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Abstract: Model averaging based on the least squares estimator or the maximum likelihood estimator
has been widely followed, while model averaging based on the generalized method of moments is
almost rarely addressed. This paper is concerned with a model averaging method based on the weighted
generalized method of moments for missing responses problem. The weight vector for model averaging
is obtained via minimizing the leave-one-out cross validation criterion. With some mild conditions,
the asymptotic optimality of the proposed method in the sense that it can achieve the lowest squared
error asymptotically is proved. Some numerical experiments are conducted to evaluate the proposed
method with the existing related ones, and the results suggest that the proposed method performs
relatively well.
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1. Introduction

Due to the development of modern statistics, fitting multiple uncertain candidate models to a given
data set is no longer a challenging job. With multiple candidate models, it becomes clear that some
reasonable methods are needed to summarize the information of these candidate models in some way.
Model selection and model averaging, two methods specifically designed to deal with scenarios with
multiple fitted candidate models, are increasingly popular among statistics. Model selection aims to
pick one model from multiple candidate models, and thus it is like putting all the eggs in one basket.
Therefore, model selection is relatively risky and has a lot of undesirable drawbacks in some situations
compared to model averaging [13]. Model averaging utilizes fully the useful information among each
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candidate model and then yields a robust weighting estimator. Thus, model averaging is more likely to
hedge the risk associated with putting all the eggs in one basket. A substantial amount of research has
been devoted to frequentist model averaging over the past decades. See e.g. [1,2,4,5,9,11,12,17,23,
25–28] among others. This paper also focuses on the frequentist model averaging method. However,
all of the above model averaging literature is based on the least squares estimation or the maximum
likelihood estimation. It is well known that the generalized method of moments (GMM) only needs
to know some moment functions, and hence GMM is more flexible and applicable compared to the
least squares estimation method and the maximum likelihood estimation method in some situations.
Since [6] proposed the two-step GMM and verified the large sample properties of GMM estimators,
GMM has become a fundamental estimation method and is widely applied in the field of statistical
prediction and statistical inference. However, the application of GMM for model averaging is very rare.
Under the local misspecified framework, [3] proposed a simulation-based averaging procedure, from
which the GMM estimators of candidate models were obtained from different moment condition sets.
It should be pointed out that the assumption of local misspecified framework is somewhat unrealistic
since it requires sufficient knowledge of the true model [15].

Under the fixed parameter framework, [24] proposed a model averaging method to combine the
GMM estimator of the interesting parameter of each candidate model, and they proved that the
proposed method is asymptotically optimal. On the basis of [24], [20] considered the model averaging
methods for the conditional mean of the responses based on GMM by using J-fold cross validation
criterion. Similarly, they also proved that their method is asymptotically optimal under some certain
conditions. However, all of the above work was done with fully observed data. So far, no one has
considered the model averaging methods based on GMM with missing data. The purpose of this paper
is to fill the gap in this area.

Missing data occurs commonly in questionnaires, socioeconomic studies and medical studies and so
on [10]. The complexity of missing data often invalidates the original model averaging approach with
complete data. Therefore, it is necessary to study model averaging methods with missing data. The
missing pattern is very important in the study of missing data. In this paper, we consider the missing
pattern that responses are missing at random (MAR) [18]. In fact, there is already some literature on
model averaging with this missing pattern. Under the local misspecified framework, [16] proposed
model averaging methods for linear models with responses are missing at random. Under the fixed
parameter framework, [21] developed a model averaging scheme for linear models with responses are
missing at random. [22] extended the linear models to high-dimensional linear regression models and
established a novel model averaging criterion for high dimensional linear models with responses are
missing at random. However, the core of the above literature is based on the least squares estimator
rather than the GMM estimator.

In this paper, we suggest a novel model averaging method based on GMM for regression models
with responses are missing at random under the fixed parameter framework. With an assumed
parametric model for the selection probability function, through the inverse probability weighting
method and GMM, the inverse probability weighted GMM estimator of the parameter of interest under
each candidate model is obtained. Then, the model averaging estimator of the conditional mean of
responses based on GMM can be derived directly. The optimal weight vector for model averaging is
obtained via minimizing the leave-one-out cross validation criterion. Under certain mild conditions,
we prove that the proposed model averaging method is asymptotically optimal in the sense that the
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mean squared loss obtained by our proposal is asymptotically identical to that of the infeasible optimal
weight vector.

The rest of this paper is organized as follows. In Section 2, we describe the methodology and
then give the theoretical property of the proposed method. Some Monte Carlo simulation studies are
presented in Section 3. A short conclusion is made in Section 4. All the technical details are delayed
to the Appendix.

