of a converging sequence of edits: shrinking
converge to a final weight value, splittings converge to a final position on the edge
and insertions converge to a final weight of the inserted edge. We call N the mapping
obtained with the limit of the edits of Nn. Clearly cost(Nn) → cost(N). Let ST
be the tree obtained from T with N . We have STn → ST . In fact, consider one
edge l ∈ ET . Take for instance the sequence of shrinkings in Sh = {e1, . . . , en, . . .}
parametrized such that wSTn

(l) = en and en → e. For any fixed ϵ and for n big
enough we know |en−e| < ϵ. Thus |wSTn

(l)−wSTn+1
(l)| < ϵ is a shrinking with cost

less then ϵ. For the same edge l there are at most N splittings, each edit splits l in
ESTn

at a certain height. Similarly, the difference in heights between splittings in
Sn
k and Sm

k with m > n is going to zero, and thus we can again choose n big enough
so that the k−th splitting of STn can be turned in the k−th splitting of ST , for
all k, with cost less than ϵ. The same reasoning can be done on the weights of the
insertions. Thus we can go from STn to ST with a finite set of edits, with cost less
that ϵ and whose number is uniformly bound. For instance we know that on every
tree we can have at most N shrinkings, N ghostings, and N insertions. Thus, for
every ϵ, there is n big enough such that dE(STn, ST ) < 3Nϵ. We remark that, since
Nn ⊂Mn, then cost(Nn) ≤ ε for every n, and thus dE(T, ST ) ≤ ε.

At this point we have obtained a sequence {STn} such that: STn → ST in Bε(T )
and VSTn

⊂ VTn
. Then next natural step is to recursively “enlarge” STn.
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Take each Mn and substitute each edit in Nn ⊂Mn with its limit N , obtaining Mn.
Note that cost(Mn)→ cost(Mn) as n grows.

We can obtain a new sequence of trees T ′
n and mappings M ′

n ∈ Mapp(ST, T ′
n) in

this way:

• T ′
n is obtained from T applying the mapping Mn.

• M ′
n ∈ Mapp(ST, T ′

N ) is the mapping induced by the identifications given by

the composition of the paths: T
N−→ ST

Mn−N−−−−→ T ′
n; which is well defined since

Mn − N is made only by insertions to be done on ST . Thus we can identify
M ′

n as given by the “identity” on the vertices of ST , and the edits inMn−Nn,
which, as already noted, are only insertions. We call idST the set of couplings
embedding ST into T ′

n.

The first thing we highlight is that, since Mn → Mn, in the sense that their edits
converge as already explained, then dE(Tn, T

′
n) → 0. So in {T ′

n} converges to a
limit point, so does {Tn}. For the same reason we have that also {T ′

n} is a Cauchy
sequence.

We can perform the steps which lead us to obtain {STn} → ST starting from T and
the sequence {Tn}, but taking ST as “reference tree” and {T ′

n} as initial sequence.
So we obtain the subsequence of {STn} which we use to build sequence {ST ′

n} → ST ′

along with mappings N ′
n ∈ Mapp(ST, ST ′

n). For notational convenience, any time
we throw away indexes from {T ′

n}, we remove the same indexes also from {Tn}.
The key point is that idST ⊂ N ′

n for all n and, in particular, we have ST ̸= ST ′
n

if and only if idST ⊊ N ′
n. Since M ′

n −N ′
n contains only insertions to be applied on

edges which have already been inserted in ST , if there are no such edges, we have
ST = T ′

n.

Now we relate {ST ′
n} → ST ′ with T and {STn} → ST . To do so, consider: An =

(N ′
n − idST )

⋃
Nn. By construction An ∈ Mapp(T, ST ′

n). For what we have said,
either Nn ⊊ An or ST = T ′

n and so An = Nn = Mn. On top of that An ⊂ Mn

and thus dE(T, ST
′) ≤ ε. Now, call SSTn the weighted tree obtained by editing T

with the edits contained in An: either VSTn
⊊ VSSTn

or SSTn = Tn. Moreover, since
Nn → N and ST ′

n → ST ′ we get SSTn → ST ′.

Thus, this further step has produced a a sequence of weighted trees {SSTn} “bigger”
than {STn} and such that SSTn → ST ′ with dE(T, ST

′) ≤ ε.
We can recursively repeat this procedure and obtain a converging sequenceGn which,
after a finite number of steps (thanks to the bound on the edge number), will have

Gn = Tn for all n; and Gn converges inside Bε(T ).

■

Proof of Theorem 3.45.

It’s enough to prove it for (T N , dE).
Consider a Cauchy sequence {Tn}n∈N. By Proposition 3.43,

∣∣||Tn||−||Tm||∣∣ ≤ dE(Tn, Tm).
Thus, {||Tn||} is a Cauchy sequence and thus, it converges in R. In other words, ||Tn|| → C.
If C = 0 then Tn → 0, the tree with one vertex and no edges. Therefore, we can suppose
C > 0.

Define ϵ(T ) := mine∈ET
wT (e). In the proof of Theorem 3.44 we show that Br(Tm) is

compact for every r < ϵ(Tm). We know {ϵ(Tn)} is a bounded sequence in R and thus,
up to taking a subsequence, it converges. If ϵ(Tn) → q > 0 then, the sequence {Tn} is
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definitely in a compact ball of the form Bϵ(Tm)(Tm). In fact, fix 0 < λ such that λN < q;
we can find m such that (|ϵ(Tm) − q| + λ)N ≤ ϵ(Tm) and dE(Tm, Tn) ≤ ϵ(Tm)/2 for all

n > m. Thus we can build T̂m, obtained from Tm by raising the weight of its maximal
edges by |ϵ(Tm)− q|+ λ, so that q < ϵ(T̂m). We now that, at most, we need to shrink N
edges by |ϵ(Tm)− q|+ λ. Thus:

dE(Tm, T̂m) < N(|q − ϵ(Tm)|+ λ) ≤ ϵ(Tm)

Moreover for n > m we have d(T̂m, Tn) ≤ dE(T̂m, Tm) + dE(Tm, Tn) ≤ ϵ(Tm) and so
{Tn} converges.

Suppose then ϵ(Tn)→ 0. For all n, take Tn, and obtain T 1
n by deleting argmine∈ETn

wTn
(e).

By construction we know dE(Tn, T
1, n) ≤ Nϵ(Tn) and thus d(Tn, T

1
n)→ 0. So, if {T 1

n} con-
verges, also {Tn} converges. We repeat the same reasoning as above, considering {ϵ(Tn)};
if ϵ(T 1

n) → q > 0 we are done, otherwise we take {T 1
n} and obtain {T 2

n} removing the
smallest edge and repeat again the procedure. BY #ETn

≤ N , we know #ET 1
n
≤ N − 1

and so #ET j
n
≤ N − j etc. Since ∥ T j

n ∥→ C, 0 < #ET j
n
and thus in a finite number of

step we obtain {T j
n} which converges and so does {Tn}.

■

Proof of Lemma 3.56.

Due to the properties of M , in particular property (M3), M edits subT (v) so that it
becomes subT ′(w). In other words M|(v,w) = {(v′, y) ∈M

∣∣v′ < v}
⋃
{(x,w′) ∈M

∣∣w′ < w}
is again a mapping and the costs of the single edits does not change between going from
M to M|(v,w).

Now we turn to the case of v′ > v, [v, v′] ⊂MD. We need to define M|(v′,w).
To build M|(v′,w) we take (M|(v,w) − {(x, y) | v′ ≤ x <≤ v})

⋃
{(v′, w)}. Note that

M|(v′,w) is indeed a mapping, since all the vertices [v′, v] are deleted or ghosted by M and
so are not couple by any vertex in VT ′ . Lastly, for all couples (a, b) ∈ M|(v′,w) such that
(a, b) ̸= (v′, w), costM ((a, b)) = costM|(v′,w)

((a, b)).
■

Proof of Lemma 3.57.

Suppose a =
∑

e∈[w1,w2]
wT ′(e), b =

∑
e∈[w3,w4]

wT ′(e) which in M are coupled with se-
quences of T with length A and B respectively, and thus contributing to the cost of the
mapping with the quantity |A−a|+ |B−b|. If inM ′ they are both deleted, the contribute
to that cost by: a+ b. This situation gives the following set of equations:

a, b, A,B > 0

A,B > mT > 0

|A− a|+ |B − b| < mT

a+ b < mT

This system of course has solution only if mT > a and mT > b, and so it becomes:

a, b, A,B > 0

A,B > mT > 0

A+B −mT < a+ b

a+ b < mT
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which is impossible since it gives:

2mT < A+B < 2mT

The roles of M and M ′ can of course be reversed.
■

Proof of Lemma 3.58.

Consider M,M ′ ∈ Mapp(T ′, T ) with cost(M), cost(M ′) < mT .
Suppose there is a sequence of edges [w,w′] in T ′ such that (w, ”D”) ∈M ′, (w, x) ∈M

for some x ∈ VT , and w′′ ∈MG
⋂
M ′

G for all w < w′′ < w′. By Lemma 3.57 we know that
this is not happening for any other sequences of edges. Note that, by hypothesis, w′ and
w are not ghosted by M .

Apply on T ′ all the deletions inMD∩M ′
D to be applied on it, obtaining T ′′. We induce

in a natural way mappings N and N ′ from T ′′ to T , simply removing, respectively, from
M and M ′ the deletions already done. Note that the sequences paired in T ′ are paired
also in T ′′. Because mT ≥ mT ′′ , then Lemma 3.58 holds also for T ′′ and the mappings N
and N ′. As a consequence, since we already have [w,w′] which is paired by one mapping
and deleted by the other, all the other disjoint sequences of edges in T ′′ still to be deleted
by N , cannot be paired by N ′ (nor can they be even partially deleted by N ′, since these
deletions do not lie inMD∩M ′

D). Thus, any time a sequence [v, v′] in T ′′ is deleted by ND,
if after N ′

D it becomes a continuous sequence, then it cannot be maximal, i.e. at least one
between v and v′ is an order two vertex. Otherwise [v, v′] would be paired since none of
its extremes can be ghosted. In particular, this implies that each deletion we have in ND

or N ′
D deletes an edge of T ′′ which is left with at least one order 2 vertex by the deletions

of the other mapping.
To recap, we have obtained T ′′ by applying all the deletions shared by M and M ′, we

have induced the mappings N and N ′ taking the remaining edits of, respectively, M and
M ′; each deletion we still have in ND or N ′

D deletes an edge of T ′′ which is left with at
least one order 2 vertex by the deletions of the other mapping. For both mappings there
are no insertions to be done to obtain T , because their cost would be over KT .

Consider a vertex v′ in T ′′. The order of v′ can change thanks to the deletions of ND or
N ′

D obtaining different values in T ′ only if we have some sequence [v, v′] which is deleted
by one mapping and not by the other.

So consider [v, v′] a sequence of edges in T ′′ which is deleted by N and not by N ′. and
suppose that v′ is not of order 2 in T ′′ but it becomes of order two after N ′

D. We can
clearly take [v, v′] so that it becomes continuous after N ′

D. Let v1, .., vn be the children of
v′ in T ′′. We know that subi(v

′) is deleted by N ′
D for every i but one, be it vh, such that

vh ≥ v. This in turns tells us that subi(v
′) with i ̸= h are not deleted by N (otherwise

these deletions would lie in MD ∩M ′
D) and, for what has been said before, all their edges

must have at least one vertex of order two in T ′′. According to the mapping N , once all
order 2 vertices in subi(v

′), i ̸= h, have been removed, all the maximal sequences remaining
pass from being deleted by N ′ (and so by M ′) to being coupled by N (and so by M). But
since the only sequence for which this happens is [w,w′], this means that i ≤ 2, w′ = v′,
v1 ≥ v and v2 ≥ w.

Putting the pieces together first we proved that, starting from T ′′ any further deletion
in ND or N ′

D deletes an edge of T ′′ which is left with at least one order 2 vertex by the
deletions of the other mapping. But now we saw that there can be at most one vertex
which goes from order different from 2 in T ′′, to order 2 thanks to ND or N ′

D. And this
vertex is w. As a consequence, for any other edge of T ′′ deleted by N and not by N ′, the
extreme of order two after N ′

D can have no siblings in T ′′, i.e. they are already of order
two. And the same reversing the role of N and N ′.
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To sum up, we have obtained T ′′ by applying all the deletion shared by M and M ′,
and then we proved that all other deletions but one, delete edges with at least one of the
extremes which is an order 2 vertex in T ′′. So, apart from the deletion of [w,w′] by N ′

D,
the others in ND or N ′

D − {(w, ”D”)} provide no changes in the tree structures, up to
order 2 vertices. So the tree structure obtained from the deletions of such edges or the
one resulting from the ghosting of their order two extremes is the same, up to order two
vertices. Since T has no order 2 vertices, and since there are no insertions to be done on
T ′′, [w,w′] is paired with an edge with no vertices of order two, and so its deletion changes
the topology of the tree T ′′. In other words we obtain the same tree structure, which is
the one of T , both by removing from T ′′ the order 2 vertices, and from first removing the
order 2 vertices and then deleting the internal edge [w,w′] which is absurd.

■

Proof of Lemma 3.59.

• we know that, by definition of KT , we have dE(subT (x), subT (x
′)) > KT , and so,

thanks to Lemma 3.56 we have

KT < dE(subT ′(v), subT (x
′)) + dE(subT ′(v), subT (x

′)) ≤ KT

which is absurd. Thus x = x′.

• Write down the sequence [v, v′] as an ordered sequence of vertices [v, v′] = {a1 =
v, . . . , ar} with father(ar) = v′. By construction, [v, v′] cannot be wholly deleted by
both mappings, and so each ai can be deleted or ghosted by N or N ′, but there must
be a vertex aiN which is coupled by N and one aiN′ coupled by N ′. In fact if there
is one mapping which wholly deletes [v, v′] then the other one must couple it, by
construction. Which contradicts Lemma 3.58. We want to prove that (aiN , x) ∈ N
and (aiN′ , x

′) ∈ N ′ with x = x′. If iN = iN ′ we already proved that x = x′. Then,
suppose iN < iN ′ .

Since v < aiN′ < v′ then aiN′ is an order two vertex, coupled with x′ which is not
an order two vertex. Thus the vertices between v and aiN′ must be deleted, aiN
included. This in particular means that we can consider N|(aiN

),x and N ′
|(aiN

),x′ as

in Lemma 3.56. Using the triangular inequality on dE(subT (x), subT (x
′)), if at least

one between x and x′ is not a leaf, we obtain:

KT < dE(subT ′(aiN ), subT (x
′)) + dE(subT ′(aiN ), subT (x)) ≤ KT

Suppose now that there are (aiN1
, x1) ∈ N and (aiN2

, x2) ∈ N . With aiNj
∈ [v, v′].

Suppose aiN1
> aiN2

. Then aiN1
is an order 2 vertex in T ′′ and it is paired with a

vertex of order different from 2. Since it cannot be deleted, all the vertices in [v, v′]
which are below aiN1

must be deleted, so that the order of aiN1
is no more 2. But

aiN2
cannot be deleted, which is absurd. Alternatively, from Lemma 3.58 we see

that there is a 1 : 1 correspondence between maximal continuous sequences of edes
in T ′′ and the set of vertices corresponding to ET . Since in every sequence there is
at least one coupled vertex, the cannot be more that one, because that would break
the correspondence.

• consider x an internal vertex of T . We know that there is a vertex ṽ and a maximal
continuous sequence [v, v′] ⊂ ET ′′ such that ṽ ∈ [v, v′] and (ṽ, x) ∈ N . We know
by the previous point that there is also v̂ ∈ [v, v′] such that (ṽ, x′) ∈ N ′ for some
x′. But since x is not a leaf, x = x′. By construction either ṽ ≤ v̂ or ṽ > v̂ hold.
Suppose ṽ ≤ v̂, then [ṽ, v̂] is a continuous sequence.
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• We know that (vx, father(x)) ∈ N and (vx′ , father(x′)) ∈ N ′ for some vx, vx′ > v.
Suppose vx < vx′ and there is a vertex v′ ∈ VT ′′ with vx < v′ < vx′ and order
different from 2. Then (v′, ”D”) ∈ N ′. In fact v′ cannot be ghosted and it cannot
be coupled by N ′ for it would be paired with a vertex in between x′ and father(x′),
which is absurd.

Thus there are v1, v2, v3 ∈ VT ′′ which give the following maximal continuous se-
quences of edges: [v1, v2] which contains v, [v2, v

′] which contains vx and [v′, v3] which
contains vx′ . Thus, for the previous points of this lemma, there is (vN ′ , x′′) ∈ N ′

with vN ′ ∈ [v2, v
′]. But since v < vN ′ < vx′ we have x′ < x′′ < father(x′) which is

absurd. Then vx and vx′ are part of the same continuous maximal sequence in T ′′,
and thus, by the previous points of this lemma, father(x) = father(x′).

■

Proof of Theorem 3.60.

We divide this proof in three steps: first we define M ′′, then we check that it is a mapping
and lastly we verify that it is still a minimal mapping. Let T ′′ be the tree obtained from T ′

applying the deletions in MD
⋂
M ′

D. Induce mappings N and N ′ from T ′′ to T removing
respectively from M and M ′ the deletions already done.

• Clearly M ′′
D =MD

⋂
M ′

D. Then we have no choice but ghosting all order 2 vertices
of T ′′. We need to define the shrinking operations to obtain T . Each of the vertices
in T ′′ with order different from 2 are coupled by at least one between N and N ′. In
fact they cannot be ghosted because to do so we would have to completely delete
some sequence of edges contradicting Lemma 3.58. Consider v ∈ VT ′′ . Suppose
(v, x) ∈ N . If v /∈ πT ′(C(N ′)) then we add (v, x) to M ′′. If (v, x′) ∈ N ′, x or x′ are
not leaves, then x = x′ (and so both of them are internal vertices). Thus we can
add again (v, x) to M ′′.

Note that, up to here,M ′′ is uniquely determined in order to avoid further deletions,
thanks to Lemma 3.59. In fact deletions in T ′ are fixed by hypothesis, ghostings
are fixed as well since all order 2 vertices must be removed in order to be able to
couple vertices with T without further deletions. Then also shrinkings are fixed by
Lemma 3.59.

The only situation we are left with is (v, x) ∈ N and (v, x′) ∈ N ′, with x ̸= x′ leaves.
By Lemma 3.59 we know that x and x′ are siblings, i.e. father(x) = father(x′) =
x′′. Note that also v must be a leaf in T ′′, otherwise there would be v′ < v coupled
with some vertex below x, which is absurd. Consider v′′ = {ṽ > v

∣∣ord(ṽ) ̸= 2}. We
know (v′′, x′′) ∈ M ′′. Then (v′′, x′′) ∈ N or/and (v′′, x′′) ∈ N ′. By Lemma 3.59 we
know that there is a correspondence between the maximal continuous sequences of
subT ′′(v′′) of the form [vi, v

′′], such that vi is a leaf, and the leaves xi of subT (x
′′).

Suppose (v′′, x′′) ∈ N . The for each i there is (v′i, xi) ∈ N , for v′i ∈ [vi, v
′′]. We add

to M ′′ the couples (vi, xi) for every i. In this way we define M ′′ for every vertex in
T ′ and T .

• We verify that M ′′ is a mapping.

(M1) M ′′ contains all the deletions needed to obtain T ′′. By Lemma 3.59 every map-
ping M and M ′ induces a 1 : 1 correspondence between maximal continuous
sequences of T ′′ and vertices of T . Note that by Lemma 3.59, on internal ver-
tices, M and M ′ induce the same correspondence. To build M ′′ we used those
correspondences to pick one point in every maximal sequence and ghost the
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other. On leaves we used either M or M ′ to complete M ′′. This guarantees
that we reach all vertices of T ′ and T ′′ with an edit.

(M2) For vertices which are deleted or ghosted we are sure that there is only one edit
associated to them. But this is true also for vertices in C(M ′′) thanks again
to the 1 : 1 correspondence between maximal continuous sequences of T ′′ and
vertices of T .

(M3) We can say that [v, v′] < [v′′, v′′′] if v′ < v′′. Note that this holds for any couple
of vertices in the sequences, since the sequences are completely ordered. With
this notation we see that the correspondences {maximal continuous sequences of T ′′} ↔
VT − {rT } induced by N and N ′ are ordered correspondences because N and
N ′ are mappings. Thus, given (v, x), (v′, x′) ∈M ′′, we have v < v′ if and only
if [v, ṽ] < [v′, v̂] if and only if x < x′.

(M4) this holds by construction since we ghost only vertices which are of order 2 in
T ′′.

• Now we prove that cost(M ′′) ≤ cost(M), cost(M ′). Clearly the cost of the deletions
does not increase: M ′′

D = MD
⋂
M ′

D and thus cost(M ′′
D) < cost(MD), cost(M

′
D).

We need to check the elements in C(M ′′). Let (v, x) ∈ C(M ′′). The couple (v, x)
couples a sequence [v, v′] with the edge (x, father(x)). Note that the mappings M
andM ′ still turn the sequence [v, v′] in the edge (x, father(x)) but without coupling
them, because they apply some deletions on [v, v′]. It is enough to prove that the
cost with which M ′′ turns [v, v′] in (x, father(x)) is not greater than the one of M
and M ′.

Write down the sequence [v, v′] as an ordered sequence of vertices [v, v′] = {a1 =
v, . . . , ar} with father(ar) = v′. We have:

|
r∑

i=1

wT ′(ai)− wT ′(x)| < |
∑
i∈A

wT ′(ai)− wT ′(x)|+
∑
i∈B

wT ′(ai)

for anyA,B partition of {1, . . . , r}. And thus the cost of turning [v, v′] into (x, father(x))
using M ′′ not greater than the one of M and M ′.

■

Proof of Corollary 3.62.

Suppose we have (l, w), (l′, w′) ∈M and (l, w′), (l′, w) ∈M ′. Then we would have:

dE(T, T
′) ≥ |Al −Bw | + |Al′ −Bw′ | = |Al −Bw′ | + |Al′ −Bw |

with Al and Al′ being the weights of l and l′ and Bw, Bw′ being the weights of w and w′

after the deletions in M and M ′ (which are shared). Similarly:

2dE(T, T
′) < |Al −Al′ | ≤ |Al −Bw | + |Al′ −Bw |

and
2dE(T, T

′) < |Al −Bw′ | + |Al′ −Bw′ | .

Putting the things together we obtain:

4dE(T, T
′) < |Al −Bw′ | + |Al′ −Bw′ | + |Al −Bw | + |Al′ −Bw | ≤ 2dE(T, T

′).

Which is absurd. ■
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4. Functional Data Representation with Merge Trees

abstract

In this chapter we face the problem of representation of functional data with the tools of
algebraic topology. We represent functions by means of merge trees and this representation
is compared with that offered by persistence diagrams. We show that these two structures,
although not equivalent, are both invariant under homeomorphic re-parametrizations of
the functions they represent, thus allowing for a statistical analysis which is indifferent
to functional misalignment. We employ a novel metric for merge trees and we prove
some theoretical results related to its specific implementation when merge trees represent
functions. To showcase the good properties of our topological approach to functional data
analysis, we test it on the Aneurisk65 dataset replicating, from our different perspective,
the supervised classification analysis which contributed to make this dataset a benchmark
for methods dealing with misaligned functional data.

4.1 Introduction

Since the publication of the seminal books by Ramsay and Silverman (Ramsay and Sil-
verman, 2005) and Ferraty and Vieu (Ferraty and Vieu, 2006), Functional Data Analysis
(FDA) has become a staple of researchers dealing with data where each statistical unit is
represented by the measurements of a real random variable observed on a grid of points
belonging to a continuous, often one dimensional, domain D. In FDA these individual
data are better represented as the sampled values of a function defined on D and with
values in R. Hence, at the onset of any particular functional data analysis stands the three-
faceted problem of representation, described by: (1) the smoothing of the raw and discrete
individual data to obtain a functional descriptor of each unit in the data set, (2) the identi-
fication of a suitable embedding space for the sample of functional data thus obtained and,
finally, (3) the eventual alignment of these functional data consistently with the structure
of the embedding space. As a reference benchmark of the typical FDA pipeline applied
to a real world dataset, we take the paper by Sangalli et al. (2009b) where the first func-
tional data analysis of the AneuRisk65 dataset (https://statistics.mox.polimi.it/aneurisk)
is illustrated.

Smoothing is the first step of a functional data analysis. For each statistical unit, in-
dividual raw data come in the form of a discrete set of observations regarded as partial
observations of a function. Smoothing is the process by means of which the analyst gen-
erates the individual functional object out of the raw data. This functional object will be
the atom of the subsequent analysis, a point of a functional space whose structure is apt to
sustain the statistical analysis required by the problem at hand. A common approach to
obtain functional representations is to fit the data with a member of a finite dimensional
functional space generated by some basis, for instance, splines or trigonometric polyno-
mials. Signal-to-noise ratio and the degree of differentiability required for the functional
representation, as well as the structure of the embedding space, drive the smoothing pro-
cess. Functional representations interpolating the raw data are of no practical use when
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the analysis requires to consider functions and their derivatives or, for instance, the natural
embedding space is Sobolev’s; see, for instance, Sangalli et al. (2009a) for a detailed analy-
sis of the trade-off between goodness of fit and smoothness of the functional representation
when dealing with the Aneurisk65 dataset.

Functional data express different types of variability (Vantini, 2009) which the analyst
might want to decouple before carrying out the statistical analysis. Indeed the Aneurisk65
dataset is by now considered a benchmark for methods aimed at the identification of phase
and amplitude variation (see the Special Section on Time Warpings and Phase Variation
on the Electronic Journal of Statistics, Vol 8 (2), and references therein). In many ap-
plications phase variation captures ancillary non-informative variability which could alter
the results of the analysis if not properly taken into account (Lavine and Workman, 2008;
Marron et al., 2014). A common approach to this issue is to embed the functional data
in an appropriate Hilbert space where equivalence classes are defined, based on a no-
tion of alignment or registration, and then to look for the most suitable representative
for any of these classes (Marron et al., 2015). Such approach evokes ideas from shape
analysis (Dryden and Mardia, 1998) and pattern theory (Ripley and Grenander, 1995),
where configurations of landmark points are identified up to rigid transformations and
global re-scalings. In close analogy with what has been done for curves (Michor et al.,
2007; Srivastava et al., 2010), functions defined on compact real intervals D are aligned by
means of warping functions mapping D into another interval; that is, they are identified
up to some re-parametrization. Different kinds of warping functions have been investi-
gated: affine warpings are studied for instance in Sangalli et al. (2010) while more general
diffeomorphic warpings have been introduced in Srivastava et al. (2011b). Once the best
representatives are selected, the analysis is carried out on them leveraging the well be-
haved Hilbert structure of the embedding space. Classically, the optimal representatives
are found by minimizing some loss criterion with carefully studied properties (Sangalli
et al., 2014). This approach however has some limitations, arising from the fact that the
metric structure of the embedding space might not be compatible with the equivalence
classes collecting aligned functions (Yu et al., 2013). An alternative is to employ metrics
directly defined on equivalence classes of functions such as the Fisher Rao metric, orig-
inally introduced for probability densities (Srivastava et al., 2007), which allows for the
introduction of diffeomorphic warpings (Srivastava et al., 2011b). It must be pointed out
that all these ways of dealing with the issue of ancillary phase variability encounter some
serious challenges when the domain D is not a compact real interval.

A different approach to the problem of phase variation is to capture the information
content provided by a functional datum by means of a statistic which is insensitive to the
function re-parametrization, but sufficient for the analysis. Algebraic topology can help
since it provides tools for identifying information which is invariant to deformations of a
given topological space (Hatcher, 2000). Topological Data Analysis (TDA) is a quite recent
field in data analysis and consists of different methods and algorithms whose foundations
rely on the theory developed by algebraic topology (Edelsbrunner and Harer, 2008). The
main source of information collected by TDA algorithms are homology groups (see, for
instance, Hatcher (2000)) with fields coefficients which, roughly speaking, count the num-
ber of holes (of different kinds) in a topological space. For instance zero dimensional holes
are given by path connected components and one dimensional holes are given by classes of
loops (up to continuous deformations) which cannot be shrunk to one point. One of the
most interesting and effective ideas in TDA is that of persistent homology (Edelsbrunner
et al., 2002): instead of fixing a topological space and extracting the homology groups from
that space, a sequence of topological spaces is obtained along various pipelines, and the
evolution of the homology groups is tracked along this sequence. The available pipelines
are many, but the one which is most interesting for the purposes of this work is that con-
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cerning real valued functions. Let the domain D be a topological space X and consider
a real valued function defined on X, f : X → R. One can associate to f the sequence of
topological spaces given by the sublevel sets Xt = f−1((−∞, t]), with t ranging in R. The
evolution of the connected components along {Xt}t∈R is thus analysed for the purpose of
generating a topological representation of f.

In this work, we consider specific topological representations of f constructed along
this general scheme and we show that they are invariant with respect to homeomorphic
warpings of the domain X. Moreover, these representations are also able to separate big
shape features of f from small oscillations; the overall shape of the function captured by
the topological representations we will deal with is unaffected by the presence of smaller
oscillations, which are captured as well, but separately. These two properties make the
TDA approach pursued in this manuscript a candidate for the representation of functional
data, indeed a robust competitor able to deal in a natural way with phase variation
and insensitive to the fine tuning of the preliminary smoothing phase, since functional
features likely generated by overfitted representations are easily identified as ancillary in
the subsequent topological representation.

To allow for the statistical analysis of functional data summarised by their topological
representations, we need to embed the latter in a metric space. The choice of persistence
diagrams (PD) (Cohen-Steiner et al., 2007) as summaries obtained through persistent
homology drives many successful applications (Xia et al., 2016; Bhattacharya et al., 2015;
Pokorny et al., 2015; Chung et al., 2009; Wang et al., 2018; Kramár et al., 2013), although
other topological summaries are in fact known in the literature (Bubenik, 2015; Adams
et al., 2017; Chazal et al., 2015). In this work we exploit a topological alternative – not
equivalent – to a persistence diagram, called merge tree. Merge trees representations of
functions are not new (Morozov and Weber, 2013) and are obtained as a particular case of
Reeb Graphs (Shinagawa et al., 1991a; Biasotti et al., 2008). Different frameworks have
been proposed to work with merge trees (Beketayev et al., 2014; Morozov et al., 2013),
mainly defining a suitable metric structure to compare them (Gasparovic et al., 2019; Touli,
2020). However all such metrics have a very high computational cost, causing a lack of
examples and applications even when approximation algorithms are available (Touli and
Wang, 2018), or they require complex workarounds to be effectively used (Sridharamurthy
et al., 2020). We employ the metric for merge trees introduced in Chapter 2, showing
that its computational complexity is reasonable when the trees involved are not too large.
When working with representations of data, it is fundamental to study the behaviour of the
operator which maps the single datum into the chosen representation to assess which kind
of information is transferred from the initial data to the space of representations. For this
reason we develop a new theoretical analysis on the stability/continuity of merge trees with
respect to perturbations of the original functions. We also carry out examples to showcase
differences between merge trees and persistence diagrams of functions. Having devoted the
initial sections of the chapter to the understanding of the behaviour of these topological
tools, we finally tackle, with our TDA approach, the benchmark functional classification
case study detailed in Sangalli et al. (2009b). We also complement the classification task
with other analyses to better understand the topological description of such data set.

Outline

The chapter is organized as follows. In Section 4.2, we introduce the merge tree represen-
tation of a function. In Section 4.3 we briefly recall the definition of persistence diagrams
in order to draw, in Section 4.4, some comparison between them and merge trees, before
proving the invariance property which holds true for both topological representations. In
Section 4.5 we present the metric structure for the space of merge trees which is used
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(a) (b)

Figure 4.1.1: Sublevel sets of a function (a); the same function with its associated merge
tree (b).

in the examples and in the final case study. In Section 4.6 we investigate the continuity
properties of the operator which assigns to a function its merge tree, with respect to the
aforementioned metric. Section 4.7 is completely devoted to hands-on examples dealing
with further comparisons between PDs and merge trees and pruning.

In Section 4.8, we tackle the functional data classification problem explored in Sangalli
et al. (2009b) and we compare their results and conclusions with those obtained following
the TDA approach. We complement such results with an unsupervised approach to the
same data set and with a brief attempt to interpret the resulting merge trees via some func-
tional statistics. We finally conclude the chapter with a discussion, in Section 4.9, which
points out some ideas pertaining our topological approach to functional data analysis.

Section 4.A collects the proofs of the results of the paper.

4.2 Merge Trees of Functions

In this section we define the merge tree representation of a function. Merge trees are an
already established tool in topology and, to some extent, also in statistics since clustering
dendrograms can be regarded as merge trees. Nevertheless, we are going to spend a few
lines to define them, in accordance with the framework of Chapter 2, which differs from
the classical one, found, for instance, in Morozov and Weber (2013). Roughly speaking,
the pipeline to obtain a merge tree is the following: we transform the given function into a
sequence of nested subsets and then we track the topological changes along this sequence.
Such information is then turned into a tree.

The details are described in the following subsections.

4.2.1 Sublevel Sets

Consider a function f : X → R, with X being any topological space. We call sublevel set
at height t ∈ R, the set Xt := f−1((−∞, t]) ⊂ X . The key property of the family {Xt}t∈R
is that such subsets are nested: if t ≤ t′ then Xt ⊂ Xt′ . Note that the sequence {Xt}t∈R
is fully determined by the shape of the function f ; see Figure 4.1.1a. In fact, for x ∈ X,
f(x) = inf{t ∈ R : x ∈ Xt}, hence no information carried by f is lost by its representation
{Xt}t∈R.

4.2.2 Path Connected Components

A topological space X is path connected if for every couple of points x, y ∈ X there is
a continuous curve α : [0, 1] → X such that α(0) = x and α(1) = y. The biggest path
connected subsets contained in a topological space are called path-connected components.
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We call π0(X) the set of the path connected components of X. If q : X → Y is a
continuous function, consider the function π0(q) : π0(X)→ π0(Y ) defined as follows:

U 7→ V such that q(U) ⊂ V.
π0 is a (covariant) functor (Mac Lane, 1998) and thus satisfies a number of properties.

Among them, we emphasize the following: for two continuous functions p, q that can be
composed into the function p ◦ q, it is true that π0(p ◦ q) = π0(p) ◦ π0(q).

Path connected components are the source of information we want to track along the
family {Xt}t∈R, which we will call the sublevel set filtration of f. For t ∈ R, let π0(Xt) =
{U t

i }i∈I be the set of the path-connected components of Xt.
Let it

′

t : Xt ↪→ Xt′ ; then we have:

π0(i
t′

t ) : π0(Xt)→ π0(Xt′)

such that
U t
i ⊂ π0(it

′

t )(U
t
i )

for all U t
i ∈ π0(Xt).

4.2.3 Tree Structures, Critical Values and Topological Changes

Coherently with Chapter 2, we now define what we mean with tree and with merge tree.

Definition 4.1. A tree structure T is given by a set of vertices VT and a set of edges
ET ⊂ VT × VT which form a connected rooted acyclic graph. We indicate the root of the
tree with rT . We say that T is finite if VT is finite. The order of a vertex v ∈ VT is the
number of edges which have that vertex as one of the extremes, and is called ordT (v). Any
vertex with an edge connecting it to the root is its child and the root is its father: this is the
first step of a recursion which defines the father and children relationship for all vertices
in VT . The vertices with no children are called leaves or taxa and are collected in the set
LT . The relation child < father generates a partial order on VT . The edges in ET are
identified in the form of ordered couples (a, b) with a < b. A subtree of a vertex v, called
subT (v), is the tree structure whose set of vertices is {x ∈ VT |x ≤ v}.

Definition 4.2. A finite tree structure T such that rT is of order 1, coupled with a mono-
tone increasing height function hT : VT → R ∪ {+∞} with hT (rT ) = +∞ and hT (v) ∈ R
if v < rT , is called merge tree.

Let us now see how we can represent a real valued function f : X → R by means of a
merge tree. To do that we need to make some key assumptions.

Let us now see how we can represent a real valued function f : X → R by means of
a merge tree. To do so, we need to make some key assumptions, known in the literature
to be apt to produce constructible objects (De Silva et al., 2016; Patel, 2018; Curry et al.,
2022).

Assumption 4.3. Given a family of topological spaces {Xt}t∈R with Xt ⊂ Xt′, t ≤ t′,
we assume the existence of a finite collection of real numbers {t1 < t2 < . . . < tn}, called
critical set, such that, given t < t′, if t, t′ ∈ (ti, ti+1) or t, t′ > tn, then π0(i

t′
t ) is bijective.

The values ti are called critical values. As in Pegoraro (2021c) we always consider a
minimal set of critical values, that is, the smallest possible set of critical values. With
this condition, for any critical value ti there is some constant C > 0 such that for all
ε ∈ (0, C), π0(i

ti+ε
ti−ε) is not bijective. On top of that, we assume that for every t ∈ R,

π0(Xt) is finite. A function f such that its sublevel set filtration {Xt}t∈R satisfies the
above set of hypotheses is called tame (Chazal et al., 2016). Lastly, we also assume that
X is path connected.
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Together with the tameness of f and the path-connectedness of X, we make an extra
and simplifying regularity assumption - not needed, for the general construction of a merge
tree - which implies a strong property of the critical values of the sublevel set filtration
{Xt}. This assumption can be weakened, at the cost of some non trivial topological details
(for more details see also Chapter 2). For the sake of clarity, we defer the discussion about
this issue to Section 4.2.4.

Let tj be a critical value of the sublevel set filtration {Xt}t∈R of f. Let ε > 0 be

such that tj − ε > tj−1 and tj + ε < tj+1. The properties of π0 imply that π0(i
tj+ε
tj−ε) =

π0(i
tj
tj−ε) ◦ π0(i

tj+ε
tj ). Due to the minimality condition stated in Assumption 4.3 we know

that π0(i
tj+ε
tj−ε) is not bijective.

Assumption 4.4. We assume that the sublevel set filtration {Xt}t∈R of f is regular: that
is, for every critical value tj of {Xt}t∈R, there is a C > 0 such that, for all ε ∈ (0, C), the

map π0(i
tj+ε
tj ) is bijective.

When π0(i
tj+ε
tj ) is bijective, we say that the topological changes happen at the critical

value tj , as opposed to across tj . Hence we are assuming that all the topological changes
of {Xt} happen at the critical values.

Remark 4.5 and Remark 4.6 shortly expand on Assumption 4.4; for more details see
Section 4.2.4.

Remark 4.5. From the topological point of view, what lies behind the requirement that
the topological changes happen at critical values is the following. Let Utj ∈ π0(Xtj ) and
Ut = π0(i

t
tj )(Utj ) for t ∈ (tj , tj+1). By construction Utj ⊂ U =

⋂
t∈(tj ,tj+1)

Ut and f(p) = tj
for all p ∈ U . Which means U ⊂ Xtj . If U is path connected then Utj = U and we can’t
have another path connected component U ′

tj ∈ π0(Xtj ) such that U ′
tj ⊂ U .

All of this implies that, for t ∈ (tj , tj+1), π0(i
t
tj )

−1(Ut) = {Utj} - i.e. π0(ittj ) is injective
at Utj and Ut ∈ π0(ittj )(π0(Xtj )). So, if for every path connected component Utj ∈ π0(Xtj )

the set U =
⋂

t∈(tj ,tj+1)
π0(i

t
tj )(Utj ) is non empty and path connected, then π0(i

t
tj ) is bijec-

tive. However, in general, U need not be non empty and path connected!

Remark 4.6. Two notable cases where the topological changes happen at critical values
are that of a continuous function f defined on a connected compact subset of R and that
of a function f defined on a finite graph.

Indeed, let f : X → R be continuous and X ⊂ R be a compact interval. Then, for all
t ∈ R, Xt is closed, since f is continuous, and its path connected components are compact
intervals of the form [a, b]. Each path connected component Utj is thus a convex set and
any intersection of the form U =

⋂
t∈(tj ,tj+1)

π0(i
t
tj )(Utj ) is non-empty and convex; that

is, U is non empty and path connected. Thus, for continuous functions f : X → R, with
X ⊂ R being a compact interval, the topological changes always happen at critical values.

Consider now the discrete setting of a finite graph X = (V,E), with vertices V and edges
E, such that the sublevel set filtration is well defined (i.e. for any edge eij = (xi, xj) ∈ E
connecting two vertices xi and xj, we have f(e) ≥ max{f(xi), f(xj)}). Let t1 < t2 < . . . <
tn be the image of f . Then, Xt = Xtj for all t ∈ [tj , tj+1). This implies that all topological
changes happen at critical values.

