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Abstract: In today’s competitive world, entrepreneurs cannot argue for transporting a single product. 

It does not provide much profit to the entrepreneur. Due to this reason, multiple products need to be 

transported from various origins to destinations through various types of conveyances. Real-world 

decision-making problems are typically phrased as multi-objective optimization problems because 

they may be effectively described with numerous competing objectives. Many real-life problems have 

uncertain objective functions and constraints due to incomplete or uncertain information. Such 

uncertainties are dealt with in fuzzy/interval/stochastic programming. This study explored a novel 

integrated model bi-objective bi-item solid transportation problem with fuzzy stochastic inequality 

constraints following a normal distribution. The entrepreneur's objectives are minimizing the 

transportation cost and duration of transit while maximizing the profit subject to constraints. The 

chance-constrained technique is applied to transform the uncertainty problem into its equivalent 

deterministic problem. The deterministic problem is then solved with the proposed method, namely, 

the global weighted sum method (GWSM), to find the optimal compromise solution. A numerical 

example is provided to test the efficacy of the method and then is solved using the Lingo 18.0 software. 

To highlight the proposed method, comparisons of the solution with the existing solution methods are 

performed. Finally, to understand the sensitivity of parameters in the proposed model, sensitivity 

analysis (SA) is conducted. 
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Mathematics Subject Classification: 90B06, 90C15 

 



21701 

AIMS Mathematics Volume 8, Issue 9, 21700–21731. 

1. Introduction 

The current business environment is becoming more competitive on a daily basis, and every 

organization strives to improve how to deliver products to customers with minimum duration of transit 

and minimum cost, so that each customer’s demand is met by the entrepreneur. A conventional 

mathematical programming problem that considers source and destination constraints is known as the 

transportation problem (TP), and it was developed by Hitchcock in 1941. In a transportation problem, 

there are different modes of transportation available for the transportation of products which we might 

transport from various sources to various destinations by different types of conveyances (such as goods 

trains, ships, load flights, trucks, etc.) to save the duration of transit and cost. In such a situation, the 

solid transportation problem (STP) or three-dimensional transportation problem, which considers three 

constraints, is appropriate. It was proposed by Shell [1]. Haley [2] expanded the modified distribution 

approach by providing a solution procedure for the STP. Several researchers have carried out extensive 

research on the single-objective STP [3,4]. In most real-world decision-making problems (DMPs), 

there are several competing criteria to be considered and optimized at the same time. Such problems 

are referred to as multi-objective optimization problems (MOOPs). Moreover, in today’s rapidly 

changing market, the trading of a single product does not yield a high profit to entrepreneurs. As a 

result, all entrepreneurs in the field of transportation trade many products. The problem of transporting 

multiple products with multiple objectives involving three types of constraints, namely, source, 

destination and conveyance, is termed as the multi-objective multi-item solid transportation problem 

(MOMISTP). This type of problem yields a high profit to the entrepreneur with a minimum duration 

of transit and minimum cost.  

In most DMPs like transportation, the values of the parameters cannot always be deterministic 

and fluctuate from time to time due to bad weather conditions, road conditions, etc. This introduces 

some uncertainty in the problem which can be dealt with in any of four ways: (i) fuzzy, (ii) interval, 

(iii) stochastic and (iv) both fuzzy and stochastic together. Dealing with different types of uncertainties 

in many DMPs is still an emerging problem. Various types of multi-objective STP (MOSTP) and 

MOMISTP under uncertainty have been investigated by many researchers so far. Khalifa et al. [5] 

employed a fuzzy geometric programming approach to solve the fractional two-stage MOSTP. 

Chhibber et al. [6] examined the Pareto-optimal solution for fixed-charge STP under an intuitionistic 

fuzzy environment. Anithakumari et al. [7] solved a fully interval integer MOSTP. Baidya and Bera 

[8] proposed an STP model under a fully fuzzy environment. Ghosh et al. [9] solved a type-2 zigzag 

uncertain multi-objective fixed-charge STP using time window versus preservation technology. 

Pramanik et al. [10] introduced MOSTP in imprecise environments. Kar et al. [11] investigated the 

MOMISTP under the fuzzy environment with volume, vehicle cost and weight capacity. Rani and 

Gulati [12] developed the uncertain multi-objective multi-product STP and obtained the fuzzy optimal 

compromise solution using the fuzzy programming approach (FPA). Rani et al. [13] introduced fuzzy 

the MOMISTP using the FPA. Kundu et al. [14] solved the MOMISTP in the fuzzy environment with 

the help of two different existing methods. 

In reality, sometimes the data are insufficient because they cannot be measured or collected 

precisely. This uncertainty occurs in fuzzy, stochastic or both fuzzy and stochastic environment. The 

data or parameters are stochastic in nature and defined by random variables with known probability 

distributions called stochastic TPs. Several studies on stochastic TPs have been published by 

researchers like Kataoka [15], Szwarc [16], Singh et al.[17], Williams [18], Holmberg [19] and 
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Charnes [20]. Mahapatra [21–24] presented a stochastic TP where demand and supply parameters are 

random variables (RVs) with different distributions (normal, Weibull, lognormal, etc.). The stochastic 

programming problems were solved by Agrawal et al. [25] using a gaining-sharing knowledge-based 

algorithm. The data or parameters uncertain in both fuzzy and stochastic environments are called fuzzy 

random/stochastic parameters. Kwakernaak [26] introduced the concept of fuzzy stochastic 

optimization using fuzzy random parameters. The occurrence of these parameters increases the 

persuasiveness of the randomness and fuzziness together. For instance, the yield of crops depends 

greatly on the availability of productive resources, which are frequently fuzzy in nature. Rainfall, a 

critical indicator of the supply of water during the planning period, is a crucial agricultural resource, 

and the parameters involved in the problem are intrinsically stochastic. The unpredictable crop 

production leads to high uncertainty as to the location and scale of indemnities, and fuzzy random 

parameters are employed in these environments. After recognizing the previously stated circumstance, 

active researchers have considered both fuzzy programming (FP) and SP in the planning and 

programming environment. A fuzzy random chance-constrained programming model has been 

proposed by Zhao and Cao [27] for the vehicle routing problem of hazardous materials transportation. 