2. Material and method

Consider the following regression model

Yi = µi + εi = ϕ(Xi, θ) + εi, i = 1, 2, ..., n, (2.1)

where Xi = (Xi1, Xi2, · · · , Xip)ᵀ is a p-dimensional vector of regressors, ϕ(·) is a known function of
Xi and θ, θ is the corresponding p × 1 parametric vector, and “ ᵀ ” denotes the transpose of a vector
or matrix. εi are the random errors with E(εi|Xi) = 0 and E(ε2

i |Xi) = σ2 for i = 1, 2, · · · n. Let
Y = (Y1,Y2, · · · ,Yn)ᵀ, X = (X1, X2, · · · , Xn)ᵀ, µ = (µ1, µ2, · · · , µn)ᵀ and ε = (ε1, ε2, · · · , εn)ᵀ. Assume
that µ = µ(θ) is a continuous function with respect to θ under (2.1). In this paper, we consider the
case that some responses Yi are missing, while Xi is fully observed. That is, the data comes from
{(Yi, Xi, δi), i = 1, 2, · · · , n}, where δi is the missing indicator of Yi, δi = 1 if Yi is observed, δi = 0
otherwise. Assume that Y is missing at random (MAR), a commonly used missing mechanism, that is,

Pr(δ = 1|Y, X) = Pr(δ = 1|X) := π(X), (2.2)

where X may be a sub-vector of itself X, a slight abuse of notation here.
Under MAR assumption, it is easy to show that E[Yπ,i|Xi] = E[Yi|Xi] = µi, where Yπ,i = δiYi/π(Xi)

for i = 1, 2, · · · , n. We then have

Yπ,i = µi + επ,i = ϕ(Xi, θ) + επ,i, i = 1, 2, ..., n, (2.3)

where επ,i are the corresponding random errors with E(επ,i|Xi) = 0 and E(ε2
π,i|Xi) = σ2

π,i with σ2
π,i =

{π(Xi)}−1(µ2
i + σ2) − µ2

i for i = 1, 2, · · · n. Let Yπ = (Yπ,1,Yπ,2, · · · ,Yπ,n)ᵀ and επ = (επ,1, επ,2, · · · , επ,n)ᵀ.
In this paper, we consider an optimal model averaging method to estimate µ with responses missing at
random.

In what follows, we give the details of how to obtain the optimal model averaging estimator of µ.
Suppose that we have finite M candidate models to approximate model (2.1). Accordingly, there are
also M candidate models to approximate model (2.3). Naturally, under the mth candidate model, we
have µ(m) = µ(θ(m)), where θ(m) is the unknown pm × 1 sub-vector. Correspondingly, for M candidate
models, we have M estimators {µ̂(1), µ̂(2), · · · , µ̂(M)} of µ. Let w = (w1,w2, · · · ,wM)ᵀ be the weight
vector corresponding to the candidate models, which belongs to the set

Wn =

w ∈ [0, 1]M :
M∑

m=1

wm = 1

 .
Then the model averaging estimator of µ can be given as follows,

µ̂(w) =

M∑
m=1

wmµ̂(m) = µ̂w, (2.4)
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where µ̂ = (µ̂(1), µ̂(2), · · · , µ̂(M)) is an n×M matrix, and µ̂(m) = µ(θ̂(m)) with θ̂(m) is a feasible estimator of
θ(m) for m = 1, 2, · · · ,M.

However, the selection probability function π(X) and θ̂(m) are still unknown so far for m =

1, 2, · · · ,M. Thus, µ̂(w) in (2.4) still can not be used directly. We first consider the estimation method
of π(X). Following the common missing data literature [10], we assume a parametric model π(X;α)
for the selection probability function π(X), where π(·;α) is a known function and α is an unknown
parametric vector. Denote α̂n by the maximum likelihood estimator (MLE) of α, which is obtained by
maximizing the following binomial log-likelihood,

l(α) =

n∑
i=1

[δi log(π(Xi;α)) + (1 − δi) log(1 − π(Xi;α))].

Then a consistent estimator π(Xi; α̂n) of π(Xi;α) can be obtained immediately for i = 1, 2, · · · , n. In the
following, for notation convenience, we write π̂i(α̂n) = π(Xi; α̂n) for i = 1, 2, · · · , n.

Next, we consider how to obtain the inverse probability weighted GMM estimator θ̂(m) of θ(m) for
m = 1, 2, · · · ,M. Denote g(m)(Ti, θ) by the qm-vector of moment functions of the mth candidate model
for an integer qm ≥ pm, where Ti = (Xᵀi ,Yi)ᵀ, i = 1, 2, · · · , n. Let θ0

(m) be the unique true parametric
value of Θ(m) ⊂ R

pm such that E[g(m)(Ti, θ
0
(m))] = 0 for the mth candidate model. Then, the inverse

probability weighted GMM estimator of θ(m) can be given by

θ̂(m) = arg min
Θ(m)

 n∑
i=1

δi

π̂i(α̂n)
g(m)(Ti, θ)