In light of Remark 4.6, we point out that all the functions considered in the present
work, those illustrated in the examples or those pertaining to the case study described
in Section 4.8, do satisfy our Assumption 4.4, and the same is true for all numerical
implementations.

The heuristic idea behind the construction of the merge tree representation of f is
that, since along the sequence {Xt}t∈R the path-connected components of Xt can only
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arise, merge with others (at critical values), or stay the same, it is natural to represent
this merging structure with a tree structure T. However, this tree T would not encode
the critical values t1 < ... < tn of {Xt}t∈R; hence we enrich it by defining a monotone
increasing height function hT : VT → R ∪ {+∞} encoding them.

The tree structure T and the height function hT are built along the following rules in a
recursive fashion starting from an empty set of vertices VT and an empty set of edges ET .
We simultaneously add points and edges to T and define hT on the newly added vertices.
From now on, we indicate with #C the cardinality of a finite set C.

Considering in increasing order the critical values:

• for the critical value t1 add to VT a leaf vUt1
, with height t1, for every element

Ut1 ∈ π0(Xt1);

• for ti with i > 1, for every Uti ∈ π0(Xti) such that Uti /∈ Im(π0(i
ti
ti−1

)), add to VT a
leaf vUti

with height ti;

• for ti with i > 1, if Uti = π0(i
ti
ti−1

)(Uti−1
) = π0(i

ti
ti−1

)(U ′
ti−1

), with Uti−1
and U ′

ti−1

distinct path connected components in π0(Xti−1
), add a vertex vUti

with height ti,
and add edges so that the previously added vertices

v = argmax{hT (v′U ) | v′U ∈ VT s.t. U ⊂ Ui−1}

and
w = argmax{hT (w′

U ) |w′
U ∈ VT s.t. U ⊂ U ′

i−1}
connect with the newly added vertex vUti

.

The last merging happens at height tn and, since X is path connected, at height tn
there is only one point vU . Thus we can add a vertex rT and an edge (vU , rT ) with
hT (rT ) = +∞ to obtain a merge tree.

The reader can look at Figure 4.1.1b for a first example of a merge tree associated to a
function. The height function is given by the dotted red lines. We can appreciate that the
merge tree of f is heavily dependent on the shape of f , in particular on the displacement
of its maxima and minima.

4.2.4 Topological Remark

In Section 4.2.3 we make some selective assumptions on X and f , to make sure that along
the filtration {Xt} topological changes only happen at critical values, that is: for a critical

value tj , for all ε > 0 small enough, π0(i
tj+ε
tj ) is bijective. In Remark 4.5 we point out that

this fact boils down to the topology of the sets:⋂
t∈(tj ,tj+1)

π0(i
t
tj )(Utj )

for every critical point tj and for every Utj ∈ π0(Xtj ). Topological changes happening at
the critical values are equivalent to

⋂
t∈(tj ,tj+1)

π0(i
t
tj )(Utj ) always being non empty and

path connected. This in general does not hold as we can see in the upcoming examples.

Example I Consider the following sequences of topological spaces {At}t∈[0,∞) and {Bt}t∈[0,∞).
For t > 0, let At = (−t, t)

⋃
(1 − t, 1 + t) and Bt = [−t, t]

⋃
[1 − t, 1 + t]. Moreover, let

A0 = B0 = {0, 1}. {At} and {Bt} share the same set of critical values, namely {0, 1/2}
and they only differ by the number of path connected components at the critical value
1/2: #A1/2 = 2, while #B1/2 = 1. In {At} changes happen across the critical values -
π0(A1/3) ∼= π0(A1/2) and π0(A1/2) ≇ π0(A1), while in {Bt} changes happen at the critical
values - π0(B1/3) ≇ π0(B1/2) and B1/2

∼= B1.
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Example II Consider the following sequence of topological spaces {At}t∈[0,∞). For t > 0,
let At = {(−∞,+∞)× [−1/t, 1/t]} − {(0, 0)} and A0 = {(−∞, 0)∪ (0,+∞)} × {0}. Then⋂

t>0At = A0 : however A0 has two path connected components while, for t > 0, the set
At is path connected.

Example III Let γ : (0, 1]→ R2 defined by γ(t) = (t, sin(1/t)). Let T be the closure in
the plane of the set S = {(t, γ(t)) ∈ R2 : t ∈ (0, 1]}, which is given by T = S∪{0}× [−1, 1].
The set S is usually referred to as the topologist’s sine curve and the set T as the closed
topologist’s sine curve. Let Sn be:

Sn = {(t, s) | t ∈ [1/n, 1] and s ∈ [sin(1/t)− 1/n, sin(1/t) + 1/n]}

That is, Sn is an 1/n-thickening along the y-axis (second component of R2), of the graph of
γ restricted on the interval [1/n, 1]. Thus, if we add to Sn the rectangle Rn = [−1/n, 1/n]×
[−1− 1/n, 1 + 1/n] we obtain a set Tn = Sn

⋃
Rn such that:

• T =
⋂

n∈N Tn

• Tn is compact and path connected. It is in fact homeomorphic to Rn
⋃
[1/n, 1] ×

[−1/n, 1/n] and thus homeomorphic to a closed disk in the plane.

As n→∞ we obtain a family of compact ”disks” whose intersection is T which is not
path connected.

Example IV Lastly At = [1/t,+∞) = f−1((−∞, t]) with f : R>0 → R being f(x) =
1/x. Clearly At is closed and path connected, but

⋂
t≥0At is empty.

In all the examples above we see different situations in which at some critical point t we
have a very “unstable” topological scenario, which changes at t+ ε for any small ε > 0:

• in Example I the balls centered in 0 and 1 contained in At touch right after t = 1/2;
in fact their closures (giving B1/2) at t = 1/2 would intersect;

• in Example II the horizontal stripe given by At suddenly disconnects at t = 0 because
it is no more thick enough to get around the hole in (0, 0);

• we find a very similar situation also in Example III, where every thickening of T
would allow us to bridge between its two path connected components;

• lastly, in Example IV, we have a path connected component being born with a
minimum “lying” at +∞, thus producing an empty level set at t = 0.

The general point of view which we assume, which is formalized in Pegoraro (2021c),
is that we deem to be negligible the topological differences between {At} and {Bt} in
Example I, as those two filtrations have the same path connected components but for one
point, t = 1/2, which we may look at as a measure zero subset of the parameter space
indexing the filtration (i.e. R). Thus, for all these examples, and, in fact, for all the tame
filtrations of path connected topological spaces, we propose to build the associated merge
tree as if all topological changes happen at critical points: if we have a critical point tj such

that π0(i
tj+ε
tj ) is not bijective, instead of looking at the merging information contained in

π0(i
tj
tj−1

) - as we do in Section 4.2.3 - one should look at π0(i
tj+ε
tj−1

), but still recording the
topological changes with a vertex at height tj . In this way, for instance, the merge trees
associated to {At} and {Bt} in Example I would be the same, in Example II we would
have a single leaf at height 0 - despite A0 having two path connected components, the
same for Example III (upon replacing n with 1/ε), and, lastly, Example IV would feature
a leaf at height 0 despite A0 being empty.
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4.2.5 Isomorphism classes

Before continuing we must decide on the topological information which we regard as equiv-
alent. In other words, which merge trees we want to distinguish and which we do not. This
step is essential and decisive to tackle the phase variation problem presented in the intro-
duction: to select information that is insensitive to some kind of transformation amounts
to defining classes of functions which are represented by the same tree. As in Chapter 2
and Chapter 3, we opt for a very general solution: we remove from the vertices of the tree
any information regarding the connected components they are associated to, for instance,
size, shape, position, the actual points contained etc..

Definition 4.7. Two tree structures T and T ′ are isomorphic if there exists a bijection
η : VT → VT ′ inducing a bijection between the edges sets ET and ET ′: (a, b) 7→ (η(a), η(b)).
Such η is an isomorphism of tree structures.

Definition 4.8. Two merge trees (T, hT ) and (T ′, hT ′) are isomorphic if T and T ′ are
isomorphic as tree structures and the isomorphism η : VT → VT ′ is such that hT = hT ′ ◦ η.
Such η is an isomorphism of merge trees.

The rationale behind Definition 4.7, and the equivalence classes of isomorphic merge
trees it generates, is analogous to that moving the introduction of persistence diagrams,
where no specific information about individual path connected components is retained (see
Section 4.3 for more details). Moreover, Definition 4.7 does not require any additional
structure for the space X. Other choices are possible; for instance, if X = R the path
connected components of f could be given a natural ordering.

4.2.6 Height and Weight Functions

A final step is needed to complete the specific representation of merge trees needed for
making use of the metric defined in Chapter 3. The height function hT of a generic merge
tree T takes values in R, but this is not an editable space, according to the definition in
Chapter 2, which we report here.

Definition 4.9. Let X be a set endowed with a metric d and an associative operation ∗
with zero element 0 ∈ X. Then (X, d, ∗, 0) is said to be an editable space if the following
two properties are both satisfied:

(P1) the map d(·, 0) : X → R is a map of monoids between (X, ∗) and (R,+), that is: for
all x, y ∈ X

d(x ∗ y, 0) = d(0, x) + d(0, y);

(P2) d is ∗ invariant, that is: for all x, y, z ∈ X,

d(x, y) = d(z ∗ x, z ∗ y) = d(x ∗ z, y ∗ z).

Note that, whereas R is not editable because | (x+ (−x))− 0 | ≠ |x− 0 | + | 0− x | ,
R≥0 is editable.

We thus complement the merge tree T with a transformation of the height function
hT : a weight function wT defined on VT − {rT } whose image is a subset of the editable
space R≥0. To do so, as in Chapter 3, we employ a truncation strategy which takes care of
the edge (v, rT ) which goes at infinity. Such strategy relies on the following assumption.

Assumption 4.10. We assume the existence of a universal constant K ∈ R bounding
above all the functions for which we will adopt a merge tree representation.
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(a) Two merge trees T and T ′.

(b) A graphical representation of the weight
functions obtained by truncating the merge trees
at height K.

Figure 4.2.1: A graphical representation of the truncation process described in Sec-
tion 4.2.6.

In Pegoraro (2021d) it is shown that all the upcoming steps in the construction of the
specific merge trees considered in this paper, do not depend on K, in the sense that with
any K ′ > K we would obtain the same results. We spend some more words on this issue
in the following Remark 4.15.

Given a merge tree (T, hT ), as a first step we define the function h′T : VT → R as
h′T (v) = hT (v) for all v < rT and h′T (rT ) = K. Then for every vertex v ∈ VT − {rT }, we
consider the unique edge between v and its father w and we define wT (v) = h′T (w)−h′T (v);
the weight function wT also codes the weight of the edge (v, w), via the rule wT ((v, w)) =
wT (v), which identifies the set of edges ET with vertices in VT −{rT }. Note that, because
of Assumption 4.10, there is a one-to-one correspondence between hT and wT . Finally, the
monotonicity of hT and Assumption 4.10 guarantee that wT (v) ∈ R≥0, for all v ∈ VT−{rT }.
A visual representation of this procedure can be found in Figure 4.2.1.

The height function introduced in Definition 4.2 turns out to be quite natural for the
definition of a merge tree, but from now on along with the height function hT we also
employ the induced weight functions wT .

4.3 Persistence Diagrams

Persistence diagrams are arguably among the most well known tools of TDA; for a de-
tailed survey see, for instance, (Edelsbrunner and Harer, 2008). We here briefly introduce
persistence diagrams since in the following sections we use them to draw comparisons with
merge trees.

Loosely speaking a persistence diagram is a collection of points (cx, cy) in the first
quadrant of R2, with cy > cx and such that: cx is the t corresponding to the first appearance
of an homology class in Xt (birth), while cy is the t where the same class merges with a
different class appeared before cx (death). Homology classes are a generalization of path-
connected components to “holes in higher dimension”; path-connected components can be
seen as zero dimensional holes. For more details see Hatcher (2000).

In this work we focus on persistence diagrams associated to path-connected compo-
nents, since we want to compare them with the merge trees introduced in the previous
section. Given a function f : X → R, we associate to f the zero dimensional persistence
diagram (PD(f)) of the sequence of sublevel sets {Xt}t∈R. We highlight that, in such rep-
resentation, there is no information about which path-connected component merges with
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Figure 4.3.1: A function (left) with its associated persistence diagram (centre) and merge
tree (right). On the PD axes we see the birth and death coordinates of its points. The
plot of the merge tree features the length of its branches (given by the weight function -
Section 4.2.6) on the horizontal axis, and the leaves (taxa) are displaced on the vertical
axis. The vertical axis scale is only for visualization purposes. The merge tree is truncated
at height 7 - see Section 4.2.6.

which; in fact a component represented by the point (cx, cy), at height cy could merge with
any of the earlier born and still alive components. Of course this collection of points still
depends on the shape of the function and in particular depends on its amplitude and the
number of its oscillations. See Figure 4.3.1. Note that, while for merge trees one needs to
be careful and consider appropriate isomorphism classes so that the representation does
not depend, for instance, on the names chosen for the vertices (that is, the set VT ), this
issue does not appear with persistence diagrams. Topological features are represented as
points in the plane, without labels or other kinds of set-dependent information. Thus, two
persistence diagrams are isomorphic if and only if they are made of the same set of points.

4.4 Properties

In this section we state the main invariance result anticipated in the introduction and we
also point out a few differences between persistence diagrams and merge trees.

Proposition 4.11 (Invariance). The (isomorphism class of the) merge tree and the per-
sistence diagram representations of the function f : X → R, are both invariant under
homeomorphic re-parametrization of f .

Remark 4.12. As an immediate consequence of Proposition 4.11 we obtain that, if the
functions f and g can be aligned by means of an homeomorphism, that is if f = g ◦η being
η an homeomorphism, then their associated merge trees Tf and Tg are isomorphic and the
same holds for PD(f) and PD(g).

In other words, we can warp, deform, move the domain X of a function f by means of
any homeomorphism, and this will have no effect on its associated PD or merge tree. As
a consequence, if each element of a sample of functions is represented by its merge tree,
or by its persistence diagram, one can carry out the statistical analysis without worrying
about possible misalignements, that is without first singling out, for each function of the
sample, the specific warping function, identified by an homeomorphism, which decouples
its phase and amplitude variabilities.

Despite sharing this important invariance property, a persistence diagram and a merge
tree are not equivalent representations of a function. Indeed, persistence diagrams do not
record information about the merging components: as already mentioned, the death of a
path connected component could be caused by its merging with any other alive component
at the death-time. This implies that, for a given persistence diagram PD, there might be
more than one merge tree associated to the diagram: the birth and death of the path
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connected components of each merge tree coincide with those of the PD, but the merging
structure is different from merge tree to merge tree (Kanari et al., 2020; Curry et al., 2021;
Pegoraro, 2021c; Curry et al., 2022; Elkin and Kurlin, 2020; Smith and Kurlin, 2022). In
particular, the works of Kanari et al. (2020); Curry et al. (2021) formally address this
point, by providing explicit formulas for the tree realization number : the number of trees
associated to the same persistence diagram. This number can be very high, being n!,
if n is the number of points in the diagram, for certain configurations of the persistent
diagram. This is the case, for instance, with hierarchical clustering dendrograms with n
leaves: all leaves are born ath height 0, and so, at the first merging point, each of the n
leaves can merge with any of the n − 1 remaining ones. At the following merging step
we have n − 1 clusters and each one of them can merge with the other n − 2 and so on.
Thus, depending on the structure of the persistence diagram representing a function f , the
associated merge tree could contain much more information regarding f ; from a different
perspective, merge trees can discriminate between functions which are indistinguishable for
persistent diagrams. To see some easy examples of how merge trees capture also the local
merging structure of the components which persistent diagrams cannot distinguish, see
Figure 4.4.1 and Section 4.7. Moreover, with the next proposition we formally state that
the information contained in the persistence diagram of a function f can be completely
retrieved from the merge tree representing f . The previous part of this paragraph clearly
indicates that the converse need not be true, as also shown in Figure 4.4.1.

Proposition 4.13. For all f : X → R, the associated PD(f) in dimension 0 can be
obtained by the associated merge tree Tf .

Thus, if two functions induce isomorphic merge trees, they also have the same persis-
tence diagrams. Further details and insights on the differences between PDs and merge
trees can be found in Section 4.7 of the supplementary material.

4.5 Metrics

We want to analyze sets of functions using merge trees and PDs, exploiting metrics which
have already been defined respectively in Chapter 3 and in Cohen-Steiner et al. (2010).
Here we quickly present such metrics, with a special focus on the metric for merge trees,
since we use it to develop novel stability results in the next sections.

4.5.1 Metrics for Persistence Diagrams

The space of persistence diagrams can be given a metric structure by means of a family
of metrics which derives from Wasserstein distances for bivariate distributions.

Given two diagrams D1 and D2, the expression of such metrics is the following:

Wp(D1, D2) =

(
inf
γ

∑
x∈D1

||x− γ(x)||p∞

)1/p

where p ≥ 1 and γ ranges over the functions partially matching points between diagrams
D1 and D2, and matching the remaining points of both diagrams with the line y = x on
the plane (for details see Cohen-Steiner et al. (2007)). In other words we measure the
distances between the points of the two diagrams, pairing each point of a diagram either
with a point on the other diagram, or with a point on y = x. Each point can be matched
once and only once. The minimal cost of such matching provides the distance.
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(a) A function f0. (b) The 0-dimensional persis-
tence diagram of f0.

(c) The merge tree of f0.

(d) A function f1. (e) The 0-dimensional persis-
tence diagram of f1.

(f) The merge tree of f1.

(g) A function f2. (h) The 0-dimensional persis-
tence diagram of f2.

(i) The merge tree of f2.

(j) A function f3. (k) The 0-dimensional persis-
tence diagram of f3.

(l) The merge tree of f3.

Figure 4.4.1: We compare four functions; they are all associated to the same PD but to
different merge trees. Functions are displayed in the first column and on each row we have
on the centre the associated PD and on the right the merge tree. All merge trees are
truncated at height 7 - see Section 4.2.6.
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4.5.2 Metric for Merge Trees

The metric for tree-like objects defined in Chapter 2 and then adapted to merge trees
in Chapter 3 is based on edit distances (Bille, 2005; Hong et al., 2017): they allow for
modifications of a starting object, each with its own cost, to obtain a second object.
Merge trees equipped with their weight function wT , as defined in Section 4.2.6, fit into
this framework; hence the space of merge trees can be endowed with a metric based on an
edit distance and called dE in the following.

The distance dE is very different from previously defined edit distances, since it is
specifically designed for comparing topological summaries, roughly meaning that all points
which are topologically irrelevant can be eliminated by a merge tree without paying any
cost. To make things more formal we here introduce the edits, as defined in Chapter 3.

The edits are the followings and can be used to modify any edge (v, v′) of a merge tree,
or equivalently its lower vertex v:

• shrinking an edge means changing the weight value of the edge with a new positive
value. The inverse of this transformation is the shrinking which restores the original
edge weight.

• Deleting an edge (v1, v2) results into a new tree, with the same vertices apart from
v1 (the lower one), and with the father of the deleted vertex which gains all of its
children. With a slight abuse of language, we might also refer to this edit as the
deletion of the vertex v1, which indeed means deleting the edge between v1 and its
father.

The inverse of deletion is the insertion of an edge along with its child vertex. We
can insert an edge at a vertex v specifying the child of v and its children (that can
be either none or any portion of the children of v) and the weight of the edge.

• Lastly, we can eliminate an order two vertex v, that is a father with an only child,
connecting the two adjacent edges which arrive and depart from v. The weight of
the resulting edge is the sum of the weights of the joined edges. This transformation
is the ghosting of the vertex v. Its inverse transformation is called the splitting of
an edge.

Remark 4.14. Edit operations are not globally defined as operators mapping merge trees
into merge trees. They are defined on the individual tree. Similarly, their inverse is not
the inverse in the sense of operators, but it indicates that any time we travel from a tree T
to a tree T ′ by making a sequence of edits, we can also travel the inverse path going from
T ′ to T and restore the original tree.

The costs of the edit operations are defined as follows:

• the cost of shrinking an edge is equal to the absolute value of the difference of the
two weights;

• for any deletion/insertion, the cost is equal to the weight of the edge deleted/in-
serted;

• the cost of ghosting is zero.

Given a tree T we can edit it, thus obtaining another tree, on which we can apply a
new edit to obtain a third tree and so on. Any finite composition of edits is called an edit
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(a) Deletion (b) Deletion Result (c) Ghosting

(d) Ghosting Result (e) Shrinking

Figure 4.5.1: (a)→(e) form an edit path made by one deletion, one ghosting and a final
shrinking.

path. The cost of an edit path is the sum of the costs of its edit operations. Putting all
the pieces together, we can define the edit distance dE as:

dE(T, T
′) = inf

γ∈Γ(T,T ′)
cost(γ)

where Γ(T, T ′) indicates the set of edit paths which start in T and end in T ′.

Remark 4.15. The results in Chapter 3 show that the metric dE(T, T
′) does not depend

on the value of K used in the truncation process and introduced with Assumption 4.10.
To be sure, if, after having fixed K to analyze a set of merge trees T , we add to the set
a new merge tree corresponding to a function f which is not bounded above by K, we
proceed by fixing a novel K ′ bounding f and all the other functions represented in the set
T , and compute dE(Tf , Tg), for all g ∈ T , after truncating all merge trees in T

⋃
{Tf} at

height K ′. This won’t affect the distances between merge trees in T computed before the
addition of Tf , when the truncation constant was K, since the metric dE is the same for
such merge trees. Thus Assumption 4.10 is in some sense unnecessary, since we do not
need to fix K uniformly on our data set but only in a pairwise fashion. However for our
applications such assumption is never violated, so we can assume it and avoid some formal
complications arising from having to fix K for every couple of functions.

4.5.2.1 Order Two Vertices

The null cost of ghosting guarantees that order 2 vertices are completely irrelevant when
computing the cost of an edit path.

Definition 4.16. If there is an edit path from the tree T to the tree T ′ consisting only of
ghosting or splitting edits, we say that the two trees are equal up to order 2 vertices. By
definition, the length of the edit path starting in T and ending in T ′ is equal to 0.

In Chapter 2 it is proved that dE is a metric on the space of merge trees, identified up to
order 2 vertices. As explained in Chapter 2, the fact that order 2 vertices are irrelevant is
precisely what makes the metric dE suitable for comparing merge trees and is fundamental
to obtain the results in Section 4.6.

4.6 Pruning & Stability

As stated in the introduction of the paper, any time we use a data representation – or we
further transform a representation – it is important to understand and explore the prop-
erties of the operators involved. In particular, in this section we establish some continuity
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properties for the operator f 7→ Tf , which maps a function to its merge tree. Conditional
on the topology endowing the functional space where the function f is embedded, these
properties dictate how the variability between functions is captured by the variability
between their merge tree representations.

Proposition 4.11 implies that the merge tree representation of a function f is unaffected
by a large class of warpings of its domain, which would strongly perturb f if it was
embedded, for instance, in an Lp space, with p ̸= ∞. As an example, if f : R → R is
bounded with compact support, shrinking f by setting fn(x) = f(x · λn) with λn → +∞,
produces no effect on the merge tree representation of f since Tfn = Tf , while the p-norm
of fn goes to zero.

It might therefore be more natural to study the behavior of f 7→ Tf endowing the
space of functions f : X → R with the topology of uniform convergence, which captures
pointwise closeness between functions. This topology, available for any domain X, has
also the advantage of showing the effect of pointwise noise on merge tree representations.

4.6.1 Pruning

We know that, given f , the merge tree Tf will mostly depend on the critical points of f :
as the number of spikes of f grows, also the size of the tree grows, while the weights of
its branches grow with the height of the spikes. Similarly, if two functions f, g : X → R
are pointwise ε close, we can say that the shape of the functions is the same up to spikes
of height 2 · ε. Each such spike would cause the birth of a leaf whose branch is shorter
than 2 · ε; the trees must therefore be the similar up to branches of weight 2 · ε. These
considerations move the idea of pruning, which consists of removing unessential edges from
a tree.

Given a merge tree without order 2 vertices, we want to delete the small weight leaves,
that is those whose weight is smaller than or equal to a given fixed threshold. However,
if two or more small weight leaves are siblings, we only need to remove that of smallest
weight, or one of the leaves chosen at random if they have the same weight, and then ghost
its father if it becomes an order 2 vertex. To describe this procedure more formally and
to make sure that, in the end, no small weight leaves are left in the tree, we need establish
some (possibly partial) ordering of the leaves and to resort to recursion, as follows. Given
ε > 0 and a merge tree T , define the following 1-step process:

(Pε) Take a leaf l such that wT (l) is minimal among all leaves; if two or more leaves have
minimal weight, choose l at random among them. If wT (l) < ε, delete l and ghost
its father if it becomes an order 2 vertex after removing l.

For a given function f, we set T0 = Tf , the merge tree representing f, and we apply
operation (Pε) to obtain T1. On the result we apply again (Pε) obtaining T2 and, for
n > 2, we proceed iteratively until we reach the fixed point Pε(Tf ) of the sequence {Tn}.
Note that the fixed point is surely reached in a finite time since the number of leaves of
each tree in the sequence is finite and non increasing along the sequence.

Remark 4.17. Applying (Pε) to a merge tree T representing a function f, is equivalent
to removing a point (b, d) with persistence smaller than ε, that is d − b < ε, from the
persistence diagram representing f . In fact a leaf l such that wT (l) is minimal, represents
a connected component which, at height hT (father(l)), meets another component which is
born “earlier”, and so dies at such height. Its persistence is thus hT (father(l))− hT (l) =
wT (l).

We can thus define the pruning operator:

Pε : T → T
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(a) Pruned Tree.

Figure 4.6.1: An example of a pruning operator applied to a merge tree T . The red
branches are deleted from the tree, all order 2 vertices are ghosted, and the orange edges
are kept and represent the merge tree Pε(T ). Lastly, note that deleting A instead of B
(these are small-weight siblings with same weights) would give isomorphic merge trees.

such that Pε(T ) is the tree obtained by pruning with threshold ε. See Figure 4.6.1 for a
visual example. Notice that Pε is idempotent, that is Pε(Pε(T )) = Pε(T ). On top of that,
by construction, we have that dE(T, Pε(T )) ≤ ε · (#LT −#LPε(T )).

Remark 4.18. Pε is not a continuous operator. Consider T formed by just one edge with
weight ε > 0; take δ > 0 and consider T ′, with the same tree structure as T but made by
one edge of weight ε + δ. Now, dE(T, T

′) = δ and dE(Pε(T ), Pε(T
′)) = ε + δ. If we let

δ → 0, then dE(Pε(T ), Pε(T
′))→ ε.

Remark 4.17 makes more evident and interpretable what happens at a topological level
when pruning a merge tree representing a function f . With the following results, instead,
we want to interpret the pruning procedure (Pε) at a functional level, showing that it
amounts to removing only a small spike of f at the time, whilst preserving the spikes of f
with amplitude larger than the fixed threshold.

Lemma 4.19. Let f : X → R be a continuous function with X being a topological space
and let t ∈ R. Then f(x) = t for every x ∈ ∂{f−1((−∞, t))}.

Proposition 4.20. Let X be a path connected and locally path connected topological space
and let f : X → R be a continuous tame function. Consider the merge tree (Tf , hf )
associated to f . Let v ∈ LTf

and set ε = hf (father(v)) − hf (v). Then, there exist a
function g : X → R continuous and tame such that 0 ≤ g(x)−f(x) ≤ ε, for all x ∈ X, and
(Tg, hg) is isomorphic to (Tf , hf ) up to deleting (v, father(v)) and - eventually - ghosting
father(v).

Corollary 4.21. Given (Tf , hf ) merge tree of a continuous tame function f : X → R with
X being a path connected and locally path connected topological space, for every ε > 0 there
is g : X → R tame and continuous such that ∥ f − g ∥∞≤ ε and (Tg, hg) is isomorphic to
Pε(T ).
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For what has been said up to now, the operator Pε can be considered as a supplementary
smoothing operator. We fix some threshold which we think captures meaningful shape
changes in a function and then, consistently, we remove what is deemed to be noise or
nuisance - due, for instance, to overfitting f in its smoothing pre-processing - from the
representation, obtaining a more regular merge tree. This has also the effect of greatly
decreasing the number of leaves of the tree, a fact that is important from the computational
perspective.

In Section 4.7.4 we carry out a complete example to showcase the effectiveness of
pruning when working with a function f presenting some undesirable minor oscillations,
along with a possible pipeline to select the pruning threshold.

4.6.2 Stability

Now we study the case of two merge trees Tf and Tg representing functions f and g which
are pointwise ε close.

The main result of this section is the following.

Theorem 4.22. Let f, g be tame functions defined on a path connected topological space
X and such that

supx∈X |f(x)− g(x)| ≤ ε.
Let Tf and Tg be the merge trees associated to f and g respectively and let N and M be
the cardinalities of VTf

and VTg
.

Then, there exists an edit path e1 ◦ . . . ◦ eN+M ∈ Γ(Tf , Tg) such that cost(ei) < 2 · ε, for
i = 1, ..., N +M.

Theorem 3.37 states that if two functions are pointwise close, then we can turn the
merge tree associated to the first function into the merge tree associated to the second
function using at most one edit per vertex, and each edit has a small cost. Note, however,
that if the two functions have a very high number of oscillations, the distance between their
merge trees could still be large. Indeed if ||fn − f ||∞

n−→ 0 with #VTfn

n−→ ∞, we are not
guaranteed that dE(Tf , Tfn)→ 0. Theorem 4.22 however implies that, if the cardinalities
|VTfn

| are bounded, then dE(Tf , Tfn) indeed converges to 0.
Problems could then arise when we expect a possibly unbound number of informative

spikes, that is spikes which should not be removed by pruning. In this case, however, the
computational cost of the metric dE would also be prohibitive due to the high number of
leaves in the trees; indeed this supports the claim that the only practical limitation to the
use of the metric dE is given by its computational cost.

4.6.3 Spline Spaces

We here emphasize for spline spaces the consequences of the results of the previous two
subsections, since splines are often used in FDA applications for smoothing the discrete
raw data profiling each statistical unit in the sample.

As already noted in the introduction, spline spaces are a preferred tool for smoothing
functional data since they provide finite dimensional vector spaces of functions with conve-
nient properties. In particular, spline functions are piecewise polynomials determined by
a grid of knots; fixing the knots determines a finite upper bound for the number of critical
points of the spline. Consider for instance S3n, the space of piecewise cubic polynomials
over a grid on [0, 1] with n equispaced knots. On each interval the first derivative of the
function is a quadratic polynomial and thus its zero set is composed by at most two points.
This means that the number of critical points of f ∈ S3n is at most 2(n − 1); therefore
the number of leaves of the tree Tf associated to f cannot be greater than 2(n− 1). The
following Corollary of Theorem 4.22 is in fact easily obtained:
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Corollary 4.23. Let S be a space of piecewise polynomial functions of some fixed degree,
all defined by means of the same finite grid of nodes. Then the operator f ∈ S 7→ Tf is
continuous.

Smoothing raw data with splines entails a delicate trade-off between being flexible, to
capture the salient features of the function the raw data have been sampled from, and
avoiding the introduction of artifacts, due, for instance, to noise overfitting or caused
by forcing the spline to fit an abrupt spike. Representing the smoothed spline function
by means of a merge tree can help in handling this trade-off, by allowing the analyst a
certain degree of casualness in the smoothing phase, since the small artifacts generated by
a possible overfitting will then be controlled by pruning the tree.

For instance, consider the problem of approximating f : [0, 1]→ R with a cubic spline
function defined by an equispaced grid of knots. Suppose f satisfies some regularity
conditions, usually implied by its embedding in a Sobolev space. The parameter which
controls the bias-variance trade-off is just the number of knots n. Many results are known
in the literature concerning the uniform convergence of spline functions as the step of
the grid of knots goes to zero (see for instance De Boor and Daniel (1974)) and most of
them are given in terms of a factor 1/nα and the norm of the derivatives or the modulus
of continuity of f . In other words, the pointwise error can be reduced as needed by
increasing n. When f is approximated by the spline function sf with an error of ε in
terms of uniform norm, this means that whatever happens in intervals of ±ε around f
is inessential. Stated in different terms, oscillations of sf taking place in such zone are
to be considered uninformative with respect to the analysis. Thus a sensible choice is
to represent the function f fitted by the spline sf by means of the pruned merge tree
P2ε(Tsf ). If ε is small enough with respect to the oscillations of f , Corollary 4.21 implies
that pruning Tsf by 2ε removes only inessential edges of Tsf , without losing important
information about f .

The same argument applies when smoothing observations sampled from a function
f. The analyst may allow the spline to slightly overfit the data and then decide that
oscillations under a certain amplitude are irrelevant, controlling them by pruning the
merge tree associated to the fitted spline.

4.7 Examples

In this section, we present some examples which are intended to put to work the pruning
operator and further show the differences between persistence diagrams and merge trees,
already highlighted in Section 4.4.

We devote Section 4.7.1 to giving further intuition on the topic of functions being
distinguished by merge trees but being represented by the same persistence diagram. Sec-
tion 4.7.2 and Section 4.7.3 instead give a more qualitative idea of what kind of variability
between functions is better captured by PDs and merge trees with, respectively, the 1-
Wasserstein metric and the edit distance. Lastly Section 4.7.4 deals with the problem of
pruning trees to remove ancillary features.

4.7.1 Example I

In this first example we produce a set of functions which are all described by the same
persistence diagram but are distinguished by merge trees.

We want to exploit that, for continuous functions in one real variable, the merging
structure of the path connected components (and so the tree structure T ) is characterized
by how local minima distribute on different sides of local maxima.
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We create a very simple toy situation: we define functions which all have a very high
peak and a number of smaller peaks of the same height, but with a different disposition
of these smaller peaks with respect to the highest one.

For i = 0, . . . , 9, let gi : [0, 11] → R be such that gi ≡ 0 on [0, 11] − [i + 1/3, i + 2/3]
while, on [i + 1/3, i + 2/3], gi is the linear interpolation of (i + 1/3, 0), (i + 1/2, 1) and
(i + 2/3, 0). Then, for i = 0, . . . , 9, define Gi as Gi ≡ 0 on [0, 11] − [i + 2/3, i + 1] while,
on [i+ 2/3, i], Gi is the linear interpolation of (i+ 2/3, 0), (i+ 3/4, 5) and (i+ 1, 0).

Then, for i = 0, . . . , 9, fi is obtained as follows:

fi = Gi +

10∑
j=0

gj .

The functions f0 and f3 are displayed in Figure 4.7.1a. Note that the first and the last
peak of every function, by construction, are always small peaks. The key point is that for
every path connected component we are not changing any of the corresponding critical
values and thus the associated persistence diagram is always the same (see Figure 4.7.1c).

The shortest edit path between two merge trees Tfi and Tfi+1
is given be the deletion

of one leaf in each tree to make the disposition of leaves coincide between the to trees.
The more the peak disposition is different between the two trees, the more one needs to
delete leaves in both trees to find a shortest path between them. Thus, if we fix the first
line of the matrix in Figure 4.7.1d, we see that going left-to-right the distance at first
gradually increases. It is also evident that, from a certain point on, the distance decreases
to the point of reaching almost zero. This is because the first function (the one in which
the highest peak is the second peak) and the last function (the one in which the highest
peak is the second-to-last peak) can be obtained one from the other via a y-axis symmetry
and a translation – x 7→ −x (reflection on the y-axis) and x 7→ v + x, with v ∈ R fixed
(translation) –, these transformations being homeomorphisms of the abscissa. Similarly,
the second function is equal, up to homeomorphic alignment, to the third-to-last one, etc..
Thus by Proposition 4.11 the merge trees are the same. To sum up the situation depicted
in the first row of Figure 4.7.1d, first we get (left-to-right) farther away from the first merge
tree, and then we return closer to it. This intuition is confirmed by looking at the MDS
embedding in R2 of the pairwise distance matrix (see Figure 4.7.1e - note that the shades
of gray reflect, from white to black, the ordering of the merge trees). The discrepancies
between the couple of points which should be identified are caused by numerical errors.

4.7.2 Example II

In this second example we want to produce a situation in which the variability between
functional data is better captured by PDs than by merge trees. Accordingly, we generate
two clusters of functional data such that the membership of a function to one cluster or the
other should depend on the amplitude of its oscillations and not on the merging structure
of its path connected components. We then look at the matrices of pairwise distances
between functions, comparing merge tree and persistence diagram representations in terms
of their goodness in identifying the clustering structure.

To generate each cluster of functions, we draw, for each cluster, an independent sample
of 16 critical points, 8 maxima and 8 minima, from two univariate Gaussian distributions
with means equal to +100 for maxima and to −100 for minima, respectively. The standard
deviations of the two Gaussian distributions are the same and they are set equal to 50.
To generate a function inside a cluster, we draw a random permutation of 8 elements and
we reorder, according to this permutation, both the set of maxima and the set of minima
associated to the cluster. Then, we take a regular grid of 16 nodes on the abscissa axis:
on the ordinate axis we associate to the first point on the grid the first minimum, to
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(a) The functions f0 and f3 belonging to the data set decribed in Section 4.7.1. Note the changes,
between f0 and f3, in the disposition of the smaller peaks w.r.t. to the highest one.

(b) The merge trees (Tf0 , hf0) and (Tf3 , hf3) associated to the functions f0, f3 in Figure 4.7.1a.
The changes in the tree structures reflect the differet disposition of the disposition of the smaller
peaks w.r.t. to the highest one in the associated functions.

(c) The persistence diagram
representing the functions in
Figure 4.7.1a and all the other
functions produced in Sec-
tion 4.7.1. The point (0, 1) has
multiplicity equal to the num-
ber of local minima minus 1.

(d) Matrix of pairwise distances
of the merge trees obtained in
Section 4.7.1.

(e) Multidimensional Scaling
Embedding in R2 of the ma-
trix of pairwise distances shown
in Figure 4.7.1d. The shades
of gray describe, from white to
black, the ordering of the trees.

Figure 4.7.1: Plots related to the simulated scenario presented in Section 4.7.1.
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(a) Data being plotted with
different colours depending on
the cluster.

(b) Merge trees pairwise dis-
tances. (c) PDs paiwise distances.

Figure 4.7.2: Example II. In the first row we can see few data from the two clusters. In
the second row we see the matrices of pairwise distance extracted with trees and PDs.
The data are ordered according to their cluster. It is clear how PDs perform much better
in separating the two clusters.

the second the first maximum, to the third the second minimum and so on. To obtain a
function we interpolate such points with a cubic spline. We thus generate 50 functions in
each cluster. The key point is that, within the same cluster, the critical points are the
same but for their order, while the two clusters correspond to two different sets of critical
points.

In this example, we expect that the clustering structure carried by the amplitude of
the functions will be shadowed by the differences in the merging order, when adopting
the merge tree representation; while persistence diagrams should perform much better
because they are less sensitive to peak reordering. This is in fact confirmed by inspecting
the distance matrices in Figure 4.7.2b and Figure 4.7.2c.

4.7.3 Example III

Here we reverse the state of affairs and we set the feature for discriminating between
clusters to be the merging structure of the functions. Hence, we generate two clusters of
functions: the members of each cluster have the same merging structure which is however
different between clusters.

To generate the two clusters of 50 functions each, we first draw an independent sample
of 10 critical values, 10 maxima and 10 minima, shared between the clusters. Such samples
are drawn from Gaussian distributions with means 100 and −100 respectively and standard
deviation 200. Given a regular grid of 20 nodes on the abscissa axis, on the ordinate axis
we associate to the first point of the grid a maximum, to the second a minimum, and so
on, as is Example I. To generate every member of one cluster or the other, we add to
the ordinate of each maximum or minimum critical point a random noise generated by a
Gaussian with mean 0 and standard deviation 100. Then we reorder such points following
a cluster-specific order. And, lastly, we interpolate with a cubic spline. We remark that
the ordering of the maxima and that of the minima now becomes essential. For the two
clusters, these orderings are fixed but different and they are set as follows (0 indicates the
smallest value and 9 being the largest value):

• first cluster: maxima are ordered along the sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), minima
along the sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

• second cluster: maxima are ordered along the sequence(3, 2, 1, 0, 8, 9, 7, 6, 4, 5), min-
ima along the sequence (3, 2, 1, 0, 8, 9, 7, 6, 4, 5).
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(a) Tree structures of the two clusters: left the first and right the second.