Maity et al. [28] have created a new approach for addressing the TP by adding multi-modal 

transportation systems in a fuzzy stochastic environment. Based on fuzzy mathematical programming, 

Nasseri and Bavandi [29] solved a fuzzy stochastic linear fractional programming problem. Most of 

the research has used various distributions to define the variable when modeling a fuzzy stochastic TP 

[30–32]. Sensitivity analysis is used as a post optimality tool to analyze the effect of the changes in the 

objective function coefficients and the effect of changes of the right hand side constraints on the 

optimal value of the objective function as well as the validity ranges of these effects. Studies on the 

sensitivity analysis in linear programming and multi-objective programming have been performed 

[33–35]. The implementation of sensitivity analysis is based primarily on an optimal compromise 

solution. Table 1 shows a comparative analysis of the methodology with the existing works on 

stochastic and fuzzy stochastic parameters. 

In Table 1, it is noted that the majority of research has considered the parameter as a stochastic 

parameter or fuzzy stochastic parameter following Normal, Log-normal, Exponential, Extreme value 

and Weibull distributions for TP, fuzzy TP, fractional TP, fuzzy fractional TP, bi-objective TP and 

Multi-item interval valued STP.  

In the above literature survey, there are some gaps in the analysis of the MOMISTP which are 

summarized below. 

• It is noted that the work that has been done till now is mostly with the stochastic parameter or 

fuzzy parameter.  

• To the best of our knowledge, few articles with both fuzzy and stochastic parameters together 

follow a Normal Distribution(ND). 

• In STP multiple objectives with multiple items with fuzzy stochastic parameters are also very 

rare.  

• In DMPs multi-item multiple objectives with fuzzy stochastic parameter are of great 

importance, though there are very few such models in the literature. Transporting multi-items 

from one source to another destination using different types of conveyances is one of the 

important problems in improving the economic growth rate of a country. The shipment of 

multiple items using various modes of transportation per day establishes the role of the multi-

objective transportation problem as a science, and it is economically important. This motivates 
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us to study the solid transportation problem with multiple objectives with multiple items under 

a fuzzy stochastic environment. 

• In this study, considering all these lacunas, the bi-objective bi-item solid transportation problem 

with fuzzy stochastic parameters is formulated and discussed in a fuzzy stochastic environment. 

Table 1. A comparative analysis of the methodology with the existing works. 

References Objective 

nature 

Problem 

objective 

Constraint 

parameter 

Distribution 

Cr Im SO MO S FS  

[36] Gessesse et al. 

(2019) 

√   √ √  Normal 

[37] Roy (2014) √  √  √  Weibull 

[22] Mahapatra et 

al. (2013) 

√   √ √  Extreme value 

[21] Roy & 

Mahapatra (2011) 

 √  √ √  Lognormal 

[38] Mahapatra 

(2013) 

√  √  √  Weibull 

[39] Das & Lee 

(2021) 

√   √ √  Weibull 

[40] Osman et al. 

(2017) 

 √  √  √ Using alpha-cut approach with 

normal, Weibull and expoential 

distriution for Fractional 

Programming Problem 

[32] Agrawal & 

Ganesh (2020) 

 √ √   √ Using fuzzy membership function 

with Exponential distribution for 

fuzzy fractional TP 

[41] Giri et al. 

(2013) 

 √  √  √ Using average method with 

Normal Distribution for Multi-

item interval valued STP 

[30] Acharya et al. 

(2014) 

√   √  √ Using alpha cut with Normal 

Distribution for bi-objective TP 

Proposed article √   √  √ Using alpha cut with Normal 

Distribution for bi-objective bi-

item STP 

Note: Cr: Crisp; Im: Imprecise; SO: Single objective; MO: Multi-objective; S: Stochastic; FS: Fuzzy Stochastic. 

Hence, the main facets of the paper are briefed as follows: 

i. In this study, a bi-objective bi-item solid transportation problem is formulated, in which the 

first objective represents the transportation cost, the other is the duration of transit in a 

deterministic environment, and the constraints are considered in a fuzzy stochastic environment. 

ii. We extended the transformation technique [30] for the formulated three-dimensional multi-

item problem with two objectives. Then, the extended chance-constrained (transformation) 
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technique is applied to transform the fuzzy stochastic bi-objective bi-item solid transportation 

problem into its equivalent deterministic problem. 

iii. The reduced bi-objective bi-item solid transportation problem cannot be solved explicitly. The 

entrepreneur is always keen on minimizing the cost of transportation and duration of transit 

while shipping multiple items to obtain a maximum profit. In some unavoidable situations, 

minimizing both objectives is impossible. We have to give minimum priority to any one of the 

objectives. According to the priority of the objective in the problem, a weight proportion has 

to be provided to it. Therefore, the weights and priority ranking are used for goal functions in 

our proposed method, namely, the global weighted sum method. Using these factors with the 

objective via the global weighted sum method can help the entrepreneur to balance the situation.  

iv. The proposed method is used to transform the deterministic bi-objective bi-item solid 

transportation problem into the single-objective problem. Our method can also be used to 

transform any multi-objective optimization problem into a single objective problem. The 

transformed single objective problem is solved using Lingo 18.0 software to obtain the optimal 

compromise solution of the BOBISTP(bi-objective bi-item solid transportation problem) under 

a fuzzy stochastic environment.  

The rest of the paper is arranged as follows: Essential definitions and theorems are provided in 

Section 2. The bi-objective bi-item solid transportation problem with fuzzy stochastic constraint is 

mathematically formulated in Section 3, and its equivalence deterministic model is explained in 

Section 4. The proposed global weighted sum method and working methodology are presented in 

Section 5. The numerical example for Model 1 is discussed, and it is compared with other existing 

approaches along with some managerial implications in Section 6. The sensitivity analysis and 

discussion of the suggested research are covered in Section 7. Finally, the conclusions and directions 

for future study are given. 

2. Preliminaries 

Basic definitions of fuzzy sets, fuzzy numbers, alpha cut of a fuzzy number and triangular fuzzy 

numbers can be referred to in [42] (Zadeh, 1965), and we have presented some necessary definitions 

and notations related to the theory of uncertainty.  

Definition 2.1. (Triangular fuzzy number, Zadeh, [42]) 

A fuzzy number 𝑅̃ is denoted as a triangular fuzzy number by (𝑟1, 𝑟2, 𝑟3) where 𝑟1, 𝑟2 and 𝑟3 

are real numbers, and its membership function 𝜇𝑅̃(𝑥) is given below. 

