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Abstract

Reinforcement learning provides a powerful framework to address sequential decision-
making problems in which the transition dynamics is unknown or too complex to be rep-
resented. The reinforcement learning approach is based on speculating what is the best
decision to make given sample estimates obtained from previous interactions, a recipe that
led to several breakthroughs in various domains, ranging from game playing to robotics.
Despite their undeniable success, current reinforcement learning methods hardly general-
ize from one task to another, and achieving the kind of generalization obtained through
unsupervised pre-training in non-sequential problems seems unthinkable.
Unsupervised reinforcement learning has recently emerged as a way to improve gener-
alization of reinforcement learning methods. Just as its non-sequential counterpart, the
unsupervised reinforcement learning framework comprises two phases: An unsupervised
pre-training phase, in which the agent interacts with the environment without external
feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve
a task in the same environment by exploiting the knowledge acquired during pre-training.
In this thesis, we study unsupervised reinforcement learning via state entropy maximiza-
tion, in which the agent makes use of the unsupervised interactions to pre-train a policy
that maximizes the entropy of its induced state distribution.
First, we provide a theoretical characterization of the learning problem by considering
a convex reinforcement learning formulation that subsumes state entropy maximization.
Our analysis shows that maximizing the state entropy in finite trials is inherently harder
than reinforcement learning. Then, we study the state entropy maximization problem from
an optimization perspective. Especially, we show that the primal formulation of the corre-
sponding optimization problem can be (approximately) addressed through tractable linear
programs. Finally, we provide the first practical methodologies for state entropy max-
imization in complex domains, both when the pre-training takes place in a single envi-
ronment as well as multiple environments. The procedures are based on flexible non-
parametric entropy estimators, which have become de facto standard in subsequent works.
With this thesis, we hope to shed light on the potential of unsupervised pre-training via
state entropy maximization in the pursuit of generalization in reinforcement learning.
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CHAPTER1
Introduction

Let assume you are a tennis coach, and you are supposed to teach a kid how to play tennis.
The kid follows you on the court, holding a racket firmly in her hand, full of will and desire
to learn. You are a lazy coach though, and so you tell her - Just familiarize with the racket
today - and you leave her training alone, hitting a ball against the wall at the bottom of
the court. You do the same the next day, and the day after. Perhaps you do it for a week,
because you really are lazy. Then, someday you come back and you tell her it is time to
practice her forehand. You give very simple instructions - When I throw the ball at you, let
it bounce on the court, then hit it along this line. - You definitely do not instruct her on all
the muscle activation required to lift the racket backward at first, and then move it upfront
to smoothly hit the ball with the right timing. Nevertheless, she is already hitting a very
passable forehand after a few unsuccessful trials. Then you challenge her with a different
exercise - We are going to hit some volleys: Come closer to the net, when I throw the ball
at you, just hit it quickly on the other side. - Again, the results are quite promising. You
end the practice for the day and leave the court quite pleased with your coaching ability.
A few meters away, a similar tennis practice takes place on another court. There is a coach,
a zealous one, teaching a kid how to hit a forehand. This coach does not tell the kid to
initially practice alone. Instead, he starts giving him very precise instructions: How to
hold the racket in his hand, how to place his feet in preparation for the shot, what is the
exact position at which he should hit the ball, and how to move his arms and wrist during
the shot. However, the results are quite bleak at first, the forehand does not come natural at
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Chapter 1. Introduction

all. It takes a painful week of practice for this unfortunate kid to hit some good forehands.
What is happening here is quite common in sports and outside of it. The first kid, the one
with the lazy coach, is taking benefits from an unsupervised training process. While hitting
against the wall, she does not know exactly what kind of exercises she will be tasked with,
but she is already discovering the things she can and cannot do with the racket. This proves
to be beneficial for her learning curve in the actual practice with the coach. The other kid
starts with a precise task right away, but he did not have the chance to familiarize with the
racket, the bounce of the ball, and all of the other nuances first. This negatively affects his
learning process, which results way slower, despite his zealous coach.
Now, this thesis is not about tennis,1 so let us translate this metaphor in the language of
artificial intelligence and, specifically, reinforcement learning, which we care about. We
call a kid a learning agent. The movements of the kid are referred as actions she/he can
take. The court, the racket, the ball, and basically anything else are part of the environment.
A specific configuration of the environment, such as the relative positions of the ball, the
racket, the kid on the court is called a state. The coach provides feedback on the actions
of the kid, which we call a reward.2 The agent takes sequential actions in the environment
trying to maximize the reward in the long term, hence learning how to play tennis.
Reinforcement learning provides a powerful framework to model the learning process of
reward maximization in a sequential problem. Instead, how can we model the unsuper-
vised training into the reinforcement learning framework? In this thesis, we will address
various facets of this important question, with contributions ranging from a theoretical
characterization of the problem to practical methodologies for complex domains.

Unsupervised Reinforcement Learning Reinforcement Learning (RL, Sutton & Barto,
2018) is a powerful framework to address sequential decision making problems through
sampled interactions. Crucially, with its trial-and-error nature, RL does not require access
to the dynamics of the problem, which is often unknown or too complex to be represented
efficiently. This is a key reason why, in the last decade, the RL approach led to remarkable
breakthroughs, such as mastering Atari games (Mnih et al., 2015), Go (Silver et al., 2016),
Dota 2 (Berner et al., 2019), and robotic manipulation (Andrychowicz et al., 2020).
Despite its recent success, RL counts its own drawbacks, ranging from the sample effi-
ciency (Kakade, 2003) to generalization (Kirk et al., 2021). Especially, the RL framework
relies on the presence of a reward function that perfectly encodes the task. In principle, the
reward arises naturally from the problem. In practice, the reward is usually hand-crafted,
and it requires a very careful design in order to drive the learning process towards a desir-
able outcome. This poses a serious roadblock on the way of autonomous learning, as any
task requires a costly and specific formulation. Moreover, the synergy between solving
one RL problem and another is very limited, significantly reducing generalization.
Instead, supervised learning made notable strides in terms of generalization as of late.
Especially, a procedure that prescribes unsupervised pre-training on massive unlabelled
datasets, and then fine-tuning of the pre-trained model on the specific task, has led to out-
standing empirical results. This is the recipe behind the recent breakthroughs in language

1If you came to this dissertation eager to improve your tennis, you might turn to different textbooks, such as
“The Inner Game of Tennis” by W. Timothy Gallwey.

2Rewards in reinforcement learning are sometimes as lazy as tennis coaches.
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modelling (Brown et al., 2020; Alayrac et al., 2022), and generative models for static im-
ages (Ramesh et al., 2022) or video clips (Singer et al., 2022). It is still an open question
whether similar generalization capabilities can be obtained in sequential problems by in-
tegrating unsupervised pre-training within the RL framework.
The unsupervised RL framework, which has been formalized in (Laskin et al., 2021) al-
though various seeds appeared in the literature before (e.g., Hazan et al., 2019; Mutti &
Restelli, 2020), is actually dedicated to answering this question. In the unsupervised RL
framework, the learning agent interacts with the environment in two separate and distinct
phases. In a first phase, which we call unsupervised pre-training, the environment does
not include an external reward function to be maximized, and the goal of the agent is to
pre-train a model to incorporate the acquired knowledge for later use. Examples of such
models are a representation of the transition dynamics (e.g., Jin et al., 2020), an exploratory
policy that guarantees good coverage of the environment’s states (e.g., Hazan et al., 2019),
a reduced set of policies that produce relevant interactions with environment (e.g., Mutti
et al., 2022d), an encoding of abstract state representations (Agarwal et al., 2020, e.g.,), a
dataset of samples that includes all the relevant interactions (Yarats et al., 2022).
The purpose of the unsupervised pre-training is to equip the agent with a model that can
help addressing any downstream task in the same environment. This ability is tested dur-
ing a second phase, called supervised fine-tuning, in which a reward function is revealed to
the agent. In the fine-tuning phase, the agent tries to efficiently learn a reward-maximizing
policy by exploiting the pre-trained model, such as doing planning with a pre-trained tran-
sition model, or collecting samples through a pre-trained exploratory policy. In this thesis,
we focus on the unsupervised pre-training phase, while the supervised fine-tuning will
serve for the evaluation of the pre-trained model. Especially, we will focus on a specific
formulation of the pre-training objective, which is the state entropy maximization problem.

State Entropy Maximization In the unsupervised pre-training via state entropy max-
imization, the agent looks for a policy that maximizes the entropy of its induced state
distribution (Hazan et al., 2019). Notably, this is fairly different from a policy assigning
equal probability to all the actions in any given state. Indeed, such a policy neglects the
sequential nature of the problem, which often requires performing a specific sequence of
actions to reach certain states with high probability, making the problem of state entropy
maximization actually non-trivial. While being non-trivial to obtain this policy, state en-
tropy maximization clearly does not require any feedback embedded in the environment,
making its corresponding learning process fully unsupervised.
A policy pre-trained to maximize the entropy of the induced state distribution can provide
interesting benefits to the subsequent fine-tuning phase. From a theoretical viewpoint,
the importance of the state coverage in the data collection for offline RL (Levine et al.,
2020) has been extensively demonstrated (Antos et al., 2008; Chen & Jiang, 2019; Jin
et al., 2021; Foster et al., 2021; Zhan et al., 2022). More recently, a similar notion of state
coverage has been linked to the learning efficiency of online RL methods as well (Xie
et al., 2022), while Xie et al. (2021) shows the impact of the state coverage properties of
the initial policy in a policy fine-tuning setting. A state entropy maximizing policy has
been also demonstrated to provide provably efficient reward identification (Tarbouriech
et al., 2021) and transition dynamics representations (Jin et al., 2020, Appendix B).

3



Chapter 1. Introduction

Whereas state entropy maximization is arguably sub-optimal for the aforementioned ob-
jectives, including the notion of state coverage expressed through a concentrability coeffi-
cient (Antos et al., 2008), it also showcases a feature that most of the other theoretically-
driven unsupervised exploration approaches do not have yet: Practical upside. Thanks to
the work in this thesis, we know that practical algorithms for state entropy maximization
can be developed, paving the way for efficient unsupervised pre-training of exploratory
policies in complex domains.

Contributions In this thesis, we first address a theoretical characterization of the state
entropy maximization problem by casting it into the broader convex RL framework (Hazan
et al., 2019; Zhang et al., 2020a). Convex RL is a generalization of the standard RL
setting, in which the objective can be represented through any convex function of the
state distribution. This formulation subsumes state entropy maximization, as well as other
relevant sequential problems including imitation learning (Abbeel & Ng, 2004) and risk-
averse RL (Garcıa & Fernández, 2015) among the others. Through a formal study of the
convex RL problem, we reveal an essential mismatch between its infinite trials formulation
analyzed in theory, and its finite trials formulation optimized in practice (see Chapter 4).
Then, we prove the importance of non-Markovian policies to optimize the finite trials
convex RL formulation, which was previously neglected (see Chapter 5).
Shifting our focus to the specific state entropy maximization objective, which was in-
troduced by (Hazan et al., 2019), we analyze its corresponding optimization problem.
Whereas previous works demonstrated that its primal formulation is intractable (Hazan
et al., 2019), we derive a lower bound to the primal state entropy objective that is amenable
to optimization, as it can be formulated through a linear program (see Chapter 7).
Prior to our work, algorithms for state entropy maximization required either precise rep-
resentations of the transition dynamics (Tarbouriech & Lazaric, 2019) or state density es-
timation (Hazan et al., 2019; Lee et al., 2019) to compute the entropy, which hardly scale
to the most complex domains. In this thesis, we provide the first practical algorithm for
state entropy maximization, which scales to continuous and high-dimensional domains by
combining non-parametric entropy estimation (Singh et al., 2003) with policy optimiza-
tion (see Chapter 8). Non-parametric entropy estimation resulted a key feature in all the
subsequent works address state entropy maximization in complex domains (Liu & Abbeel,
2021b; Seo et al., 2021; Yarats et al., 2021).
Finally, our work introduces a novel formulation of the unsupervised pre-training over
multiple environments. We provide a practical algorithm specifically designed for this set-
ting, which crucially optimizes the mean of the lower tail of the distribution of the state
entropy achieved across multiple environments. We show that this conservative approach
allows for efficient fine-tuning even in unfavorable environments within the set (see Chap-
ter 9).

Overview Chapter 2 introduces the basics of sequential decision making and reinforce-
ment learning. Chapter 3 is dedicated to unsupervised RL, for which we present a general
problem formulation and an overview of the literature approaches.
Before going through the details of unsupervised pre-training via state entropy maximiza-
tion, in Part I of this thesis we make a step back to consider the convex RL framework,
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which subsumes state entropy maximization. In Chapter 4, we first introduce the convex
RL problem, and we reveal a fundamental mismatch between the infinite trials formulation
considered in theory, and the finite trials formulation addressed in practice. In Chapter 5,
we provide a crucial result on the importance of non-Markovian policies to optimize the
finite trials convex RL formulation. Nevertheless, we also show that solving the latter
optimization is NP-hard in general.
Part II of this thesis is dedicated to the state entropy maximization objective for unsuper-
vised RL. In Chapter 6, we present the objective function that constitutes the bedrock of
this thesis, borrowing contributions from (Hazan et al., 2019). In Chapter 7, we provide
an optimization perspective on state entropy maximization, for which we provide a family
of tractable optimization programs that trade off computational complexity with tightness
of the results.
Part III of this thesis is dedicated to the practical methods for state entropy maximiza-
tion. In Chapter 8, we provide the first algorithm that is able to address state entropy
maximization in continuous high-dimensional domains. Then, in Chapter 9, we consider
the problem of unsupervised pre-training over multiple environments, and we provide a
practical methodology specifically designed for this setting.
Finally, Chapter 10 wraps up the dissertation while mentioning some interesting directions
for future works in unsupervised RL via state entropy maximization. Appendix A provides
all the proofs that are omitted in the previous chapters of the thesis. Appendix B provides
additional experimental details for the practical methodologies presented in Part III.
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CHAPTER2
Reinforcement Learning

2.1 Introduction

In this chapter, we introduce the fundamentals of reinforcement learning as a methodology
to address sequential decision-making problems. Our overview is admittedly brief and
leaves out some all-important aspects of RL that are not critical to this dissertation but
might interest the willing yet novice reader. We refer those to (Puterman, 2014) for a
thorough coverage of sequential decision-making fundamentals, and to (Sutton & Barto,
2018) for an introduction to RL. The expert reader can instead make use of this chapter to
familiarize with the notation, or directly jump to Chapter 3 to avoid a tedious read.

Contents The chapter is organized as follows. In Section 2.2, we present the funda-
mentals of sequential decision-making. Especially, we introduce Markovian processes as
a framework to model sequential decision-making problem (Section 2.2.1), together with
the accessory objects and definitions (Sections 2.2.2-2.2.4) as well as an overview of solu-
tion algorithms (Section 2.2.5). Then, Section 2.3 is devoted to reinforcement learning as
a tool to address Markovian processes, for which we briefly report the main algorithmic
paradigms, i.e., value-based, policy-based, and actor-critic methods.
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Chapter 2. Reinforcement Learning

2.2 Fundamentals of Sequential Decision-Making

In this section, we report the basics of sequential decision-making with the notation we
will employ, with slight modifications here and there, in the remainder of this thesis.

2.2.1 Markov Processes

In the realm of Markov processes, we call a Controlled Markov Process (CMP) a process in
which the transition dynamics can be (partially) controlled through a set of actions. Specif-
ically, we formulate a CMP, denoted byM, through the tupleM :=

(
S,A, P, µ, (γ∨T )

)

in which

• S denotes a set of states, called the state space;

• A denotes a set of actions, called the action space;

• P is a function P : S × A → ∆(S)1 such that P (s′|s, a) denotes the probability
of transitioning to state s′ by taking action a in state s. P is called the transition
model;

• µ denotes the initial state distribution µ ∈ ∆(S);

• γ ∈ [0, 1] is a discount factor such that the probability of the process ending at the
next step is 1− γ;

• T is a finite time horizon T ∈ N.

We indicate (γ ∨ T ) to denote that the presence of a discount factor or a time horizon is
usually alternative. We call a process with γ < 1 and without time horizon a discounted
process. We call a process with γ = 1 and without time horizon an undiscounted process.
We call a process with T ∈ N and no discount a finite-horizon or episodic process.
For any kind of Markovian process, the Markov property states that the future evolution
of the process at a time step t does not depend on the realization of the process in the
previous steps t′ < t. The Markov property is evident in the definition of the transition
model P , for which the transition to the next state s′ only depends on the current state s
and the taken action a.
A CMP can sometimes include external feedback that assigns a scalar value to an ac-
tion taken in a given state. In the latter case, we call the process a Markov Decision
Process (MDP, Puterman, 2014), denoted by MR, which is defined through the tuple
MR :=

(
S,A, P, µ, (γ ∨ T ), R

)
where

•
(
S,A, P, µ, (γ ∨ T )

)
is a CMP as defined before;

• R is a function R : S × A → R such that R(s, a) < ∞ is the reward collected
taking action a in state s.2

1We denote as ∆(X ) the simplex of a space X .
2The reward function can sometimes be bounded between 0 and 1, i.e., R : S × A → [0, 1], and it can

sometimes be defined as a function of states R(s) or state-action-state triplets R(s, a, s′).
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2.2. Fundamentals of Sequential Decision-Making

The evolution of an MDP proceeds as follows.3 First, an initial state s0 ∈ S is drawn
from the initial state distribution s0 ∼ µ. Then, an agent interacting with the process ob-
serves the state s0 and picks an action a0 ∈ A, therefore collecting the reward R(s0, a0),
while the MDP transitions to the next state s1 drawn from P (·|s0, a0). If the process is
episodic, this interaction is repeated for each step t ∈ [T ],4 until the last reward r(sT , aT )
is collected and the episode ends. If the process is discounted, the interaction is repeated
indefinitely, for a number of steps Tγ that is distributed according to a geometric distri-
bution Tγ − 1 ∼ Geo(1 − γ). If the process is undiscounted, the interaction is repeated
infinitely many times. We call either history or trajectory a sequence h of state-action pairs
(sj , aj)j∈[t] obtained in an interaction episode of length t. We further denote asHt the set
of all the histories of length t and withH the space of the histories of arbitrary length.

2.2.2 Policies

While describing the evolution of a Markovian process in the previous section, we have
gently introduced the presence of an agent that takes actions interacting with the process.
A policy π defines the action-selection strategy of an agent interacting with a CMP (or
MDP). π consists of a sequence of decision rules π := (πt)

∞
t=0. Each of them is a map

between histories h ∈ Ht and a probability distribution over actions, i.e., πt : Ht →
∆(A), such that πt(a|h) defines the conditional probability of taking action a ∈ A having
experienced the history h ∈ Ht. We denote as Π the set of all the policies, and as ΠD the
set of deterministic policies π = (πt)

∞
t=1 such that πt : Ht → A. We further define:

• Non-Markovian (NM) policies ΠNM, where each π ∈ ΠNM collapses to a single
time-invariant decision rule π = (π, π, . . .) such that π : H → ∆(A);

• Non-Stationary (NS) policies ΠNS, where each π ∈ ΠNS is defined through a se-
quence of Markovian decision rules π = (πt)

∞
t=0 such that πt : S → ∆(A);

• Markovian (M) policies ΠM,5 where each π ∈ ΠM collapses to a single, time-
invariant, Markovian decision rule π = (π, π, . . .) such that π : S → ∆(A).

The pairing of a CMPM and a policy π induces a Markov Chain (MC, Levin & Peres,
2017) with state-to-state transition model Pπ(s′|s) =

∑
a∈A π(a|s)P (s′|s, a). Similarly,

the pairing of an MDPMR and a policy π induces a Markov reward process, which is a
Markov chain with rewards.

2.2.3 State Distributions

A policy π interacting with a CMP (or MDP) induces a distribution over the states of
the CMP (MDP). Especially, we denote as dπt (s) := Pr(st = s | π) the t-step state
distribution induced by π, which we can also express through the flow equation

dπt (s) =
∑

s′∈S
dπt−1(s′)

∑

a′∈A
π(a′|s′)P (s|s′, a′).

3The evolution of a CMP is identical to the one of an MDP in which the reward does not exist.
4We denote with [T ] the set of integers {0, . . . , T − 1}.
5Note that we will sometimes denote as Π the set of Markovian policies, especially in the contexts where the

distinction between non-Markovian, non-stationary, Markovian policy is not crucial.
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Under common assumptions (Puterman, 2014), a Markovian policy π ∈ ΠM interact-
ing with an undiscounted process M induces a stationary state distribution dπ∞(s) :=
limt→∞ dπt (s), which is also the steady state of the MC induced by π overM.
Similarly, a policy π interacting with a discounted process induces a discounted state dis-
tribution dπγ (s) :=

∑∞
t=0 γ

tdπt (s), which can be also expressed through the recursive
equation

dπγ (s) = (1− γ)µ(s) + γ
∑

s′∈S
dπγ (s′)

∑

a′∈A
π(a′|s′)P (s|s′, a′).

Finally, a policy π interacting with an episodic process over T steps induces a marginal
state distribution dπT (s) := 1

T

∑T−1
t=0 dπt (s), in which dπ0 (s) = µ(s).6

2.2.4 Objectives, Value Functions, and Bellman Equations

The goal of an agent interacting with an MDP is expressed as the sum of the rewards
collected in the long term. By specifying long term, we mean that the agent is far-sighted,
i.e., he does not care for the immediate reward alone, but he looks at the rewards he can
collect in the future as well. This intuition can be mathematically expressed through the
concept of value function.
For an episodic MDP, we define the value V πt (s) of being in state s at the time step t while
following the policy π as

V πt (s) := E
π

[ T−1∑

t′=t

R(st′ , at′)

∣∣∣∣ st = s

]
. (2.1)

Similarly, we can define the value Qπh(s, a) of the state-action pair s, a at step t while
following the policy π as Qπt (s, a) := Es′∼P (·|s,a)[V

π
t+1(s′)]. Then, we can define the

objective function for an episodic MDPMR as

JMR(π) := E
s∼µ

[
V π0 (s)

]
. (2.2)

For a discounted MDP, we analogously define the value V πγ (s) of being in state s while
following the policy π as

V πγ (s) := E
π

[ ∞∑

t=0

γtR(st, at)

∣∣∣∣ s0 = s

]
, (2.3)

and the state-action value function Qπγ (s, a) := Es′∼P (·|s,a)[V
π
γ (s′)]. Notably, the value

function V πγ (s) at state s depends to the value function V πγ (s′) of the subsequent state s′

through V πγ (s) = Ea∼π(·|s)[Qπγ (s, a)]. Indeed, we can write a recursive formulation for
the state value function

V πγ (s) = E
a∼π(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)

[
V πγ (s′)

]]
, (2.4)

6Note that we will sometimes denote the state distribution simply as dπ , especially when it is clear from the
context whether we refer to the stationary, discounted, or marginal state distribution.
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2.2. Fundamentals of Sequential Decision-Making

which takes the name of Bellman expectation equation (Bellman, 1957). Similarly, we can
define a corresponding Bellman expectation operator Tπ (Bellman, 1957) that applies the
recursive relation (2.4) to any function f : S → R, i.e.,7

(Tπf) (s) = E
a∼π(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)

[
f(s′)

]]
. (2.5)

Finally, we define the objective function for a discounted MDPMR as89

JMR(π) := E
s∼µ

[
V πγ (s)

]
. (2.6)

2.2.5 Solving Markov Decision Processes

Having introduced the objective function for an agent interacting with an MDP, we can
now discuss how to solve an MDP, i.e., to find a policy that maximizes the objective func-
tion. This can be translated to the optimization problem10

max
π∈Π

JMR(π). (2.7)

Puterman (2014) guarantees the existence of a deterministic Markovian policy π∗ such that
π∗ ∈ arg maxπ∈Π JMR(π), which we call the optimal policy. How can we extract the op-
timal policy π∗ having full knowledge of the MDPMR? Is the optimization problem (2.7)
tractable in the first place? In this section, we revise three alternative approaches.

MDPs as Linear Programs

It can be shown that the problem (2.7) can be translated into the following linear pro-
gram (Puterman, 2014).

maximize
V ∈R|S|
ρ∈R|S||A|

E
s∼µ

[
V (s)

]

subject to V (s) = E
a∼ρ(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)

[
V (s)

]]
, ∀s ∈ S,

∑

a∈A
ρ(a|s) = 1, ∀s ∈ S, ρ(a|s) > 0, ∀(s, a) ∈ S ×A.

The solution of the former program is the value function of the optimal policy V ∗(s) :=
V π
∗
(s), which is also called the optimal value function. Since solving an MDP is equiva-

lent to solving a linear program with |S|+ |S||A| variables, |S||A| inequality constraints,

7Similar Bellman expectation equation and operator can be defined for the state-action value function
Qπγ (s, a).

8Note that the following definition overloads the notation of the objective (2.2), but it will be clear from the
context whether we refer to the discounted objective or the episodic objective.

9All of the reported definitions can be extended to undiscounted MDPs. However, we omit these definitions,
which can be found in (Puterman, 2014) as they are not crucial for the remainder of the thesis.

10For the ease of presentation, we will focus on the discounted MDP setting in this section.
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and |S| + |S||A| equality constraints, we can conclude that solving an MDP is tractable
in general (Papadimitriou & Tsitsiklis, 1987). Notably, recovering the optimal policy π∗

from the value V ∗ requires some additional calculations. Instead, we can define an al-
ternative dual program formulation (Puterman, 2014; De Farias & Van Roy, 2003) from
which the optimal policy can be directly recovered.

maximize
ω∈R|S||A|

E
(s,a)∼ω

[
R(s, a)

]

subject to
∑

a∈A
ω(s, a) =

∑

s′∈S

∑

a′∈A
ω(s′, a′)P (s|s′, a′), ∀s ∈ S,

∑

a∈A
ω(s, a) = 1, ∀s ∈ S, ω(s, a) > 0, ∀(s, a) ∈ S ×A.

The latter is a linear program with |S||A| variables, |S||A| inequality constraints, and
|S|+ |S||A| equality constraints. Let ω∗(s, a) the solution of the program, we can recover
an optimal policy as

π∗(a|s) =
ω∗(s, a)∑

a′∈A ω
∗(s, a′)

, ∀(s, a) ∈ S ×A.

Dynamic Programming

Dynamic Programming (DP, Bellman, 1957) provides a flexible alternative to the linear
program formulation. Especially, it can be easily incorporated into sample-based ap-
proaches, and it can also be extended to work for MDPs of infinite size, as we will see
in the next sections.
The first dynamic programming algorithm that we introduce is policy iteration (Sutton
& Barto, 2018). Policy iteration is based on a repeated iteration of a policy evaluation
step followed by a policy improvement step. The former computes the value function of
the current policy, which is a randomly initialized policy at first. Especially, it exploits a
classic result stating that the value function V π(s) of a policy π is the unique fixed point
of the Bellman expectation operator Tπ . The policy improvement step instead exploits
the policy improvement theorem (Sutton & Barto, 2018) to provably improve the current
policy through a greedyfication. We report the pseudocode of policy iteration below.

Algorithm 1 Policy Iteration
Input: Randomly initialized policy π0

for i = 0, . . . , until convergence do
randomly initialize V0(s), ∀s ∈ S
for j = 0, . . . , until convergence do

compute Vj+1(s) = (TπVj)(s), ∀s ∈ S
end for
compute Qπi(s, a) = Es′∼P (·|s,a)[Vj(s

′)], ∀(s, a) ∈ S ×A
compute the greedy policy πi+1(s) ∈ arg maxa∈AQ

πi(s, a), ∀s ∈ S
end for
Output: Optimal policy πi
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The inner loop for policy evaluation in the policy iteration algorithm can result quite ex-
pensive in practice. Especially, if the goal is to find an optimal policy for the MDPMR,
there is little additional benefit in precise evaluations of the policies πi. The value itera-
tion algorithm (Sutton & Barto, 2018) effectively applies a unique sweep of the Bellman
expectation operator Tπ and then proceeds to the greedyfication step right away. This is
made possible by the Bellman optimality equation (Bellman, 1957)

V ∗(s) = max
a∈A

{
R(s, a) + γ E

s′∈P (·|s,a)

[
V ∗(s′)

]}
, (2.8)

and its corresponding Bellman optimality operator T ∗ (Bellman, 1957) that applies the
recursive relation to any function f : S → R, i.e.,

(T ∗f) (s) = max
a∈A

{
R(s, a) + γ E

s′∈P (·|s,a)

[
f(s′)

]}
. (2.9)

The value iteration algorithm exploits the fact that the optimal value function V ∗ is the
unique fixed point of the Bellman optimality operator. Hence, it repeatedly applies T ∗ to
a randomly initialized function to obtain V ∗. We report the pseudocode of value iteration
below.

Algorithm 2 Value Iteration
Input: Randomly initialized function f0 : S → R
for i = 0, . . . , until convergence do

compute fi+1 = (T ∗fi)(s), ∀s ∈ S
end for
compute π∗(s) ∈ arg maxa∈A

{
R(s, a) + γ Es′∈P (·|s,a)[fi(s

′)]
}

Output: Optimal policy π∗

2.3 Reinforcement Learning Algorithms

All the methods to solve MDPs that we have presented in the previous section crucially rely
on the full knowledge of the transition model P . However, in several relevant decision-
making problems the transition model is unknown, such as the laws governing the human
body in a medical treatment application, or too complex to be represented, e.g., the game
of chess. Here is where reinforcement learning comes into play. RL allows to learn an
(approximately) optimal policy from sampled interactions with the MDP. In the following
sections, we briefly present some of the most common RL algorithms, while we leave to
textbooks (e.g., Szepesvári, 2010; Sutton & Barto, 2018) a more detailed overview.

2.3.1 Value-Based Methods

The value-based methods for RL are essentially inspired by dynamic programming, for
which they provide sample-based extensions. Just as the dynamic programming methods
compute value functions from which the optimal policy can be recovered, in value-based
RL methods the value function is the learning target.
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Here we present Q-learning (Watkins & Dayan, 1992), which is a popular sampled-based
version of the value iteration algorithm.

Algorithm 3 Q-learning
Input: learning rate α, behavioral policy πb
randomly initialize Q0(s, a), ∀(s, a) ∈ S ×A
sample the initial state s0 ∼ µ
for t = 0, . . . , until convergence do

perform the action at ∼ πb(·|st)
collect the reward R(st, at) and observe st+1 ∼ P (·|st, at)
compute the update

Qt+1(st, at) = (1− α)Qt(st, at) + α
(
R(st, at) + γ max

a′∈A
Qt(st+1, a

′)
)

(optional) update the behavioral policy πb
end for
compute π∗(s) ∈ arg maxa∈AQt(s, a), ∀s ∈ S
Output: Optimal policy π∗

The algorithm is centered around the so-called Q-learning update, in which the current
estimate of the value function Qt is updated with the fresh information coming from the
latest sampled interaction (st, at, st+1), while the learning rate α controls the combination
between current estimate and new information. Crucially, the value function Qt does not
refer to any policy, as it is estimated taking the maximum over the actions at the next
step. This allows the algorithm to work off-policy, which means that the data are collected
through a behavioral policy πb that can be different from the greedy policy for the current
estimate Qt. Under standard conditions on the learning rate α and the behavioral policy
πb, the Q-learning algorithm is guaranteed to converge to the optimal value function Q∗

asymptotically and, as a consequence, to the optimal policy π∗.
Whereas Q-learning provides a flexible procedure to solve MDPs from sampled interac-
tions, its implementation still requires storing a vector of |S||A| values to represent the Q
function. This becomes clearly impractical when the MDP has infinitely many states. In
the latter case, we can turn to function approximation (Sutton & Barto, 2018) by expressing
the Q function through a linear combination Qω(s, a) =

∑N
i=1 ωifθi(s, a) of parametric

functions fθi. Then, we can compute the update over the parameters ωi, θi by minimiz-
ing the mean squared error

∑
(s,a,s′)∈D(Qω(s, a)−R(s, a)− γmaxa′∈AQω(s′, a′))2, in

which D is a dataset of interactions. In the function approximation setting, a version of
the Q-learning algorithm in which the Q function is approximated through a deep neural
network, which is called a Deep Q-Network (DQN), has achieved outstanding results in
complex domains (Mnih et al., 2015).

2.3.2 Policy-Based Methods

In the last section, we have seen how the Q-learning algorithm can be combined with
function approximation to address MDPs with large state spaces. Nevertheless, the Q-
learning procedure still requires performing the maximization maxa∈AQ(s, a), which can

14



2.3. Reinforcement Learning Algorithms

be cumbersome when the number of actions is also large, and the Q function is expressed
through a non-linear approximation. How can we address domains with infinitely many
states and actions, such as continuous control problems, through RL?
The family of Policy Optimization (PO, Deisenroth et al., 2013) methods provides an
answer to the latter question. In PO, we turn to a policy-based perspective on the MDP
objective function. Let us consider an episodic MDP setting with horizon T , we can define
the probability of experiencing a trajectory h ∈ HT by deploying the policy π as

pπ(h) = µ(s0)

T−1∏

t=0

π(at|st)P (st+1|st, at), (2.10)

from which we can rewrite the objective (2.2) as

JMR(π) = E
s∼µ

[
V π0 (s)

]
= E
h∼pπ

[
R(h)

]
, (2.11)

where we denote R(h) =
∑T−1
t=0 R(st, at) with a slight overload of notation. Then, we

can look at (2.11) as the problem of finding the policy inducing high-rewarding trajectories
in expectation. However, when the MDP has infinitely many states and actions, we cannot
even represent the policy π through |S||A| real numbers. Instead, we can represent the
policy space with a set of parametric policies ΠΘ = {πθ : θ ∈ Θ ⊆ Rq}. PO is about
solving the problem

max
πθ∈ΠΘ

JMR(πθ)

through a direct search in the parametric policy space, e.g., via gradient ascent. It is
straightforward to derive (see Peters & Schaal, 2008) the gradient of JMR(πθ) w.r.t. the
policy parameters as

∇θJMR(πθ) = ∇θ E
h∼pπθ

[
R(h)

]

= ∇θ
∫

HT
pπθ (h)R(h) dh

=

∫

HT
pπθ (h)∇θ log pπθ (h)R(h) dh

=

∫

HT
pπθ (h)

( T−1∑

t=0

∇θ log πθ(at|st)
)( T−1∑

t=0

R(st, at

)
dh

= E
h∼pπθ

[( T−1∑

t=0

∇θ log πθ(at|st)
)( T−1∑

t=0

R(st, at)

)]
.

By noting the conditional independence between the action selected at step t and the re-
ward collected at the previous steps

∑t−1
t=0 R(st, at), we have

∇θJMR(πθ) = E
h∼pπθ

[
T−1∑

t=0

∇θ log πθ(at|st)Qπθ (st, at)

]
, (2.12)
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Algorithm 4 G(PO)MDP
Input: learning rate α, parameter space Θ
randomly initialize θ0 ∈ Θ
for i = 0, . . . , until convergence do

draw a batch of trajectories {hj}Nj=1 with πθi
estimate the policy gradient as

∇̂θiJMR(πθi) =

N∑
j=1

T−1∑
t=0

∇θi log πθi(a
(j)
t |s

(j)
t )

( T−1∑
k=t

R(s
(j)
k , a

(j)
k )

)

update the parameters θi+1 = θi + α∇̂θiJMR(πθi)
end for
Output: (Approximately) optimal policy πθi

which is known as the Policy Gradient Theorem (Sutton et al., 1999). We report below the
pseudocode of an algorithm, called G(PO)MDP (Baxter & Bartlett, 2001), which imple-
ments PO via gradient ascent through Monte-Carlo estimates of (2.12).
While being remarkably easy to implement, G(PO)MDP is an effective algorithm for sev-
eral continuous control tasks. However, it can suffer from significant variance in practice,
due to the Monte-Carlo estimate of the policy gradient (2.12). Several mechanisms have
been later introduced to reduce the variance of PO methods, such as through an additive
baseline for the gradient estimate (Peters & Schaal, 2008) and sample reuse through im-
portance sampling techniques (Papini et al., 2018; Metelli et al., 2018b) among others.
Another approach to improve the stability of PO methods is to consider conservative up-
dates in the gradient direction. Of special consideration in this regard is Trust-Region
Policy Optimization (TRPO, Schulman et al., 2015). TRPO, which is inspired by previ-
ous works on conservative updates for policy iteration (Kakade & Langford, 2002; Pirotta
et al., 2013), computes the next policy parameters θ′ by solving a local optimization prob-
lem within a trust region around the current parameters θ, i.e., maxs∈S KL(πθ||πθ′) ≤ λ,
where KL is the Kullback-Leibler divergence and λ is a positive constant.

2.3.3 Actor-Critic Methods

Finally, another family of algorithms, which are called actor-critic, has been designed to
combine the benefit of value-based methods and policy-based methods (Peters & Schaal,
2008). Indeed, actor-critic methods support learning policies over continuous actions
spaces as the policy-based methods, while achieving the reduced variance of value-based
methods in practice.
One can see actor-critic as an extension of policy-based methods in which the policy gra-
dient (2.12) estimate is computed through a Q function that is learned from sampled inter-
actions as well, or as an extension of value-based methods (e.g., policy iteration) in which
the policy greedyfication is substituted by several steps in the gradient direction.
Within the actor-critic methods, the Soft Actor-Critic (SAC, Haarnoja et al., 2018) al-
gorithm resulted in remarkable empirical success by optimizing an entropy-regularized
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objective in place of the standard objective (2.11).
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CHAPTER3
Unsupervised Reinforcement Learning

3.1 Introduction

In the previous chapter, we have presented the RL approach (Sutton & Barto, 2018) to
address sequential decision-making problems in challenging domains. In the last decade,
the RL approach led to outstanding results in remarkable tasks, such as Atari games (Mnih
et al., 2015), Go (Silver et al., 2016), Dota 2 (Berner et al., 2019), and dexterous manipu-
lation (Andrychowicz et al., 2020).
Nonetheless, the learning process usually requires a considerable amount of human su-
pervision to accomplish these feats, especially in the form of a reward function that the
agent can maximize. In principle, the reward function is inherent to the environment and
perfectly encodes the learning task. In practice, the reward is usually hand-crafted, and
designing it to make the agent learn a desirable behavior is often a huge challenge. This
poses a serious roadblock on the way of autonomous learning, as any task requires a costly
and specific formulation, while the synergy between solving one RL problem and another
is very limited, as most of the successful approaches are designed to learn from scratch.
The unsupervised RL formulation (Laskin et al., 2021) recently emerged as a powerful
framework to address this crucial limitation. In this framework, which was originally en-
visioned in (Hazan et al., 2019; Mutti & Restelli, 2020), the learning process takes place in
two sequential phases. In the first unsupervised fine-tuning phase, the agent interacts with
a CMP with the goal of incorporating the collected knowledge into a pre-trained model,
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which can be alternatively a representation of the transition dynamics, an abstract state
representation, a policy or a set of policies, a dataset of interactions. The purpose of the
pre-trained model is to improve the efficiency of the subsequent phase, called supervised
fine-tuning, in which the agent is tasked with a (previously unknown) reward function in
the same CMP. Crucially, the agent can exploit the pre-trained model to solve a wide range
of tasks in the same CMP, instead of addressing each task from scratch, which have been
demonstrated to yield significant empirical (e.g., Laskin et al., 2021) and theoretical (Jin
et al., 2020; Xie et al., 2021) benefits.
In this thesis, we will focus on a specific approach for unsupervised pre-training, in which
the agent’s policy is pre-trained to maximize the entropy it induces over the states of the
environment (Hazan et al., 2019). Before going through the details of state entropy max-
imization in the next chapters, in the following sections we provide an overview of unsu-
pervised RL, its objective functions, and common approaches.
Contents The chapter is organized as follows. In Section 3.2, we present the unsu-
pervised RL framework, and we introduce a general mathematical formulation for the
unsupervised pre-training objective (Section 3.2.1) and for the supervised fine-tuning ob-
jective (Section 3.2.2). Then, in Section 3.3, we provide an overview of the unsupervised
RL literature, providing a list of the common approaches, as well as an informal taxonomy
and categorization. Especially, in Section 3.3.5, we focus on the unsupervised pre-training
of exploration policies, which is central in the remainder of this thesis.