(b) Simulated data. (c) Merge trees pairwise dis-
tances.

(d) PD pairwise distances.

Figure 4.7.3: Example III. In the first row we can find the tree structures associated to
the two clusters. In the second row, leftmost plot, we can see a few data from the two
clusters. In the central and rightmost column of the second row we see the matrices of
pairwise distances between merge tree representations and PDs, respectively. The data
are ordered according to their cluster. It is clear how in this example merge trees are more
suitable to separate the two clusters.

Such different orderings provide non-isomorphic tree structures for the merge trees
associated to the functions of the two clusters, as we can see in Figure 4.7.3a, while
keeping a similar structure in terms of persistence diagrams.

In this example, we expect PDs to be unable to recognise the clustering structure
among the data; indeed, the only discriminant feature available to PDs is the different
height of critical points, but this bears little information about the clusters.

We can visually observe this by comparing Figure 4.7.3c with Figure 4.7.3d.

4.7.4 Pruning

In this section we present a simple example to show the regularization effect of pruning,
along with an elbow analysis to identify a suitable pruning threshold. Figures related to
this example can be found in Figure 4.7.4.

Consider the function f(x) = 1
1+x2 sin(10πx), defined for x ∈ [0, 1], and fix a grid

x1, . . . , xn on [0, 1]. Consider g a function which, on the fixed grid, could be consid-
ered as a noisy observation of f : g(xi) = f(xi) + ηi with ηi ∼ N (µ = 0, σ = 0.1)
i.i.d.. We want to study the relationship between the merge trees built from the samples
{(x1, f(x1)), . . . , (xn, f(xn))} and {(x1, g(x1)), . . . , (xn, g(xn))} (via linear interpolation).
With an abuse of notation we call such merge trees, respectively, Tf and Tg.

Knowing the generative model, in each point of the grid, with probability 0.95 we
expect to see a value of g at a distance at most 2σ = 0.2 from the corresponding value
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of f. Thus, a pruning threshold of around 0.4 should be enough to cope with most of the
noise in {g(x1), . . . , g(xn)}. But this information can be retrieved directly from data with
an elbow analysis: for every ε > 0 we consider the number of leaves in Pε(Tg) and we
plot the curve obtained by varying ε. Under the assumption that the signal to noise ratio
is high, we should indentify an elbow in the curve ε vs number of leaves of Pε(Tg). In
fact, this corresponds to having some separation between noisy oscillations and the proper
shape of the function. If that is not the case, it means that there are oscillations caused by
noise which are at least as big as some oscillations which we would like to retain. Thus the
smoothing parameter choice in this case is more arbitrary and some kind of compromise
must be achieved. Note that there might be multiple elbows in the aforementioned plot,
along with flat regions. A conservative choice would be to look for the leftmost clear elbow,
which, for instance, may be recognized at ε = 0.25 in Figure 4.7.4c. We can appreciate
that the flat region (meaning that Pε(T ) does not change) starting in 0.25 contains also
2(2σ) = 0.4. Lastly, we highlight that, despite the pruning procedure, the amplitude of
the larger oscillations, which are retained in the pruned tree, is still affected by the noise.

An analogous result can be achieved also working with persistence diagrams, where,
instead of an elbow analysis, one has to choose a band close to the diagonal, as shown
in Figure 4.7.4f, which contains all the small persistence features which one wants to
eliminate. The band in Figure 4.7.4f has width 0.3. As for merge trees, if there is not clear
separation between close-to-diagonal noisy points and more persistent features, one needs
to make some arbitrary choice to fix a suitable band. For α-filtration of point clouds in
Rn there are bootstrap methods to obtain confidence bands (Fasy et al., 2014).

4.8 Case Study

We now run a comparative analysis of the real world Aneurisk65 dataset. This dataset –
and the clinical problem for which it was generated and studied – was first described in
Sangalli et al. (2009b), but it has since become a benchmark for the assessment of FDA
methods aimed at the supervised or unsupervised classification of misaligned functional
data (see, for instance, the special issue of the Electronic Journal of Statistics dedicated to
phase and amplitude variability - year 2014, volume 8). We then repeat the classification
exercise illustrated in Sangalli et al. (2009b) with the double scope of comparing merge
trees and persistent diagrams when used as representations of the Aneurisk65 misaligned
functional data, and of evaluating the performance of these representations for classifica-
tion purposes when compared with the results obtained with the more traditional FDA
approach followed by Sangalli et al. (2009b).

4.8.1 Dataset

The data of the Aneurisk65 dataset were generated by the AneuRisk Project, a mul-
tidisciplinary research aimed at investigating the role of vessel morphology, blood fluid
dynamics, and biomechanical properties of the vascular wall, on the pathogenesis of cere-
bral aneurysms. The project gathered together researchers of different scientific fields,
ranging from neurosurgery and neuroradiology to statistics, numerical analysis and bio-
engineering. For a detailed description of the project scope and aims as well as the results
it obtained see its web page (https://statistics.mox.polimi.it/aneurisk) and the list of pub-
lications cited therein.

Since the main aim of the project was to discover and study possible relationships
between the morphology of the inner carotid artery (ICA) and the presence and location
of cerebral aneurysms, a set of three-dimensional angiographic images was taken as part
of an observational study involving 65 patients suspected of being affected by cerebral
aneurysms and selected by the neuroradiologist of Ospedale Niguarda, Milano. These
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(a) The function f with and without noise
(resp. orange and blue). (b) Merge tree of g.

(c) Elbow analysis to identify the pruning
threshold.

(d) Pruned merge tree of g.

(e) Merge tree of f .
(f) Persistence diagrams of f (red) and g
(blue).

Figure 4.7.4: In the first row we can see the plot of the samples obtained from f and g
on the left, and the merge tree obtained from the noisy sample on the right. The second
row contains the plot ε vs number of leaves in Pε(T ) and the merge tree P0.3(T ). Lastly,
we have the merge tree of f and the persistence diagrams of the samples of f (red) and g
(blue), along with the red band identifying the noisy features.
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3D images where then processed to produce 3D geometrical reconstructions of the inner
carotid arteries for the 65 patients. In particular, these image reconstructions allowed to
extract, for the observed ICA of each patient, its centerline “raw” curve, defined as the
curve connecting the centres of the maximal spheres inscribed in the vessel, along with
the values of the radius of such spheres. A detailed description of the pipeline followed to
identify the vessel geometries expressed by the AneuRisk65 functional data can be found
in Sangalli et al. (2014).

Different difficulties arise when dealing with this data. First, as detailed in Sangalli
et al. (2009a), to properly capture information affecting the local hemodynamics of the
vessels, the curvature of the centerline must be obtained in a sensible way. Retrieving
the salient features of the centerline and of its derivatives is a delicate operation, which
is heavily affected by measurement errors and reconstruction errors, due to the complex
pipeline involved. Consequently the “raw” curves appear to be very wiggly and it is not
obvious how to produce reasonable smooth representations. At the same time the 3D
volume captured by the angiography varies from patient to patient. This is due to many
factors, such as: the position of the head with respect to the instrument, which in turns
depends on the suspected position of the aneurysm, the disposition of the vessels inside
the head of the patient, the size of the patient. We can recognize these differences even by
visual inspection in Figure 4.8.1: for instance, in Figure 4.8.1a and Figure 4.8.1i we see a
longer portion of the ICA than in Figure 4.8.1e. Therefore the reconstructed ICAs cannot
be compared directly: we need methods that take into account that the centerlines are
not embedded in R3 in the same way, and that we cannot expect potentially interesting
features to appear in exactly the same spots along the centerline. This is the typical
situation where one should resort to alignment.

Hence, this dataset is paradigmatic of the three-faceted representation problem high-
lighted in the introduction; data smoothing, embedding, and alignment present difficult
challenges, which propelled a number of original works in FDA.

The AneuRisk65 data have been already partially processed; in particular centerlines
have been smoothed following the free-knot regression spline procedure described in San-
galli et al. (2009a), and their curvatures were thus obtained after computing the first two
derivatives of the smoothed curves. The data relative to the radius of the blood vessel,
instead, although measured on a very fine grid of points along the centerline, is still in its
raw format. Hence the AneuRisk65 data also allow us to compare the behaviour of tree
representations on smoothed data and on raw data.

4.8.2 Analysis - Classification

Patients represented in the AneuRisk65 dataset are organized in three groups: the Upper
group (U) collects patients with an aneurysm in the Willis circle at or after the terminal
bifurcation of the ICA, the Lower group (L) gathers patients with an aneurysm on the ICA
before its terminal bifurcation, and finally the patients in the None group (N) do not have
a cerebral aneurysm. Our main goal is supervised classification with the aim to develop a
classifier able to discriminate membership to the group L

⋃
N against membership to the

group U based on the geometric features of the ICA. In Section 4.8.4 and Section 4.8.3,
we complement this supervised analysis with a descriptive analysis of the merge trees,
aggregated according to their group membership, and an unsupervised exercise which
aims at clustering patients solely on the basis of the similarity of geometric features of
their ICA, thus recovering a clear structure between the groups listed above and providing
further support to the discriminating power of the geometric features of the ICA.

145



Chapter 4. Functional Data Representation with Merge Trees

(a) ICA patient 1 (L). (b) Radius along the
ICA of patient 1 (L).

(c) Merge tree associ-
ated to the radius func-
tion of patient 1 (L).

(d) Persistence diagram
associated to the radius
function of patient 1
(L).

(e) ICA patient 55 (U). (f) Radius along the
ICA of patient 55 (U).

(g) Merge tree associ-
ated to the radius func-
tion of patient 55 (U).

(h) Persistence diagram
associated to the radius
function of patient 55
(U).

(i) ICA patient 56 (U). (j) Radius along the
ICA of patient 56 (U).

(k) Merge tree associ-
ated to the radius func-
tion of patient 56 (U).

(l) Persistence diagram
associated to the radius
function of patient 56
(U).

Figure 4.8.1: Three patients in the AneuRisk65 dataset; on the first column of the left,
the ICAs of the patients are coloured according to the radius value, on the second column
there are the radius functions, on the third column their associated merge trees and on the
rightmost column the persistence diagrams. Patient 1 belongs to the Lower group (L), the
other two patients to the Upper group (U). Note that the merge trees have been truncated
with K equal to the maximum of Figure 4.8.1b.
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4.8.2.1 The pipeline for supervised classification

We develop a classification pipeline in close analogy with the one illustrated in Sangalli
et al. (2009b) which, after smoothing, reduces the data dimensionality by means of Func-
tional Principal Components Analysis (FPCA) applied to the curvature functions of the
ICA centerlines and to the respective radius functions, and then fits a quadratic discrim-
inant analysis (QDA) based on the first two FPCA scores of the curvature functions and
of the radius functions respectively.

We interpolate the data points representing the smoothed curvature functions and the
raw radius functions provided in the Aneurisk65 dataset with a piecewise linear spline and,
for each patient, we consider the merge tree associated to its curvature and the merge tree
associated to its radius. We then prune our tree representations; to use a uniform scale
across all patients (but of course different for curvature and radius) we parametrize the
pruning threshold as a fraction of the total range covered by the curvature and radius
functions, respectively, across patients: I = [minf (minx(f(x)),maxf (maxx(f(x)))]. For
both sets of trees, we then calculate the pairwise distances with the metric dE and we
organize them in two distance matrices. Blending the discriminatory information provided
by curvature and radius, we also produce a new distance matrix collecting the pairwise
distances obtained by convex linear combination of the distances for curvature and radius,
according to the formula:

d2mixed = w · d2curvature + (1− w) · d2radius, (4.1)

where 0 ≤ w ≤ 1. For lack of references, we prove in Section 4.B that dmixed is a metric,
for all w ∈ [0, 1]. We then apply Multi Dimensional Scaling (MDS) to each of the above
distance matrices, to map the results in a finite dimensional Euclidean space of dimension
m. Lastly, and following Sangalli et al. (2009b), we fit a QDA on such embedded points.

This pipeline requires the setting of three hyperparameters: the pruning threshold,
the weight w appearing in Equation (4.1) and, finally, the dimension m of the Euclidean
embedding for MDS. While the pruning threshold is chosen with an elbow analysis, see
Section 4.8.2.2, the weight w and the dimension m of the multidimensional scaling are
selected by maximising the discriminatory power of QDA estimated by means of leave-
one-out (L1out) cross-validation.

4.8.2.2 Pruning

In this section, we take a closer look at the smoothing carried out by pruning the merge
trees representations of curvature and radius. From the plots in Figure 4.8.1 we see that the
radius functions appear to be very wiggly and, given the complex data-generating pipeline,
we might assume that some portion of that amplitude variability is uninformative and due
to different kinds of errors, which is the same conclusion drawn by Sangalli et al. (2009a)
with respect to the raw curvature data.

Assuming, as in Section 4.7.4, that the signal-to-noise ratio is not too low, we expect
to find some separation in terms of amplitude between the informative features of the
analyzed functions and those to be considered as nuisances. Hence, as in Section 4.7.4, we
choose the pruning parameter through an elbow analysis of the curve plotting the number
of leaves of the pruned trees, averaged over the whole dataset, against the corresponding
threshold. Thus, we look for an elbow in the curves depicted in Figure 4.8.2.

Here we want to emphasise the different behaviours of the curvature trees and of the
radius trees. There is no clear elbow in Figure 4.8.2a, showing that there is no reason
to believe that data show a large number of small uninformative oscillations. This is not
surprising because the curvature functions of the Aneursik65 dataset are the result of a
very careful smoothing process. The curve in Figure 4.8.2b, related to radius, has instead
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(a) Average number of leaves for curvature (b) Average number of leaves for radius

Figure 4.8.2: The average numbers of leaves in the merge trees, plotted against the per-
centage of total range used as pruning threshold.

(a) Pairwise distances between merge trees
representing curvatures.

(b) Pairwise distances between merge trees
representing radii.

Figure 4.8.3: The distance matrices of merge trees associated to curvature and radius
functions. Patients belonging to group L appear in first rows, followed by patients in the
N group and patients in the U group.

a clear elbow structure (between 1% and 2%) in accordance with our expectations. Thus,
we choose 2% as pruning threshold for the radius curves, whilst we do not prune curvature
trees. We later discuss the robustness of our results with respect to these choices.

4.8.2.3 Classification Results

We compare our classification results with those illustrated Sangalli et al. (2009b). The
goal is the same: separating the class U from the classes L and N.

Table 4.8.1 reports the prediction errors obtained after L1out cross-validation. As in
Sangalli et al. (2009b), we obtain the best classifier by simultaneously considering the
combined information conveyed by the couple of curvature and radius functions; the dis-
similarity between different couples is measured by the distance in Equation (4.1), where
the parameter w = 0.25, being this the value which minimizes prediction error computed
by L1out.

The same pipeline is followed when curvature and radius functions are represented by
merge trees or by persistence diagrams. In the case of PDs’, we first removed the points
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Merge Trees
Predicted

Curvature Radius Mixed

True

U L
⋃
N U L

⋃
N U L

⋃
N

U 18 14 U 24 8 U 26 6
L
⋃
N 3 30 L

⋃
N 7 26 L

⋃
N 5 28

w = 1, n = 3 w = 0, n = 12 w = 0.25, n = 14
Persistence Diagrams

Predicted
Curvature Radius Mixed

True

U L
⋃
N U L

⋃
N U L

⋃
N

U 20 12 U 26 6 U 26 6
L
⋃
N 3 30 L

⋃
N 6 27 L 6 27

w = 1, n = 3 w = 0, n = 9 w = 0, n = 9
Benchmark
Predicted

U L
⋃
N

True U 26 6
L
⋃
N 6 27

Table 4.8.1: Confusion matrices for L1out. Below each confusion matrix, the values of
the metric coefficient w and of the dimension m for MDS corresponding to the tested
classifier are reported. The first row refers to the classifiers receiving as input merge tree
representations, the second row PDs. The last row reports the benchmark L1out confusion
matrix for the classifier illustrated in Sangalli et al. (2009b).
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(that is, the topological features) with persistence lower than a certain threshold (where
the persistence is cy − cx, according to the notation used in Section 4.3). The threshold
has been taken equal to the pruning parameter of the merge trees, in accordance with
Remark 4.17.

The first two rows in Table 4.8.1 compare prediction errors when merge trees or PD
representations are used. From left to right, the table shows the L1out confusion matrices
when distances between curvatures, radii or their joint couple are respectively considered.
We see that PDs do a slightly better job in extracting useful information from either
curvature or radius, when examined separately. This could be due to a situation not dis-
similar from that illustrated in the example of Section 4.7.1: the discriminant information
contained in the curvature and radius functions lies more in the number and amplitude
of oscillations than in their ordering. However, when curvature and radius of the ICA are
jointly considered as descriptors and the distance of Equation (4.1) is used, we obtain a
better classifier for merge trees while there is no improvement for PDs.

This situation highlights that merge trees and persistence diagrams capture different
but highly correlated pieces of information about the current functional data set; note,
however, that PDs suggest that most of the information they capture is due to the radius
function, while merge trees show some informative interactions between curvature and
radius.

For comparison, the third column of Table 4.8.1 reports the prediction errors of the
best classifiers based on merge trees and on PDs, respectively, while the last row shows
the prediction errors of the classifier described in Sangalli et al. (2009b). The number of
patients misclassified by the best classifier based on merge trees is slightly smaller than that
of the best classifier based on PDs, but, despite the profound differences between the two
topological summaries (see Section 4.4, Section 4.7.1, Section 4.7.2 and Section 4.7.3) the
two methods are retrieving similar discriminant information related to the classification
task: comparing the two analysis we found that 10 patients were misclassified by both
methods.

4.8.2.4 Robustness with respect to the pruning threshold

To argument in favor of the robustness of our results with respect to the choice of the prun-
ing threshold, or, from another point of view, in favor of the robustness of the information
conveyed by our tree representation of functions, we go through the same classification
pipeline varying the value of the pruning threshold of the radius functions. In Figure 4.8.4
we show the prediction accuracy, estimated by L1out cross-validation, as a function of
the pruning threshold. We notice that the accuracy is quite stable and does not oscillate
wildly upon perturbing the pruning threshold. This fact, on one hand further supports the
elbow analysis approach described in Section 4.8.2.2, on the other is also showing that the
results obtained with the information captured by merge trees and persistence diagrams
does not depend on a finely tuned choice of the threshold parameters.

4.8.3 Analysis - Clustering

In this section, we present an unsupervised exercise with the aim of clustering patients on
the basis of the similarity of geometric features of their ICA. We explore the Aneurisk65
data clustering structure by endowing the merge tree space with the metric dmixed figuring
in Equation (4.1), with w = 0.25. To get multiple perspectives on this issue, we resort to
hierarchical clustering dendrograms with different linkages. The visual inspection of Fig-
ure 4.8.3 suggests that, upon blending together the information of radius and curvature,
the Upper class should display a low variability while the Lower and None classes should
behave more heterogeneously. Thus, a clear clustering structure should not be recogniz-
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Figure 4.8.4: L1out accuracy of the classification pipeline - both for merge trees and per-
sistence diagrams - with respect of the pruning threshold. The horizontal green line shows
the accuracy obtained by Sangalli et al. (2009b). Note that the accuracy of persistence
diagrams and merge trees is above or equal to the green line also for large values of the
pruning threshold.

able: we expect possibly one cluster made by points belonging to the Upper class and then
a series of points scattered around this central nucleus with no easily recognizable pattern.

The hierarchical dendrograms obtained with single, average and complete linkages are
displayed in Figure 4.8.5. The first obvious observation is that all three linkages identify
the point associated to patient 2 as an outlier. The single linkage dendrogram shows that,
as the height on the dendrogram increases, there is only one major cluster which slowly
becomes larger and incorporates all points in the data set. No other relevant clusters are
found. Average and complete linkages further support this finding: there are no obvious
heights where to cut the tree in the average linkage dendrogram; complete linkage instead
shows perhaps a two cluster (plus one outlier) structure. The smaller cluster identified by
this dendrogram, is also visible with the average linkage and is contained within the group
of singletons obtained by cutting the single linkage tree at height 1.3. The overall picture
is thus that of a major cluster, with possibly another group of points clustered together,
but with much higher heterogeneity.

These findings can indeed be related with the labels declaring membership of the pa-
tients to the U, the N and the L group respectively. To grasp if there is an overall pattern
in the merging structure of the data point cloud, for each leaf (a patient) of a dendro-
gram, we collect its merging height defined as the height of its father in the graph, that
is the height at which that point is no longer considered as a singleton but instead it is
clustered with some other point. In other words, we record the distance between the leaf
and the closest cluster in terms of the cophenetic distance induced by the dendrogram.
Note that, for the single linkage dendrogram, this is equivalent, for almost all leaves, to
the height at which the leaf is merged with the major cluster. Results are shown in Fig-
ure 4.8.6. The interpretation of these plots is consistent across the different linkages and
is pretty straightforward: the points corresponding to patients of the Upper group get
merged within a small range of heights, and the distribution of their merging height is
stochastically smaller than the distributions for groups L and N, respectively. The merg-
ing heights of the leaves corresponding to patients belonging to the Lower group, instead,
display a larger variability and their distribution is stochastically larger than those of the
of the leaves belonging to the other two groups. Patients of the class None, merge at
heights in between the Upper and the Lower groups and their merging height seems to
display a low variability. The plot (d) of Figure 4.8.6 shows the smoothed densities of
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the distributions of merging height for leaves belonging to the three groups, in the case of
average linkage. Analogous representations could be obtained for the other two linkages;
they all confirm the stochastic ordering described above.

This cluster analysis is consistent with our expectations, which, in turn, are in accor-
dance to the findings of Sangalli et al. (2009b). On top of that, we also get two further
insights: first, data are scattered around the Upper group with a possibly non uniform
structure, as shown by the small and sparse cluster of Lower class patients visible with
complete linkage clustering and, second, that the None group of patients lies in a sort of
in between situation in the space separating the two other groups of aneurysm-affected
patients. This could also explain the good performance of QDA: a quadratic boundary is
able to isolate the core of the Upper group of patients from the others, which lie mainly
on one side of the quadratic discriminant function.

4.8.4 Reading the trees

Though not strictly related to the classification task presented in Section 4.8.2 and the
clustering carried out in Section 4.8.3, we take the opportunity to briefly investigate the
population of trees obtained from the Aneurisk data set to see what can be said about the
different groups (U,N,L) and to try to explain the effectiveness of the proposed analysis.
This is intended as a first step into developing further statistical tools to interpret and
understand populations of merge trees.

A path which has been taken to produce summary statistics of a topological represen-
tation - in particular a persistence diagram - is to obtain a function for each topological
summary and then use consolidated (functional) statistical methods to analyze the ob-
tained curves (see for instance Sørensen et al. (2020)). We will do the same, producing a
curve for every merge tree, in three different ways.

It must be immediately pointed out that the relationship between the topological rep-
resentation and the chosen summary functional statistic should be formally addressed in
a number of ways. For instance, pointwise or uniform convergence of the functional sum-
maries when diagrams/merge trees/etc. are close according to some metric should be
studied as well as the injectivity of the functional representation of the topological sum-
mary. These aspects of topological data analysis up to now have been hardly explored in
the literature; they require efforts and space which are outside the scope of the present
work. Our aim here is just to showcase qualitatively the discriminative power, in our case
study and examples, of some functional statistics in order to foster and motivate further
efforts on the topic.

We make use of the following definition.

Definition 4.24. Let (T, hT ) be a merge tree; cutting T at height h ∈ R generates the set
of merge trees CutT (h) = {subT (v) | v ∈ VT s.t. hT (v) ≤ h and hT (father(v)) > h}.

Now, consider a merge tree (T, hT ) associated to a function f : X → R, withX compact
interval in R. Cutting T at height h ∈ R, means looking locally at the oscillation patterns
obtained by removing from the domain of f the super level set Xh = f−1((h,+∞)):
the different subtrees represent the function f restricted to the different path connected
components of X −Xh. Thus each subtree describes locally the function f , with h con-
trolling the resolution of these descriptors. Based on this fact, we introduce the following
functional statistics. For each tree (T, hT ) and for each h ∈ R we look at:

1. var(T, h): the variance of {#LT ′/#LT |T ′ ∈ CutT (h)}. With this statistic we
capture how the already completed oscillations of f are grouped together, focusing
on the homogeneity of these patterns: high variance suggest that the merge tree is
very unbalanced below height h, implying that oscillations completed below h are
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(a) Single linkage clustering dendrogram. (b) Average linkage clustering dendrogram.

(c) Complete linkage clustering dendrogram.

Figure 4.8.5: Hierarchical clustering dendrograms obtained with single, average and com-
plete linkages.
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(a) Heights at which leaves get merged in the
single linkage clustering dendrogram.

(b) Heights at which leaves get merged in the
average linkage clustering dendrogram.

(c) Heights at which leaves get merged in the
complete linkage clustering dendrogram.

(d) Density estimate for the distributions in
Figure 4.8.6b.

Figure 4.8.6: For each patient belonging to group U,L or N, the plots (a), (b) and (c) rep-
resent the merging height at which their corresponding leaf gets merged in the clustering
dendrograms, according to single linkage, average linkage and complete linkage, respec-
tively. Plot (d) represents the smoothed densities of merging height for the leaves of the
three groups, in the case of average linkage.
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more concentrated in some regions of the domain compared to others. Low variance,
instead, indicates that oscillations are more evenly distributed;

2. NLeaves(T, h): the statistic NLeaves(T, h) = #{l ∈ LT |hT (l) ≤ h} counts the
oscillations which have already started at height h;

3. NInt(T, h): the statistic NInt(T, h) := #{v ∈ VT − LT |hT (v) ≤ h} counts the
oscillations which have been completed before height h.

Note that the first statistic we present is strictly related to information contained
in merge trees and so it does not apply to persistence diagrams; the last two, instead,
respectively count the number of components born before h and the ones which have died
before time h. These statistics can also be computed for persistence diagrams.

Letting h vary in R, for every tree we obtain a curve, a functional statistic. These
curves can then be aggregated over different subsets partitioning the population of trees.

4.8.4.1 Examples in Section 4.7

To gain confidence with these tools, we look at the simulated scenarios presented in Sec-
tion 4.7.1, Section 4.7.2 and Section 4.7.3 through the lenses of these statistical summaries.
The reader can follow the next paragraph looking at Figure 4.8.7.

The first example, Section 4.7.1, presents a data set of functions such that the associated
merge trees are distinguished just by the tree structures: in fact the associated persistence
diagrams are all equal. Each tree as a total of n = 13 leaves, the father of each leaf is at
height 1 and cutting each tree between heights ≥ 1 and < 5 yields two clusters. Thus,
the only difference between the trees lies in the cardinality of such clusters. Accordingly,
the only statistic which is able to separate them is the variance between the clusters
cardinalities: we clearly see that in Figure 4.8.7a. The other plots, as expected, show
perfectly superimposed curves.

The second example, Section 4.7.2, presents data divided into two groups with the
discriminant information between the groups lying into the heights of the critical points
of the functions. Figure 4.7.2b and Figure 4.7.2c show that both merge trees and persis-
tence diagrams can distinguish, to some extent, the two groups, with persistence diagrams
being able to identify them more clearly. Figure 4.8.7e and Figure 4.8.7h show that the
groups have two very distinct behaviors in terms of births and deaths of path connected
components: as the height parameter h runs through the heights of the merge trees, we
can clearly see that shaded areas of the different classes are well separated. Moreover,
in Figure 4.8.7b we see that we have a lot of within-group variability generated by tree
structures, which is in perfect accordance to the generative process of the data set. This
further explains why persistence diagram do such a good job in separating the two groups.

The third example reverses the situation: births and deaths of path connected com-
ponents should not present different patterns in the two groups, while the tree structures
involved should present profound differences between groups. From Figure 4.8.7f and Fig-
ure 4.8.7i it is quite evident that heights of local minima and maxima do not contain
enough information to separate groups. Instead Figure 4.8.7c shows that while Group 1
presents very balanced tree structures, for var(T, h) is very low for h high, Group 0 has
very imbalanced merging structures, with many components being merged together and
few standalone ones appearing/merging late.

4.8.4.2 Aneurisk65 Case Study

In this section we illustrate for the Aneurisk65 case study the same analysis obtained
in Section 4.8.4.1 for the simulations described in Section 4.7.1, Section 4.7.2 and Sec-
tion 4.7.3.

155



Chapter 4. Functional Data Representation with Merge Trees

(a) Example 1: var(·, h). (b) Example 2: var(·, h). (c) Example 3: var(·, h).

(d) Example 1: NLeaves(·, h). (e) Example 2: NLeaves(·, h). (f) Example 3: NLeaves(·, h).

(g) Example 1: NInt(·, h). (h) Example 2: NInt(·, h). (i) Example 3: NInt(·, h).

Figure 4.8.7: Functional statistics related to the data sets presented in Section 4.7.1,
Section 4.7.2 and Section 4.7.3. Each column is devoted to one example. The plotted lines
represent the pointwise median (continuous line) and mean (dotted line) of the curves.
The shaded regions delimit the pointwise central quartiles Q1 and Q3 of the data set.
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4.8.4.3 Curvature

First we focus on the analysis of the merge trees obtained from the functions recording
the curvature of the blood vessels centrelines. In the first row of Figure 4.8.8 we see the
plots of the statistics we want to discuss.

Figure 4.8.8a tells us that the tree structures of the three classes exhibit quite different
behaviors: we see that L tend to be more imbalanced than N and U (especially looking
at the median values), but both L and N have many outliers which cause median and
mean values to be very different. However, due to the within-group variance it is not
possible to discriminate between groups using such statistic, as the shaded area of group
L includes the areas of the other classes. Still, we can appreciate that class U shows much
less within-group variance compared to N and L. Figure 4.8.8b and Figure 4.8.8c, together,
carry the following information: class U tends to have less oscillations compared to class
L. Moreover, such oscillation tend to take place at lower values, as the red curves flatten
before the blue one. Class N instead lies in between the other two groups.

To conclude, the differences we can spot in the merge trees associated to curvature
functions lie mostly in the number of oscillations and in their height, with class U being
generally more characterized (i.e. with smaller within group variance) then the other
classes. Not much remnant discriminating information seems to be contained into the tree
structures of the different groups.

4.8.4.4 Radius

Now we turn to merge trees associated to radius functions - second row of Figure 4.8.8.
Figure 4.8.8d depicts a situation which is not very different from Figure 4.8.8a, even

if the roles of the different labels are exchanged: we have group U showing very high
variability for high values of h, with ouliers being present for all groups - the pointwise
means end up outside the shaded regions. Both Figure 4.8.8d and Figure 4.8.8a may
indicate something related to radius/curvature happening at the extremes of the domain,
in particular for class U (radius) and L (curvature). However, as for curvature, these
patterns do not discriminate between the groups L, N, U due to the within group variance
being very high. Figure 4.8.8e and Figure 4.8.8f tell us that the class U, again, has
consistently less oscillations than L and N. On top of that, class L tend to have lower
minima and higher maxima than class U.

To sum up, the radius functions of class U have less oscillations, compared to L and N,
and the overall amplitude of such oscillations is also smaller.

4.8.4.5 Conclusion

Putting together the information collected in the previous subsections we can say that the
curvature functions associated to patients in group U oscillate less then the other groups,
with their peaks being lower than the ones of L and N. The radius functions of the group
U still oscillate less in terms of numbers of local minima and amplitude of the oscillations.

In other words, blood vessels from group L are more wiggly in the space (and thus
their curvature oscillates more, touching higher values) and their diameter oscillates more
frequently and by a greater amount compared to class U. These features might indeed
be associated to different blood fluid dynamics regimes characterizing patients in group
U. Group N lies in between, some patients showing patterns closer to group L and some
others to group U. Being the groups L,N,U characterized by this topological information,
we can see why both merge trees and persistence diagrams perform well in the pipelines
presented in Section 4.8.2. At the same time, the fact that the tree structures do not show
particular patterns - Figure 4.8.8a and Figure 4.8.8d - could explain why merge trees and
persistence diagrams perform similarly.
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(a) Curv.: var(·, h). (b) Curv.: NLeaves(·, h). (c) Curv.: NInt(·, h).

(d) Rad.: var(·, h). (e) Rad.: NLeaves(·, h). (f) Rad.: NInt(·, h).

Figure 4.8.8: Functional statistics related to merge trees obtained from the curvature
(Curv.) and the radius (Rad.) of the blood vessels. The shaded regions delimit the
pointwise central quartiles Q1 and Q3 of the data set.

The work of Sangalli et al. (2009b) reports that the geometrical features found relevant
to describe the data - namely: the overall width of the ICA, its tapering effect, the
curvature of the ICA in proximity of the last peak of curvature and the curvature along
the segment of the ICA between the two peaks of curvature - show a lower variance for the
group U, when compared to group L; and patients in group U tend to have a wider and more
tapered ICA’s than those in group L. They also present a less curved ICA between the two
peaks of curvature. We can appreciate that our findings are in accordance with the ones of
Sangalli et al. (2009b): indeed, we found in Section 4.8.3 that the group U exhibits a much
smaller variability in terms of merge trees, being its trees clustered together much more
than the trees of the other groups. Similarly the information we capture on curvature
and radius are coherent. Nevertheless we can also appreciate how the two approaches
complement each other: Sangalli et al. (2009b) are able to identify differences in precise
locations of the ICA, while the differences in terms of global oscillating behaviors and
regimes are much better captured by the topological summaries.

4.9 Discussion

We believe that methods from TDA can be fruitfully added to the toolbox of functional
data analysis, especially when non trivial smoothing and alignment are required for data
representation. In this chapter we focused on two topological representations of functions:
persistence diagrams, which, being the most classical tool in TDA, are regarded as a
benchmark, and merge trees, which are rarely used in real data analysis applications. The
framework for merge trees is the very recent metric structure defined in Chapter 2, for
which we also developed theoretical results specific for the application to functional data.

To support our narrative, we used as paradigmatic real world application the classifi-
cation analysis of the AneuRisk65 functional data set. This data set poses all the desired
challenges: careful smoothing procedures and alignment techniques must be employed to
obtain meaningful results. Reanalyzing the seminal case study described in Sangalli et al.
(2009b), we show the advantages of having a representation of functional data which is
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invariant with respect to homeomorphic transformations of the abscissa – thus lightening
the burden of careful alignment – and also allows for agile smoothing – possibly causing
some overfitting – thanks to the pruning of the trees which takes care of this aspect of FDA
which practitioners often find problematic. Following a classification approach based on
QDA applied to proper reduced representations of the data, as in Sangalli et al. (2009b),
we obtain robust results with comparable, if not better, accuracy in terms of L1out pre-
diction error, and we confirm some facts about the variability of the data in the groups
of patients characterized by the different location of the cerebral aneurysm, consistently
with the findings of previous works.

The effectiveness of the simple pipeline proposed in the case study does motivate further
research in order to deal with more complicated scenarios including multivariate functional
data in which a vector of functions defined on the same domain could be summarized via a
topological representation. Similarly, statistical tools to better interpret population of trees
should be studied and developed, starting for instance from the brief discussion carried
out in Section 4.8.4. This would open up the door for more refined statistical procedures
like testing or uncertainty quantification, which are very hard to deal with in general
metric spaces. On top of that, optimizing the numeric and computational aspects of the
tree-based tools that we introduced would surely make them more viable in applications.

To be sure, we want to stress that careful smoothing is still mandatory when precise
differential information about the data is needed, since small oscillations in a function
can still cause high amplitude oscillations in the derivatives, which cannot be removed by
pruning. Moreover, not all FDA applications are adapted to the representations offered
by merge trees or persistent diagrams. Indeed, the information collected by merge trees
is contained in the ordering and in the amplitude of the extremal points of a function,
and not on their exact abscissa. Hence, if the abscissa carries valuable information for
the analysis – for instance, a wavelength, or a precise landmark point in space or time –
the TDA approach followed in this work for data representation is not indicated, precisely
because of its invariance property with respect to homeomorphic transformations of the
abscissa. But this criticism also applies to many alignment procedures proposed in the
literature. Similarly, in Section 4.7.2, we point out that there are functions which have
equivalent representations in terms of merge trees although the order on the abscissa of
their critical points is different, although merge tree are much less sensitive to such issue
when compared to persistence diagrams (see also Curry et al. (2021)). If the order of
critical points of the function is of importance for the analysis, then surely persistence
diagrams, but possibly also merge trees, should be avoided.

Going general, we point out that whenever the datum designating a statistical unit is
only a representative of an equivalence class, the analyst must be sure that the variability
differentiating the members of the same class is ancillary with respect to the statistical
analysis performed on the statistical units. This consideration always applies in FDA,
whenever data are aligned according to transformations belonging to a group. Merge trees
offer a representation of functional data in terms of equivalence classes whose members
are invariant with respect to homeomorphic transformations of the abscissa. Persistence
diagrams partition the space of functional data in even coarser equivalence classes, al-
though they could be enough for the analysis, as we saw in the case study illustrated in
Section 4.8. Occam’s razor should guide the analyst’s final choice.
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Appendix

4.A Proofs

Proof of Proposition 4.11.

Let f : X → R be a bounded function defined on a path connected topological space
X and let φ : Y → X be an homeomorphism. We need to prove that the merge tree and
the persistence diagram associated to the function f and f ′ = f ◦ φ are isomorphic.

We know that:

Yt = {f ′−1((−∞, t])} = {y|f ′(y) ≤ t} = {x = φ(y)|f(x) ≤ t}

This means that y ∈ Yt if and only if φ(y) ∈ Xt, and so Yt = φ−1(Xt). Since the
restriction of an homeomorphism is still an homeomorphism, we can take its inverse, and
by the composition properties of π0, we obtain that π0(Xt) ∼= π0(Yt). Given t′ < t, we
thus have the following commutative diagram:

Xt′ Xt

Yt′ Yt

φ φ

and passing to path connected components/homology:

π0(Xt′) π0(Xt)

π0(Yt′) π0(Yt)

π0(φ) π0(φ)

Hp(Xt′) Hp(Xt)

Hp(Yt′) Hp(Yt)

Hp(φ) Hp(φ)

where the vertical arrows in the second diagram are isomorphisms of groups. The first di-
agram then gives the isomorphism of merge trees, while the last one gives the isomorphism
of PD0(f) and PD0(f

′).
■

Proof of Proposition 4.13.

Each leaf in (T, hf ) corresponds to a point in PD(f). The x coordinate of each point is
given by its height, which can be retrieved through hf . Consider v ∈ LT and let γv, be
the ordered set {v′ ∈ VT

∣∣v′ ≥ v} i.e. the path from v towards rT . The y coordinate of the
points associated to v is the minimal height at which γv intersects another path γl, with l
being a leaf with height less than v. ■
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Proof of Lemma 4.19.

Let U = f−1((−∞, t)). Being f continuous, U is open in X. Therefore x /∈ U and
f(x) ≥ t. For every Wx open neighbor of x we know Wx

⋂
U ̸= ∅ and Wx

⋂
(X − U) ̸= ∅.

By the continuity of f , for every ϵ > 0 we have Wx open neighbor such that for every
y ∈Wx, | f(y)− f(x) | < ϵ. In particular, we can always consider y ∈Wx

⋂
U . Thus, for

every ε > 0 we have f(y) < t ≤ f(x) and | f(y)− f(x) | < ϵ. Thus f(x) = t.
■

Proof of Proposition 4.20.

The leaf v is associated to a path connected component U t0
i ⊂ Xt0 = f−1((−∞, t0]), with

t0 = hf (v) and t1 = hf (father(v)). Consider now i : f−1((−∞, t0]) ↪→ f−1((−∞, t1)) and
let U = π0(i)(U

t0
i ). Being f continuous U is open in X.

We can define g : X → R such that g(x) = f(x) if x /∈ U , and g(x) = t1 if x ∈ U .
We have 0 ≤ g(x) − f(x) ≤ ε; in fact t0 ≤ f(x) < t1 = g(x) for every x ∈ U and

f(x) = g(x) if x /∈ U . Moreover f−1((−∞, t]) = g−1((−∞, t]) if t ≥ t1 and g−1((−∞, t]) =
f−1((−∞, t])−U for t < t1. And this implies the result about merge trees and tameness.

We only need to prove that g is continuous. We need to verify that, for any x ∈ X,
for every ϵ > 0 there is Wx open neighbor of x such that for every y ∈ Wx, we have
| g(x) − g(y) | < ϵ. If x ∈ U this is trivially verified since U is open and so we can
always find Wx ⊂ U , where g is constant. If x is an internal point of X − U , still the
condition is verified for f(x) = g(x) and f is continuous. We are left with the case x ∈ ∂U .
For every Wx path connected open neighbor of x, we know that Wx

⋂
U ̸= ∅. Moreover

x /∈ g−1((−∞, t)) since g−1((−∞, t)) is open in X and it would imply that x an internal
point of U . So x ∈ ∂g−1((−∞, t)) and by Lemma 4.19, f(x) = t1.