𝝁𝑹̃(𝒙)  = 

{
 
 

 
 
𝒙 − 𝒓𝟏
𝒓𝟐 − 𝒓𝟏

     𝒓𝟏 ≤ 𝒙 ≤ 𝒓𝟐, 

𝒙 − 𝒓𝟑
𝒓𝟐 − 𝒓𝟑

   𝒓𝟐 ≤ 𝒙 ≤ 𝒓𝟑, 

𝟎     otherwise.

 

Definition 2.2. ([42] Zadeh, 1965) The deterministic interval by α-cut operation, interval 𝑅𝛼 can be 

attained as follows ∀ 𝛼 ∈ [0,1]. Thus, 𝐴𝛼 = [𝑟1+(𝑟2−𝑟1)𝛼, 𝑟3−(𝑟3−𝑟2)𝛼]. 

Example: Let A=0. 3 ̃= (0.2,0.3,0.4) be a triangular fuzzy number, and then using the α-cut operation, 

we get (0.2,0.3,0.4) = (0.2 + 0.1𝛼, 0.4 − 0.1𝛼). 

Definition 2.3. ([43] Nanda and Kar, 1992) Let 𝑟̃ = (𝑟1, 𝑟2, 𝑟3)  and 𝑠̃ = (𝑠1, 𝑠2, 𝑠3)  be two fuzzy 

numbers with α-cut 𝑟̃[𝛼] = (𝑟∗, 𝑟
∗) and 𝑠̃[𝛼] = (𝑠∗, 𝑠

∗), respectively. Then, 𝑡̃ ≤ 𝑠̃ iff 𝑟∗ ≤ 𝑠∗. 
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Definition 2.4. ([44] Buckley and Eslami, 2004) Let X be a continuous random variable with 

probability density function f (x, θ), where θ is a parameter describing the density function. Suppose θ 

is uncertain and estimated from confidence interval, and then θ can be generated as a fuzzy number. If 

we denote by 𝑋̃ a continuous random variable with fuzzy parameter 𝜃 and 𝛿 as fuzzy probability, 

then 𝑋̃ is said to be a continuous fuzzy random variable with density f (x, 𝜃̃), P(𝑋̃ ≤ x)= 𝜃̃. 

Let 𝑋̃    𝑝   𝑞̃   be an event. Then, the probability of the event 𝛿  of continuous FRV (fuzzy 

random variable) on X is a fuzzy number whose α-cut is defined as follows: 

𝑃̃(𝑝 ≤ 𝑋̃ ≤ 𝑞̃)[𝛼]=(
𝑚𝑖𝑛:{ ∫ 𝑓(𝑥, 𝜃)

𝑑

𝑐
𝑑𝑥/𝜃̃[𝛼], ∫ 𝑓(𝑥, 𝜃)

∞

−∞
𝑑𝑥 = 1},

𝑚𝑎𝑥: ∫ 𝑓(𝑥, 𝜃)
𝑑

𝑐
𝑑𝑥/𝜃̃[𝛼], ∫ 𝑓(𝑥, 𝜃)

∞

−∞
𝑑𝑥 = 1}

) = (𝛿∗[𝛼], 𝛿
∗[𝛼]) 

 

Theorem 2.1. ([45] Nanda et al., 2008) Let 𝑍̃   pX + qY be the linear combination of the FRVs X 

and Y, which is also a FRV, whose mean and variance are fuzzy numbers.  

Theorem 2.2. ([30] Acharyaet al.,2014) If 𝑎̃𝑖, i 1,2,….m, are independent fuzzy random variable (RV) 

distributed normally, then 𝑃̃(∑ 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑎̃𝑖 ) ≥ 𝛽𝑖  s equivalent to ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 𝜙−1(1 − 𝛽𝑖

∗)𝜎∗𝑎𝑖
+

𝜇∗𝑎𝑖
, and 𝜇𝑎𝑖and 𝜎̃𝑎𝑖 are mean and variances of 𝑎̃𝑖 which follow normal distributions. 

Theorem 2.3. ([30] Acharyaet al., 2014) If 𝑏̃𝑗 , j=1,2,….n, are independent fuzzy RV distributed 

normally, then 𝑃̃(∑ 𝑥𝑖𝑗
𝑚
𝑖=1 ≥ 𝑏̃𝑗  ) ≥ 𝛾̃𝑗   is equivalent to ∑ 𝑥𝑖𝑗

𝑚
𝑖=1 ≥ 𝜙−1(𝛾𝑗

∗)𝜎𝑏𝑗
∗ + 𝜇𝑏𝑗

∗  , and 𝜇𝑏𝑗  and 

𝜎̃𝑏𝑗 are the mean and standard deviation (SD) of 𝑏̃𝑗 which follow normal distributions.  

3. Mathematical formulation 

This section deals with notations, formulation of the BOBISTP and formulation of the BOBISTP 

with fuzzy stochastic constraints. The notations used in this model are as follows: 

3.1. Notations 

i, the number of sources (1, 2, . . . , m), 

j, the number of destinations (1, 2, . . . , n), 

k, the number of conveyances (1, 2, . . ., s), 

p, the number of items (1, 2). 

𝑐𝑖𝑗𝑘
𝑝

 is the cost for transporting one unit of item p from source i to destination j by conveyance k, 

𝑡𝑖𝑗𝑘
𝑝

 is the duration of transit for transporting one unit of item p from source i to destination j by 

conveyance k, 

𝑎̃𝑝𝑖 is the fuzzy availability of products with item p at the source i. 

𝑏̃𝑝𝑗 is the fuzzy demand of products with item p at the destination j, 
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𝑒̃𝑘 is the fuzzy transportation capacity at the conveyance k, 

𝑥𝑖𝑗𝑘
𝑝

  is the number of item p to be transported from source i to destination j with the aid of 

conveyance k. 

𝛽𝑝 is the fuzzy probability for supply constraints for item p. 

𝛾̃𝑝
𝑗
 is the fuzzy probability for demand constraints for item p. 

𝜂̃𝑘 is the fuzzy probability for conveyance constraints for item p. 

𝜇𝑎𝑖
𝑝 is the mean of supply constraints for item p. 

𝜎̃𝑎𝑖
𝑝 is the standard deviation of supply constraints for item p. 

𝜇𝑏𝑗
𝑝 is the mean of demand constraints for item p. 