3.2 Problem Formulation

We now present the problem formulation of unsupervised RL (see Laskin et al., 2021). As
depicted in Figure 3.1, the learning process involves an agent interacting with a CMPM
in two distinct phases.

Figure 3.1: Unsupervised reinforcement learning.

In the first phase, the CMPM does not include any reward function. Instead, the agent
incorporates the knowledge it collects on the CMPM by pre-training M , which can al-
ternatively be a model of the transition dynamics, states representations, a policy space or
just a single policy, a dataset of interactions. Since there is no externally defined objective
in this phase, we call it the unsupervised pre-training phase (see Section 3.2.1).
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3.2. Problem Formulation

In the second phase, the agent is provided with a reward function R on the same CMPM,
thus producing a standard MDPMR. The agent then leverages the pre-trained model M
in order to find a reward-maximizing policy for MR. The latter task can be sometimes
completed through simple planning with the pre-trained model M (e.g., when M is a
good representation of the transition dynamics), or by taking further interactions with the
MDP (e.g., when M is an exploratory policy). We call this second phase the supervised
fine-tuning phase (see Section 3.2.2).
The aim of unsupervised RL is to improve the efficiency of the supervised fine-tuning,
where the sampled interactions are assumed to be expensive, leveraging the knowledge
acquired in the unsupervised pre-training phase, where the sampled interactions are gener-
ally assumed to be cheap. Crucially, one can use the same pre-trained model M to tackle
several supervised fine-tuning tasks defined on M. Thus, even if the unsupervised pre-
training can be computationally and statistically inefficient, any benefit it provides over
RL from scratch can propagate across a wide range of tasks.
A notable generalization of the unsupervised RL formulation considers unsupervised pre-
training of a single model M over multiple CMPs, such that the agent can be tasked with
any reward in any CMP during the fine-tuning phase (Parisi et al., 2021; Mutti et al.,
2022e,c; Ye et al., 2022). However, in this thesis we will mostly focus on the single-
environment setting, with the exception of Chapter 9. In Section 3.2.1, we present a for-
mulation of the unsupervised pre-training objective, whereas in Section 3.2.2 we present a
formulation of the supervised fine-tuning objective.

3.2.1 Unsupervised Pre-Training

Let us denote as M a class of models to be pre-trained, we can (informally) define the
unsupervised pre-training objective as follows.

Unsupervised Pre-Training Objective

max
M∈M

Fpre-train(M,M), (3.1)

in which Fpre-train is a function that maps a pre-trained model M ∈ M and a controlled
Markov processM to reals, i.e., Fpre-train : M×M→ R. In a typical example, which we
will further expand throughout this thesis, the class of models M is the space of Marko-
vian policies Π, a model M is a policy π ∈ Π, and the function Fpre-train is the entropy
H of the state distribution dπ induced by π over the CMPM (Hazan et al., 2019). Other
than the pre-training of policies, a wide range of model classes M and pre-training func-
tions Fpre-train have been considered in the literature, for which we provide an (incomplete)
overview in Section 3.3. Note that the evaluation of the pre-training function Fpre-train can
be arbitrarily complicated, such as including an inner planning procedure (e.g., Jin et al.,
2020). Moreover, the unsupervised pre-training objective can be alternatively defined over
a class of CMPs M instead of a singleM, as we will show in Chapter 9. As a final remark
on the unsupervised pre-training phase, we note that it does include a supervision of the
learning process through the surrogate function Fpre-train, but the process is unsupervised
w.r.t. the objective of the fine-tuning phase, which we will introduce in the next section.
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3.2.2 Supervised Fine-Tuning

In the supervised fine-tuning phase, we assume the existence of a reward function R in the
CMPM, such that the objective function can be (informally) defined over the correspond-
ing MDPMR as follows.

Supervised Fine-Tuning Objective

max
π∈Π

JMR(π) given M ∈M, (3.2)

where the objective is akin to the standard RL objective inMR, with the addition of the
model M pre-trained a priori according to (3.1). In the aforementioned typical example,
M can be a pre-trained policy π that acts as the initial policy of a standard RL algorithm,
as opposed to a random initialization without pre-training. Whereas the unsupervised
pre-training does not fundamentally change the nature of the objective (3.2), the benefit
brought by the pre-trained model has to be found in the comparison of the regret suffered
by a learning algorithm with and without pre-training. Especially, we can define the regret
suffered by a learning algorithm A in K episodes collected from the MDPMR as

RegK(MR,A) = E
s∼µ

[ K∑

k=0

V ∗(s)− V πk(s)

]
,

where V ∗ is the optimal value function inMR, V πk is the value function inMR of the
policy πk, which is deployed by the algorithm A at the episode k. Then, the benefit of
the pre-training can be measured through the relative difference between the regret of A
when it is given the pre-trained model M and when it is randomly initialized (Ye et al.,
2022). Crucially, the regret suffered from an RL algorithm learning from scratch cannot
be smaller than Ω(

√
|S||A|HK) (Jaksch et al., 2010). Instead, the regret can be smaller

than a constant ε if the pre-trained model M allows for zero-shot near-optimal planning
in everyMR, and it can still be significantly reduced in its multiplicative factors through
carefully pre-trained policies (Ye et al., 2022).

3.3 Literature Overview

We now provide an overview of the literature related to unsupervised RL. While the unsu-
pervised RL field is relatively recent, the body of works is rapidly growing, and the intent
of this section is not to give a comprehensive list of all the relevant works, but rather a
roadmap to the kinds of approaches that have been considered in the literature. Table 3.1
summarizes the approaches we will mention in this section, together with a taxonomy and
an informal categorization.
A first important dichotomy to consider is the nature of the works, which are generally
split between theoretical contributions and methodologies of practical interest (see col-
umn “Guarantees” in Table 3.1). The former are dedicated to demonstrating the sample
efficiency of the pre-training phase and the provable benefits it brings to the subsequent
fine-tuning phase. Those theoretical guarantees are mostly devoted to tabular settings, or
to continuous settings with strong structural hypotheses, which limit their practical upside.
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Chapter 3. Unsupervised Reinforcement Learning

Instead, the empirical works are dedicated to providing methodologies for unsupervised
pre-training in continuous and/or high-dimensional domains, often relying on heuristics
and implementation tricks that trade theoretical guarantees for empirical success.
A second significant dichotomy is whether the pre-trained model allows for zero-shot
adaptation or planning in the supervised fine-tuning phase, or it requires further inter-
actions to be collected from the environment (see column “Fine-tuning” in Table 3.1).
Clearly, the non-interactive approaches are generally more demanding in the pre-training
phase, often limiting their tractability in practice. Instead, the interactive approaches in-
clude two actual learning processes, which complicate their theoretical analysis.
Another important categorization relates the unsupervised RL approaches with the model
they aim to pre-train in the unsupervised phase, and then transfer to the subsequent super-
vised phase (see column “Pre-training” in Table 3.1). In the following Sections 3.3.1-3.3.5
we provide a list of some common classes of models for pre-training.
Finally, a few approaches in unsupervised RL have considered pre-training over a class
of CMPs instead of a single CMP (see column “Multi CMPs” in Table 3.1). Those are
mostly addressing a policy or a policy space as a learning target (Mutti et al., 2022e; Ye
et al., 2022), with the notable exception of (Mutti et al., 2022c), which adopts a causal
viewpoint to pre-train a transition model that can be transferred across multiple CMPs.

3.3.1 Pre-Training of Transition Models

Several works have considered the estimation of the transition model of the CMPs as a
valuable target for unsupervised pre-training. Indeed, a good estimate of the transition
model allows for efficient planning once the reward is revealed in the supervised fine-
tuning phase. In this setting, the model class comprises the functions that map a state-
action pair to a next state distribution, i.e., Mp = {p : S × A → ∆(S)}. Typically, the
pre-training objective is either a distance minimization between the pre-trained model and
the true model

min
p∈Mp

sup
(s,a)∈S×A

‖P (s′|s, a)− p(s′|s, a)‖2 (3.3)

or a sub-optimality minimization between the optimal planning policy of the pre-trained
model and the true model for a worst-case reward

min
p∈Mp

sup
R∈{S×A→[0,1]}

E
s∼µ

[
|V ∗P (s)− V ∗p (s)|

]
. (3.4)

The latter (3.4) have been preferred by theoretically-driven approaches, such as reward-
free RL (Jin et al., 2020; Kaufmann et al., 2021; Ménard et al., 2021; Zhang et al., 2021c)
and task-agnostic1 RL (Zhang et al., 2020b), but it also underlies some interesting practical
methods (Touati & Ollivier, 2021).
Variations of the former (3.3) have been considered both in theoretical works (Tarbouriech
et al., 2020) and empirical works that address transition model representations in complex

1Similar to reward-free RL objective 3.4, but the reward function is oblivious to the pre-training process rather
than worst-case.
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domains (e.g., Ha & Schmidhuber, 2018). Surrogate objectives can be also employed to re-
duce the estimation error on the model learning, such as curiosity-driven bonuses (Schmid-
huber, 1991; Pathak et al., 2017; Burda et al., 2019a) that specifically assign high values
to state-action pairs inducing unexpected transitions.

3.3.2 Pre-Training of Representations

When dealing with RL tasks in MDPs with rich observations (such as images), it is well-
known that good state (or state-action) representations are paramount to efficiently learn
the optimal policy. Thus, the unsupervised pre-training phase can focus on learning task-
agnostic representations that allow for efficient supervised fine-tuning downstream. In this
setting, the model class typically comprises the set of mapping between high-dimensional
(s, a) pairs to lower-dimensional representations Mφ = {φ : S ×A → Rd}.
The works in (Misra et al., 2020; Agarwal et al., 2020; Modi et al., 2021) learn state-action
representations φ(s, a) that allow for a lower-rank decomposition of the CMP transition
model P (s′|s, a) = φ(s, a) · ψ(s′),∀s ∈ S, a ∈ A, s′ ∈ S under convenient structural
assumptions. Given these representations, the agent can directly plan on the correspond-
ing abstract MDP in the supervised fine-tuning phase, getting the optimal policy without
further interactions. Especially, sample complexity results for the pre-training of repre-
sentations, as well as sub-optimality guarantees for the fine-tuning policy, are provided for
the model-based (Agarwal et al., 2020) and the model-free (Modi et al., 2021) setting.
On the methodological side, some approaches have been developed to extract lower-
dimensional representations without imposing structural assumptions on the underlying
CMP. Those generally encode the state-action representations through the bottleneck of
a neural network that is trained to minimize a convenient loss, such as a contrastive
loss (CURL, Laskin et al., 2020) or a reconstruction loss (RND, Burda et al., 2019b).
Those methodologies hardly provide any theoretical guarantee on the quality of the pre-
trained representations, but they have been employed with great benefits in challenging
benchmarks (Laskin et al., 2021).

3.3.3 Pre-Training of Policy Spaces

Another category of approaches considers pre-training the policy space through unsuper-
vised interactions, so that the subsequent fine-tuning phase can be addressed through a
more compact policy space, which usually benefits sample efficiency (Papini et al., 2019;
Metelli et al., 2021). In this setting, the typical model class comprises all the subsets of
policies of a given policy space MΠ = {Πred ∈P(Π)}.2
Theoretical works generally extract a compact policy space Πred through an objective that
measures covering of the state-action distributions induced by the policies in Πred w.r.t. the
policies in Π (Mutti et al., 2022d; Ye et al., 2022). Then, the supervised fine-tuning phase
can directly search the optimal policy within the compact policy space, with provable
benefits in the regret is suffers (Ye et al., 2022).
A large stream of methodological works instead operates the pre-training of the policy

2P(Π) denotes the power set of the policy space Π.
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space by maximizing a heuristic measure of diversity, typically the mutual information,
within a small set of policies (Gregor et al., 2017; Eysenbach et al., 2019; Hansen et al.,
2019; Sharma et al., 2020; Campos et al., 2020; Liu & Abbeel, 2021a; He et al., 2022;
Zahavy et al., 2022). The supervised fine-tuning phase can then use the learned policies
for exploration or adapt them to the given task.

3.3.4 Pre-Training of Datasets

Another relevant approach prescribes using the unsupervised pre-training phase to collect
a dataset of interactions instead of pre-training an actual model. The dataset can be then
exploited in the supervised fine-tuning phase for direct planning or through offline RL
algorithms (Levine et al., 2020). In this setting, the model class MD can be informally
defined as all the possible datasets D of N transitions (s, a, s′). The question is how
to optimally collect those transitions through interactions with the CMP, and how large
should the dataset be.
Some model-free works (Wang et al., 2020; Zanette et al., 2020) in the reward-free RL
setting consider an objective function similar to (3.4), where the planning is not performed
on an estimated model, but on a given dataset of samples

min
D∈MD

sup
R∈{S×A→[0,1]}

E
s∼µ

[
|V ∗P (s)− V̂D(s)|

]
,

in which V̂D(s) denotes the value function of the policy provided by an offline algorithm
taking D as input. Those works provide compelling theoretical guarantees in the linear
MDP setting, where the transition model can be linearly decomposed through a given
state-action representation.3

On the empirical side, practical methodologies to perform unsupervised data collection in
complex domains have been proposed (Yarats et al., 2022; Lambert et al., 2022). The latter
lose the theoretical guarantees of the reward-free RL methods, but they do not require any
structural assumption on the CMP, while they can be used in combination with any offline
RL algorithm downstream.

3.3.5 Pre-Training of Policies

Of all the possible targets for pre-training mentioned in Table 3.1, in this thesis we will
specifically cover unsupervised pre-training of policies. Thus, it is worth having a deeper
look into it. Let the class of models M be a policy space Π, we can formulate the policy
pre-training objective as follows.

Policy Pre-Training Objective

max
π∈Π

F(dπ), (3.5)

3The structural hypothesis is similar to the one of low-rank MDPs (e.g., Agarwal et al., 2020) but the repre-
sentation φ(s, a) is assumed to be known by the agent.
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where dπ is the state distribution induced by the policy π in the CMP M, and F is a
function that maps state distributions to reals, i.e., F : ∆(S) → R. The goal of opti-
mizing the surrogate objective (3.5) is to obtain a pre-trained policy that can jump-start
the subsequent supervised fine-tuning phase (Uchendu et al., 2022). Most of the existing
approaches (see Table 3.1) aim to pre-train policies that can serve as exploratory initializa-
tions to the downstream RL algorithm, whereas little attention has been dedicated to how
to best use the pre-trained policies in the fine-tuning phase. The supervised fine-tuning
can catastrophically forget the pre-trained policy in a few iterations while maximizing ob-
jective (3.2), which can sometimes waste the capability of the pre-trained model. This
problem of careful fine-tuning received relatively little attention w.r.t. the pre-training (the
work by Campos et al. (2021) and Pislar et al. (2021) make interesting exceptions).
Similarly, in this thesis we will focus on the pre-training phase. While we are going to
report fine-tuning results as well, we will consider naïve mechanisms to exploit the pre-
trained policy, mostly for the purpose of evaluation of the pre-training rather than as a
conceptual contribution. In Chapters 4, 5 we study the optimization problem (3.5) when
F is any concave4 function of dπ . In Chapter 6 we present the specific instance of the
optimization problem (3.5) where the function F is the entropy function H (Hazan et al.,
2019), which is also the focus of the remainder of this thesis. In the next paragraph, we
briefly report the most relevant works in state entropy maximization, though most of them
will be discussed in greater length in the following chapters.

Unsupervised Pre-Training via State Entropy Maximization

Hazan et al. (2019) were the first to consider an entropic measure over the state distribu-
tion as a sensible unsupervised pre-training. Especially, they propose an algorithm, called
MaxEnt (see Section 6.2.1), that learns a mixture of policies collectively maximizing the
Shannon entropy of the discounted state distribution. The final mixture is learned through
a conditional gradient method, in which the algorithm iteratively estimates the state dis-
tribution of the current mixture to define an intrinsic reward function, and then identifies
the next policy to be added by solving a specific RL sub-problem with this reward. A
similar methodology has been obtained by Lee et al. (2019) from a game-theoretic per-
spective on unsupervised pre-training. Their algorithm, called SMM, targets the Shannon
entropy of the marginal state distribution instead of the discounted distribution of MaxEnt.
Another approach based on the conditional gradient method is FW-AME (Tarbouriech &
Lazaric, 2019), which learns a mixture of policies to maximize the entropy of the station-
ary state-action distribution. As noted in (Tarbouriech & Lazaric, 2019), the mixture of
policies might suffer a slow mixing to the asymptotic distribution for which the entropy is
maximized. In (Mutti & Restelli, 2020), we present a method (IDE3AL, see Section 7.4)
to pre-train a single policy that simultaneously accounts for the entropy of the stationary
state-action distribution and the mixing time.
Even if they are sometimes evaluated in continuous domains, especially (Hazan et al.,
2019; Lee et al., 2019), the methods we mentioned require an accurate estimate of either
the state distribution (Hazan et al., 2019; Lee et al., 2019) or the transition model (Tar-
bouriech & Lazaric, 2019; Mutti & Restelli, 2020), which hardly scales to the most com-

4We assume F is a concave function when the problem is formulated as a maximization, whereas we assume
F is convex when the problem is formulated as a minimization instead.
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Algorithm Entropy Distribution Space Mixture Non-Par

MaxEnt (Hazan et al., 2019) Shannon discounted state 3 7

FW-AME (Tarbouriech & Lazaric, 2019) Shannon stationary state-action 3 7

SMM (Lee et al., 2019) Shannon marginal state 3 7

IDE3AL (Mutti & Restelli, 2020) Shannon stationary state-action 7 7

MEPOL (Mutti et al., 2021) Shannon marginal state 7 3

MaxRényi (Zhang et al., 2021a) Rényi discounted state-action 7 7

GEM (Guo et al., 2021) geometry-aware marginal state 7 7

APT (Liu & Abbeel, 2021b) Shannon marginal state 7 3

RE3 (Seo et al., 2021) Shannon marginal state 7 3

Proto-RL (Yarats et al., 2021) Shannon marginal state 7 3

αMEPOL (Mutti et al., 2022e) Shannon marginal state 7 3

KME (Nedergaard & Cook, 2022) Shannon discounted state 7 3

Table 3.2: Overview of the algorithms for unsupervised pre-training via state entropy
maximization. For each algorithm, we report the nature of the objective, i.e., the en-
tropy formulation (Entropy), whether it considers stationary, discounted, or marginal
distributions (Distribution), and if it accounts for the state space S or the state-action
space S × A (Space). We also specify if the method learns a single policy rather than
a mixture of policies (Mixture), and if it supports non-parametric entropy estimation
(Non-Par).

plex, often high-dimensional, domains. In a subsequent work (Mutti et al., 2021), we pro-
pose an approach to estimate the entropy of the state distribution through a non-parametric
method, and then to directly optimize the estimated entropy via policy optimization. The
algorithm, called MEPOL (see Chapter 8), is able to learn a single exploration policy that
maximizes the entropy of the marginal state distribution in challenging continuous control
domains. Liu & Abbeel (2021b) combine non-parametric entropy estimation with learned
state representations into an algorithm, called APT, that successfully addresses unsuper-
vised pre-training in visual-inputs domains. Seo et al. (2021) shows that even random
state representations are sufficient to pre-train such policies from visual inputs. On a sim-
ilar line, Yarats et al. (2021) consider simultaneously learning state representations and
a basis for the latent space (or prototypical representations) to help reduce the variance
of the entropy estimates. The latter three works (Liu & Abbeel, 2021b; Seo et al., 2021;
Yarats et al., 2021) are discussed in Section 8.6.
Whereas all of the previous approaches account for the Shannon entropy in their objec-
tives, recent works (Zhang et al., 2021a; Guo et al., 2021) consider alternative formula-
tions. Zhang et al. (2021a) argue that the Rényi entropy provides a superior incentive to
cover all of the corresponding space than the Shannon entropy, and they propose a method
to optimize the Rényi of the state-action distribution via gradient ascent (MaxRényi). On
an orthogonal direction, the authors of (Guo et al., 2021) consider a reformulation of the
entropy function that accounts for the underlying geometry of the space. They present a
method, called GEM, to learn an optimal policy for the geometry-aware entropy objective.
The work by Nedergaard & Cook (2022) maximizes a lower bound to the state entropy
approximation through a clustering approach. They especially relate the entropy of the
state distribution with the radius of the clusters obtained by a k-means procedure.
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3.3. Literature Overview

Finally, in a follow-up work to (Mutti et al., 2021), we introduce the problem of pre-
training via state entropy maximization over a class of multiple CMPs (Mutti et al., 2022e).
Especially, we present an algorithm, called αMEPOL (see Chapter 9), that maximizes the
mean of a critical percentile α of the entropy realizations achieved across the class.
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Part I

A Step Back to Convex
Reinforcement Learning
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CHAPTER4
Convex Reinforcement Learning

The content of this chapter is based on the paper “Challenging Common Assumptions
in Convex Reinforcement Learning” co-authored with Riccardo De Santi, Piersilvio De
Bartolomeis, and Marcello Restelli, published at NeurIPS 2022.1

4.1 Introduction

In this chapter, we provide a formal study of the Convex Reinforcement Learning (CRL)
formulation, as it subsumes the state entropy maximization problem that is the core focus
of this thesis. The standard RL problem, which we have already introduced in Chap-
ter 2, concerns sequential decision-making problems in which the utility can be expressed
through a linear combination of scalar reward terms. The coefficients of this linear com-
bination are given by the state visitation distribution induced by the agent’s policy. Thus,
the objective function can be equivalently written as the inner product between the men-
tioned state distribution and a reward vector. However, not all the relevant objectives can
be encoded through this linear representation (Abel et al., 2021). Several works have thus
extended the standard RL formulation to address non-linear objectives of practical interest.
These include, among others, imitation learning (Hussein et al., 2017; Osa et al., 2018), or
the problem of finding a policy that minimizes the distance between the induced state dis-

1A complete reference can be found in the bibliography (Mutti et al., 2022a).
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tribution and the state distribution provided by experts’ interactions (Abbeel & Ng, 2004;
Ho & Ermon, 2016; Kostrikov et al., 2019; Lee et al., 2019; Ghasemipour et al., 2020;
Dadashi et al., 2020), risk-averse RL (Garcıa & Fernández, 2015), in which the objective
is sensitive to the tail behavior of the agent’s policy (Tamar & Mannor, 2013; Prashanth
& Ghavamzadeh, 2013; Tamar et al., 2015a; Chow et al., 2015, 2017; Bisi et al., 2020;
Zhang et al., 2021b), diverse skills discovery (Gregor et al., 2017; Eysenbach et al., 2019;
Hansen et al., 2019; Sharma et al., 2020; Campos et al., 2020; Liu & Abbeel, 2021a; He
et al., 2022; Zahavy et al., 2022), constrained RL (Altman, 1999; Achiam et al., 2017;
Brantley et al., 2020; Miryoosefi et al., 2019; Qin et al., 2021; Yu et al., 2021; Bai et al.,
2022), and, most importantly, the state entropy maximization problem that we address in
this thesis. All this large body of work has been recently unified into a unique framework,
called convex RL (Zhang et al., 2020a; Zahavy et al., 2021; Geist et al., 2022), which ad-
mits as an objective any convex function of the state distribution induced by the agent’s
policy. The convex RL problem has been shown to be largely tractable either computation-
ally, as it admits a dual formulation akin to standard RL (Puterman, 2014), or statistically,
as principled algorithms achieving sub-linear regret rates that are slightly worse than stan-
dard RL have been developed (Zhang et al., 2020a; Zahavy et al., 2021).

Finite Trials Infinite Trials

RL

Convex 
RL

r · dπ

F(dπ)

E
dn∼pπ

n

[
r · dn

]

E
dn∼pπ

n

[
F(dn)

]

=

�=

Figure 4.1: Summary of the main result of
this chapter: The equivalence between fi-
nite and infinite trials objectives does not
hold for the convex RL formulation.

However, we note that the usual con-
vex RL formulation makes an implicit
infinite trials assumption which is rarely
met in practice. Indeed, the objective
is written as a function of the state dis-
tribution, which is an expectation over
the empirical state distributions that are
actually obtained by running the policy
in a given episode. In practice, we al-
ways run our policy for a finite num-
ber of episodes (or trials), which in gen-
eral prevents the empirical state distribu-
tion from converging to its expectation.
This has never been a problem in stan-
dard RL: Due to the scalar objective, op-
timizing the policy over infinite trials or finite trials is equivalent, as it leads to the same
optimal policy. Crucially, we can show that this property does not hold for the convex RL
formulation: A policy optimized over infinite trials can be significantly sub-optimal when
deployed over finite trials (Figure 4.1). In light of this observation, we reformulate the
convex RL problem from a finite trials perspective, developing insights that can be used
to partially rethink the way convex objectives have been previously addressed in RL, with
potential ripple effects to research areas of significant interest, such as imitation learning,
risk-averse RL, state entropy maximization, and others.
Contents In this chapter, we formalize the notion of a finite trials RL problem, in which
the objective is a function of the empirical state distribution induced by the agent’s policy
over n trials rather than its expectation over infinite trials. As an illustrative example, con-
sider a financial application, in which we aim to optimize a trading strategy. In the real
world, we can only deploy the strategy over a single trial. Thus, we are only interested in
the performance of the strategy in the real-world realization, rather than the performance
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of the strategy when averaging different realizations. Following this intuition, we first de-
fine the (linear) finite trial RL formulation (Section 4.3), for which it is trivial to prove
the equivalence with standard RL. In Section 4.4, we provide the finite trial convex RL
formulation, for which we prove an upper bound on the approximation error made by op-
timizing the infinite trials as a proxy of the finite trials objective. In light of this finding,
we challenge the hidden assumption that (1) convex RL can be equivalently addressed with
an infinite trials formulation, even if the setting is inherently finite trials. We corroborate
this result with an additional numerical analysis showing that the approximation bound
is non-vacuous for relevant applications (Section 4.6). Finally, in Section 4.5 we include
an in-depth analysis of the single trial convex RL, which suggests that other common as-
sumptions in the convex RL literature, i.e., that (2) the problem is always computationally
tractable and that (3) stationary policies are in general sufficient, should be reconsidered
as well. The proofs of the reported results can be found in Appendix A.1.

4.2 Definitions

In this section, we recall useful notation for the remainder of the chapter. As usual, we
denote with [H] a set of integers {1, . . . ,H}, and with a lowercase letter a a scalar or
a vector, according to the context. For two vectors a, b ∈ Rd, we denote with a · b =∑d
i=1 aibi the inner product between a, b.

Probabilities Let X denote a measurable space, ∆(X ) is the probability simplex over
X and p ∈ ∆(X ) is a probability measure over X . For two probability measures p, q
over X , we define their `n-distance as ‖p− q‖n :=

(∑
x∈X

∣∣p(x)− q(x)
∣∣n)1/n

, and their
Kullback-Leibler (KL) divergence as KL(p||q) :=

∑
x∈X p(x) log

(
p(x)/q(x)

)
.

Percentiles Let X be a random variable distributed according to p, having a cumulative
density function FX(x) = Pr(X ≤ x). We denote with E[X] its expected value, and
its α-percentile is denoted as VaRα(X) = inf

{
x | FX(x) ≥ α

}
= F−1

X (α), where
α ∈ (0, 1) is a confidence level, and VaRα stands for Value at Risk (VaR) at level α. We
denote the expected value of X within its α-percentile as CVaRα(X) = E

[
X | X ≤

VaRα(X)
]
, where CVaRα stands for Conditional Value at Risk (CVaR) at level α.

Policies A policy π interacting with an MDP MR := (S,A, P, µ, T,R) consists of a
sequence of decision rules (πt)

∞
t=0 that maps the current trajectory2 ht = (si, ai)

t−1
i=0 ∈ Ht

with a distribution over actions πt : Ht → ∆(A), whereHt denotes the set of trajectories
of length t. A non-stationary policy is a sequence of decision rules πt : S → ∆(A). A
stationary (Markovian) policy is a time-consistent decision rule π : S → ∆(A).
State Distributions A trajectory h, obtained from an interaction episode, induces an em-
pirical distribution d over the states of the MDPMR, such that d(s) = 1

|h|
∑
st∈h 1(st =

s). We denote with pπ the probability of drawing d by following the policy π. For n ∈ N,
we denote with dn the empirical distribution dn(s) = 1

n

∑n
i=1 di(s), and with pπn the

probability of drawing dn by following the policy π for n episodes. Finally, we call the
expectation dπ = Ed∼pπ [d] the state distribution induced by π.

2We will call a sequence of states and actions a trajectory or a history indifferently.
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4.3 Reinforcement Learning in Finite Trials

In the standard RL formulation (Sutton & Barto, 2018), an agent aims to learn an opti-
mal policy by interacting with an unknown MDP MR. An optimal policy is a decision
strategy that maximizes the expected sum of rewards collected during an episode. Es-
pecially, we can represent the value of a policy π through the value function V πt (s) :=

Eπ
[∑T

t′=t r(st′)
∣∣ st = s

]
. The value function allows us to write the RL objective as

maxπ∈Π Es1∼µ[V π1 (s1)], where Π is the set of all the stationary policies. Equivalently, we
can rewrite the RL objective into its dual formulation (Puterman, 2014), i.e.,

RL

max
π∈Π

(
R · dπ

)
=: J∞(π) (4.1)

where we denote with R ∈ RS a reward vector, and with dπ the state distribution induced
by π. We call the problem (4.1) the infinite trials RL formulation. Indeed, the objective
J∞(π) considers the sum of the rewards collected during an episode, i.e., R · dπ , that we
can achieve on the average of an infinite number of episodes drawn with π. This is due
to the state distribution dπ being an expectation of empirical distributions dπ = Ed∼pπ [d].
However, in practice, we can never draw infinitely many episodes following a policy π.
Instead, we draw a small batch of episodes dn ∼ pπn. Thus, we can instead conceive a
finite trials RL formulation that is closer to what is optimized in practice.

Finite Trials RL

max
π∈Π

(
E

dn∼pπn

[
R · dn

])
=: Jn(π) (4.2)

One could then wonder whether optimizing the finite trials objective (4.2) leads to results
that differ from the infinite trials one (4.1). To this point, it is straightforward to see that
the two objective functions are actually equivalent

Jn(π) = E
dn∼pπn

[
R · dn

]
= R · E

dn∼pπn

[
dn
]

= R · dπ = J∞(π),

since R is a fixed vector and the expectation is a linear operator. It follows that the infinite
trials and the finite trials RL formulations admit the same optimal policies. Hence, one
can enjoy the computational tractability of the infinite trials formulation and, at the same
time, optimize the objective function that is employed in practice. In the next section, we
will show that a similar result does not hold true for the convex RL formulation.

4.4 Convex Reinforcement Learning in Finite Trials

Even though the RL formulation covers a wide range of sequential decision-making prob-
lems, several relevant applications cannot be expressed by means of the inner product
between a linear reward vector R and a state distribution dπ (Abel et al., 2021; Silver
et al., 2021). These include imitation learning, state entropy maximization, constrained
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Table 4.1: Various convex RL objectives and applications. The last column states the
equivalence between infinite trials and finite trials settings, as derived in Proposi-
tion A.1.1 (Appendix A.1).

OBJECTIVE F APPLICATION INFINITE ≡ FINITE

R · d R ∈ RS , d ∈ ∆S RL 3
‖d− dE‖pp
KL(d||dE)

d, dE ∈ ∆S IMITATION LEARNING 7

−d · log (d) d ∈ ∆S PURE EXPLORATION 7
CVaRα[R · d]

R · d− Var[R · d]
R ∈ RS , d ∈ ∆S RISK-AVERSE RL 7

R · d, S.T. λ · d ≤ c R, λ ∈ RS , c ∈ R, d ∈ ∆S LINEARLY CONSTRAINED RL 3

−Ez KL (dz||Ek dk) z ∈ Rd, dz, dk ∈ ∆S DIVERSE SKILL DISCOVERY 7

problems, and risk-sensitive objectives, among others. Recently, a convex RL formula-
tion (Zhang et al., 2020a; Zahavy et al., 2021; Geist et al., 2022) has been proposed to
unify these applications in a unique general framework, which is

Convex RL

max
π∈Π

(
F(dπ)

)
=: ζ∞(π) (4.3)

where F : ∆(S) → R is a function3 of the state distribution dπ . In Table 4.1, we recap
some of the most relevant problems that fall under the convex RL formulation along with
their specific F function. As it happens for linear RL, in any practical simulated or real-
world scenario, we can only draw a finite number of episodes with a policy π. From these
episodes, we obtain an empirical distribution dn ∼ pπn rather than the actual state distri-
bution dπ , where n is the number of episodes (trials). This can cause a mismatch between
the objective that is typically considered in convex RL (Zhang et al., 2020a; Zahavy et al.,
2021) and what can be optimized in practice. To overcome this mismatch, we define a
finite trials formulation of the convex RL objective as we did in the previous section for
the linear RL formulation.

Finite Trials Convex RL

max
π∈Π

(
E

dn∼pπn

[
F(dn)

])
=: ζn(π) (4.4)

Comparing objectives (4.3) and (4.4), one can notice that both of them include an expec-
tation over the episodes, being dπ = Ed∼pπ [d]. Especially, we can write

ζ∞(π) = F(dπ) = F( E
dn∼pπn

[dn]) ≤ E
dn∼pπn

[F(dn)] = ζn(π)

through Jensen’s inequality. As a consequence, optimizing the infinite trials objective
ζ∞(π) does not necessarily lead to an optimal behavior for the finite trials objective ζn(π).

3In this context, we use the term convex to distinguish it from the standard linear RL objective. However,
in the following, we will consider functions F that are either convex, concave, or even non-convex. In general,
problem (4.3) takes the form of a max problem for concave F , or a min problem for convex F .
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From a mathematical perspective, this is due to the fact that the empirical distributions
dn induced by the policy π are averaged by the expectation dπ before computing the F
function into objective (4.3), thus losing a measure of the performance F for each batch
of episodes, which we instead keep in the objective (4.4).

4.4.1 Approximating the Finite Trials Objective with Infinite Trials

Despite the evident mismatch between the finite trials and the infinite trials formulation of
the convex RL problem, most existing works consider (4.3) as the standard objective, even
if only a finite number of episodes can be drawn in practice. Thus, it is worth investigating
how much we can lose by approximating a finite trials objective with an infinite trials one.
First, we report a useful assumption on the structure of the function F .

Assumption 4.4.1 (Lipschitz). A function F : X → R is Lipschitz-continuous if it holds
for some constant L

∣∣F(x)−F(y)
∣∣ ≤ L

∥∥x− y
∥∥

1
, ∀(x, y) ∈ X 2.

Then, we provide an upper bound on the approximation error in the following theorem.

Theorem 4.4.2 (Approximation Error). Let n ∈ N be a number of trials, let δ ∈ (0, 1]
be a confidence level, let π† ∈ arg maxπ∈Π ζn(π) and π? ∈ arg maxπ∈Π ζ∞(π). Then,
it holds with probability at least 1− δ

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ 4LT

√
2S log(4T/δ)

n

The previous result establishes an approximation error rate err = O(LT
√
S/n) that is

polynomial in the number of episodes n. Unsurprisingly, the guarantee over the approx-
imation error scales with O(1/

√
n), as one can expect the empirical distribution dn to

concentrate around its expected value for large n (Weissman et al., 2003). This implies
that approximating the finite trials objective ζn(π) with the infinite trials ζ∞(π) can be
particularly harmful in those settings in which n is necessarily small. As an example,
consider training a robot through a simulator and deploying the obtained policy in the real
world, where the performance measures are often based on a single episode (n = 1). The
performance that we experience from the deployment can be much lower than the expected
ζ∞(π), which might result in undesirable or unsafe behaviors. However, Theorem 4.4.1
only reports an instance-agnostic upper bound, and it does not necessarily imply that there
would be a significant approximation error in a specific instance, i.e., a pairing of a CMP
M and a function F . Nevertheless, in this paper, we argue that the upper bound of the
approximation error is not vacuous in several relevant applications, and we provide an
illustrative numerical corroboration of this claim in Section 4.6.

Challenged assumption 1. The convex RL problem can be equivalently addressed with
an infinite trials formulation.

Finally, in Figure 4.2 we report a visual representation4 of the approximation error defined
4Note that it is not possible to represent the objective functions in two dimensions in general. Nevertheless,

we provide an abstract one-dimensional representation of the policy space to bring the intuition.
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Π

ζ∞

ζn π∗

π†

Π
ζ∞

ζn

π∗

π†

Figure 4.2: The two illustrations report an abstract visualization of ζn and ζ∞ for small
values of n (left) and large values of n (right) respectively. The green bar visualize
the distance

∥∥dn − dπ
?∥∥

1
, in which dn ∼ pπ

†
n . The blue bar visualize the distance∣∣ζn(π†)−ζ∞(π?)

∣∣. The orange bar visualize the approximation error, i.e., the distance∣∣ζn(π†)− ζn(π?)
∣∣.

in Theorem 4.4.1. Notice that the finite trials objective ζn converges uniformly to the
infinite trials objective ζ∞ as a trivial consequence of Theorem 4.4.1. This is particularly
interesting as it results in π† converging to π? in the limit of large n as shown in Figure 4.2.