ᵀ Ω̂m

 n∑
i=1

δi

π̂i(α̂n)
g(m)(Ti, θ)

 , (2.5)

where Ω̂m is a positive definite weighting matrix. Similar to [24], we set Ω̂m = (Xᵀ(m)X(m)/n)−1, where
X(m) is the regression matrix in the mth candidate model for m = 1, 2, · · · ,M. Thus, the feasible
weighted GMM model averaging estimator of µ is

µ̂(w) =

M∑
m=1

wmµ̂(m) =

M∑
m=1

wmµ(θ̂(m)). (2.6)

To obtain the optimal weight vector w, we adopt the leave-one-out cross validation criterion. Denote
θ̃(−i)

(m) by the leave-one-out weight GMM estimator, which is obtained when the ith observation is deleted
when computing θ̂(m). Let θ̃(m) = (θ̃(−1)

(m) , θ̃
(−2)
(m) , · · · , θ̃

(−n)
(m) )ᵀ and µ̃(m) = (µ̃(−1)

(m) , µ̃
(−2)
(m) , · · · , µ̃

(−n)
(m) )ᵀ, where

µ̃(−i)
(m) = µ(θ̃(−i)

(m) ). Similar to [5], we adopt the following model averaging criterion,

CGMM−π̂(w) = ‖Yπ̂ − µ̃(w)‖2 = wᵀε̃ᵀπ̂ ε̃π̂w, (2.7)

where Yπ̂ = {Yπ̂,1,Yπ̂,2, · · · ,Yπ̂,n}ᵀ with Yπ̂,i = δiYi/{π̂i(α̂n)}, µ̃(w) =
∑M

m=1 wmµ̃(m), ε̃π̂ =

(ε̃π̂,(1), ε̃π̂,(2), · · · , ε̃π̂,(M)), ε̃π̂,(m) = Yπ̂ − µ̃(m) and ‖ · ‖ represents the Euclidean norm.
Denote ŵ by the optimal weight vector obtained by minimizing CGMM−π̂(w) among Wn, that is

ŵ = arg min
w∈Wn

CGMM−π̂(w). (2.8)

Then the corresponding model averaging estimator of µ is µ̂(ŵ). For convenience, hereinafter this
estimator is referred to as weighted averaging GMM estimator (WAGMM), the corresponding model
averaging method above is abbreviated as WAGMM method.
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In what follows, we give the theoretical property of this paper. We give some notations and
regularity conditions at first. Let α0 be the true value of α, λmax(A) the largest singular value of
matrix A, w0

m the special weight vector whose mth element is one and the others are zero. For
m = 1, 2, · · · ,M, denote µ0

(m) = µ(θ0
(m)), µ

0(w) =
∑M

m=1 wmµ
0
(m). Define the mean square loss function of

µ̂(w) as L(w) = ‖µ̂(w) − µ‖2, and denote by L0(w) = ‖µ0(w) − µ‖2 and ξπ = infw∈Wn L0(w). The required
regularity conditions are given as follows.

(C.1) For some fixed 1 ≤ G < ∞, max1≤i≤n E[ε4G
i |Xi] < c1 < ∞.

(C.2) There exists a positive constant c2 such that max1≤i≤n |µi| ≤ c2.
(C.3) infx π(x;α) > cπ > 0, its first three-order partial derivatives with respect to α are bounded and

continuous in the neighborhood α0, and E
[
‖∂π(X;α)/∂α‖2

]
< ∞.

(C.4) E[g(m)(Ti, θ
0
(m))g

ᵀ
(m)(Ti, θ

0
(m))] is positive definite, ∂g(m)(Ti, θ(m))/∂θ is continuous and bounded in the

neighborhood of θ0
(m), and E{supθ∈Θ ‖g(m)(Ti, θ(m))‖3} < ∞ for m = 1, 2 · · · ,M and i = 1, 2, · · · , n.

(C.5) The partial derivatives A(i)
(m) = ∂µ(i)(θ(m))/∂θ

(i)
(m) and Ã(−i)

(m) = ∂µ̃(−i)(θ(m))/∂θ
(−i)
(m) exist, where µ(i)

(m) is the
ith component of µ(m) and µ̃(i)

(m) is the ith component of µ̃(m). max1≤i≤n λmax([A(i)
(m)]
ᵀA(i)

(m)) = O(1) as
well as max1≤i≤n λmax([Ã(i)

(m)]
ᵀÃ(i)

(m)) = O(1), a.s., for each θ(m) and i = 1, 2, · · · , n.
(C.6) ξ−1

π n1/2 = o(1).