So if | f(x)− f(y) | < ϵ, then | g(x)− g(y) | < ϵ: if y /∈ U then g(y) = f(y) otherwise
g(x) = g(y) = t1. Thus, g is continuous. ■

Proof of Corollary 4.21.

Starting from T0 = Tf , each time we apply (Pε) to obtain Ti+1 from Ti, thanks to Propo-
sition 4.20 we have continuous tame functions fi and fi+1 such that f(x) ≤ fi(x) ≤
fi+1(x) ≤ fi(x) + ε. Each fi+1 is equal to fi up to an open set Ui. Thus, if Vi =

⋃i−1
k=1 Ui,

then fi = f on X − Vi. Note that either Ui ⊂ Uj - with i < j - or they are disjoint. The
case Ui ⊂ Uj occurs when at the j-th step we delete a leaf vj such that father(vj) > vi -
with vi being the leaf deleted at the i-th step and with the father of vj being taken in Tj ,
but being compared to vi in Tf . If this is not the case, the sets Ui and Uj are disjoint.

We want to prove that maxX fi+1 − fi = maxX fi+1 − f .
We know that on Ui we have maxUi

fi+1(x)− fi(x) = hfi(father(vi))− hfi(vi) and on
X − Ui we have fi+1 = fi. Thus maxX fi+1 − fi = hfi(father(vi))− hfi(vi).

Consider now Ui−Vi, which is always non-empty. For x ∈ Ui−Vi we have fi(x) = f(x).
The key observation is that by construction a local minimum of f over Ui is given by any
point in the path connected component associated to vi, i.e. there is x ∈ Ui−Vi such that
fi(x) = hfi(vi) = hf (vi) = f(x) and fi+1(x) = hfi(father(vi)). Thus maxX fi+1 − fi =
fi+1(x)−fi(x) = fi+1(x)−f(x) ≤ ε. The result on the merge trees follows by construction,
since the deletions which lead to each Ti are induced via pruning. ■

Proof of Theorem 3.37.

To prove the theorem, we need some notation and some auxiliary results. To avoid
dealing with unpleasant technicalities we work under the hypothesis that for any merge
tree (T, h), h is an injective function. We call this assumption (G). It is not hard to see
that for any fixed merge tree T , for any ϵ > 0, there is a merge tree T ′ such that (G)
holds and dE(T, T

′) ≤ ϵ. It is enough to make arbitrarily small shrinkings to the edges.
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Similarly for functions: given a continuous function we can always find an arbitrarily close
function - in terms of ∥ · ∥∞ - such that the associated merge tree (T, hf ) satisfies (G).

First we define the least common ancestor (LCA) of a set of vertices in a merge tree.

Definition 4.25. Given a merge tree (T, hT ) and set of vertices A = {a1, . . . , an} ⊂ VT ,
we define LCA(a1, . . . , an) = min

⋂n
i=1{v ∈ VT

∣∣v ≥ ai}.
Consider now f, g tame functions on the path connected topological space X such that

supx∈X | f(x) − g(x) | ≤ ε. Let (F, hf ) and (G, hg) be their associated merge trees. For

t ∈ R, we set Xf
t = f−1((−∞, t]). Since | f(x) − g(x) | ≤ ε we have Xf

t ⊂ Xg
t+ε and of

course Xg
t ⊂ X

f
t+ε.

We set f t+ε
t := π0(X

f
t ↪→ Xf

t+ε), g
t+ε
t := π0(X

g
t ↪→ Xg

t+ε), α
t+ε
t := π0(X

f
t ↪→ Xg

t+ε),

and βt+ε
t := π0(X

g
t ↪→ Xf

t+ε). We then call Ft := π0(X
f
t ) and Gt := π0(X

g
t ). With these

pieces of notation we can write down the following commutative diagram:

Ft Ft+ε Ft′ Ft′+ε

Gt Gt+ε Gt′ Gt′+ε

f t+ε
t ... f t′+ε

t′

gt+ε
t ... gt′+ε

t′

Note that the diagonal maps are α : Ft → Gt+ε and β : Gt → Ft+ε. Lastly, if a
′
t = f t

′

t (at),
we say that at < at′ .

If we collect together the path connected components {Ft}t∈R and {Gt}t∈R taking the
disjoint unions F :=

∐
t∈R Ft and G :=

∐
t∈RGt we can write down the maps α : F→ G

and β : G → F, so that given at ∈ Ft, α(at) := αt+ε
t (at). Given at′ ∈ F, we also set

hf (at′) = t′. The same for hg.
We point out that the vertices of the merge trees F and G are contained in some Ft or

Gt, respectively, and thus we have VF ↪→ F and VG ↪→ G. We will often refer to v ∈ VF
as v ∈ F, and thus, for instance, take α(v), without explicitly mentioning the inclusion
map. Note that the partial order we defined for F and G is compatible the the one of the
vertices of the merge trees.

In a more technical language, F and G are the display posets of the two persistence sets
π0(X

f ) and π0(X
g) (Curry et al., 2022), but we want to avoid introducing such technical

definitions. The work of Beketayev et al. (2014) shows that α and β give an ε-interleaving
of merge trees (see Beketayev et al. (2014)), which, by Agarwal et al. (2018), is equivalent
to the map α satisfying the following conditions:

(P1) hg(α(at)) = hf (at) + ε = t+ ε for all at ∈ F

(P2) if α(at) < α(at′) then there is at′′ such that at < at′′ , at′ ≤ at′′ and t′′ − t′ < ε.

(P3) if bt′ ∈ G− α(F), then, given bt = min{bt′′ > bt′
∣∣bt′′ ∈ α(F)}, we have t− t′ ≤ 2ε.

A map which satisfies (P1)-(P3) is called ε-good (Agarwal et al., 2018).
To bridge between the continuous nature of F and G and the discrete (F, hf ) and

(G, hg), we define the following maps:

Lf : F→ VF

Lf (at) = max{v ∈ VF | v ≤ at} and similarly for Lg. Leveraging on these definitions we
set ϕ := Lg ◦ α and ψ := Lf ◦ β.

Finally we start building an edit path between (F, hf ) and (G, hg). To do so we pro-
gressively add couples to an empty set M : couples of the form (v, ”D”) mean that the
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vertex v ∈ VF is deleted, while (”D”, w) means that w ∈ VG is deleted, (v, ”G”) means
that the vertex v ∈ VF is ghosted, (”G”, w) means that w ∈ VG is ghosted and (v, w)
means that we shrink (v, father(v)) so that the weight of (v, father(v)) becomes equal to
the one of(w, father(w)). The set M is in very close analogy with the mappings defined
in Chapter 2.

By working simultaneously on F and G, we collect all the “edits” in M ⊂ VF ∪
{”D”, ”G”} × VG ∪ {”D”, ”G”} and then, in the last subsection of the proof, we use
M on induce an edit path between F and G. We will call πF :M → VF ∪ {”D”, ”G”} the
projection on the first factor, and πG the projection on the second.

4.A.1 Leaves of F

In this section we take care of the leaves of the merge tree F .

4.A.1.1 Selecting the Coupled Leaves

Consider the following set of leaves:

LF = {v ∈ LF |∄v′ ∈ LF such that α(v) < α(v′)} (4.2)

We name the condition:

(a) ∄v′ ∈ LF such that α(v) < α(v′)

so that we can more easily refer to it during the proof. Observe that we never have
α(v) = α(v′) thanks to condition (G).

The set LF is the set of leaves which will coupled by M : we add to M all the couples
of the form (v, ϕ(v)) with v ∈ LF and add (v, ”D”) for all v ∈ LF − LF .

Lemma 4.26. Given v, v′ ∈ LF , then ϕ(v) ≥ ϕ(v′) if and only if v = v′. Moreover, for
every v′ ∈ LF such that (a) does not hold, there is v ∈ LF such that α(v) < α(v′).

Proof. The first part of the proof reduces to observing that ϕ(v) ≤ ϕ(v′) if and only if
α(v) ≤ α(v′).

Now consider v′ ∈ LF such that (a) does not hold. We know there is v0 such that
α(v0) < α(v′). If v0 ∈ LF we are done, otherwise there is v1 such that α(v1) < α(v0) <
α(v′). Note that f(v1) < f(v0). Thus we can carry on this procedure until we find vi ∈ LF .
Note that argmina∈VF

f(a) ∈ LF , thus, in a finite number of step we are done.

4.A.1.2 Height Bounds on Couples

Now we want to prove the following proposition which will be used to give an upper bound
for the cost of the edits induced by the couples (v, ϕ(v)) added to M .

Lemma 4.27. Given v ∈ LF , then |hf (v)− hg(ϕ(v)) | ≤ ε.

Proof. Suppose the thesis does not hold. Since hg(ϕ(v)) ≤ hf (v) + ε, contradicting the
thesis means that we have v ∈ LF such that:

(b) hf (v)− hg(ϕ(v)) > ε.

Let w = ϕ(v). If (b) holds, then hg(father(w)) − hg(w) > hg(α(v)) − hg(w) > 2ε. Let
v′ = ψ(w) ≤ β(w). Note that hf (v

′) < hf (v). We have ϕ(v′) ≤ α(v′) ≤ α(β(w)). But
since hg(father(w))− hg(w) > 2ε, we also have α(v′) ≤ α(v) with v′ ̸= v which is absurd
by Lemma 4.26.
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4.A.1.3 Cost Bound on Deletions

In this step we prove a cost bound for some the vertices of F which are going to be deleted.
We add to M the couples (x, ”D”) for every x /∈ {v′ > v | v ∈ LF }.

Lemma 4.28. Given x /∈ {v′ > v | v ∈ LF }, then wF ((x, father(x))) ≤ 2ε.

Proof. We simply observe that, if x /∈ v /∈ {v′ > v | v ∈ LF } then there is v ∈ LF such
that α(v) < α(x). By property (P2) of α, since hf (v) < hf (x), we have that (x, ”D”) has
cost at most 2ε.

4.A.2 Leaves and deletions of G

Similarly we add to M the couples (”D”, y) for every y /∈ {w′ > w |w ∈ πG(M) ∩ VG}.

Lemma 4.29. Given y ∈ VG such that y /∈ {w′ > w |w ∈ πG(M)∩VG}, then wG((y, father(y))) ≤
2ε.

Proof. Consider β(y). Let v ≤ β(y) leaf. We have α(β(y)) ≥ α(v) and α(β(y)) ≥
y. If Lg(α(β(y))) ̸= y we are done since hg(α(β(y))) = hg(y) + 2ε. Suppose instead
Lg(α(β(y))) = y. This implies α(v) ≤ y. By construction v /∈ LF , but then there is
v′ ∈ LF such that α(v′) < α(v) ≤ y. Absurd.

4.A.3 Internal Vertices

Now we want to take into account the internal vertices of F and G.
Thanks to Lemma 4.28 and Lemma 4.29 we can delete all x /∈ {v′ > v | v ∈ LF } and

y ∈ VG such that y /∈ {w′ > w |w ∈ πG(M) ∩ VG}, each with cost at most 2ε. Note that
these deletions do not change the heights of any non deleted vertex.

Call F1 and G1 the two trees obtained after such deletions and after the ghosting of
all the order 2 vertices arising - and consequently adding (v, ”G”) or (”G”, w) to M for
all the ghosted vertices respectively in F or G. If we consider α |F1

then by construction
α |F1

: F1 → G1. Similarly β |G1
: G1 → F1. Moreover α(F) = α |F1

(F1). Thus α |F1
is

still ε-good. In what follows, with an abuse of notation, we avoid explicitly writing the
restriction of the maps α and β, implying that these are always considered as defined on
the “pruned” trees F1 and G1.

4.A.3.1 Results on Internal vertices

We prove the following results.

Lemma 4.30. Let x ∈ VF1
−LF1

such that x = LCA(A) with A = {v ∈ VF1
| v < x}

⋂
LF1

.
Let y = LCA(ϕ(A)). Then |hf (x)− hg(y) | ≤ ε.

Proof. For every a ∈ A we know ϕ(a) < ϕ(x) and thus y ≤ ϕ(x). Thus hg(y) ≤ hf (ϕ(x))+
ε. Suppose then hg(y) < hf (x)− ε. However, β(y) ≥ x for β(y) ≥ β(ϕ(a)) ≥ a. Which is
absurd for hf (β(y)) = hg(y) + ε < hf (x).

Lemma 4.31. Let x ∈ VF1
−LF1

such that x = LCA(A) with A = {v ∈ VF1
| v < x}

⋂
LF1

.
Let y = LCA(ϕ(A)) = LCA(B) with B = {w ∈ VG1

|w < y}
⋂
LG1

.
Then for every w = ϕ(v) ∈ B − ϕ(A), let x′ = LCA(A ∪ {v}). Then we have hf (x

′)−
hf (x) ≤ 2ε.

Proof. Since v ≰ x but ϕ(v) < ϕ(x), we know min{hf (x′) − hf (x), hf (x′) − hf (x)} ≤ 2ε.
Suppose hf (x

′)− hf (x) > 2ε. We know β(α(x)) > v for ϕ(x) > ϕ(v). But then β(α(x)) ≥
x′ which is absurd since hf (β(α(x))) = hf (x) + 2ε < hf (x

′).
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Lemma 4.32. Consider e = (x, father(x)) ∈ EF1
, x = LCA(A) with A = {v ∈ VF1

| v <
x}
⋂
LF1

. Let y = LCA(ϕ(A)) = LCA(B), with B = {w ∈ VG1
|w < y}

⋂
LG1

. Let
e′ = (y, father(y)) ∈ EG1

. Then |wF1
(e)− wG1

(e′) | ≤ 2ε.

Proof. We know by Lemma 4.30 that |hf (x) − hg(y) | ≤ ε. Thus we can focus on x′ =
father(x) and y′ = father(y). Let A′ = {v ∈ VF1

| v < x′}
⋂
LF1

, B′ = {w ∈ VG1
|w <

y′}
⋂
LG1

, w = LCA(ϕ(A′)) and v = LCA(ψ(B′)). By Lemma 4.30, again |hf (x′) −
hg(w) | ≤ ε and |hf (v)− hg(y′) | ≤ ε.

Since A ⊂ A′, then B ⊂ ϕ(A′) and similarly A ⊂ ψ(B′). Which entails x′ ≤ v
and y′ ≤ w. Since x′′ = LCA(ψ({w′ ∈ VG1

|w′ < w})) ≥ v, by Lemma 4.31 we have
hf (v) − hf (x

′) ≤ 2ε and, similarly, hg(w) − hg(y
′) ≤ 2ε. Putting together |hf (x′) −

hg(w) | ≤ ε, y′ < w and hg(w) − hg(y′) ≤ 2ε and the analogous inequalities for y′ we
obtain |hf (x′)− hg(y′) | ≤ ε.

Thus |hf (x′)− hf (x)− (hg(y
′)− hg(y)) | ≤ 2ε.

4.A.3.2 Deleting Internal Vertices

Now we proceed as follows: for every x ∈ VF1
let A = {v ∈ VF1

| v < x}
⋂
LF1

, y =
LCA(ϕ(A)) = LCA(B), with B = {w ∈ VG1

|w < y}
⋂
LG1

. If B ̸= ϕ(A), then add
(x, ”D”) to M and delete x. By Lemma 4.31 the cost of deleting x is less then 2ε. We
do so for all x ∈ VT1

. Then we follow an analogous process for y ∈ VG1
: let y = LCA(B)

with B = {w ∈ VG1
|w < y}

⋂
LG1

, x = LCA(ψ(B)) = LCA(A) with A = {v ∈ VF1
| v <

x}
⋂
LF1

. If A ̸= ψ(B), then add (”D”, y) to M and delete y. By Lemma 4.31 the cost of
deleting y is less then 2ε.

4.A.3.3 Coupling the Internal Vertices

After the deletions in Section 4.A.3.2 we obtain two merge trees F2 and G2, with the same
leaves as F1 andG1 but with the property that for each x ∈ VF2

we have a bijection between
the leaves A = {v ∈ VF1

| v < x}
⋂
LF1

and the leaves in subG2
(y) with y = LCA(ϕ(A)).

Thus for any edge (x, x′) ∈ EF2
we have a unique edge (y, y′) ∈ EG2

such that the leaves
of subF2

(x) and subG2
(y) are in bijection and the same for x′ and y′. Thus we can couple

x and y, add (x, y) to M and make the shrinking to pair their weights. Since deleting a
vertex doesn’t affect the weight of the other edges, then we can still apply Lemma 4.32
which guarantees that the shrinkings cost less then 2ε.

4.A.4 Inducing the Edit Path

To conclude the proof we sum up everything and induce and order edits operations ac-
cording to the couples contained in M , so that the costs of the edits matches the ones
described along the previous subsections of the proof.

First we apply all the deletions on F described in Section 4.A.1.3, with the cost of every
edit being at most 2ε. Then we ghost all order 2 vertices. By construction we obtain, from
F , the tree F1. At this point we delete internal vertices of F1 according to the procedure
described in Section 4.A.3.2, obtaining F2. Then we shrink all the edges of F2, according
to Section 4.A.3.3, obtaining G2. Then we insert all the edges needed to obtain G1 from
G2, which are associated to the couples (”D”, y) mentioned in Section 4.A.3.2. Then we go
on with the splittings induced by (”G”, w) ∈M , which are needed to subsequently insert
the edges which take us from G1 to G, as explained in Section 4.A.2. In the respective
sections it is shown that all the edits we employed have cost less then 2ε.

This concludes the proof.
■
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4.B Combining Metrics

To aggregate curvature and radius, we make use of the following proposition.

Proposition 4.33. Given (X, d0) and (X, d1) metric spaces, then da,b,p := (a·dp0+b·d
p
1)

1/p,
with a, b ∈ R>0 and p ≥ 1, is a metric on X.

Proof. da,b,p(x, y) = ||(a1/p · d0(x, y), b1/p · d1(x, y))||p.
Since, given k > 0, k · di is a metric if and only if di is a metric, we can rescale d0 and

d1 and take a = b = 1. We refer to d1,1,p as dp.
So:

• dp(x, y) = 0 iff d0(x, y) = 0 = d1(x, y) and this happens if and only if x = y.

• symmetry is obvious

• we use ||h+q||p ≤ ||h||p+||q||p with h = (d0(x, z), d1(x, z)) and q = (d0(z, y), d1(z, y)).

Since di(x, y) ≤ di(x, z) + di(z, y) we get:

||(d0(x, y), d1(x, y))||p ≤ ||(d0(x, z)+d0(z, y), d1(x, z)+d1(z, y))||p = ||(d0(x, z), d1(x, z))+
(d0(z, y), d1(z, y))||p ≤ ||(d0(x, z), d1(x, z))||p + ||(d0(z, y), d1(z, y))||p.

Therefore:

dp(x, y) ≤ dp(x, z) + dp(z, y).
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5. Imaging-based representation and stratification of intra-
tumor Heterogeneity via tree-edit distance

Note to the Reader

As already mentioned in Chapter 1, this chapter of the thesis contains a work which
has been developed in close collaboration with other authors (listed in Chapter 1). The
spirit of the work is different from the other chapters of the thesis: in the following, a
cutting edge medical research problem is tackled by means of an unsupervised analysis,
employing a merge tree representation of the patients. The theoretical developments which
are carried out in the chapter are motivated by the expertise on the clinical problem of
the other collaborators involved in the project, which lead to a novel metric for merge
trees, adapted from the one defined in Chapter 3. Even though such metric is of general
interest and it may foster similar approaches to be carried out in other TDA pipelines, its
rationale is strictly bound to the problem we consider, enhancing the interpretability of
the proposed pipeline and thus adding reliability to the unsupervised analysis carried out.
For this reason this chapter contains an in-depth presentation of the clinical problem, with
its motivations and challenges and it is laid out as a piece of work directed to scientists
potentially working in the same field. The developments in terms of merge trees, which
make the chapter a perfect example of a non trivial application of the ideas presented in
the previous chapters of the thesis, are mainly contained in Section 5.4.2, Section 5.4.3
and from Section 5.B to Section 5.G.

abstract

Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity
assessment represents a pivotal step for effective treatment planning and prognosis pre-
diction. Despite new procedures for DNA sequencing and analysis, non-invasive methods
for tumor characterization are needed to impact on daily routine. On purpose, imaging
texture analysis is rapidly scaling, holding the promise to surrogate histopathological as-
sessment of tumor lesions. In this work, we propose a tree-based representation strategy
for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We
leverage radiomics information extracted from PET/CT imaging and we provide an ex-
haustive and easily readable summary of the disease spreading. We exploit this novel
patient representation to perform cancer subtyping according to hierarchical clustering
technique. To this purpose, a new heterogeneity-based distance between trees is defined
and applied to a case study of Prostate Cancer (PCa). Clusters interpretation is explored
in terms of concordance with severity status, tumor burden and biological characteristics.
Results are promising, as the proposed method outperforms current literature approaches.
Ultimately, the proposed methods draws a general analysis framework that would allow to
extract knowledge from daily acquired imaging data of patients and provide insights for
effective treatment planning.
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5.1 Introduction

The current paradigm shifting of modern medical practice sinks its root in providing per-
sonalized treatments and improving therapy outcomes. Huge strides have been made in
oncology with the uprising of quantitative imaging techniques and new procedures for
DNA sequencing and analysis that allow an extensive characterization of cancer subtypes.
In particular, recent research has investigated the main causes of cancer progression, re-
sistance to therapy and late recurrence. Among these, tumor heterogeneity has gained
special interest and has been recognized to play a crucial role Fisher et al. (2013): defined
as complex genetic, epigenetic and protein modifications that can be found within the
same patient’s disease, tumor heterogeneity behaves as a driver for phenotypic selection.
According to Stanta and Bonin and y Cajal et al. Stanta and Bonin (2018); y Cajal et al.
(2020), different types of tumor manifestation may exist as a response to microenviron-
mental and external changing, differing between primary tumor and proximal and distant
metastases. As a result, certain tumor phenotypes properly respond to therapies and oth-
ers become resistant clones, leading to treatments ineffectiveness and cancer progression.
Pertinently, detecting at baseline which phenotype will respond and which will not - known
as prognostic cancer subtyping - represents a pivotal step in personalized medicine.

Although recent findings about heterogeneity suggest that therapy would be improved
if guided by the analysis of both primary and metastatic tissues - such as lymph nodes
Cummings et al. (2014) -, clinical practice usually relies on primary tumor biomarkers for
prognosis definition and treatment planning. Thus, baseline assessment emerges altered
by the understimation of intra-tumor heterogeneity which behaves as confounding factor
in pre-treatment clinical-pathological prognosis, leading to poor survival rates Esparza-
López et al. (2017). This misalignment between research evidence and clinical practice
seems mostly due to the lack of non-invasive methods for heterogeneity quantification.
Accordingly, current prognostic cancer subtyping cannot be translated into daily clinical
practice and therapeutic guidelines.

Over the last two decades, the texture analysis of digital images - such as Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography / Computer Tomography
(PET/CT) - has arisen as a valuable non-invasive proxy for biological assessment of tu-
mors, eventually growing in a discipline of its own, namely radiomics Mayerhoefer et al.
(2020). Specifically, macroscopic appearance of tumors has been acknowledged as a valid
tool for guiding clinical decisions in the definition of disease severity and treatment plan-
ning. Broadly speaking, image texture analysis consists of extracting descriptors of spatial
variation of voxel grey-scale and intensity within the image Volumes Of Interest (VOI), i.e.,
the tumor lesions. Under the name of radiomic features, such textural descriptors form a
high dimensional vector embedding of the VOI and may provide a non-invasive assessment
of tumor appearance from routinely acquired imaging studies Gillies et al. (2016). These
features are indeed supposed to supply additional predictive and prognostic information,
ready to use to postulate the underlying biological mechanisms of disease progression in
clinical routine Chicklore et al. (2013). Accordingly, the dissimilarity in the appearance
of different lesions, therefore in their texture descriptions, can be regarded as radiological
heterogeneity, which can be easily quantified and leveraged in the daily practice.

Despite the increasing interest in tumor heterogeneity, imaging-guided therapy cur-
rently employs biomarkers for tumor burden that stem from the characterization of the
primary tumor, the bigger lesion (often coinciding with the hottest lesion) or the mean
lesions’ profile. Only recently few radiomics-based approaches have been suggested - for
prognosis, treatment outcome and survival prediction - which consider the multi-lesion
disease in a comprehensive way. In particular, several researchers Eertink et al. (2022);
Ceriani et al. (2020); Burggraaff et al. (2020) proposed different segmentation strategies for
feature extraction from patient level VOIs, while Cottereau et al. Cottereau et al. (2020)
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evaluated the predictive power of several indicators reflecting the spatial distributions of
malignant foci spread throughout the whole body. A number of dissemination features
have been explored and reviewed: the number of lesions, the euclidean distance between
crucial or predominant bulks, the largest value of the pairwise sum of the physical dis-
tances between lesions, etc.. Stemming from a similar idea, Cavinato et al. Cavinato et al.
(2020) proposed a similarity metric for comparing lesions’ texture descriptions, defining
intra-patient heterogeneity as the normalized average of pairwise distances between le-
sions’ radiomic vectors. This similarity over patient’s lesions description has thus been
suggested as functional, rather than spatial, dispersion index for tumor burden and dis-
ease severeness, with promising results in Hodgkin Lymphoma Sollini et al. (2020) and
Prostate Cancer Sollini et al. (2021). Preliminary results represent an insightful starting
point in the debate around the proper definition of heterogeneous disease.

In this work, motivated by the need to embed tumor heterogeneity quantification into
patients’ clinical pathway planning, we propose a novel way for modeling intra-patient tu-
mor heterogeneity in a non-invasive way, leveraging the radiomic framework. Specifically,
we perform dimensionality reduction on radiomic vectors, as to remove redundancy and
collinearity while preserving the multi-view nature of the texture description. Reduced
vectors of peer lesions within the same tumor are then compared via pairwise distances.
Representing the patient via the pairwise distance matrix of its lesions makes it labori-
ous to compare patients with different numbers of lesions. For this reason, upon lesions’
distance matrix, we build a dendrogram, which hierarchically aggregates peer lesions in a
unique combinatorial object. This object-oriented representation summarizes the multi-
lesion disease and highlights the relationship among lesions, basing on similarities in their
imaging characteristics. In fact, lesions are not independent as they are statistically and se-
mantically connected to the patient they belong to. Accordingly, such relationship shapes
and influences the structure of the dendrogram associated to the patient. We then exploit
the tree-based patient representation to cluster cancer subtypes according to their imaging
heterogeneity. To do so, we define a new ad hoc distance between trees. To validate the
method, we test the whole pipeline on a dataset of patients affected by metastatic Prostate
Cancer (PCa), evaluating the descriptive and stratification performance in terms of disease
severeness and outcomes. We associate imaging subtypes to clinically relevant information
within and beyond clinical surrogates, with the goal of eventually supporting therapy de-
cisions wherein actions regarding active surveillance, mild treatment or intensified therapy
are devised and taken Fisher et al. (2013).

5.2 Results

5.2.1 Case study: Prostate Cancer

Within the personalized medicine framework, Prostate cancer (PCa) is a striking example
of the need to exploit an insightful prognostic cancer subtyping for treatment planning.
In fact, even if recent studies have reported a decreasing pattern of overall PCa incidence,
Culp et al. Siegel et al. (2020) and Siegel et al. Culp et al. (2020) recorded an alarming
mortality rate due to an increasing trend of distant stage metastatic disease, even in
developed countries. Moreover, the role of imaging-guided therapy for PCa has revealed
to be very promising and is consistently spreading in daily practice Giovacchini et al.
(2010). Despite these facts, clinical guidelines still relies on primary tumor biomarkers.
Besides, very limited methods have been proposed for reliably assessing and quantifying
multi-lesion heterogeneity information within the same patient from an imaging point of
view. This misalignment between research evidence and clinical routine results in poor
disease free survival rates, mostly due to the lack of non-invasive methods for heterogeneity
quantification.
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The case study analyzed in this work is composed by a set of N = 333 lesions belonging
to fifty-five patients of Azienda Ospedaliero-Universitaria Pisana with multi-site, multi-
lesion, recurrent Prostate Cancer confirmed with a positive PET/CT study. The study
was performed in accordance with the Declaration of Helsinki and approved by the local
ethics committee. The signature of a specific informed consent and the legal requirements
of clinical trials were waived given the observational retrospective study design. During
the observational trial, patients showed evidence of biochemical recurrence after first-line
treatments, exhibiting metastatic disease. Every patient manifested a different number of
tumor lesions ni, according to the spreading burden of the metastatic tumor. Informa-
tion about age, sex, lesion site, total tumor volume, Gleason Score Epstein et al. (2016),
Prostate Specific Antigen Balk et al. (2003) and therapy treatment was collected per each
patient. Personal information and qualitative tumor data are displayed in Table 5.A.1 and
Table 5.A.2. Additionally, from PET/CT, volumes of interest, i.e. lesions, were segmented
by experienced nuclear medicine physicians and texture features were extracted over VOIs
according to the radiomic framework, resulting in forty radiomic features (p = 40). Both
the segmentation of lesions and radiomic features extraction were performed using LifeX
software Nioche et al. (2018), according to the formulas detailed in the software documen-
tation (www.lifexsoft.org).

We fed Prostate Cancer imaging data into the pipeline described in Figure 5.2.1, obtain-
ing a tree-based representation T for each of the patients. The pruned edit distance dµP , as
defined in the Methods, was implemented and leveraged to compute the patient-to-patient
distance matrix. Clustering of patients was thus completed according to hierarchical clus-
tering algorithm with the proposed ad hoc distance and ward linkage. The number of
clusters was selected in the range [2, 5], as a trade off between performance and inter-
pretability, according to silhouette coefficient maximization. The resulting classes could
then be intended as groups of patients with similar representations in terms of hetero-
geneous disease, to be characterized according to exogenous clinical variables and risk
assessment.

5.2.2 Clusters characterization

As to profile the clustering, we describe how the stratification procedure captures the
differentiation of tumor heterogeneities and provide a clinical/biological interpretation.

Upon pipeline implementation, hierarchical clustering identified three groups: groups 0,
1 and 2 hosted 39, 10 and 6 patients respectively. In Figure 5.2.3 the curves of the heights
of the trees’ vertices over the three groups can be appreciated: branches present different
average heights according to the group their dendrograms belong (see Fig. Figure 5.2.3).
Groups are shown to entail different heterogeneity extent, following an ANOVA functional
approach Pini and Vantini (2017) Horváth and Kokoszka (2012).

Beside the group-wise characterization of tree conformation as manifestation of tumor
heterogeneity, clinical variables were used as exogenous factors to characterize and in-
terpret the groups. We used appropriate tests according to the variable type, normality
of data and sample size. Normality was tested according to the Shapiro test. We thus
employed Mann-Whitney non-parametric tests for comparing distributions of continuous
(non-normal) variables; parametric t-tests for testing the difference of means in continu-
ous (normal) variables; Levene non-parametric tests for comparing variances of continuous
(non-normal) variable; Bartlett parametric tests for continuous (normal) variable ratio of
variances; Chi− squared tests for independence of categorical variable. P-values are indi-
cated respectively as pm/d for tests on means/distributions, pvar for tests on variance and
pind for tests on independence. Pairwise one-sided comparison between groups rather than
multivariate analysis was investigated as to provide a group-wise characterization. As to
avoid potential Type II errors due to small sample size, value of α = 0.1 was considered
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[Step 1] View-aware Principal 
Component Analysis

Patient as a point cloudRadiomic vectors Reduced vectors

Pairwise distance matrixPatient as a dendrogram

[Step 4] Hierarchical 
Clustering

Histo Shape GLCM GLRLM GLZLM NGLDM

[Step 2] Projection on 
the radiomic space

t-S
N

E1
t-SNE2

[Step 3] Computation 
of pairwise distance

Figure 5.2.1: Patient representation pipeline: lesions’ radiomic vectors of each patient are
dimensionally reduced according to view-aware Principal Component Analysis. [Step 1]
Features are grouped according to the six semantic group, or view, they are semantically
divided into. As to preserve a balanced importance between views, two principal compo-
nents are kept from the scores of each PCA, leading to different percentages of explained
variability. A total of twelve principal components results from the process, which include
six orthogonal pairs of linear combinations of original features. [Step 2] Accordingly, pa-
tients are represented as finite sets of ni points in R12, that is the reduced radiomic space
according to view-aware strategy implementation. In the example, ni = 7. [Step 3] Pair-
wise (Euclidean) distance is compute among patients’ lesions and [Step 4] hierarchical
clustering with average linkage is applied to distance matrices, resulting in a dendrogram
T representing each patient.
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for significance.
We evaluated the differences between the obtained groups in terms of number of

oligo/multi-metastatic patients (as classified with two different clinical cut-offs of 3 and 5
lesions), number of patients with bone disease, total tumor volume and number of tumor
lesions. Also, the implementation of combined therapy (such as joint radiotherapy and
chemotherapy with respect to only chemotherapy) and response to therapy were evaluated
in patients of different groups. Additionally, among clinical prognostic tools, tumor ag-
gressiveness is usually assessed with Gleason Grading System (or Gleason Score) Epstein
et al. (2016). A Gleason Score (GS) is given to Prostate Cancer based upon its microscopic
appearance with respect to cell differentiation. Pathological scores represent the sum of
the primary and secondary patterns (each ranging from 1 - well differentiated, like normal
cells - and 5 - poorly differentiated, i.e., abnormal cells) and range from 2 to 10. Higher
numbers indicate more aggressive disease, worse prognosis and higher mortality Epstein
et al. (2016). In particular, patients with Gleason Score exceeding the value of 7 experience
extraprostatic extension and biochemical recurrence more frequently than others Draisma
et al. (2006). Accordingly, clusters were also analyzed in terms of mean Gleason Score and
number of patients exceeding GS of 7.

Besides, Prostate Specific Antigen (PSA) has been proposed for screening, assessment of
future risk of prostate cancer development, detection of recurrent disease after local therapy
and treatment planning of advanced disease. Often employed as criteria in combination
of stage and GS, its role in early stage assessments is still debated due to instability of
measurements and the presence of confounding factors. However, PSA is still considered
a valid tool for prognosis and treatments in advanced stages of metastatic prostate cancer
Pezaro et al. (2014). Moreover, PSA values after cytotoxic regimens has been shown to
predict survival. Particularly, the decrease in PSA levels is associated to therapy response
in soft tissue lesions and thus could be intended as a proxy of therapy outcome Smith
et al. (1998). Accordingly, we recorded PSA levels before the therapy (PSA0), right after
the first line of therapy (PSA1) and at the end of the follow up (PSA2). Delta-PSA levels
were computed between PSA1-PSA0 and PSA2-PSA0 as proxies of cancer evolution. In
the following, they will be referred as PSA, ∆PSA1,0 and ∆PSA2,0.

Table 5.2.1 and Figure 5.2.2 elucidate the results. The profile of the blue and green
groups are very similar for what PSA (pm/d = 0.3787, pvar = 0.4714) and ∆PSA1,0

(pm/d = 0.3477, pvar = 0.4533) are concerned, with a very limited range of values con-
centrated around zero. Different trends are exhibited by the blue and green curves of the
∆PSA2,0 (pm/d = 0.0591), where the difference could support the hypothesis of different
cancer evolution starting from similar baseline assessments. Yet, they present similar vari-
ance (pvar = 0.2159). The orange group, on the other hand, presents wider ranges and
higher intra-group heterogeneity. In particular, orange PSA is significantly higher than
the blue group with a much more spread distribution (pm/d = 0.0116; pvar = 0.0013) yet
no statistical difference with the green groups is confirmed (pm/d = 0.3089; pvar = 0.1845);
orange ∆PSA1,0 is significantly lower than the blue group (pm/d = 0.0019) but not than
the green one (pm/d = 0.1810), however its distribution appears more spread and inhomo-
geneous, covering both the negative and the positive axis, in both cases (pvar = 0.0003;
pvar = 0.0995). The ∆PSA2,0 of the orange group does not vary from the one of the blue
group (pm/d = 0.3689). However, it shows a higher variance than the other, suggesting a
heterogeneous long-term tumor prognosis (pvar = 0.0066). Also, the orange group and the
green group do not differ significantly in their average (pm/d = 0.1855) but their variances
reveal a mild divergence in terms of distribution kurtosis (pvar = 0.1085).

Regarding the number of lesions, the orange group displays a higher number of metas-
tases than the blue one (pm/d = 0.0081). The green group exhibits a behavior very similar
to the blue group (pm/d = 0.4162), diverging from the orange group with respect to which
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Figure 5.2.2: Results of clustering characterization: first three rows draw the distribu-
tions of the numerical clinical variables in the three groups, namely the PSA values, the
∆PSA1,0, the ∆PSA2,0, the number of lesions, Gleason Scores and the total tumor vol-
ume; last row shows the proportions of the categorical clinical variables in the three groups,
that are the combination of therapy and the response to treatment. For the proportion
of skeleton disease and of the oligo/multi-metastatic status as devised by the two clinical
cut-offs (3 and 5 lesions) see Section 5.H.
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it presents fewer lesions (pm/d = 0.0722). Moreover, total volume of the tumor is related
to the number of lesions. In fact, the blue group displays a reduced spreading of the tumor
over the body with respect to the orange group (pm/d = 0.0002) but not to the green group
(pm/d = 0.4917). The orange and the green groups also exhibit a statistical difference in
terms of tumor volume (pm/d = 0.0306). Of note, despite the number of metastases in the
blue and green groups are very similar, it should be noticed that their tumor spreading
appears shifted in the figure, entailing unrelated tumor burden information. Similarly,
the orange group, while presenting a greater number of lesions, shows an extension of
the tumor visually analogous to the green group. Such discrepancy is imputable to the
difference of variances the distributions display.

From these consideration, it appears clear how the green group shows phenotypic simi-
larities and dissimilarities with respect to both blue group and orange group, presenting an
in-between behavior. However, the detach of green patients from the rest of the population
is mostly driven by the different distribution of GS levels. In fact, the blue and orange
groups do not show peculiar differences (pm/d = 0.2967), although both differ from the
green group, compared to which they have a higher GS (pm/d = 0.0419; pm/d = 0.0601).
As it will be further discussed in discussion, prognostic power of GS values should be taken
with the grain of salt due to their qualitative and aggregated nature.

As for the clinical assessment of patients, the blue and green groups present similar
to each other yet opposite characterizations with respect to the orange group. They
display a lower percentage of patient with bone disease (pind = 0.0769; pind = 0.1729),
therefore fewer people who have undergone an invasive combination of therapies (pind =
0.0517; pind = 0.0863). Moreover, although the results on the response to therapy are not
significant due to the limited data available, they reveal a certain trend. In fact, both blue
and green groups of patients are administered a milder therapy with respect to orange
group. On one hand, such treatment results effective for the blue group, which shows the
highest percentage of responders; while, on the other hand, this is not the case for the green
group, which manifests the highest percentage of non-responders. Group 2 thus exhibit a
clinical characterization comparable to group 0, whereas tree conformation analysis and
prognostic assessment, i.e., response to therapy, agree in granting it a higher score of
risk. Finally, the orange group presents the highest number of multi-metastatic patients,
followed by the blue group and finally the green group, which hosts mostly oligo-metastatic
patients.

From Figure 5.2.4, some extent of stratification is appreciable, although the groups’
survival curves separation is not neat and statistically significant (p = 0.12). All patients
of group 0 gradually respond since they feature mild disease, both from a structural, i.e.,
tree conformation, and clinical point of view. The green group host patients who the
clinic would treat as not severe (in terms of number of lesions, GS and PSA baseline
information), but our radiomics investigation has put in an at risk group, to be properly
monitored, in terms of tree structure and tumor extension. In line with the results of our
policy, these patients do not respond to therapy during the study period. Finally, the
orange group carries severe patients from both a structural and a clinical point of view.