4.5 Single Trial Convex Reinforcement Learning

Having established a significant mismatch between the infinite trials convex RL setting
that is usually considered in previous works, i.e., ζ∞(π), and the finite trials formulation
that is actually targeted in practice, i.e., ζn(π), it is now worth taking a closer look at the
finite trials optimization problem (4.4). Indeed, to avoid the approximation error that can
occur by optimizing (4.4) through the infinite trials formulation (Theorem 4.4.1), one could
instead directly address the optimization of (4.4). Especially, how does the finite trials
convex RL problem compare to its infinite trials formulation and the linear RL problem?
What kind of policies do we need to optimize the finite trials objective? Is the underlying
learning process statistically harder than infinite trials convex RL? In this section, we
investigate the answers to these relevant questions. To this purpose, we will focus on a
single trial setting, i.e., ζn(π) with n = 1, which allows for a clearer analysis, while
analogous considerations should extend to a general number of trials n > 1.

Single Trial Convex RL

max
π∈Π

(
E

d∼pπ
[
F(d)

])
=: ζ1(π) (4.5)

Taking inspiration from (Zahavy et al., 2021), we can cast the problem (4.5) defined over
a CMPM into a convex MDP CM := (S,A, P, T, µ,F), where S,A, P, T, µ are defined
as in a standard MDP, and F : ∆(S) → R is a convex function that defines the objective
ζ1(π). Is solving a convex MDP CM significantly harder than solving an MDPMR?
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4.5.1 Extended MDP Formulation of Single Trial Convex RL

We can show that any finite-horizon convex MDP CM can be actually translated into an
equivalent MDP M̃R

T = (S`,A`, P`, µ`, R`), which we call an extended MDP. The main
idea is to temporally extend CM so that each state contains the information of the full
trajectory leading to it, so that the convex objective can be cast into a linear reward. To do
this, we define the extended state space S` to be the set of all the possible histories up to
length T , so that s` ∈ S` now represents a history. Then, we can keepA`, P`, µ` equivalent
to A, P, µ of the original CM, where for the extended transition model P`(s′`|s`, a) we
solely consider the last state in the history s` to define the conditional probability to the
next history s′`. Finally, we just need to define a scalar reward function R` : S` → R such
that R`(s`) = F(ds`) for all the histories s` of length T and R`(s`) = 0 otherwise, where
we denoted with ds` the empirical state distribution induced by s`.

Notably, the problem of finding an optimal policy for the extended MDP M̃R
T , i.e., π∗ ∈

arg maxπ∈ΠR` · dπ , is equivalent to solving the problem (4.5). Indeed, we have

R` · dπ =
∑

s`∈S`
R`(s`)d

π(s`) =
∑

s`∈S`
F(ds`)1(|s`| = H)pπ(ds`) = E

ds`∼pπ
[F(ds`)].

Whereas M̃R
T can be solved with classical MDP methods (Puterman, 2014), the size of

the policy π : S` → ∆(A`) to be learned does scale with the size of M̃R
T , which grows

exponentially in the episode horizon as we have |S`| > ST . Thus, the extended MDP
formulation and the resulting insight cast some doubts on the notion that the convex RL is
not significantly harder than standard RL (Zhang et al., 2020a; Zahavy et al., 2021).

Challenged assumption 2. Convex RL is only slightly harder than the standard RL for-
mulation.

4.5.2 POMDP Formulation of Single Trial Convex RL

Instead of temporally extending the convex MDP CM as in the previous section, which
causes the policy space to grow exponentially with the episode horizon T , we can alter-
natively formulate CM as a Partially Observable MDP (POMDP) (Åström, 1965; Kael-
bling et al., 1998)MR

Ω = (S`,A`, P`, µ`, R`,Ω, O), in which Ω denotes an observation
space, and O : S` → ∆(Ω) is an observation function. The process to build MR

Ω is
rather similar to the one we employed for the extended MDP M̃R

T , and the components
S`,A`, P`, µ`, R` remain indeed unchanged. However, in a POMDP the agent does not
directly access a state s` ∈ S`, but just a partial observation o ∈ Ω that is given by the
observation function O. Here O(s`) = o is a deterministic function such that the given
observation o is the last state in the history s`. Since the agent only observes o, a sta-
tionary policy can be defined as a function π : Ω → ∆(A), for which the size depends
on the number of states S of the convex MDP CM, being Ω = S . However, it is well
known (Kaelbling et al., 1998) that history-dependent policies should be considered for
the problem of optimizing a POMDP. This is in sharp contrast with the current convex
MDP literature, which only considers stationary policies due to the infinite trials formula-
tion (Zhang et al., 2020a).
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Challenged assumption 3. The set of stationary randomized policies is sufficient for con-
vex RL.

4.5.3 Online Learning in Single Trial Convex RL

Let us assume to have access to a planning oracle that returns an optimal policy π∗ for a
given CM so that we can sidestep the concerns on the computational feasibility reported
in previous sections. It is worth investigating the complexity of learning π∗ from online
interactions with an unknown CM. A typical measure of this complexity is the online
learning regretR(N), which is defined as

R(N) :=

N∑

t=1

V ∗ − V (t),

where N is the number of learning episodes, V ∗ = V π
∗

1 (s1) is the value of the optimal
policy, V (t) = V πt is the value of the policy πt deployed at the episode t. We now aim
to assess whether there exists a principled algorithm that can achieve a sub-linear regret
R(N) in the worst case. To this purpose, we can cast our learning problem in the Once-
Per-Episode (OPE) RL formulation (Chatterji et al., 2021). In the latter setting, the agent
interacts with the MDP for T steps, receiving a 0/1 feedback at the end of the episode,
where the feedback is computed according to a logistic model that is a function of the
history. To translate our objective ζ1(π) = Ed∼pπ [F(d)] into the OPE framework (Chat-
terji et al., 2021), we have to encode F into a linear representation. With the following
assumption, we state the existence of such representation.

Assumption 4.5.1 (Linear Realizability). The function F is linearly-realizable if it holds

F(d) = w>∗ φ(d),

where w∗ ∈ Rdw is a vector of parameters such that ‖w∗ ‖2 ≤ B for some knownB > 0,
and φ(d) = (φj(d))dwj=1 is a known vector of basis functions such that ‖φ(d)‖2 ≤ 1,∀d ∈
∆(S).

With the Assumption 4.5.1 and other minor changes that are detailed in the Appendix,
we can invoke the analysis of OPE-UCBVI in (Chatterji et al., 2021) to provide an upper
bound to the regretR(N) in our setting.

Theorem 4.5.2 (Regret). For any confidence δ ∈ (0, 1] and unknown convex MDP
CM, the regret of the OPE-UCBVI algorithm is upper bounded as

R(N) ≤ O
([
d7/2

w B3/2T 2SA1/2
]√

N
)

with probability 1− δ.

The latter result states that the problem of learning an optimal policy in an unknown convex
MDP is at least statistically efficient assuming linear realizability and access to a planning
oracle. Those are fairly strong assumptions, but principled approximate solvers may be de-
signed to overcome the planning oracle assumption, whereas in several convex RL settings
the function F is assumed to be known, and thus trivially realizable.
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Figure 4.3: Visualization of the illustrative MDPs. In (b), state 0 is a low-reward (r) low-
risk state, state 2 is a high-reward (R) high-risk state, and state 1 is a penalty state
with zero reward.

4.6 Numerical Validation

In this section, we evaluate the performance over the finite trials objective (4.4) achieved
by a policy π† ∈ arg maxπ∈Π ζn(π) maximizing the same finite trials objective (4.4)
against a policy π? ∈ arg maxπ∈Π ζ∞(π) maximizing the infinite trials objective (4.3)
instead. The latter infinite trials π∗ can be obtained by solving a dual optimization on the
convex MDP (see Section 6.3),

max
ω∈∆(S×A)

F(ω), subject to
∑

a∈A
ω(s, a) =

∑

s′∈S,a′∈A
P (s|s′, a′)ω(s′, a′), ∀s ∈ S,

To get the finite trials π†, we first recover the extended MDP as explained in Section 4.5.1,
and then we apply standard dynamic programming (Bellman, 1957). In the experiments,
we show that optimizing the infinite trials objective can lead to sub-optimal policies across
a wide range of applications. In particular, we cover examples from pure exploration,
risk-averse RL, and imitation learning. We carefully selected MDPs that are as simple as
possible in order to stress the generality of our results. For the sake of clarity, we restrict
the discussion to the single trial setting (n = 1).
Pure Exploration For the pure exploration setting, we consider the state entropy objec-
tive (Hazan et al., 2019), i.e., F(d) = H(d) = −d · log d, and the convex MDP in Figure
4.3a. In this example, the agent aims to maximize the state entropy over finite trajectories
of T steps. Notice that this happens when a policy induces an empirical state distribution
that is close to uniform. In Figure 4.4a, we compare the average entropy induced by the
optimal finite trials policy π† and the optimal infinite trials policy π?. An agent following
the policy π† always achieves a uniform empirical state distribution leading to the max-
imum entropy. Moreover, π† is a non-Markovian deterministic policy. In contrast, the
policy π∗ is randomized in all three states. As a result, this policy induces sub-optimal
empirical state distributions with strictly positive probability, as shown in Figure 4.4d.
Risk-Averse RL For the risk-averse RL setting, we consider a Conditional Value-at-
Risk (CVaR) objective (Rockafellar et al., 2000) given by F(d) = CVaRα[R · d], where
R ∈ [0, 1]S is a reward vector, and the convex MDP in Figure 4.3b, in which the agent aims
to maximize the CVaR over a finite-length trajectory of T steps. First, notice that financial
semantics can be attributed to the given MDP. An agent, starting in state 2, can decide
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(a) Entropy average (b) CVaR average (c) KL average

(d) Entropy distribution (e) CVaR distribution (f) KL distribution

Figure 4.4: π† denotes an optimal single trial policy, π? denotes an optimal infinite trials
policy. In (a, d) we report the average and the empirical distribution of the single trial
utility H(d) achieved in the pure exploration convex MDP (T = 6) of Figure 4.3a.
In (b, e) we report the average and the empirical distribution of the single trial utility
CVaRα[r · d] (with α = 0.4) achieved in the risk-averse convex MDP (T = 5) of
Figure 4.3b. In (c, f) we report the average and the empirical distribution of the single
trial utility KL(d||dE) (with expert distribution dE = (1/3, 2/3)) achieved in the
imitation learning convex MDP (T = 12) of Figure 4.3c. For all the results, we provide
95 % c.i. over 1000 runs.

whether to invest in risky assets, e.g., crypto-currencies, or in safe ones, e.g., treasury
bills. Because of the stochastic transitions, a policy would need to be reactive to the
realizations of the transition model in order to maximize the single trial objective (4.5).
This kind of behavior is achieved by an optimal finite trials policy π†. Indeed, π† is a
non-Markovian deterministic policy, which can take decisions as a function of history, and
thus takes into account the current realization. On the other hand, an optimal infinite trials
policy π∗ is a Markovian policy, and it cannot take into account the current history. As
a result, the policy π∗ induces sub-optimal trajectories with strictly positive probability
(see Figure 4.4e). Finally, in Figure 4.4b we compare the single trial performance induced
by the optimal single trial policy π† and the optimal infinite trials policy π?. Overall, π†

performs significantly better than π?.
Imitation Learning For the imitation learning setting, we consider the distribution
matching objective (Kostrikov et al., 2019), i.e., F(d) = KL (d||dE) , and the convex
MDP in Figure 4.3c. The agent aims to learn a policy π inducing an empirical state distri-
bution d close to the empirical state distribution dE demonstrated by an expert. In Figure
4.4c, we compare single trial performance induced by the optimal single trial policy π†

and the optimal infinite trials policy π?. An agent following π† induces an empirical state
distribution that perfectly matches the expert. In contrast, an agent following π∗ induces
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sub-optimal realizations with strictly positive probability (see Figure 4.4f).

4.7 Related Work

To the best of our knowledge, (Hazan et al., 2019) were the first to introduce the convex
RL problem, as a generalization of the standard RL formulation to non-linear utilities,
especially the entropy of the state distribution. They show that the convex RL objective,
while being concave (convex) in the state distribution, can be non-concave (non-convex)
in the policy parameters. Anyway, they provide a provably efficient algorithm that over-
comes the non-convexity through a Frank-Wolfe approach. (Zhang et al., 2020a) study the
convex RL problem under the name of RL with general utilities. Especially, they investi-
gated a hidden convexity of the convex RL objective that allows for statistically efficient
policy optimization in the infinite-trials setting. Recently, the infinite trials convex RL
formulation has been reinterpreted from game-theoretic perspectives (Zahavy et al., 2021;
Geist et al., 2022). The former (Zahavy et al., 2021) notes that the convex RL problem can
be seen as a min-max game between the policy player and a cost player. The latter (Geist
et al., 2022) shows that the convex RL problem is a subclass of mean-field games.
Another relevant branch of literature is the one investigating the expressivity of scalar
(Markovian) rewards (Abel et al., 2021; Silver et al., 2021). Especially, (Abel et al., 2021)
shows that not all the notions of task, such as inducing a set of admissible policies, a
(partial) policy ordering, or a trajectory ordering, can be naturally encoded with a scalar
reward function. Whereas the convex RL formulation extends the expressivity of scalar RL
w.r.t. all these three notions of task, it is still not sufficient to cover any instance. Convex
RL is powerful in terms of the policy ordering it can induce, but it is inherently limited on
the trajectory ordering as it only accounts for the infinite trials state distribution. Instead,
the finite trials convex RL setting that we presented in this paper is naturally expressive
in terms of trajectory orderings, at the expense of a diminished expressivity on the policy
orderings w.r.t. infinite trials convex RL.
Previous works concerning RL in the presence of trajectory feedback are also related to this
work. Most of this literature assumes an underlying scalar reward model (e.g., Efroni et al.,
2021) which only delays the feedback at the end of the episode. One notable exception
is the once-per-episode formulation in (Chatterji et al., 2021), which we have already
commented on in Section 4.5.
Finally, the work in (Cheung, 2019a,b) considers MDP with vectorial rewards as a mean
to encode convex objectives in RL with a multi-objective flavor. They show that stationary
policies are in general sub-optimal for the introduced online learning setting, where non-
stationarity becomes essential. In this setting, they provide principled procedures to learn
an optimal policy with sub-linear regret.
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CHAPTER5
The Importance of Non-Markovianity in

Convex RL

The content of this chapter is based on the paper “The Importance of Non-Markovianity in
Maximum State Entropy Exploration” co-authored with Riccardo De Santi and Marcello
Restelli, published at ICML 2022, where it received the Outstanding Paper Award.1

5.1 Introduction

In the previous Chapter 4, we have introduced the Convex Reinforcement Learning (CRL)
problem, and we have made a crucial distinction between its infinite trials and finite trials
formulation, which induce fundamentally different learning problems. In this chapter, we
aim to address a specific question that we left open in Section 4.5.2, i.e., whether the set
of Markovian policies is sufficient to address CRL problems in finite trials.
All of the existing works in CRL solely focus on optimizing Markovian policies, which we
recall are built with decision rules conditioned only on the current state of the environment
rather than the full history of the visited states. There are good reasons for it, as the result-
ing learning problem is known to be, at least in tabular domains, provably efficient both
computationally and statistically (e.g., Hazan et al., 2019; Zhang et al., 2020a). Moreover,

1A complete reference can be found in the bibliography (Mutti et al., 2022b).
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this choice is common in RL, as it is well-known that an optimal deterministic Markovian
strategy maximizes the usual objective, i.e., the cumulative sum of rewards (Puterman,
2014). Similarly, Hazan et al. (2019, Lemma 3.3) note that the class of Markovian strate-
gies is sufficient for the infinite trials CRL objective. A carefully constructed Markovian
strategy is able to induce the same state distribution of any history-based (non-Markovian)
one by exploiting randomization. Crucially, this result does not hold only for asymp-
totic state distributions, but also for state distributions that are marginalized over a finite
horizon (Puterman, 2014). Hence, there is little incentive to consider more complicated
strategies as they are not providing any benefit to the value of the objective function.
However, we argue that prior work does not recognize the importance of non-Markovianity
in CRL due to the common infinite trials assumption that we have extensively discussed
in Chapter 4. Instead, we will show that non-Markovian strategies are crucial in the finite
trials CRL formulation, by introducing a novel notion of convex value gap. Unfortunately,
learning a non-Markovian strategy is in general much harder than a Markovian one, and we
are able to show that it is indeed NP-hard in this setting. Nonetheless, we aim to highlight
the importance of non-Markovinaity to optimize the finite trials CRL objective, thereby
motivating the development of tractable formulations of the problem as future work.
Contents The chapter is organized as follows. Having recalled a few crucial definitions
for understanding the content of this chapter (Section 5.2), we report a known result (Put-
erman, 2014) to show that the class of Markovian strategies is sufficient for any infinite
trials CRL objective (Section 5.3). Then, in Section 5.4, we focus on the single trial CRL
formulation and we introduce a novel notion of convex value gap to show that the class of
non-Markovian strategies is sufficient, whereas the optimal Markovian strategy suffers a
non-zero gap in this setting. However, in Section 5.5, we show that the problem of finding
an optimal non-Markovian strategy for the single trial CRL objective is NP-hard in gen-
eral. Despite the hardness result, in Section 5.6, we comment on some potential options to
address the problem in a tractable way, which we leave as future work. The missing proofs
of the reported results can be found in Appendix A.2.

5.2 Definitions

Before going into the technical details of this chapter, we recall some useful definitions
and notation that are useful in the following sections. As usual, we will denote with ∆(X )
the simplex of a space X , with [T ] the set of integers {0, . . . , T − 1}, and with v ⊕ u a
concatenation of the vectors v, u.
Policies A (general) policy π consists of a sequence of decision rules π := (πt)

∞
t=0.

Each of them is a map between histories h := (sj , aj)
t
j=0 ∈ Ht and actions πt : Ht →

∆(A), such that πt(a|h) defines the conditional probability of taking action a ∈ A having
experienced the history h ∈ Ht. We denote as H the space of the histories of arbitrary
length. Within this chapter, we denote as Π the set of all the policies, and as ΠD the set of
deterministic policies π = (πt)

∞
t=1 such that πt : Ht → A. We further define:

• Non-Markovian (NM) policies ΠNM, where each π ∈ ΠNM collapses to a single
time-invariant decision rule π = (π, π, . . .) such that π : H → ∆(A);

• Markovian (M) policies ΠM, where each π ∈ ΠM is defined through a sequence of
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Markovian decision rules π = (πt)
∞
t=0 such that πt : S → ∆(A). A Markovian

policy that collapses into a single time-invariant decision rule π = (π, π, . . .) is
called a stationary policy.

State Distributions and Visitation Frequency We denote with dπt (s) := Pr(st =
s|π) the t-step state distribution induced by π, and with dπt (s, a) := Pr(st = s, at =
a|π) the corresponding t-step state-action distribution. When t goes to infinity, we call
dπ∞(s) := limt→∞ dπt (s) the stationary state distribution, and we call dπγ (s) := (1 −
γ)
∑∞
t=0 γ

tdπt (s) the discounted state distribution, where γ ∈ (0, 1) is the discount factor.
With some abuse of notation, we will denote as dπT (s) := 1

T

∑
t∈[T ] d

π
t (s) the marginal

state distribution. The state visitation frequency dh(s) = 1
T

∑
t∈[T ] 1(st = s|h) is a

realization of the marginal state distribution, such that Eh∼pπT
[
dh(s)

]
= dπT (s), where the

distribution over histories pπT ∈ ∆(HT ) is defined as

pπT (h) = µ(s0)
∏

t∈[T−1]

π(at|ht)P (st+1|at, st).

5.3 Infinite Trials: Non-Markovianity Does Not Matter

As we discussed in Chapter 4, previous works in CRL consider an objective of the kind

max
π∈Π

(
F(dπ)

)
=: ζ∞(π), (5.1)

where dπ(·) is either a stationary state distribution, a discounted state distribution, or a
marginal state distribution. While it is well-known (Puterman, 2014) that there exists an
optimal deterministic policy π∗ ∈ ΠD

M for the common average return objective, it is not
pointless to wonder whether the objective in (5.1) requires a more powerful policy class
than ΠM. Hazan et al. (2019, Lemma 3.3) confirm that the set of (randomized) Markovian
policies ΠM is indeed sufficient for ζ∞ defined over asymptotic (stationary or discounted)
state distributions. In the following theorem and corollary, we report a common MDP
result (Puterman, 2014) to show that ΠM suffices for ζ∞ defined over (non-asymptotic)
marginal state distributions as well.

Theorem 5.3.1. Let x ∈ {∞, γ, T}, and let DxNM = {dπx(·) : π ∈ ΠNM}, DxM = {dπx(·) :
π ∈ ΠM} the corresponding sets of state distributions over a MDP. We can prove that:

(i) The sets of stationary state distributions are equivalent D∞NM ≡ D∞M ;

(ii) The sets of discounted state distributions are equivalent DγNM ≡ DγM for any γ;

(iii) The sets of marginal state distributions are equivalent DTNM ≡ DTM for any T .

Proof Sketch. For any non-Markovian policy π ∈ ΠNM inducing distributions dπt (·),
dπt (·, ·) over the states and the state-action pairs of the MDP, we can build a Markovian
policy π′ ∈ ΠM, π

′ = (π′t)
∞
t=0 through the construction π′t(a|s) = dπt (s, a)

/
dπt (s),∀s ∈

S,∀a ∈ A. From (Puterman, 2014, Theorem 5.5.1) we know that dπt (s) = dπ
′
t (·) holds

for any t ≥ 0. This implies that dπ∞(·) = dπ
′
∞(·), dπγ (·) = dπ

′
γ (·), dπT (·) = dπ

′
T (·), from

which DxNM ≡ DxM follows. See Appendix A.2 for a detailed proof.
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From the equivalence of the sets of induced distributions, it is straightforward to derive the
optimality of Markovian policies for objective (5.1).

Corollary 5.3.2. For every MDP, there exists a Markovian policy π∗ ∈ ΠM such that
π∗ ∈ arg maxπ∈Π ζ∞(π).

As a consequence of Corollary 5.3.2, there is little incentive to consider non-Markovian
policies when optimizing objective (5.1), since there is no clear advantage to make up for
the additional complexity of the policy. This result might be unsurprising when consider-
ing asymptotic distributions, as one can expect a carefully constructed Markovian policy
to be able to tie the distribution induced by a non-Markovian policy in the limit of the
interaction steps. However, it is less evident that a similar property holds for the expecta-
tion of final-length interactions alike. Yet, we were able to show that a Markovian policy
that properly exploits randomization can always achieve equivalent state distributions w.r.t.
non-Markovian counterparts. Note that state distributions are actually expected state visi-
tation frequency, and the expectation practically implies an infinite number of realizations.
In this chapter, we show that this underlying infinite trials regime is the reason why the
benefit of non-Markovianity, albeit backed up by intuition, does not matter.

5.4 Single Trial: Non-Markovianity Matters

In this section, we focus on the single trial CRL formulation, i.e.,

max
π∈Π

(
E

dh∼pπT

[
F(dh)

])
=: ζ1(π). (5.2)

We note that ζ1(π) ≥ ζ∞(π) for any π ∈ Π, which is trivial by the convexity of F and the
Jensen’s inequality. Whereas (5.2) is ultimately an expectation as it is (5.1), the objective
is not computed over the (infinite trials) state distribution dπT (·) but its realization dh(·).
Thus, to maximize ζ1(π) we have to find a policy maximizing F within a single trajectory
rather than over infinitely many trajectories. Crucially, while Markovian policies are as
powerful as any other policy class in terms of induced state distributions (Theorem 5.3.1),
this is no longer true when looking at induced trajectory distributions pπT . Indeed, we will
show that non-Markovianity provides a superior policy class for objective (5.2). First, we
define a performance measure to formally assess this benefit, which we call the convex
value gap.2

Definition 5.4.1 (Convex Value Gap). Consider a policy π ∈ Π interacting with an MDP
over T − t steps starting from the trajectory ht. We define the convex value gap VT−t, i.e.,
from step t onwards, as

VT−t(π, ht) = F∗ − E
hT−t∼pπT−t

[
F
(
dht⊕hT−t(·)

)]
,

where F∗ = maxπ∗∈Π Eh∗T−t∼pπ∗T−t
[
F
(
dht⊕h∗T−t(·)

)]
is the convex value achieved by an

optimal policy π∗. The term VT (π) denotes the convex value gap of a T -step trajectory
hT starting from s ∼ d0.

2Note that the objective function does not enjoy additivity, thus we cannot split the gap per-state.
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Despite its convoluted definition, the intuition behind the convex value gap is quite simple.
Suppose to have drawn a trajectory ht upon step t. If we take the subsequent action with
the (possibly sub-optimal) policy π, by how much would we decrease (in expectation) the
convex value F(dhT (·)) w.r.t. an optimal policy π∗? In particular, we would like to know
how limiting the policy π to a specific policy class would affect the convex value gap and
the ζ1(π) we could achieve. The following theorem and subsequent corollary state that
an optimal non-Markovian policy suffers zero convex value gap in any case, whereas an
optimal Markovian policy suffers non-zero gap in general.

Theorem 5.4.2 (Non-Markovian Optimality). For every MDP M and trajectory ht ∈
H[T ], there exists a deterministic non-Markovian policy πNM ∈ ΠD

NM that suffers zero
convex value gap VT−t(πNM, ht) = 0, whereas for any πM ∈ ΠM, VT−t(πM, ht) ≥ 0.

Proof. The result is a straightforward combination of Lemma 5.4.5, 5.4.7 that we pro-
vide in the following section. Especially, VT−t(πNM, ht) = 0 for a policy πNM ∈ ΠNM

D

is a direct implication of Lemma 5.4.5, whereas VT−t(πM, ht) ≥ 0 for any πM ∈ ΠM

is given by Lemma 5.4.7, which states that even an optimal Markovian policy π∗M ∈
arg maxπ∈ΠM

E(π) suffers convex value gap VT−t(π∗M) ≥ 0.

Corollary 5.4.3 (Sufficient Condition). For every MDPM and trajectory ht ∈ H[T ] for
which any optimal Markovian policy πM ∈ ΠM is randomized (i.e., stochastic) in st, we
have strictly positive gap VT−t(πM, ht) > 0.

The result of Theorem 5.4.2 highlights the importance of non-Markovianity for optimiz-
ing the single trial objective (5.2), as the class of Markovian policies is dominated by
the class of non-Markovian policies. Most importantly, Corollary 5.4.3 shows that non-
Markovian policies are strictly better than Markovian policies in several MDP of practical
interest, i.e., those in which any optimal Markovian policy has to be randomized in or-
der to maximize (5.2). The intuition behind this result is that a Markovian policy would
randomize to make up for the uncertainty over history, whereas a non-Markovian policy
does not suffer from this partial observability, and it can deterministically select an opti-
mal action. Clearly, this partial observability is harmless when dealing with the standard
RL objective, in which the reward is fully Markovian and does not depend on the history,
but it is instead relevant in the peculiar single trial CRL setting, in which the objective is
a concave function of the state visitation frequency. In the following section, we report a
sketch of the derivation underlying Theorem 5.4.2 and Corollary 5.4.3, while we refer to
the Appendix A.1 for complete proofs as usual.

5.4.1 Gap Analysis

For the purpose of the analysis, we will consider the following assumption to ease the
notation.3

3Note that this assumption could be easily removed by partitioning the action space in ht as A(ht) =
Aopt(ht) ∪ Asub−opt(ht), such that Aopt(ht) are optimal actions and Asub−opt(ht) are sub-optimal, and
substituting any term π(a∗|ht) with

∑
a∈Aopt(ht) π(a|ht) in the results.
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Assumption 5.4.4 (Unique Optimal Action). For every MDP M and trajectory ht ∈
H[T ], there exists a unique optimal action a∗ ∈ A w.r.t. the objective (5.2).

First, we show that the class of deterministic non-Markovian policies is sufficient for the
minimization of the convex value gap, and thus for the maximization of (5.2).

Lemma 5.4.5. For every MDPM and trajectory ht ∈ H[T ], there exists a deterministic
non-Markovian policy πNM ∈ ΠD

NM such that πNM ∈ arg maxπ∈ΠNM
ζ1(π), which suffers

convex value gap VT−t(πNM, ht) = 0.

Proof. The result VT−t(πNM, ht) = 0 is straightforward by noting that the set of non-
Markovian policies ΠNM with arbitrary history-length is as powerful as the general set of
policies Π. To show that there exists a deterministic πNM, we consider the extended MDP
M̃R

T obtained from the MDPM as in Section 4.5.1, in which the extended reward function
is R`(s`, a`) = F(ds`(·)) for every a` ∈ A`, and every s` ∈ S` such that |s`| = T , and
R`(s`, a`) = 0 otherwise. Since a Markovian policy π̃M ∈ ΠD

M on M̃R
T can be mapped

to a non-Markovian policy πNM ∈ ΠD
NM on M, and it is well-known (Puterman, 2014)

that for any MDP there exists an optimal deterministic Markovian policy, we have that
π̃M ∈ arg maxπ∈ΠM

JM̃R
T

(π) implies πNM ∈ arg maxπ∈ΠNM
ζ1(π).

Then, in order to prove that the class of non-Markovian policies is also necessary for gap
minimization, it is worth showing that Markovian policies can instead rely on randomiza-
tion to optimize objective (5.2).

Lemma 5.4.6. Let πNM ∈ ΠD
NM be a deterministic non-Markovian policy such that

πNM ∈ arg maxπ∈Π ζ1(π) on a CMP M. For a fixed history ht ∈ Ht ending in state
s, the variance of the event of an optimal Markovian policy πM ∈ arg maxπ∈ΠM

ζ1(π)
taking a∗ = πNM(ht) in s is given by

Var
[
B(πM(a∗|s, t))

]
= Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
,

where hs ∈ Ht is any history of length t such that the final state is s, i.e., hs := (ht−1 ∈
Ht−1)⊕ s, and B(x) is a Bernoulli with parameter x.

Proof Sketch. We can prove the result through the Law of Total Variance (LoTV) (see
Bertsekas & Tsitsiklis, 2002), which gives

Var
[
B(πM(a∗|s, t))

]
= E
hs∼pπNM

t

[
Var

[
B(πNM(a∗|hs))

]]

+ Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
, ∀s ∈ S.

Then, exploiting the determinism of πNM (through Lemma 5.4.5), it is straightforward to
see that Ehs∼pπNM

t

[
Var

[
B(πNM(a∗|hs))

]]
= 0, which concludes the proof.4

4Note that the determinism of πNM does not also imply Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
= 0, as

the optimal action a = πNM(hs) may vary for different histories, which results in the inner expectations
E
[
B(πNM(a∗|hs))

]
being either 1 or 0.
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Unsurprisingly, Lemma 5.4.6 shows that, whenever the optimal strategy for (5.2), i.e., the
non-Markovian πNM, requires to adapt its decision in a state s according to the history
that led to it (hs), an optimal Markovian policy for the same objective, i.e., πM, must
necessarily be randomized. This is crucial to prove the following result, which establishes
lower and upper bounds VT−t,VT−t to the convex value gap of any Markovian policy that
optimizes (5.2).

Lemma 5.4.7. Let πM be an optimal Markovian policy πM ∈ arg maxπ∈ΠM
ζ1(π) on a

MDPM. For any ht ∈ H[T ], it holds VT−t(πM) ≤ VT−t(πM) ≤ VT−t(πM) such that

VT−t(πM) =
F∗ −F∗2
πM(a∗|st)

Var
hst∼pπNM

t

[
E
[
B(πNM(a∗|hst))

]]
,

VT−t(πM) =
F∗ −F∗
πM(a∗|st)

Var
hst∼pπNM

t

[
E
[
B(πNM(a∗|hst))

]]
,

where πNM ∈ arg maxπ∈ΠD
NM

ζ1(π), and F∗,F∗2 are given by

F∗ = min
h∈HT−t

F(dht⊕h(·)),

F∗2 = max
h∈HT−t\H∗T−t

F(dht⊕h(·)) s.t. H∗T−t = arg max
h∈HT−t

F(dht⊕h(·)).

Proof Sketch. The crucial idea to derive lower and upper bounds to the regret-to-go is
to consider the impact of a sub-optimal action in the best-case and the worst-case MDP
respectively. This gives VT−t(πM) ≥ F∗ − πM(a∗|st)F∗ −

(
1 − πM(a∗|st)

)
F∗2 and

VT−t(πM) ≤ F∗− πM(a∗|st)F∗−
(
1− πM(a∗|st)

)
F∗. Then, with Lemma 5.4.6 we get

Var
[
B(πM(a∗|st))

]
= πM(a∗|st)

(
1 − πM(a∗|st)

)
= Var

hs∼pπNM
t

[
E
[
B(πNM(a∗|hst))

]]
,

which concludes the proof.

Finally, the result in Theorem 5.4.2 is a direct consequence of Lemma 5.4.7. Note that the
upper and lower bounds on the value gap are strictly positive whenever πM(a∗|st) < 1, as
it is stated in Corollary 5.4.3.

5.5 Complexity Analysis

Having established the importance of non-Markovianity in single trial CRL, it is worth
considering how hard it is to optimize the objective (5.2) within the class of non-Markovian
policies. Especially, we aim at characterizing the complexity of the problem:

Ψ0 := maximize
π∈ΠNM

ζ1(π),

defined over a MDPM. Before going into the details of the analysis, we provide a couple
of useful definitions for the remainder of the section, whereas we leave to (Arora & Barak,
2009) an extended review of complexity theory.

Definition 5.5.1 (Many-to-one Reductions). We denote as A ≤m B a many-to-one reduc-
tion from A to B.
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Chapter 5. The Importance of Non-Markovianity in Convex RL

Definition 5.5.2 (Polynomial-time Reductions). We denote as A ≤p B a polynomial-time
(Turing) reduction from A to B.

Then, we recall that Ψ0 can be rewritten as the problem of finding a reward-maximizing
Markovian policy, i.e., π̃M ∈ arg maxπ∈ΠM

JM̃R
T

(π), over a convenient extended MDP

M̃R
T obtained from MDPM (see the proof of Lemma 5.4.5 and Section 4.5.1 for further

details). We call this problem Ψ̃0 and we note that Ψ̃0 ∈ P, as the problem of finding a
reward-maximizing Markovian policy is well-known to be in P for any MDP (Papadim-
itriou & Tsitsiklis, 1987). However, the following lemma shows that it does not exist a
many-to-one reduction from Ψ0 to Ψ̃0.

Lemma 5.5.3. A reduction Ψ0 ≤m Ψ̃0 does not exist.

Proof. In general, coding any instance of Ψ0 in the representation required by Ψ̃0, which is
an extended MDP M̃R

T , holds exponential complexity w.r.t. the input of the initial instance
of Ψ0, i.e., a MDPM. Indeed, to build the extended MDP M̃R

T fromM, we need to define
the transition probabilities P`(s′`|s`, a`) for every s′` ∈ S`, a` ∈ A`, s` ∈ S`. Whereas
the action space remains unchanged A` = A, the extended state space S` has cardinality
|S`| = ST in general, which grows exponentially in T .

The latter result informally suggests that Ψ0 /∈ P. Indeed, we can now prove the main
theorem of this section, which shows that Ψ0 is NP-hard under the common assumption
that P 6= NP.

Theorem 5.5.4. Ψ0 is NP-hard.

Proof Sketch. To prove the theorem, it is sufficient to show that there exists a problem
Ψc ∈ NP-hard so that Ψc ≤p Ψ0. We show this by reducing 3SAT, which is a well-known
NP-complete problem, to Ψ0. To derive the reduction we consider two intermediate prob-
lems, namely Ψ1 and Ψ2. Especially, we aim to show that the following chain of reductions
holds

Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT.

First, we define Ψ1 and we prove that Ψ0 ≥m Ψ1. Informally, Ψ1 is the problem of
finding a reward-maximizing Markovian policy πM ∈ ΠM w.r.t. the convex objective (5.2)
encoded through a reward function in a convenient POMDPMR

Ω . We can buildMR
Ω from

the MDP M similarly as the extended MDP M̃R
T (see Section 4.5.2 and the proof of

Lemma 5.4.5 for details), except that the agent only accesses the observation space Ω
instead of the extended state space S`. In particular, we define Ω = S (note that S is the
state space of the original MDPM), and O(s`) = o is a deterministic function such that
the given observation o is the last state in the history s`.
Then, the reduction Ψ0 ≥m Ψ1 works as follows. We denote as IΨi the set of possible
instances of Ψi. We show that Ψ0 is harder than Ψ1 by defining the polynomial-time
functions ψ and φ such that any instance of Ψ1 can be rewritten through ψ as an instance
of Ψ0, and a solution π∗NM ∈ ΠNM for Ψ0 can be converted through φ into a solution
π∗M ∈ ΠM for the original instance of Ψ1. The function ψ sets S = Ω and derives the
transition model ofM from the one ofMR

Ω , while φ converts the optimal solution of Ψ0
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by computing π∗M(a|o, t) =
∑
ho∈Ho p

π∗NM

T (ho)π∗NM(a|ho), where Ho stands for the set
of histories h ∈ Ht ending in the observation o ∈ Ω. Thus, we have that Ψ0 ≥m Ψ1.
We now define Ψ2 as the policy existence problem w.r.t. the problem statement of Ψ1.
Hence, Ψ2 is the problem of stating whether the value of a reward-maximizing Markovian
policy π∗M ∈ arg maxπ∈ΠM

JMR
Ω

(π) is greater than 0. Since computing an optimal policy
in POMDPs is in general harder than the relative policy existence problem (Lusena et al.,
2001, Section 3), we have that Ψ1 ≥p Ψ2. For the last reduction, i.e., Ψ2 ≥p 3SAT, we
extend the proof of Theorem 4.13 in (Mundhenk et al., 2000), which states that the policy
existence problem for POMDPs is NP-complete. In particular, we show that this holds
within the restricted class of POMDPs defined in Ψ1. Since the chain Ψ0 ≥m Ψ1 ≥p
Ψ2 ≥p 3SAT holds, we have that Ψ0 ≥p 3SAT. Since 3SAT ∈ NP-complete, we can
conclude that Ψ0 is NP-hard.

Having established the hardness of the optimization of Ψ0, one could now question whether
the problem Ψ0 is instead easy to verify (Ψ0 ∈ NP), from which we would conclude that
Ψ0 ∈ NP-complete. Whereas we doubt that this problem is significantly easier to verify
than to optimize, the focus of this work is on its optimization version, and we thus leave
as future work a finer analysis to show that Ψ0 /∈ NP.