Remark. Condition (C.1) is a mild conditional moment condition of ε, which places a common bound
on ε. It is common in model averaging literature, such as [4, 17]. Condition (C.2) imposes some
restrictions on the mean value function µ, which is also common in regression analysis and model
averaging literature. See [11, 20] and so on. Condition (C.3) is necessary for the missing data, the lower
bound ensures that the weights for the inverse probability weighting can not go to infinity as n → ∞.
Similar conditions can be seen in [18, 19, 22] and so on. Condition (C.4) is similar to Condition (C4)
in [14], which is just a regular condition of the moment function vector. Condition (C.5) imposes some
restrictions on the largest singular value of two partial derivatives, which is the same as Condition (C.2)
in [20]. Condition (C.6) requires that ξπ → ∞, which can be deduced from the conditions of much
of the existing literature such as Condition (7) in [1], Condition (A3) in [2] and Conditions (C.3) and
(C.6) in [27].

Theorem 1. Under Conditions (C.1) to (C.6), as n→ ∞, it holds that

L(ŵ)
infw∈Wn L(w)

= 1 + op(1). (2.9)

Theorem 1 indicates that the selected weight vector ŵ is asymptotically optimal. That is, the mean
squared loss obtained by the proposed WAGMM estimator µ̂(ŵ) is asymptotically identical to that of
the infeasible best model averaging estimator.

3. Simulation

In this section, some Monte Carlo simulation studies were conducted to examine the finite-sample
performance of the proposed WAGMM method. Referring to the idea of [24], the two methods we
compare are all based on the GMM estimator and do not compare with other existing model selection
and model averaging methods. The first method is the weighted AIC [7] model selection method based
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on the GMM estimator. We abbreviated it as wAIC-GMM. The second comparison method is the
leave-one-out model averaging method based on the GMM estimator with complete case (CC), which
simply ignores the missing individuals in handling missing data. We abbreviated it as CC-GMM.

The data generating process is similar to that of [20], as follows specifically,

Yi = β0Xi + εi, Xi = (1, hi)ᵀ, hi = ηᵀZi + ei, i = 1, 2, · · · , n,

where the interest parameter β0 was set to β0 = (1,−0.5), Zi = {Zi1,Zi2, · · · ,Zi10} were simulated from
the independent normal distribution with mean 0 and variance 1. η is the 10 × 1 regression coefficient.
Similar to [20], we considered the following two cases,

Case 1: η =

√
Q2

f /(10(1 − Q2
f )),

Case 2: η =

√
Q2

f /(t(1 − Q2
f )), t = 1, 2, · · · , 10,

where Q f = 0.8. Obviously, Case 1 means that all Zi j are equally important, while Case 2 means that
the importance of Zi j is gradually decreasing, j = 1, 2, · · · , n. And (εi, ei)ᵀ

i.i.d
∼ Normal(02×1, Σ), where

Σ =

(
σ2 0.5σ

0.5σ 1

)
.

We controlled the value of σ such that R2 = var(β0Xi)/var(Yi) varied in the set {0.1, 0.2, · · · , 0.9} for
i = 1, 2, · · · , n. The variables in Zi were added sequentially to obtain the candidate models. Thus, in
the above setting, we have, in total, M = 10 candidate models. The estimation equation was set as the
unconditional moment E[Zi(Yi − β0Xi)] = 0 for i = 1, 2, · · · , n. For generating the missing values of
{Yi}

n
i=1, the selection probability function was set to

Pr(δi = 1|Yi, Xi) = Φ(α0 + α1Xi), i = 1, 2, · · · , n, (3.1)

where Φ(·) is the cumulative distribution function of the standard normal function, and α = (α0, α1)ᵀ =

(0.6, 0.1)ᵀ, which makes the corresponding average missing rate is approximately 30%. It is obvious
that the selection probability function (3.1) satisfies the assumption of MAR.

To evaluate the performance of these methods, we considered the following mean squared error
(MSE), which is defined as,

MSE =
1
K

K∑
k=1

‖µ(k)(ŵ) − µ(k)‖2, (3.2)

where K represents the number of repetitions, µ(k) denotes µ in kth repetition and µ̂(k)(ŵ) is the model
averaging or selection estimator of µ in the kth repetition. The repetition number K was set to be 300.
The sample size n we considered was n = 50, 100, 200 and 400. For a more intuitive comparison, we
calculated the ratio of the MSE of each method divided by the MSE of the proposed WAGGM method
separately. The results of the simulation studies are presented below (see Figures 1 and 2).
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Figure 1. The MSE ratio under Case 1.
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Figure 2. The MSE ratio under Case 2.

It can be seen from Figures 1 and 2 that the MSE of the proposed WAGMM method is the smallest
in most cases, no matter in Case 1 or Case 2, and is significantly better than the wAIC-GMM method
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and the CC-GMM method. It is not difficult to find that the MSE of the wAIC-GMM method gradually
decreases and tends to one as the sample size increases. The reason is that the wAIC-GMM method
is also consistent when the selection probability function is correctly specified [7]. Nonetheless,
the proposed WAGMM method still outperforms the wAIC-GMM method in most combinations we
consider, especially when the sample size is small enough. The performance of the CC-GMM is
very poor in all cases. This is because the CC-GMM method is inconsistent under the assumption of
MAR [10].