𝜎̃𝑏𝑗
𝑝 is the standard deviation of demand constraints for item p. 

𝜇𝑒𝑘 is the mean of conveyance constraints. 

𝜎̃𝑒𝑘 is the standard deviation of conveyance constraints. 

3.2. Formulation for bi-objective bi-item solid transportation problem (BOBISTP) 

In real-world DMPs, there are several competing objectives to be considered and optimized at the 

same time. The objectives may be considered as minimizing the total transportation cost, minimizing 

the total transportation duration, minimizing the deterioration of goods, minimizing the total loss 

during transportation, etc. In this study, we have formulated a STP with two objectives, where one of 

the objectives is considered as z1, minimizing the total transportation cost, and the other is z2, 

minimizing the duration of transit in which two distinct items are shipped from the ith source to the jth 

destination by the kth conveyance. Now, the mathematical model for the bi-objective bi-item solid 

transportation problem is as follows. 

(Q)   Minimize 𝑧1  = ∑∑∑∑𝑐𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑥𝑖𝑗𝑘
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

2

𝑝=1

, 
(1) 

 

Minimize 𝑧2  = ∑∑∑∑𝑡𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑥𝑗𝑘
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

2

𝑝=1

, (2) 

subject to the constraints. 

If the total quantity carried from source i is no more than 𝑎𝑖
𝑝
, we obtain 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑛
𝑗=1 ≤ 𝑎𝑖

𝑝
 , 𝑖 = 1,2, . . . , 𝑚 ,  𝑝 = 1,2. (3) 
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If the total quantity carried from source i should meet the 𝑏𝑗
𝑝
demand of destination j, we obtain 

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑚

𝑖=1

≥ 𝑏𝑗
𝑝
 , 𝑗 = 1,2, . . . , 𝑛,  𝑝 = 1,2. (4) 

If the total quantity carried by conveyance k is not more than its transportation capacity 𝑒𝑘, we 

obtain  

∑∑∑𝑥𝑖𝑗𝑘
𝑝

2

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

≤ 𝑒𝑘  , 𝑘 = 1,2, . . . , 𝑠;  𝑝 = 1,2. (5) 

𝑥𝑖𝑗𝑘
𝑝
≥ 0, for all 𝑖 , 𝑗 and 𝑘. (6) 

3.3. Formulation for BOBISTP with fuzzy stochastic constraints 

Modeling real-world problems requires data as input parameters which include information 

represented in the state of uncertainty. This introduces some uncertainty in the problem which can be 

dealt with in any of the four ways: (i) fuzzy, (ii) interval, (iii) stochastic and (iv) both fuzzy and 

stochastic together. The parameters uncertain in both fuzzy and stochastic environment are called fuzzy 

stochastic parameters. In this study, parameters in the constraints are all considered as fuzzy stochastic 

parameters. These parameters are assumed to follow any of the probability distributions, where in our 

formulation we follow a Normal distribution. 

The mathematical model for BOBISTP with fuzzy stochastic inequality constraints is given as 

follows:  

(R)Minimize 𝑧1  = ∑∑∑∑𝑐𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑥𝑖𝑗𝑘
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

2

𝑝=1

, 

Minimize 𝑧2  = ∑∑∑∑𝑡𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑥𝑖𝑗𝑘
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

2

𝑝=1

, 

subject to the constraints. 

               𝑃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑛
𝑗=1 ≤ 𝑎̃𝑝𝑖  ) ≥ 𝛽

𝑝
𝑖
, 𝑖 = 1,2, . . . , 𝑚 , 𝑝 = 1,2. (7) 

                𝑃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑚
𝑖=1 ≥ 𝑏̃𝑗

𝑝
) ≥ 𝛾̃𝑝𝑗 , 𝑗 = 1,2, . . . , 𝑛,  𝑝 = 1,2. (8) 

                     𝑃(∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑝2

𝑝=1
𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝑒̃𝑘  ) ≥ 𝜂𝑘 , 𝑘 = 1,2, . . . , 𝑠. (9) 

                                                              𝑥𝑖𝑗𝑘
𝑝
≥ 0, for all 𝑖 , 𝑗 and 𝑘. (10) 

The above DMPs with fuzzy stochastic constraints will consume more time to compute the 

objectives subject to the constraints directly. To reduce the time and simplify the calculation process, 
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transformation of uncertain data or parameters into deterministic data or parameters is required, and it 

is supported by uncertainty theory. The extended transformation technique for bi-item bi-objective 

fuzzy stochastic constraints to the equivalent deterministic bi-item bi-objective constraints is discussed 

in the next section. 

4. Equivalent deterministic formulation 

An equivalent deterministic model for the fuzzy stochastic problem is discussed in this section. 

The parameters of the constraints with bi-item in the mathematical model (7–10) are fuzzy stochastic. 

These constraints cannot be solved directly, as it consumes more time. Therefore, the uncertainty is to 

be removed using the extended chance-constraint programming technique following a normal 

distribution. This method permits violations of the constraints up to a predefined probability level. 

Sometimes, all the parameters in the three-dimensional transportation problem are uncertain, in 

situations such as lack of information, fluctuation in market value and so on. In rare cases, supply at 

the origin may be uncertain due to unavoidable delays in production and so on. Uncertainty in demand 

can occur due to bad weather conditions and so on. Similarly, uncertainness can also occur in 

conveyances. Due to the aforementioned reasons, the problem (R) is categorized into four models, 

which are stated as follows: 

Model 1 (M1): Problem (R) is considered as problem (M1) where supplies 𝑎̃𝑝𝑖,  (𝑖 =

1, 2. . . 𝑚) (𝑝 = 1,2) , demands 𝑏̃𝑝𝑗 ,(𝑗 = 1, 2. . . 𝑛) (𝑝 = 1,2) , and conveyances 𝑒̃𝑘  (k 1, 2. . .s) 

follow ND. 

Model 2 (M2): In problem (R) only supply availabilities 𝑎̃𝑝𝑖, (𝑖 = 1, 2. . . 𝑚) (𝑝 = 1,2), follow 

ND. 

Model 3 (M3): In problem (R) only demand requirements 𝑏̃𝑝𝑗 ,(𝑗 = 1, 2. . . 𝑛) (𝑝 = 1,2), follow 

ND. 

Model 4 (M4): In problem (R) only conveyance capacities 𝑒̃𝑘,  (𝑘 = 1, 2. . . 𝑠 ), follow ND. 