5.6 Discussion

In the previous sections, we detailed the importance of non-Markovianity when optimiz-
ing a single trial CRL objective, but we also proved that the corresponding optimization
problem is NP-hard in its general formulation. Despite the hardness result, we believe that
it is not hopeless to learn CRL policies with some form of non-Markovianity, while still
preserving an edge over Markovian strategies. In the following paragraphs, we discuss
potential avenues to derive practical methods for relevant relaxations to the general class
of non-Markovian policies.
Finite-Length Histories Throughout the paper, we considered non-Markovian policies
that condition their decisions on histories of arbitrary length, i.e., π : H → ∆(A). How-
ever, the complexity of optimizing such policies grows exponentially with the length of
the history. To avoid this exponential blowup, one can define a class of non-Markovian
policies π : HH → ∆(A) in which the decisions are conditioned on histories of a finite
length T > 1 that are obtained from a sliding window on the full history. The optimal
policy within this class would still retain better gap guarantees than an optimal Markovian
policy, but it would not achieve zero gap in general. With the length parameter H one can
trade off the learning complexity with the gap according to the structure of the domain.
Compact Representations of the History Instead of setting a finite length H , one can
choose to perform function approximation on the full history to obtain a class of poli-
cies π : f(H) → ∆(A), where f is a function that maps a history h to some compact
representation. An interesting option is to use the notion of eligibility traces (Sutton &
Barto, 2018) to encode the information of h in a vector of length S, which is updated as
zt+1 ← λzt + 1st , where λ ∈ (0, 1) is a discount factor, 1st is a vector with a unit entry
at the index st, and z0 = 0. The discount factor λ acts as a smoothed version of the length
parameter H , and it can be dynamically adapted while learning. Indeed, this eligibility
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Chapter 5. The Importance of Non-Markovianity in Convex RL

traces representation is particularly convenient for policy optimization (Deisenroth et al.,
2013), in which we could optimize in turn a parametric policy over actions πθ(·|z, λ) and
a parametric policy over the discount πν(λ). To avoid a direct dependence on S, one can
define the vector z over a discretization of the state space.
Deep Recurrent Policies Another noteworthy way to do function approximation on
the history is to employ recurrent neural networks (Williams & Zipser, 1989; Hochreiter
& Schmidhuber, 1997) to represent the non-Markovian policy. This kind of recurrent
architecture is already popular in RL. In this section, we are providing the theoretical
ground to motivate the use of deep recurrent policies to address CRL.
Non-Markovian Control with Tree Search In principle, one can get a realization of
actions from the optimal non-Markovian policy without ever computing it, e.g., by em-
ploying a Monte-Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006) approach to
select the next action to take. Given the current state st as a root, we can build the tree of
trajectories from the root through repeated simulations of potential action sequences. With
a sufficient number of simulations and a sufficiently deep tree, we are guaranteed to select
the optimal action at the root. If the horizon is too long, we can still cut the tree at any
depth and approximately evaluate a leaf node with the value induced by the path from the
root to the leaf. The drawback of this procedure is that we require to access a simulator
with reset (or a reliable estimate of the transition model) to actually build the tree.
Finally, in this section, we focus on the gap between non-Markovian and Markovian poli-
cies, which can be either stationary or time-variant. Future works might consider the role
of stationarity (see also Akshay et al., 2013; Laroche et al., 2022), such as establishing
under which conditions stationary strategies are sufficient in this setting. Notably, here we
focus on state distributions, but similar results could be extended to state-action distribu-
tions with minor modifications.
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Introduction to State Entropy
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CHAPTER6
The State Entropy Objective

The content of this chapter is mostly based on the paper “Provably Efficient Maximum En-
tropy Exploration” by Elad Hazan, Sham M. Kakade, Karan Singh, and Abby Van Soest.1

The reported formalizations and results shall not be intended as our original contribution.

6.1 Introduction

In the previous chapters, we have analyzed the Convex RL (CRL) problem, which can
be traced back to (Hazan et al., 2019; Zhang et al., 2020a), and we especially unveiled
a significant mismatch between its infinite trials and finite trials formulation (Chapter 4),
as well as the importance of considering non-Markovian policies to optimize the latter
(Chapter 5). This preliminary study serves to provide essential context and theoretical
ground for an instance of CRL that draws our interest, i.e., the state entropy maximization
problem, which will be the focus of the remainder of this thesis. In Chapters 6, 7 we will
introduce and characterize, from an optimization perspective, a formulation of the state
entropy maximization problem that derives from infinite trials CRL. Then, in Chapters 8, 9
we provide methodologies to address the state entropy maximization problem in relevant
practical scenarios, which are inherently akin to a finite trials CRL formulation.
In their seminal paper, Hazan et al. (2019) propose the entropy of the state distribution

1A complete reference can be found in the bibliography (Hazan et al., 2019).
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induced by a policy as an objective for exploration in the absence of external rewards.
Specifically, they formalize the objective function as

H(dπ) := − E
s∼dπ

[
log dπ(s)

]
,

where H denotes the Shannon entropy (Shannon, 1948), and dπ is the discounted state
distribution induced by π. Since the entropy H is a concave function of dπ , this is an
instance of the broader CRL framework (Hazan et al., 2019; Zhang et al., 2020a). The
infinite-horizon formulation makes the problem analogous to an infinite trials CRL prob-
lem in episodic settings.2 Although we have already mentioned the existence of provably
efficient algorithms to solve the infinite trials CRL problem (e.g., Zhang et al., 2020a;
Zahavy et al., 2021) in previous chapters, it is worth reporting some problem-specific con-
siderations on the computational complexity of the state entropy maximization. Before
diving into the computational aspects, we provide a brief detour on why state entropy
maximization has emerged as a powerful objective for unsupervised RL.
Motivation While the principal motivation for considering the state entropy maximiza-
tion has to be found in its remarkable empirical success (see Laskin et al., 2021), in which
the development of methodologies that are suitable to practical domains (see Chapters 8, 9)
certainly played a role, it is worth considering some (informal) technical corroborations
that can at least partially explain its empirical prowess.
In the offline RL literature (Levine et al., 2020), which is the RL field dealing with the
problem of learning a near-optimal policy from a batch of samples collected a priori, it is
well-known (Antos et al., 2008; Chen & Jiang, 2019; Jin et al., 2021; Foster et al., 2021;
Zhan et al., 2022) that the coverage of the state space in the given batch fundamentally
affects the sample complexity of the problem. The coverage condition is often expressed
through a concentrability coefficient

C(D) := sup
π∈Π,s∈S

dπ(s)

D(s)
,

where D denotes the data distribution within the batch. The intuition behind concentrabil-
ity is that good coverage of the state space is necessary to have sufficient information to
find out the optimal action in every state with high probability. More recently, the work
by Xie et al. (2021) explicitly links the coverage condition of the initial policy to the sam-
ple complexity of the fine-tuning task, while Xie et al. (2022) generalizes the importance
of coverage conditions to the online RL setting. Notably, the problem of unsupervised
policy pre-training is akin to finding a policy inducing an optimal data distribution D.
Whereas a direct minimization of the concentrability coefficient in the space of all the data
collection strategies (i.e., policies) is arguably far-fetched, maximizing the entropy of the
data collection strategy to produce a flat D can be seen as a viable surrogate objective.
Other relevant problem formulations for which state entropy maximizing policies have
been demonstrated to be provably efficient, albeit sub-optimal in comparison to problem-
specific solutions, are the reward discovery problem (Tarbouriech et al., 2021) and the

2To see this point, let us consider a long trajectory from the discounted Markov chain induced by π. Since the
dependence between the samples vanishes with their distance in time, we can extract imaginary episodes from
the long trajectory, and then compute the average of the state visitations across episodes to obtain the discounted
state distribution dπ .
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reward-free RL formulation (Jin et al., 2020). The former can be formulated as the mini-
mization of the number of exploration steps required to visit every state-action pair at least
once (with high probability). The latter instead asks for an exploration phase that acquires
enough information to be able to extract a near-optimal policy with high probability for
every possible reward function.
Contents The chapter is organized as follows. In Section 6.2, we focus on the primal
formulation of the state entropy maximization problem. We especially show that the pri-
mal optimization problem, albeit concave in the state distribution, is non-concave in the
policy parameters, which makes direct optimization intractable. Then, in Section 6.2.1, we
describe a general methodology to split the primal objective into a sequence of tractable
optimization problems through the conditional gradient method. Finally, in Section 6.3,
we discuss the dual formulation of the state entropy maximization problem. We can show
that the dual formulation is amenable to optimization, but it is hardly suitable for scaling
to more complex scenarios that require function approximation.

6.2 The Primal Formulation

In the primal formulation of the state entropy objective we directly look for the policy
parameters that maximize the entropy of the induced state distribution. The resulting opti-
mization problem can be written as follows.

(Primal) State Entropy Maximization

max
π∈Π

H
(
dπ
)

(6.1)

Although (6.1) may look amenable to optimization, being formulated as a maximization
of a concave objective function, the relation between the optimization variables π(a|s) and
the objective function H(dπ) is actually convoluted, as it holds the recursive relation

dπ(s) = (1− γ)µ(s) + γ

∫

S

∫

A
dπ(s′)π(a′|s′)P (s|s′, a′) ds′ da′.

Hazan et al. (2019) were able to show that the objective function is actually non-concave in
the policy parameters, which means that directly optimizing the primal formulation (6.1)
is intractable in general. For the sake of completeness, here we report their hard instance,
which is remarkably easy to interpret (Figure 6.1). This is a rather negative result for
the prospect of directly optimizing a policy for the primal state entropy objective, such
as through a reworked policy gradient method (Sutton et al., 1999). Indeed, following
the gradient of the state entropy w.r.t. the policy parameters, i.e., ∇πH(dπ), would not
guarantee eventual convergence to the global optimum due to the non-concave objective.
In the next section, we report a method designed by Hazan et al. (2019) to address the non-
concave objective through a conditional gradient method, while in Chapter 7 we discuss
surrogate objectives that make the primal formulation amenable to optimization.
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Figure 6.1: (Hazan et al., 2019). State distribution dπ induced by π0, π1, π2 in a six-state

deterministic MDP with binary actions. Each label denotes the probability of taking
the corresponding action under the respective policy. Note that the discounted state
distribution converges to the distribution of the bottom stage of the MDP for γ → 1.
Crucially, the policy π0 = (π1 + π2)/2 induces a lower state entropy of the other two
policies H(dπ0) < (H(dπ1) +H(dπ2))/2, which means H(dπ) is non-concave in π.

6.2.1 MaxEnt: A Frank-Wolfe Approach

In this section, we comment on a methodology proposed by Hazan et al. (2019)3 to sidestep
the non-concavity of the objective function (6.1) through a conditional gradient method
(also known as the Frank-Wolfe algorithm (Frank & Wolfe, 1956)). The approach, named
MaxEnt, is based on formulating the (intractable) primal optimization problem into a se-
quence of tractable sub-problems, whose solutions can be combined to solve the original
primal state entropy maximization. Those sub-problems cast each policy update as the
problem of solving an MDP built on the original CMP by taking the reward function
R(s) =

(
∇πH(dπmix)

)
(s), where dπmix is a mixture of policies that is obtained from a

convex combination of the solutions of previous sub-problems. Algorithm 5 reports the
pseudocode of the MaxEnt algorithm, a more detailed description of the procedure, to-
gether with implementation details, can be found in (Hazan et al., 2019).
Assuming full knowledge of the MDP, especially of the transition model P , Hazan et al.
(2019) show that MaxEnt is guaranteed to output a policy πmix such that H(dπmix) ≥
maxπ∈ΠH(dπ)−εwithin a number of iterations T that is POLY

(
|S|, |A|, 1

ε ,
1

1−γ
)
.4 Thus,

the approach is computationally efficient. When the transition model P is not known, the
MaxEnt procedure is still viable, but it requires bot a provably efficient density estimator
to obtain d̂πmix and a provably efficient planning solver to compute πt. Assuming the
existence of these two modules, the MaxEnt algorithm is guaranteed to output a nearly-
optimal policy πmix by taking Õ

(
|S|2|A|

/
ε3(1 − γ)2

)
samples from the environment,

which makes the algorithm statistically efficient.

3A similar procedure has been concurrently studied in (Tarbouriech & Lazaric, 2019) for the problem of
active exploration in MDPs.

4Note that the space of Markovian policies Π and the space of mixture of Markovian policies, which we can
denote as Πmix, are equally expressive in terms of state distribution they can induce, thus maxπ∈ΠH(dπ) =
maxπmix∈Πmix H(dπmix ).
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Algorithm 5 MaxEnt (Hazan et al., 2019)
Input: Step size α, number of iterations T , tolerance ε
Take π0 arbitrarily and set η0 = 1, C0 = {π0}, πmix = 〈η0, C0〉
for t = 0, . . . , T − 1 do

Estimate the state distribution d̂πmix induced by πmix up to error ε
Compute the reward function R(s) =

(
∇πmixH(d̂πmix )

)
(s) for all s ∈ S

Compute the ε-optimal policy πt given the reward R through approximate value iteration
Update the mixture πmix = 〈ηt+1, Ct+1〉 where:

ηt+1 = ((1− α)ηt, α)

Ct+1 = (π0, . . . , πt)

end for
Output: State entropy maximizing policy πmix

Although the MaxEnt algorithm is provably efficient both statistically and computation-
ally, since the sample complexity is polynomial in all the relevant quantities and the algo-
rithm runs in polynomial time, some considerations are due. First, the MaxEnt algorithm
outputs a mixture of policies instead of a single Markovian policy. While the mixture
can be distilled into a corresponding Markovian policy inducing a similar state distribu-
tion, the process could result expensive in practice. Alternatively, one could initialize the
fine-tuning task with the mixture directly, but most of the existing RL algorithms are not
designed to work with mixtures of policies. On the other hand, while it is not hard to ob-
tain an effective density estimator in tabular domains, density estimation over continuous
and possibly high-dimensional spaces is known to be hardly tractable, which casts some
doubts over the scalability of MaxEnt. In the remainder of the thesis, we will both con-
sider alternative tractable formulations of the primal state entropy objective (Chapter 7),
as well as practical methodologies that gracefully scale to challenging continuous domains
(Chapter 8). Before approaching these topics, it is worth introducing a dual formulation
of the state entropy maximization problem, which we present in the next section.

6.3 The Dual Formulation

Since the objective function of (6.1) is essentially concave, but the convoluted relationship
between the policy parameters and the state distribution makes the optimization problem
ultimately non-concave, it is interesting to look for a dual formulation. In the dual formu-
lation, we reverse roles between the optimization variables and the constraints by directly
acting on the state distribution to maximize the objective function, while ensuring the op-
timization variables remain in the set of admissible state distributions. For this purpose,
we first define the set of admissible state-action distributions as

K =

{
ω ∈∆(S ×A) :

∑

a∈A
ω(s, a) = (1− γ)µ(s) + γ

∑

s′∈S,a′∈A
P (s|s′, a′)ω(s′, a′), ∀s ∈ S

}
.
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With a slight abuse of notation, we define ω :=
∑
a∈A ω(·, a). Then, we formalize the

dual optimization problem as follows.5

(Dual) State Entropy Maximization

max
ω∈K

H(ω) (6.2)

Since the set of admissible state distribution K is known to be convex (Puterman, 2014),
(6.2) is a linearly constrained concave problem with |S||A| optimization variables and
2|S||A| + |S| linear constraints, which is definitely amenable to optimization. Having
obtained ω∗ ∈ arg maxω∈KH(ω) through any convex solver, we can then recover a state
entropy maximizing policy πω∗ as

πω∗(a|s) =
ω∗(s, a)∑

a′∈A ω
∗(s, a′)

, ∀s ∈ S, ∀a ∈ A,

which is efficient to compute. Although the dual formulation (6.2) provides a tractable and
technically compelling perspective of the state entropy maximization problem, it comes
with its own shortcomings. While the dual problem is efficient to solve in small tabular
domains, its computational complexity grows at a fast rate with the number of optimiza-
tion variables in comparison to the linear program formulation of MDPs (Grötschel et al.,
1993). Moreover, it is unclear how to scale the dual problem to continuous and possibly
high-dimensional settings, in which the optimization variables grow to infinity.

5The dual problem takes inspiration from the linear program formulation of the MDP (Schweitzer & Seid-
mann, 1985; De Farias & Van Roy, 2003), as well as the work by (Tarbouriech & Lazaric, 2019) that presents a
similar formulation in the setting of active exploration in MDPs.
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CHAPTER7
Optimization of the State Entropy Objective

The content of this chapter is based on the paper “An Intrinsically-Motivated Approach for
Learning Highly Exploring and Fast Mixing Policies” co-authored with Marcello Restelli,
published at AAAI 2020.1

7.1 Introduction

In the previous chapter, we have formalized the state entropy objective for unsupervised
pre-training of exploration policies. Before addressing the learning problem associated
with the introduced objective, which will be the focus of the remainder of this thesis, it is
worth investigating the problem from an optimization perspective. As we reported in Sec-
tion 6.2, the primal formulation of the state entropy maximization problem is non-concave,
which makes the problem of directly optimizing an entropy maximizing policy mostly in-
tractable. Hazan et al. (2019) show how to sidestep this inherent hardness through a Frank-
Wolfe procedure, in which the primal optimization is split in a sequence of optimization
problems such that their resulting policies are combined in a mixture (Section 6.2.1). Al-
ternatively, one can write an equivalent dual formulation of the problem that is amenable
to optimization (Section 6.3). While the dual formulation is interesting from a theoretic
perspective, building a practical methodology to optimize the dual variables is far-fetched.

1A complete reference can be found in the bibliography (Mutti & Restelli, 2020).
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Whether there exist tractable methods to address the primal formulation directly, which is
instead closer to practice, remains an open question.
In this chapter, we aim to circumvent the fundamental intractability of the primal formu-
lation of the state entropy maximization problem, presenting a family of surrogate primal
objectives that are amenable to optimization. These surrogate formulations are based on
a well-known result in the Markov chains literature, which states that a chain for which
the transition matrix is doubly stochastic2 converges to a uniform state distribution (hence,
entropy maximizing). Taking inspiration from this result, we design a family of optimiza-
tion problems in which we directly look for a policy inducing a state transition matrix that
is close to a doubly stochastic. These problems are computationally tractable, and they
often admit a linear program formulation. We crucially show that optimizing these prob-
lems is equivalent to maximizing a lower bound to the state entropy induced by the policy.
The latter result allows us to conclude that a convenient reformulation of the primal state
entropy objective can be directly optimized, which we believe is a crucial milestone be-
fore addressing how to design practical methodologies to learn state entropy maximizing
policies through interactions with an unknown environment.
Contents The chapter is organized as follows. We start recalling useful definitions and
the matrix notation of MDPs (Section 7.2). In Section 7.3, we present a family of tractable
optimization problems for primal state entropy maximization. Specifically, we first pro-
pose surrogate formulations of the state entropy objective (Section 7.3.1), then we show
how we can account also for the entropy over actions (Section 7.3.2) and the mixing time
of the resulting policy (Section 7.3.3) through convenient linear constraints. In Section 7.4,
we provide a simple model-based procedure employing the presented surrogate problems
as building blocks. Finally, in Section 7.5, we deploy the procedure on a set of toy domains
to numerically validate the surrogate objectives. The proofs of the theorems can be found
in Appendix A.3.

7.2 Definitions

In the following, we will indifferently turn to scalar or matrix notation, where v denotes a
vector,M denotes a matrix, and vT ,MT denote their transpose. A matrix is row (column)
stochastic if it has non-negative entries and all of its rows (columns) sum to one. A matrix
is doubly stochastic if it is both row and column stochastic. We denote with P the space
of doubly stochastic matrices. The L∞-norm ‖M‖∞ of a matrix is its maximum absolute

row sum, while ‖M‖2 =
(

max eig MTM
) 1

2 and ‖M‖F =
(∑

i

∑
j(M(i, j))2

) 1
2 are

its L2 and Frobenius norms respectively. We denote with 1n a column vector of n ones
and with 1n×m a matrix of ones with n rows and m columns.
We now introduce a matrix notation for MDPs. The initial state distribution is repre-
sented through d0, which is a column vector of size |S| having elements d0(s), P is a row
stochastic matrix of size (|S||A|× |S|) that describes the transition model P ((s, a), s′) =
P (s′|s, a), Π is a row stochastic matrix of size (|S| × |S||A|) that contains the policy
Π(s, (s, a)) = π(a|s), and P π = ΠP is a row stochastic matrix of size (|S| × |S|) that
represents the state transition matrix under policy π. We denote with Π the space of all the

2A matrix is doubly stochastic if all of its entries are non-negative and both its rows and columns sum to one.
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stationary Markovian policies.
Fixing a policy π over an MDP, we obtain a Markov Chain (MC) (Levin & Peres, 2017)
with transition kernel Pπ(s′|s) = P π(s, s′). Having defined the t-step transition matrix
as P π

t = (P π)t, the state distribution of the MC at time step t is dπt = (P π
t )Td0, while

dπ = limt→∞ dπt is the steady state distribution. If the MC is ergodic, i.e., aperiodic
and recurrent, it admits a unique steady-state distribution, such that dπ = (P π)Tdπ . The
mixing time tmix of the MC describes how fast the state distribution converges to the steady
state

tmix = min
{
t ∈ N : supd0

‖dπt − dπ‖∞ ≤ ε
}
, (7.1)

where ε is the mixing threshold. An MC is reversible if the condition P πdπ = (P π)Tdπ

holds. Let λπ be the eigenvalues of P π . For ergodic reversible MCs the largest eigenvalue
is 1 with multiplicity 1. Then, we can define the second largest eigenvalue modulus λπ(2)
and the spectral gap γπ as:

λπ(2) = max
λπ(i) 6=1

|λπ(i)|, γπ = 1− λπ(2). (7.2)

7.3 Optimization Problems for Entropy Maximization

In this section, we define a set of optimization problems whose goal is to directly provide
a stationary Markovian policy that maximizes the state entropy while ensuring sufficient
exploration over actions and accounting for the mixing time. The optimization problem is
introduced in three steps: First, we ask for a policy that maximizes some lower bound to
the steady-state distribution entropy, then we foster exploration over the action space by
adding a linear constraint on the minimum action probability, and finally we add another
linear constraint to reduce the mixing time of the Markov chain induced by the policy.

7.3.1 Entropy Maximization over the State Space

As we already noted, direct optimization of the primal formulation of the state entropy
maximization objective is not tractable (Section 6.2). However, one can turn to a Frank-
Wolfe procedure to get a state entropy maximizing mixture of policies (Section 6.2.1),
or a dual formulation to get the state distribution induced by a state entropy maximizing
policy (Section 6.3). Here, we instead follow an alternative route that consists in directly
optimizing a stationary Markovian policy that maximizes a lower bound to the state distri-
bution entropy. In particular, in the following, we will consider three versions of the lower
bound that lead to as many optimization problems (named Infinity, Frobenius, Column
Sum) that show different trade-offs between tightness of the guarantee and computational
complexity of the optimization.

Infinity

From the theory of Markov chains (Levin & Peres, 2017), we know a necessary and suf-
ficient condition for a policy to induce a uniform steady-state distribution (i.e., to achieve
the maximum possible entropy). We report this result in the following theorem.
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Theorem 7.3.1. Let P be the transition matrix of a given MDP. The steady-state distri-
bution dπ induced by a policy π is uniform over S iff the matrix P π = ΠP is doubly
stochastic.

Unfortunately, given the constraints specified by the transition matrix P , a stationary
Markovian policy that induces a doubly stochastic P π may not exist. On the other hand,
it is possible to lower bound the entropy of the steady-state distribution induced by policy
π as a function of the minimum L∞-norm between P π and any doubly stochastic matrix.

Theorem 7.3.2. Let P be the transition matrix of a given MDP and P the space of doubly
stochastic matrices. The entropy of the steady-state distribution dπ induced by a policy π
is lower bounded by:

H(dπ) ≥ log |S| − |S| inf
Pu∈P

‖P u −ΠP ‖2∞ .

One can maximize the presented lower bound to obtain a policy that is guaranteed to
achieve a state distribution entropy that is at least as good as the value of the lower bound.
Intuitively, this requires finding a policy matrix π that drives the matrix ΠP closer to a
doubly stochastic matrix P u of any choice. The latter intuition can be formally translated
in the following constrained optimization problem:

minimize
Pu∈P,Π∈Π

‖P u −ΠP ‖∞ (7.3)

It is worth noting that this optimization problem can be reformulated as a linear program:

minimize
Pu,Π,v

v

subject to
∑

s′∈S
|Pu(s′|s)− Pπ(s′|s)| ≤ v, ∀s ∈ S,

Π(s, (s, a)) ≥ 0, ∀s ∈ S, ∀a ∈ A,
Pu(s′|s) ≥ 0, ∀s ∈ S, ∀s′ ∈ S,
∑

a∈A
Π(s, (s, a)) = 1, ∀s ∈ S,

∑

s′∈S
Pu(s′|s) = 1, ∀s ∈ S,

∑

s′∈S
Pu(s|s′) = 1, ∀s ∈ S.

(7.4)

The first set of inequality constraints can be transformed into a set of linear inequality
constraints. Each constraint is obtained by removing the absolute values and considering a
different permutation of the signs in front of the terms in the summation. As a result, if the
original summation contains n elements, the number of linear constraints is 2n. Since this
process needs to be done for each state s ∈ S , the first set of constraints can be replaced
by 2|S||S| constraints. Thus, the linear program has |S|2 + |S||A| + |S| optimization
variables, 2|S||S| + |S|2 + |S||A| inequality constraints and 3|S| equality constraints. In
order to avoid the exponential growth of the number of constraints as a function of the
number of states, we are going to introduce alternative optimization problems.
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s0 s1 s2

1 − ε/1 − ε ε/ 1
|A|

1 − ε/ 1
|A| ε/ 1

|A|

1 − ε/ 1
|A|

ε/ε P1 P2

Infinite 0.60 0.60

Frobenius 0.73 0.42

H(dπ) 0.93 0.99

Figure 7.1: Graphical representation of a Markov chain (left), having on the edges the
transition probabilities P1(si, sj)/P2(si, sj). On the right, a table providing the val-
ues of L∞-norm, and Frobenius norm of the difference w.r.t. a uniform P u, along with
state distribution entropies.

Frobenius

It is worth noting that different transition matrices P π having equal ‖P u − P π‖∞ might
lead to significantly different state distribution entropies H(dπ), as the L∞-norm only
accounts for the state corresponding to the maximum absolute row sum. The Frobenius
norm can better capture the distance between P u and P π over all the states, as we can see
from the simple example in Figure 7.1. For this reason, we have derived a lower bound to
the policy entropy that replaces the L∞-norm with the Frobenius one.

Theorem 7.3.3. Let P be the transition matrix of a given MDP and P the space of doubly
stochastic matrices. The entropy of the steady-state distribution dπ induced by a policy π
is lower bounded by:

H(dπ) ≥ log |S| − |S|2 inf
Pu∈P

‖P u −ΠP ‖2F .

It can be shown that the lower bound based on the Frobenius norm cannot be tighter (i.e.,
larger) than the one with the Infinite norm.

Corollary 7.3.4. The bound in Theorem 7.3.2 is never less than the bound in Theo-
rem 7.3.3.

However, we have the advantage that the resulting optimization problem has significantly
fewer constraints than Problem (7.3):

minimize
Pu∈P,Π∈Π

‖P u −ΠP ‖F . (7.5)

This problem is a (linearly constrained) quadratic problem with |S|2 + |S||A| optimization
variables and |S|2 + |S||A| inequality constraints and 3|S| equality constraints.

Column Sum

Problems (7.3) and (7.5) aim at finding a policy associated with a state transition matrix
that is doubly stochastic. To achieve this result it is enough to guarantee that the col-
umn sums of the matrix P π are all equal to one (Kirkland, 2010). A measure that can
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be used to evaluate the distance to a doubly stochastic matrix can be the absolute sum
of the difference between one and the column sums:

∑
s∈S |1 −

∑
s′∈S P

π(s|s′)| =∥∥(I − (ΠP )T
)
· 1|S|

∥∥
1
. The following theorem provides a lower bound to the policy

entropy as a function of this measure.

Theorem 7.3.5. Let P be the transition matrix of a given MDP. The entropy of the steady-
state distribution dπ induced by a policy π is lower bounded by:

H(dπ) ≥ log |S| − |S|
∥∥(I − (ΠP )T

)
· 1|S|

∥∥2

1
.

The optimization of this lower bound leads to the following linear program:

minimize
Π∈Π

∥∥(I − (ΠP )T
)
· 1|S|

∥∥
1
. (7.6)

Unlike the other optimization problems presented, Problem (7.6) does not require to op-
timize over the space of all the doubly stochastic matrices, thus significantly reducing the
number of optimization variables (|S|+ |S||A|) and constraints (2|S|+ |S||A| inequalities
and |S| equalities). The explicit linear program formulation is given by

minimize
Π,v

∑

s∈S
v(s)

subject to 1−
∑

s′∈S
Pπ(s|s′) ≤ v(s), ∀s ∈ S,

∑

s′∈S
Pπ(s|s′)− 1 ≤ v(s), ∀s ∈ S,

Π(s, (s, a)) ≥ 0, ∀s ∈ S, ∀a ∈ A,
∑

a∈A
Π(s, (s, a)) = 1, ∀s ∈ S.

(7.7)

7.3.2 Entropy Maximization over the State and Action Space

Although the policy resulting from the optimization of one of the above problems may
lead to the most uniform exploration of the state space, exploring the action space might
be just as crucial to support policy learning in the supervised fine-tuning phase. Thus, it
is fair to wonder whether these pre-trained policies adequately cover the action space A
in any visited state. Unfortunately, the optimization of Problems (7.3), (7.5), (7.6) does
not guarantee even that the obtained policy is stochastic. However, we can embed in the
problem a secondary objective that takes into account the exploration over A. This can
be done by enforcing a minimal entropy over actions in the policy to be learned, adding
to (7.3), (7.5), (7.6) the following constraints:

π(a|s) ≥ ξ, ∀s ∈ S, ∀a ∈ A, (7.8)

where ξ ∈ [0, 1
|A| ]. This secondary objective is actually in competition with the objective

of uniform exploration over states. Indeed, an overblown incentive in the exploration
over actions may limit the state distribution entropy of the optimal policy. Having a low
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Figure 7.2: Comparison of state distribution entropy H(dπ) and state-action distribution
entropyH(dπΠ) for different values of ξ on the Single Chain domain (a). Comparison
of state distribution entropy H(dπ) and spectral gap γπ for different values of ζ on
the Single Chain domain (b). Color-coded state distribution overlaid on a 4-rooms
gridworld for different values of ζ (c).

probability of visiting a state decreases the likelihood of sampling an action from that state,
hence, also reducing the exploration over actions. To illustrate that, Figure 7.2a shows state
distribution entropies, i.e., H(dπ), and state-action distribution entropies, i.e., H(dπΠ),
achieved by the optimal policy w.r.t. Problem (7.5) on the Single Chain domain (Furmston
& Barber, 2010) for different values of ξ.

7.3.3 Entropy Maximization and Mixing Time

In many cases, such as in episodic tasks where the horizon for exploration is capped, we
may have interest in trading inferior state entropy at the steady state for faster convergence
to that steady state. Although the doubly stochastic matrices are equally valid in terms of
steady-state distribution, the choice of the target P u strongly affects the mixing properties
of the P π induced by the policy. Indeed, while an MC with a uniform transition matrix,
i.e., transition probabilities P u(s, s′) = 1

|S| for any s, s′, mixes in no time, an MC with
probability one on the self-loops never converges to a steady state. This is evident con-
sidering that the mixing time tmix of an MC is trapped as follows (Levin & Peres, 2017,
Theorems 12.3 and 12.4):

1− γπ
γπ

log
1

2ε
≤ tmix ≤

1

γπ
log

1

dπminε
, (7.9)

where ε is the mixing threshold, dπmin is a minorization of dπ , and γπ is the spectral gap of
P π (7.2). From the literature of MCs, we know that a variant of the Problems (7.3), (7.5)
having the uniform transition matrix as target P u and the L2 as matrix norm, is equiva-
lent to the problem of finding the fastest mixing transition matrix P π (Boyd et al., 2004).
However, the choice of this target may overly limit the entropy over the state distribution
induced by the optimal policy. Instead, we look for a generalization that allows us to pri-
oritize fast exploration at will. Thus, we consider a continuum of relaxations in the fastest
mixing objective by embedding in Problems (7.3) and (7.5) (but not in Problem (7.6)) the
following constraints:

P u(s, s′) ≤ ζ, ∀s, s′ ∈ S, (7.10)
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Algorithm 6 IDE3AL
Input: ξ, ζ, batch size N
Initialize π0 and transition counts C ∈ N|S|

2×|A|

for i = 0, 1, 2, . . . , until convergence do
Collect N steps with πi and update C
Estimate the transition model as:

P̂i(s
′|s, a) =

{
C(s′|s,a)∑
s′ C(s′|s,a)

, if C(·|s,a)>0

1/|S|, otherwise

πi+1 ← optimal policy for (7.3) (or (7.5) or (7.6))
given the parameters ξ, ζ, and matrix P̂i

end for
Output: maximum entropy policy πi
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Figure 7.3: Model estimation
error on the Double Chain
with ξ = 0.1, ζ = 0.7, N =
10 (100 runs, 95% c.i.).

where ζ ∈ [ 1
|S| , 1]. By setting ζ = 1

|S| , we force the optimization problem to consider
the uniform transition matrix as a target, thus aiming to reduce the mixing time, while
larger values of ζ relax this objective, allowing us to get a higher steady-state distribution
entropy. In Figure 7.2b we show how the parameter ζ affects the trade-off between high
steady-state entropy and low mixing times (i.e., high spectral gaps), reporting the values
obtained by optimal policies w.r.t. Problem (7.5) for different ζ.

7.4 A Model-Based Algorithm for Entropy Maximization

In this section, we provide a straightforward model-based approach, called Intrinsically-
Driven Effective and Efficient Exploration ALgorithm (IDE3AL), to learn a maximum en-
tropy policy through the proposed optimization problems while interacting with an un-
known environment. Since Problems (7.3), (7.5), (7.6) requires an explicit representation
of the matrix P , we need to estimate the transition model from samples before optimiz-
ing the objective (model-based approach). In tabular settings, this can be easily done by
adopting the experienced transition frequencies as a proxy for the (unknown) transition
probabilities, obtaining an estimated transition model P̂ (s′|s, a). In hard-exploration set-
tings, it can be arbitrarily arduous to sample transitions from some of the states by relying
on naïve exploration mechanisms, such as a random policy. To address this issue, we lean
on an iterative approach in which we alternate model estimation phases with optimization
sweeps of the objectives (7.3), (7.5), or (7.6). In this way, we combine the benefit of col-
lecting samples with entropy maximizing policies to better estimate the transition model
and the benefit of having a better-estimated model to learn superior entropy maximizing
policies. In order to drive the policy towards (s, a) pairs that have never been sampled,
we keep their corresponding distribution P̂ (·|s, a) to be uniform over all possible states,
thus making the pair (s, a) particularly valuable in the perspective of the optimization
problem.3 The algorithm converges whenever the exploratory policy remains unchanged
during consecutive optimization sweeps and, if we know the size of the MDP, when all

3This trick is analogous to the R-max trick (Brafman & Tennenholtz, 2002), which assigns the maximum
reward to never visited state-actions, translated to the maximum state entropy framework.
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Figure 7.4: State distribution entropy H(dπ) and probability of the least favorable state
mindπ for different objective formulations on the Single Chain domain. We report
exact solutions with ζ = 0 (left), and approximate optimizations with ξ = 0.1, ζ = 0.7,
N = 10 (100 runs, 95% c.i.) (right).

state-action pairs have been sufficiently explored. In Algorithm 6, we report the pseudo-
code of IDE3AL. Finally, in Figure 7.3, we compare the iterative formulation against a
not-iterative one, i.e., an approach that collects samples with a random policy and then
optimizes the exploration objective offline. Considering an exploration task on the Double
Chain domain (Furmston & Barber, 2010), we show that the iterative form has a clear edge
in reducing the model estimation error ‖P − P̂ ‖F . For the sake of the experiment, both
approaches employ a Frobenius formulation (7.5).