In order to illustrate the asymptotic optimality of the proposed WAGMM method more intuitively,
we separately calculated the mean of GR in Case 1 and Case 2 when R2 = 0.5 based on 1000 simulation
repetitions. In this simulation experiment, the sample size N was set to N = 100, 200, 400 and 800,
respectively. The expression for GR is defined as follows,

GR =
L(ŵ)

infw∈Wn L(w)
.

The results are shown in Figures 3 and 4 below.
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Figure 3. Asymptotic optimality evaluation of the WAGMM method in Case 1.
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Figure 4. Asymptotic optimality evaluation of the WAGMM method in Case 2.
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Figures 3 and 4 present the mean curves of GR for Case 1 and Case 2, respectively. It can be clearly
seen from Figures 3 and 4 that no matter in Case 1 or Case 2, the mean curves of GR gradually decrease
and gradually approach 1 as the sample size increases. The simulation results in Figures 3 and 4 above
numerically and intuitively verify the asymptotic optimality stated in Theorem 1.

4. Conclusions

To the best of our knowledge, the current paper is the first work to develop the model averaging
method based on GMM for regression models with missing data. Nevertheless, there are still some
significant issues left for future study. At first, as [20] said, the selection of moment conditions is
very important in GMM. Thus, it is important to choose the optimal moment conditions to obtain the
corresponding GMM estimators in each candidate model before performing model averaging method
with missing data. However, the current work also does not address this issue. Secondly, the number
of candidate models M is finite in this paper. The scenario when the M is divergent to infinite as the
sample size tends to infinite is also common. All of these issues mentioned above deserve further
consideration in the future.
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Appendix

In this Appendix, we will give the technical proof of Theorem 1. To facilitate the proof of
Theorem 1, we would give some lemmas at first. Throughout Appendix, C denotes a generic positive
constant depending on the context, which may take different values in different scenarios. The norm
of the matrix is the Euclidean norm, that is, the largest singular value of the matrix.

Lemma 1. Under Conditions (C.1) to (C.4), for any θ̂(m), as n→ ∞, it holds that

θ̂(m) − θ
0
(m) = Op(n−1/2), m = 1, 2, · · · ,M. (A1)

AIMS Mathematics Volume 8, Issue 9, 21683–21699.



21692

Proof of Lemma 1. Denote

Rn(θ(m), Ω̂m) =

 n∑
i=1

r̂ig(m)(Ti, θ)

ᵀ Ω̂m

 n∑
i=1

r̂ig(m)(Ti, θ)

 ,
where r̂i = δi/πi(α̂n), i = 1, 2, · · · , n. Then by (2.5), it can be seen that θ̂(m) = arg minΘ(m) Rn(θ(m), Ω̂m).
Under Conditions (C.1)–(C.4), by similar proving statements of Theorem 1 in [14], we have

θ̂(m)
p
−→ θ0

(m), m = 1, 2, · · · ,M, (A2)

where
p
−→ denotes convergence in probability. Immediately following, by Taylor expansion, for any

m = 1, 2, · · · ,M, we have

0 =
∂Rn(θ(m), Ω̂m)

∂θ(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

+
∂2Rn(θ(m), Ω̂m)
∂θ(m)∂θ

ᵀ
(m)

∣∣∣∣∣
θ(m)=θ

∗
(m)

(θ̂(m) − θ
0
(m)),

where θ∗(m) is a real mean value between θ(m) and θ0
(m), and

∂Rn(θ(m), Ω̂m)
∂θ(m)

=

 n∑
i=1

r̂i
∂g(m)(Ti, θ)
∂θ(m)

ᵀ Ω̂m

 n∑
i=1

r̂ig(m)(Ti, θ)

 ,
∂2Rn(θ(m), Ω̂m)
∂θ(m)θ

ᵀ
(m)

=

 n∑
i=1

r̂i
∂g(m)(Ti, θ)
∂θ(m)

ᵀ Ω̂m

 n∑
i=1

r̂i
∂g(m)(Ti, θ)
∂θ(m)


+

 n∑
i=1

r̂i
∂2g(m)(Ti, θ)
∂θ(m)∂θ

ᵀ
(m)

ᵀ Ω̂m

 n∑
i=1

r̂ig(m)(Ti, θ)

 .
By simply shifting the terms, it can be seen that

√
n(θ̂(m) − θ

0
(m))

= −


∂2Rn(θ(m), Ω̂m)

∂θ(m)∂θ
ᵀ
(m)

∣∣∣∣∣
θ(m)=θ

∗
(m)