Since unsupervised approaches are thoroughly dataset dependent, hierarchical cluster-
ing grouped in the same clusters very heterogeneous patients, due to the limited data
available. In fact, clinical variable variance of orange patients was consistently larger than
other groups - despite not being the largest cluster. Interestingly, we fit a DBSCAN (Den-
sity Based Spatial Clustering of Applications with Noise) algorithm Khan et al. (2014) on
the pruned-edit distance matrix which lead to the same clustering policy of patients. In
this setting, while blue and green groups were confirmed to be clusters with similar den-
sity, the orange group was classified as noise, i.e., observations that display inconsistent
density characterization. Accordingly, a couple of patients responded to therapy while the
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Figure 5.2.3: a) Curves displaying the filtered heights of the trees’ vertices for the three
groups. Operationally, curves were built as follows: for any fixed height (x-axis), for any
tree in the selected group, we count the number of nodes whose height value is greater
than the fixed one (y-axis). The curves in the plot represent the pointwise within-group
means of such counts, and the shaded regions cover an area of 1 standard deviation around
the means. The values of such counting process result in a monotonically non-increasing
function detecting information about trees’ heterogeneity. In fact, higher values of such
function, especially as the height threshold becomes bigger and bigger, correspond to a
greater number of heterogeneous lesions in the patients. Patients of group 0 (blue line) are
characterized by a very homogeneous disease where trees branches are on average less and
very short compared to the other groups; patients of group 1 (orange line) tend to exhibit
more lesions than patients belonging to group 0, lesions which are intermediately heteroge-
neous, as their representation trees display both short branches and longer branches than
group 0; patients in group 2 (green line) are associated to very heterogeneous diseases,
displaying a similar number of lesions to group 0, but with the associated branches being
much longer. A synthetic example of tree per each group is displayed in Figure 5.4.3,
elucidating the differences with a graphical support. b) Functional comparison between
curves: in order to test the hypothesis that curves belonging to different groups are dif-
ferent, we use the ANOVA procedure proposed in Pini and Vantini (2017). It outputs
an interval-wise adjusted p-value function. Depending on the sort and level α of Type-I
error control, significant intervals can be selected. Here, we highlighted in grey the region
of significance. Of note, the curves appear different for what homogeneity-heterogeneity
balance is concerned; they loose significance as they approach very big height values.
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Variable Test on 0 vs 1 0 vs 2 1 vs 2
(p-values) (p-values) (p-values)

GS Mean 0.2967 0.0419 0.0601
Variance 0.8368 0.5433 0.7093

Gleason Category Independence 0.5129 0.5056 0.3077
Oligo or Multi (> 3) Independence 0.0601 0.9260 0.1729
Oligo or Multi (> 5) Independence 0.0848 0.6868 0.3339
3 <Lesions≤ 5 Independence 0.1969 0.9022 0.3950
N lesions Mean 0.0081 0.4162 0.0722

Variance 0.3871 0.4357 0.1469
Skeleton Independence 0.0769 0.9622 0.1729
Total Volume (ml) Mean 0.0002 0.4917 0.0306

Variance 0.0000 0.0047 0.2009
PSA Mean 0.0116 0.3787 0.3089

Variance 0.0013 0.4714 0.1845
∆PSA1,0 Mean 0.0019 0.3477 0.1810

Variance 0.0003 0.4533 0.0995
∆PSA2,0 Mean 0.3689 0.0591 0.1855

Variance 0.0066 0.2159 0.1085
Ongoing Therapy Independence 0.0601 0.5875 0.3339
Combined Therapy Independence 0.0517 0.6091 0.0863
Therapy Response Independence 0.6856 0.127 0.2907

Table 5.2.1: Significance in terms of p-values of the statistical tests between cluster 0
and cluster 1, cluster 0 and cluster 2, cluster 1 and cluster 2 in the proposed pipeline:
non-parametric/parametric tests on difference of averages and variances were performed
for (non-normal/normal) numerical variables while tests on category independence were
performed for categorical variables.

majority did not respond and entered more invasive treatments. For these reasons, the
orange survival curve is hardly interpretable and is left out the discussion. For sure, the
high variability of this group testifies that a larger testing cohort would allow to identify
further separations within this group, leading to clearer prognostic results.

5.2.2.1 Comparison with State-of-the-Art methods

The established radiomics frameworks contemplate the extraction of texture features from
a single lesion, often located on the prostate where the bigger lesion or the primary tumor
are found. Such features are usually fed into a classification or stratification model as to
predict cancer diagnosis, staging and prognosis.

As a comparison with the state of the art, we investigated the stratification resulting
from the analysis of the biggest lesions’ textural description. We selected the bigger lesion
of each patient, we reduced the texture vector dimensionality according to view-aware
PCA dimensionality reduction procedures and we performed hierarchical clustering on the
patient-to-patient Euclidean distance matrix with ward linkage. The clustering procedure
lead to the stratification of patients into two groups, namely group 0 and group 1. It is
worth noting that this clustering approach - based only on the bigger lesion and/or primary
tumor - share some extent of the stratification underpinnings of the tree-based clustering.
For the sake of clarity, we refer to one-lesion clustering as tumor clustering and to tree-
based clustering as heterogeneity clustering. In particular, tumor clustering resulted to
have a mild concordance with heterogeneity clustering (Rand Index = 0.43 Chacón (2021)).
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Coherently, the tumor-based stratification leads to clinical significance. Tumor clustering
pipeline discriminated between patients with different GS (pm/d = 0.0259), number of
lesions (pm/d = 0.0001), oligo/multi-metastatic disease proportions (pind = 0.0191), PSA
(pm/d = 0.0339), ongoing therapy (pind = 0.0847) and total volume (pm/d < 0.0001).
However, ∆PSA1,0 (pm/d = 0.2942), ∆PSA2,0 (pm/d = 0.2920), proportion of patients
exhibiting bone disease (pm/d = 0.5220), combination of therapy (pind = 0.3698) and
response to therapy (pind = 0.2170) did not result significant in tumor clustering pipeline.
These findings were somehow expected. In fact, therapeutic guidelines are mainly taken on
the basis of the characterization of the primary tumor. Accordingly, these results confirm
the role of the primary tumor in acting as a driver for tumor heterogeneity and enforce
radiomics role in the clinical treatment planning. Nevertheless, despite the coherence with
qualitative clinical investigation, tumor-based stratification does not translate into a risk
assessment and prediction. In fact, the Kaplan Meier curve, describing the probability of
response to treatment of the two groups, appear almost superimposed (p = 0.85) and do
not reveal any prognostic mechanism of the clustering.

As a step forward from one-lesion strategy, radiomics literature suggests to average
radiomic descriptions of peer lesions belonging to a patient, as to obtain one single vector.
Such vector-based representation plays for the mean imaging phenotype of all lesions
expressed by a patient, taking into account the variability of the imaging profiles. Such
method provide an information-complexity trade-off between one-lesion strategy and the
tree-based patient representation we propose. Under these considerations, we performed
patient-wise weighting of lesions’ vectors, implemented the view-aware PCA dimensionality
reduction methods and computed vector-based representation of each patient. The pipeline
grouped all the patients in one cluster, although one patient with higher PSA was clustered
separately from the rest of the cohort population as to meet hyperparameter criteria (e.g.
minimum number of clusters at least equal to 2). Clear stratification was indeed not
achieved in this setting, however a particularly bad-prognosis patient detached from the
main group. From these findings, it follows that vector-based representation model did
not lead to clear and solid results in our dataset, suggesting the non robustness of the
lesions’ weighting procedures.

5.3 Discussion

Current radiomic framework presents some limitations, including the inter-operator vari-
ability in imaging acquisition settings, the relatively small sample sizes bounding the per-
formance of supervised approaches, the lack of standardization, the high dimensionality
and the collinearity of radiomics variables as well as the absence of a clinical interpretation
for features Smith et al. (2019). For these reasons, intra-patient tumor heterogeneity quan-
tification has long been attempted with poorer results, hampering its embedding into daily
practice. In this work, we propose a patient representation for agnostic multi-lesion can-
cer description, able to overcome intrisinc limitations of radiomics. The method exploits
the texture analysis of lesions’ imaging according to the radiomic workflow, overcoming
features redundancy with PCA-based dimensionality reduction strategies. The proposed
dendrogram representation results agnostic with respect to acquisition settings and op-
erator variability as it is built upon evolutionary and statistical relationship within peer
lesions’ descriptions. Moreover, the small sample size issue is tackled by the employment
of unsupervised methods. As to leverage the complex representation for stratification pur-
poses, a suitable distance between dendrograms was required. Indeed, the pruned tree
edit distance was specifically designed for heterogeneity-based hierarchical dendrograms
and was the keystone to deliver a stratification policy based on agnostic disease conforma-
tions.
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For what dimensionality reduction is concerned, view-aware PCA was hereby proposed
as the trade-off between complexity of methods and performance of results: PCA is a
simple and well-established technique for analyzing high dimensional datasets, increasing
the interpretability of data while preserving the maximum amount of information. In
other words, PCA is effective but simple enough to not add unnecessary complexity to
the whole pipeline, overshadowing the main methodological novelties of our approach: the
tree-structured patient reprsentation and the heteorgeneity-driven metric for trees. Other
advanced methods have been proposed for multi-view dimensionality reduction Li et al.
(2018), but interpretability and robustness are the advantages of using such a simple ap-
proach. Nevertheless, further studies could investigate the sensitivity of the representation
model and the performance of the clustering policy when employing feature transformation
methods that capture non-linear dependencies of across- and within-view features.

Compared to state-of-the-art disease representation, our approach shapes an exhaus-
tive representation of intra-patient heterogeneity and devises an informed patient stratifi-
cation. In fact, it leads to a more complex yet low-processed modelling of cancer disease,
underlining interactions and relationships between lesions of individuals from which to
infer prognostic knowledge. Clearly, one-lesion strategy did not provide a quantification
of lesions’ diverse phenotypes within a patient, as it only relies on the primary tumor.
Nevertheless, tumor clustering lead to a coherent stratification with respect to the cur-
rent clinical biomarkers, i.e., PSA, GS and oligo/multi-metastatic status. However, such
clinically-informed stratification did not reach a significance in terms of prognostic power,
bringing out the limitation of current clinical and radiomic-based biomarkers for treatment
and prognosis. Interestingly, the proposed representation brings out a comprehensive way
to capture tumor biology and heterogeneity, revealing a deeper appreciation of the disease
than a single lesion or the primary tumor alone. On the other hand, the vector-based
representation was confirmed insufficient to properly embed the patient’s complexity of
information. In fact, mean radiomic profile seems not to properly capture intra-tumor
variability while it overlooks the primary tumor information entailing clinical information.
In both cases - when only the primary tumor is considered and when the mean radiomic
profile of lesions is computed - state of the art methods failed in perspectively stratifying
patients.

Beside descriptive and prognostic purposes, the proposed tree-based representation
and stratification of tumor heterogeneity permits an exhaustive comparison between the
role played by the primary lesion and its involvement into phenotypic selection mecha-
nism. This is worth to be drawn and further investigated from a tumor heterogeneity and
prognostic point of view. In fact, tumor clustering showed a latent agreement with het-
erogeneity clustering, suggesting the reliability of the current clinical practice in assessing
intra-tumor characterization from primary lesions. Accordingly, primary tumor informa-
tion seems to be more informative than intra-patient mean lesions’ profiles. If used in
combination with dissemination indexes - such as number of metastases, dispersion of
intra-patient lesions’ radiomic profiles and number of involved organs -, primary tumor
characterization could provide enough information to support therapeutic decisions when
an exhaustive assessment of tumor metastases results too expensive.

On note, heterogeneity clustering highlighted milder significance for what GS biomark-
ers is concerned with respect to tumor clustering. Pertinently, although GS is a solid
clinical prognostic factor driving therapy planning, it represents the histo-pathological
analysis for characterizing primary and secondary tumor biology at molecular level. Ac-
cordingly, the aggregated value, that is the sum of primary differentiation pattern and
secondary differentiation pattern, do not entail heterogeneity information. For instance,
studies using surrogate PCa end points have suggested that outcomes for GS 7 cancers
vary according to the predominance of pattern 4. PCa mortality, biochemical progression
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and development of metastases differ for 3 + 4 and 4 + 3 tumors Stark et al. (2009).
This means that, according to tree-based representation, patients tagged with a GS 7 may
still be clustered in different prognostic groups and alter the tests on averages. For these
reasons, GS should not be considered as a solid ground truth for a perspective model,
rather it conveys only a association between radiomic-based heterogeneity assessment and
its biological counterpart, that is tumor microscopic appearance. On the other hand, PSA
and ∆PSA values significantly supported the predictive power of imaging-based represen-
tation in terms of cancer progression and disease free survival. Consistently, a decrease
in PSA levels after treatment regimens was associated to therapy response. In this sense,
exhaustive lesions’ texture assessment and imaging-based heterogeneity quantification de-
vise cancer subtypes that correlates with prognosis beyond clinical surrogates, eventually
supporting treatment planning.

Basing on our and literature findings, the systematic digital tissue collection and its
analysis should be enforced in the translational research of tumor disease and in the de-
veloping of targeted therapies. The debate around the therapeutic exploitation of imaging
biomarkers for intra-tumor heterogeneity is nowadays on the cutting edge of medicine
literature and it interlaces with other science field such as mathematics and geometry.
This dynamic interplay between disciplines may provide a propitious route to ultimately
attempt to limit tumor progression and treatment resistance. Stemming from this work,
future research could consider longitudinal evolution of heterogeneity-based representation
objects and, accordingly, investigate the course of the disease over time in a non invasive
way.

5.4 Methods

In this section we outline the steps involved in the proposed methodological pipeline. In
particular, methods for radiomics-based representation of patients’ heterogeneity and its
stratification are discussed. We present the challenges of analyzing a general radiomic
dataset proposing an insightful dimensionality reduction approach (M1). Representation
strategy is then deduced and described (M2). We then introduce an existing edit distance
for comparing tree objects, on which we build the proposed metrics. It follows the deriva-
tion of an ad hoc metric (M3) for capturing intra-tumor heterogeneity variability and
computing the similarity matrix between patients on which to perform the stratification
according to hierarchical clustering.

5.4.1 M1: Dimensionality reduction

As previously introduced, radiomic features are regarded as a high dimensional vector
embedding of the VOI, providing a non-invasive assessment of tumor appearance from
routinely acquired imaging studies. Several softwares, e.g. LifeX software, allow to ex-
tract several texture indexes from VOIs, according to the formulas provided by the software
documentation (www.lifexsoft.org). Considerable efforts have been devoted to link biolog-
ical meaning with texture descriptors. So far, little evidence of tight correlation between
the two has been found, preventing from univocally define tumor inherent heterogene-
ity of lesions. However, different textural features have been proposed and reviewed by
Castellano et al. (2004) as measures of tumor-specific intra-lesion heterogeneity. Indeed,
radiomics analysis is widely assumed to entail all the information needed for a definition
of lesion heterogeneity Eary et al. (2008); Chaddad et al. (2018).

When managing a radiomic dataset, several challenges come across, above all high
dimensionality and collinearity between features. Thus, prior to pairwise distance com-
putation, lesions’ radiomic vectors need to be properly reduced as to selectively bring out
relevant information.
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According to Nioche et al.Nioche et al. (2018), radiomic features divide into six semantic
groups of different methodological levels of texture analysis. First order statistics are the
statistical moments of the grey level distribution extracted from the VOI under analysis.
Shape features describe morphological characteristics of the tumor. The Grey Level Co-
occurrence matrix (GLCM) describes the co-occurrence of pairs of grey values in the VOI
at a given distance δ (offset), usually set to 1, towards thirteen different directions. The
Grey Level Run Length matrix (GLRLM) describes the length of homogeneous runs for
each grey level, averaged across thirteen directions. Similarly, the Grey Level Zone Length
matrix (GLZLM) provides information on the size of homogeneous zones for each grey
level, averaged across three dimensions. Finally, the Neighbour Grey Level Difference
matrix (NGLDM) corresponds to the difference of grey levels between one voxel and its
twenty-six neighbors in three dimensions. From each of these groups, several indices are
extracted, exhibiting a multi-view intrinsic structure that induces intra- and inter-group
correlation patterns. Accordingly, such vectors disclose high collinearity between their
elements that needs to be properly managed. To overcome this, we leverage the very basic
idea of multi-view learning and dimensionality reduction approaches: the view-wise linear
combination of features Kettenring (1971). We propose to separately apply the PCA to
each of the radiomic groups, as to exploit the multi-view nature of the radiomic vectors.
In this way, we may keep the information carried by each group well discerned, as it is
methodologically extracted in different ways.

Upon pre-processing, namely missing values imputation and Z-transform normalization
of radiomic variables, we thus perform this novel dimensionality reduction, namely view-
aware PCA.

As depicted in Figure 5.2.1, features are grouped according to the six semantic group
- view - as described above. Within each group, PCA is performed and two principal
components are retained from the scores of each PCA, resulting in different percentages of
explained variability. The process yields a total of twelve principal components, including
six orthogonal pairs of linear combinations of original features. It follows that each lesion
is described by a twelve-dimensional vector entailing view-wise texture information.

Further, we build the patient representation upon the such reduced radiomic vectors
of peer lesions.

5.4.2 M2: Tree-based patient representation

To exhaustively represent patients’ disease in terms of tumor heterogeneity, relationships
between lesions needs to be learnt from data. Distance between texture descriptors could
be an appropriate surrogate. Specifically, radiomic variables of a lesion - possibly after
dimensionality reduction as in M1 - define a lesion-specific point in an Euclidean space. All
lesions belonging to the same patient form a point cloud in Rp, with a number of points
ni equal to the number of patient’s tumor lesions and p being the number of radiomic
variables.

Although some frameworks are available to compare point clouds via discrete trans-
port (Mémoli, 2008; Nguyen et al., 2021), interpretability is often limited by the high
dimensionality of the embedding space. Also, model based approaches, which capture the
variability of cloud-generating processes by means of interpretable parameters, require a
high number of observations in each point cloud to produce reliable estimations (Ghosal
and van der Vaart, 2017).

A more insightful approach would be to transform the point cloud into a proper sum-
mary, i.e., a representation, equally informative and easily readable. Pertinently, hierar-
chical clustering dendrograms have been extensively studied in the last decades as they
unveil the intrinsic relationship among points of a point cloud (for a review on hierarchical
clustering dendrograms see Murtagh and Contreras (2017)). In our setting, the rationale
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behind hierarchical clustering stems from the need to quantify to which extent lesions,
i.e., their radiomic vectors, are similar within patients and how they get agglomerated,
hierarchically, one to each other. A dendrogram is obtained in such a way that lesions are
linked in terms of evolutionary relationship, based on similarities in their imaging char-
acteristics. Figure 5.4.1 graphically describes the process whileSection 5.D formalizes the
mathematical steps involved. Dendrograms’ structure reflects the homogeneity between
points of the point cloud. For instance, Figure 5.4.3 presents three dendrograms: the blue
one describes a condensed point cloud, the green one presents a scattered point cloud while
the orange tree denotes a hybrid situation.

To build hierarchical clustering dendrograms, a similarity measure is needed together
with an agglomerative criterion - also known as linkage - that best suit the structure of
the data and the aim of the analysis. In our setting, an appropriate similarity measure is
the Euclidean distance between lesions’ radiomic vectors, as suggested by Cavinato et al.
Cavinato et al. (2020).

5.4.3 M3: A novel Heterogeneity-based distance

After having obtained patient representation, we proceed to defining a distance between
dendrograms, which can properly reflect the affinity between patients in terms of tree
conformations as manifestation of intra-tumor heterogeneity. A suitable metric should
meet some requirements in order to produce effective results: (1) the comparison between
dendrograms should reflect the properties of the point cloud they stem from: if two point
clouds are close in terms of sparsity and conformation, we require the associated dendro-
grams to be close as well. In other words, any metric between dendrograms must hold
some continuity properties with respect to the original point clouds comparison; (2) the
metrics should weight differently the homogeneous part of the tree structures and the het-
erogeneous ones. This means that distance has to be evaluated as a trade-off between the
extents of homogeneity and heterogeneity exhibited by the lesions of different patients.

5.4.3.1 Edit distance

Dendrograms are unlabelled object which, in our context, may have a different number of
leaves and do not hold any a-priori correspondence between the leaves in different objects.

The literature dealing with the comparison of dendrograms is reviewed in Section 5.B,
where we detail the limitations that prevent us from employing existing distances in our
context. Chapter 2, Chapter 3 propose a novel distance for merge trees. Following the
authors, we call this metric edit distance for merge trees and indicate it with dE . The
metric dE is defined for weighted, rooted, unlabelled trees. As most of the metrics for
unlabelled trees, its computational complexity has been shown to scale poorly with the
number of leaves in the trees. However, it is particularly efficient for small-scale trees with
respect to other metrics. In our setting, trees present a number of leaves less or equal
to the number of tumor lesions in a patient, that is a few dozens at most. Thus, we can
run the comptuation of dE on general purpose machines, like personal computers. Unlike
other metrics, continuity properties are easily proven. Moreover, dE is interpretable, easy
to understand and to communicate.

As depicted in Figure 5.4.2b), one tree T can be modified and transformed into a
different tree T ′ by performing different sets of allowed modifications, each coming with
its own cost (for details see Chapter 2, Chapter 3). The set of consequent edit operations
which comes at the minimum cost is named the optimal edit path and represents the core
of the edit distance between the two trees. The distance dE is thus the total cost of the
optimal edit path and is defined as:

dE(T, T
′) = inf

γ∈Γ(T,T ′)
cost(γ) (5.1)

181



Chapter 5. Imaging-based representation and stratification of intra-tumor Heterogeneity
via tree-edit distance

Pr
ob

ab
ili

ty
 o

f t
re

at
m

en
t r

es
po

ns
e

Cluster 0 Cluster 1 Cluster 2

Time

0.0

0.2

0.5

0.7

1.0

0 500 1000 1500 2000

Figure 5.2.4: Group-wise Kaplan Meier curves of time to therapy response: it visually
shows the probability of the response to treatment in a certain time interval. The blue
line, the orange line and the green line correspond to group 0, 1 and 2 arising from
clustering performed on patients’ dendrograms. Groups have a different time to response.
In particular, green group does not respond to therapy along the study period. Orange
group shows indeterminate results due to the lack of and heterogeneity of clinical data.
Blue group gradually responds throughout the study period.

Lesion 

Point cloud 
(Patient)

Merging step 1 Merging step 2 Merging step 3

Figure 5.4.1: Tree-based patient representation via agglomerative hierarchical clustering:
from the bottom up to the root, leaves get agglomerated and merged into bigger and bigger
clusters, to finally converge in a single set. As a consequence, tree branches reflect pairwise
similarity between lesions and the tree structure surrogates the overall dispersion among
peer lesions. In the final dendrogram representation, leaves are the lesions of the patient
and edges illustrate the similarity-connection between them. Leaves that are close to each
other are intended by construction to be similar and exhibit a comparable radiomic profile
(homogeneous) while distant leaves can be thought as lesions expressing different imaging
phenotypes (heterogeneous). In this sense, dendrogram structure entails the heterogene-
ity quantification within the tumor, which needs to be exploited for heterogeneity-based
stratification of patients. For mathematical formulation see Section 5.D.
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Figure 5.4.2: Continuity among metrics. a) qualitative approximation of the Gromov-
Housdorff distance between two point clouds: the point clouds get overlapped and dG−H

is defined as the maximum distance between the two maximally distant points; Gromov-
Hausdorff-closeness reflects the similarity in the spreading of points of two point clouds
throughout the space. Specifically in the radiomic space, such spreading entails the quan-
tification of inter-patient heterogeneity. This means that Hausdorff-close point clouds,
i.e., patients’ sets of lesions, have similar intra-patient heterogeneity characterization and
thus should be regarded as similar by the metric we employ for dendrograms; b) Tree edit
distance between hierarchical clustering dendrograms: the distance is given by the sum
of the costs of the minimum number of modifications needed for transforming a tree into
the other. Modifications include positive/negative shrinking, deletion/insertion and ghost-
ing/splitting. The shrinking edit multiplies the weight value of an edge with a positive
factor, which can either lengthen (positive shrinking) of shorten (negative shrinking) the
original edge weight. The cost of shrinking an edge is equal to the absolute value of the
difference between the initial and the final weights. Deleting or inserting an edge (v1, v2)
removes or introduces a branch at a given height, altering the children-father structure of
the tree. For any deletion/insertion, the cost is equal to the weight of the edge deleted/in-
serted. Finally, the ghosting edit eliminates a vertex v that connects only two adjacent
edges (order 2 vertex) such as one new edge results from the sum of the two former edges.
The opposite edit is the splitting. Ghosting and splitting have no cost, therefore order 2
vertices are de facto irrelevant when computing the cost of an edit path; c) Pruned tree
edit distance between pruned dendrograms: pruning removes leaves with weights ≤ ε,
eventually aggregating homogeneous phenotypes. The operator Pε thus gradually discard
intra-patient homogeneity, disclosing only the heterogeneous - independent - tumor pheno-
types. Of note, dµP is different from dE since the pruning modulates the effect of cardinality
on the distance computation by removing redundant edges of the tree and compressing
tree dimensionality.
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where Γ(T, T ′) indicates all the possible edit paths which start in T and ends in T ′. The
algorithm for dE computation is exhaustively detailed in Chapter 2. Through combinato-
rial objects called mappings, it is shown that dE is a metric in the space of merge trees
and that it can be computed with a Linear Integer Programming approach Chapter 2.

Upon these premises, we proceed to verify the two aforementioned conditions. Specif-
ically, we prove the continuity property of dE (1) and propose a modification of dE as to
meet the homogeneity-heterogeneity requirement (2).

5.4.3.2 Continuity property of dE

As previously stated, a continuity result with respect to the original point clouds com-
parison would guarantee interpretability properties for the distance between dendrograms:
under certain hypotheses, if two clouds are pointwise close, also their merge trees should
be close with respect to dE . In Figure 5.4.2a), we qualitatively introduce the Gromov-
Hausdorff metric between point clouds (see Section 5.E for a formal definition). It can be
interpreted as a measure of the pointwise proximity between two point clouds and provide
a comparison between the heterogeneity of two patients’ diseases. In Section 5.E we prove
that Gromov-Hausdorff-closeness (or distance) for point clouds implies Edit-closeness (or
distance) for the associated dendrogram objects, i.e., multi-lesion patients representation.

5.4.3.3 Homogeneity-heterogeneity trade-off

In the edit distance dE , the distance values are strongly dependent on the clouds cardi-
nalities, meaning that pairs of point clouds with higher cardinalities tend to be farther
apart from pairs of point clouds with smaller cardinalities. At first sight, such assumption
sounds reasonable for stratification purposes. In fact, patients with multiple lesions are
known to exhibit a more severe disease than patients with fewer lesions, as the spreading of
the tumor entails prognostic power. Still, the mere counting of lesions lacks of robustness
in perspective studies and, in this context, may overshadow the variability between hier-
archical dendrograms induced by intra-patient heterogeneity. For this reason, we propose
a modification of the metric dE as to mitigate cardinality issue.

5.4.3.4 Pruned edit distance

The kind of variability we are interested in is the one induced by patient-wise heterogeneity
between lesions. By construction of the dendrogram representation, two lesions of a patient
are heterogeneous - in terms of radiomic/imaging description - according to the length of
the dendrogram branches connecting them. The longer the branches, the higher the inter-
lesions heterogeneity and, viceversa, the shorter the branches the more homogeneous the
patient’s disease phenotypes. Accordingly, we may want to modulate the extent to which
we consider edit costs according to branch length. In particular, we may want to induce
edits applied on small edges to contribute less to the final distance than bigger edges,
which we deem more relevant for stratification purposes.

We introduce the pruning operator Pε as regularization strategy, which deletes leaves
associated with edges whose weights are so small that one may want to neglect them
in the analysis of heterogeneity. Given a threshold ε, we consider for deletion all leaves
whose father-child edge has weight ≤ ε. However, when two or more of candidate leaves
share the same father, i.e. they are siblings, we delete all the leaves but the one with the
bigger weight. Moreover, if the weights of the siblings are equal, as it is often the case in
clustering dendrograms, we randomly choose to keep one of them, delete the other(s) and,
eventually, ghost their father (see Figure 5.4.2 for meaning of ghosting). This pruning
operation is recursively iterated until no leaves with small edges can be found. To note,
removing only one leaf in case of two small-weight siblings is equivalent to considering
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Figure 5.4.3: Choice of µ: a) costruction of qualitative densities of the vertices heights in
three example dendrograms: the velocity with which leaves get merged in a dendrogram,
i.e., edges length variability, reflects the heterogeneity characterization of lesions. Per
every dendrogram, branches heights (rescaled on [0, 1] dividing by the highest value) are
annoted on the left and their associated density is inspected. The vertices heights of a
patient exhibiting homogeneous lesions concentrates in a small real interval [0, a] - with
a > 0 (blue tree); the vertices heights of a patient exhibiting heterogeneous lesions spread
in a range of values far from zero [a, b], with a, b > 0 (green tree); a patient showing
groups of homogeneous lesions, the one heterogeneous to the others, is associated to a
dendrogram with an explicit clustering structure with clusters with multiple close leaves
(orange tree). The vertices heights distribution displays two components, reflecting both
the homogeneity of similar lesions - with values close to 0 - and the heterogeneity of
dissimilar clusters - with values far from 0; b) µ provides the coefficients with which
to weight the different pruning cutoffs ε, to neglect the homogeneity within clusters of
similar lesions’ phenotypes and bring out the informative heterogeneity between different
phenotypes. To efficient the computation, a parametric shape of µ is used and empirical
heights distributions of all patients (black line) is exploited to model the distribution.
In the population heights distribution, we discern both homogeneous and heterogeneous
phenotypes. The two components are demarked with a saddle point on 0.15. Accordingly,
low weights of µ should be associated to ε ≪ 0.15 and ε ≫ 0.15 and high weights to
ε ≃ 0.15. In fact, low ε values entail pure homogeneity information while high ε values
would lead to discarding useful heterogeneity information. We thus infer to model µ as
an asymmetric bell-shaped density function with one peak centered in the saddle point of
the heights distribution. The Beta family of distributions, supported in [0, 1], well meets
the requirements; it simplifies both the numeric integration procedure and the results’
interpretation. The Beta-shaped µ is centered on 0.15 (grey line), properly tuning α and
β shape parameters (α = 2.5, β = 15).
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the two leaves as clustered together from the “beginning” in the hierarchical clustering
procedure. Accordingly, siblings leaves (lesions) entail phenotype expressions so similar
to be considered as one single imaging phenotype. In this way, the pruned tree displays
the number of different phenotypes coexisting in the patient instead of the mere number
of lesions. Figure 5.4.2c) displays the edits needed for transforming a pruned tree into
another, whose costs determine the pruned edit distance.

Operationally speaking, the “correct” value of ε is a-priori unknown and needs to
be tuned with a complexity-information trade-off. To enhance the robustness of this
parameter choice, we take the weighted average of the distances between two trees pruned
with all the possible values of ε. Accordingly, the definition of pruned edit distance for
general merge trees develops as follows. Given two merge trees T and T ′, the pruned edit
distance is:

dµP (T, T
′) :=

∫
R
dE(Pε(T ), Pε(T

′))dµ(ε) = Eε∼µ[dE(Pε(T ), Pε(T
′)] (5.2)

where µ is a finite measure on R which provides the weighting strategy across different
values of ε in order to compute a weighted average among trees distances. The higher the
mass µ associated to an interval [a, b], the bigger the contribution to the final result of
the tree distance according to ε ∈ [a, b]. In other words, the measure µ allows to control
the contribution to the final distance of branches with weight below ε, which are indeed
homogeneous enough to be removed. Figure 5.4.3 elucidates the choice of µ tuned on case
study data. Note that if we have a sequence of weakly converging probability measures
µn ⇀ µ, then dµn

P (T, T ′) → dµP (T, T
′). This implies that the proposed distance is robust

with respect to the choice of µ: similar measures µ (in the sense of weak convergence)
would give similar distances.

To assess the different behaviours between dE and dµP and the extent to which dµP is
suitable for our purposes, in Section 5.G we present a detailed simulation study. Moreover,
we can prove that, under general conditions on µ, dµP is still a metric (for proof see
Section 5.F).
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5.A Patients’ personal information summary

Table 5.A.1 and Table 5.A.2 summarize the patients’ population.

Variable Mean Std. dev. Median Range

Age 72.09 7.03 71.68 54.88 – 85.24
Total volume 16.41 34.72 3.16 0.22 – 207.70
Gleason Score 7.73 1.03 7.00 5.00 – 9.00
PSA 18.16 70.96 2.66 0.09 – 591.00

Table 5.A.1: Statistical summary of patients’ personal information (continuous variables).

Variable Number of patients (%)

Number of metastases Oligo (<3) 38 (41.3%)
Multi (≥3) 54 (58.7%)
Oligo (<5) 60 (65.22%)
Multi (≥5) 32 (34.78%)
Intermediate (3≤n<5) 22 (23.92%)

Gleason Score (dichotomous) <7 8 (8.7%)
=7 45 (48.91%)
>7 31 (33.69%)
missing 8 (8.7%)

Ongoing therapy Y 33 (35.87%)
N 59 (64.13%)

Initial therapy RP 23 (25%)
RP+RT 52 (56.52%)
RT 9 (9.78%)
missing 8 (8.7%)

PSA (dichotomous) ≤ 1.93 33 (35.87%)
>1.93 48 (52.17%)
missing 11 (11.96%)

Table 5.A.2: Statistical summary of patients’ personal information (categorical variables).

5.B Distance metrics for trees: brief literature review

In this section we present a high level overview of the literature concerning the comparison
between different trees.
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Dendrograms are unlabelled object which, in our context, may have a different number
of leaves and do not hold any a-priori correspondence between the leaves in different
objects. The literature dealing with the comparison of dendrograms divide in two macro-
areas, including (1) metrics defined for clustering dendrograms and (2) metrics designed
for merge trees. The first family of metrics mainly deals with labeled trees (Robinson and
Foulds, 1979; Billera et al., 2001) as byproducts of a hierarchical clustering algorithm.
We refer to Flesia et al. Flesia (2009) for an exhaustive review of distance definitions.
This kind of metrics are known to be heavily dependent on the graph structure of the
dendrograms, like many others Poon et al. (2013); Colijn and Plazzotta (2018); Lewitus
and Morlon (2016); Kim et al. (2020), leading to limitations when comparing dendrograms
with a different number of leaves and lacking theoretical continuity results with respect
to dendrogram-associated point clouds Smith (2019, 2020). On the other hand, within
topological data analysis (Edelsbrunner and Harer, 2008), dendrograms are often referred
as a particular case of merge trees, obtained when all the leaves of a merge tree lie at
height 0. This allows to transfer merge trees literature to dendrogram analysis. Most of
the metrics belonging to this second family, however, share one main drawback, namely
the out of reach computational cost, which makes them unsuitable for our application
Beketayev et al. (2014); Bauer et al. (2020); Cardona et al. (2021). Besides, the metrics
with more performing algorithms Pont et al. (2022); Sridharamurthy et al. (2020) still lack
the theoretical investigation to assess some practical properties, making them less worthy
than others.

5.C Building the vertices heights curve

In Figure 5.C.1, we explain in details how to build the curve displaying the filtered heights
of one tree’ vertices. In the plot there are three detailed examples showing how to obtain
the curves in Figure 5.2.3. The colors of the curves matches the colors of the trees. For
each tree and for every h ∈ R, the value f(h) is equal to the number of vertices (highlighted
with dots) which lie above h. For instance consider the blue dendrogram: we obtain a
value of 3 until we reach the height where two leaves merge, and then 1 for a small interval
of values, and lastly 0 from the height of the root of the blue tree onwards.

5.D Dendrograms construction

In this section we present few technical definition that we need in order to describe the
dendrogram representation we employ. We describe the procedure in the general case of
having a finite metric space (X, d) i.e. a finite set {x1, . . . , xn} with a metric d : X ×X →
R≥0 which is reflexive, symmetric and satisfies the triangular inequality. In our case we
work with {x1, . . . , xn} ⊂ Rn and the Euclidean norm.

Definition 5.1. A tree structure T is given by a finite set of vertices VT and set of edges
ET ⊂ VT × VT which form a connected rooted acyclic graph. The order of a vertex is the
number of edges which have that vertex as one of the extremes. Any vertex with an edge
connecting it to the root is its child and the root is its father. In this way we recursively
define father and children (possibly none) relationships for any vertex on the tree. The
vertices with no children are called leaves and are collected in the set LT , while the set of
children of a vertex x ∈ VT is called child(x). Similarly, the vertex father(x) is the father
of the vertex x.

The relationship father > child induces a partial order on VT . The edges ET are given
in the form of ordered couples (a, b) with a < b. For any vertex v ∈ VT , subT (v) is the
subtree of T rooted in v, that is the tree structure given by the set of vertices v′ ≤ v. If
clear from the context we might omit the subscript T .
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Figure 5.C.1: Procedure for building the vertices heights curve of three example patient-
tree.

Now, to obtain a dendrogram we need to add some kind of length measure to a tree
structure.

Definition 5.2. A merge tree (T, f) is a finite tree structure T coupled with a monotone
increasing function (with respect to partial ordering on VT ) f : VT → R. If f(l) = 0 for
all l ∈ LT , then we say that the merge tree is a dendrogram. The function f also defines
a weight value for every edge e = (v, father(v)): wT (e) = f(father(v))− f(v).

To build a hierarchical clustering dendrogram TC from a finite metric space (C, dC) we
proceed as follows. With K we indicate the set of clusters we are considering:

(S0) at the beginning K = {{c} | c ∈ C}, and every c ∈ C is associated to a leaf vc ∈ VTC

with f(vc) = 0;

(S1) consider all the couples of clusters k1, k2 ∈ K and we measure the distance d(k1, k2)
according so some linkage;

(S2) pick k, k′ ∈ K such that d(k, k′) = minki∈K;k1 ̸=k2
d(k1, k2) and add the vertex vkk′

to VTC
with f(vkk′) = d(k, k′). Then remove k and k′ from K and add k ∪ k′ to K;

(S3) start again from (S1) unless K = C.
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The linkage determines the distance d(k1, k2) between k1, k2 ⊂ C and the most common
examples are:

• single linkage: d(k1, k2) = minci∈ki
dC(c1, c2)

• complete linkage: d(k1, k2) = maxci∈ki
dC(c1, c2)

• average linkage: d(k1, k2) = (#k1 · #k2)−1 ·
∑

ci∈ki
dC(c1, c2), where #ki is the

cardinality of the finite set ki.

• ward linkage: see Jr. (1963)

It is well known that single linkage is very sensitive to outliers, while complete linkage
is the most conservative choice in term of clustering points together. Average linkage
displays a kind of in-between behaviour. For this reason we resorted to average linkage.

5.E Continuity Proposition

Having a continuity result of the distance between dendrograms with respect to some
metric between point clouds would surely benefit the consistency and the interpretability of
the framework: whenever a representation of a datum is employed, looking at how changes
in the representation reflect on changes in the initial datum can help both assessing the
consistency of the pipeline, and familiarizing with the representation. In our case we are
particularly interested in looking at what happens at the distance between dendrograms as
two sequences of point clouds get closer and closer. To do so, we introduce the definitions
of the Hausdorff and Gromov-Hausdorff metrics between point clouds. We then prove
the continuity proposition between Hausdorff distance and the Edit distance, from which
it follows the continuity proposition between Gromov-Hausdorff distance and the Edit
distance.

Given C = {x1, . . . , xn} and C ′ = {y1, . . . , ym} two point clouds in a metric space
(X, d), we can build at least a function γ : C → C ′ such that γ(xi) is (one of) the closest
point(s) to xi, belonging to the cloud C ′. Similarly, we can build φ : C ′ → C so that φ(yj)
is (one of) the closest point(s) to yj , belonging to the cloud C. The Hausdorff distance
between C and C ′ is given by:

dH(C,C ′) = max{maxx∈Cd(x, γ(x)), maxy∈C′d(y, φ(y))} (5.3)

The distance dH has been proven to be a metric for the space of all compact subsets
of X Rockafellar and Wets (2009).

Leveraging on the Hausdorff distance, given two compact metric spaces X and Y we
define the Gromov-Hausdorff metric as dG−H(X,Y ) := inf dH(γ(X), φ(Y )) where γ and φ
vary over all possible isometries of (respectively) X and Y into another (common) metric
space Z Burago et al. (2022).