7.5 Experimental Evaluation

In this section, we provide the experimental evaluation of IDE3AL. First, we show a set
of experiments on the illustrative Single Chain and Double Chain domains (Furmston &
Barber, 2010; Peters et al., 2010). The Single Chain consists of 10 states having 2 possible
actions, one to climb up the chain from state 0 to 9, and the other to directly fall to the initial
state 0. The two actions are flipped with a probability pslip = 0.1, making the environment
stochastic and reducing the probability of visiting the higher states. The Double Chain
concatenates two Single Chain into a bigger one sharing the central state 9, which is the
initial state. Thus, the chain can be climbed in two directions. These two domains, albeit
rather simple from a dimensionality standpoint, are actually hard to explore uniformly,
due to the high shares of actions returning to the initial state and preventing the agent from
consistently reaching the higher states. Then, we present an experiment on the much more
complex Knight Quest environment (Fruit et al., 2018, Appendix), having |S| = 360 and
|A| = 8. This domain takes inspiration from classical arcade games, in which a knight
has to rescue a princess in the shortest possible time without being killed by the dragon.
To accomplish this feat, the knight has to perform an intricate sequence of actions. In
the absence of any reward, it is a fairly challenging environment for exploration. In these
domains, we address the task of learning the best exploratory policy in a limited number
of samples. Especially, we evaluate these policies in terms of the induced state entropy
H(dπ) and state-action entropy H(dπΠ).
We compare our approach with MaxEnt (Hazan et al., 2019) and a count-based approach
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Figure 7.5: Comparison of the algorithms on unsupervised pre-training (a, b, c) and
supervise fine-tuning (d), with parameters ξ = 0.1, ζ = 0.7, N = 10 (a, b, d) and
ξ = 0.01, ζ = 1, N = 2500 (c). (95% c.i. over 100 runs (a, b), 40 runs (c), 500 runs
(d)). Comparison of the solve time (e) achieved by Column Sum and Dual formulations
as a function of the number of variables.

inspired by the exploration bonuses of MBIE-EB (Strehl & Littman, 2008), which we refer
to as CountBased in the following. The latter shares the same structure of our algorithm,
but replaces the policy optimization sweeps with approximate value iterations (Bertsekas,
1995), where the reward for a given state is inversely proportional to the visit count of that
state. It is worth noting that the results reported for the MaxEnt algorithm are related to
the mixture policy πmix = (D, α), where D = (π0, . . . , πk−1) is a set of k ε-deterministic
policies, and α ∈ ∆k is a probability distribution over D. For the sake of simplicity, we
have equipped all the approaches with a little domain knowledge, i.e., the cardinality of S
andA. However, this can be avoided without a significant impact on the presented results.
For every experiment, we will report the batch sizeN , and the parameters ξ, ζ of IDE3AL.
CountBased and MaxEnt employ ε-greedy policies having ε = ξ in all the experiments.
In any plot, we will additionally provide the performance of a baseline policy, denoted as
Random, that randomly selects an action in every state.
First, in Figure 7.4, we compare the Problems (7.3), (7.5), (7.6) on the Single Chain envi-
ronment. On the one hand, we show the performance achieved by the exact solutions, i.e.,
computed with full knowledge of P . While the plain formulations (ξ = 0, ζ = 1) are re-
markably similar, adding a constraint over the action entropy (ξ = 0.1) has a significantly
different impact on their solutions. On the other hand, we illustrate the performance of
IDE3AL in learning a good exploratory policy from samples. In this case, the Frobenius
formulation clearly achieves a better performance. In the following, we will report the
results of IDE3AL considering only the best-performing formulation, which, for all the
presented experiments, corresponds to the Frobenius.
In Figure 7.5a, we show that IDE3AL compares well against the other approaches in ex-

72



7.5. Experimental Evaluation

ploring the Double Chain domain. It achieves superior state entropy and state-action en-
tropy, and it converges faster to the optimum. It displays also a higher probability of
visiting the least favorable state, and it behaves positively in the estimation of P̂ . No-
tably, the CountBased algorithm fails to reach high exploration due to a detachment prob-
lem (Ecoffet et al., 2021), since it fluctuates between two exploratory policies that are
greedy towards the two directions of the chain. By contrast, in a domain having a clear
direction for exploration, such as the simpler Single Chain domain, CountBased ties the
explorative performances of IDE3AL (Figure 7.5b). On the other hand, MaxEnt is ef-
fective in the exploration performance, but much slower to converge, both in the Double
Chain and the Single Chain. Note that, in Figure 7.5a, the model estimation error of Max-
Ent starts higher than the other, since it employs a different strategy to fill the transition
probabilities of never reached states, inspired by (Brafman & Tennenholtz, 2002). In Fig-
ure 7.5c, we present an experiment on the higher-dimensional Knight Quest environment.
IDE3AL achieves a remarkable state entropy, while MaxEnt struggles to converge towards
a satisfying exploratory policy. CountBased (not reported in Figure 7.5c), fails to explore
the environment altogether, oscillating between policies with low entropy.
In Figure 7.5d, we illustrate how the policies learned in the Double Chain environment
are effective to ease the learning of any supervised task downstream. To this end, the pre-
trained policies, learned by the three approaches through 3000 samples (Figure 7.5a), are
employed to collect samples in a fixed horizon (within a range from 10 to 100 steps). Then,
another policy is fine-tuned offline through approximate value iteration (Bertsekas, 1995)
on this small amount of samples. The goal is to optimize a reward function that is 1 for the
hardest state to reach (i.e., the state that is less frequently visited with a random policy),
and 0 in all the other states. In this setting, all the methods prove to be rather successful
w.r.t. the baseline, though IDE3AL compares positively against the other strategies.
Finally, in Figure 7.5e, we provide a brief comparison of the empirical computational effi-
ciency of optimizing the dual formulation of the state entropy objective (see Section 6.3)
in comparison to our approach (we take the most efficient Column Sum as a reference
here). Especially, we can see that the solve time of the dual formulation (Dual) is signif-
icantly higher than the solve time of Column Sum when the number of states and actions
increases.
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CHAPTER8
State Entropy Maximization in Continuous

Domains

The content of this chapter is based on the paper “Task-Agnostic Exploration via Policy
Gradient of a Non-Parametric State Entropy Estimate” co-authored with Lorenzo Pratissoli
and Marcello Restelli, published at AAAI 2021.1

8.1 Introduction

As we mentioned in previous chapters, a key issue of state entropy maximization for unsu-
pervised pre-training is that the feedback (i.e., the entropy induced by the current policy)
is not directly available to the agent. Early approaches either relied on estimates of the
environment’s transition dynamics (Tarbouriech & Lazaric, 2019; Mutti & Restelli, 2020),
from which to compute the state distribution and then the entropy, or estimates of the state
distribution itself (Hazan et al., 2019; Lee et al., 2019), from which the entropy can be
directly computed. However, both solutions hardly scale to the high-dimensional contin-
uous domains that we often face in the real world, such as in robotic manipulation and
autonomous driving. Especially, entropy estimates based on upstream density estimates,
often referred to as plug-in estimates in the literature (Beirlant et al., 1997), are known to
be brittle when variables are high dimensional (Hall & Morton, 1993).

1A complete reference can be found in the bibliography (Mutti et al., 2021).
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In this chapter, we present the first state entropy maximization algorithm that is explic-
itly designed for high-dimensional continuous domains. The algorithm, which we call
Maximum Entropy POLicy optimization (MEPOL),2 is based on a policy-search proce-
dure (Deisenroth et al., 2013) that learns a maximum-entropy policy by combining func-
tion approximation and non-parametric entropy estimation. The approach is completely
model-free as it requires neither to model the environment transition dynamics nor to di-
rectly estimate the state distribution of any policy. Instead, it directly estimates the entropy
from mere interactions with the environment. The entropy of continuous distributions can
be speculated by looking at how random samples drawn from them lay out over the sup-
port surface (Beirlant et al., 1997). Intuitively, samples from a high entropy distribution
would evenly cover the surface, while samples drawn from low entropy distributions would
concentrate over narrow regions. Backed by this intuition, MEPOL relies on a k-nearest
neighbors entropy estimator (Singh et al., 2003) to assess the quality of a given policy
from a batch of interactions. Hence, it searches for a policy that maximizes this entropy
estimate within a parametric policy space. To do so, it combines ideas from two success-
ful state-of-the-art policy-search methods: TRPO (Schulman et al., 2015), as it performs
iterative optimizations of the entropy index within trust regions around the current poli-
cies, and POIS (Metelli et al., 2018b), as these optimizations are performed offline via
importance sampling. This recipe allows MEPOL to gracefully scale to continuous and
high-dimensional domains while showing stable behavior during training.
Contents The chapter is organized as follows. First, we make a digression on non-
parametric entropy estimators and their properties for later use (Section 8.2). Then, we
formalize the learning problem that we aim to address with the MEPOL algorithm (Sec-
tion 8.3). In Section 8.4, we report a detailed description of the MEPOL algorithm. In
Section 8.5, we provide an extensive empirical analysis of the approach in continuous and
high-dimensional domains. Finally, we report some further advancements that enhance
the presented procedure to even greater efficiency and adapts it to visual domains (Sec-
tion 8.6). The complete proofs of the reported results can be found in Appendix A.4.

8.2 Non-Parametric Entropy Estimation

Let f(x) be a probability density function of a random vector X taking values in Rp. We
recall that its differential entropy (Shannon, 1948) is defined as:

H(f) = −
∫
f(x) ln f(x) dx.

When the distribution f is not available, this quantity can be estimated given a realization
of X = {xi}Ni=1 (Beirlant et al., 1997). In particular, to deal with high-dimensional
data, we can turn to non-parametric k-Nearest Neighbors (k-NN) entropy estimators of
the form (Singh et al., 2003)

Ĥk(f) = − 1

N

N∑

i=1

ln
k

NV ki
+ ln k −Ψ(k), (8.1)

2The implementation of MEPOL can be found at https://github.com/muttimirco/mepol.
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8.2. Non-Parametric Entropy Estimation

where Ψ is the digamma function, ln k−Ψ(k) is a bias correction term, V ki is the volume
of the hyper-sphere of radius Ri = |xi − xk-NN

i |, which is the Euclidean distance between
xi an its k-nearest neighbor xk-NN

i , so that

V ki =

∣∣xi − xk-NN
i

∣∣p · πp/2
Γ(p2 + 1)

,

where Γ is the gamma function, and p the dimensions ofX . The estimator (8.1) is known
to be asymptotically unbiased and consistent (Singh et al., 2003).
When the target distribution f ′ differs from the sampling distribution f , we can provide
an estimate of H(f ′) by means of an Importance-Weighted (IW) k-NN estimator (Ajgl &
Šimandl, 2011)

Ĥk(f ′|f) = −
N∑

i=1

Wi

k
ln
Wi

V ki
+ ln k −Ψ(k), (8.2)

where Wi =
∑
j∈Nki wj , such that N k

i is the set of indices of the k-NN of xi, and wj are
the normalized importance weights of samples xj , which are defined as

wj =
f ′(xj)/f(xj)∑N
n=1

f ′(xn)/f(xn)
.

Since the latter IW estimator (8.2) will constitute a bedrock of the MEPOL algorithm that
we are going to present in the next section, it is worth analyzing its statistical properties.
Especially, in a similar flavor as in (Singh et al., 2003, Theorem 8) for the estimator (8.1),
we can prove the following.3

Theorem 8.2.1. (Ajgl & Šimandl, 2011, Sec. 4.1) Let f be a sampling distribution, f ′ a
target distribution. The estimator Ĥk(f ′|f) is asymptotically unbiased for any k ∈ N.

Therefore, given a sufficiently large batch of samples from an unknown distribution f , we
can get an unbiased estimate of the entropy of any distribution f ′, irrespective of the form
of f and f ′. However, if the distance between the two grows large, a high variance might
negatively affect the estimation, as it is stated by the following result.

Theorem 8.2.2. Let f be a sampling distribution, f ′ a target distribution. The asymptotic
variance of the estimator Ĥk(f ′|f) is given by:

lim
N→∞

Var
x∼f

[
Ĥk(f ′|f)

]
=

1

N

(
Var
x∼f

[
w lnw

]
+ Var
x∼f

[
w lnRp

]
+
(

lnC
)2 Var

x∼f

[
w
])
,

where w = f ′(x)
f(x) , and C = Nπ

p/2

kΓ(p/2+1) is a constant.

Finally, as a by-product of (8.2), we have access to a non-parametric IW k-NN estimate of
the Kullback-Leibler (KL) divergence, given by (Ajgl & Šimandl, 2011)

D̂KL

(
f
∥∥f ′) =

1

N

N∑

i=1

ln
k
/
N∑

j∈Nki wj
. (8.3)

3Note that Theorem 8.2.1 has been informally stated by (Ajgl & Šimandl, 2011) prior to this work. Our
contribution is a first detailed proof of the statement, which is reported in Appendix A.4.
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Figure 8.1: Learning problem for unsupervised RL. Here we focus on the unsupervised
pre-training phase.

Note that, when f ′ = f , wj = 1/N , the estimator (8.2) is equivalent to (8.1), while
D̂KL(f ||f ′) is zero.

8.3 Learning Problem

In this setting, the agent first interacts with a CMPM (without rewards) through episodes
of length T . The agent’s behavior, which is represented by a parametric policy πθ within
a space of differentiable stochastic policies ΠΘ = {πθ : θ ∈ Θ ⊆ Rq}, induces a specific
distribution over the states of the CMP. Here we focus on the marginal state distribution
over T -steps dπθT , which we will usually denote as dθT to ease the notation.4 Then, we can
define the unsupervised pre-training objective through state entropy maximization (see
Section 3.3.5 and Section 6.2).

Unsupervised Pre-Training via State Entropy Maximization

max
πθ∈ΠΘ

H(dθT ) (8.4)

Having pre-trained a policy πθ ∈ arg maxπθ∈ΠΘ
H(dθT ), the agent then faces a supervised

fine-tuning task on the same CMPM and a given reward function R, which gives rise to
the MDPMR. The objective of the supervised fine-tuning is defined through

max
πθ∈ΠΘ

JMR(πθ) := E
πθ

[ T−1∑

t=0

R(st, at)

]
. (8.5)

In this section, we will focus on the unsupervised pre-training phase (8.4), whereas we will
consider the fine-tuning phase (8.5) only to (empirically) evaluate the pre-trained policy.
As the thoughtful reader might realize, optimizing (8.4) is not an easy task. Previous ap-
proaches would require either to estimate the transition model in order to obtain average

4Recall that the marginal state distribution is defined as dπT (s) = 1
T

∑T−1
t=0 dπt (s), where each term in the

sum is dπt (s) = Pr(st = s | π).
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Algorithm 7 MEPOL
Input: exploration horizon T , sample-size N , trust region threshold δ, learning rate α, nearest
neighbors k
initialize θ
for epoch = 1, 2, . . . , until convergence do

draw a batch of dN
T
e trajectories of length T with πθ

build a dataset of particles Dτ = {(τ ti , si)}Ni=1

θ′ = IS-Optimizer(Dτ ,θ)
θ ← θ′

end for
Output: maximum state entropy policy πθ

IS-Optimizer
Input: dataset of particles Dτ , sampling parameters θ
initialize h = 0 and θh = θ
while D̂KL(dθ0

T ‖d
θh
T ) ≤ δ do

compute a gradient step:
θh+1 = θh + α∇θhĤk

(
d
θh
T |d

θ0
T

)
h← h+ 1

end while
Output: parameters θh

state distributions (Tarbouriech & Lazaric, 2019; Mutti & Restelli, 2020), or to directly
estimate these distributions through a density model (Hazan et al., 2019; Lee et al., 2019).
In contrast to the literature, we turn to non-parametric entropy estimation without ex-
plicit state distributions modeling, deriving a more practical policy-search approach that
we present in the following section.

8.4 The MEPOL Algorithm

In this section, we present Maximum Entropy POLicy optimization (MEPOL), which tack-
les the problem (8.4) in continuous high-dimensional domains. MEPOL searches for a pol-
icy that maximizes the performance index Ĥk(dθT ) within a parametric space of stochastic
differentiable policies ΠΘ = {πθ : θ ∈ Θ ⊆ Rq}. The performance index is given by the
non-parametric entropy estimator (8.1) where we replace f with the marginal state distri-
bution dθT . The approach combines ideas from two successful policy-search algorithms,
TRPO (Schulman et al., 2015) and POIS (Metelli et al., 2018b), as it is reported in the
following paragraphs. Algorithm 7 provides the pseudocode of MEPOL.

Trust-Region Entropy Maximization The algorithm is designed as a sequence of en-
tropy estimate maximizations, called epochs, within a trust-region around the current pol-
icy πθ (Schulman et al., 2015). First, we select an exploration horizon T and an estimator
parameter k ∈ N. Then, at each epoch, a batch of trajectories of length T is sampled
from the environment with πθ, so as to take a total of N samples. By considering each
state encountered in these trajectories as an unweighted particle, we have D = {si}Ni=1

where si ∼ dθT . Then, given a trust-region threshold δ, we aim to solve the following
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optimization problem:
maximize
θ′∈Θ

Ĥk

(
dθ
′
T

)

subject to D̂KL

(
dθT
∥∥dθ′T

)
≤ δ.

(8.6)

The idea is to optimize Problem (8.6) via Importance Sampling (IS, Owen, 2013), in a fully
off-policy manner partially inspired by (Metelli et al., 2018b), exploiting the IW entropy
estimator (8.2) to calculate the objective, and the KL estimator (8.3) to compute the trust-
region constraint. We detail the off-policy optimization in the following paragraph.

Importance Sampling Optimization We first expand the set of particles D by intro-
ducing Dτ = {(τ ti , si)}Ni=1, where τ ti = (s0

i , . . . , s
t
i = si) is the portion of the trajectory

that leads to state si. In this way, for any policy πθ′ , we can associate each particle to its
normalized importance weight:

wi =
Pr(τ ti |πθ′)
Pr(τ ti |πθ)

=

t∏

z=0

πθ′(a
z
i |szi )

πθ(azi |szi )
, wi =

wi∑N
n=0 wn

.

Then, having set a constant learning rate α and the initial parameters θ0 = θ, we consider
a gradient ascent optimization of the IW entropy estimator (8.2),

θh+1 = θh + α∇θhĤk

(
dθhT |dθ0

T

)
, (8.7)

until the trust-region boundary is reached, i.e., when it holds

D̂KL

(
dθ0

T

∥∥dθhT
)
> δ.

The following theorem provides the expression for the gradient of the IW entropy estimator
in Equation (8.7).

Theorem 8.4.1. Let πθ be the current policy and πθ′ a target policy. The gradient of the
IW estimator Ĥk(dθ

′
T |dθT ) w.r.t. θ′ is given by

∇θ′Ĥk(dθ
′
T |dθT ) = −

N∑

i=0

∇θ′Wi

k

(
V ki + ln

Wi

V ki

)
,

where

∇θ′Wi =
∑

j∈Nki

wj ×
( t∑

z=0

∇θ′ lnπθ′(azj |szj )

−
∑N
n=1

∏t
z=0

πθ′ (a
z
n|szn)

πθ(azn|szn)

∑t
z=0∇θ′ lnπθ′(azn|szn)

∑N
n=1

∏t
z=0

πθ′ (azn|szn)
πθ(azn|szn)

)
.

8.5 Empirical Analysis

In this section, we present a comprehensive empirical analysis, which is organized as
follows:
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Figure 8.2: Comparison of the entropy H(dθT ) as a function of training samples achieved
by MEPOL, MaxEnt, and a random policy. (95% c.i. over 8 runs. MEPOL: k: 4 (c, d,
e, f), 50 (b); T : 400 (c), 500 (d, e, f), 1200 (b). MaxEnt epochs: 20 (c), 30 (d, e, f)).

8.5.1) We illustrate that MEPOL allows learning a maximum entropy policy in a variety of
continuous domains, outperforming the previous state of the art (MaxEnt);

8.5.2) We illustrate how the exploration horizon T , over which the policy is optimized,
maximally impacts the trade-off between state entropy and mixing time;

8.5.3) We reveal the significant benefit of initializing an RL algorithm (TRPO) with a
MEPOL policy to solve numerous challenging continuous control tasks.

A thorough description of the experimental set-up, additional results, and visualizations
are provided in Appendix B.1.

8.5.1 Unsupervised Pre-Training

In this section, we consider the ability of MEPOL to pre-train a state entropy maximizing
policy according to the unsupervised pre-training objective (8.4). Such a policy is evalu-
ated in terms of its induced entropy H(dθT ).5 We chose k to optimize the performance of
the estimator, albeit experiencing little to no sensitivity to this parameter (Appendix B.1.3).
In any considered domain, we picked a specific T according to the time horizon we aimed
to test in the subsequent supervised fine-tuning phase (Section 8.5.3). This choice is not
relevant in the policy optimization process, while we discuss how it affects the properties
of the optimal policy in the next section. Note that, in all the experiments, we adopted a
neural network to represent the parametric policy πθ (see Appendix B.1 for details). We

5Whereas the MEPOL algorithm optimizes Ĥk(dθT ), we evaluate the actual entropy value, which is obtained
through the k-NN entropy estimator over a large batch of samples.
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compare our algorithm with MaxEnt (Hazan et al., 2019). To this end, we considered
their practical implementation6 of the algorithm to deal with continuous, non-discretized
domains. Note that MaxEnt learns a mixture of policies rather than a single policy. To
measure its state entropy, we stick with the original implementation by generating a batch
as follows: For each step of a trajectory, we sample a policy from the mixture and we take
an action with it. This is not our design choice, while we found that using the mixture
in the usual way leads to inferior performance anyway. We also investigated SMM (Lee
et al., 2019) as a potential comparison. We do not report its results here for two reasons:
We cannot achieve significant performance w.r.t. the random baseline, and the difference
with MaxEnt is merely in the implementation.
First, we evaluate unsupervised pre-training over two continuous illustrative domains:
GridWorld (2D states, 2D actions) and MountainCar (2D, 1D). In these two domains,
MEPOL successfully learns a policy that evenly covers the state space in a single batch
of trajectories (state-visitation heatmaps are reported in Appendix B.1), while showcas-
ing minimal variance across different runs (Figure 8.2a, 8.2b). Notably, it significantly
outperforms MaxEnt in the MountainCar domain.7 Additionally, in Figure 8.2c we show
how a batch of samples drawn with a random policy (left) compares to one drawn with
an optimal policy (right, the color fades with the time step). Then, we consider a set of
high-dimensional continuous control environments from the Mujoco suite (Todorov et al.,
2012): Ant (29D, 8D), Humanoid (47D, 20D), HandReach (63D, 20D). While we learn a
policy that maps full state representations to actions, we maximize the state entropy over
a subset of the state space dimensions: 7D for Ant (3D position and 4D torso orientation),
24D for Humanoid (3D position, 4D body orientation, and all the joint angles), 24D for
HandReach (full set of joint angles). As we report in Figure 8.2d, 8.2e, 8.2f, MEPOL is
able to learn policies with striking entropy in all the environments. As a by-product, it
unlocks several meaningful high-level skills during the process, such as jumping, rotating,
navigation (Ant), crawling, standing up (Humanoid), and basic coordination (Humanoid,
HandReach). Crucially, the learning process is not negatively affected by the increasing
number of dimensions, which is, instead, a well-known weakness of approaches based on
explicit density estimation to compute the entropy (Beirlant et al., 1997). This issue is
documented by the poor results of MaxEnt, which struggles to match the performance of
MEPOL in the considered domains, as it prematurely converges to a low-entropy mixture.

Scalability As we detail above, in the experiments over continuous control domains we
do not maximize the entropy over the full state representation. Note that this selection of
features is not dictated by the inability of MEPOL to cope with even more dimensions,
but to obtain reliable and visually interpretable behaviors (see Appendix B.1 for further
details). To prove this point we conduct an additional experiment over a massively high-
dimensional GirdWorld domain (200D, 200D). As we report in Figure 8.3b, even in this
setting MEPOL handily learns a policy to maximize the state entropy.

On MaxEnt Results One might realize that the performance reported for MaxEnt ap-
pears to be much lower than the one presented in (Hazan et al., 2019). Some aspects need

6https://github.com/abbyvansoest/maxent/tree/master/humanoid
7We avoid the comparison in GridWorld since the environment resulted particularly averse to MaxEnt.
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MountainCar Ant Humanoid

samples 5 · 106 2 · 107 2 · 107

MEPOL 4.31 ± 0.04 3.67 ± 0.05 1.92 ± 0.08
MaxEnt 3.36 ± 0.4 1.92 ± 0.05 0.96 ± 0.06
Random 1.98 ± 0.05 1.86 ± 0.06 0.84 ± 0.04

(a) Comparison of the entropy over the 2D-discretized states
achieved by MEPOL, MaxEnt, and a random policy (95%

c.i. over 8 runs).
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Figure 8.3: Comparison of the entropyH(dπT ) over an extended (200D, 200D) GridWorld
domain (b). Comparison of the h-step state entropy H(dπt=h) and the marginal state
entropy H(dπh) achieved by a set of policies trained over different horizons T as a
function of the testing horizon h (c, d). (95% c.i. over 8 runs).

to be considered. First, their objective is different, as they focus on the entropy of dis-
counted stationary distributions instead of dθT . However, in the practical implementation,
they consider undiscounted, finite-horizon trajectories as we do. Secondly, their results
are computed over all samples collected during the learning process, while we measure
the entropy over a single batch. Lastly, one could argue that an evaluation over the same
measure (k-NN entropy estimate) that our method explicitly optimize is unfair. Neverthe-
less, even evaluating the entropy of the 2D-discretized state space, which is the measure
considered in (Hazan et al., 2019), leads to similar results (as reported in Figure 8.3a).

8.5.2 Impact of the Exploration Horizon Parameter

In this section, we discuss how choosing an exploration horizon T affects the properties
of the learned policy. First, it is useful to distinguish between a training horizon T , which
is an input parameter to MEPOL, and a testing horizon h on which the policy is evaluated.
Especially, it is of particular interest to consider how an exploratory policy trained over T
steps fares in exploring the environment for a mismatching number of steps h.
To this end, we carried out a set of experiments in the aforementioned GridWorld and Hu-
manoid domains. We denote by π∗T a policy obtained by executing MEPOL with a training
horizon T and we consider the entropy of the h-step state distributionH(d

π∗T
t=h) induced by

θ∗T . Figure 8.3c (left), referring to the GridWorld experiment, shows that a policy trained
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over a shorter T might hit a peak in the entropy measure earlier (fast mixing), but other
policies achieve higher entropy values at their optimum (highly exploring).8 It is worth
noting that the policy trained over 200 steps becomes overzealous when the testing hori-
zon extends to higher values, while derailing towards a poor h-step entropy. In such a
short horizon, the learned policy cannot evenly cover the four rooms and it overfits easy-
to-reach locations. Unsurprisingly, also the marginal state entropy over h steps H(d

π∗T
h ),

which is the actual objective we aim to maximize in unsupervised pre-training, is nega-
tively affected, as we report in Figure 8.3c (right). This result points out the importance
of properly choosing the training horizon in accordance with the downstream-task hori-
zon the policy will eventually face. However, in other cases a policy learned over T steps
might gracefully generalize to longer horizons, as confirmed by the Humanoid experiment
(Figure 8.3d). The environment is free of obstacles that can limit the agent’s motion, so
there is no incentive to overfit an exploration behavior over a shorter T .

8.5.3 Supervised Fine-Tuning

In this section, we illustrate how a learning agent can benefit from an exploration pol-
icy learned by MEPOL when dealing with a variety of supervised RL tasks. Especially,
we compare the performance achieved by TRPO (Schulman et al., 2015) initialized with
a MEPOL policy (the one we learned in Section 8.5.1) w.r.t. a set of significant base-
lines that learn from scratch, i.e., starting from a randomly initialized policy. These base-
lines are: TRPO, SAC (Haarnoja et al., 2018), which promotes exploration over actions,
SMM (Lee et al., 2019), which has an intrinsic reward related to the state-space entropy,
ICM (Pathak et al., 2017), which favors exploration by fostering prediction errors, and
Pseudocount (Bellemare et al., 2016), which assigns high rewards to rarely visited states.
The algorithms are evaluated in their fine-tuning performance (8.5) on a series of sparse-
reward RL tasks defined over the environments we considered in the previous sections.
Note that we purposefully chose an algorithm without a smart exploration mechanism,
i.e., TRPO, to employ the MEPOL initialization. In this way, we can clearly show the
merits of the initial policy in providing the necessary exploration. However, the MEPOL
initialization can be combined with any other RL algorithm, potentially improving the
reported results. In view of previous results in unsupervised pre-training (Section 8.5.1),
where MaxEnt is plainly dominated by our approach, we do not compare with TRPO
initialized with a MaxEnt policy, as it would not be a challenging baseline in this setting.
In GridWorld, we test three navigation tasks with different goal locations (see Figure 8.4a).
The reward is 1 in the states having Euclidean distance to the goal lower than 0.1. For the
Ant environment, we define three incrementally challenging tasks: Escape, Jump, Navi-
gate. In the first, the Ant starts from an upside-down position and it receives a reward of
1 whenever it rotates to a straight position (Figure 8.4b). In Jump, the agent gets a reward
of 1 whenever it jumps higher than three units from the ground (Figure 8.4c). In Navigate,
the reward is 1 in all the states further than 7 units from the initial location (Figure 8.4d).
Finally, in Humanoid Up, the agent initially lies on the ground and it receives a reward of
1 when it is able to stand up (Figure 8.4e). In all the considered tasks, the reward is zero

8The trade-off between entropy and mixing time has been substantiated for steady-state distributions in (Mutti
& Restelli, 2020).
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Figure 8.4: Comparison of the average return as a function of learning epochs achieved
by TRPO with MEPOL initialization, TRPO, SAC, SMM, ICM, and Pseudocount over
a set of sparse-reward RL tasks. For each task, we report a visual representation and
learning curves. (95% c.i. over 8 runs).

anywhere except for the goal states, an episode ends when the goal is reached.
As we show in Figure 8.4, the MEPOL initialization leads to a striking performance across
the board, while the tasks resulted extremely hard to learn from scratch. In some cases
(Figure 8.4b), MEPOL allows for zero-shot policy optimization, as the optimal behavior
has been already learned in the unsupervised exploration stage. In other tasks (e.g., Fig-
ure 8.4a), the MEPOL-initialized policy has lower return, but it permits for lighting fast
adaptation w.r.t. random initialization. Note that, to match the tasks’ higher level of ab-
straction, in Ant Navigate and Humanoid Up we employed MEPOL initializations learned
by maximizing the entropy over mere spatial coordinates (x-y in Ant, x-y-z in Humanoid).
However, also the exact policies learned in Section 8.5.1 fare remarkably well in those
scenarios (see Appendix B.1.4), albeit experiencing slower convergence.
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Chapter 8. State Entropy Maximization in Continuous Domains

8.6 Extensions to MEPOL

As a testament to the value of the MEPOL recipe, some notable subsequent works (Liu &
Abbeel, 2021b; Seo et al., 2021; Yarats et al., 2021) have adopted a similar combination of
non-parametric entropy estimation and policy optimization to achieve even superior results
than what we have shown in this chapter. Here we will briefly comment on the innovations
introduced by these works, and how they unlocked state entropy maximization in visual-
based domains.
One of the clear weaknesses of MEPOL is that it requires a convenient metric space in
order to get robust state entropy estimations. In the continuous control domains that we
presented, the Euclidean metric is quite natural and it leads to great empirical results (Sec-
tion 8.5.1). However, it was unclear whether the same recipe could have worked with more
complicated metric spaces, such as those required for learning with visual inputs.
In the first extension to MEPOL, Liu & Abbeel (2021b) masterfully answer this question
by proposing a method, called Active Pre-Training (APT), which can perform state entropy
maximization over visual inputs. To achieve this feat, they introduce a representation
learning module on top of the state entropy optimization, in which state representations are
trained through a contrastive loss (Chen et al., 2020). Then, the non-parametric entropy
estimate is computed through an Euclidean metric in the space of the representations. As
a second innovation, Liu & Abbeel (2021b) note that the non-parametric entropy estimate
computed over a batch of samples can be decoupled into a sort of intrinsic reward that
assigns a scalar value to each state-action pair. This intrinsic reward is designed as follows9

R(s) ∝ log
(∣∣s− sk-NN

∣∣p).

Another key difference between APT and MEPOL is that APT keeps a replay buffer of the
states visited across the learning process instead of computing the entropy estimates on the
last batch of samples alone, which slightly changes the unsupervised pre-training objec-
tive. With these innovations, APT achieves outstanding results in the Atari games (Belle-
mare et al., 2013) and DeepMind Control (Tassa et al., 2018) benchmarks, showing that
state entropy maximization is viable in visual-based domains as well.
In a subsequent work, Seo et al. (2021) show that comparable results on visual-based
domains can be obtained avoiding a, sometimes cumbersome, representation learning pro-
cess on top of the state entropy optimization. Especially, they present an algorithm, called
Random Encoders for Efficient Exploration (RE3), which is similar to APT without the
contrastive learning module, and where the states are instead processed through a ran-
domly initialized encoder before the state entropy estimation is computed. They show that
this remarkably simple metric space is enough to allow for state entropy maximization in
domains with visual inputs. RE3 is implemented with the per-state entropy rewards pre-
sented in (Liu & Abbeel, 2021b) and it is evaluated on the DeepMind Control suite (Tassa
et al., 2018).
Finally, Yarats et al. (2021) note that sampling from a replay buffer can lead to unstable
entropy estimates from one iteration to the other. To overcome this issues, they propose

9Note that this is not a reward function in its usual sense, as it varies over time and depends on the policy
being deployed.
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an algorithm, called Proto-RL, which learns the embedding of states together with proto-
typical state representations. The latter are obtained through a clustering procedure over
the collected states. The prototypical representations guide the sampling from the replay
buffer to the benefit of the stability of the entropy estimations. This additional ingredient
improves the results of APT over the DeepMind Control suite (Tassa et al., 2018).
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CHAPTER9
State Entropy Maximization in Multiple

Environments

The content of this chapter is based on the paper “Unsupervised Reinforcement Learning
in Multiple Environments” co-authored with Mattia Mancassola and Marcello Restelli,
published at AAAI 2022.1

9.1 Introduction

In this chapter, we aim to push the generality of the unsupervised RL framework even fur-
ther, by addressing the problem of state entropy maximization in multiple environments. In
this setting, during the pre-training phase, the agent faces a class of reward-free environ-
ments that belong to the same domain but differ in their transition dynamics. At each turn
of the learning process, the agent is drawn into an environment within the class, where
it can interact for a finite number of steps before facing another turn. The ultimate goal
of the agent is to pre-train a maximum entropy policy that helps to solve any subsequent
fine-tuning task that can be specified over any environment of the class.
Specifically, we extend the usual state entropy maximization objective to the multiple-
environments setting. Notably, when dealing with multiple environments, the pre-training

1A complete reference can be found in the bibliography (Mutti et al., 2022e).
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becomes a multi-objective problem, as one can establish any combination of preferences
over the environments. Previous unsupervised RL methods would blindly optimize the
average of the pre-training objective across the class, implicitly establishing a uniform
preference. Instead, in this work, we consider the mean of a critical percentile of the
objective function, i.e., its Conditional Value-at-Risk (CVaR, Rockafellar et al., 2000) at
level α, to prioritize the performance in particularly rare or adverse environments.
To provide intuition on the risk-sensitive strategy we advocate for, let us consider an illus-
trative example in which the agent interacts with a set of labyrinths without supervision. If
the agent pre-trains its policy to maximize the state entropy on average, then there might
be some labyrinths where the policy induces high entropy and some others where the en-
tropy is low. At the fine-tuning phase, the agent will be tasked with reaching a specific
goal state in one of such labyrinths: If the entropy induced by the pre-trained policy is
low, the agent might fail to explore the labyrinth altogether, derailing the learning process.
Instead, pre-training the policy to maximize the CVaR of the entropy over the multiple
labyrinths lifts the floor of the entropy that the policy will induce in the labyrinth selected
for fine-tuning, thus reducing the chance to derail the subsequent learning process due to
insufficient exploration.
With this intuition, we propose a policy gradient algorithm (Deisenroth et al., 2013), α-
sensitive Maximum Entropy POLicy optimization (αMEPOL),2 to optimize the CVaR of
the state entropy via mere interactions with the class of environments. As the name sug-
gests, the algorithm is inspired by MEPOL (Mutti et al., 2021) and subsequent develop-
ments (Liu & Abbeel, 2021b; Seo et al., 2021; Yarats et al., 2021). In the footsteps of its
progenitors, αMEPOL employs non-parametric methods to deal with state entropy estima-
tion in continuous and high-dimensional environments. Then, it leverages these estimated
values to optimize the CVaR of the entropy by following its policy gradient (Tamar et al.,
2015b). The percentile of interest is determined by α, which basically controls how much
we account for the tail behavior in the pre-training objective.
Finally, we provide an extensive experimental analysis of the proposed method in both the
unsupervised pre-training over classes of multiple environments and the supervised fine-
tuning over several tasks defined over the class. The analysis spans continuous control set-
tings as well as visual domains. The exploration policy pre-trained with αMEPOL allows
solving sparse-rewards tasks that are impractical to learn from scratch, while consistently
improving the performance of a pre-training that is blind to the tail behavior of the entropy
(e.g., MEPOL). We also include a comparison between state entropy maximization over
multiple environments and classical meta-RL baselines (Finn et al., 2017a).
Contents The chapter is organized as follows. First, we discuss a few works that are
particularly related to the problem of unsupervised RL in multiple environments (Sec-
tion 9.2). Then, we propose a tractable formulation of the unsupervised pre-training ob-
jective (Section 9.4). In Section 9.5, we provide a preliminary theoretical analysis of the
introduced problem formulation, which highlights the specific challenges of the multiple-
environments variation of unsupervised RL. In Section 9.6, we describe the αMEPOL
algorithm to deal with the unsupervised pre-training with percentile sensitivity. Finally,
we provide an extensive empirical evaluation of αMEPOL (Section 9.7). The proofs of
the theorems can be found in Appendix A.5.

2The implementation ofαMEPOL can be found at https://github.com/muttimirco/alphamepol
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9.2. Related Work

9.2 Related Work

In this section, we revise the works that relate the most to the setting of unsupervised RL
in multiple environments.
In previous work, Rajendran et al. (2020) considered a learning process composed of ag-
nostic pre-training (called a practice) and supervised fine-tuning (a match) in a class of
environments. However, in their setting the two phases are alternated, and the supervision
signal of the matches allows to learn the reward for the practice through a meta-gradient.
Concurrently to us, Parisi et al. (2021) addressed the unsupervised RL in multiple environ-
ments. Whereas their setting is akin to ours, they come up with an essentially orthogonal
solution. Especially, they consider a pre-training objective inspired by count-based meth-
ods (Bellemare et al., 2016) in place of our entropy objective. Whereas they design a
specific bonus for the multiple-environments setting, they essentially establish a uniform
preference over the class instead of prioritizing the worst-case environment as we do.
Finally, our framework resembles the meta-RL setting (Finn et al., 2017b), in which we
would call meta-training the unsupervised pre-training, and meta-testing the supervised
fine-tuning. However, none of the existing works combine unsupervised meta-training
(Gupta et al., 2018) with a multiple-environments setting.

9.3 Definitions

Here we recall some useful definitions and we report the slight notation changes that we
will adopt across the chapter. A vector v is denoted in bold, and vi stands for its i-th entry.

Probability and Percentiles Let X be a random variable distributed according to a cu-
mulative density function (cdf) FX(x) = Pr(X ≤ x). We denote with E[X], Var[X] the
expected value and the variance ofX respectively. Let α ∈ (0, 1) be a confidence level, we
call the α-percentile (shortened to α%) of the variable X its Value-at-Risk (VaR), which
is defined as

VaRα(X) = inf
{
x | FX(x) ≥ α

}
.

Analogously, we call the mean of this same α-percentile the Conditional Value-at-Risk
(CVaR) of X ,

CVaRα(X) = E
[
X | X ≤ VaRα(X)

]
.

Entropy and State Visitations We denote the state-visitation frequencies induced by a
trajectory τ with dτ (s) = 1

T

∑T−1
t=0 1(st,τ = s), and we denote as dMπ = Eτ∼pπ,M [dτ ]

the marginal state distribution on the CMPM. For simplicity, we will write the entropy
H(dτ ) as a random variable Hτ ∼ δ(h−H(dτ ))pπ,M(τ), where δ(h) is a Dirac delta.

MDPs and RL By coupling a CMPM with a reward function R we obtain a Markov
Decision Process (MDP, Puterman, 2014)MR := M∪ R. Let R(s, a) be the expected
immediate reward when taking a ∈ A in s ∈ S. The performance of a policy π over the
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Figure 9.1: Learning problem for unsupervised RL in multiple CMPs. Here we focus on
the unsupervised pre-training phase.