−1

−

∂2Rn(θ(m), Ω̂m)
∂θ(m)∂θ

ᵀ
(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

−1
×
√

n
∂Rn(θ(m), Ω̂m)

∂θ(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

−

∂2Rn(θ(m), Ω̂m)
∂θ(m)∂θ

ᵀ
(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

−1

×
√

n
∂Rn(θ(m), Ω̂m)

∂θ(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

. (A3)

Then, under Conditions (C.3) and (C.4), by invoking similar proving arguments of Lemma (A.1)
in [14], for m = 1, 2, · · · ,M, we have

n∑
i=1

r̂i
∂g(m)(Ti, θ)
∂θ(m)

∣∣∣∣∣
θ(m)=θ

0
(m)

p
−→ E

∂g(m)(T, θ)
∂θ

∣∣∣∣∣
θ(m)=θ

0
(m)

 , (A4)
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and

√
n

n∑
i=1

r̂ig(m)(Ti, θ
0
(m)) = Op(1), E

 n∑
i=1

r̂ig(m)(Ti, θ
0
(m))

 = 0. (A5)

Then, combining with (A2)–(A5) for m = 1, 2, · · · ,M, we have

θ̂(m) − θ
0
(m) = Op(n−1/2). (A6)

Thus, the proof of Lemma 1 is completed.

Lemma 2. Under Conditions (C.1) to (C.3) and (C.6), as n→ ∞, it holds that

sup
w∈Wn

‖Yπ̂ − Yπ‖2

L0(w)
= op(1). (A7)

Proof. By Conditions (C.1) and (C.2) and the law of large numbers, it is easy to show that

1
n
µᵀµ = Op(1),

1
n
εᵀε = Op(1). (A8)

Note that Yπ̂,i = δiYi/{π(Xi; α̂n)} for i = 1, 2, · · · , n. By Cauchy-Schwarz inequality and Taylor
expansion, we have

sup
w∈Wn

‖Yπ̂ − Yπ‖2

L0(w)

≤ξ−1
π

n∑
i=1

{
δi

π̂(Xi; α̂n)
−

δi

π(Xi;α0)

}2

Y2
i

≤Cξ−1
π

{
√

n max
1≤i≤n

∣∣∣∣∣ 1
π̂(Xi; α̂n)

−
1

π(Xi;α0)

∣∣∣∣∣}2 {
1
n
µᵀµ +

1
n
εᵀε

}
≤Cξ−1

π

{
√

n max
1≤i≤n

∣∣∣∣∣∣
{

1
π(Xi;α)2

∂π(Xi;α)
∂αᵀ

∣∣∣∣∣
α=α0

}
(α̂n − α0) + o(‖α̂n − α0‖)

∣∣∣∣∣∣
}2

Op(1)

≤Cξ−1
π

{
max
1≤i≤n

∥∥∥∥∥∥∂π(Xi;α)
∂αᵀ

∣∣∣∣∣
α=α0

∥∥∥∥∥∥ √n‖α̂n − α0‖ + o(
√

n‖α̂n − α0‖)
}2

Op(1)

≤op(1){Op(1)Op(1) + op(1)}2Op(1)
=op(1),

where the third inequality is due to (A8), and the fifth inequality is obtained from Condition (C.6) and
fact that

√
n‖α̂n − α0‖ = Op(1). And hence, the proof of Lemma 2 is completed. �

Lemma 3. Under Conditions (C.2) to (C.6), by Lemma 1, as n→ ∞, it holds that

sup
w∈Wn

‖µ̂(w) − µ0(w)‖2

L0(w)
= op(1), (A9)

sup
w∈Wn

‖µ̃(w) − µ̂(w)‖2

L0(w)
= op(1). (A10)
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Proof. Firstly, we begin to proof (A9). Combining with the result of Lemma 1 and Conditions (C.5)
and (C.6), we have

sup
w∈Wn

‖µ̂(w) − µ0(w)‖2

L0(w)

≤ξ−1
π sup

w∈Wn

∥∥∥∥∥∥∥
M∑

m=1

wm

{
µ(θ̂(m)) − µ(θ0

(m))
}∥∥∥∥∥∥∥

2

≤ξ−1
π max

1≤m≤M

∥∥∥µ(θ̂(m)) − µ(θ0
(m))

∥∥∥2

≤ξ−1
π max

1≤m≤M
λmax

n−1
n∑

j=1

[A( j)
(m)]
ᵀA( j)

(m)

 n‖θ̂(m) − θ
0
(m)‖

2

≤ξ−1
π max

1≤m≤M
max
1≤ j≤n

λmax

(
[A( j)

(m)]
ᵀA( j)

(m)

)
n‖θ̂(m) − θ

0
(m)‖

2

=ξ−1
π max

1≤m≤M
max
1≤ j≤n

λmax

(
[A( j)