Consider two point clouds in the metric space (X, d), C = {x1, . . . , xn} and C ′ =
{y1, . . . , ym} and we consider TC and TC′ the single linkage hierarchical clustering den-
drograms obtained from C and C ′ respectively. In the following, we prove the following
result:

Proposition 5.3. Given C = {x1, . . . , xn} and C ′ = {y1, . . . , ym} point clouds in a met-
ric space (X, d) and given TC and TC′ single linkage hierarchical clustering dendrograms
obtained from C and C ′ respectively, there is a simplicial complex S and two functions
f : S → R and g : S → R such that the merge tree associated to f (via sublevel set
filtration) is isomorphic to TC , the merge tree associated to g is isomorphic to TC′, and
∥ f − g ∥∞≤ 2dH(C,C ′).
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Proof. Let γ : C → C ′ and φ : C ′ → C be the two operators which map a point of a point
cloud C ′ to (one of) the closest point(s) of the other cloud C and viceversa.

Consider the following simplicial complex S. Its 0 simplices are x1, . . . , xn, y1, . . . , ym
and its 1 simplices are all possible edges between 0 simplices, forming a complete graph.

Now we define two functions f : S → R and g : S → R such that the merge trees Tf
and Tg obtained with the lower star filtration from f and g (see Chapter 4) are isomorphic
to TC and TC′ .

Define: f(s) = 0 for every 0 simplex s. Then for a 1 simplex of the form eij =
(xi, xj), we have f(eij) = d(xi, xj). For 1 simplices of the form e′ij = (yi, xj) we have

f(e′ij) = d(φ(yi), xj). Lastly, for 1 simplices of the form e′′ij = (yi, yj) we have f(e′′ij) =
d(φ(yi), φ(yj)). Note that t ∈ Im(f) iff t = d(xi, xj) for some i and j. Clearly, f is a finite
set and we can order it: t0 = 0 < t1 < . . ..

Similarly we define g(e′′ij) = d(yi, yj), g(e
′
ij) = (yi, γ(xj)) and f(e

′′
ij) = (yi, yj).

Consider now the connected components of the graph Sf
t := {s ∈ S|f(s) ≤ t} for t ∈ R.

If t < 0, Sf
t is empty. If t = t0 = 0, then all 0 simplices are in Sf

0 , plus the 1 simplices of
the form (xi, yj) such that φ(yj) = xi and (yi, yj) such that φ(yi) = φ(yj). This means
that every vertex yi is connected with exactly one point xj and with all other yk such that
φ(yk) = xj . That is, there are n path connected components, one for each xi. Call such
components [xi].

Consider the value t = t1 = d(xi, xj). For every y ∈ φ−1(xi) and y
′ ∈ φ−1(xj), we have

f((y, y′)) = f((xi, y
′)) = f((y, xj)) = f((xi, xj)) = d(xi, xj) and so all these 1 simplices

get added, when passing from Sf
0 to Sf

t1 . Moreover, these are the only ones which get
added. Which means that we get all possible edges between [xi] and [xj ] but all others
components are left unchanged. And this happens whenever we hit a level tk = d(xi, xj):

we add to the simplicial complexes Sf
tk all possible edges between [xi] and [xj ].

Now, we build the single linkage hierarchical dendogram TC associated to C, with
labels given by {{x1}, . . . , {xn}}, and the merge tree Tf associated to f : S → R with
labels {[x1], . . . , [xn]}. An internal vertices of TC indicating the merging of two leaves {xi}
and {xj} will be called {xi, xj}, and similarly a vertex called {xi, xj , xk} indicates that the
leaves of the subtree rooted in that vertex are {xi}, {xj} and {xk}. In the same fashion,
an internal vertex of Tf where to components [xi] and [xj ] merge is named [xi]

⋃
[xj ].

A vertex called [xi]
⋃
[xj ]

⋃
[xk] is associated to the origin of the connected component

[xi]
⋃
[xj ]

⋃
[xk]. Thus, we can define a map η : VTC

→ VTf
induced by η(xi) = [xi] and

η({xi, xj , xk}) = [xi]
⋃
[xj ]

⋃
[xk] which is an isomorphism of merge trees. An analogous

proof yields the isomorphism between TC′ and Tg.
To conclude the proof it is enough to notice that: ||f − g||∞ ≤ 2ε with ε = dH(C,C ′).

In fact, for vertices s: f(s) = g(s) = 0. For an edge e, we have the following possibilities:

• e = (xi, xj): |f(e) − g(e)| = |d(xi, xj) − d(γ(xi), γ(xj))|. We have d(xi, γ(xi)) ≤ ε,
d(xi, xj) ≤ d(γ(xi), γ(xj))+2ε and d(γ(xi), γ(xj)) ≤ d(xi, xj)+2ε; which, together,
give |f(e)− g(e)| ≤ 2ε.

• e = (yi, yj): |f(e)−g(e)| = |d(φ(yi), φ(yj))−d(yi, yj)|; reasoning as above we obtain
|f(e)− g(e)| ≤ 2ε

• e = (xi, yj): |f(e) − g(e)| = |d(xi, φ(yj)) − d(γ(xi), xj)|. Again in the same fash-
ion we have: d(xi, φ(yj)) ≤ d(xi, yj) + d(yj , φ(yj)) ≤ d(xi, γ(xi)) + d(γ(xi), xj) +
d(yj , φ(yj)) ≤ d(γ(xi), xj) + 2ε. Which entails |f(e)− g(e)| ≤ 2ε
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Corollary 5.4. Given C = {x1, . . . , xn} and C ′ = {y1, . . . , ym} point clouds in (X, d)
metric space, and given TC and TC′ the single linkage hierarchical clustering dendrograms
obtained from C and C ′ respectively, we have dE(TC , TC′) ≤ 6(n+m)dH(C,C ′).

Proof. We apply Proposition 5.3 and then we are in the position to use Theorem 1 in
Chapter 4 to obtain that dE(Tf , Tg) ≤ 2(2dH(C,C ′)) · (n+m).

With the above results, we can prove a last corollary involving the Gromov-Hausdorff
distance between compact metric spaces.

Corollary 5.5. Given two finite metric spaces C = {x1, . . . , xn} and C ′ = {y1, . . . , ym}
and given TC and TC′ the single linkage hierarchical clustering dendrograms obtained from
C and C ′ respectively, we have dE(TC , TC′) ≤ 4(n+m)dG−H(C,C ′).

Proof. We apply Proposition 5.3 and Corollary 5.4 on the images γ(X) and φ(Y ) for every
γ : X → Z, φ : Y → Z isometries, and for every Z metric space.

5.F Proof about dµP being a metric

We prove the following proposition.

Proposition 5.6. If there is M > 0 such that for every m ≤ M , µ([0,m]) > 0 the dPµ is
a metric.

Proof.

• suppose dµP (T, T
′) = 0. Let m = min{mine∈ET

wT (e), mine′∈ET ′wT ′(e′)}; then for
any ε ∈ [0,m), Pε(T ) = T and Pε(T

′) = T ′. If dE(T, T
′) > 0, since µ([0,m)) > 0,

then:

0 <

∫
[0,m)

dE(Pε(T ), Pε(T
′))dµ(ε) ≤ dµP (T, T

′) = 0

which is absurd. But then dE(T, T
′) = 0 and so T = T ′.

• symmetry is obvious

• the triangle inequality holds for dE and so

dE(Pε(T ), Pε(T
′)) ≤ dE(Pε(T ), Pε(T

′′)) + dE(Pε(T
′′), Pε(T

′))

The linearity of the integral then entails dµP (T, T
′) ≤ dµP (T, T ′′) + dµP (

′′T, T ′).

5.G Heterogeneity-based Simulation for dPµ

In this section, we test the metric dPµ and the whole pipeline employed in the case study
in a supervised - in a broad sense - and easier setting. In particular, the aim of this
simulation is to showcase the differences between dE and dPµ and to which extent dPµ
captures heterogeneity in a point cloud.

We generate point clouds in R2 according to two generating processes. The size ni1 of the
i-th point cloud of the first group is sampled uniformly from [2, 20]

⋂
Z and then a sample

of size (ni1, 2) is taken from a normal distribution N (0, σ1), with σ1 = 1. Similarly, the

j-th point cloud of the second group has cardinality nj2 sampled uniformly from [2, 10]
⋂
Z,

and the cloud itself is taken as a sample of size (nj2, 2) distributed according to N (0, σ2),
with σ2 = 2. The data set of point clouds contains 50 clouds of the first group and 50 of
the second group.
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(a) Density of vertices heights from trees
in the simulation data, along with the
chosen Beta distribution, which has pa-
rameters a = 2 and b = 8.

(b)Matrix of pairwise distances obtained
with dE.

(c) Matrix of pairwise distances obtained
with dPµ .

(d)Absolute differences between the ma-
trix obtained with dE and dPµ .

Figure 5.G.1: The plot in the left upper corner is used to fix µ in the case study of
Section 5.G, according to the procedure detailed in Figure 5.4.3; the other figures show
the pairwise distance matrices obtained in the case study of Section 5.G.

From the data-generating processes it is clear that the sources of variability between
the two groups arise potentially from the different cardinalities of the point clouds and
variance within each cloud. We want to show that, while the metric dE is susceptible to
both kind of variability, dPµ , with an appropriately chosen measure µ, can mitigate the
variability coming from higher cardinalities in the clouds sampled according to the first
process. In particular, group 1 is expected to display a lower level of heterogeneity within
each point cloud and thus those trees, for our purposes, should be regarded as more similar
between each other compared to the other trees. The second group instead may not display
a clear clustering structure, in fact, despite exhibiting a common level of heterogeneity,
the different number of leaves and the different merging structure at the level of very
heterogeneous leaves could prevent all such dendrograms to form a recognizable cluster -
or, equivalently, could give birth to a cluster with higher dispersion.

Following the pipeline presented in the main manuscript, we extract average linkage
hierarchical clustering dendrograms from the set of point clouds and take pairwise distances
both with dE and dPµ . Examples of dendrograms belonging to the first and second groups
can be found, respectively, in Figure 5.G.2b and Figure 5.G.2c. We select µ as in the main
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(a) Hierarchical Clustering with average linkage of the pairwise distance matrices
respectively obtained from dE, d

P
µ and dPµ but without the outlier represented by

vertex 53 in the central dendrogram.

(b) The outlier identified by the hierar-
chical clustering with average linkage of
the matrix induced by dPµ .

(c) A randomly chosen dendrogram be-
longing to group 2. The difference in
terms of heteogeneity between leaves
and number of leaves, with the dendro-
gram in Figure 5.G.2b is evident.

Figure 5.G.2: Cluster analysis of pairwise distance matrices obtained in the case study of
Section 5.G.
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(a) Estimated density of the first compo-
nent of the data in the first cluster iden-
tified by dPµ , versus the densities gener-
ating the samples two groups.

(b) Estimated density of the second com-
ponent of the data in the first cluster
identified by dPµ , versus the densities
generating the samples two groups.

(c) Estimated density of the first com-
ponent of the data in the second clus-
ter identified by dPµ , versus the densities
generating the samples two groups.

(d) Estimated density of the second com-
ponent of the data in the second clus-
ter identified by dPµ , versus the densities
generating the samples two groups.

Figure 5.G.3: Densities estimated through the aggregation of the data collected in the two
clusters identified by dPµ .

manuscript, Section 4.3.2, with the final choice being a Beta distribution with parameters
a = 2, b = 8, as shown in Figure 5.G.1a. The two matrices are reported in Figure 5.G.1,
with data being ordered according to the two groups: the first 50 point clouds belong to
the first group, and the following 50 to the second. By visual inspection of Figure 5.G.1b
and Figure 5.G.1c we can clearly see that dE sees very little structure in the data, because
of the two sources of variability (cardinality and variance) mixing up and preventing dE to
discriminate between group 1 and 2. Instead dPµ recognizes a clear and pronounced cluster
made by point clouds from group 1 plus, potentially, some other point clouds belonging to
group 2. The rest of the point clouds of group 2 still show some agglomerative structure,
but less evident. The matrix in Figure 5.G.1d shows the pointwise differences between
the values obtained with dE and dPµ , highlighting how the different behaviour of the two
metrics concentrates on the data belonging to the first group.

To get more insights into the clustering structures expressed by dE and dPµ we extract
the hierarchical clustering dendrograms with average linkage from the two matrices. These
dendrograms are reported in Figure 5.G.2a. The leftmost tree is obtained from dE and
the central from dPµ . To better compare the clustering structures we remove from this last
dendrogram the outlier (v53), obtaining the rightmost tree.

Visual inspection of the dendrograms in Figure 5.G.2a reveals a two-clusters structure
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Proportion of Skeleton Disease Proportion of Oligo/Multi-metastatic Status (>3)

Proportion of Oligo/Multi-metastatic Status (>5) Proportion of Oligo/Multi-metastatic Status
Multi Oligo Multi Oligo

Multi Oligo Intermediate OligoMulti

Figure 5.H.1: Results of clustering characterization: the proportion of skeleton disease
and of the oligo/multi-metastatic status as devised by the two clinical cut-offs (3 and 5
lesions) are plotter per each of the three group.

in both metric spaces, with this structure being much more recognizable in the metric
space induced by dPµ . In particular, the rightmost dendrogram shows a very cohesive and
compact cluster, with very low internal variability, which is absent in the leftmost tree.
The other cluster of the same tree, instead, displays a much higher level of variability.

Now we show that this clustering structure reflects the group structure that generated
our data. We cut the rightmost tree to obtain two clusters. Then, for each cluster, we
aggregate the points contained in the data of such cluster and we estimate the marginal
densities from the obtained samples. The results of this estimation pipeline is showcased
in Figure 5.G.3. We see that we retrieve the two distributions which we used to generate
the components of the point clouds of the two groups.

This is precisely the behaviour we aimed to achieve: being insensitive to the cardinality
of small homogeneous features, while still being sensitive to cardinalities and merging
structures characterized by high heterogeneity.

5.H Additional plots for clustering interpretation

Figure 5.H.1 integrates the results, in terms of cluster characterization.

Data availability

The data supporting the findings of this study are available from Azienda Ospedaliero-
Universitaria Pisana but restrictions apply to the availability of these data, which were
used under license for the current study, and so are not publicly available.
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6. A Graph-Matching Formulation of the Interleaving
Distance between Merge Trees

Abstract

In this chapter we study the interleaving distance between merge trees from a combinato-
rial point of view. We use a particular type of matching between trees to obtain a novel
formulation of the distance. With such formulation, we tackle the problem of approximat-
ing the interleaving distance by solving linear integer optimization problems in a recursive
and dynamical fashion, obtaining lower and upper bounds. We implement the algorithms
to obtain these bounds and compare the outputs with another approximation procedure
presented by other authors. We believe that further research in this direction could lead
to faster algorithms to compute the distance and novel theoretical developments on the
topic.

6.1 Introduction

Topological data analysis (TDA) is a scientific field lying at the crossroads of topology and
data analysis: objects like functions and point clouds are usually studied by means of -
possibly multidimensional - complexes of homology groups (Hatcher, 2000) obtained with
different pipelines. Homology groups - considered with coefficients in a field K - are vector
spaces, whose dimension is determined by different kind of “holes” which can be found
in a space and thus provide a rich characterization of the shape of the space the analyst
is considering. Each statistical unit usually induces a whole family of topological spaces
indexed on Rn which then, via homology, produces a family of vector spaces indexed
on the same set - more precisely, a functor (Mac Lane, 1998) (Rn,≤) → VectK. Such
collections of vector spaces are called persistence modules (Chazal et al., 2008) - with
multidimensional persistence modules being a special reference to the cases in which n > 1
- and describe the shape of the data by considering interpretable topological information
at different resolutions. A topological summary or an invariant of a persistence module is
a representation which usually maps persistence modules into a metric space - or even a
vector space, so that some kind of analysis can be carried out. The most used topological
summaries for 1-D persistence (i.e. n = 1) include persistence diagrams (Edelsbrunner
et al., 2002), persistence landscapes (Bubenik, 2015), persistence images (Adams et al.,
2017) and persistence silhouettes (Chazal et al., 2015). When dealing with 0-dimensional
homology and 1-D persistence and with a space X which is path connected, however,
another topological summary called merge tree (Morozov et al., 2013) can be employed. A
merge tree is a tree-shaped topological summary which captures the evolution of the path
connected components π0(Xt) of a filtration of topological spaces {Xt}t∈R, with Xt ↪→ Xt′

if t ≤ t′.
The main streams of research in TDA split into four different directions: 1) building

new and interpretable pipelines to build persistence modules, tailored for different ap-
plications 2) obtaining - computationally accessible - invariants which can represent and
summarize the information contained in the persistence modules 3) study the structure of
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different spaces of invariants, with possible embeddings into metric or even linear spaces
4) study the stability of such embeddings with respect to noise/perturbations of the initial
datum. One of the central ideas in TDA when studying stability properties, is the one of
objects being ε-interleaved : when adding some kind of ε-noise to the data, the associated
embedded summary “moves” by at most ε. Starting from the bottleneck distance for per-
sistence diagrams (Edelsbrunner and Harer, 2008), this idea has been applied to in 1-D
persistence modules (Chazal et al., 2008), multidimensional persistence modules (Lesnick,
2015), merge trees (Morozov et al., 2013) and more general situations (de Silva et al.,
2017; Berkouk, 2021). In this chapter we focus on the problem of studying interleavings
for merge trees.

Merge trees and persistence diagrams are not equivalent as topological summaries; that
is, they do not represent the same information with merge trees being able to distinguish
between situations which persistence diagrams - and all the other equivalent summaries -
cannot (Kanari et al., 2020; Curry et al., 2022; Elkin and Kurlin, 2020; Smith and Kurlin,
2022). For this reason, in recent years, a lot of research sparkled on merge trees, mainly
driven by the need of having a stable metric structure to compare such objects. Edit
distances between Reeb graphs or merge trees have been proposed by Sridharamurthy
et al. (2020); Di Fabio and Landi (2016); Bauer et al. (2020) and in Chapter 3, while other
works focus on Wasserstein Distances (Pont et al., 2022), lp distances (Cardona et al.,
2021) and interleaving distances between merge trees or Reeb graphs (Morozov et al.,
2013; Beketayev et al., 2014; De Silva et al., 2016; Gasparovic et al., 2019; Cardona et al.,
2021).

Related Works

The problem of computing the interleaving distance between merge trees has already
been approached by Agarwal et al. (2018) and Touli and Wang (2018) in an attempt to
approximate the Gromov-Hausdorff (GH) distance when both metric spaces are metric
trees. In this situation, in fact, up to carefully choosing the root for the metric trees,
the two metrics are equivalent. Both problems - approximating the GH distance and
computing the interleaving distance - have been shown to be NP-hard (Agarwal et al.,
2018; Bjerkevik et al., 2020) and thus even obtaining feasible approximation algorithms
for small trees is a daunting task.

In Agarwal et al. (2018) the authors provide an algorithm to approximate the interleav-
ing distance between merge trees via binary search. They build a set which contains the
solution of the optimization problem and then obtain a criterion to assess if certain values
of the aforementioned set can be excluded from the set of solutions. If the length of the
branches of both trees is big enough, one can carry out the binary search over all possible
couples of vertices, with one vertex from the first tree and one from the second. If the
trees instead posses branches which are too small, the decision procedure is coupled with a
trimming step, to deal with such smaller edges. The algorithm returns an approximation
of the interleaving distance, with the approximation factor depending on the ratio between
the longest and the shortest edge in the tree and the number of vertices.

Touli andWang (2018), instead, propose the first algorithm for the exact computation of
the interleaving distance. Starting from a novel definition of the interleaving distance, they
develop a faster alternative to exclude values from the same set of solutions considered by
Agarwal et al. (2018). By filtering the points on the metric trees - which may not be vertices
of the “combinatorial” trees - according to a) their heights b) a candidate optimal value δ,
in an up-bottom fashion, points of the second tree are matched to sets of points of the first
tree. Such matching means that all points of the first tree inside in the chosen collection
can be potentially mapped in the point of the second tree via some function - viable for the
interleaving distance. Each such matching (S,w) is then used to establish similar couples -
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(set, point) - between the children of the involved points: the set of points of the first tree
is to be chosen among the subsets of the children of S, and the point on the second tree
among the children of w. If no such couples are found δ is discarded. The algorithm they
propose to compute the interleaving distance has complexity O(n2 log3(n)22ττ τ+2) where
n is the sum of the vertices in the two merge trees, and τ is a parameter - depending on
the input trees - which is defined by the authors. The key issue is that τ can be very big
also for small-sized trees: in Touli and Wang (2018), Figure 2, the authors showcase a tree
with 8 leaves and τ = 13 (2261315 ∼ 1024).

Due to its computational complexity the algorithm by Touli and Wang (2018) has not
been implemented by other authors working with merge trees (Curry et al., 2022), which
instead have exploited another formulation of the same metric, provided by Gasparovic
et al. (2019). This last formulation relies on a definition of the interleaving distance
between merge trees which are endowed with a fixed set of labels on their vertices. The
usual interleaving distance is then shown to be equivalent to choosing an appropriate set
of labels - potentially upon adding some vertices - for the two given merge trees. This
formulation, per se, does not provide computational advantages over the classical one,
since evaluating all the possible labelings of a tree would still be unfeasible. However,
(Curry et al., 2022) propose a labeling strategy which should provide good labels. Despite
being computationally accessible even for very big trees, this approach has the downside
of not providing methods for assessing the goodness of the approximation.

Contributions

As already mentioned, in the present chapter we take a perspective which differs from
all the aforementioned works: instead of obtaining progressively sharper bounds for the
distance by locally looking at differences between trees or instead of looking for optimal
labelings, we aim at describing combinatorially a global matching between two merge trees
whose cost returns the exact interleaving distance between them. Describing matchings
between trees is often useful to formulate optimization problems via integer programming
algorithms, which have proven to be a very useful tool to deal with the computational
burden introduced by unlabeled or unordered trees (Hong et al., 2017). They can also
provide very useful parametrizations, allowing for topological and geometric investigation
of complex tree spaces - see Chapter 3. Indeed, we are able to produce a formulation of
the interleaving distance originating a linear programming approach which gives lower and
upper bounds for the interleaving distance between two trees. We use the upper bound
to assess the approximation method proposed by Curry et al. (2022). The formulation we
obtain in the present chapter is used by Chapter 3 to obtain some inequalities between
the edit distance therein defined and the interleaving distance.

As discussed in Section 6.11, we also think that the results in the chapter can lead to yet
another formulation of the distance, potentially opening up the door to novel theoretical
developments.

Outline

The chapter is organized as follows. In Section 6.2 we introduce merge trees first in a
combinatorial fashion and then as “continuous” metric spaces, recalling the definition of
interleaving distance. In Section 6.3 we introduce a partial matching between trees called
coupling. Relationships between these matchings and maps between trees are then pre-
sented in Section 6.4. Section 6.5 and Section 6.6 prove the equivalence between the usual
definition of interleaving distance and the problem of finding optimal couplings. In the last
part of the chapter we face the problem of approximating an optimal matching between
trees: in Section 6.7 we prove two properties of the interleaving distance, which allow us to
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write down the dynamical programming algorithm of Section 6.8, while Section 6.9 points
out few facts about the error propagation in the previously presented algorithm. In Sec-
tion 6.10 we test our approximation with the one proposed by other authors. Section 6.11
concludes the main body of the chapter with a brief discussion. Section 6.A contains some
of the proofs of the results in the chapter, while the other ones are reported right after the
statement they relate to, as they can help the reader in following the discussion.

6.2 Merge Trees and Interleaving Distance

We start by introducing merge trees as combinatorial objects along with their “continuous”
counterpart.

6.2.1 Merge Trees as finite graphs

In accordance with other authors, we call merge tree a rooted tree with a suitable height
function defined on its vertices. We now state the formal definition, introducing some
pieces of notation, introduced in Chapter 2, which we will use to work with those objects
throughout the chapter.

Definition 6.1. A tree structure T is given by a set of vertices VT and a set of edges
ET ⊂ VT × VT which form a connected rooted acyclic graph. We indicate the root of the
tree with rT . We say that T is finite if VT is finite. The order of a vertex v ∈ VT is the
number of edges which have that vertex as one of the extremes, and is called ordT (v). Any
vertex with an edge connecting it to the root is its child and the root is its father: this is the
first step of a recursion which defines the father and children relationship for all vertices
in VT . The vertices with no children are called leaves or taxa and are collected in the set
LT . The relation child < father generates a partial order on VT . The edges in ET are
identified in the form of ordered couples (a, b) with a < b. A subtree of a vertex v, called
subT (v), is the tree structure whose set of vertices is {x ∈ VT |x ≤ v}.

Note that, identifying an edge (v, v′) with its lower vertex v, gives a bijection between
VT − {rT } and ET , that is ET ≃ VT as sets. Given this bijection, we may use ET to
indicate the vertices v ∈ VT − {rT }, to simplify the notation.

Now we give the notion of least common ancestor between vertices.

Definition 6.2. Given a set of vertices A = {a1, . . . , an} ⊂ VT , we define LCA(a1, . . . , an) =
min

⋂n
i=1{v ∈ VT

∣∣v ≥ ai}.
Now, to obtain a merge tree we add an increasing height function to a tree structure.

Definition 6.3. A merge tree (T, f) is a finite tree structure T such that the root is of
order > 1, coupled with a monotone increasing function f : VT → R.

Remark 6.4. Definition 6.3 is slightly different from the definition of merge trees found
in Gasparovic et al. (2019), Chapter 2 and other works. In particular, in the present
work, we do not need to have a root at infinity and thus we remove it to avoid unpleasant
technicalities. Similarly, the function coupled with the tree structure is usually referred
to as hT being an “height” function. To avoid ovearloading the notation, since we need
to introduce many subscript and superscripts, we call these functions with more usual
functional notations like f or g.

Remark 6.5. To avoid formal complications we make the following genericity assumption
for any merge tree (T, f):

(G) f : VT → R is injective.
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Figure 6.2.1: A merge tree (left) with its associated metric merge tree (right).

Before proceeding we need one last graph-related definition which we use to denote
some particular kinds of paths on the tree structure of a merge tree.

Definition 6.6. Given a merge tree T , a sequence of edges is an ordered sequence of
adjacent edges {e1, . . . , en}. Which means that we have e1 < . . . < en, according to the
order induced by the bijection ET ↔ VT−{rT } and that ei and ei+1 share a vertex. We will
use the notation [v, v′] to indicate a sequence of edges which starts in the vertex v and ends
with the vertex v′, with v < v′. Note that, if we write down [v, v′] using ET ≃ VT − {rT },
v is included in the sequence, while v′ is the first excluded vertex.

In the left column of Figure 6.2.1 the reader can find an example of a merge tree, which
can be used to get familiar with the definitions just given. For instance one can check that,
using the notation of the figure, R = LCA(A,B,D) and [A,C,R] is an ordered sequence
of edges, while [C,R,D] is not.

6.2.2 Metric Merge Trees

Now we consider the continuous version of a merge tree, intuitively obtained by considering
all the points in the edges of a merge tree, as points of the tree itself. For a visual intuition
of the following ideas, the reader may refer to Figure 6.2.1.

Definition 6.7. Given a merge tree T , we obtain the associated metric merge tree as
follows:

T = [f(rT ),+∞)
∐

(x,x′)∈ET

[f(x), f(x′)]/ ∼

where, for every v ∈ VT , f(v) ∼ f(v′) if v = v′. We refer to the points in T with the same
notation we use for vertices in vT : x ∈ T; with f(x) we indicate the height values of x.

For every point x ∈ VT , we can identify x with the point f(x) ∈ [f(x), f(x′)], with
(x, x′) ∈ ET , or, equivalently, with f(x) ∈ [f(x′), f(x)], if (x′, x) ∈ ET . This induces
a well defined map VT ↪→ T. Thus, given v ∈ VT , with an abuse of notation, we can
consider v ∈ T. Every point in T − VT belongs to one and only one interval of the
form [f(x), f(x′)]. Thus we can induce a partial order relationship on T by ordering
points first with the partial order in ET and then with the increasing internal order of
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[f(x), f(x′)]. Thus we can explicitly write down the shortest path metric in T: d(x, x′) =
f(LCA(x, x′))− f(x) + f(LCA(x, x′))− f(x′).

Remark 6.8. What we call “metric merge tree” is closely related to display posets of
persistent sets, as defined in Curry et al. (2022) but to introduce that notion we need to
give other technical definitions which we do not need in this work.

Lastly, for each metric tree T, we have a family of continuous maps, skT : T→ T, with
k ≥ 0, called structural maps, defined as follows: skT (x) = x′ with x′ being the only point
in T such that x′ ≥ x and f(x′) = f(x) + k.

6.2.3 Interleaving Distance between Merge Trees

Now we recall the main facts about the interleaving distance between merge trees (Beke-
tayev et al., 2014).

Definition 6.9 (Morozov et al. (2013)). Two continuous maps α : T→ G and β : G→ T
between two metric merge trees T and G, are ε-compatible, with ε ≥ 0, if:

(I1) g(α(x)) = f(x) + ε for all x ∈ T and f(β(y)) = g(y) + ε for all y ∈ G;

(I2) αβ = s2εG and βα = s2εT .

The interleaving distance between T and G is then: dI(T,G) = inf{ε | there ε-compatible maps}.

For an example of α and β continuous map satisfying (I1) see Figure 6.2.2. Those
maps satisfy also (I2) as shown by Figure 6.2.3.

The work of Touli and Wang (2018) shows that the existence of α and β is in fact
equivalent to the existence of a single map α with some additional properties which are
stated in the next definition.

Definition 6.10 (Touli and Wang (2018)). Given two metric merge trees T and G, a
ε-good map α : T→ G is a continuous map such that:

(P1) g(α(x)) = f(x) + ε for all x ∈ T

(P2) if α(x) < α(x′) then s2εT (x) < s2εT (x′)

(P3) if y ∈ G−α(T), then, given w = min{y′ > y
∣∣y′ ∈ α(T)}, we have g(w)−g(y) ≤ 2ε.

As anticipated, Touli and Wang (2018) prove that two merge trees are ε-interleaved if
and only if there is a ε-good map between them.

6.3 Couplings

Now we start our combinatorial investigation. Given two merge trees T and G, we would
like to match their vertices and compute the interleaving distance relying only on such
matches. To match the two graphs we will use a set C ⊂ VT × VG which will tell us which
vertex is coupled with which. Clearly this set C must satisfy some constraints which we
now introduce.

Given a finite set A, we indicate with #A its cardinality; consider now C ⊂ VT × VG
and the projection πT : VT × VG → VT , we define the multivalued map ΛT

C : VT → VT as
follows:

ΛT
C(v) =

{
maxv′<v πT (C) if #{v′ ∈ VT | v′ < v and v′ ∈ πT (C)} > 0

∅ otherwise.

Since VT and VG are posets, we can introduce a partial order relationship on any
C ⊂ VT × VG, having (a, b) < (c, d) if and only if a < c and b < d.
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(a) A graphical representation of a continuous function α : T→ G between metric merge trees
satisfying condition (I1) in Definition 6.9.

(b) A graphical representation of a continuous function β : G→ T between metric merge trees
satisfying condition (I1) in Definition 6.9.

Figure 6.2.2: An example of maps α and β giving the ε-interleaving of two metric merge
trees.

203



Chapter 6. A Graph-Matching Formulation of the Interleaving Distance between Merge
Trees

Figure 6.2.3: A representation of the images of the maps βα (left) and αβ (right), with α
and β being the maps in Figure 6.2.2.

Definition 6.11. A coupling between two merge trees (T, f) and (G, g) is a set C ⊂ VT×VG
such that:

(C1) #maxC = 1 or, equivalently, #maxπT (C) = #maxπG(C) = 1

(C2) the projection πT : C → VT is injective (the same for G)

(C3) given (a, b) and (c, d) in C, then a < c if and only if b < d

(C4) a ∈ πT (C) implies #ΛT
C(a) ̸= 1 (the same for G).

The set of couplings between T and G is called C(T,G).

We invite the reader to follow the remaining of the section looking at Figure 6.3.1 to
help understanding the comments we present on properties (C1)-(C4) and to visualize the
pieces of notation we need to establish.

We collect the set of points v ∈ ET such that #ΛT
C(v) = 1 in a set we call UT

C . Instead,
the points such that v /∈ πT (C) and #ΛT

C(v) ̸= 1 are collected in a set DT
C . Note that

the sets πT (C), U
T
C and DT

C are a partition of VT . A couple (v, w) ∈ C means that we
match a vertex v ∈ VT with a vertex w ∈ VG. It is clear from the definition that there
can be vertices left out from this matching. We regard this vertices as unnecessary for the
coupling C: when we will induce maps between metric merge trees starting from couplings,
the position of these vertices inside the metric merge tree G will be completely induced by
other vertices in VT . Among the vertices not appearing in the couples of C we distinguish
between two situations: v ∈ DT

C can be informally thought of (v, father(v)) needing to be
removed the image of β(α(T)), with α and β as in Definition 6.9. For this reason we say
that the vertices in DT

C and DG
C are deleted by the coupling C. Instead, the vertices v ∈ UT

C
are vertices which are unused, ignored by the coupling, and will be of no importance in
the computation of the distance.

In this context, property (C1) is asking that the vertices of T and of G coupled by
C form a tree, while (C2) is asking that each vertex is paired with at most one other
vertex of the other merge tree. Note the maps α : T → G in Definition 6.9 are not
forced to be injective, but, as we will prove in later sections, for our purposes it is enough
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(a) Call T the merge tree on the left and G the one on the right. The couples of adjacent
letters - red and black - indicate a coupling. The vertex C in grey represent the only vertex
with #Λ(C) = 1 and belongs to UT ; instead the leaf B belongs to DT and clearly #Λ(B) = 0.
The green arrows suggest the path of the two-step deletion of B - note that φ(B) = C and so
η(B) = A.

(b) The grey arrows between the two merge trees indicate a mapping C. The dashed gray arrow,
instead, indicate where the lower vertex of the deleted edges - the red ones - are sent by the
associated function αC - introduced in Section 6.4. The lower deleted edge - of the leftmost
tree - is an internal edge and its lower vertex v is deleted with #Λ(v) > 1 and thus it is sent to
χ(v). The higher deleted edge of the leftmost tree is instead deleted with a two step deletion as
in Figure 6.3.1a. The yellow vertex is unused.

Figure 6.3.1: Two examples of couplings, displaying all possible cases of unused vertices
and deletions.
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to couple points just one time. Condition (C3) is asking that the coupling respects the
tree structures of T and G; in particular this implies that (maxπT (C),maxπG(C)) ∈ C.
Lastly, due to condition (C4), we avoid coupling vertices which have only one element
below them which is coupled.

Given a coupling, we want to associate to a vertex a cost which indicates how much
the coupling moves that vertex. In order to do so, we define the following functions:

• define φC
T : VT → VT so that φC

T (x) = min{v ∈ VT | v > x and #Λ(v) ̸= 0}. Note
that since the set {v ∈ VT |v > x} is totally ordered, φC

T (x) is well defined;

• similarly, define δCT : VT → VT , defined as δCT (x) = min{v ∈ VT
∣∣v ≥ x and v ∈

πT (C)};

• define χC
T : VT → VG, defined as χC

T (x) = LCA({πG((v, w)) | v ∈ ΛT (x)});

• set γCT : VT −DT
C → VG to be:

γCT (x) =

{
argmin{g(w) | (v, w) ∈ C, v < x} if #{g(w) | (v, w) ∈ C, v < x} > 0

∅ otherwise.

Note that if #{g(w) | (v, w) ∈ C, v < x} > 0, by (G), γCT (x) is uniquely defined.
Note that γCT (φ

C
T (x)) is well defined for any v ∈ VT .

Remark 6.12. When clear from the context, to lighten the notation, we might omit the
subscripts and superscripts. For instance if we fix C ∈ C(T,G) and x ∈ VT , we refer to
γCT (φ

C
T (x)) as γ(φ(x)). And similarly we use x ∈ U , x ∈ D respectively for x ∈ UT

C and
x ∈ DT

C .

Given x ∈ VT , in what follows we will encounter the following objects:

• η(x) := γ(φ(x)) is the vertex in VG obtained in this way: starting from x we go
towards rT until we meet the first point of VT which has at least one vertex in its
subtree which is not deleted; we consider the subtree of such vertex and take all
the vertices of VG which are coupled with elements in this subtree (such set is not
empty); lastly we take the lowest vertex among this set;

• given x such that x ∈ D and #Λ(x) > 1, we often consider δ(x); note that for every
v such that x ≤ v < δ(x) then v ∈ D and #Λ(v) > 1. Thus [x, δ(x)] contains only
deleted vertices, up to δ(x);

• similarly, for x such that x ∈ D and #Λ(x) > 1, we take χ(x): that is the the lowest
point in G where x can be sent compatible with C and tree structures of T and G.
Thus, if (x, y) ∈ C, y ≥ χ(x).

6.4 Couplings, Maps and Costs

In this section we establish some correspondence between couplings and maps α : T→ G,
giving also the definition of the cost of a coupling. As a first step, given a coupling C we
induce two maps αC : VT − UT

C → G and βC : VG − UG
C → T, following these rules:

1. if (x, y) ∈ C, then αC(x) := y;

2. x ∈ DT
C with #Λ(x) = 0, then αC(x) := skT (η(x)) with k being:
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• k = f(x)+ 1
2 (f(φ(x))− f(x))−g(η(x)) if g(η(x)) ≤ f(x)+

1
2 (f(φ(x))− f(x));

• k = 0 otherwise.

Where the idea is that we want to send x above some coupled vertex changing its
height “as little as possible”. Bear in mind that the sequence [x, φ(x)] should not
appear in the image of βα;

3. if instead x ∈ DT
C with #Λ(x) > 1, then αC(x) := χ(x).

The map βC is obtained in the same way, exchanging the roles of (T, f) and (G, g).
Figure 6.5.1b shows an example in which βC is obtained starting from a coupling.

As a first result we obtain that the maps we induce respect the trees structures of the
respective merge trees.

Proposition 6.13. Consider x, x′ ∈ VT − UT : if x < x′ then αC(x) ≤ αC(x
′).

Now we need to extend αC to a continuous function between T and G. To formally
extend the map, we need the following lemma.

Lemma 6.14. Any x ∈ T, x /∈ πT (C)
⋃
D, is contained in a sequence of edges [lC(x), uC(x)]

such that lC(x) ∈ max{v ≤ x | v ∈ πT (C) ∪ D} and uC(x) is either uC(x) = +∞ or
uC(x) = min{v ≥ x | v ∈ πT (C) ∪D}.

Moreover, lC(x) is unique if {v ∈ U | lC(x) ≤ v ≤ x} = ∅ and, if {v ∈ U | lC(x) ≤ v ≤
x} ≠ ∅, there exist one and only one lC(x) such that lC(x) /∈ D.

Now we can obtain a continuous map αC : T→ G.

Proposition 6.15. We can extend αC to a continuous map between T and G. This map,
with an abuse of notation, is still called αC .

Proof. We define αC(x) for x /∈ πT (C)
⋃
DT

C . By Lemma 6.14 we have x ∈ [l(x), u(x)],
with αC being defined for l(x) and u(x). Whenever l(x) is not unique, we take the unique
l(x) ∈ πT (C). Clearly we have f(l(x)) < f(x) < f(u(x)). Thus, if u(x) < +∞, there is
a unique λ ∈ [0, 1] such that f(x) = λf(l(x)) + (1 − λ)f(u(x)). Having fixed such λ, we
define αC(x) to be the unique point in [αC(l(x)), αC(u(x))] - which is a sequence of edges
thanks to Proposition 6.13 - with height λg(αC(l(x)))+(1−λ)g(αC(u(x))). If u(x) = +∞
then x > v with v = maxπT (C). Then we set αC(x) = y such that y ≥ αC(v) and
g(y) = g(αC(v))+f(x)−f(v). Note that, for x, x′ such that u(x), u(x′) = +∞, αC always
preserves distances and g(αC(x)) − f(x) = g(αC(v)) − f(v). Thus, on such points it is a
continuous function.

Consider now a converging sequence xn → x in T. We know that definitively {xn}n∈N is
contained in one or more edges containing x. Thus we can obtain a finite set of converging
subsequences by intersecting {xn} with such edges. With an abuse of notation from now
on we use {xn}n∈N to indicate any such sequence. Each of those edges is contained in a
unique sequence of edges of the form [l(x′), u(x′)], for some x′ - up to, eventually, taking
l(x′) /∈ D. Thus {xn} ⊂ [l(x′), u(x′)] induces a unique sequence {λn} ⊂ [0, 1] such that
f(xn) = λnf(l(x

′)) + (1 − λn)f(u(x
′)) and λn → λx, with f(x) = λxf(l(x

′)) + (1 −
λx)f(u(x

′)). By Lemma 6.14 αC(x) ∈ [αC(l(x
′)), αC(u(x

′))]. Moreover, by construction,
g(αC(xn))→ λxg(αC(l(x

′))) + (1− λx)g(αC(u(x
′))) = g(αC(x)). Thus αC is continuous.