MDPMR is defined as

JMR(π) = E
π,MR

[ T−1∑

t=0

R(st, at)

]
. (9.1)

9.4 Unsupervised RL in Multiple Environments

Let M = {M1, . . . ,MI} be a class of unknown CMPs, in which every elementMi =
(S,A, Pi, D) has a specific transition model Pi, while S,A, D are homogeneous across
the class. At each turn, the agent is able to interact with a single environmentM ∈M.
The selection of the environment to interact with is mediated by a distribution pM over
M, outside the control of the agent. The aim of the agent is to pre-train a maximum state
entropy policy that is general across all the MDPsMR one can build upon M. One can
straightforwardly extend the maximum state entropy objective to multiple environments
by considering the expectation over the class of CMPs,

EM(π) = E
M∼pM
τ∼pπ,M

[
Hτ

]
,

where the usual entropy objective over the single environmentMi can be easily recovered
by setting pMi = 1. However, this objective function does not account for the tail be-
havior of Hτ , i.e., for the performance in environments of M that are rare or particularly
unfavorable to the current policy. This is decidedly undesirable as the agent may be tasked
with an MDP built upon one of these adverse environments in the subsequent supervised
fine-tuning, where even an optimal strategy w.r.t. EM(π) may fail to provide sufficient
exploration. To overcome this limitation, we look for a more nuanced exploration objec-
tive that balances the expected performance with the sensitivity to the tail behavior. By
taking inspiration from the risk-averse optimization literature (Rockafellar et al., 2000),
we consider the CVaR of the state visitation entropy induced by π over M,

EαM(π) = CVaRα(Hτ ) = E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ )

]
, (9.2)
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where α is a confidence level and E1
M(π) := EM(π). The lower we set the value of α,

the more we hedge against the possibility of a bad exploration outcome in some M ∈
M. In the following sections, we propose a method to effectively learn a policy π∗E ∈
arg max EαM(π) through mere interactions with M, and we show how this serves as a
pre-training for RL (the full process is depicted in Figure 9.1). A preliminary theoretical
characterization of the problem of optimizing EαM(π) is provided in the next section.

9.5 Preliminary Theoretical Analysis of the Problem

In this section, we aim to theoretically analyze the problem in (9.2), and especially, what
makes a class of multiple CMPs hard to explore with a unique strategy. This has to be
intended as a preliminary discussion on the problem, which could serve as a starting point
for future works, rather than a thorough theoretical characterization. First, it is worth
introducing some additional notation.

Lipschitz Continuity Let X,Y be two metric sets with metric functions dX , dY . We
say a function f : X → Y is Lf -Lipschitz continuous if it holds for some constant Lf

dY (f(x′), f(x)) ≤ LfdX(x′, x), ∀(x′, x) ∈ X2,

where the smallest Lf is the Lipschitz constant and the Lipschitz semi-norm is ‖f‖L =

supx′,x∈X
{dY (f(x′),f(x))

dX(x′,x) : x′ 6= x
}

. When dealing with probability distributions we
need to introduce a proper metric. Let p, q be two probability measures, we will either
consider the Wasserstein metric (Villani, 2009), defined as

dW1
(p, q) = sup

f

{∣∣∣∣
∫

X

f(x)(p(x)− q(x)) dx

∣∣∣∣ : ‖f‖L ≤ 1

}
,

or the Total Variation (TV) metric, defined as

dTV (p, q) =
1

2

∫

X

∣∣p(x)− q(x)
∣∣dx.

Intuitively, learning to explore a class M with a policy π is challenging when the state
distributions induced by π in differentM ∈M are diverse. The more diverse they are,
the more their entropy can vary, and the harder is to get a π with a large entropy across
the class. To measure this diversity, we are interested in the supremum over the distances
between the state distributions (dM1

π , . . . , dMI
π ) that a single policy π ∈ Π realizes over

the class M. We call this measure the diameter DM of the class M. Since we have
infinitely many policies in Π, computing DM is particularly arduous. However, we are
able to provide an upper bound to DM defined through a Wasserstein metric.

Assumption 9.5.1. Let dS be a metric on S. The class M is LPπ -Lipschitz continuous,

dW1
(Pπ(·|s′), Pπ(·|s)) ≤ LPπdS(s′, s), ∀(s′, s) ∈ S2,

where Pπ(s|s) =
∫
A π(a|s)P (s|s, a) da for P ∈M, π ∈ Π. LPπ is a constantLPπ < 1.
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Theorem 9.5.2. Let M be a class of CMPs satisfying Ass. 9.5.1. Let dMπ be the marginal
state distribution over T steps induced by the policy π inM ∈M. We can upper bound
the diameter DM as

DM := sup
π∈Π

M′,M∈M

dW1(dM
′

π , dMπ ) ≤ sup
P ′,P∈M

1− LTPπ
1− LPπ

sup
s∈S
a∈A

dW1(P ′(·|s, a), P (·|s, a)).

Theorem 9.5.2 provides a measure to quantify the hardness of the exploration problem in
a specific class M, and to possibly compare one class with another. However, the value
of DM might result, due to the supremum over Π, from a policy that is far away from the
policies we actually deploy while learning, say (π0, . . . , π

∗
E). To get a finer assessment of

the hardness of M we face in practice, it is worth considering a policy-specific measure
to track during the optimization. We call this measure the π-diameter DM(π) of the class
M. Theorem 9.5.3 provides an upper bound toDM(π) through a convenient TV metric.

Theorem 9.5.3. Let M be a class of CMPs, let π ∈ Π be a policy, and let dMπ be the
marginal state distribution over T steps induced by π inM ∈M. We can upper bound
the π-diameter DM(π) as

DM(π) := sup
M′,M∈M

dTV (dM
′

π , dMπ ) ≤ sup
P ′,P∈M

T E
s∼dMπ
a∼π(·|s)

dTV (P ′(·|s, a), P (·|s, a)).

The last missing piece we aim to derive is a result to relate the π-diameter DM(π) of
the class M (Theorem 9.5.3) with the actual exploration objective, i.e., the entropy of
the state visitations induced by the policy π over the environments in the class. In the
following theorem, we provide an upper bound to the entropy gap induced by the policy π
within the class M.

Theorem 9.5.4. Let M be a class of CMPs, let π ∈ Π be a policy and DM(π) the
corresponding π-diameter of M. Let dMπ be the marginal state distribution over T steps
induced by π in M ∈ M, and let σM ≤ σM := infs∈S dMπ (s),∀M ∈ M. We can
upper bound the entropy gap of the policy π within the model class M as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣ ≤

(
DM(π)

)2/
σM +DM(π) log(1/σM)

9.6 A Policy Gradient Approach

In this section, we present an algorithm, called α-sensitive Maximum Entropy POLicy
optimization (αMEPOL), to optimize the exploration objective in (9.2) through mediated
interactions with a class of continuous environments.
αMEPOL operates as a typical policy gradient approach (Deisenroth et al., 2013). It di-
rectly searches for an optimal policy by navigating a set of parametric differentiable poli-
cies ΠΘ := {πθ : θ ∈ Θ ⊆ Rn}. It does so by repeatedly updating the parameters θ in
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Algorithm 8 αMEPOL
Input: percentile α, learning rate β
Output: policy πθ

1: initialize θ
2: for epoch = 0, 1, . . ., until convergence do
3: for i = 1, 2, . . . , N do
4: sample an environmentMi ∼ pM
5: sample a trajectory τi ∼ pπθ ,Mi

6: estimate Hτi with (9.3)
7: end for
8: estimate VaRα(Hτ ) with (9.4)
9: estimate∇θEαM(πθ) with (9.5)

10: update parameters θ ← θ + β∇̂θEαM(πθ)
11: end for

the gradient direction until a stationary point is reached. This update has the form

θ′ = θ + β∇θEαM(πθ),

where β is a learning rate, and ∇θEαM(πθ) is the gradient of (9.2) w.r.t. θ. The following
proposition provides the formula of ∇θEαM(πθ). The derivation closely follows the one
in (Tamar et al., 2015b, Proposition 1), which we have adapted to our objective function
of interest (9.2).

Proposition 9.6.1. The policy gradient of the exploration objective EαM(πθ) w.r.t. θ is
given by

∇θEαM(πθ) = E
M∼pM
τ∼pπθ ,M

[( T−1∑

t=0

∇θ logπθ(at,τ |st,τ )

)

×
(
Hτ −VaRα(Hτ )

)∣∣∣∣Hτ ≤ VaRα(Hτ )

]
.

However, in this work, we do not assume full knowledge of the class of CMPs M, and the
expected value in Proposition 9.6.1 cannot be computed without having access to pM and
pπθ,M. Instead, αMEPOL computes the policy update via a Monte Carlo estimation of
∇θEαM from the sampled interactions {(Mi, τi)}Ni=1 with the class of environments M.
The policy gradient estimate itself relies on a Monte Carlo estimate of each entropy value
Hτi from τi, and a Monte Carlo estimate of VaRα(Hτ ) given the estimated {Hτi}Ni=1.
The following paragraphs describe how these estimates are carried out, while Algorithm 8
provides the pseudocode of αMEPOL.

Entropy Estimation We would like to compute the entropy Hτi of the state visitation
frequencies dτi from a single realization {st,τi}T−1

t=0 ⊂ τi. As in MEPOL (Mutti et al.,
2021), we employ a k-Nearest Neighbors (k-NN) entropy estimator (Singh et al., 2003) of
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the form

Ĥτi ∝ −
1

T

T−1∑

t=0

log
k Γ(p2 + 1)

T
∥∥st,τi − sk-NN

t,τi

∥∥p π p2
, (9.3)

where we recall that Γ is the Gamma function, ‖·‖ is the Euclidean distance, and sk-NN
t,τi ∈ τi

is the k-nearest neighbor of st,τi . Differently from the previous Chapter 8.2, the entropy
estimate is now computed on a single trajectory or a small batch of trajectories.

VaR Estimation The last missing piece to get a Monte Carlo estimate of the policy
gradient ∇θEαM is the value of VaRα(Hτ ). Being H[1], . . . ,H[N ] the order statistics out
of the estimated values {Ĥτi}Ni=1, we can naïvely estimate the VaR as

V̂aRα(Hτ ) = H[dαNe]. (9.4)

Albeit asymptotically unbiased, the VaR estimator in (9.4) is known to suffer from a large
variance in finite sample regimes (Kolla et al., 2019), which is aggravated by the error in
the upstream entropy estimates, which provide the order statistics. This variance is mostly
harmless when we use the estimate to filter out entropy values beyond the α%, i.e., the
condition Hτ ≤ VaRα(Hτ ) in Proposition 9.6.1. Instead, its impact is significant when
we subtract it from the values within the α%, i.e., the term Hτ − VaRα(Hτ ) in Proposi-
tion 9.6.1. To mitigate this issue, we consider a convenient baseline b = −VaRα(Hτ ) to
be subtracted from the latter, which gives the Monte Carlo policy gradient estimator

∇̂θEαM(πθ) =

N∑

i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ )), (9.5)

where fτi =
∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). Notably, the baseline b trades off a lower

estimation error for a slight additional bias in the estimation (9.5). We found that this
baseline leads to empirically good results and we provide some theoretical corroboration
on its benefits in the next paragraph.

Baseline To corroborate the use of the baseline b = −VaRα(Hτ ), we compare the
properties of two alternatives policy gradient estimators, with and without a baseline, i.e.,

∇̂θEαM(πθ) =
1

αN

N∑

i=1

fτi
(
Ĥτi − V̂aRα(Hτi)

)
1(Ĥτi ≤ V̂aRα(Hτ )),

∇̂bθEαM(πθ) =
1

αN

N∑

i=1

fτi
(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ )).

where fτi =
∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). The former (∇̂θEαM) is known to be asymp-

totically unbiased (Tamar et al., 2015b), but it is hampered by the estimation error of the
VaR term to be subtracted to each Ĥτi in finite sample regimes (Kolla et al., 2019). The
latter (∇̂bθEαM) introduces some bias in the estimate, but it crucially avoids the estimation
error of the VaR term to be subtracted, as it cancels out with the baseline b. The following
proposition, along with related lemmas, assesses the critical number of samples (n∗) for
which an upper bound to the bias of ∇̂bθEαM is lower to the estimation error of ∇̂θEαM.
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Proposition 9.6.2. Let fH be the pdf of Hτ , for which there exist η,∆ > 0 such that
fH(Hτ ) > η for all Hτ ∈

[
VaRα(Hτ )− ∆

2 ,VaRα(Hτ ) + ∆
2

]
. Let U be a large constant

such that fτi ≤ U for all τi. The number of samples n∗ for which the estimation error ε
of ∇̂θEαM(πθ) is lower than the bias of ∇̂bθEαM(πθ) with probability at least δ ∈ (0, 1) is
given by

n∗ =
log 2/δ

2η2 min{U2α2b2,∆2} .

The Proposition 9.6.2 proves that there is little incentive to choose the policy gradient
estimator ∇̂θEαM when the number of trajectories is lower than n∗, as its estimation error
would exceed the bias introduced by the alternative estimator ∇̂bθEαM. Unfortunately, it is
not easy to compute n∗ in our setting, as we do not assume to know the distribution of Hτ ,
but the requirement is arguably seldom matched in practice.

9.7 Empirical Evaluation

We provide an extensive empirical evaluation of the proposed methodology over the two-
phase learning process described in Figure 9.1, which is organized as follows:

9.7.1) We show the ability of our method in pre-training an exploration policy in a class of
continuous gridworlds, emphasizing the importance of percentile sensitivity;

9.7.2) We discuss how the choice of the percentile of interest affects the learned exploration
strategy;

9.7.3) We highlight the benefit that the pre-trained strategy provides to the supervised fine-
tuning in the same class;

9.7.4) We verify the scalability of our method with the size of the class, by considering a
class of 10 continuous gridworlds;

9.7.5) We verify the scalability of our method with the dimensionality of the environments,
by considering a class of 29D continuous control Ant domains;

9.7.6) We verify the scalability of our method with visual inputs, by considering a class of
147D MiniGrid domains;

9.7.7) We show that the pre-trained strategy outperforms a policy meta-trained with MAML
(Finn et al., 2017b; Gupta et al., 2018) on the same class.

A thorough description of the experimental setting is provided in Appendix B.2.

9.7.1 Unsupervised Pre-Training with Percentile Sensitivity

We consider a class M composed of two different configurations of a continuous grid-
world domain with 2D states and 2D actions, which we call the GridWorld with Slope.
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Figure 9.2: Pre-training performance E1
M obtained by αMEPOL (α = 0.2) and MEPOL

in the GridWorld with Slope domain (a). The policies are trained on (b) and tested on
(b, c, d). The dashed lines in (c, d) represent the optimal performance. The empirical
distribution having mean in (b) is reported in (e). The behaviour of αMEPOL with
different α is reported in (f). For every plot, we provide 95% c.i. over 10 runs.

In each configuration, the agent navigates through four rooms connected by narrow hall-
ways, by choosing a (bounded) increment along the coordinate directions. A visual rep-
resentation of the setting can be found in Figure 9.2a, where the shaded areas denote the
initial state distribution and the arrows render a slope that favors or contrasts the agent’s
movement. The configuration on the left has a south-facing slope, and thus it is called
GridWorld with South slope (GWS). Instead, the one on the right is called GridWorld with
North slope (GWN) as it has a north-facing slope. This class of environments is unbal-
anced (and thus interesting to our purpose) for two reasons: First, the GWN configuration
is more challenging from a pure exploration standpoint, since the slope prevents the agent
from easily reaching the two bottom rooms; secondly, the distribution over the class is
also unbalanced, as it is pM = [Pr(GWS), P r(GWN)] = [0.8, 0.2]. In this setting, we
compare αMEPOL against MEPOL (Mutti et al., 2021), which is akin to αMEPOL with
α = 1,3 to highlight the importance of percentile sensitivity w.r.t. a naïve approach to the
multiple-environments scenario. The methods are evaluated in terms of the state visitation
entropy E1

M induced by the exploration strategies they learn.
In Figure 9.2, we compare the performance of the optimal exploration strategy obtained
by running αMEPOL (α = 0.2) and MEPOL for 150 epochs on the GridWorld with
Slope class (pM = [0.8, 0.2]). We show that the two methods achieve a very similar ex-
pected performance over the class (Figure 9.2b). However, this expected performance is
the result of a (weighted) average of very different contributions. As anticipated, MEPOL
has a strong performance in GWS (pM = [1, 0], Figure 9.2c), which is close to the
configuration-specific optimum (dashed line), but it displays a bad showing in the adverse
GWN (pM = [0, 1], Figure 9.2d). Conversely, αMEPOL learns a strategy that is much
more robust to the configuration, showing a similar performance in GWS and GWN, as

3The pseudocode of MEPOL (see Chapter 8) is identical to Algorithm 8 except that all trajectories affect the
gradient estimate in (9.5).
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Figure 9.3: Fine-tuning performance JMR as a function of learning epochs achieved by
TRPO initialized with αMEPOL (α = 0.2), MEPOL, and random exploration strate-
gies, when dealing with a set of RL tasks specified on the GridWorld with Slope domain
(a). We provide 95% c.i. over 50 randomly sampled goal locations (b).

the percentile sensitivity prioritizes the worst case during training. To confirm this con-
clusion, we look at the actual distribution that is generating the expected performance in
Figure 9.2b. In Figure 9.2e, we provide the empirical distribution of the trajectory-wise
performance (Hτ ), considering a batch of 200 trajectories with pM = [0.8, 0.2]. It clearly
shows that MEPOL is heavy-tailed towards lower outcomes, whereas αMEPOL concen-
trates around the mean. This suggests that with a conservative choice of α we can induce a
good exploration outcome for every trajectory (and any configuration), while without per-
centile sensitivity we cannot hedge against the risk of particularly bad outcomes. However,
let us point out that not all classes of environments would expose such an issue for a naïve,
risk-neutral approach (see Appendix B.2.5 for a counterexample), but it is fair to assume
that this would arguably generalize to any setting where there is an imbalance (either in the
hardness of the configurations or in their sampling probability) in the class. These are the
settings we care about, as they require nuanced solutions (e.g., αMEPOL) for scenarios
with multiple environments.

9.7.2 On the Value of the Percentile

In this section, we consider repeatedly training αMEPOL with different values of α in the
GridWorld with Slope domain, and we compare the resulting exploration performance E1

M
as before. In Figure 9.2f, we can see that the lower α we choose, the more we prioritize
GWN (right bar for every α) at the expense of GWS (left bar). Note that this trend carries
on with increasing α, ending in the values of Figures 9.2c, 9.2d. The reason for this
behavior is quite straightforward, the smaller is α, the larger is the share of trajectories
from the adverse configuration (GWN) ending up in the percentile at first, and thus the
more GWN affects the policy update (see the gradient in (9.5)). Note that the value of the
percentile α should not be intended as a hyper-parameter to tune via trial and error, but
rather as a parameter to select the desired risk profile of the algorithm. Indeed, there is no
way to say which of the outcomes in Figure 9.2f is preferable, as they are all reasonable
trade-offs between the average and worst-case performance, which might be suited for
specific applications. For the sake of consistency, in every experiment of our analysis we
report results with a value of α that matches the sampling probability of the worst-case
configuration, but similar arguments could be made for different choices of α.
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9.7.3 Supervised Fine-Tuning

To assess the benefit of the pre-trained strategy, we design a family of MDPsMR, where
M ∈ {GWS,GWN}, and R is any sparse reward function that gives 1 when the agent
reaches the area nearby a random goal location and 0 otherwise. On this family, we com-
pare the performance achieved by TRPO (Schulman et al., 2015) with different initializa-
tions: The exploration strategies learned (as in Section 9.7.1) by αMEPOL (α = 0.2) and
MEPOL, or a randomly initialized policy (Random). These three variations are evaluated
in terms of their average return JMR , which is defined in (9.1), over 50 randomly gener-
ated goal locations (Figure 9.3b). As expected, the performance of TRPO with MEPOL
is competitive in the GWS configuration (Figure 9.3), but it falls sharply in the GWN
configuration, where it is not significantly better than TRPO with Random. Instead, the
performance of TRPO with αMEPOL is strong on both GWS and GWN. Despite the sim-
plicity of the domain, solving an RL problem in GWN with an adverse goal location is
far-fetched for both a random initialization and a naïve solution to the problem of unsu-
pervised RL in multiple environments.

9.7.4 Scaling to Larger Classes of Environments

In this section, we consider a class M composed of 10 different configurations of the
continuous gridworlds presented in Section 9.7.1 (including the GWN as the worst-case
configuration) which we call the MultiGrid domain. As before, we compare αMEPOL
(α = 0.1) and MEPOL on the exploration performance E1

M achieved by the optimal strat-
egy, in this case considering a uniformly distributed pM. While the average performance
of MEPOL is slightly higher across the class (Figure 9.4a left, left bar), αMEPOL still
has a decisive advantage in the worst-case configuration (Figure 9.4a left, right bar). Just
as in Section 9.7.3, this advantage transfer to the fine-tuning, where we compare the aver-
age return JMR achieved by TRPO with αMEPOL, MEPOL, and Random initializations
over 50 random goal locations in the GWN configuration (Figure 9.4a right). Whereas in
the following sections we will only consider classes of two environments, this experiment
shows that the arguments made for small classes of environments can easily generalize to
larger classes.

9.7.5 Scaling to Increasing Dimensions

In this section, we consider a class M consisting of two Ant environments, with 29D
states and 8D actions. In the first, sampled with probability pM1

= 0.8, the Ant faces
a wide descending staircase (Ant Stairs Down). In the second, the Ant faces a narrow
ascending staircase (Ant Stairs Up, sampled with probability pM2

= 0.2), which is signif-
icantly harder to explore than the former. In the mold of the gridworlds in Section 9.7.1,
these two configurations are specifically designed to create an imbalance in the class. As
in Section 9.7.1, we compare αMEPOL (α = 0.2) against MEPOL on the exploration
performance E1

M achieved after 500 epochs. αMEPOL fares slightly better than MEPOL
both in the worst-case configuration (Figure 9.4b left, right bar) and, surprisingly, in the
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Figure 9.4: Pre-training performance E1
M (95% c.i. over 10 runs) achieved by αMEPOL

(α = 0.1 (a), α = 0.2 (b)) and MEPOL in the in the MultiGrid (a) and Ant (b)
domains. Fine-tuning performance JMR (95% c.i. over 50 tasks (a), 8 tasks (b), 13
tasks (d)) obtained by TRPO with corresponding initialization (αMEPOL, MEPOL,
Random), in the MultiGrid (a), Ant (b), and MiniGrid (d) domains. MiniGrid domains
are illustrated in (c).

easier one (Figure 9.4b left, left bar).4 Then, we design a set of incrementally challenging
fine-tuning tasks in the Ant Stairs Up, which give reward 1 upon reaching a certain step of
the staircase. Also in this setting, TRPO with αMEPOL initialization outperforms TRPO
with MEPOL and Random in terms of the average return JMR (Figure 9.4b right). Note
that these sparse-reward continuous control tasks are particularly arduous: TRPO with
MEPOL and Random barely learns anything, while even TRPO with αMEPOL does not
handily reach the optimal average return (1).

9.7.6 Scaling to Visual Inputs

In this section, we consider a class M of two partially-observable MiniGrid (Chevalier-
Boisvert et al., 2018) environments, in which the observation is a 147D image of the
agent’s field of view. In Figure 9.4c, we provide a visualization of the domain: The easier
configuration (EasyG, left) is sampled with probability pM1

= 0.8, the adverse configu-
ration (AdvG, right) is sampled with probability pM2

= 0.2. Two factors make the AdvG
more challenging to explore, which are the presence of a door at the top-left of the grid,
and reversing the effect of the agent’s movements (e.g., the agent goes backward when it
tries to go forward). Whereas in all the previous experiments we estimated the entropy on
the raw input features, visual inputs require a wiser choice of a metric. As proposed in (Seo
et al., 2021), we process the observations through a random encoder before computing the
entropy estimate in (9.3), while keeping everything else as in Algorithm 8. We run this

4Note that this would not happen in general, as we expect αMEPOL to be better in the worst-case but worse
on average. In this setting, the percentile sensitivity positively biases the average performance due to the peculiar
structure of the environments.

103



Chapter 9. State Entropy Maximization in Multiple Environments

αMEPOL MAML+R MAML+DIAYN

0 50 100

0

0.5

1

epoch

JMR

0 50 100

0

0.5

1

epoch

JMR

(a) GridWorld with Slope: GWS (left) and GWN (right)

0 50 100

0

0.5

1

epoch

JMR

(b) MultiGrid

Figure 9.5: Fine-tuning performance JMR achieved by TRPO initialized with αMEPOL
(α = 0.2 (a), α = 0.1 (b)), a MAML+R meta-policy, and a MAML+DIAYN meta-
policy, when dealing with a set of RL tasks in the GridWorld with Slope (a) and the
MultiGrid (b) domains. We provide 95% c.i. over 50 tasks.

slightly modified version of αMEPOL (α = 0.2) and MEPOL for 300 epochs. Then,
we compare TRPO with the learned initializations (as well as Random) on sparse-reward
fine-tuning tasks defined upon the class. As in previous settings, TRPO with αMEPOL
results slightly worse than TRPO with MEPOL in the easier configuration (Figure 9.4d,
left), but significantly better in the worst-case (Figure 9.4d, right). Notably, TRPO from
scratch struggles to learn the tasks, especially in the AdvG (Figure 9.4d, right). Although
the MiniGrid domain is extremely simple from a vision standpoint, we note that the same
architecture can be employed in more challenging scenarios (Seo et al., 2021), while the
focus of this experiment is the combination between visual inputs and multiple environ-
ments.

9.7.7 Comparison with Meta-RL

In this section, we compare our approach against meta-training a policy with MAML (Finn
et al., 2017b) on the same GridWorld with Slope (pM = [0.8, 0.2]) and MultiGrid (uni-
formly distributed pM) domains that we have previously presented. Especially, we con-
sider two relevant baselines. The first is MAML+R, to which we provide full access to
the tasks (i.e., rewards) during meta-training. Note that this gives MAML+R an edge over
αMEPOL, which operates reward-free training. The second is MAML+DIAYN (Gupta
et al., 2018), which operates unsupervised meta-training through an intrinsic reward func-
tion learned with DIAYN (Eysenbach et al., 2019). As in previous sections, we con-
sider the average return JMR achieved by TRPO initialized with the exploration strat-
egy learned by αMEPOL or the meta-policy learned by MAML+R and MAML+DIAYN.
TRPO with αMEPOL fares clearly better than TRPO with the meta-policies in all the con-
figurations (Figures 9.5a, 9.5b). Even if it works fine in fast adaptation (Appendix B.2.6),
MAML struggles to encode the diversity of task distribution into a single meta-policy and
to deal with the most adverse tasks in the long run. Moreover, DIAYN does not specifically
handle multiple environments, and it fails to cope with the larger MultiGrid class.
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CHAPTER10
Conclusion and Future Directions

In this thesis, we have unveiled the potential of unsupervised reinforcement learning via
state entropy maximization as a way to improve the generalization of the reinforcement
learning approach to sequential decision-making problems.
Especially, we have provided practical pre-training methodologies that significantly im-
prove the fine-tuning performance w.r.t. learning from scratch, both when the pre-training
takes place in a single environment or in a set of multiple environments. Notably, this
achievement was not obvious from a prior characterization of the computational and sta-
tistical complexity of the problem that we provided in this thesis, in which we revealed
that an exact optimization of the state entropy maximization objective is intractable and
that state entropy maximization is harder than standard reinforcement learning in general.
Despite the positive results that we presented, this thesis leaves open some important re-
search questions, which might be a matter of interesting future directions. We report below
a few of these open problems.
When is convex RL tractable? In Chapter 4, we have highlighted a fundamental mis-
match between the infinite trials convex RL formulation and its finite trials formulation,
which makes convex RL strictly harder than standard RL in practice. However, it would
be interesting to understand under which assumptions on the underlying Markov process,
the objective function, or the policy class, the convex RL problem can be solved efficiently
either from a computational or statistical standpoint.
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Can we optimize non-Markovian policies for state entropy maximization in practice?
In Chapter 5, we have proved the importance of non-Markovianity to optimize the finite
trials formulation of the state entropy maximization problem, but we also noted that the
corresponding optimization problem is NP-hard in general. However, it would be inter-
esting to consider function approximation to optimize non-Markovian policies in practice,
and to see whether they can provide the crucial benefits they promise in theory.
Can we fully address the multi-objective nature of state entropy maximization in
multiple environments? In Chapter 9, we have presented the state entropy maximization
problem in multiple environments. Noting that one can establish every preference over the
environments, this becomes an essentially multi-objective problem. While we provided
a conservative solution to it, it would be interesting to learn a full approximation of the
Pareto frontier of the pre-training performance over the environments (Parisi et al., 2016;
Hayes et al., 2022).
Can we optimally address the exploration-exploitation trade-off in the supervised
fine-tuning phase? In this thesis, we have focused on the unsupervised pre-training phase,
while we reported fine-tuning results mainly for the evaluation of the pre-trained policies.
However, we have only considered naïve fine-tuning methods, in which the pre-trained
policy is used as an initial policy for a standard RL algorithm (TRPO (Schulman et al.,
2015) most of the time). It would be interesting to develop fine-tuning algorithms that are
aware of the pre-training, so that they can manage the exploration-exploitation trade-off
more carefully (Campos et al., 2021; Pislar et al., 2021).
To conclude, we hope our dissertation has been kind to the reader, and the contributions
we provided can inspire future advancements in unsupervised reinforcement learning.
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APPENDIXA
Missing Proofs

A.1 Proofs of Chapter 4

Proposition A.1.1 (Finite Trials vs Infinite Trials). We provide here some results on the objectives
discussed in Table 4.1.

(i) Let F(d) = R · d then min
π∈Π

ζ∞(π) = min
π∈Π

ζn(π), ∀n ∈ N

(ii) Let F(d) = R · d s.t. λ · d ≤ c then min
π∈Π

ζ∞(π) = min
π∈Π

ζn(π), ∀n ∈ N

(iii) Let F(d) = ‖d− dE‖22 then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

(iv) Let F(d) = −d · log(d) = H(d) then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

(v) Let F(d) = KL(d||dE) then min
π∈Π

ζ∞(π) < min
π∈Π

ζn(π), ∀n ∈ N

Proof. We report below the corresponding derivations.

(i) min
π∈Π

ζ∞(π) = min
π∈Π

R · dπ = min
π∈Π

R · E
dn∼pπn

[dn] = min
π∈Π

E
dn∼pπn

[R · dn] = min
π∈Π

ζn(π)

(ii) min
π∈Π

ζ∞(π) = min
π∈Π,λ·dπ≤c

R ·dπ = min
π∈Π,λ·dπ≤c

R · E
dn∼pπn

[dn] = min
π∈Π,R·dπ≤c

E
dn∼pπn

[R ·dn]

= min
π∈Π

ζn(π)

(iii) min
π∈Π

ζ∞(π) = min
π∈Π
‖ E
dn∼pπn

[dn]− dE‖22 < min
π∈Π

E
dn∼pπn

[‖dn − dE‖22] = min
π∈Π

ζn(π)
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Appendix A. Missing Proofs

(iv) min
π∈Π

ζ∞(π) = min
π∈Π

E
dn∼pπn

[dn] · log E
dn∼pπn

[dn] < min
π∈Π

E
dn∼pπn

[dn · log dn] = min
π∈Π

ζn(π)

(v) min
π∈Π

ζ∞(π) = min
π∈Π

KL( E
dn∼pπn

[dn]||dE) < min
π∈Π

E
dn∼pπn

[KL(dn || dE)] = min
π∈Π

ζn(π)

Theorem 4.4.2 (Approximation Error). Let n ∈ N be a number of trials, let δ ∈ (0, 1] be a
confidence level, let π† ∈ arg maxπ∈Π ζn(π) and π? ∈ arg maxπ∈Π ζ∞(π). Then, it holds with
probability at least 1− δ

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ 4LT

√
2S log(4T/δ)

n

Proof. Let us first upper bound the approximation error as

err :=
∣∣ζn(π†)− ζn(π?)

∣∣ ≤ ∣∣ζn(π†)− ζ∞(π†)
∣∣+
∣∣ζ∞(π†)− ζn(π?)

∣∣ (A.1)

≤
∣∣ζn(π†)− ζ∞(π†)

∣∣+
∣∣ζ∞(π?)− ζn(π?)

∣∣ (A.2)

≤
∣∣∣ E
dn∼pπ

†
n

[F(dn)]−F(dπ
†
)
∣∣∣+
∣∣∣ E
dn∼pπ

?
n

[F(dn)]−F(dπ
?

)
∣∣∣
(A.3)

≤ E
dn∼pπ

†
n

[∣∣∣F(dn)−F(dπ
†
)
∣∣∣]+ E

dn∼pπ
?
n

[∣∣∣F(dn)−F(dπ
?

)
∣∣∣]
(A.4)

≤ E
dn∼pπ

†
n

[
L
∥∥∥dn − dπ†∥∥∥

1

]
+ E
dn∼pπ

?
n

[
L
∥∥∥dn − dπ?∥∥∥

1

]
(A.5)

≤ 2L max
π∈{π†,π?}

E
dn∼pπn

[
‖dn − dπ‖1

]
(A.6)

≤ 2L max
π∈{π†,π?}

E
dn∼pπn

[
max
t∈[T ]

‖dn,t − dπt ‖1

]
, (A.7)

where (A.1) is obtained by adding±ζ∞(π†) and then applying the triangle inequality, (A.2) follows
by noting that ζ∞(π?) ≥ ζ∞(π†), we derive (A.3) by plugging the definitions of ζn, ζ∞ in (A.2),
then we obtain (A.4) from |E[X]| ≤ E[|X|], we apply the Lipschitz assumption on F to write (A.5)
from (A.4), we maximize over the policies to write (A.6), and we finally obtain (A.7) through a
maximization over the episode’s step by noting that dn = 1

T

∑
t∈[T ] dn,t and dπ = 1

T

∑
t∈[T ] d

π
t .

Then, we seek to bound with a high probability

Pr
(

max
π∈{π†,π?}

max
t∈[T ]

‖dn,t − dπt ‖1 ≥ ε
)
≤ Pr

(⋃
π,t

‖dn,t − dπt ‖1 ≥ ε
)

(A.8)

≤
∑
π,t

Pr
(
‖dn,t − dπt ‖1 ≥ ε

)
(A.9)

≤ 2T Pr
(
‖dn,t − dπt ‖1 ≥ ε

)
, (A.10)

where ε > 0 is a positive constant, and we applied a union bound to get (A.9) from (A.8). From
concentration inequalities for empirical distributions (see Theorem 2.1 in (Weissman et al., 2003)
and Lemma 16 in (Efroni et al., 2021)) we have

Pr

(
‖dn,t − dπt ‖1 ≥

√
2S log(2/δ′)

n

)
≤ δ′. (A.11)
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By setting δ′ = δ/2T in (A.11), and then plugging (A.11) in (A.10), and again (A.10) in (A.7), we
have that with probability at least 1− δ

∣∣ζn(π†)− ζn(π?)
∣∣ ≤ 4LT

√
2S log(4T/δ)

n
,

which concludes the proof.

Theorem 4.5.2 (Regret). For any confidence δ ∈ (0, 1] and unknown convex MDP CM, the regret
of the OPE-UCBVI algorithm is upper bounded as

R(N) ≤ O
([
d7/2
w B3/2T 2SA1/2

]√
N
)

with probability 1− δ.

Proof. To prove the result, we show that the described online learning setting can be translated into
the once-per-episode framework (Chatterji et al., 2021). The main difference between the setting
in (Chatterji et al., 2021) and ours is that they assume a binary feedback y ∈ {0, 1} coming from a
logistic model

y|d =

{
1 with prob. σ(w>∗ φ(d))

0 with prob. 1− σ(w>∗ φ(d)),
σ(x) =

1

1 + exp(−x)
, ∀x ∈ R,

instead of our richer F(d). To transform the latter in the binary reward y, we note that F(d) =
w>∗ φ(d) through linear realizability (Assumption 4.5.1), then we filter F(d) through a logistic
model to obtain y = σ

(
F(d)

)
, which is then used as feedback for OPE-UCBVI. In this way, we can

call Theorem 3.2 of (Chatterji et al., 2021) to obtain the same regret rate up to a constant factor, which
is caused by the different range of per-episode contributions in the regret. For detailed derivations
and the complete regret upper bound see (Chatterji et al., 2021).

A.2 Proofs of Chapter 5

Theorem 5.3.1. Let x ∈ {∞, γ, T}, and let DxNM = {dπx(·) : π ∈ ΠNM}, DxM = {dπx(·) : π ∈
ΠM} the corresponding sets of state distributions over a MDP. We can prove that:

(i) The sets of stationary state distributions are equivalent D∞NM ≡ D∞M ;

(ii) The sets of discounted state distributions are equivalent DγNM ≡ D
γ
M for any γ;

(iii) The sets of marginal state distributions are equivalent DTNM ≡ DTM for any T .

Proof. First, note that a non-Markovian policy π ∈ ΠNM can always reduce to a Markovian policy
π ∈ ΠM by conditioning the decision rules on the history length. Thus, DxNM ⊇ DxM is straight-
forward for any x ∈ {∞, γ, T}. From the derivations in (Puterman, 2014, Theorem 5.5.1), we
have that DxM ⊇ DxNM as well. Indeed, for any non-Markovian policy π ∈ ΠNM, we can build a
(non-stationary) Markovian policy π′ ∈ ΠM as

π′ =
(
π′1, π

′
2, . . . , π

′
t, . . .

)
, such that π′t(a|s) =

dπt (s, a)

dπt (s)
, ∀s ∈ S,∀a ∈ A.
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For t = 0, we have that dπ0 (·) = dπ
′

0 (·) = µ(·), which is the initial state distribution. We proceed
by induction to show that if dπt−1(·) = dπ

′
t−1(·), then we have

dπ
′
t (s) =

∑
s′∈S

∑
a∈A

dπ
′
t−1(s′)π′t−1(a|s′)P (s|s′, a)

=
∑
s′∈S

∑
a∈A

dπ
′
t−1(s′)

dπt−1(s′)
dπt−1(s′, a)P (s|s′, a)

=
∑
s′∈S

∑
a∈A

dπt−1(s′, a)P (s|s′, a)

= dπt (s).

Since dπt (s) = dπ
′
t (s) holds for any t ≥ 0 and ∀s ∈ S, we have dπ∞(·) = dπ

′
∞(·), dπγ (·) = dπ

′
γ (·),

dπT (·) = dπ
′
T (·), and thus DxM ⊇ DxNM. Then, DxNM ≡ DxM follows.

Corollary 5.3.2. For every MDP, there exists a Markovian policy π∗ ∈ ΠM such that π∗ ∈
arg maxπ∈Π ζ∞(π).

Proof. The result is straightforward from Theorem 5.3.1 and noting that the set of non-Markovian
policies ΠNM with arbitrary history-length is as powerful as the general set of policies Π. Thus,
for every policy π ∈ Π there exists a (possibly randomized) policy π′ ∈ ΠM inducing the same
(stationary, discounted or marginal) state distribution of π, i.e., dπ(·) = dπ

′
(·), which implies

F
(
dπ(·)

)
= F

(
dπ
′
(·)
)
. If it holds for any π ∈ Π, then it holds for π∗ ∈ arg maxπ∈Π F

(
dπ(·)

)
.

Corollary 5.4.3 (Sufficient Condition). For every MDPM and trajectory ht ∈ H[T ] for which any
optimal Markovian policy πM ∈ ΠM is randomized (i.e., stochastic) in st, we have strictly positive
gap VT−t(πM, ht) > 0.