In the above four models, all or any one of the constraints are/is fuzzy stochastic. These models 

consume more time to compute the objectives subject to the constraints directly. To overcome this, the 

following theorems are required. The theorem is for transforming the fuzzy stochastic constraint(s) to 

deterministic constraint(s) of a bi-objective bi-item solid transportation problem, which is stated as 

follows. 

Theorem 4.1. If 𝑎̃𝑝𝑖 , i 1,2,….,m, p 1,2, are independent fuzzy RV distributed normally, then 

𝑃̃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑛
𝑗=1 ≤ 𝑎̃𝑝𝑖 ) ≥ 𝛽𝑝

𝑖
  is equivalent to ∑ ∑ 𝑥𝑖𝑗𝑘

𝑝𝑠
𝑘=1

𝑛
𝑗=1 ≤ 𝜙−1(1 − 𝛽𝑖

∗𝑝
)𝜎∗𝑎𝑖

𝑝 + 𝜇∗𝑎𝑖
𝑝 ,  

𝜇𝑎𝑖
𝑝and 𝜎̃𝑎𝑖

𝑝 are the mean and standard deviation (SD) of 𝑎̃𝑝𝑖 which follow ND. 𝛽𝑝 is the fuzzy 

probability for supply constraints for item p. 

Proof. 

It is assumed that 𝑎̃𝑝𝑖 : 𝑖 = 1,2, . . . , 𝑚 , 𝑝 = 1,2 , are independent RVs which follow ND with 

mean (location parameter) and standard deviation (scale parameter), respectively. 

Let us consider the fuzzy stochastic supply constraint (7) as 𝑃̃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑛
𝑗=1 ≤ 𝑎̃𝑝𝑖) ≥ 𝛽𝑝

𝑖
, 𝑖 =
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1,2, . . . , 𝑚 ,  𝑝 = 1,2.    

Using Definition 2.2, the alpha cut representation for (7) is  

𝑃̃ (∑∑𝑥𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑛

𝑗=1

≤ 𝑎̃𝑝𝑖  [𝛼]) ≥ 𝛽𝑖
𝑝
[𝛼] (11) 

⇒ 𝑃̃(𝐴𝑖 ≤ 𝑎̃
𝑝
𝑖 [𝛼]) ≥ 𝛽𝑖

𝑝
[𝛼], 𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 =∑∑𝑥𝑖𝑗𝑘

𝑝

𝑠

𝑘=1

𝑛

𝑗=1

 

⇒ {𝑃(𝐴𝑖 ≤𝑎𝑖
𝑝 ) ≥ 𝛽𝑖

𝑝
/ 𝑎𝑖

𝑝 ∈ 𝑎̃𝑖
𝑝[𝛼], 𝛽𝑖

𝑝 ∈ 𝛽𝑖
𝑝
[𝛼]}

 

⇒ {(1 − 𝑃(𝑎𝑖
𝑝 ≤ 𝐴𝑖)) ≥ 𝛽𝑖

𝑝
/ 𝑎𝑖

𝑝 ∈ 𝑎̃𝑖
𝑝[𝛼], 𝛽𝑖

𝑝 ∈ 𝛽𝑖
𝑝
[𝛼]}

 

⇒ {1 − 𝑃 (
𝑎𝑖
𝑝
−𝜇

𝑎
𝑖
𝑝

𝜎
𝑎
𝑖
𝑝

≤
𝐴𝑖−𝜇𝑎

𝑖
𝑝

𝜎
𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

𝑝/𝑎𝑖
𝑝
∈ 𝑎̃𝑖

𝑝
[𝛼], 𝜇𝑎𝑝𝑖 ∈ 𝜇̃𝑎𝑝𝑖[𝛼], 𝜎𝑎𝑝𝑖 ∈ 𝜎̃𝑎𝑝𝑖[𝛼], 𝛽𝑖

𝑝 ∈ 𝛽𝑖
𝑝
[𝛼]}. 

(12) 

We know that 𝑃( 𝑧 ≤𝑥) =
1

√2𝜋
∫ 𝑒

(
−(𝑧)2

2
)𝑥

−∞
𝑑𝑧 = 𝜙(𝑥) is the cumulative distribution function of 

a one-dimensional standard normal variable. Hence, the probabilistic constraint (12) can be presented 

as 

⇒ {1 −
1

√2𝜋
∫ 𝑒(

 
 
 
 
 −(

𝑎𝑖
𝑝
−𝜇

𝑎
𝑖
𝑝

𝜎
𝑎
𝑖
𝑝

)

2

2

)

 
 
 
 
 

𝐴𝑖−𝜇𝑎
𝑖
𝑝

𝜎
𝑎
𝑖
𝑝

−∞

𝑑𝑧 ≥ 𝛽𝑖
𝑝/𝑎𝑖

𝑝 ∈ 𝑎̃𝑖
𝑝[𝛼], 𝜇𝑎𝑖

𝑝 ∈ 𝜇𝑎𝑖
𝑝[𝛼], 𝜎𝑎𝑖

𝑝

∈ 𝜎̃𝑎𝑖
𝑝[𝛼], 𝛽𝑖

𝑝 ∈ 𝛽𝑖
𝑝
[𝛼]}

 

⇒ {1 − 𝜙(
𝐴𝑖−𝜇𝑎

𝑖
𝑝

𝜎
𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

𝑝/𝑎𝑖
𝑝
∈ 𝑎̃𝑖

𝑝
[𝛼], 𝜇𝑎𝑖

𝑝 ∈ 𝜇̃𝑎𝑖
𝑝[𝛼], 𝜎𝑎𝑖

𝑝 ∈ 𝜎̃𝑎𝑖
𝑝[𝛼], 𝛽𝑖

𝑝 ∈ 𝛽𝑖
𝑝
[𝛼]}. 

(13) 

By Definition 2.4, the fuzzy RV on the alpha cut is represented as lower and upper bounds. Then, 

𝑎̃𝑖
𝑝[𝛼] = [𝑎𝑖

𝑝

∗
, 𝑎𝑖
𝑝∗], 𝜇𝑎𝑖

𝑝[𝛼] = [𝜇∗𝑎𝑖
𝑝 , 𝜇∗𝑎𝑖

𝑝], 𝜎̃𝑎𝑖
𝑝[𝛼] = [𝜎∗𝑎𝑖

𝑝 , 𝜎∗𝑎𝑖
𝑝], 𝛽𝑖

𝑝
[𝛼] = [𝛽𝑖

𝑝

∗
, 𝛽𝑖

𝑝∗]. 