(m)]
ᵀA( j)

(m)

)
n‖θ̂(m) − θ

0
(m)‖

2

=op(1),

where A( j)
(m) is given in Condition (C.5), and the last equation is due to Lemma 1 and Conditions (C.5)

and (C.6).
Next, we prove (A10). Under Conditions (C.5) and (C.6), with the similar statements of (A9), we

know that

sup
w∈Wn

‖µ̃(w) − µ̂(w)‖2

L0(w)

≤ξ−1
π max

1≤m≤M
tr([Ã(m)]ᵀÃ(m))

n∑
j=1

‖θ̃
(− j)
(m) − θ

0
(m)‖

2

≤ξ−1
π max

1≤m≤M
pm max

1≤ j≤n
λmax([Ã( j)

(m)]
ᵀÃ( j)

(m))n‖θ̃
(− j)
(m) − θ

0
(m)‖

2

=op(1),

where tr(·) denotes the trace of a matrix, Ã(m) = diag
(
Ã(1)

(m), Ã
(2)
(m), · · · , Ã

(n)
(m)

)
, and A( j)

(m) is given in
Condition (C.5).

Thus, we complete the proof of Lemma 3. �
Proof of Theorem 1. By the definition of CGMM−π̂(w) in (2.7), we have

CGMM−π̂(w) = ‖Yπ̂ − µ̃(w)‖2

= ‖Yπ̂ − Yπ + Yπ − µ̃(w)‖2

≤ ‖Yπ̂ − Yπ‖2 + ‖Yπ − µ̃(w)‖2 + 2
√
‖Yπ̂ − Yπ‖2‖Yπ − µ̃(w)‖2.

Thus, by Lemma 2 and the idea in [8], Theorem 1 is valid if

sup
w∈Wn

‖Yπ − µ̃(w)‖2

L0(w)
= 1 + op(1). (A11)

AIMS Mathematics Volume 8, Issue 9, 21683–21699.



21695

By some careful matrix manipulation and Cauchy-Schwartz inequality, we can obtain

‖Yπ − µ̃(w)‖2

=‖(Yπ − µ) − (µ̂(w) − µ) − (µ̃(w) − µ̂(w))‖
=‖Yπ − µ‖2 + ‖µ̂(w) − µ‖2 + ‖µ̃(w) − µ̂(w)‖2 − 2(µ̂(w) − µ)ᵀ(Yπ − µ)

+ 2(µ̂(w) − µ)ᵀ(µ̃(w) − µ̂(w)) − 2(µ̃(w) − µ̂(w))ᵀ(Yπ − µ)

≤‖Yπ − µ‖2 + ‖µ̂(w) − µ‖2 + ‖µ̃(w) − µ̂(w)‖2 + 2
√
‖µ̂(w) − µ‖2‖µ̃(w) − µ̂(w)‖2

+ 2
√
‖µ̂(w) − µ‖2‖Yπ − µ‖2 + 2

√
‖µ̃(w) − µ̂(w)‖2‖Yπ − µ‖2.

Remove the item that is not related to w, to prove (A11), we only need to prove that

sup
w∈Wn

‖µ̂(w) − µ‖2

L0(w)
= 1 + op(1), (A12)

sup
w∈Wn

‖µ̃(w) − µ̂(w)‖2

L0(w)
= op(1), (A13)

sup
w∈Wn

|(µ̂(w) − µ)ᵀεπ|
L0(w)

= op(1), (A14)

sup
w∈Wn

|(µ̃(w) − µ̂(w))ᵀεπ|
L0(w)

= op(1), (A15)

where επ = Yπ − µ. We begin to prove (A12) at first. By Cauchy-Schwarz inequality, it is easy to show
that

‖µ̂(w) − µ‖2 =‖µ̂(w) − µ0(w) + µ0(w) − µ‖2

=L0(w) + ‖µ̂(w) − µ0(w)‖2 + 2(µ̂(w) − µ0(w))ᵀ(µ0(w) − µ)

≤L0(w) + ‖µ̂(w) − µ0(w)‖2 + 2
√

L0(w)‖µ̂(w) − µ0(w)‖2,

where L0(w) = ‖µ0(w) − µ‖2. Thus, by condition (C.6) and (A9) in Lemma 3, we have

sup
w∈Wn

‖µ̂(w) − µ‖2

L0(w)

≤1 + sup
w∈Wn

‖µ̂(w) − µ0(w)‖2

L0(w)
+ 2

√
sup
w∈Wn

L0(w)
L0(w)

sup
w∈Wn

‖µ̂(w) − µ0(w)‖2

L0(w)

=1 + op(1) + 2
√

op(1).