Proof. This result is a direct consequence of the combination of Lemma 5.4.6 and Lemma 5.4.7.
Indeed, if the policy πM ∈ arg maxπ∈ΠM

E(π) is randomized in st we have

0 < Var
[
B(πM(a∗|st))

]
= Var
hst∼p

πNM
t

[
E
[
B(πNM(a∗|hst))

]]
,

from Lemma 5.4.6, which gives a lower bound to the convex value gap VT−t(πM, ht) > 0 through
Lemma 5.4.7.

Lemma 5.4.6. Let πNM ∈ ΠD
NM be a deterministic non-Markovian policy such that πNM ∈

arg maxπ∈Π ζ1(π) on a CMP M. For a fixed history ht ∈ Ht ending in state s, the variance
of the event of an optimal Markovian policy πM ∈ arg maxπ∈ΠM

ζ1(π) taking a∗ = πNM(ht) in s
is given by

Var
[
B(πM(a∗|s, t))

]
= Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
,

where hs ∈ Ht is any history of length t such that the final state is s, i.e., hs := (ht−1 ∈ Ht−1)⊕s,
and B(x) is a Bernoulli with parameter x.

Proof. Let us consider the random variable A ∼ P denoting the event “the agent takes action
a∗ ∈ A”. Through the law of total variance (Bertsekas & Tsitsiklis, 2002), we can write the variance
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of A given s ∈ S and t ≥ 0 as

Var
[
A|s, t

]
= E

[
A2|s, t

]
− E

[
A|s, t

]2
= E

h

[
E
[
A2|s, t, h

]]
− E

h

[
E
[
A|s, t, h

]]2
= E

h

[
Var

[
A|s, t, h

]
+ E

[
A|s, t, h

]2]− E
h

[
E
π

[
A|s, t, h

]]2
= E

h

[
Var

[
A|s, t, h

]]
+ E

h

[
E
[
A|s, t, h

]2]− E
h

[
E
[
A|s, t, h

]]2
= E

h

[
Var

[
A|s, t, h

]]
+ Var

h

[
E
[
A|s, t, h

]]
. (A.12)

Now let the conditioning event h be distributed as h ∼ pπNM
t−1 , so that the condition s, t, h be-

comes hs where hs = (s0, a0, s1, . . . , st = s) ∈ Ht, and let the variable A be distributed
according to P that maximizes the objective (5.2) given the conditioning. Hence, we have that
the variable A on the left hand side of (A.12) is distributed as a Bernoulli B(πM(a∗|s, t)), where
πM ∈ arg maxπ∈ΠM

E(π), and the variable A on the right hand side of (A.13) is distributed as a
Bernoulli B(πNM(a∗|hs)), where πNM ∈ arg maxπ∈ΠNM

E(π). Thus, we obtain

Var
[
B(πM(a∗|s, t))

]
= E
hs∼pπNM

t

[
Var

[
B(πNM(a∗|hs))

]]
+ Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hs))

]]
.

(A.13)
Under Assumption 5.4.4, we know from Lemma 5.4.5 that the policy πNM is deterministic, i.e.,
πNM ∈ ΠNM

D , so that Var
[
B(πNM(a∗|hs))

]
= 0 for every hs, which concludes the proof.

Lemma 5.4.7. Let πM be an optimal Markovian policy πM ∈ arg maxπ∈ΠM
ζ1(π) on a MDPM.

For any ht ∈ H[T ], it holds VT−t(πM) ≤ VT−t(πM) ≤ VT−t(πM) such that

VT−t(πM) =
F∗ −F∗2
πM(a∗|st)

Var
hst∼p

πNM
t

[
E
[
B(πNM(a∗|hst))

]]
,

VT−t(πM) =
F∗ −F∗
πM(a∗|st)

Var
hst∼p

πNM
t

[
E
[
B(πNM(a∗|hst))

]]
,

where πNM ∈ arg maxπ∈ΠD
NM

ζ1(π), and F∗,F∗2 are given by

F∗ = min
h∈HT−t

F(dht⊕h(·)),

F∗2 = max
h∈HT−t\H∗T−t

F(dht⊕h(·)) s.t. H∗T−t = arg max
h∈HT−t

F(dht⊕h(·)).

Proof. From the definition of the convex value gap (Definition 5.4.1), we have that

VT−t(πM, ht) = F∗ − E
hT−t∼p

πM
T−t

[
F
(
dht⊕hT−t(·)

)]
,

in which we will omit ht in the gap VT−t(πM, ht) = VT−t(πM) as ht is fixed by the statement. To
derive a lower bound and an upper bound to VT−t(πM) we consider the impact that taking a sub-
optimal action a ∈ A\{a∗} in state st would have in a best-case and a worst-case CMP respectively.
Especially, we can write

VT−t(πM) = F∗ − E
hT−t∼p

πM
T−t

[
F
(
dht⊕hT−t(·)

)]
≥ F∗ − πM(a∗|st)F∗ −

(
1− πM(a∗|st)

)
F∗2

= (F∗ −F∗2 )
(
1− πM(a∗|st)

)
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and

VT−t(πM) = F∗ − E
hT−t∼p

πM
T−t

[
F
(
dht⊕hT−t(·)

)]
≤ F∗ − πM(a∗|st)F∗ −

(
1− πM(a∗|st)

)
F∗

= (F∗ −F∗)
(
1− πM(a∗|st)

)
.

Then, we note that the event of taking a sub-optimal action a ∈ A \ {a∗} with a policy πM can be
modelled by a Bernoulli distribution B with parameter

(
1−πM(a∗|st)

)
. By combining the equation

of the variance of a Bernoulli random variable with Lemma 5.4.6 we obtain

Var
[
B(πM(a∗|st))

]
= πM(a∗|st)

(
1− πM(a∗|st)

)
= Var
hs∼pπNM

t

[
E
[
B(πNM(a∗|hst))

]]
which gives

VT−t(πM) ≥ F
∗ −F∗2

πM(a∗|st)
Var

hs∼pπNM
t

[
E
[
B(πNM(a∗|hst))

]]
:= VT−t(πM)

VT−t(πM) ≤ F
∗ −F∗

πM(a∗|st)
Var

hs∼pπNM
t

[
E
[
B(πNM(a∗|hst))

]]
:= VT−t(πM)

Theorem 5.5.4. Ψ0 is NP-hard.

Proof. To prove the theorem, it is sufficient to show that there exists a problem Ψc ∈ NP-hard so
that Ψc ≤p Ψ0. We show this by reducing 3SAT, a well-known NP-complete problem, to Ψ0. To
derive the reduction we consider two intermediate problems, namely Ψ1 and Ψ2. Especially, we aim
to show that the following chain of reductions holds

Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT.

First, we define Ψ1 and we prove that Ψ0 ≥m Ψ1. Informally, Ψ1 is the problem of finding a
reward-maximizing Markovian policy πM ∈ ΠM w.r.t. the convex objective (5.2) encoded through
a reward function in a convenient POMDPMR

Ω . We can buildMR
Ω from the MDPM similarly as

the extended MDP M̃R
T (see Section 4.5.2 and the proof of Lemma 5.4.5 for details), except that

the agent only access the observation space Ω instead of the extended state space S`. In particular,
we define Ω = S (note that S is the state space of the original MDP M), and O(s`) = o is a
deterministic function such that the given observation o is the last state in the history s`.

Then, the reduction Ψ0 ≥m Ψ1 works as follows. We denote as IΨi the set of possible instances of
Ψi. We show that Ψ0 is harder than Ψ1 by defining the polynomial-time functions ψ and φ such that
any instance of Ψ1 can be rewritten through ψ as an instance of Ψ0, and a solution π∗NM ∈ ΠNM for
Ψ0 can be converted through φ into a solution π∗M ∈ ΠM for the original instance of Ψ1.

IΨ1 IΨ0

π∗M π∗NM

ψ

φ

The function ψ sets S = Ω and derives the transition model ofM from the one ofMR
Ω , while φ

converts the optimal solution of Ψ0 by computing

π∗M(a|o, t) =
∑

ho∈Ho

p
π∗NM
T (ho)π∗NM(a|ho),
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whereHo stands for the set of histories h ∈ Ht ending in the observation o ∈ Ω. Thus, we have that
Ψ0 ≥m Ψ1. We now define Ψ2 as the policy existence problem w.r.t. the problem statement of Ψ1.
Hence, Ψ2 is the problem of stating whether the value of a reward-maximizing Markovian policy
π∗M ∈ arg maxπ∈ΠM

JMR
Ω

(π) is greater than 0. Since computing an optimal policy in POMDPs
is in general harder than the relative policy existence problem (Lusena et al., 2001, Section 3), we
have that Ψ1 ≥p Ψ2.

For the last reduction, i.e., Ψ2 ≥p 3SAT, we extend the proof of Theorem 4.13 in (Mundhenk et al.,
2000), which states that the policy existence problem for POMDPs is NP-complete. In particular,
we show that this holds within the restricted class of POMDPs defined in Ψ1.

The restrictions on the POMDPs class are the following:

1. The reward function R(s) ≥ 0 only in the subset of states reachable in T steps, otherwise
R(s) = 0;

2. S` := |S`| = |Ω|T .

Both limitations can be overcome in the following ways:

1. It suffices to add states with deterministic transitions so that T = m · n can be defined a
priori, where T is the number of steps needed to reach the state with positive reward through
every possible path. Here m is the number of clauses, and n is the number of variables in the
3SAT instance, as defined in (Mundhenk et al., 2000);

2. The POMDPs class defined by Ψ1 is such that S` = |Ω|T . Noticing that the set of observa-
tions corresponds with the set of variables and that from the previous point T = m · n, we
have that |Ω|T = nm·n, while the POMDPs class used by the proof above has S̃ = m · n2.
Notice that n ≥ 2 and m ≥ 1 implies that nm·n ≥ m · n2. Moreover, notice that every
instance of 3SAT has m ≥ 1 and n ≥ 3. Hence, to extend the proof to the POMDPs class
defined by Ψ1 it suffices to add a set of states Sp` such that R(s) = 0, ∀s ∈ Sp` .

Since the chain Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT holds, we have that Ψ0 ≥p 3SAT. Moreover, since
3SAT ∈ NP-complete, we can conclude that Ψ0 is NP-hard.

A.3 Proofs of Chapter 7

Theorem 7.3.1. Let P be the transition matrix of a given MDP. The steady-state distribution dπ

induced by a policy π is uniform over S iff the matrix P π = ΠP is doubly stochastic.

Proof. Let us recall the definition of the steady-state distribution of the MC induced by the policy π
over the MDP:

dπ(s) =
∑

s′∈S
Pπ(s|s′)dπ(s′), ∀s ∈ S.

If dπ is a uniform distribution we have:∑
s′∈S

Pπ(s|s′) = 1, ∀s ∈ S, (A.14)

then, the state transition matrixP π is column stochastic, while it is also row stochastic by definition.
Conversely, if the matrixP π is doubly stochastic, we aim to prove that adπ that is not uniform cause
an inconsistency in the stationary condition dπ = (P π)Tdπ . Let us consider a perturbation of the
uniform dπ , such that dπ(s) = 1

|S| for all the states in S outside of:

dπ(sh) =
1

|S| + α, dπ(sl) =
1

|S| − α, (A.15)
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where α is a, sufficiently small, positive constant. Since P π is doubly stochastic, the sum:

dπ(sh) =
∑

s′∈S
Pπ(sh|s′)dπ(s′), (A.16)

is a convex combination of the elements in dπ . Hence, for the stationary condition to hold, we must
have Pπ(sh|sh) = 1 and Pπ(sh|s) = 0 for all s different from sh. Nevertheless, a state with
probability one on the self-loop cannot have a stationary distribution different from 0 or 1.

Theorem 7.3.2. LetP be the transition matrix of a given MDP and P the space of doubly stochastic
matrices. The entropy of the steady-state distribution dπ induced by a policy π is lower bounded
by:

H(dπ) ≥ log |S| − |S| inf
Pu∈P

‖P u −ΠP ‖2∞ .

Proof. We start with rewriting the entropy of dπ as follows:

H(dπ) = −
∑
s∈S

dπ(s) log dπ(s) = −
∑
s∈S

dπ(s) log

(
dπ(s)

|S| |S|
)

= log |S| −DKL(dπ||du),

(A.17)

where du is the uniform distribution over the state space (all the entries equal to 1
|S| ) andDKL(p||q)

is the Kullback-Leibler (KL) divergence between distribution p and q.
Using the reverse Pinsker inequality (Csiszár & Talata, 2006, p. 1012 and Lemma 6.3), we can upper
bound the KL divergence between dπ and du:

DKL(dπ||du) ≤
‖du − dπ‖21
min
s∈S

du(s)
= |S| · ‖du − dπ‖21 . (A.18)

The total variation between the two steady-state distributions dπ and du can in turn be upper
bounded by (see Schweitzer, 1968):

‖du − dπ‖1 ≤ ‖Z‖∞ ‖P
u −ΠP ‖∞ , (A.19)

where Z =
(
I −Pu + 1|S|

1
|S|

)−1

is the fundamental matrix and P u is any doubly-stochastic
matrix (P u ∈ P). Since the fundamental matrix associated to any doubly-stochastic matrix is row
stochastic (Hunter, 2010), then ‖Z‖∞ = 1. Furthermore, since the bound in Equation (A.19) holds
for any P u ∈ P, we can rewrite the bound as follows:

‖du − dπ‖1 ≤ inf
Pu∈P

‖P u −ΠP ‖∞ . (A.20)

Combining Equations (A.18) and (A.20) we get an upper bound to the KL divergence, which, once
replaced in Equation (A.17), provides the lower bound in the statement and concludes the proof.

Theorem 7.3.3. LetP be the transition matrix of a given MDP and P the space of doubly stochastic
matrices. The entropy of the steady-state distribution dπ induced by a policy π is lower bounded
by:

H(dπ) ≥ log |S| − |S|2 inf
Pu∈P

‖P u −ΠP ‖2F .
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Proof. From the properties of the matrix norms (Petersen et al., 2008), we have that for any n × n
matrixM it holds:

‖M‖F ≤
1√
n
‖M‖∞ .

As a consequence:

inf
Pu∈P

‖P u −ΠP ‖2F ≥
1

|S|
∥∥P u −ΠP

∥∥2

∞ ≥
1

|S| inf
Pu∈P

‖P u −ΠP ‖2∞ ,

where P u = arg infPu∈P ‖P u −ΠP ‖2F . Combining this inequality with the result in Theo-
rem 7.3.2 concludes the proof.

Corollary 7.3.4. The bound in Theorem 7.3.2 is never less than the bound in Theorem 7.3.3.

Proof. From the properties of the matrix norms (Petersen et al., 2008), we have that for any n × n
matrixM it holds:

‖M‖∞√
n
≤ ‖M‖F ≤

√
n ‖M‖∞ . (A.21)

As a consequence:

|S|2 inf
Pu∈P

‖P u −ΠP ‖2F ≥ |S|
∥∥P u −ΠP

∥∥2

∞ ≥ |S| inf
Pu∈P

‖P u −ΠP ‖2∞ ,

where P u = arg infPu∈P ‖P u −ΠP ‖F . It follows that

log |S| − |S|2 inf
Pu∈P

‖P u −ΠP ‖2F ≤ log |S| − |S| inf
Pu∈P

‖P u −ΠP ‖2∞ .

Theorem 7.3.5. Let P be the transition matrix of a given MDP. The entropy of the steady-state
distribution dπ induced by a policy π is lower bounded by:

H(dπ) ≥ log |S| − |S|
∥∥∥(I − (ΠP )T

)
· 1|S|

∥∥∥2

1
.

Proof. We start with defining the vector c that results from the difference between the vector of ones
1|S| and the vector of the column sums: c =

(
I − (ΠP )T

)
· 1|S|. We denote with P̂x the matrix

obtained from P π by adding cT to the row corresponding to state x:

P̂x(s, s′) =

{
P π(s, s′) + c(s′), if s = x

P π(s, s′), otherwise

It is worth noting that, since
∑
s∈S c(s) = 0, the column sums and the row sums of matrix P̂x are

all equal to 1. Nonetheless, P̂x is not guaranteed to be doubly stochastic since its entries can be
lower than 0. However, it is possible to show that

inf
Pu∈P

‖P u −P π‖∞ ≤
∥∥∥P̂x −P π

∥∥∥
∞

= ‖c‖1 .

When P̂x is doubly stochastic, the above inequality holds by definition. When P̂x has negative
entries, it is always possible to transform it to a doubly stochastic matrix without increasing the L∞
distance from P π . In order to remove the negative entries of P̂x, we need to trade probability with
the other states, so as to preserve the row sum. Each state that gives probability to state x, will
receive the same amount of probability taken by the columns corresponding to positive values of the
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vector c. In order to illustrate this procedure, we consider a four-state MDP and a policy π that leads
to the following state transition matrix:

P π =


0.8 0.2 0 0
0 0.9 0.1 0

0.3 0.5 0.1 0.1
0.8 0.1 0.1 0

 .
The corresponding vector c is

c =
[
−0.9 −0.7 0.7 0.9

]T
.

Summing cT to the first row of P π we get:

P̂s1 =


−0.1 −0.5 0.7 0.9

0 0.9 0.1 0
0.3 0.5 0.1 0.1
0.8 0.1 0.1 0

 .
Since we have two negative elements, to get a doubly stochastic matrix we can modify the matrix as
follows:

• move 0.1 from element (3, 1) to (1, 1) and (to keep the row sum equal to 1) move 0.1 from
(1, 3) to (3, 3)

• move 0.5 from element (2, 2) to (1, 2) and (to keep the row sum equal to 1) move 0.5 from
(1, 3) to (2, 3)

The resulting matrix is:

P̂ =


0 0 0.1 0.9
0 0.4 0.6 0

0.2 0.5 0.2 0.1
0.8 0.1 0.1 0

 ∈ P.

The described procedure yields a doubly stochastic matrix P̂ such that
∥∥∥P̂ −P π

∥∥∥
∞
≤ ‖c‖1.

Combining this upper bound with the result in Theorem 7.3.2 concludes the proof.

A.4 Proofs of Chapter 8

Theorem 8.2.1. (Ajgl & Šimandl, 2011, Sec. 4.1) Let f be a sampling distribution, f ′ a target
distribution. The estimator Ĥk(f ′|f) is asymptotically unbiased for any k ∈ N.

Proof. The proof follow the sketch reported in (Ajgl & Šimandl, 2011, Section 4.1). First, We
consider the estimator Ĝk(f ′|f) = Ĥk(f ′|f)− ln k + Ψ(k), that is:

Ĝk(f ′|f) =

N∑
i=1

Wi

k
ln
V ki
Wi

. (A.22)

By considering its expectation w.r.t. the sampling distribution we get:

E
x∼f

[Ĝk(f ′|f)] = E
x∼f

[ N∑
i=1

Wi

k
ln

1

Wi

Rpi π
p/2

Γ( p
2

+ 1)

]
,
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where, for the sake of clarity, we will replace each logarithmic term as:

Ti = ln
1∑

j∈Nki
wj

Rpi π
p/2

Γ( p
2

+ 1)
. (A.23)

Since we are interested in the asymptotic mean, we can notice that for N → ∞ we have Wi/k →
wi/N, where wi = f ′(x)/f(x) are the unnormalized importance weights (Ajgl & Šimandl, 2011,
Section 4.1). Thus, for N →∞, we can see that:

E
x∼f

[
Ĝk(f ′|f)

]
= E
x∼f

[ N∑
i=1

wi
N
Ti

]
= E
x∼f ′

[
1

N

N∑
i=1

Ti

]
,

where the random variables T1, T2, . . . , TN are identically distributed, so that:

E
x∼f

[
Ĝk(f ′|f)

]
= E
x∼f ′

[
T1

]
.

Thus, to compute the expectation, we have to characterize the following probability for any real
number r and any x ∼ f ′:

Pr
[
T1 > r|X1 = x

]
= Pr

[
R1 > ρr|X1 = x

]
,

where we have:

ρr =

[
Wi · Γ( p

2
+ 1) · er

πp/2

] 1
p

.

We can rewrite the probability as a binomial:

Pr
[
R1 > ρr|X1 = x

]
=

k−1∑
i=0

(
N − 1

i

)[
Pr(Sρr,x)

]i[
1− Pr(Sρr,x)

]N−1−i
,

where P (Sρr,x) is the probability of x lying into the sphere of radius ρr , denoted as Sρr,x. Then,
we employ the Poisson Approximation (Hodges & Le Cam, 1960) to this binomial distribution,
reducing it to a Poisson distribution having parameter:

lim
N→∞

[
NPr(Sρr,x)

]
= lim
N→∞

[
Nf(x)

π
p/2 · ρpr

Γ( p
2

+ 1)

]
= lim
N→∞

[
NWif(x)er

]
= wif(x)ker = f ′(x)ker.

Therefore, we get:

lim
N→∞

Pr
[
T1 > r|X1 = x

]
=

k−1∑
i=0

[
kf ′(x)er

]i
i!

e−kf
′(x)er = Pr

[
Tx > r

]
,

such that the random variable Tx has the pdf:

hTx(y) =

[
kf ′(x)er

]k
(k − 1)!

e−kf
′(x)er ,−∞ < y <∞.
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Finally, we can compute the expectation following the same steps reported in (Singh et al., 2003,
Theorem 8):

lim
N→∞

E
[
T1|X1 = x

]
=

∫ ∞
−∞

y

[
kf ′(x)er

]k
(k − 1)!

e−kf
′(x)er dy

=

∫ ∞
0

[
ln z − ln k − ln f ′(x)

] [zk−1
]

(k − 1)!
e−z dz

=
1

Γ(k)

∫ ∞
0

[
ln(z)zk−1e−z

]
dz − ln k − ln f ′(x)

= Ψ(k)− ln k − ln f ′(x),

which for a generic x it yields:

lim
N→∞

E
x∼f ′

[
T1

]
= H(f ′)− ln k + Ψ(k) = lim

N→∞
E
x∼f

[
Ĝk(f ′|f)

]
.

Theorem 8.2.2. Let f be a sampling distribution, f ′ a target distribution. The asymptotic variance
of the estimator Ĥk(f ′|f) is given by:

lim
N→∞

Var
x∼f

[
Ĥk(f ′|f)

]
=

1

N

(
Var
x∼f

[
w lnw

]
+ Var
x∼f

[
w lnRp

]
+
(

lnC
)2 Var

x∼f

[
w
])
,

where w = f ′(x)
f(x)

, and C = Nπ
p/2

kΓ(p/2+1)
is a constant.

Proof. We consider the limit of the variance of Ĥk(f ′|f), we have:

lim
N→∞

Var
x∼f

[
Ĥk(f ′|f)

]
= lim
N→∞

Var
x∼f

[
Ĝk(f ′|f)

]
= lim
N→∞

Var
x∼f

[ N∑
i=1

Wi

k
Ti

]
= lim
N→∞

Var
x∼f

[
1

N

N∑
i=1

wiTi

]
,

where Ĝk(f ′|f) is the estimator without the bias correcting term (A.22), and Ti are the logarithmic
terms (A.23). Then, since the distribution of the random vector

(
w1T1, w2T2, . . . , wNTN

)
is the

same as any permutation of it (Singh et al., 2003):

Var
x∼f

[
1

N

N∑
i=1

wiTi

]
=

Varx∼f
[
w1T1

]
N

+
N(N − 1)

N2
Cov

(
w1T1, w2T2

)
.

Assuming that, for N → ∞, the term Cov(w1T1, w2T2) → 0 as its non-IW counterpart (Singh
et al., 2003, Theorem 11), we are interested on the first term Varx∼f

[
w1T1

]
. Especially, we can

derive:

Var
x∼f

[
w1T1

]
= Var

x∼f

[
w1 ln

1

w1

N

k

Rp1π
p/2

Γ( p
2

+ 1)

]
= Var

x∼f

[
− w1 lnw1 + w1 lnRp1 + w1 ln

N

k

π
p/2

Γ( p
2

+ 1)

]
,
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where in the following, we will substituteC = Nπ
p/2

kΓ(p/2+1)
. Then, we can write the second momentum

as:

E
x∼f

[(
w1T1

)2]
= E
x∼f

[(
w1 lnw1

)2
+
(
w1 lnRp1

)2
+
(
w1 lnC

)2
− 2w2

1 lnw1 lnRp1 − 2w2
1 lnw1 lnC + 2w2

1 lnRp1 lnC

]
,

while the squared expected value is:(
E
x∼f

[
w1T1

])2

=

(
− E
x∼f

[
w1 lnw1

]
+ E
x∼f

[
w1 lnRp1

]
+ E
x∼f

[
w1 lnC

])2

=

(
E
x∼f

[
w1 lnw1

])2

+

(
E
x∼f

[
w1R

p
1

])2

+

(
E
x∼f

[
w1 lnC

])2

− 2 E
x∼f

[
w2

1 lnw1 lnRp1

]
− 2 E

x∼f

[
w2

1 lnw1 lnC

]
+ 2 E

x∼f

[
w2

1 lnC lnRp1

]
.

Thus, we have:

Var
x∼f

[
w1T1

]
= E
x∼f

[(
w1T1

)2]− ( E
x∼f

[
w1T1

])2

= Var
x∼f

[
w1 lnw1

]
+ Var
x∼f

[
w1 lnRp1

]
+ Var
x∼f

[
w1 lnC

]
= Var

x∼f

[
w1 lnw1

]
+ Var
x∼f

[
w1 lnRp1

]
+
(

lnC
)2 Var

x∼f

[
w1

]
.

Summing it up, we can write the asymptotic order of the variance as:

lim
N→∞

Var
x∼f

[
Ĥ(f ′|f)

]
=

Varx∼f
[
w(x) lnw(x)

]
+ Varx∼f

[
w(x) lnR(x)p

]
+
(

lnC
)2 Varx∼f

[
w(x)

]
N

Theorem 8.4.1. Let πθ be the current policy and πθ′ a target policy. The gradient of the IW
estimator Ĥk(dθ

′
T |dθT ) w.r.t. θ′ is given by

∇θ′Ĥk(dθ
′
T |dθT ) = −

N∑
i=0

∇θ′Wi

k

(
V ki + ln

Wi

V ki

)
,

where

∇θ′Wi =
∑
j∈Nki

wj ×
( t∑
z=0

∇θ′ lnπθ′(azj |szj )

−

∑N
n=1

∏t
z=0

πθ′ (a
z
n|s

z
n)

πθ(azn|szn)

∑t
z=0∇θ′ lnπθ′(a

z
n|szn)∑N

n=1

∏t
z=0

πθ′ (azn|szn)

πθ(azn|szn)

)
.

Proof. We consider the IW entropy estimator (8.2), that is

Ĥk(d̄T (θ′)|d̄T (θ)) = −
N∑
i=1

Wi

k
ln
Wi

V ki
+ ln k −Ψ(k), (A.24)
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where:

Wi =
∑
j∈Nki

wj =
∑
j∈Nki

∏t
z=0

πθ′ (a
z
j |s

z
j )

πθ(azj |s
z
j )∑N

n=1

∏t
z=0

πθ′ (azn|szn)

πθ(azn|szn)

.

Then, by differentiating Equation (A.24) w.r.t. θ′, we have:

∇θ′Ĥk(d̄T (θ′)|d̄T (θ))

= −
N∑
i=1

∇θ′
(∑

j∈Nki
wj

k
ln

∑
j∈Nki

wj

V ki
+ ln k − ψ(k)

)

= −
N∑
i=1

(∑
j∈Nki

∇θ′wj
k

ln

∑
j∈Nki

wj

V ki
+

∑
j∈Nki

wj

k

V ki∑
j∈Nki

wj

∑
j∈Nki

∇θ′wj
)

= −
N∑
i=1

∑
j∈Nki

∇θ′wj
k

(
V ki + ln

∑
j∈Nki

wj

V ki

)
. (A.25)

Finally, we consider the expression of∇θ′wj in Equation (A.25) to conclude the proof:

∇θwj = wj∇θ′ lnwj

= wj∇θ′
(

ln

t∏
z=0

πθ′(a
z
j |szj )

πθ(azj |szj )
− ln

N∑
n=1

Prodn︷ ︸︸ ︷
t∏

z=0

πθ′(a
z
n|szn)

πθ(azn|szn)

)

= wj

( t∑
z=0

∇θ′ lnπθ′(azj |szj )−
∑N
n=1∇θ′Prodn∑N
n=1Prodn

)

= wj

( t∑
z=0

∇θ′ lnπθ′(azj |szj )−
∑N
n=1Prodn∇θ′ ln

(
Prodn

)∑N
n=1 Prodn

)

= wj

( t∑
z=0

∇θ′ lnπθ′(azj |szj )−
∑N
n=1

(
Prodn

∑t
z=0∇θ′ lnπθ′(a

z
n|szn)

)∑N
n=1Prodn

)
.

A.5 Proofs of Chapter 9

Theorem 9.5.2. Let M be a class of CMPs satisfying Ass. 9.5.1. Let dMπ be the marginal state
distribution over T steps induced by the policy π inM ∈M. We can upper bound the diameter
DM as

DM := sup
π∈Π

M′,M∈M

dW1(dM
′

π , dMπ ) ≤ sup
P ′,P∈M

1− LTPπ
1− LPπ

sup
s∈S
a∈A

dW1(P ′(·|s, a), P (·|s, a)).

Proof. The proof follows techniques from (Pirotta et al., 2015). Let us report a preliminary result
which states that the function hf (s) =

∫
A π(a|s)

∫
S P (s|s, a) dsda has a Lipschitz constant equal
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to LPπ (Pirotta et al., 2015, Lemma 3):

∣∣hf (s′)− hf (s)
∣∣ =

∣∣∣∣ ∫
S
f(s)

∫
A
π(a|s′)P (s|s′, a) dads−

∫
S
f(s)

∫
A
π(a|s)P (s|s, a) dads

∣∣∣∣
=

∣∣∣∣ ∫
S
f(s)

(
Pπ(s|s′)− Pπ(s|s)

)
ds

∣∣∣∣ ≤ LPπdS(s′, s), (A.26)

where dS is a metric over S and Pπ(s|s) =
∫
A π(a|s)P (s|s, a) da. Then, we note that the marginal

state distribution over T steps dMπ can be written as a sum of the contributions dMπ,t related to any
time step t ∈ [T ], which is

dMπ (s) =
1

T

T−1∑
t=0

dMπ,t(s). (A.27)

Hence, we can look at the Wasserstein distance of the state distributions for some t ∈ [T ] and
M′,M∈M. We obtain

dW1(dM
′

π,t , d
M
π,t)

= sup
f

{∣∣∣∣ ∫
S

(
dM
′

π,t (s)− dMπ,t(s)
)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(A.28)

= sup
f

{∣∣∣∣ ∫
S

∫
A

∫
S

(
dM
′

π,t−1(s)π(a|s)P ′(s|s, a)

− dMπ,t−1(s)π(a|s)P (s|s, a)

)
f(s) dsdads

∣∣∣∣ : ‖f‖L ≤ 1

}
= sup

f

{∣∣∣∣ ∫
S
dM
′

π,t−1(s)

∫
A

∫
S
π(a|s)

(
P ′(s|s, a)− P (s|s, a)

)
f(s) dsdads (A.29)

+

∫
S

(
dM
′

π,t−1(s)− dMπ,t−1(s)

)∫
A

∫
S
π(a|s)P (s|s, a)f(s) dsdads

∣∣∣∣ : ‖f‖L ≤ 1

}
(A.30)

≤ sup
f

{∣∣∣∣ ∫
S
dM
′

π,t−1(s)

∫
A

∫
S
π(a|s)

(
P ′(s|s, a)− P (s|s, a)

)
f(s) dsdads

∣∣∣∣ : ‖f‖L ≤ 1

}
+ sup

f

{∣∣∣∣ ∫
S

(
dM
′

π,t−1(s)− dMπ,t−1(s)

)∫
A

∫
S
π(a|s)P (s|s, a)f(s) dsdads

∣∣∣∣ : ‖f‖L ≤ 1

}
≤ sup

f

{∫
S
dM
′

π,t−1(s)

∫
A
π(a|s) dads

× sup
s∈S,a∈A

{∣∣∣∣ ∫
S

(
P ′(s|s, a)− P (s|s, a)

)
f(s) ds

∣∣∣∣} : ‖f‖L ≤ 1

}
+ LPπ sup

f

{∣∣∣∣ ∫
S

(
dM
′

π,t−1(s)− dMπ,t−1(s)

)
hf (s)

LPπ
ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(A.31)

= sup
s∈S,a∈A

dW1(P ′(·|s, a), P (·|s, a)) + LPπdW1(dM
′

π,t−1, d
M
π,t−1), (A.32)

where we plugged the common temporal relation dMπ,t(s′) =
∫
S

∫
A d
M
π,t−1(s)π(a|s)P (s′|s, a) dsda

into (A.28), we sum and subtract
∫
S

∫
A

∫
S d
M′
π,t−1(s)π(a|s)P (s|s, a) dsdads to get (A.29), (A.30),

and we apply the inequality in (A.26) to obtain (A.31) and then (A.32). To get rid of the dependence
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to the state distributions dM
′

π,t−1 and dMπ,t−1, we repeatedly unroll (A.32) to get

dW1(dM
′

π,t , d
M
π,t) ≤

( t∑
j=0

LjPπ

)
sup

s∈S,a∈A
dW1(P ′(·|s, a), P (·|s, a)) + LtPπdW1(D′, D) (A.33)

=

(
1− LtPπ
1− LPπ

)
sup

s∈S,a∈A
dW1(P ′(·|s, a), P (·|s, a)) + LtPπdW1(D′, D),

(A.34)

where we note that dW1(dM
′

π,0 , d
M
π,0) = dW1(D′, D) to derive (A.33), and we assume LPπ < 1

(Assumption 9.5.1) to get (A.34) from (A.33). As a side note, when the state and action spaces
are discrete, a natural choice of a metric is dS(s′, s) = 1(s′ 6= s) and dA = 1(a′ 6= a), which
results in the Wasserstein distance being equivalent to the total variation, the constant LPπ = 1, and∑t
j=0 L

j
Pπ = t. More details over the Lipschitz constant LPπ can be found in (Pirotta et al., 2015).

Finally, we can exploit the result in (A.34) to write

dW1(dM
′

π , dMπ ) = sup
f

{∣∣∣∣ ∫
S

(
1

T

T−1∑
t=0

dM
′

π,t (s)− 1

T

T−1∑
t=0

dMπ,t(s)

)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}
(A.35)

≤ 1

T

T−1∑
t=0

sup
f

{∣∣∣∣ ∫
S

(
dM
′

π,t (s)− dMπ,t(s)
)
f(s) ds

∣∣∣∣ : ‖f‖L ≤ 1

}

≤ 1

T

T−1∑
t=0

1− LtPπ
1− LPπ

sup
s∈S,a∈A

dW1(P ′(·|s, a), P (·|s, a)) + LtPπdW1(D′, D)

≤ 1− LTPπ
1− LPπ

sup
s∈S,a∈A

dW1(P ′(·|s, a), P (·|s, a)) + LTPπdW1(D′, D), (A.36)

in which we use (A.27) to get (A.35). The result follows from (A.36) by assuming the initial state
distribution D to be shared across all the CMPs in M, and taking the supremum over P ′, P ∈
M.

Theorem 9.5.3. Let M be a class of CMPs, let π ∈ Π be a policy, and let dMπ be the marginal
state distribution over T steps induced by π in M ∈ M. We can upper bound the π-diameter
DM(π) as

DM(π) := sup
M′,M∈M

dTV (dM
′

π , dMπ ) ≤ sup
P ′,P∈M

T E
s∼dMπ
a∼π(·|s)

dTV (P ′(·|s, a), P (·|s, a)).

Proof. The proof follows techniques from (Metelli et al., 2018a), especially Proposition 3.1. With-
out loss of generality, we takeM′,M ∈M. With some overloading of notation, we will alterna-
tively identify a CMP with the tupleM or its transition model P . Let us start considering the TV
between the marginal state distributions induced by π overM′,M, we can write

dTV (dM
′

π , dMπ )

=
1

2

∫
S

∣∣dM′π (s)− dMπ (s)
∣∣ ds =

1

2

∫
S

∣∣∣∣ 1

T

T−1∑
t=0

dM
′

π,t (s)− 1

T

T−1∑
t=0

dMπ,t(s)

∣∣∣∣ds (A.37)

≤ 1

2T

T−1∑
t=0

∫
S

∣∣dM′π,t (s)− dMπ,t(s)
∣∣ds =

1

T

T−1∑
t=0

dTV (dM
′

π,t , d
M
π,t), (A.38)
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where we use (A.27) to get (A.37). Then, we provide an upper bound to each term of the final sum
in (A.38), i.e.,

dTV (dM
′

π,t , d
M
π,t)

=
1

2

∫
S

∣∣dM′π,t (s)− dMπ,t(s)
∣∣ ds

=
1

2

∫
S

∣∣∣∣ ∫
A

∫
S
dM
′

π,t−1(s)π(a|s)P ′(s|s, a)− dMπ,t−1(s)π(a|s)P (s|s, a)

∣∣∣∣ dsdads (A.39)

≤ 1

2

∫
S

∣∣dM′π,t−1(s)− dMπ,t−1(s)
∣∣ ∫
A

∫
S
π(a|s)P ′(s|s, a) dsdads (A.40)

+
1

2

∫
S

∫
A
dMπ,t−1(s)π(a|s)

∫
S

∣∣P ′(s|s, a)− P (s|s, a)
∣∣dsdads (A.41)

= dTV (dM
′

π,t−1, d
M
π,t−1) + E

s∼dMπ,t−1

a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
(A.42)

=

t−1∑
j=1

E
s∼dMπ,j
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D), (A.43)

where we use the temporal relation dMπ,t(s′) =
∫
S

∫
A d
M
π,t−1(s)π(a|s)P (s′|s, a) dsda to get (A.39),

in which we sum and subtract
∫
S

∫
A

∫
S d
M
π,t−1(s)π(a|s)P (s|s, a) dsdads to obtain (A.40) and

(A.41), and we repeatedly unroll (A.42) to write (A.43), noting that dTV (dM
′

π,0 , d
M
π,0) = dTV (D′, D).

Finally, we can plug (A.43) in (A.38) to get

dTV (dM
′

π , dMπ )

≤ 1

T

T−1∑
t=0

dTV (dM
′

π,t , d
M
π,t)

≤ 1

T

T−1∑
t=0

t−1∑
j=1

E
s∼dMπ,j
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D)

≤
T−1∑
t=0

∫
S

1

T

T−1∑
j=0

dMπ,j(s) E
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
ds+ dTV (D′, D) (A.44)

=

T−1∑
t=0

E
s∼dMπ
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D) (A.45)

= T E
s∼dMπ
a∼π(·|s)

[
dTV (P ′(·|s, a), P (·|s, a))

]
+ dTV (D′, D), (A.46)

in which we have used (A.27) to obtain (A.45) from (A.44). The final result is straightforward from
(A.45) by assuming the initial state distribution D to be shared across all the CMPs in M, and
taking the supremum over P ′, P ∈M.