For the minimization problem, the random fuzzy number should reach its minimum value. Then, 

the supply parameter of (11), the supplies (𝑎̃𝑝𝑖 [𝛼]) are replaced by its lower bound and its probability 

value (𝛽𝑖
𝑝
[𝛼] ) in upper bound. Then, the inequality constraint is transformed as

 

𝑚𝑖𝑛: {1 − 𝜙(
𝐴𝑖−𝜇𝑎

𝑖
𝑝

𝜎
𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

𝑝} = {1 − 𝜙(
𝐴𝑖−𝜇𝑎

𝑖
𝑝

∗

𝜎
𝑎
𝑖
𝑝

∗

) ≥ 𝛽𝑖
∗𝑝}. (14) 

Similarly, for the maximization problem, the fuzzy number should reach its maximum value. Then, 
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the supply parameter 𝑎̃𝑝𝑖 [𝛼] and its probability value 𝛽𝑖
𝑝
[𝛼] are replaced by its upper bound. Then, 

the inequality constraint is transformed as

 

𝑚𝑎𝑥: {1 − 𝜙(
𝐴𝑖−𝜇𝑎

𝑖
𝑝

𝜎
𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

𝑝} = {1 − 𝜙(
𝐴𝑖−𝜇

∗
𝑎
𝑖
𝑝

𝜎∗
𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

∗𝑝}. (15) 

Now, the supply constraint for the minimization problem (14) is 

1 − 𝜙(
𝐴𝑖−𝜇∗𝑎

𝑖
𝑝

𝜎∗𝑎
𝑖
𝑝
) ≥ 𝛽𝑖

∗𝑝
, 

On rearranging, we obtain 

⇒ 𝜙(
𝐴𝑖 −𝜇∗𝑎𝑖

𝑝

𝜎∗𝑎
𝑖
𝑝

) ≤ 1 − 𝛽𝑖
∗𝑝

 

⇒ (
𝐴𝑖 −𝜇∗𝑎𝑖

𝑝

𝜎∗𝑎
𝑖
𝑝

) ≤ 𝜙−1(1 − 𝛽𝑖
∗𝑝)

 

⇒ 𝐴𝑖 ≤𝜙
−1(1 − 𝛽𝑖

∗𝑝)𝜎∗𝑎𝑖
𝑝 + 𝜇∗𝑎𝑖

𝑝. 

Thus, the probabilistic constraints (7) can be transformed into a deterministic supply constraint 

as 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑛
𝑗=1 ≤ 𝜙−1(1 − 𝛽𝑖

∗𝑝)𝜎∗𝑎𝑖
𝑝 + 𝜇∗𝑎𝑖

𝑝. (16) 

Here, we use Z-Score Percentile ND Table to find the 𝜙−1(1 − 𝛽𝑖
∗𝑝).  

Similarly, we can prove for the maximization problem. 

Theorem 4.2. If 𝑏̃𝑝𝑗 , j=1,2,…,n, p=1,2, are independent fuzzy RV distributed normally, then 

𝑃̃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑚
𝑖=1 ≥ 𝑏̃𝑝𝑗  ) ≥ 𝛾̃𝑝

𝑗
  is equivalent to ∑ ∑ 𝑥𝑖𝑗𝑘

𝑝𝑠
𝑘=1

𝑚
𝑖=1 ≥ 𝜙−1(𝛾𝑗

∗𝑝)𝜎
𝑏𝑗
𝑝
∗ + 𝜇

𝑏𝑗
𝑝
∗  , and 𝜇𝑏𝑗

𝑝 

and 𝜎̃𝑏𝑗
𝑝 are the mean and SD of 𝑏̃𝑝𝑗  which follow ND. 𝛾̃𝑝

𝑗
 is the fuzzy probability for demand 

constraints for item p. 

Proof. 

It is assumed that 𝑏̃𝑝𝑗 : 𝑗 = 1,2, . . . , 𝑛 , 𝑝 = 1,2 , are independent RVs which follow ND with 

mean (location parameter) and standard deviation (scale parameter), respectively. 

Let us consider the fuzzy stochastic demand constraint (8) as 𝑃̃(∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑚
𝑖=1 ≥ 𝑏̃𝑝𝑗  ) ≥
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𝛾̃𝑝
𝑗
, 𝑗 = 1,2, . . . , 𝑛 , 𝑝 = 1,2. 

Using Definition 2.2, the alpha cut representation of (8) is  

𝑃̃ (∑∑𝑥𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑚

𝑖=1

≥ 𝑏̃𝑝𝑗  [𝛼]) ≥ 𝛾̃𝑗
𝑝[𝛼] (17) 

⇒ 𝑃̃(𝐵𝑗 ≥ 𝑏̃𝑝𝑗  [𝛼]) ≥ 𝛾̃𝑗
𝑝[𝛼], 𝑤ℎ𝑒𝑟𝑒 𝐵𝑗 =∑∑𝑥𝑖𝑗𝑘

𝑝

𝑠

𝑘=1

𝑚

𝑖=1  

⇒ {𝑃(𝐵𝑗 ≥ 𝑏𝑗
𝑝) ≥ 𝛾𝑗

𝑝/𝑏𝑗
𝑝  ∈ 𝑏̃𝑝𝑗  [𝛼], 𝛾𝑗

𝑝 ∈ 𝛾̃𝑗
𝑝[𝛼]}

 

⇒ {𝑃(𝑏𝑗
𝑝 ≤ 𝐵𝑗) ≥ 𝛾𝑗

𝑝/𝑏𝑝𝑗  ∈ 𝑏̃
𝑝
𝑗 [𝛼], 𝛾𝑗

𝑝 ∈ 𝛾̃𝑗
𝑝[𝛼]}

 

⇒ {𝑃 (
𝑏𝑗
𝑝
 −𝜇

𝑏
𝑗
𝑝

𝜎
𝑏
𝑗
𝑝

≤
𝐵𝑗−𝜇𝑏

𝑗
𝑝

𝜎
𝑏
𝑗
𝑝
) ≥ 𝛾𝑗

𝑝/𝑏𝑗
𝑝 ∈ 𝑏̃𝑝𝑗  [𝛼], 𝜇𝑏𝑗

𝑝 ∈ 𝜇𝑏𝑗
𝑝 [𝛼], 𝜎𝑏𝑗

𝑝 ∈ 𝜎̃𝑏𝑗
𝑝 [𝛼], 𝛾𝑗

𝑝 ∈ 𝛾̃𝑗
𝑝[𝛼]}. 