Thus, we complete the proof of (A12).
As for (A13), note that

‖µ̃(w) − µ̂(w)‖2
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=‖µ̃(w) − µ0(w) − (µ̂(w) − µ0(w))‖2

≤‖µ̂(w) − µ0(w)‖2 + ‖µ̃(w) − µ0(w)‖2 + 2
√
‖µ̃(w) − µ0(w)‖2‖µ̂(w) − µ0(w)‖2,

with similar steps of proving (A12), by Lemma 3, we can obtain that (A13) holds.
Next, we begin to prove (A14) and (A15). Recalling the definition of επ in (2.3), together with

Condition (C.3) and the triangle inequality, for i = 1, 2, · · · , n, we have

|επ,i|

=

∣∣∣∣∣ δiYi

π(Xi;α0)
− µi

∣∣∣∣∣
=

∣∣∣∣∣ δiYi

π(Xi;α0)
−

δiµi

π(Xi;α0)
+

δiµi

π(Xi;α0)
− µi

∣∣∣∣∣
≤c−1

π |εi| + (c−1
π + 1)|µi|.

Then, by Conditions (C.1) and (C.2) and the Cr inequality, for a fixed 1 ≤ G < ∞, it is clear that

max
1≤i≤n

E[ε2G
π,i |Xi] ≤ C, max

1≤i≤n
E[ε2G

π,i ] ≤ C. (A16)

Further, it is easy to show that ‖επ‖ = Op(n1/2).
Note that,

sup
w∈Wn

|(µ̂(w) − µ)ᵀεπ|
L0(w)

≤ sup
w∈Wn

|(µ̂(w) − µ0(w))ᵀεπ|
L0(w)

+ sup
w∈Wn

|(µ0(w) − µ)ᵀεπ|
L0(w)

.

Thus, to prove (A14), it suffices to verify that

sup
w∈Wn

|(µ0(w) − µ)ᵀεπ|
L0(w)

= op(1), (A17)

sup
w∈Wn

|(µ̂(w) − µ0(w))ᵀεπ|
L0(w)

= op(1). (A18)

We firstly prove (A17). By Chebyshev’s inequality, Markov inequality, for any κ > 0 and 1 ≤ G < ∞,
we have

Pr
{

sup
w∈Wn

|(µ0(w) − µ)ᵀεπ|
L0(w)

≥ κ

}
≤Pr

{
sup
w∈Wn

|(µ0(w) − µ)ᵀεπ| ≥ κξπ

}
≤Pr

{
max

1≤m≤M
|(µ0

(m) − µ)ᵀεπ| ≥ κξπ
}

≤

M∑
m=1

Pr
{
|(µ0

(m) − µ)ᵀεπ| ≥ κξπ
}
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≤

M∑
m=1

E

 [(µ0
(m) − µ)ᵀεπ]2G

κ2Gξ2G
π


≤Cκ−2Gξ−2G

π

M∑
m=1

 n∑
i=1

|µ0
(m),i − µi|

2
[
E(ε2G

π,i )
]1/G


G

≤Cκ−2Gξ−2G
π max

1≤i≤n

[
E(ε2G

π,i )
] M∑

m=1

‖µ0
(m) − µ‖

2G

≤Cκ−2G Mξ−2G
π O(nG),

where the forth inequality is due to the Chebyshev’s inequality and the seventh inequality is because
of (A16) and Condition (C.2). Then, according to Condition (C.6), we arrive at the result of (A17).

Next, we turn to (A18). By the proof of Lemma 3, it is not hard to find that

sup
w∈Wn

‖µ̂(w) − µ0(w)‖2 = Op(1), (A19)

sup
w∈Wn

‖µ̃(w) − µ0(w)‖2 = Op(1). (A20)

In fact, the results of equations (A19) and (A20) are also given in [20]. Then, under Condition (C.6),
combining with (A16), (A19) and Cauchy-Schwarz inequality, we can obtain

sup
w∈Wn

|(µ̂(w) − µ0(w))ᵀεπ|
L0(w)

≤ξ−1
π sup

w∈Wn

‖µ̂(w) − µ0(w)‖‖επ‖

≤ξ−1
π Op(1)Op(n1/2)

=op(1). (A21)

Finally, we consider the proof of (A18). Similarly, under Condition (C.6), by (A20) and (A21), we
have

sup
w∈Wn

|(µ̃(w) − µ̂(w))ᵀεπ|
L0(w)

= sup
w∈Wn

|{(µ̃(w) − µ0(w)) − (µ̂(w) − µ0(w))}ᵀεπ|
L0(w)

≤ sup
w∈Wn

|(µ̃(w) − µ0(w))ᵀεπ|
L0(w)

+ sup
w∈Wn

|(µ̂(w) − µ0(w))ᵀεπ|
L0(w)

≤ξ−1
π sup

w∈Wn

‖µ̃(w) − µ0(w)‖‖επ‖ + op(1)

=op(1).

Until now, the proof of Theorem 1 is completed.
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