In order to start relating maps induced by couplings and ε-good maps, we define the
cost of the coupling C, which is given in terms of how much αC moves the points of T.
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Definition 6.16. Given C ∈ C(T,G) and x ∈ T, we define costC(x) = | g(αC(x))−f(x) | .
Coherently we define ∥ C ∥∞= max{∥ g ◦ αC − f ◦ IdT ∥∞, ∥ f ◦ βC − g ◦ IdG ∥∞}.

Note that, given C ∈ C(T,G) and x ∈ T, we have one of the following possibilities:

• if (x, y) ∈ C, costC(x) = |f(x)− g(y)|;

• if x /∈ πT (C)
⋃
D, costC(x) ≤ max{costC(l(x)), costC(u(x))}; in fact:

| g(αC(x))− f(x) | =
|λg(αC(l(x)))− λf(l(x)) + (1− λ)g(αC(u(x)))− (1− λ)f(u(x)) ≤
λcostC(l(x)) + (1− λ)costC(u(x))

• we are left with the case x ∈ D. We have two different scenarios:

– if #Λ(x) = 0, then costC(x) = max{(f(φ(x))− f(x)) /2, g(η(x))− f(x)}. We
point out that (f(φ(x))− f(x)) /2 is the cost of deleting the path [x, φ(x)] in
two steps: we halve the distance between x and φ(x) with α and then with β
we have f(βα(x)) = f(φ(x)). This can happen if below w (with (δ(x), w) ∈ C)
there is “room” to send x at height f(x) + (f(φ(x))− f(x)) /2; if instead η(x)
is higher than f(x) + (f(φ(x))− f(x)) /2 we simply send x to η(x);

– if #Λ(x) > 1, we have costC(x) = | f(x)− g(χ(x)) | .

As a consequence we point out two facts:

1. for every α : T→ G such that, for every x ∈ πT (C)
⋃
D, α(x) = αC(x) we have:

∥ g ◦ αC − f ◦ IdT ∥∞≤∥ g ◦ α− f ◦ IdT ∥∞

2. if we fix some total ordering of the elements in VT
∐
VG, so that we can write

VT
∐
VT ′ = (a1, . . . , an), then ∥ C ∥∞= max(cost(a1), . . . , cost(an)).

6.5 From Couplings to ε-good Maps

In this section we prove the first fundamental interaction between couplings and inter-
leaving distance between trees, with our final goal being to replace the problem of finding
optimal maps with the combinatorial problem of obtaining optimal couplings. Figure 6.5.1
summarizes all the steps of the procedure which is formally addressed in this section.

Given a coupling C, for any ε ≥ ||C||∞ we build a map αε
C : T → G: αε

C(x) =

skx

G (αC(x)) with kx = f(x) + ε − g(αC(x)) depending on x. Now we check that, since
ε ≥ cost(C), we always have kx ≥ 0. In fact it is enough to check this property on VT :

1. for (x, y) ∈ C we have ε ≥ |f(x)− g(y)| and thus f(x) + ε− g(y) ≥ 0;

2. for x ∈ DT
C and #Λ(x) = 0, we have ε ≥ max{(f(φ(x))− f(x))/2, g(η(x))− f(x)}.

Thus f(x) + ε ≥ g(η(x)) and so k ≥ 0. Similarly if #Λ(x) > 1, we have w = χ(x)
and k = f(x) + ε− g(w) ≥ 0.

We want to prove that αε
C is a ε-good map. Note that, by construction g(αε

C(x)) =
g(αC(x)) + f(x) + ε− g(αC(x)) = f(x) + ε.

Remark 6.17. The map αε
C is such that, given x, x′ ∈ T with x < x′, we have αε

C(x) <
αε
C(x

′).
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(a)

(b)

Figure 6.5.1: With the same notation/colors used in Figure 6.3.1a and display the ma-
chinery defined in Section 6.5. Start from the subfigure (a). The gray arrows represent the
map βC : VG → VT , which then is naturally extended to the metric trees. The image of
such map is then shifted upwards using the structure map skT as in Section 6.5, to obtain
βεC , with the shift being indicated by the upwards red arrows. In subfigure (b), the orange
arrows - and the shaded orange portion of T - represent the ε-good map βεC obtained with
the composition of βC with the upward shift.
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As a first step we obtain that αε
C satisfies some necessary conditions in order to be

ε-good: it is in fact continuous and moves point “upwards” by ε.

Proposition 6.18. The map αε
C is a continuous map between T and G such that for

every x ∈ T we have g(αε
C(x)) = f(x) + ε.

Before proving the main result of this section we need a short lemma.

Lemma 6.19. Let (v, w), (v′, w′) ∈ C and let x = LCA(v, v′), y = LCA(w,w′). Then
| f(x)− g(y) | ≤ ε.

At this point we are ready to prove the remaining properties which make αε
C an ε-good

map.

Theorem 6.20. The map αε
C is an ε-good map.

6.6 From ε-Good Maps to Couplings

This time we start from an ε-good map α : T → G and our aim is to induce a C with
∥ C ∥∞≤ ε.

Given a metric merge tree T we define the following map: L : T → VT given by
L(x) = max{v ∈ VT | v ≤ x}. Note that if x ∈ VT then L(x) = x, otherwise x is an
internal vertex of one edge (a, b), with possibly b = +∞, and L(x) = a. With this
notation we introduce the following maps, which are analogous to α↓ and β↓ defined in
Agarwal et al. (2018) and to other maps defined in the proof of Theorem 4.22 in Chapter 4:

ϕ :VT → VG (6.1)

v 7→ L(α(v)) (6.2)

ψ :VG → VT (6.3)

w 7→ L(β(v)) (6.4)

Note that we always have g(ϕ(v)) ≤ g(α(v)) ≤ f(v) + ε. These maps will be keys in
the proof of the upcoming theorem since they will help us in closing the gap between the
continuous formulation of the interleaving distance and the discrete matching of merge
trees via couplings. The reader should refer to Figure 6.6.1 for a visual example of the
above definitions.

We prove a corollary which characterizes the maps we just defined, and will be used in
what follows.

Corollary 6.21. Let v, v′ ∈ VT ; if v < v′ then ϕ(v) ≤ ϕ(v′).

Clearly this result implies that, in the setting of the corollary, ψ(ϕ(v)) ≤ ψ(ϕ(v′)).
Now we prove the main result of this section.

Theorem 6.22. Given α (and β) ε-good maps between T and G, then there is a coupling
C between T and G such that ∥ C ∥∞≤ ε.

Putting together Theorem 6.20 and Theorem 6.22, we see that two merge trees are
ε-interleaved if and only if there is a coupling C between the tree such that ∥ C ∥∞= ε.
Thus, computing the interleaving distance amounts to finding a minimal-cost coupling
between two merge trees. As a byproduct of this result, we obtain another proof that the
interleaving distance between metric merge tree can be found as a minimum and not just
as an infimum as in Definition 6.9, for the set of available couplings is finite.
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Figure 6.6.1: Given the two maps of Figure 6.2.2, the shaded gray represent the image
of those maps, the red arrows give the maps ψ (left) and ϕ (right), and the red letters
next to the black ones indicate two possible couplings (one in leftmost tree and one in
the rightmost tree) satisfying Theorem 6.22. These couplings are compatible with the
procedure outlined in the proof of Theorem 6.22 upon perturbing the leftmost tree to
meet the generality condition (G).

6.7 Properties of Couplings

In this section we present two different properties of the interleaving distance which are
useful for the approximation scheme we propose in Section 6.8.

6.7.1 Decomposition Properties

In the following we exploit the equivalent formulation of the interleaving distance via
couplings to prove that it can be approximated via the solution of in smaller independent
subproblems which are then aggregated to solve the global one.

The main result of the section involves couplings with some strong properties, which
we call special and collect under the following notation:

Co(T,G) := {C ∈ C(T,G) | arg min
v<maxπT (C)

f(v) ∈ πT (C) and arg min
w<maxπG(C)

g(w) ∈ πG(C)}.

Before proceeding, we need few pieces of notation used to lighten the dissertation and
one last technical definition. Given x ∈ VT and y ∈ VG we define Tx = subT (x) and
Gy = subG(y). Moreover CR(T,G) := {C ∈ C(T,G) | (rT , rG) ∈ C}. Similarly, we have
CoR(T,G) := CR(T,G)

⋂
Co(T,G).

Definition 6.23. Given a partially ordered set (A,<), A is antichain if for any a, b ∈ A,
a ̸= b, there is not an element c such that c > a and c > b.

Now we introduce the combinatorial objects we will use to decompose the following
optimization problem: minC∈C(T,G) ||C||∞. The reader may look at Figure 6.7.1 to find
examples involving the following definition.

Definition 6.24. We define C∗(T,G) as the set of C∗ ⊂ VT × VG such that:
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Figure 6.7.1: The letters in red show three examples of C∗ ⊂ VT × VG satisfying property
(A0). However the rightmost example does not satisfy the antichain condition (A1), for
there is C > A and C > B. In orange we highlight the vertices giving LCA(πT (C

∗)). The
green branch in the leftmost tree signifies that, since #ΛC∗(C) = 2, C is deleted.

(A0) C∗⋃{ (LCA(πT (C∗)),LCA(πG(C
∗)))

}
∈ C(T,G);

(A1) C∗ is an antichain.

The idea behind the definition of C∗(T,G) is that we assume that we already know
argmin{∥ C ′ ∥∞ |C ′ ∈ CR(Tx, Gy)} for every x ∈ ET and y ∈ EG, and we use C∗ ∈
C∗(T,G) to optimally aggregate these results to find the optimal global coupling between
T and G. We formalize such concepts in the following definition.

Definition 6.25. Let Cx,y ∈ CR(Tx, Gy) for every x, y ∈ VT × VG. Given C∗ ∈ C∗(T,G),
with r = LCA(πT (C

∗)) and r′ = LCA(πG(C
∗)), we define the extension of C∗ by means

of {Cx,y}(x,y)∈C∗ as E = {(r, r′)}
⋃

(x,y)∈C∗ Cx,y. The set of all possible extensions of C∗

is called E(C∗). If Cx,y ∈ argmin{∥ C ′ ∥∞ |C ′ ∈ CR(Tx, Gy)} for all x, y then we call the
extension minimal. We collect all minimal extensions of C∗ in the set Em(C∗) - which is
never empty. If all Cx,y and E are special couplings then we call the extension special. We
collect all special extensions of C∗ in the set Eo(C∗) - which is never empty. We name
Eo

m(C∗) = Em(C∗) ∩ Eo(C∗) the set of minimal special extensions of C∗ - this set could
be empty.

Since extensions are couplings, it is obvious that:

dI(T,G) ≤ min
C∗∈C∗(T,G)

min
C∈Em(C∗)

∥ C ∥∞ . (6.5)

dI(T,G) ≤ min
C∗∈C∗(T,G)

min
C∈Eo(C∗)

∥ C ∥∞ . (6.6)

See also Figure 6.7.2a. Moreover it is also clear that any coupling is an extension of
some C∗ ∈ C∗(T,G) and thus:

dI(T,G) = min
C∗∈C∗(T,G)

min
C∈E(C∗)

∥ C ∥∞ .

The upcoming theorem states that there strong relationships between dI and extensions
obtained via a fixed family of Cx,y ∈ CR(Tx, Gy).

Theorem 6.26 (Decomposition). Consider two merge trees T and G and take a collection
of Cx,y ∈ argmin{∥ C ′ ∥∞ |C ′ ∈ CR(Tx, Gy)}. Given C∗ ∈ C∗(T,G) we name e(C∗) the
extension obtained by means of Cx,y. We have:

min
C∗∈C∗(T,G)

max{coste(C∗)(v) | v ∈ πT (e(C∗)) or #Λe(C∗)(v) > 0} ≤ dI(T,G) (6.7)
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Moreover, if Cx,y for every x, y is also a special coupling we have:

dI(T,G) = min
C∗∈C∗(T,G)

∥ e(C∗) ∥∞ . (6.8)

We remark that Theorem 6.26 is in some sense unexpected: if Equation (6.5) and
Equation (6.6) are in some sense trivial, Equation (6.7) and Equation (6.8) certainly are
not. Mainly because the couplings Cx,y are fixed at the beginning and not chosen with
some optimization strategy. Moreover, the proof of the latter one depends strongly on the
possibility to find optimal couplings of the form Co(T,G). Note that given C∗ ∈ C∗(T,G)
and Cx,y ∈ CoR(Tx, Gy) special couplings for all (x, y) ∈ C∗, then the extension

{(LCA(πT (C∗)),LCA(πG(C
∗)))}

⋃
(x,y)∈C∗

Cx,y

is not a special coupling in general - see Figure 6.7.2b. Similarly, minimal extensions are
not optimal couplings in general, see again Figure 6.7.2b.

6.7.2 Approximation by Pruning Operators

Now we prove a second property of the interleaving distance which is very useful when
looking for approximations of dI . In particular, we find a way to approximate the distance
sensibly reducing the computational complexity of the problem by removing leaves and
computing distances between smaller trees.

We briefly introduce the pruning operator Pε as described in Chapter 2 and Chapter 4.
Given a merge tree T and ε > 0, the merge tree Pε(T ) is obtained through a recursive
procedure: given a leaf x and its father x′, if f(x′) − f(x) < ε we say that x is a small-
weight leaf; we want to remove all small-weight leaves - and their fathers if they become
order 2 vertices - from T unless two or more of them are siblings, i.e. children of the
same father. In this case we want to remove all leaves but the one being the lowest leaf.
To make this procedure well defined and to make sure that, in the end, no small-weight
leaves are left in the tree, we need to choose some ordering of the leaves and to resort to
recursion.

(P) Take a leaf l such that f(father(l)) − f(l) is minimal; if f(father(l)) − f(l) < ε,
remove l and its father if it becomes an order 2 vertex after removing l.

We take T0 = T and apply operation (P) to obtain T1. On the result we apply again
(P) obtaining T2 and we go on until we reach a fixed point Tn = Tn+1 = Pε(T ) of such
sequence. To shed some light on this definition we prove the following lemma; Figure 6.7.3
can be helpful in following the statements.

Lemma 6.27. Given T , ε > 0 and Pε(T ), we have a natural injective map VPε(T ) ↪→ VT
which identifies vertices in Pε(T ) with vertices in T . Call Cε ⊂ VPε(T ) × VT the set of
couples induced by VPε(T ) ↪→ VT . The following hold:

1. Cε is a coupling;

2. LPε(T ) ⊂ LT and for every v and v′ such that v′ < v and f(v)− f(v′) ≥ ε, there is
l ∈ LPε(T ) such that LCA(l, v′) < v; in particular argmin f ∈ LPε(T );

3. for every v ∈ VT − VPε(T ) we have #ΛCε
(v) ≤ 1; in particular if v ∈ D, we have

#Λ(v) = 0 and f(φCε
(v))− f(v) < ε;

4. the map: ηCε
: DT

Cε
→ VT such that f(ηCε

(x)) < f(x) for all x ∈ DT
Cε
;
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(a) The couples {(A,A′), (B,B′), (C,C ′)} form antichains via πT and πG. The shaded regions
indicate how the subtrees rooted in the vertices of the antichain are matched. Minimal couplings
are displayed with deletions in red. The remaining vertices can be coupled by visual inspection.
We have highlighted the couples of the blue subtree just as an example. Putting together all
the couples we obtain an extension of the antichain.

(b) In this figure we can see a non special extension as the lower vertex of the tree on the right
is not matched. Even though the coupling displayed by the blue arrows is special for the blue
subtrees, it does not extend to a special coupling between the two trees: the deletion of A should
go through the lowest vertex of the right tree, while it is forced to go though its father. As
signified by the red arrows. We can also appreciate that minimal extensions are not optimal
couplings in general.

Figure 6.7.2: Two figures related to decomposition and extensions of couplings.
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Figure 6.7.3: An example of a pruning operator applied on a merge tree T . The red
branches are removed from the tree, while the orange ones are kept and represent the metric
merge tree Pε(T ). We highlight that the root of the tree changes. The superimposition
of the orange shaded tree on the black one gives the injection between them. Lastly, note
that deleting A instead of B (these are small-weight siblings with same weights - violating
(G)) would give isomorphic merge trees.

5. ∥ Cε ∥∞≤ ε/2.

Having characterized the pruned trees with the above lemma, we can obtain the fol-
lowing proposition.

Proposition 6.28. Given two merge trees T and G, we have:

dI(T,G) ≤ max{dI(Pε(T ), Pε(G)), ε/2}

As a result, if the number of leaves of T and G is too high, we know that we can prune
them, reducing the computational complexity of dI , to obtain an estimate from above of
dI(T,G).

We close this section with a claim we would like to investigate in the future.

Claim 6.29. The coupling Cε is a minimizing coupling.

6.8 Approximating the Interleaving Distance: Linear Integer Opti-
mization

In this section we exploit Theorem 6.26 to obtain a dynamical approach to approximate
the optimal coupling between two merge trees, by solving recursively linear integer pro-
gramming problems.

6.8.1 Computing the Cost of a Coupling Extension e(C∗)

As a first step we separate the problem of finding C∗ ∈ C∗(T,G) with a norm-minimizing
extension into two separated problems: the first one is to find a minimal-fixed root cou-
pling, the second one is to compute the cost of deleting the vertices which are not below
the roots. To make the upcoming lemma more clear we establish the following notation:
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if r = LCA(πT (C
∗)) and r′ = LCA(πG(C

∗)), then for v ≰ r, vr = min{v′ ≥ r and v′ ≥ v}
and fr = minv≤r f(v). Lastly:

Hr,r′ = max{max
v≰r

0.5·(f(vr)−f(v)),max
v≰r

gr′−f(v),max
w≰r′

0.5·(g(wr′)−g(w)),max
w≰r′

fr−g(w)}.

Note that Hr,r′ does not depend on the chosen extension of C∗, and, in fact, it depends
only on r, r′. Lemma 6.30 states that Hr,r′ accounts for the deletions of all the vertices
which are not below r or r′.

Lemma 6.30. Given T,G merge trees and C∗ ∈ C∗(T,G), with r = LCA(πT (C
∗)) and

r′ = LCA(πG(C
∗)) then:

∥ Cr,r′ ∥∞= max{∥ C ′
r,r′ ∥∞, Hr,r′} (6.9)

where Cr,r′ is any extension of C∗ and C ′
r,r′ is equal as a set to Cr,r′ but is considered as

a coupling in C(Tr, Gr′).

Since the computation of Hr,r′ can be easily accessed in a greedy fashion, from now on,
we focus on find an approximate solution for C ∈ argmin{∥ C ′ ∥∞ |C ′ ∈ CR(T,G)}.

6.8.2 Iterative Approach

Now we start working out a procedure to approximate C ∈ argmin{∥ C ′ ∥∞ |C ′ ∈
CR(T,G)}. The assumption of our approach is that we already have computed Cx,y ∈
CR(Tx, Gy) that we want to use to extend any C∗ ∈ C∗(T,G), as in Theorem 6.26. So
for instance, if we want to work with special extensions, we assume that we have Cx,y ∈
argmin{||C ′||∞

∣∣C ′ ∈ CoR(Tx, Gy)} for all x ∈ ET and y ∈ EG and we exploit them to obtain
a special extension of some C∗ ∈ C∗(T,G). If we want to work with minimal extensions,
instead, we would assume to have Cx,y ∈ argmin{||C ′||∞

∣∣C ′ ∈ CR(Tx, Gy)}. We anticipate
that both kinds of extensions are important for our purposes as special extension will be
used in the following to produce upper bounds for the interleaving distance, while minimal
extension will be used accordingly to Theorem 6.26 to obtain a lower bound.

We fix the following notation: fx = minv≤x f(v) and gy = minw≤y g(w). Lastly, we fix
a constant K > 0 such that K > maxx∈VT ,y∈VG

| f(x) − g(y) | . In Section 6.8.5 we point
out which steps of the upcoming procedure may produce errors.

6.8.3 Variables and Constraints

We consider the following set of binary variables: ax,y for x ∈ ET and y ∈ EG; ux for
x ∈ ET and uy for y ∈ EG. The vector of all variables (upon choosing some ordering) will
be referred to as V.

We also introduce the following auxiliary variables:

• cx =
∑

y ax,y and cy =
∑

x ax,y

• Λx =
∑

v≤x cv and Λy =
∑

w≤y cw

• dx =
∑

v≤x cv +
∑

v>x cv and dy =
∑

w≤y cw +
∑

w>y cw

and the following constraints:

(1) for every l ∈ LT :
∑

l≤x<rT
cx ≤ 1 and for every l′ ∈ LG:

∑
l′≤y<rG

cy ≤ 1

(2) ux ≤ 0.5Λx and uy ≤ 0.5Λy for every x and y;
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(3) ux ≥ mxΛx + qx and uy ≥ myΛy + qy for every x and y. With mx, qx being any
pair of (m, q) such that the following are satisfied: q < 0, m + q < 0, 2m + q > 0,
m#LT < 1 (analogously for my, qy);

(4) (only for special extensions) let x̃ = argminv∈VT
f(v) and ỹ = argminw∈VG

g(w);
then we ask

∑
x̃≤x<rT

cx ≥ 1 and
∑

ỹ≤y<rG
cy ≥ 1.

The set of vectors of variables which satisfy these constraints is called Km or Ko de-
pending on whether (4) are, respectively, included or not. Note that Km ⊃ Ko. To lighten
the notation, when we do not wish to distinguish between Km and Ko, we simply write
K. Now we briefly comment on the variables and constraints to try to give some intuition
about their roles:

• the variables ax,y are used to match x with y, i.e. add the couple (x, y) to the
coupling. In particular constraint (1) ensures that if V ∈ K, the set C(V) =
{(x, y)

∣∣vx,y = 1} belongs to C∗(T,G);

• the variables dx and ux are used to determine if x must be deleted. Start with dx.
The main idea which our optimization procedure is based on, is that if av,w = 1
with v > x, it means that x is taken care of by the coupling Cv,w and thus we want
to “ignore” such x. In other words, having dx = 0, implies that x is deleted with
#Λ(x) = 0;

• now we turn to ux. Observe that, if Λx = 0, 1, then ux = 0 while if Λx ≥ 2, ux = 1.
Note that Λx ≤ #LT and Λy ≤ #LG. Constraints (2) and (3) are fundamental to
fix the value of ux, depending linearly on Λx: ux = 1 if and only if x ≥ LCA(v, v′),
with av,w = 1 and av′,w′ = 1, for some w,w′ ∈ VG. Thus having ux = 1 means that
x is deleted with #Λ(x) > 1;

• lastly, we comment on constraints (4). These constraints are asking that there is
one point above the lowest vertex in each tree which is coupled by C(V); this in
particular implies that, if we assume Cx,y ∈ Co(Tx, Gy), then x̃ and ỹ are never
deleted. Thus, {(rT , rG)}

⋃
(x,y)∈C(V)Cx,y is a special extension, i.e. a coupling in

CoR(T,G).

As a consequence of these observations, any C ∈ C∗(T,G) induces a unique vector of
variables V ∈ K, such that C(V) = C. Moreover if Cx,y ∈ Co(Tx, Gy) and V ∈ Ko, then
{(rT , rG)}

⋃
(x,y)∈C(V)Cx,y is a special extension of C(V).

6.8.4 Objective function

A key fact that we highlight is that, by property (A1), if x = LCA(v, v′), with av,w = 1,
av′,w′ = 1 and x < rT , then δ(x) = rT due to the antichain condition. So we know that
any vertex x′ such that x ≤ x′ < rT , is in D

T
C(V). Thus, given x ∈ VT , and with xf being

its father, the “local” objective function, depends on the following quantities:

•
∑

y ax,y ∥ Cx,y ∥∞: it is the cost of matching Tx and Gy, if (x, y) is added to C. If
Cx,y is not a minimal coupling, this is an upper bound;

• | g(rG)− f(x) |ux: it is an upper bound to the cost of deleting x with #Λ(x) > 1;

• Ax = 0.5(f(xf )− fx)(1− dx): in case x is deleted with #Λ(x) = 0, it gives a lower
bound to the deletion of Tx, as it is equal to deleting the lowest point below x to
the height of the father of x, in two step. It is an exact value if xf = φ(x) and
g(η(x))− fx < Ax;

217



Chapter 6. A Graph-Matching Formulation of the Interleaving Distance between Merge
Trees

• Bx = {
∑

y av,y (gy − fx) − Kdx | v < xf}: in case x is deleted with #Λ(x) = 0
it helps giving an upper bound to the deletion of Tx, depending on what happens
below xf . If there is v < xf such that v is coupled with y and Cx,y is a special
coupling, then we know that gy ≥ g(η(x)), and so gy − fx ≥ g(η(x)) − fx. Thus, if
Cx,y is a special coupling, max{maxBx, Ax} ≥ cost(x).

For any x ∈ ET we define:

Γ↑(x) = max

(∑
y

ax,y ∥ Cx,y ∥∞, (g(rG)− f(x))ux, Ax,maxBx

)

and:
Γ↑(y) = max ((f(rT )− g(y))uy, Ay,maxBy)

for any y ∈ EG.
In full analogy we set:

Γ↓(x) = max

(∑
y

ax,y ∥ Cx,y ∥∞, Ax

)

and:
Γ↓(y) = Ay

for any y ∈ EG.
Lastly,: Γ↑(rT ) = Γ↓(rT ) = |rT − rG|.
With an abuse of notation we write:

Γ↑(V) = max
x∈VT

∐
VG

Γ↑(x) (6.10)

Γ↓(V) = max
x∈VT

∐
VG

Γ↓(x). (6.11)

We sum up the main properties of the definitions we have just stated with the following
proposition.

Proposition 6.31. Given C ∈ C∗(T,G) and Cx,y ∈ CoR(Tx, Gy) for all (x, y) ∈ C, we call

Co := {(rT , rG)}
⋃

(x,y)∈C

Cx,y.

If Co is a special extension then:

||Co||∞ ≤ Γ↑(V) (6.12)

with V being the unique set of variables in Ko such that C(V) = Co.
Viceversa, given C ∈ C∗(T,G), and Cx,y ∈ CR(Tx, Gy) with minimal norm for all

(x, y) ∈ C, we call

Cm := {(rT , rG)}
⋃

(x,y)∈C

Cx,y.

Then:
Γ↓(V) ≤ max{costCm

(v) | v ∈ πT (Cm) or #ΛCm
(v) > 0} (6.13)

with V being the unique set of variables in Km such that C(V) = Cm.

Putting together Theorem 6.26 and Proposition 6.31 we obtain as a corollary:
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Corollary 6.32. Consider T,G merge trees, and take:

1. a collection of Cx,y ∈ argmin{∥ C ′ ∥∞ |C ′ ∈ CR(Tx, Gy)}.

2. a collection of C ′
x,y ∈ argmin{∥ C ′ ∥∞ |C ′ ∈ CoR(Tx, Gy)}.

Then:

min
V∈Km

Γ↓(V) ≤ min{∥ C ∥∞ |C ∈ CR(T,G)} ≤ min
V∈Ko

Γ↑(V)

where Γ↓ is computed with {Cx,y} and Γ↑ is computed with {C ′
x,y}.

Now we get rid of the fixed roots, obtaining an approximation for dI(T,G) by putting
together Theorem 6.26, Lemma 6.30 and Proposition 6.31.

Corollary 6.33. In the same setting as Corollary 6.32, for each (x, y) ∈ VT ×VG we have:

W ↓
x,y := min

V∈Km

Γ↓(V) ≤ min{∥ C ∥∞ |C ∈ CR(Tx, Gy)} ≤W ↑
x,y := min

V∈Ko
Γ↑(V).

where the constraints defining K clearly depend on the vertices used to generate the subtrees,
Γ↓ is computed with {Cx,y} and Γ↑ is computed with {C ′

x,y}.
Consequently:

min
(x,y)∈VT×VG

max{Hx,y,W
↓
x,y} ≤ dI(T,G) ≤ min

(x,y)∈VT×VG

max{Hx,y,W
↑
x,y}. (6.14)

6.8.5 Approximations

We take this section to briefly isolate which are the situations in which our procedure may
produce errors w.r.t. the true interleaving distance.

1. Clearly rG (rT ) is an upper bound for χ(x) (χ(y)) with x (y) being deleted with
#Λ(x) > 1 (#Λ(x) > 1) and so | g(rG)− f(x) |ux is an upper bound to the cost of
the corresponding deletion.

2. Computing η(v) for v ∈ DT with #Λ(v) = 0: we may have | f(v) − g(η(v)) | ≤
maxBx′ for x = φ(v) and x = father(x′).

6.8.6 Linearization

At this point we have introduced a set of linear constraints, needed to optimize a non linear
function (either Γ↑ or Γ↓) of the form minV∈K maxi Fi(V) for some real-valued functions Fj

which are linear in V. We can turn this into a linear optimization problem by exploiting
a standard trick, introducing auxiliary variables and with additional constraints.

Suppose we need to find minsmax(f(s), g(s)), with f, g real valued functions; we then
introduce the variable u, with the constraints u ≥ f(s) and u ≥ g(s) and solve the
problem mins,u≥f(s),u≥g(s) u. We want to use this procedure to compute minV∈K Γ↑(V)
and minV∈K Γ↓(V). We write down the details only for minV∈K Γ↑(V), the case Γ↓(V)
follows easily.

Given x ∈ ET we define F 1
x =

∑
y ax,y ∥ Cx,y ∥∞, F 2

x = (g(rG)−f(x))ux, and F 3
x = Ax.

Given y ∈ EG, instead, we set F 1
y = (f(rT ) − g(y))uy, and F 2

y = Ay. Analogously, we

have F 1
rT = | f(rT ) − g(rG) | . Having fixed a total ordering on VT = {a0, . . . , an} and

VG = {b0, . . . , bm}, respectively, we call F the vector containing all the components F i
x

and F j
y of all the points taken in the chosen order:

F :=
(
F 1
a1
, F 2

a1
, F 3

a1
, . . . , F 1

ai
, F 2

ai
, F 3

ai
, . . . , F 1

b1 , F
2
b1 , . . . , F

1
bm , F

2
bm

)
= (Fi) (6.15)
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Similarly, for every x, we order the elements of the set Bx, so that Bx =
(
. . . , Bh

x , . . .
)
;

then we set

B :=
(
B1

a0
, . . . , Bh0

a0
, . . . , B1

ai
, . . . , Bhi

ai
, . . . , B1

b0 , . . . , B
t0
b0
, . . . , B1

bj , . . . , B
tj
bj

)
= (Bi) (6.16)

So we introduce the auxiliary variable z and add the following constraints to the ones
presented in Section 6.8.3:

(5) z ≥ Fi for all i;

(6) z ≥ Bi for every i;

and then solve minz,V z with all these constraints. We stress again that Fi and Bi are
linear in V; so the final problem is linear with integer valued variables. In case of Γ↓ we
repeat the same operations, omitting the constraints in (6).

6.8.7 Bottom-Up Algorithm

In this section the results obtained in Section 6.7.1 and the formulation established in the
previous parts of Section 6.8 are used to obtain the algorithm implemented to approximate
the metric dI between merge trees. We need to introduce some last pieces of notation in
order to describe the “bottom-up” nature of the procedure.

Given x ∈ VT , define len(x) to be the cardinality of {v ∈ VT |x ≤ v ≤ rT } and len(T ) =
maxv∈VT

len(v); similarly lvl(x) = len(T )− len(x) and lvlT (n) = {v ∈ VT | lvl(v) = n}
The key property is that: lvl(x) > lvl(v) for any v ∈ subT (x). Thus, for instance,

if W ↑x, y is known for any x ∈ lvlT (n) and y ∈ lvlG(m), then for any v, w in VT , VG
such that lvl(v) < n and lvl(w) < m, W ↑

v,w is known as well. We write down Algorithm
2, which refers to the computation of minΓ↑. Note that thanks to constraints (4) this
recursive procedure is always guaranteed to provide a special coupling.

In case of Γ↓ we repeat the same algorithm, omitting the constraints in (4) and (6) and

with W ↓
x,y = minz,V z being a lower bound for dI(Tx, Gy).

Algorithm 2. Bottom-Up Algorithm.

Result: Upper bound for dI(T,G)
1 initialization: N = len(T ), M = len(G), n = m = 0;
2 while n ≤ N or m ≤M do
3 for (x, y) ∈ VT × VT ′ such that lvl(x) ≤ n and lvl(y) ≤ m do
4 Calculate Hx,y;

5 Calculate W ↑
x,y = minz,V z subject to constraints (1)-(6), using W ↑

x′,y′ as

upper bound for ∥ Co
x′,y′ ∥∞, for all couples (x′, y′) already considered;

6 end
7 n = n+ 1; m = m+ 1;

8 end

9 return min(x,y)∈VT×VG
max{Hx,y,W

↑
x,y}

6.9 Error Propagation

We make a brief observation to take care of the interactions arising between the approxi-
mations of the interleaving distance defined in Section 6.8.4 and the bottom-up procedure
proposed in Section 6.8.7.
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Consider the setting of Section 6.8.4 and suppose that, instead of having computed the

optimal couplings Cx,y, we have some approximations C ′
x,y - as it is the case for W ↑

x,y and

W ↓
x,y - with an error term ex,y such that | ∥ Cx,y ∥∞ − ∥ C ′

x,y ∥∞ | < ex,y. We see that
the errors ex,y affect only the components of the form

∑
y ax,y ∥ Cx,y ∥∞. Moreover, the

potential errors occurring in the estimates Γ↑ and Γ↓, appear at the level of Bx and ux.
But ex,y, ux and Bx do not interact or aggregate at any time in the objective functions.
Thus, the eventual error at the level of Bx and ux does not depend on any ex,y: they are
always independent and do not interfere with each other. Which means that errors do not
propagate exploding in size: the final error in the algorithm presented in Section 6.8.7 is
the maximum of all the independent errors occurring at every iteration.

Remark 6.34. In the definition of Γ↑ the biggest potential source of error are the terms
| g(rG)− f(x) |ux which make very costly the deletion of internal vertices in order to swap
father children relationships. This is an issue which brings together our approximation
scheme for the interleaving distance and other distances for merge trees which have been
defined in literature, such as Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al.
(2022). A very detailed explanation of the problems arising from this fact can be found
in Chapter 3, along with the solutions that the authors of the previously mentioned works
propose to mitigate them. All these solutions apply also to our case, but, on top of them, in
the definition of Γ↑ we could also replace | g(rG)−f(x) |ux with | f(father(x))−f(x) |ux.
We believe that this option, on average, should produce lower errors (w.r.t. Γ↑) and more
stable behaviours when compared to the metrics Sridharamurthy et al. (2020); Wetzels
et al. (2022); Pont et al. (2022). However, we leave to future works the assessment of the
properties of this third approximation scheme. We point out that | f(father(x))−f(x) |ux
in general in neither a lower or an upper bound to the cost of deleting x and that is
why we are not considering it in our theoretical investigation. Lastly, replacing | g(rG)−
f(x) |ux with the exact the deletion cost, would turn the linear optimization problem into
a polynomial one. Such polynomial problem could then be turned into a linear one with
auxiliary variables, but we believe that would make its computational cost too high.

6.10 Simulation Study

In this section we test our approximations versus another method to approximate dI
recently proposed by Curry et al. (2022), relying on the work of Gasparovic et al. (2019).
The approximation proposed by Curry et al. (2022) turns the unlabeled problem of the
interleaving distance between merge trees into a labeled interleaving problem by proposing
a suitable set of labels. The optimal labeling would give the exact value of the interleaving
distance, but, in general, this procedure just returns an upper bound. We call dlab the
approximation obtained with the labeled method proposed by Curry et al. (2022) and du
and dl respectively our approximation from above (i.e. with Γ↑) and below (i.e. with Γ↓).

For any fixed i, we generate a couple of point clouds Ck
i = {(xkj , ykj ) | j = 1, . . . , ni} ⊂

R2, with k = 1, 2, according to the following process:

xkj ∼iidN (5, σx,k) j = 1, . . . , ni

ykj ∼iidN (5, σy,k) j = 1, . . . , ni

σx,k ∼N (3, 1)

σy,k ∼N (3, 1).

Note that ni regulates the number of leaves in the trees (which we fix before sampling
Ck
i ). From Ck

i we obtain the single linkage hierarchical clustering dendrogram TCk
i
(that
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(a) Median of the error percentage as a function
of the number of leaves, with the shaded region
being the central quartiles.

(b) Boxplot of the error percentage as a function
of the number of leaves.

(c) Boxplot of the error percentage as a func-
tion of the number of leaves, with the number of
leaves being big (and so resorting to dopt).

(d) Boxplot of the differences between the upper
and lower bounds to the interleaving distance, as
a function of the number of leaves.

Figure 6.10.1: Descriptive statistics of the error percentages obtained with the approxi-
mations dl, du, dopt and dlab, as a function of the number of leaves, with ni ∈ {2, . . . , 15}
- Figure 6.10.1a, Figure 6.10.1b, Figure 6.10.1d - and ni ∈ {100, 01, 102} - Figure 6.10.1c.

is, the merge tree representing the Vietoris Rips filtration of Ck
i ). And then compute

du(TC1
i
, TC2

i
), dl(TC1

i
, TC2

i
) and dlab(TC1

i
, TC2

i
). The distance dlab is computed with the

code available at https://github.com/trneedham/Decorated-Merge-Trees, while du and dl
are computed via the procedure described in Section 6.8.7. For each ni ∈ {2, . . . , 15} we
sample 100 pairs of point clouds and then compute the relative error (dlab − du)/du and
(dl − du)/du.

We repeat the same experiment, this time with ni ∈ {100, 101, 102}. Since in this
case du requires too much time to be computed exactly, we exploit Proposition 6.28 and
consider the smallest ε > 0 such that Pε(TC1

i
) and Pε(TC2

i
) have fewer or equal then 15

leaves. We then call dopt(TC1
, TC2

) = max{ε/2, du(Pε(TC1
), Pε(TC2

))}.
In general we have the following inequality:

dI(T,G) ≤ dopt(T,G), dlab(T,G).

The results of the simulations can be seen in Figure 6.10.1. Looking at Figure 6.10.1a,
Figure 6.10.1b, Figure 6.10.1c we see that, in the context of our data-generating process,
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the approximation given by dlab is very unreliable, producing a median error which around
50− 60%, but with some outliers which are completely off from the values obtained with
du, with errors of more than 3 times the actual value. Figure 6.10.1d instead shows that,
with our data-generating pipeline, the gap between du and dl is almost always 0, which
means that we are exactly computing the interleaving distance.

As a conclusive remark, we say that the computational advantages of the labeled ap-
proach are immense and potentially adequate even for real time applications, but from
our simulation we see that the results need to be taken with care, for the approximation
produced is not always good. On the other hand, with the present implementation, the
computational cost of our approach becomes prohibitive quite quickly as the number of
leaves in the trees increases, even if there might be situations - like the one in this sim-
ulation - in which the approximation scheme we used for ni ≥ 100 can produce good
estimates. We think that interactions between the two approaches could lead to substan-
tial speed-ups: being able to fix the value of some variables in our algorithm basing on
the labeling scheme by Curry et al. (2022) could greatly reduce the dimensionality of the
problem and thus its computational cost.

6.11 Discussion

In this chapter we propose a graph-matching approach to the interleaving distance between
merge trees, trying to understand this metric by means of matchings between unlabeled
combinatorial objects rather than with ε-good maps between metric trees. The relationship
between this kind of matchings, which we call couplings, and continuous maps between
merge trees helps us in producing another formulation of the interleaving distance. In the
second part of the chapter we exploit this formulation to obtain some novel properties of
the interleaving distance, along with two approximation schemes relying on a dynamical
linear integer programming approach. We test this schemes in a simulation study against
another approximation procedure recently published, producing for the first time some
error estimates for this second procedure. The algorithms we produce have some drawbacks
in terms of computational cost, which make it feasible only on small data sets, but still
shows that the reliability of the other implementation available to work with this distance
is often not very good.