Hence, the probabilistic constraint can be presented as

 

⇒ {
1

√2𝜋
∫ 𝑒(

 
 
 
 
 
 −

(

 
 
𝑏
𝑗
𝑝
−𝜇

𝑏
𝑗
𝑝

𝜎
𝑏
𝑗
𝑝

)

 
 

2

2

)

 
 
 
 
 
 

𝐵𝑗−𝜇𝑏
𝑗
𝑝

𝜎
𝑏
𝑗
𝑝

−∞
𝑑𝑧 ≥ 𝛾𝑗

𝑝/𝑏𝑗
𝑝 ∈ 𝑏̃𝑝𝑗[𝛼], 𝜇𝑏𝑗

𝑝 ∈ 𝜇𝑏𝑗
𝑝[𝛼], 𝜎𝑏𝑗

𝑝 ∈ 𝜎̃𝑏𝑗
𝑝[𝛼], 𝛾𝑗

𝑝 ∈

𝛾̃𝑗
𝑝[𝛼]}.

 
The above integral can be expressed as 

⇒ {𝜙(
𝐵𝑗 − 𝜇𝑏𝑝𝑗
𝜎𝑏𝑝𝑗

) ≥ 𝛾𝑗
𝑝, 𝑏𝑗

𝑝 ∈ 𝑏̃𝑝𝑗[𝛼], 𝜇𝑏𝑗
𝑝 ∈ 𝜇𝑏𝑗

𝑝[𝛼], 𝜎𝑏𝑗
𝑝 ∈ 𝜎̃𝑏𝑗

𝑝[𝛼], 𝛾𝑗
𝑝 ∈ 𝛾̃𝑗

𝑝[𝛼]}. (18) 

By Definition 2.4, the alpha cut of 𝑏̃𝑗
𝑝
[𝛼] = [𝑏𝑗∗

𝑝, 𝑏𝑗
𝑝∗], 𝜇𝑏𝑗𝑝[𝛼] = [𝜇∗𝑏𝑗𝑝

, 𝜇
𝑏𝑗
𝑝
∗ ] , 𝜎̃𝑏𝑗𝑝[𝛼] =

[𝜎∗𝑏𝑗𝑝
, 𝜎
𝑏𝑗
𝑝
∗ ] , 𝛾̃𝑗

𝑝[𝛼] = [𝛾∗𝑗
𝑝 , 𝛾𝑗

∗𝑝].  

For the minimization problem, the random fuzzy number should reach its minimum value. 

Therefore, both the parameters of demand constraint (17) that is requirement ( 𝑏̃𝑗
𝑝
[𝛼] ) and its 

probability value(𝛾̃𝑗
𝑝[𝛼])  are replaced by their upper bound. Then, the inequality constraint is 

transformed as 
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𝑚𝑖𝑛: {𝜙(
𝐵𝑗 − 𝜇𝑏𝑗𝑝

𝜎𝑏𝑗𝑝
) ≥ 𝛾𝑗

𝑝} = {𝜙(
𝐵𝑗 − 𝜇𝑏𝑗

𝑝
∗

𝜎
𝑏𝑗
𝑝
∗ ) ≥ 𝛾𝑗

∗𝑝}. (19) 

Similarly, for the maximization problem, the fuzzy number should reach its maximum value. Then, 

the demand parameter of (17), the requirement ( 𝑏̃𝑗
𝑝
[𝛼] ) is replaced by its lower bound, and its 

probability value (𝛾̃𝑗
𝑝[𝛼])  is replaced by its upper bound. Then, the inequality constraint is 

transformed as

 

𝑚𝑎𝑥: {𝜙 (
𝐵𝑗 − 𝜇𝑏𝑗𝑝

𝜎𝑏𝑗𝑝
) ≥ 𝛾𝑗

𝑝
} = {𝜙 (

𝐵𝑗 − 𝜇∗𝑏𝑗𝑝

𝜎∗𝑏𝑗𝑝
)} ≥ 𝛾𝑗

∗𝑝
. (20) 

Now, the demand constraint for the minimization problem (19) is 

𝜙(
𝐵𝑗 − 𝜇𝑏𝑗𝑝

∗

𝜎
𝑏𝑗
𝑝
∗ ) ≥ 𝛾𝑗

∗𝑝

 

⇒ 𝜙(
𝐵𝑗 − 𝜇𝑏𝑗𝑝

∗

𝜎
𝑏𝑗
𝑝
∗ ) ≥ 𝜙−1(𝛾𝑗

∗𝑝)
 

⇒ 𝐵𝑗 ≥ 𝜙−1(𝛾𝑗
∗𝑝)𝜎

𝑏𝑗
𝑝
∗ + 𝜇

𝑏𝑗
𝑝
∗

 

 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑝𝑠

𝑘=1
𝑚
𝑖=1 ≥ 𝜙−1(𝛾𝑗

∗𝑝)𝜎
𝑏𝑗
𝑝
∗ + 𝜇

𝑏𝑗
𝑝
∗ . (21) 

Theorem 4.3. If 𝑒̃𝑘 , k=1,2,….,s, are independent fuzzy RV distributed normally, then 

𝑃(∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑝2

𝑝=1
𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝑒̃𝑘 ) ≥ 𝜂𝑘 , 𝑘 = 1,2, . . . , 𝑠 is equivalent to ∑ ∑ ∑ 𝑥𝑖𝑗𝑘

𝑝2
𝑝=1

𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝜙−1(1 −

𝜂𝑘
∗ )𝜎∗𝑒𝑘

+ 𝜇∗𝑒𝑘
 , and 𝜇𝑒𝑘 and 𝜎̃𝑒𝑘  are the mean and SD of 𝑒̃𝑘 which follow ND. 𝜂̃𝑘  is the fuzzy 

probability for conveyance constraints for item p. 

Proof. 

The proof is similar to that of Theorem (4.1). 