Theorem 9.5.4. Let M be a class of CMPs, let π ∈ Π be a policy and DM(π) the corresponding
π-diameter of M. Let dMπ be the marginal state distribution over T steps induced by π inM ∈
M, and let σM ≤ σM := infs∈S d

M
π (s),∀M ∈M. We can upper bound the entropy gap of
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the policy π within the model class M as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣ ≤ (DM(π)

)2/
σM +DM(π) log(1/σM)

Proof. Let us expand the entropy gap of the policy π as

sup
M′,M∈M

∣∣H(dM
′

π )−H(dMπ )
∣∣

= sup
M′,M∈M

{∣∣∣∣− ∫
S
dM
′

π (s) log dM
′

π (s) ds+

∫
S
dMπ (s) log dMπ (s) ds

∣∣∣∣} (A.47)

≤ sup
M′,M∈M

{∣∣∣∣ ∫
S

(
dMπ (s)− dM

′
π (s)

)
log dMπ (s) ds

∣∣∣∣
+

∣∣∣∣ ∫
S
dM
′

π (s)
(

log dM
′

π (s)− log dMπ (s)
)

ds

∣∣∣∣} (A.48)

≤ sup
M′,M∈M

{
− log σM

∫
S

∣∣∣dM′π (s)− dM
′

π (s)
∣∣∣ ds+DKL

(
dM
′

π ||dMπ
)}

(A.49)

≤ sup
M′,M∈M

{
− log σMDTV (dM

′
π , dMπ ) +

(
DTV (dM

′
π , dMπ )

)2/
σM

}
(A.50)

≤
(
DM(π)

)2/
σM −DM(π) log σM (A.51)

in which we sum and subtract
∫
S d
M′
π (s) log dMπ (s) ds to obtain (A.48) from (A.47), log dMπ (s) is

upper bounded with log σM to get (A.49), and we use the reverse Pinsker’s inequalityDKL(p||q) ≤
(DTV (p, q))2/ infx∈X q(x) (Csiszár & Talata, 2006, p. 1012 and Lemma 6.3) to obtain (A.56).
Finally, we get the result by upper boundingDTV (dM

′
π , dMπ ) with the π-diameterDM(π) and σM

with σM in (A.50).

Proposition 9.6.1. The policy gradient of the exploration objective EαM(πθ) w.r.t. θ is given by

∇θEαM(πθ) = E
M∼pM
τ∼pπθ ,M

[( T−1∑
t=0

∇θ logπθ(at,τ |st,τ )

)

×
(
Hτ −VaRα(Hτ )

)∣∣∣∣Hτ ≤ VaRα(Hτ )

]
.

Proof. Let us start from expanding the exploration objective (9.2) to write

EαM(π) = CVaRα(Hτ )

= E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ )

]
=

1

α

∫ VaRα(Hτ )

−∞
pπθ ,M(h)h dh, (A.52)

where pπθ ,M is the probability density function (pdf) of the random variable Hτ when the policy
πθ is deployed on the class of environments M, and the last equality comes from the definition of
CVaR (Rockafellar et al., 2000). Before computing the gradient of (A.52), we derive a preliminary
result for later use, i.e.,

∇θ
∫ VaRα(Hτ )

−∞
pπθ ,M(h) dh

=

∫ VaRα(Hτ )

−∞
∇θpπθ ,M(h) dh+∇θ VaRα(Hτ )pπθ ,M(VaRα(Hτ )) = 0, (A.53)
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which follows directly from the Leibniz integral rule, noting that VaRα(Hτ ) depends on θ through
the pdf of Hτ . We now take the gradient of (A.52) to get

∇θEαM(π)

= ∇θ
1

α

∫ VaRα(Hτ )

−∞
pπθ ,M(h)h dh

=
1

α

∫ VaRα(Hτ )

−∞
∇θpπθ ,M(h)hdh+

1

α
∇θ VaRα(Hτ ) VaRα(Hτ )pπθ ,M(VaRα(Hτ ))

(A.54)

=
1

α

∫ VaRα(Hτ )

−∞
∇θpπθ ,M(h)

(
h−VaRα(Hτ )

)
dh, (A.55)

where (A.54) follows from the Leibniz integral rule, and (A.55) is obtained from (A.54) through
(A.53), which we can write as pπθ ,M(VaRα(Hτ )) = 1

∇θ VaRα(Hτ )

∫ VaRα(Hτ )

−∞ ∇θpπθ ,M(h) dh.
All of the steps above are straightforward replications of the derivations by Tamar et al. (2015b),
Proposition 1. To conclude the proof we just have to compute the term ∇θpπθ ,M(h), which is
specific to our setting. Especially, we note that

∇θpπθ ,M(h)

=

∫
M

pM(M)

∫
T
∇θpπθ ,M(τ)δ(h−Hτ ) dτ dM (A.56)

=

∫
M

pM(M)

∫
T
pπθ ,M(τ)∇θ log pπθ ,M(τ)δ(h−Hτ ) dτ dM

=

∫
M

pM(M)

∫
T
pπθ ,M(τ)

( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)
δ(h−Hτ ) dτ dM, (A.57)

where (A.56) and (A.57) are straightforward from the definitions in Section 9.3, and T is the set of
feasible trajectories of length T . Finally, the result follows by plugging (A.57) into (A.55), which
gives

∇θEαM(π) =
1

α

∫
M

pM(M)

∫
T
pπθ ,M(τ)

×
∫ VaRα(Hτ )

−∞
δ(h−Hτ )

( T−1∑
t=0

∇θ log πθ(at,τ |st,τ )

)(
h−VaRα(Hτ )

)
dh dτ dM.

Proposition 9.6.2. Let fH be the pdf of Hτ , for which there exist η,∆ > 0 such that fH(Hτ ) > η
for all Hτ ∈

[
VaRα(Hτ ) − ∆

2
,VaRα(Hτ ) + ∆

2

]
. Let U be a large constant such that fτi ≤ U

for all τi. The number of samples n∗ for which the estimation error ε of ∇̂θEαM(πθ) is lower than
the bias of ∇̂bθEαM(πθ) with probability at least δ ∈ (0, 1) is given by

n∗ =
log 2/δ

2η2 min{U2α2b2,∆2} .

Proof. The proof is straightforward by considering the estimation error ε of ∇̂θEαM(πθ) equal to
the upper bound of the bias of ∇̂bθEαM(πθ) from Lemma A.5.1 (see below), i.e., ε = Uαb. Then,
we set δ = 2 exp

(
− 2n∗η2 min(U2α2b2,∆2)

)
from Lemma A.5.2 (see below), which gives the

result through simple calculations.
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Lemma A.5.1. The expected bias of the policy gradient estimate ∇̂bθEαM(πθ) can be upper bounded
as

E
M∼M

τi∼pπθ ,M

[
bias
]

= E
Mi∼M

τi∼pπθ ,Mi

[
∇θEαM(πθ)− ∇̂bθEαM(πθ)

]
≤ Uαb,

where U is a constant such that fτi ≤ U for all τi.

Proof. This Lemma can be easily derived by means of

E
Mi∼M

τi∼pπθ ,Mi

[
bias
]

= E
Mi∼M

τi∼pπθ ,Mi

[
∇θEαM(πθ)− ∇̂bθEαM(πθ)

]

= ∇θEαM(πθ)− E
Mi∼M

τi∼pπθ ,Mi

[
1

αN

N∑
i=1

fτi
(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ ))

]

= ∇θEαM(πθ)− E
M∼M
τ∼pπθ ,M

[
fτ
(
Ĥτ −VaRα(Hτ )− b

)
1(Ĥτ ≤ V̂aRα(Hτ ))

]
(A.58)

= ∇θEαM(πθ)−∇θEαM(πθ) + E
M∼M
τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ ))

]
(A.59)

= E
M∼M
τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ ))

]
≤ Uαb, (A.60)

where (A.59) follows from (A.58) by noting that the estimator without the baseline term is unbi-
ased (Tamar et al., 2015b), and (A.60) is obtained by upper bounding fτ with U and noting that
E M∼M
τ∼pπθ ,M

[
1(Ĥτ ≤ V̂aRα(Hτ ))

]
= α.

Lemma A.5.2 (VaR concentration bound from (Kolla et al., 2019)). Let X be a continuous random
variable with a pdf fX for which there exist η,∆ > 0 such that fX(x) > η for all x ∈

[
VaRα(X)−

∆
2
,VaRα(X) + ∆

2

]
. Then, for any ε > 0 we have

Pr
[
| V̂aRα(X)α −VaRα(X)| ≥ ε

]
≤ 2 exp

(
− 2nη2 min(ε2,∆2)

)
,

where n ∈ N is the number of samples employed to estimate V̂aRα(X).
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APPENDIXB
Experimental Details

B.1 Experimental Details of Chapter 8

B.1.1 Environments

For all the environments presented in Chapter 8, we use off-the-shelf implementations from the
OpenAI gym library (Brockman et al., 2016) with the exception of GridWorld, which we coded from
scratch as described in the next paragraph. We also slightly modified the MountainCar environment
(see Figure B.1) by adding a wall on top of the right mountain to make the environment non-episodic.

In GridWorld, the agent can navigate a map composed of four rooms connected by four hallways,
as represented in Figure B.1. At each step the agent can choose how much to move on the x and y
axes. The maximum continuous absolute change in position along any of the axes is 0.2. Each room
is a space of 5 by 5 units, thus, the agent needs around 50 steps to move from one side of the room
to the other along a straight line. Any action that leads the agent to collide with a wall is ignored and
the agent remains in the previous state (position).

B.1.2 Policies

In all the reported experiments, the policy is encoded through a Gaussian distribution with diagonal
covariance matrix. It takes as input the environment state features and outputs an action vector a ∼
N (µ, σ2). The mean µ is state-dependent and it is the downstream output of a densely connected
neural network. The standard deviation is state-independent and it is represented by a separated
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Figure B.1: Visual representation of the MountainCar (left) and GridWorld (right) envi-
ronments. In Gridworld, the agent is represented with the red circle, and it starts each
episode in a random position inside the yellow area.

trainable vector. The dimension of µ, σ and a vectors is equal to the action-space dimensions of the
specific environment.

B.1.3 Unsupervised Pre-Training

Continuous Control Set-Up

Here we further comment the experimental set-up for continuous control domains that we have
briefly described in Section 8.5.1, especially concerning how we select the set of features on which
the entropy index is maximized. First, in the Ant domain, we maximize the entropy over a 7D
space of spatial coordinates (3D) and torso orientation (4D), excluding joint angles and velocities.
This is to obtain an intermediate hurdle, in terms of dimensionality, w.r.t. the smaller GridWorld and
MountainCar, and the most complex Humanoid and HandReach. Instead, in the latter two domains,
we essentially maximize the entropy over the full state space excluding velocities and external forces,
so that we have a 24D space both in Humanoid (3D position, 4D body orientation, and all the joint
angles) and HandReach (all the joint angles). We noted that including external forces does not
affect the entropy maximization in a meaningful way, as they resulted always zero during training.
The reason why we also discarded velocities from the entropy computation is twofold. First, we
noted that velocity-related features are quite unstable and spiky, so that they can be harmful without
normalization, which we avoided. Secondly, we think that maximizing the entropy over the largest
set of features is not necessarily a good idea when targeting generalization (see B.1.4), especially
if improving the entropy over some features reduces the entropy over some other (as in the case of
positions/angles and velocities).

MEPOL

As outlined by the MEPOL pseudocode in Algorithm 7, in each epoch a dataset of particles Dτ =
{(τ ti , si)}Ni=1 is gathered for the given time horizon T . We call Ntraj the number of trajectories,
or batch size, used to build the dataset, so that N = Ntraj · T . Before starting the main loop of
the algorithm we perform some training steps to force the policy to output a zero µ vector. This
is instrumental to obtain a common starting point across all the seeds and can be removed without
affecting the algorithm behavior.
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For what concerns the k-nearest neighbors computation we use the neighbors package from the
scikit-learn library (Pedregosa et al., 2011), which provides efficient algorithms and data structures
to first compute and then query nearest neighbors (KD-tree in our case). Note that the computational
complexity of each epoch is due to the cost of computing the k-NN entropy estimation, which is
O(pN logN) to build the tree (p is the number of dimensions), and O(kN logN) to search the
neighbors for every sample. Summing it up we get a complexity in the order of O(N logN(p +
k)) for each epoch. In the table below, we report all the relevant MEPOL parameters used in the
experiments.

Table B.1: MEPOL Parameters

MountainCar GridWorld Ant Humanoid HandReach
Number of epochs 650 200 2000 2000 2000
Horizon (T) 400 1200 500 500 50
Batch Size (Ntraj) 20 20 20 20 50
Kl threshold (δ) 15.0 15.0 15.0 15.0 15.0
Learning rate (α) 10−4 10−5 10−5 10−5 10−5

Max iters 30 30 30 30 30
Number of neighbors (k) 4 50 4 4 4
Policy hidden layer sizes (300,300) (300,300) (400,300) (400,300) (400,300)
Policy hidden layer act. function ReLU ReLU ReLU ReLU ReLU
Number of seeds 8 8 8 8 8

MaxEnt

As already outlined in Section 8.5.1, we use the original MaxEnt implementation to deal with con-
tinuous domains.1 We adopt this implementation also for the Ant and MountainCar environments,
which were originally presented only as discretized domains. 2 3 This allowed us not only to work in
a truly continuous setting, as we do in MEPOL, but also to obtain better results than the discretized
version. The only significant change we made is employing TRPO instead of SAC for the RL com-
ponent. This is because, having tested MaxEnt with both the configurations, we were able to get
slightly superior performance, and a more stable behavior, with TRPO.

In the tables below, we report all the relevant MaxEnt parameters used in the experiments, as well
as the corresponding ranges (or sets) of values over which we searched for their optimal values. The
TRPO parameters are reported employing the same notation as in (Duan et al., 2016). In the Ant and
Humanoid experiments, we use a higher time horizon (Td) than the optimized one (T ) to estimate
the state density induced by the mixture of policies. The reason why we do this is that, otherwise, we
were not able to obtain reliable density estimations. The batch size used for the density estimation
is denoted as Ntraj_d. We also report the number of neighbors (k) that we used to calculate the
entropy of the mixture in the plots of Section 8.5.1.4 The entropy is computed over the same time
horizon T and the same batch size Ntraj used in MEPOL. Note that the horizon reported for TRPO
is the same as the objective horizon T . The neural policy architectures are not reported as they are
the same as in Table B.1.

1https://github.com/abbyvansoest/maxent/tree/master/humanoid
2https://github.com/abbyvansoest/maxent_base
3https://github.com/abbyvansoest/maxent/tree/master/ant
4Note that this value does not affect the learning process of MaxEnt, as it is only sued for evaluation.
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Table B.2: MaxEnt Parameters - MountainCar

Value Search In
Number of neighbors (k) 4 -
Mixture Size 60 -
Density Horizon (Td) 400 -
Density Batch Size (Ntraj_d) 100 -
KDE Kernel Epanechnikov Gaussian, Epanechnikov
KDE Bandwidth 0.1 [0.1, 2.0]
PCA No Yes, No

TRPO
Num. Iter. 50 40, 50, 60
Horizon 400 -
Sim. steps per Iter. 4000 -
δKL 0.1 0.1, 0.01, 0.001
Discount (γ) 0.99 -
Number of seeds 8 -

Table B.3: MaxEnt Parameters - Ant

Value Search In
Number of neighbors (k) 4 -
Mixture Size 30 -
Density Horizon (Td) 10000 -
Density Batch Size (Ntraj_d) 10 -
KDE Kernel Epanechnikov Gaussian, Epanechnikov
KDE Bandwidth 0.2 [0.1, 2.0]
PCA Yes (3 components) Yes, No

TRPO
Num. Iter. 300 300, 500
Horizon 500 -
Sim. steps per Iter. 5000 -
δKL 0.1 0.1, 0.008
Discount (γ) 0.99 -
Number of seeds 8 -
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Table B.4: MaxEnt Parameters - Humanoid

Value Search In
Number of neighbors (k) 4 -
Mixture Size 30 -
Density Horizon (Td) 50000 -
Density Batch Size (Ntraj_d) 20 -
KDE Kernel Epanechnikov Gaussian, Epanechnikov
KDE Bandwidth 1.0 [0.1, 2.0]
PCA No Yes, No

TRPO
Num. Iter. 300 200, 300
Horizon 500 -
Sim. steps per Iter. 5000 -
δKL 0.1 0.1, 0.008
Discount (γ) 0.99 -
Number of seeds 8 -

Table B.5: MaxEnt Parameters - HandReach

Value Search In
Number of neighbors (k) 4 -
Mixture Size 30 -
Density Horizon (Td) 10000 -
Density Batch Size (Ntraj_d) 20 -
KDE Kernel Epanechnikov Gaussian, Epanechnikov
KDE Bandwidth 1.0 [0.1, 5.0]
PCA No Yes, No

TRPO
Num. Iter. 300 200, 300
Horizon 50 -
Sim. steps per Iter. 500 -
δKL 0.1 -
Discount (γ) 0.99 -
Number of seeds 8 -

Parameters Sensitivity

In Figure B.2, we show how the selection of the main parameters of MEPOL impacts on the learning
process. To this end, we consider a set of experiments in the illustrative MountainCar domain,
where we vary one parameter at a time to inspect the change in the obtained entropy. As we can
notice, the algorithm shows little sensitivity to the number of neighbors (k) considered in the entropy
estimation. Allowing off-policy updates through an higher KL threshold δ positively impacts the
learning efficiency. Furthermore, MEPOL displays a good behavior even when we limit the batch-
size.
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Figure B.2: Comparison of the entropy index as a function of the learning epochs for
MEPOL with different set of parameters on the MountainCar domain. (95% c.i. over
8 runs, T = 400 (a,b,c), k = 4 (b,c), δ = 0.05 (a,c), Ntraj = 100 (a,b)).

Discrete Entropy

In Figure B.3, we report the plots for the evaluation of the entropy on the 2D-discretized state-space
from which we have taken the values reported in Figure 8.3a. In Ant and Humanoid experiments, the
considered state-space is the 2D, discretized, agent’s coordinates (x, y). These plots were created
while running the experiments in Section 8.5.1.

State-Visitation Heatmaps

In Figure B.4, and Figure B.5, we report the MEPOL state-coverage heatmaps obtained in the Grid-
World and MountainCar experiments. In Figure B.6, you can see the state-coverage heatmap in the
Ant domain over a 12 by 12 units space, which is centered in the Ant starting position. The thick
borders in the heatmap are due to trajectories going out of bounds. These heatmaps were created
while running the experiments presented in Section 8.5.1 by discretizing the continuous state-space.
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Figure B.3: Comparison of the entropy computed on the 2D-discretized state-space as a
function of training samples achieved by MEPOL, MaxEnt, and a random policy in
the MountainCar, Ant and Humanoid domains in the setting presented in Section 8.5.1
(95% c.i. over 8 runs).
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Figure B.4: MEPOL log-probability state visitation heatmaps in the GridWorld domain
created by running the policy for Ntraj = 100, T = 1200.

Figure B.5: MEPOL log-probability state visitation heatmaps in the MountainCar domain
created by running the policy for Ntraj = 100, T = 400.

Figure B.6: MEPOL log-probability (x, y) state visitation heatmaps in the Ant domain
created by running the policy for Ntraj = 100, T = 500.
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B.1.4 Supervised Fine-Tuning

Algorithms

We use the TRPO implementation from OpenAI’s SpinningUp library.5 For SAC, we adopt an
open-source codebase from (Ciosek et al., 2019).6 For SMM, we use the original codebase, which
provides also an implementation of ICM, and Pseudocount.7

Parameters Detail

In Table B.6, we report the TRPO parameters used in the experiments, following the same notation
as in (Duan et al., 2016). Both the basic agent and the MEPOL agent use the same parameters. In
Table B.7, we report the SAC parameters following the notation as in (Haarnoja et al., 2018). For the
SMM baseline, we use 4 skills. In SMM, ICM, and Pseudocount, we equally weight the extrinsic
and the intrinsic components, as we have not seen any improvement doing otherwise. Note that
SMM, ICM, and Pseudocount are built on top of SAC for which we adopt the same parameters as in
Table B.7. The neural policy architectures are not reported as they are the same as in Table B.1.

Table B.6: TRPO Parameters for Goal-Based Reinforcement Learning

GridWorld AntEscape AntJump AntNavigate HumanoidUp
Num. Iter. 100 500 1000 1000 2000
Horizon 1200 500 500 500 2000
Sim. steps per Iter. 12000 5000 50000 50000 20000
δKL 10−4 10−2 10−2 10−2 10−2

Discount (γ) 0.99 0.99 0.99 0.99 0.99
Number of seeds 8 8 8 8 8

Table B.7: SAC Parameters for Goal-Based Reinforcement Learning

GridWorld AntEscape AntJump AntNavigate HumanoidUp
Epoch 100 500 1000 1000 2000
Num. Updates 12000 5000 5000 5000 6000
Learning Rate 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

Discount (γ) 0.99 0.99 0.99 0.99 0.99
Replay buffer size (γ) 106 106 106 106 106

Number of samples per mini batch 256 256 256 256 256
Number of seeds 8 8 8 8 8

Higher-Level and Lower-Level Policies

In this section, we discuss the performance achieved by MEPOL policies when facing higher-level
tasks, such as 2D navigation (Figure B.7a) and standing-up (Figure B.7b). Especially, we can see that
higher-level MEPOL policies, which are trained to maximize the entropy over spatial coordinates

5https://github.com/openai/spinningup
6https://github.com/microsoft/oac-explore
7https://github.com/RLAgent/state-marginal-matching
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(x-y in Ant, x-y-z in Humanoid), outperform lower-level MEPOL policies, which are trained to max-
imize entropy over spatial coordinates, orientation, and joint angles (as reported in Section 8.5.1).
This is not surprising, since higher-level policies better match the level of abstraction of the con-
sidered tasks. However, it is worth noting that also lower-level policies achieve a remarkable initial
performance, and a positive learning trend, albeit experiencing slower convergence.
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Figure B.7: Comparison of the average return as a function of learning epochs achieved
by TRPO with MEPOL initialization (higher-level, lower-level) and a Random initial-
ization (95% c.i. over 8 runs).

B.2 Experimental Details of Chapter 9

In this section, we report an extensive description of the conducted experiments, including details
about the considered environments, policies, algorithms, and values of the hyper-parameters.

B.2.1 Environments

We use three different environments in our experiments. The first one is a custom implementation
of a gridworld, coded from scratch. The second one is an adapted version of the rllab Ant-Maze
environment (Duan et al., 2016).

GridWorld with Slope

In GridWorld with Slope (2D states, 2D actions), the agent can move inside a map composed of four
rooms connected by four narrow hallways, by choosing at each step how much to move on the x
and y axes. The side of the environment measures 2 units and the maximum viable space of the
agent at each step is 0.2. Thus, the agent needs around 10 steps to go from one side to the other
on a straight line. When the agent collides with the external borders or with the internal walls, it is
re-positioned according to a custom function. This is done not only to make the interaction more
realistic, but also to limit the possibility to have a negative infinite entropy resulting from the k-NN
computation, which can occur when the samples are too close and the value of the parameter k is not
high enough. This precaution is particularly useful in our scenario, due to the presence of a slope,
and especially in the adversarial configuration GWN, because of the initial position of the agent,
which is sampled in a small square in the top-right corner. It is easy to see that in the first epochs in
the GWN environment, the agent would repeatedly collide with the top-border, leading in general to
a much more lower entropy w.r.t. to GWS.
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(a) Ant Stairs Down (b) Ant Stairs Up

Figure B.8: Illustration of the Ant Stairs domain. We show a render of the Ant Stairs
Down environment (a) and of the adverse Ant Stairs Up environment (b).

The slope is applied only in the upper half of the environment, since we found this to be a good trade-
off between the intention of maintaining a difference in terms of risk among the two configurations
and the overall complexity of the exploration. Indeed, we noted that by applying the slope to the
whole GridWorld, the advantage in terms of exploration entailed by the risk-averse approach is even
higher, but it struggles to explore the bottom states of the environment with a reasonable number of
samples. The slope is computed as s ∼ N ( ∆max

2
, ∆max

20
), where ∆max = 0.2 is the maximum

step that the agent can perform.

MultiGrid

In MultiGrid, everything works as in GridWorld with Slope, but we indeed have 10 configurations.
These environments differ for both the shape and the type of slope to which they are subject to. The
adversarial configuration is still GWN, but the slope is computed as s ∼ N ( ∆max

2.6
, ∆max

20
), where

∆max = 0.2. The other 9 gridworlds have instead a different arrangement of the walls (see the
heatmaps in Figure B.12) and the slope, computed as s ∼ N ( ∆max

3.2
, ∆max

20
) with ∆max = 0.2, is

applied over the entire environment. Two configurations are subject to south-facing slope, three to
east-facing slope, one to south-east-facing slope and three to no slope at all.

AntStairs

We adopt the Ant-Maze environment (29D states, 8D actions) of rllab (Duan et al., 2016) and we
exploit its malleability to build two custom configurations which could fit our purposes. The ad-
verse configuration consists of a narrow ascending staircase (Ant Stairs Up) made up of an initial
square (the initial position of the Ant), followed by three blocks of increasing height. The simpler
configuration consists of a wide descending staircase (Ant Stairs Down), made up of 3× 3 blocks of
decreasing height and a final 1×3 flat area. Each block has a side length slightly greater than the Ant
size. A visual representation of such settings is provided in Figure B.8. During the Unsupervised
Pre-Training phase, EαM is maximized over the x,y spatial coordinates of the ant’s torso.

MiniGrid

We use the MiniGrid suite (Chevalier-Boisvert et al., 2018), which consists of a set of fast and light-
weighted gridworld environments. The environments are partially observable, with the dimension
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of the agent’s field of view having size 7× 7× 3. Both the observation space S and the action space
A are discrete, and in each tile of the environment there can be only one object at the same time.
The set of objects is O = {wall, f loor, lava, door, key, ball, box, goal}. The agent can move
inside the grid and interact with these objects according to their properties. In particular, the actions
comprise turning left, turning right, moving forward, picking up an object, dropping an object and
toggling, i.e., interacting with the objects (e.g., to open a door). We exploit the suite’s malleability to
build two custom environments. The simpler one has a size of 18× 18, and it simply contains some
sparse walls. The adverse configuration is smaller, 10× 10, and is characterized by the presence of
a door at the top of a narrow hallway. The door is closed but not locked, meaning that the agent can
open it without using a key. Moreover, we modify the movement of the agent so that the direction
is given by the bottom of the triangle instead of the top. The intuition is that by doing this we are
essentially changing the shape of the agent, causing an additional hurdle for the exploration.

As regards the training procedure, everything remains the same, except for two differences. The
first difference is that the k-NN computation is performed on the representation space generated by
a fixed random encoder. Note that this random encoder is not part of the policy. It is randomly
initialized and not updated during the training in order to produce a more stable entropy estimate.
In addition, before computing the distances, we apply to its output a random Gaussian noise ε ∼
N (0.001, 0.001) truncated in [0, 0.001]. We do this to avoid the aliasing problem, which occurs
when we have many samples (more than k) in the same position, thus having zero distance and
producing a negative infinite entropy estimate. The homogeneity of the MiniGrid environments
in terms of features make this problem more frequent. The second difference is the addition of a
bootstrapping procedure for the easy configuration, meaning that we use only a subset of the mini-
batches of the easy configuration to update the policy. Especially, we randomly sample a number of
mini-batches that is equal to the dimension of the Dα dataset so that MEPOL uses the same number
of samples of αMEPOL. The reason why we avail this method is to avoid a clear advantage for
MEPOL in learning effective representations, since it usually access more samples than αMEPOL.
Note that it is not a stretch, since we are essentially balancing the information available to the two
algorithms.

B.2.2 Policies

In all the experiments but one the policy is a Gaussian distribution with diagonal covariance matrix.
It takes as input the environment state features and outputs an action vector a ∼ N (µ, σ2). The
mean µ is state-dependent and is the downstream output of a densely connected neural network. The
standard deviation is state-independent and it is represented by a separated trainable vector. The
dimension of µ, σ, and a vectors is equal to the action-space dimension of the environment. The
only experiment with a different policy is the MiniGrid one, for which we adopt the architecture
recently proposed by (Seo et al., 2021). Thus, we use a random encoder made up of 3 convolutional
layers with kernel 2, stride 1, and padding 0, each activated by a ReLU function, and with 16, 32
and 64 filters respectively. The first ReLU is followed by a 2D max pooling layer with kernel 2. The
output of the encoder is a 64 dimensional tensor, which is then fed to a feed-forward neural network
with two fully-connected layers with hidden dimension 64 and a Tanh activation function.

B.2.3 Algorithms

In this section, we provide an extended pseudocode (Algorithm 9) of the αMEPOL algorithm we
presented in Section 9.6, along with some additional comments.

Given a probability distribution pM, the algorithm operates by iteratively sampling an environment
Mi ∈ M drawn according to pM and then sampling B trajectories of length T from it using
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Algorithm 9 αMEPOL
Input: initial policy πθ0

, exploration horizon T , number of trajectories N , batch-size B,
percentile α, learning rate β, trust-region threshold δ, sampling distribution pM
Output: exploration policy πθh

1: for epoch = 0, 1, . . ., until convergence do
2: for i = 1, 2, . . . , N do
3: sample an environmentMi ∼ pM
4: for j = 1, 2, . . . , B do
5: sample a trajectory τj ∼ pπθ ,Mi of length T
6: end for
7: end for
8: initialize dataset D = ∅, off-policy step h = 0 and θh = θ
9: while D̂KL(πθ0 ||πθh) ≤ δ do

10: for j = 1, 2, . . . , B do
11: estimate Hτj with (8.2)
12: append Ĥτj to D
13: end for
14: sort D and split it in Dα and D1−α
15: compute a gradient step θh+1 = θh + β∇̂θhE

α
M(πθh)

16: h← h+ 1
17: end while
18: θ ← θh
19: end for

πθ , where B is the dimension of each mini-batch. Then, the estimate of the entropy of each mini-
batch Ĥτj is computed by means of the estimator in (8.2) and appended to the dataset D. Once
the dataset D is obtained, we can straightforwardly derive a risk-sensitive policy update by just
subsampling from it, so that to keep only the realizations below the α-percentile. This can be easily
done by sortingD in ascending order and considering only the αN first mini-batches. Then, we can
compute the gradient as follows:

∇̂θEαM(πθ) =
1

αN

N∑
i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ )).

The operations carried out once all the trajectories have been sampled are executed in a fully off-
policy manner, in which we repeat the same steps until the trust-region boundary is reached or
until the number of off-policy iterations exceeds a specified limit. The reason why we introduce
an additional parameter B, instead of considering one trajectory at a time, is due to the fact that
a significant amount of samples (see the parameters in Table B.8) is needed to obtain a reliable
estimate of the entropy, noting that the entropy estimator is only asymptotically unbiased.

B.2.4 Hyperparameter Values

To choose the values of the hyper-parameters of αMEPOL, MEPOL, and TRPO we mostly relied on
the values reported in B.1, which have been optimized for a the risk-neutral approach. By avoiding to
specifically fine-tune the hyper-parameters for the αMEPOL algorithm (and TRPO with αMEPOL
initialization), we obtain conservative comparisons between αMEPOL and the MEPOL baseline.
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Unsupervised Pre-Training

In Table B.8, we report the parameters of αMEPOL and MEPOL that are used in the experiments
described in Section 9.7.1, Section 9.7.2, Section 9.7.4 and Section 9.7.5.

Table B.8: αMEPOL and MEPOL Parameters for the Unsupervised Pre-Training

GRIDWORLD WITH SLOPE MULTIGRID ANT MINIGRID

NUMBER OF EPOCHS 150 50 400 300
HORIZON (T ) 400 400 400 150
NUMBER OF TRAJ. (N ) 200 500 150 100
MINI-BATCH DIMENSION (B) 5 5 5 5
α-PERCENTILE 0.2 0.1 0.2 0.2
SAMPLING DIST. (pM) [0.8,0.2] [0.1,. . .,0.1] [0.8,0.2] [0.8,0.2]
KL THRESHOLD (δ) 15 15 15 15
LEARNING RATE (β) 10−5 10−5 10−5 10−5

NUMBER OF NEIGHBORS (k) 30 30 500 50
POLICY HIDDEN LAYER SIZES (300,300) (300,300) (400,300) *
POLICY HIDDEN LAYER ACT. FUNCT. RELU RELU RELU *
NUMBER OF SEEDS 10 10 10 10
* See Section B.2.2 for full details on the architecture.

Supervised Fine-Tuning

In Table B.9, we report the TRPO parameters that are used in the experiments described in Sec-
tion 9.7.3, Section 9.7.4, Section 9.7.5 and Section 9.7.7.

Table B.9: TRPO Parameters for the Supervised Fine-Tuning

GRIDWORLD WITH SLOPE MULTIGRID ANT MINIGRID

NUMBER OF ITER. 100 100 100 200
HORIZON 400 400 400 150
SIM. STEPS PER ITER. 1.2× 104 1.2× 104 4× 104 7.5× 103

δKL 10−4 10−4 10−2 10−4

DISCOUNT (γ) 0.99 0.99 0.99 0.99
NUMBER OF SEEDS 50 50 8 13
NUMBER OF GOALS 50 50 8 13

Meta-RL

In Table B.10 and Table B.11, we report the MAML and DIAYN parameters that are used in the
experiments described in Section 9.7.7, in order to meta-train a policy on the GridWorld with Slope
and MultiGrid domains. For MAML, we adopted an open-source codebase,8 while for DIAYN we
used the original implementation.

8https://github.com/tristandeleu/pytorch-maml-rl
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Table B.10: MAML Parameters for the Meta-Training

GRIDWORLD WITH SLOPE MULTIGRID

NUMBER OF BATCHES 200 200
META BATCH SIZE 20 20
FAST BATCH SIZE 30 30
NUM. OF GRAD. STEP 1 1
HORIZON 400 400
FAST LEARNING RATE 0.1 0.1
POLICY HIDDEN LAYER SIZES (300,300) (300,300)
POLICY HIDDEN LAYER ACT. FUNCTION RELU RELU
NUMBER OF SEEDS 8 8

Table B.11: DIAYN Parameters

GRIDWORLD WITH SLOPE MULTIGRID

NUMBER OF EPOCHS 1000 1000
HORIZON 400 400
NUMBER OF SKILLS 20 20
LEARNING RATE 3× 10−4 3× 10−4

DISCOUNT (γ) 0.99 0.99
POLICY HIDDEN LAYER SIZES (300,300) (300,300)
POLICY HIDDEN LAYER ACT. FUNCTION RELU RELU
NUMBER OF SEEDS 8 8

B.2.5 Counterexamples

In this section, we provide a couple of convenient example to confirm the fact that there are classes
of environments in which we would not need any particularly smart solution for the multiple envi-
ronments problem, beyond a naïve, risk-neutral approach. First, we consider two GridWorld envi-
ronments that differ for the shape of the traversable area, sampled according to pM = [0.8, 0.2],
and we run αMEPOL with α = 0.35 and MEPOL, obtaining the two corresponding exploration
policies. In Figure B.9 we show the performance (measured by E1

M) obtained by executing those
policies on each setting. Clearly, regardless of what configuration we consider, there is no advantage
deriving from the use of a risk-averse approach as αMEPOL, meaning that the class of environments
M is balanced in terms of hardness of exploration.

In the second counterexample, we consider different configurations of the MiniGrid (Chevalier-
Boisvert et al., 2018) domain that we considered in Section 9.7.6. Especially, we aim to show
that configurations that are visibly different from an human perspective are sometimes not really
challenging from a multiple environments standpoint. Indeed, this setting would be challenging
only if the policy that the agent should deploy to explore one configuration is significantly different
to the one needed to explore another configuration. In this case, the agent should trade-off the
performance in one configuration and the other. As we show in Figure B.10, the combination of
Unlock-v0 and ObstructedMaze-2Dlhb-v0 does not have this feature, and the MEPOL baseline is
able to find a policy that works well in both the configurations.
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Figure B.9: Comparison of the exploration performance E1
M obtained by αMEPOL (α =

0.35) and MEPOL in the GridWorld Counterexample domain. The polices are trained
(50 epochs, 8 × 104 samples per epoch) on the configuration (a) and tested on (a, b,
c). We provide 95% c.i. over 4 runs.

(a) Unlock-v0 (b) ObstructedMaze-2Dlhb-v0
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Figure B.10: Comparison of the exploration performance E0.2
M obtained by αMEPOL

(α = 0.2) and MEPOL (c) in a MiniGrid domain with the configurations Unlock-v0
(a) and ObstructedMaze-2Dlhb-v0 (b). We provide 95% c.i. over 8 runs.

B.2.6 Meta-RL

In this section, we provide additional details on the experiments of Section 9.7.7. Especially, we
show that MAML does perform well on its own objective, which is to learn a fast-adapting policy
during meta-training (Figure B.11a). Instead, in Figure B.11b we highlight the performance measure
of DIAYN (Eysenbach et al., 2019). In particular, the more log qφ(s|z) grows with the learning
epochs, the better is the intrinsic reward we feed to MAML+DIAYN. Clearly, DIAYN struggles to
deal with the larger MultiGrid class of environments, which explains the inferior performance of
MAML+DIAYN in this domain.

B.2.7 Additional Visualizations

In this section, we provide some additional visualizations, which are useful to better understand some
of the domains used in the experiments of Section 9.7. In Figure B.12 we report the state-visitation
frequencies achieved by αMEPOL (Figure B.12a) and MEPOL (Figure B.12b) in each configuration
of the MultiGrid domain. Clearly, αMEPOL manages to obtain a better exploration in the adversarial
configuration w.r.t. MEPOL, especially in the bottom part of the environment, which is indeed the
most difficult part to visit. On the other environments, the performance is overall comparable. In
Figure B.8 we show a render of the Ant Stairs domain, illustrating both the environments used in the
experiments of Section 9.7.5. Note that the front walls are hidden to allow for a better visualization.
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Figure B.11: We illustrate the fast-adapting behavior of MAML in the GridWorld with
Slope (a), and the skills discriminability of DIAYN as a function of learning epochs
(b). We provide 95% c.i. over 8 runs.
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Figure B.12: Heatmaps of the state visitations (200 trajectories) induced by the explo-
ration policies trained with αMEPOL (α = 0.1) (a) and MEPOL (b) in the MultiGrid
domain.
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