There are many directions which we would like to investigate in the future. We would
like to further test the lower and upper bounds we propose in relationship to the third
approximation scheme presented in Remark 6.34, perhaps forcing situations in which the
lower and upper bound are far apart. Further testing would also benefit the understanding
of upper bound we obtain via pruning. Similarly we would like to compare approximation
of the interleaving distance with other distances proposed for merge trees, to assess the
different “unstable” behaviours. On top of that, we believe that the relationship between a
coupling C and the map αC can be used to obtain yet another definition of the interleaving
distance using only continuous monotone maps between metric merge trees. In particular:
given α : T → G and µ : T → T if we define H(α) := maxx∈T | g(α(x)) − f(x) | and
2 ·D(µ) = maxx∈T d(x, µ(x)) (where d is the shortest path metric on T) we think that:

dI(T,G) = min
α,β
{H(α), H(β), D(βα), D(αβ)}

where α and β are continuous monotone maps.
On top of that, the global modeling of the matching between the trees offered by

couplings, opens up the door also to optimal couplings which also satisfy some additional
local optimality criterion. This could be used to obtain some useful parametrizations of
particular optimal maps between merge trees, leading to a better understanding of the
geodesic structure of the space of merge trees with the interleaving distance.
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Appendix

6.A Proofs

Proof of Proposition 6.13.

• The thesis is obvious if x, x′ ∈ πT (C);

• if x ∈ πT (C) and x′ ∈ D, then w ≥ χ(x′), with (x,w) ∈ C, otherwise (C3) is violated
since #Λ(x) > 1, and so αC(x) ≥ αC(x

′);

• if x′ ∈ πT (C) and x ∈ D, then χ(x) ≤ w with (x′, w) ∈ C;

• lastly, suppose x, x′ ∈ D and consider the following cases:

– if #Λ(x) = #Λ(x′) = 0 then we have φ(x) = φ(x′) and thus f(x)+ 1
2(f(φ(x))−

f(x)) ≤ f(x′) + 1
2(f(φ(x

′))− f(x′)). This entails g(αC(x)) ≥ g(αC(x
′));

– if #Λ(x),#Λ(x′) > 1 then we have χ(x) ≤ χ(x′) and the thesis clearly follows;

– suppose lastly that #Λ(x) = 0 and #Λ(x′) = 1; then η(x) ≤ χ(x′).

■

Proof of Lemma 6.14.

Given x ∈ T, if maxπT (C) ∈ {v ∈ T | v ≥ x}, we have a well defined upper extreme
uC(x). Moreover, since {v ∈ T | v ≥ x} is totally ordered, uC(x) is unique. If maxπT (C) /∈
{v ∈ T | v ≥ x}, i.e. LCA(x,maxπT (C)) > maxπT (C), then uC(x) = +∞.

Now consider x ∈ LT . Since subT (x) = {x} then x /∈ U . Thus also lC(x) is well
defined. On top of that, since by hypotheses we are considering only vertices such that
x /∈ πT (C)

⋃
D, x ̸= lC(x) ̸= uC(x). Thus [lC(x), uC(x)] is a non degenerate sequence of

edges.
Suppose {v ∈ U | lC(x) ≤ v ≤ x} = ∅ and v′, v′′ ∈ max{v ≤ x | v ∈ πT (C) ∪ D}.

Clearly [v′, x]
⋂
[v′′, x]

⋂
VT ̸= ∅; so consider p ∈ [v′, x]

⋂
[v′′, x]

⋂
VT . We know p /∈ U , thus

p ∈ πT (C) ∪D, which is absurd since v′, v′′ < p.
Lastly, suppose x ∈ U (and so #Λ(x) = 1) and max{v ≤ x | v ∈ πTC ∪ D} ⊂ D.

Then #Λ(lC(x)) ̸= 1 for any lC(x). Let {v} = Λ(x) and consider [v, x]. If v′ ∈ U for all
v < v′ < x, we are done. Clearly there cannot be vertices v′ with v < v′ < x which are in
πT (C). So suppose there is v′ ∈ D, with v < v′ < x. Since v ∈ Λ(v′), we have #Λ(v′) > 0,
but then #Λ(v′) > 1 which means v, v′′ ∈ Λ(v′) for some v′′ < v′. Clearly in [v′′, x] there
can be no vertex contained in πT (C) apart from v′′. Thus #Λ(x) > 1, which is absurd.

■

Proof of Proposition 6.18.
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We need to check continuity. Consider xn → x in T. We know that their order
relationships is preserved by αC and αε

C . On top of that f(xn)→ f(x) yields f(xn)+ ε→
f(x) + ε and the result follows.

■

Proof of Lemma 6.19.

We know that Λ(x),Λ(y) > 1. Thus x, y are either deleted or coupled. Note that
χ(x) ≥ y and χ(y) ≥ x. If both of them are coupled then (x, y) ∈ C. Suppose x
is coupled - with δ(y) - and y is deleted. Then cost(y) = | f(χ(y)) − g(y) | < ε and
cost(x) = | f(x)− g(δ(y)) | < ε. Since δ(y) ≥ y and χ(y) ≥ x we obtain the thesis.

■

Proof of Theorem 6.20.

• αε
C is continuous by Proposition 6.18.

• (P1) holds by Proposition 6.18.

• Now we prove (P2). Suppose we have αε
C(v) < αε

C(v
′). And let x = LCA(v, v′).

We can suppose #Λ(x) > 1 and LCA(Λ(x)) = x; otherwise at least one between
φ(v) ≥ x and φ(v′) ≥ x holds. Suppose the second one holds, then #Λ(v′) = 0 and
ε ≥ (f(φ(v′))− f(v′))/2 and φ(v′) ≥ x. Thus, (P2) holds. The same if the first one
holds.

Now we show that if #Λ(x) > 1 we can find a, b ∈ VT such that:

– x = LCA(a, b);

– (a, a′), (b, b′) ∈ C;
– αC(v) ≥ αC(a) and αC(v

′) ≥ αC(b).

Note that, in this case, upon calling y = LCA(a′, b′) we have: | f(x) − g(y) | ≤ ε
by Lemma 6.19, αε

C(v
′) ≥ {αC(v), αC(a), αC(b)} and so αC(v

′) ≥ y. Which means
that f(v′) + ε ≥ g(y). Thus f(x)− f(v′) ≤ 2ε.

We enumerate all the possible situations for v - clearly the same hold for v′:

– v ∈ πT (C): then a = v;

– Λ(v) = 0 then a = v′′ with (v′′, η(v)) ∈ C; by hypothesis, φ(v) ≤ x and v′′ < x;

– a ∈ Λ(v) if v /∈ πT (C) and #Λ(v) > 0.

• Now we prove (P3). If w /∈ Im(αε
C) then w ∈ DG

C . In fact if (x,w′) ∈ C with
w′ < w, then [w′, w] ⊂ Im(αε

C), since there are l(w) ≥ w′ and u(w) ≤ rG. But then
we know that there is w′′ = min{y ∈ VG|y > w and y /∈ DG

C} with g(w′′)−g(w) ≤ ε.

■

Proof of Corollary 6.21.

We know that w := α(v) ≤ w′ := α(v′), thus max{y ∈ VG | y ≥ w} ≤ max{y ∈ VG | y ≥
w′} and the thesis follows.

■

Proof of Theorem 6.22.
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The proof is similar to the proof of Theorem 1 in Chapter 4, but we report it because
we need some subtle modifications due to the differences between the mappings, defined
by Chapter 4, and the couplings we use.

We build C by subsquently adding couples starting from an empty set. The proof is
divided in sections which should help the reader in following the various steps.

6.B Leaves of T

In this section we take care of the leaves of the merge tree T .

6.B.1 Selecting the Coupled Leaves

We consider the following set of leaves:

LT = {v ∈ LT |∄v′ ∈ LT such that α(v) < α(v′)} (6.17)

We give a name to the condition:

(a) ∄v′ ∈ LT such that α(v) < α(v′)

so that we can more easily use it during the proof. Note that we can avoid treating the
case α(v) = α(v′) thanks to (G).

The set LT is the set of leaves which will coupled by C: we add to C all the couples
of the form (v, ϕ(v)) with v ∈ LT . We characterize those couples with the following
proposition.

Lemma 6.35. Given v, v′ ∈ LT , then ϕ(v) ≥ ϕ(v′) if and only if v = v′. Moreover, for
every v′ ∈ LT such that (a) does not hold, there is v ∈ LT such that α(v) < α(v′).

Proof. The first part of the proof reduces to observing that ϕ(v) ≤ ϕ(v′) if and only if
α(v) ≤ α(v′).

Now consider v′ ∈ LT such that (a) does not hold. We know there is v0 such that
α(v0) < α(v′). If v0 ∈ LT we are done, otherwise there is v1 such that α(v1) < α(v0) <
α(v′). Note that f(v1) < f(v0). Thus we can carry on this procedure until we find vi ∈ LT .
Note that argminVT

f ∈ LT , thus, in a finite number of step we are done.

6.B.2 Cost Bound on Couples

Now we want to prove the following proposition which gives an upper bound for the cost
of the couples added to C.

Lemma 6.36. Given v ∈ LT , then | f(v)− g(ϕ(v)) | ≤ ε.

Proof. Suppose the thesis does not hold. Since g(ϕ(v)) ≤ f(v)+ε, contradicting the thesis
means that we have v ∈ LT such that:

(b) g(ϕ(v)) + ε < f(v).

Let w = ϕ(v). If (b) holds, then g(father(w)) − g(w) > g(α(v)) − g(w) > 2ε. Let
v′ = ψ(w) ≤ β(w). Note that f(v′) < f(v). We have ϕ(v′) ≤ α(v′) ≤ α(β(w)) = s2εG (w).
But since g(father(w)) − g(w) > 2ε, we also have α(v′) ≤ α(v) with v′ ̸= v which is
absurd by Lemma 6.35.
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6.B.3 Cost Bound on Deletions

In this step we prove the following proposition which gives an analogous bound to the one
of Lemma 6.36, but for the deleted leaves of T .

Lemma 6.37. Given v /∈ LT , then there exists x > v such that:

• there is v′ < x such that v′ ∈ LT ;

• f(x) ≤ f(v) + 2ε.

Proof. Since (a) does not hold for v, we use Lemma 6.35 to obtain v′ ∈ LT such that
α(v′) < α(v). But being α an ε-good map, we have s2εT (v′) ≤ s2εT (v) which implies
f(LCA(v, v′)) ≤ f(v) + 2ε. Thus x = LCA(v, v′) ends the proof.

Lemma 6.37 implies that, using the notation of the proposition, φ(v) ≤ x. Then
f(v) < f(v′) implies that g(ϕ(v)) ≤ f(v′) + ε < f(v) + ε. Thus g(η(v)) < f(v) + ε. Since
f(x) ≤ f(v)+2ε we have that the cost of deleting any x′ < x with #Λ(x′) = 0 is less then
ε.

6.C Leaves of G

The result we need in this section is the following.

Lemma 6.38. Given w ∈ LG, there exist y ≥ w such that:

• there is w′ = ϕ(v) with v ∈ LT and w′ < y;

• g(y) ≤ g(w) + 2ε.

Proof. Consider β(w). Let v ≤ β(w) leaf. We have α(β(w)) ≥ LCA(α(v), w). If v ∈ LT
we are done for ϕ(v) ≤ α(v). If (a) does not hold by Lemma 6.35 it means that there is
v′ ∈ LT such that α(v′) < α(v). We are done since g(α(β(w))) = g(w) + 2ε.

Note that if w < ϕ(v) for some v ∈ LT , then, by Lemma 6.38, g(ϕ(v)) ≤ g(w) + 2ε. In
fact, using the notation of Lemma 6.38, in this case we have w′ = y = ϕ(v) by definition.
As in Section 6.B.3, we have that the cost of the deletion of any w < y such that #Λ(w) = 0
is at most ε.

6.D Internal Vertices

Now we need extend the coupling C taking into account the internal vertices of T . We will
do so after simplifying our merge trees in two different ways: first we remove all vertices
which are deleted with #Λ(p) = 0 and then we take out all inessential internal vertices.

6.D.1 Pruning

Let T0 = T and G0 = G. We define T1 as the merge tree obtained from T0 deleting
the following set of vertices (and the corresponding edges): x such that #Λ(x) = 0 and
x /∈ πT (C). Note that, for any x ∈ VT either there is v ≤ x with v ∈ LT or for any leaf
below x, we can apply Lemma 6.37 and the consequential observations.

The tree G1 is obtained from G0 in an analogous way: any time we have w ∈ VG with
#Λ(w) = 0 and w /∈ πG(C), w is deleted from G0, along with the edge (w, father(w)).

Before proceeding we point out that, by construction, the leaves of T1 are exactly LT .
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6.D.2 Restricting α

Thanks to Corollary 6.21 we have that, anytime we delete some vertex in G0 to obtain G1

and that vertex is in the image of ϕ, we are sure that also its counterimage is deleted from
T0. Now, for every v ∈ T, by construction we have that α(v) belongs to an edge removed
from G0 if and only if ϕ(v) is deleted from G0. Let v′ = L(v) ∈ VT . Then ϕ(v′) ≤ ϕ(v)
and thus ϕ(v′) is deleted as well. Which entails that v′ is deleted as well. All of this, put
together implies that we can restrict α to T1 (the metric tree obtained from T1) and its
image lies in G1 (obtained from G1).

6.D.3 ε-Good Restriction

We define α1 := α |T1
: T1 → G1. We want to prove that α1 is still an ε-good map. Clearly

(P1) and (P2) still hold upon restricting the domain. We just need to show (P3). Suppose
there is w ∈ VG0

such that w /∈ α1(T1). We distinguish between two cases: (1) w /∈ ϕ(T1)
and (2) w ∈ ϕ(T1). Consider scenario (1): w /∈ ϕ(T1) clearly implies that #Λ(w) = 0 and
so w is deleted; scenario (2) instead means that there is α(v) = min{α(v′) > w | v′ ∈ T1}
with L(α(v)) = ϕ(v) = L(w). Clearly {w′ ∈ G0 |w′ < w}

⋂
α(T1) = ∅ and thus v is

a leaf of T1, which means v ∈ LT . This also implies that w /∈ α(T) and in particular
α(v) = min{α(v′) > w | v′ ∈ T0}, thus condition (P3) is satisfied.

6.D.4 Properties of ϕ : T1 → G1 and Removal of Inessential Vertices

We know that ϕ : LT1
→ LG1

is injective. On top of that we have proved that, if w /∈ α1(T1)
then L(w) = ϕ(v) for some v ∈ LT . Thus ϕ : LT1

→ LG1
is a bijection.

From now on we will ignore any vertex v such that #child(v) = 1. Formally, we
introduce T2 (and G2) obtained from T1 (G1) removing all the vertices v ∈ VT1

such that
#child(v) = 1 (similarly w ∈ VG1

such that #child(w) = 1): consider {v′} = child(v).
We remove v from VT1

and replace the edges (v′, v) and (v, father(v)) with the edge
(v′, father(v)). We do this operation recursively until no vertices such that #child(v) = 1
can be found.

6.D.5 Coupling and Deleting the internal vertices

We start with the following lemma.

Lemma 6.39. For every x ∈ VT2
, and y ∈ VG2

, we have |x−χ(x) | ≤ ε and | y−χ(y) | ≤
ε.

Proof. Let x ∈ VT2
− LT2

. Then x = LCA(v1, . . . , vn) with v1, . . . , vn being the leaves of
subT2

(x). Then α(x) > α(vi) for every i and thus α(x) ≤ w = χ(x) = LCA(α(v1), . . . , α(vn)).
Clearly x ≤ β(w) for analogous reasons. Thus |x−w | ≤ ε. For y ∈ VG2

we can make an
analogous proof.

Let v1, . . . , vn ∈ LT2
and ϕ(v1), . . . , ϕ(vn) ∈ LG2

. Let x = LCA(v1, . . . , vn) and y =
LCA(ϕ(v1), . . . , ϕ(vn)). We know that α(x) ≥ y and β(y) ≥ x and so | f(x)− g(y) | ≤ ε.

Thus we proceed as follows: we order all the internal vertices of T2 according to their
height values and we start from the higher one (the root of T2 - note that this in general
is not the root of T0), coupling it with the other root (thus (C1) is verified). Consider
a lower x and let v1, . . . , vn be the leaves of subT2

(x) (and thus x = LCA(v1, . . . , vn)).
Let w = LCA(ϕ(v1), . . . , ϕ(vn)). If the leaves of subG2

(w) are ϕ(v1), . . . , ϕ(vn) we add
the couple (x,w) otherwise we skip x - which will be deleted, with #Λ(x) > 1. Note that
w = χ(x). Moreover, by Lemma 6.39, | f(x)−g(w) | ≤ ε. Going from the root downwards
we repeat this procedure for every x.

We clearly have:
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• that (C3) is satisfied;

• cost((v, w)) ≤ ε;

• if v ∈ VT2
is deleted then #Λ(v) > 1 and cost(v) = | f(v)− g(χ(v)) | ≤ ε;

• if w ∈ VG2
is deleted then #Λ(w) > 1 and cost(w) = | g(w) − f(χ(w)) | ≤ ε by

Lemma 6.39.

6.E Coupling Properties and Costs

First we verify that C is a coupling:

(C1) verified. See Section 6.D.5;

(C2) verified. See Section 6.B and Section 6.D.5: we carefully designed the coupling so
that no vertex is coupled two times;

(C3) verified. It is explicitly proven in Section 6.D.5;

(C4) In Section 6.D.4 we remove all vertices such that #child(x) = 1 to obtainT2 and G2;
all the couples in C are either leaves of vertices in T2 and G2. So, since all leaves of
T2 and G2 are coupled its impossible to have a vertex p belonging to any tree such
that #Λ(p) = 1.

Lastly we verify its costs:

• if (x, y) ∈ C then | f(x) − g(y) | ≤ ε as verified in Section 6.B.2 for x ∈ LT and in
Section 6.D.5 for x being an internal vertex;

• if x ∈ VT ∩D, with #Λ(x) = 0, it is verified that | f(x)−ϕ(x) | ≤ 2ε in Section 6.B.3;
if instead y ∈ VG ∩D we verify | g(y)− ϕ(y) | ≤ 2ε in Section 6.C; in both cases we
have a vertex lower that x (y) which, by construction, it is coupled. And the cost
of the couple is less then ε. Thus the deletion of x (y) costs less than or equal to ε;

• if p ∈ D, with #Λ(p) > 1, then we verify in Section 6.D.5 that the cost of this
deletion is less than or equal to ε.

This concludes the proof.
■

Proof of Theorem 6.26.

Given C ∈ C(T,G) optimal coupling such that {(r, r′)} = maxC, we define M(C) :=
max(C − {(r, r′)}). Clearly M(C) ∈ C∗(T,G). For any (x, y) ∈ M(C), consider Co

x,y ∈
CoR(Tx, Gy) such that ∥ Co

x,y ∥∞≤∥ C | (x,y) ∥∞ with C | (x,y) := {(v, w) ∈ C | (v, w) < (x, y)}.
By ?? and ?? we know that Co

x,y exists for every x, y. Note that C | (x,y) ∈ CR(Tx, Gy).
We want to prove that the extension C ′ := {(r, r′)}

⋃
(x,y)∈M(C)C

o
x,y satisfies ∥ C ′ ∥∞≤∥

C ∥∞. The set C ′ clearly is a coupling since for every x, x′ ∈ πT (M(C)), subT (x) and
subT (x

′) are disjoint. And the same for y, y′ ∈ πG(M(C)). We need to consider the costs
of different kinds of vertices separately. In particular we indicate with (a) whenever we
have v ∈ VT such that v ≤ x for some x ∈ πT (M(C)). If this condition does not hold we
say that (b) holds for v. The same definitions apply also for vertices in G. For instance
(a) holds for all vertices in πT (M(C)) and πG(M(C)). Similarly, if (b) holds for v, then
it holds also for all v′ > v.
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• Consider v ∈ VT such that (a) holds for some (x, y) ∈M(C); we have that χC′(v) ≤
y, φC′(v) ≤ x and ηC′(v) ≤ y, so cost(v) depends only on Co

(x,y). Thus costC′(v) =

costCo
(x,y)

(v) ≤∥ C | (x,y) ∥ by construction;

• suppose now (b) holds for v ∈ VT ; in this case we have by construction χC(v) =
χC′(v), ΛC′(v) = ΛC(v) and thus φC(v) = φC′(v). Suppose now ΛC′(v) = 0: (a)
holds for ηC′(v) by means of some y ∈ πG(C(M)) and thus g(ηC′(v)) = minw′≤y g(w

′) ≤
g(ηC(v)) (thanks to the properties of couplings in CoR(Tx, Gy)). Since φC(v) = φC′(v)
we then have costC′(v) ≤ costC(v). Lastly consider #ΛC′(v) > 1. In this case we
have χC(v) = χC′(v) = r′ and thus costC′(v) = costC(v). Note that in all these
situations, costC′(v) does not depend on the chosen extension.

Exchanging the role of T and G we obtain the same results for the vertices of G. To
conclude it is enough to observe that we can always choose ∥ Co

x,y ∥∞≤∥ C | (x,y) ∥∞ to
obtain an optimal extension and, moreover, ∥ Eo(C∗) ∥∞ is well defined for any optimal
extension.

■

Proof of Lemma 6.27.

1. This is due to the fact that all vertices of Pε(T ) are coupled, Pε(T ) is still a rooted
tree and (P ) does not alter the order relationships of the remaining vertices;

2. since (P ) removes at most one leaf from the previous tree and adds no new leaves,
it is clear that LPε(T ) ⊂ LT . Consider now l ∈ LT , v− = max{v′ ∈ VT | v ≥
l and f(v′) < f(l) + ε} and v+ = min{v′ ∈ VT | v ≥ l and f(v′) ≥ f(l) + ε}. Note
that (v+, v−) ∈ ET . By construction v′ = argminv′′≤v+

f(v′′) is either the last point
below v+ to be deleted or is in LPε(T ). Suppose it is the last point below x+ to be
removed by (P ). By construction, when (P ) removes v′, f(father(v′))− f(v′) < ε,
but, since all other vertices below x+ have been deletex father(v′) ≥ x− and so
f(father(v′)) − f(v′) ≥ ε, which is absurd. Exploiting this fact, also this point is
proven;

3. consider v ∈ VT − VPε(T ); let ΛCε
(v) = {a1, . . . , an}. By construction v ≥ x =

LCA(ΛCε
(v)). We know that a vertex is removed from T if, at a certain point along

the recursive application of (P ), it becomes an order 2 vertex or a small-weight leaf.
Thus the vertex x is not removed from T unless n ≤ 1. Which is absurd because
then ΛCε

(v) = {x}. Thus #Λ(v) ≤ 1. As a consequence, v ∈ D if and only if
#Λ(v) = 0.

The vertex φCε
(v) is the first vertex x above v such that there is a leaf v′, v′ < x,

with f(x) − f(v′) ≥ ε. If f(x) − f(v) ≥ ε then by point (2) there exist v′ ∈ LPε(T )

with LCA(v′, v) < φCε
(v) which is absurd;

4. consider two leaves l, l′ ∈ LT with f(l) < f(l′), with l /∈ VPε(T ) and l
′ ∈ VPε(T ). On

top of that suppose l′ < φCε
(l).By point (3) we have f(φCε

(l)) − f(l′) < ε which
means that l′ is a small-weight leaf. Which is absurd;

5. combining points (3) and (4) we see that we only have deletions with #ΛCε
(v) = 0

and 2 · costCε
(c) = f(φCε

(v))− f(v) ≤ ε.

■

Proof of Proposition 6.28.
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Consider C ∈ Co(Pε(T ), Pε(G)). Then C can be seen also as a coupling C ∈ Co(T,G).
We partition the vertices VT into three sets:

• the case v ∈ VPε(T ) is not a concern since the cost doesn’t change when considering
v ∈ VT or v ∈ VPε(T );

• if v ∈ UT
Cε

then v ∈ UT
C orDT

C ; in the first case we ignore it, in the second case there is

{v′} = max{v′′ < v | v′′ ∈ VPε(T )}, such that v′ ∈ DT
C . And so costC(v) < costC(v

′);

• if v ∈ DT
Cε
, then v ∈ DT

C and #ΛC(v) = 0; by construction φCε
(v) ≤ φC(v). If

φCε
(v) < φC(v) then also ηCε

is deleted and, since f(ηCε
(v)) < f(v), costC(v) <

costC(ηCε
(v)).

So we are left with the case φCε
(v) = φC(v). If g(ηC(v))−f(v) > 0.5·(f(φC(v)− f(v)))

then, again, costC(v) < costC(ηCε
(v)), for f(ηCε

(v)) < f(v). Thus we always have
costC(v) ≤ max{ε/2, costC(ηCε

(v))}.

Exchanging the role of T and G and repeating the same observations, we obtain that,
if we consider C ∈ Co(T,G), we have dI(T,G) ≤∥ C ∥∞≤ max{dI(Pε(T ), Pε(G)), ε/2}.

■

Proof of Lemma 6.30.

• if v ≤ r then r′ ≥ χ(v), φ(v) and r′ ≥ η(v), so cost(v) depends only on Cr,r′ ;

• if v ≰ r then it is either unused, if v > r, or it is deleted with #Λ(v) = 0. Then
the cost of such deletion is either 0.5(f(vr)− f(v)) or g(η(v))− f(v). Since Cr,r′ ∈
CoR(Tr, Gr′), η(v) = gr and we finish the proof.

■

Proof of Proposition 6.31.

We just explore the different pieces of the cost function to assess the thesis:

• in the case of (x, y) ∈ C(V), the cost of coupling Tx and Gy is given by
∑

y ax,y ∥
Cx,y ∥∞;

• if ux = 1 we have | g(rG)− f(x) |ux which is the cost of deleting x with #Λ(x) > 1.
That is, any time x ≥ x′ with x′ = LCA(v, v′) for v, v′ ∈ πT (C(V)). Recall that, in
this case, we have χ(x) ≤ rG;

• deleting x with #Λ(x) = 0 is taken care by remaining part the cost function. For a
vertex x lets indicate with xf its father and set Ax = 0.5(f(xf )−fx)(1−dx) and Bx =
{
∑

y av,y (gy − fx)−Kdx | v < xf}. Now we try to unveil the meaning of Ax and Bx.

Recall that deleting x with #Λ(x) = 0 corresponds to having dx = 0. If dx = 1, then
Ax = 0 and maxBx < 0; while if dx > 1, both Ax and maxBx are negative. Consider
now dx = 0. Then φC∗(x) = x′f , with x′f being father of some x′ ≥ x. Clearly

dx′ = 0 as well and Ax′ > Ax. In particular Ax′ = maxv≤x′ 0.5 (f(φC∗(v))− fv).
Now, we turn to Bx. If x < x′ then xf < φC∗(x) = x′f , and so dxf

= 0, entailing

maxBx = minBx = 0. Instead, if x = x′, we have by construction v < x′f with

av,y = 1. Then max{
∑

y av,ygy | v < xf} ≥ g(ηC∗(x′)) and so:

Ax′ ≤ max
v≤x′

costC∗(v) ≤ max{Ax′ ,maxBx′}. (6.18)
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■

Proof of Corollary 6.33.

Given C∗ ∈ C∗(T,G), with r = LCA(πT (C
∗) and r′ = LCA(πG(C

∗), thanks to Corol-
lary 6.32 we can approximate with Γ↑ and Γ↓ the costs of the vertices in Tr and Tr′ . By
Lemma 6.30, Hr,r′ then takes care of the vertices v ≰ r and w ≰ r′ and we can approximate
∥ Eo(C∗) ∥∞. With Theorem 6.26 we conclude the proof.

■
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7. Conclusion

Throughout the chapters of this dissertation we explore the use of a tree-shaped topological
summary called merge tree. With the help of previous literature on the topic and original
developments carried out in this thesis, we show that these objects have a lot of potential
the case study at hand can be tackled with tools related to topological data analysis. In
particular we develop a framework to work with functions defined on merge trees - which
can be used to greatly enrich the information contained in such topological summaries.
Then, we define a novel metric structure for merge trees, structure which posseses some
stability properties and can be computed exactly with a recursive optimization procedure.
This metric is put to work on a benchmark functional data analysis case study were classical
techniques must resort to non-trivial alignment procedures to work with functions up to
re-parametrizations. Similarly, we use (a modified version of) such distance to perform an
unsupervised analysis of tree-based patient representations arising from a radiomic data
set, a research field which is fundamental for non-invasive methods in cancer treatment.
In both cases the metric proves to be useful, matching the performance of persistence
diagrams in one situation and, in the second, capturing a meaningful clustering that can
be interpreted in terms of clinical variables. Stability properties always guarantee the
interpretability of the employed pipelines.

In general, TDA’s approach - i.e. representing data by means of topological summaries
- has proven to be very effective when data need to be considered up to coarse equivalence
classes. However, a greater level of flexibility could surely help when a finer level of detail
is needed, as shown by some pipelines which can indeed provide an injective operator
mapping data to representations (Amezquita et al., 2020). The use of merge trees over
persistence diagrams and the definition of functions to enrich these tree-shaped summaries
goes exactly in this direction.

There are, however, some clear drawbacks characterizing the novelties proposed in this
manuscript, which are stated multiple times throughout the chapters:

• the space in which TDA’s topological summaries live is often very irregular, and the
metric space of merge trees we define is no exception. Statistical methods which
can be meaningfully employed in such spaces are thus limited by the mathematical
pathologies which such spaces present: unbound curvature, “diffuse” non uniqueness
of geodesics, non-uniqueness of Frechét means etc. make uncertainty quantification
a daunting challenge;

• the computational complexity of dealing with merge trees becomes prohibitive quickly
as either the size of the data set or of the trees increase. In literature some methods
to overcome such computational barriers have been proposed but at the expenses of
stability or reliability of the approximation scheme. Our edit distance can be exactly
computed but remains suited for small data sets and with trees of small size.

Natural further developments of the present work could go in the directions of tackling
both the aforementioned problems:
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• despite the technical difficulties presented by badly behaved metric spaces, we be-
lieve that some statistical tools like Frechét means, principal component analysis
and regression could be defined also for trees. In particular we would like to test
and study the approximation scheme proposed for Frechét means and to define
l1-principal component analysis and linear regression, via the local approximation
obtained in Chapter 3;

• similarly, the attempt developed in Chapter 4 to study merge trees via tree-related
statistics proves to have a lot of potential and needs a dedicated study to better
understand how the extracted features interact with the proposed edit distance.
Note that such statistical summaries are much more computationally accessible than
most of the metrics defined for merge trees.

Lastly, in this thesis we did not carry out any extensive case study relying on the use of
functions defined on merge trees. We are strongly convinced that the idea of decomposing
measure-related or homological information via the merging structure of path connected
components can improve the range of situations that can be tackled via topological tools.
Moreover, we would really like to improve our framework to make it intrinsic, so that,
when editing the local representation of a function, at any step, we always obtain a local
representation of another function.

To summarize, in this thesis we have considered a particular topological summary -
which has been used and appreciated also in areas outside applied topology - and we have
made a series of theoretical developments and applications aimed at building a framework
which allows the analysis of populations of such objects. We have drawn comparisons with
other attempts pursuing the same goal, highlighting pros and cons of the different works.
In the process, we have used a number of topological, categorical, metric, combinatorial
and optimization tools which show how the interplay of different fields of mathematics can
contribute to the development of data analysis techniques. These, in turn, can be used to
tackle challenges arising in the most diverse fields of science, especially the ones requiring
a collaborative and multidisciplinary approach due to their complexity.
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Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in image analysis.
International Journal of Computer Vision 28 (3), 213–221.

Turaga, P., A. Veeraraghavan, A. Srivastava, and R. Chellappa (2011). Statistical compu-
tations on grassmann and stiefel manifolds for image and video-based recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 33 (11), 2273–2286.

Turner, K., Y. Mileyko, S. Mukherjee, and J. Harer (2012, 06). Frechet means for distri-
butions of persistence diagrams. Discrete & Computational Geometry 52.

Turner, K., Y. Mileyko, S. Mukherjee, and J. Harer (2014). Fréchet means for distributions
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y Cajal, S. R., M. Sesé, C. Capdevila, T. Aasen, L. De Mattos-Arruda, S. J. Diaz-Cano,
J. Hernández-Losa, and J. Castellv́ı (2020). Clinical implications of intratumor hetero-
geneity: challenges and opportunities. Journal of Molecular Medicine 98 (2), 161–177.

Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied
Mathematics 58 (2), 565–586.

Yu, Q., X. Lu, and J. S. Marron (2013). Principal nested spheres for time-warped functional
data analysis. Journal of Computational and Graphical Statistics 26, 144 – 151.

Zomorodian, A. and G. on (2005, 02). Computing persistent homology. Discrete and
Computational Geometry 33, 249–274.

247



8. Research Summary for the Year 2021-2022

As requested by Universitá di Bologna, I close my thesis with a summary of my research
activities for the time-window in which I have been enrolled in the PhD program of “Data
Science and Computation”, that is, the academic year 2021-2022.

Ricerca Svolta

Elenco brevemente i miei principali temi di ricerca.

Introduzione

La mia ricerca si divide in due aree principali: l'utilizzo di rappresentazioni ad albero
per fare analisi dati e l'utilizzo di metriche di Wasserstein per fare analisi di dataset di
distribuzioni. La tesi di dottorato, in particolare, raccoglie tutti i lavori realizzati sul tema
alberi.

I principali tipi di dato che possono essere rappresentati con delle strutture ad albero
chiamate merge trees (Beketayev et al., 2014) sono due: funzioni a valori in R e nuvole
di punti in spazi metrici. Questo tipo di approccio alla rappresentazione dei dati viene
inquadrato in maniera naturale all'interno della topological data analysis (TDA) (Edels-
brunner and Harer, 2008). In particolare, la rappresentazione tramite merge tree di ogni
dato iniziale rappresenta un'alternativa a quanto viene fatto molto spesso in TDA, in cui
ogni osservazione viene rappresentata tramite un diagramma di persistenza (PD) (Edels-
brunner and Harer, 2008) e l'analisi viene successivamente svolta sui diagrammi ottenuti.
Uno dei punti di maggior interesse di questo tipo di rappresentazioni é che risultano avere
delle forti proprietá di invarianza rispetto a trasformazioni del dato iniziale. Questo tipo
di proprietá é di grande interesse in statistica ed ha sempre guidato l'evoluzione di tutta
quella parte di letteratura scientifica che si dedica alla shape analysis (Kendall, 1977).

La rappresentazione tramite merge trees presenta delle importanti differenze rispetto
a quella tramite diagrammi di persistenza, differenze che comportano dei vantaggi e degli
svantaggi: informalmente parlando, i merge trees sono in grado di discriminare situazioni
che i diagrammi di persistenza non riescono a distinguere, anche se il costo computazionale
derivante dall'utilizzo degli alberi é quasi sempre molto elevato.

Su questo tema il mio contributo si articola nei seguenti punti:

1. la definizione di un framework metrico per lavorare su funzioni definite su merge
trees (Pegoraro, 2021c); queste funzioni possono essere utilizzate per lavorare con
alberi arricchiti di ulteriori informazioni riguardanti il dato iniziale;

2. la definizione di una nuova metrica per merge trees e lo studio dello spazio metrico
risultante, per ottenere proprietá che consentano lo sviluppo di tecniche statistiche
nello spazio degli alberi (Pegoraro, 2021d).

3. lo studio dell'utilizzo della rappresentazione ad albero per dati di tipo funzionale
(Pegoraro and Secchi, 2021), con tutte problematiche relative allo smoothing di dati
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funzionali e alla continuitá di questa rappresentazione rispetto al dato iniziale, con
la metrica definita in Pegoraro (2021c);

4. una nuova formulazione per la interleaving distance tra merge trees, con la quale si
ottiene un nuovo algoritmo per l’approssimazione della distanza;

5. un’applicazione dei merge trees per l’analisi di un data set di dati radiomici: il dato di
ogni paziente, che contiene tutte le lesioni tumorali dello stesso, viene rappresentato
tramite un dendrogramma gerarchico. Il risultante data set di dendrogrammi viene
poi analizzato con una versione modificata della metrica definita in Pegoraro (2021d),
adattata al problema considerato.

Anno Accademico 2021-2022

Durante l'anno accademico 2021-2022 ho svolto le seguenti attivitá di ricerca:

• Realizzazione dell'articolo “A Graph-Matching Formulation of the Interleaving Dis-
tance between Merge Trees” (Pegoraro, 2021b): viene studiata la interleaving dis-
tance tra merge trees, la distanza piú utilizzata per lavorare da un punto di vista
teorico sui merge trees, formulandola come un problema di matching tra i grafi dei
due alberi. Si ottiene cośı un algoritmo ricorsivo basato su tecniche di ottimizzazione
intera in grado di ottenere un'approssimazione per eccesso di questa distanza. Vi é
al momento solo un'altra implementazione disponibile per approssimare la interleav-
ing distance tra alberi e viene effettuato un paragone tra gli errori ottenuti con i due
approcci: l'approccio perseguito in Pegoraro (2021b), seppur computazionalmente
molto piú oneroso dell'altro, produce errori notevolmente minori, a volte anche oltre
1000 volte minori.

• Realizzazione dell'articolo “Imaging-based representation and stratification of intra-
tumor Heterogeneity via tree-edit distance” (Cavinato et al., 2022): in questo ar-
ticolo, realizzato in collaborazione con Lara Cavinato (PhD student del Politec-
nico di Milano), Francesca Ieva (Professore Associato del Politecnico di Milano) e
Alessandra Ragni (PhD student del Politecnico di Milano) utilizziamo una versione
modificata della distanza tra alberi (dendrogrammi gerarchici) definita in Pegoraro
(2021c), per analizzare un data set contenente dati radiomici, cercando di catturare
la variabilitá tra i pazienti causata dall'eterogeneitá delle lesioni tumorali. Stratif-
icando i pazienti in base al livello di eterogeneitá delle lesioni tumorali sfruttando
una rappresentazione ad albero del singolo paziente e una rivisitazione della metrica
tra alberi definita in Pegoraro (2021c), otteniamo una clusterizzazione dei pazienti
in cui si leggono differenze significative in termini di distribuzione di diverse variabili
cliniche.

• Rivisitazione degli articoli Pegoraro (2021c) e Pegoraro (2021d): il primo articolo ora
é completamente incentrato sulla definizione di un framework per analizzare funzioni
definite su merge trees. Tutta la parte teorica riguardante filtrazioni, abstract merge
trees e display posets, la notazione e la definizione di spazi funzionali su merge trees
sono completamente nuove. Il secondo articolo ora contiene la definizione di una
nuova metrica tra merge trees, una approfondita analisi comparativa tra le diverse
metriche esistenti, evidenziando pro e contro di ogni approccio e un nuovo risultato
di decomposizione per le geodesiche che permette si avere una approssimazione locale
dello spazio degli alberi via Rn e uno schema numerico per l’approssimazione delle
medie alla Frechét.
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• Rivisitazione dell’articolo “Functional Data Representation with Merge Trees” (Pe-
goraro and Secchi, 2021): in seguito ad una review ricevuta da una rivista scien-
tifica, l'articolo é stato oggetto di profondi cambiamenti che includono nuovi risultati
teorici, una nuova e piú fruibile dimostrazione del teorema principale e una nuova
scrittura di alcuni paragrafi che necessitavano argomentazioni piú forti o complete.
Sono stati inoltre aggiunti nuovi paragrafi nel materiale supplementare.

• Parziale scrittura dell'articolo “Wasserstein Distributional Data Analysis on the Cir-
cumference”: con Mario Beraha (PhD student del Corso di Dottorato Data Science
and Computation, Universitá di Bologna) proponiamo un framework per fare anal-
isi statistica (PCA e regressione “lineare”) di distribuzioni su uno spazio base che
é la circonferenza, utilizzando la metrica di 2-Wasserstein. L'articolo é ancora da
terminarsi, ma tutti i risultati necessari per la costruzione del framework sono stati
ottenuti. Non ci sono noti altri casi studio di dataset di distribuzioni (utilizzando
strumenti di trasporto ottimo) in cui lo spazio base non é euclideo.

Conferenze, Scuole Estive, Seminari Anno Accademico 2021-2022

• “Data Analysis with Tree-Shaped Topological Summaries”, 2022, Applied Topology
Seminars, EPFL;

• “Data Analysis with Merge Trees”, 2022, Mathematics for Complex Data, KTH
Stockholm (poster);

• “Functional Data Representation with Merge Trees”, 2022, IFCS2022 : Classifica-
tion and Data Analysis in the Digital Age, Porto (invited talk);

• “Wasserstein Distributional Data Analysis on the Circumference”, ECDA 2022,
Napoli (invited talk).

Pubblicazioni su Riviste Anno Accademico 2021-2022

• “Projected Statistical Methods for Distributional Data on the Real Line with the
Wasserstein Metric”(Pegoraro and Beraha, 2022).
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