Thus, ∑ ∑ ∑ 𝑥𝑖𝑗𝑘
𝑝2

𝑝=1
𝑛
𝑗=1

𝑚
𝑖=1 ≤ 𝜙−1(1 − 𝜂𝑘

∗)𝜎∗𝑒𝑘
+ 𝜇∗𝑒𝑘

. (22) 

The equivalent deterministic model of the problem is established using Theorems (4.1)–(4.3), in 

which all resource parameters follow NDs with known mean and SD. Construct the following 4 

Models as deterministic models. 

Model 1: Supply 𝑎̃𝑝𝑖 ,  (𝑖 = 1, 2. . . , 𝑚) (𝑝 = 1,2) , demand 𝑏̃𝑝𝑗 , (𝑗 = 1, 2. . . , 𝑛) (𝑝 = 1,2) 

and conveyance 𝑒̃𝑘,  (𝑘 = 1, 2. . . , 𝑠 ) follow ND. 

In Model 1, 𝑎̃𝑝𝑖 ,𝑏̃
𝑝
𝑗  and 𝑒̃𝑘 are uncertain values. By using results of Theorems (4.1)–(4.3), 
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convert the fuzzy stochastic supply, demand and conveyance constraint into an equivalent 

deterministic constraint. Now, the problem (P1) is constructed with Eqs (1), (2), (16), (21), (22) and (6) 

and is formulated as follows. 

(P1)Minimize 𝑧1  = ∑∑∑∑𝑐𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑥𝑖𝑗𝑘
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

2

𝑝=1

, 

Minimize 𝑧2  = ∑ ∑ ∑ ∑ 𝑡𝑖𝑗𝑘
𝑝𝑠

𝑘=1 𝑥𝑖𝑗𝑘
𝑝𝑛

𝑗=1
𝑚
𝑖=1

2
𝑝=1 , 

subject to the constraints 

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑛

𝑗=1

≤ 𝜙−1(1 − 𝛽𝑖
∗𝑝)𝜎∗𝑎𝑖

𝑝 + 𝜇∗𝑎𝑖
𝑝 , 𝑖 = 1,2, . . . , 𝑚 , 𝑝 = 1,2 

∑∑𝑥𝑖𝑗𝑘
𝑝

𝑠

𝑘=1

𝑚

𝑖=1

≥ 𝜙−1(𝛾𝑗
∗𝑝)𝜎

𝑏𝑗
𝑝
∗ + 𝜇

𝑏𝑗
𝑝
∗ , 𝑗 = 1,2, . . . , 𝑛,  𝑝 = 1,2 

∑∑∑𝑥𝑖𝑗𝑘
𝑝

𝑙

𝑝=1

𝑛

𝑗=1

𝑚

𝑖=1

≤ 𝜙−1(1 − 𝜂𝑘
∗)𝜎∗𝑒𝑘

+ 𝜇∗𝑒𝑘
, 𝑘 = 1,2, . . . , 𝑠 

𝑥𝑖𝑗𝑘
𝑝 ≥ 0, for all 𝑖 , 𝑗 and 𝑘. 

Model 2: Only supply availabilities 𝑎̃𝑝𝑖,  (𝑖 = 1, 2. . . 𝑚) (𝑝 = 1,2), follow ND  𝑏𝑝𝑗 and 𝑒𝑘 

remain precise values.  

In the same manner, construct the problem (P2) with two objective functions, (1) and (2), subject 

to the constraints (16), (4), (5) and (6).  

Model 3: Only demand requirements 𝑏̃𝑝𝑗 , (𝑗 = 1, 2. . . 𝑛) (𝑝 = 1,2), follow ND  𝑎𝑝𝑖 and 𝑒𝑘 

remain precise values. 

Construct the problem (P3) with two objective functions, (1) and (2), subject to the constraints 

(21), (3), (5) and (6). 

Model 4: Only conveyance capacities 𝑒̃𝑘,  (𝑘 = 1, 2. . . , 𝑠 ) (𝑝 = 1,2) , follow ND  𝑎𝑝𝑖   and  
𝑏𝑝𝑗  remain precise values. 

Construct the problem (P4) with two objective functions, (1) and (2), subject to the constraints 

(22), (3), (4) and (6). 

Now, the reduced deterministic problems (P1), (P2), (P3) and (P4) that have been achieved involve 

two objectives. The reduced deterministic problems cannot be solved explicitly. Even though, many 

methods are available in the literature to convert a multi-objective optimization problem to a single 

objective optimization problem. In this article, another improved method is proposed, namely, the 

global weighted sum method, based on the global criteria method and weighted sum method, to reduce 

the MOOP into the single objective problem, which is discussed in the following section. 

5. Global weighted sum method 

Many approaches, such as the global criteria approach, goal programming approach, constraint 

approach, fuzzy programming approach, fuzzy goal programming approach, etc., are available in the 
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literature to transform the MOOP into the single objective problem. In the aforementioned approaches, 

the range between the ideal solution and the feasible solution to the problem is minimized. It is also 

acknowledged that all objective functions are equally significant. In some unavoidable situations, 

minimizing all the objectives is impossible. We have to give minimum priority to any one of the 

objectives. According to the priority of the objective in the problem, a weight proportion has to be 

provided to it. Therefore, the weights and priority ranking are used for goal functions in our proposed 

method. Using these factors with the objective function via the global weighted sum method can help 

the entrepreneur to balance the situation. The procedure for converting the MOOP to the single 

objective optimization problem is stated as follows: 

Step a: Choosing one objective together with all the constraints at a time, ignoring other 

objectives, solve the MOOP as a single objective optimization problem to find the optimal solutions, 

say (𝑧̱1, 𝑧̱2, 𝑧̱3, . . . , 𝑧̱𝑟). 

Step b: Consider the optimal solutions obtained in Step a as the ideal solutions (𝑧̱1, 𝑧̱2, 𝑧̱3, . . . , 𝑧̱𝑟). 

Step c: Using Step b, formulate the following auxiliary problem: 

(G) Minimize λ (23) 

subject to the constraints (16), (21), (22), (6) and 𝜆 ≥ 0.      

Here 𝜆 = Minimize {∑ 𝑤𝑟 (
𝑧𝑟(𝑥)−𝑧̱𝑟

𝑧̱𝑟
)
𝑑

𝑞
𝑟=1 }

1

𝑑

. (24) 

where 1 ≤ 𝑑 ≤ ∞, the usual value of d is 2, 𝑤𝑟 is the weight of the rth objective function satisfying 

the conditions ∑ 𝑤𝑟 = 1
𝑞
𝑟=1 , and 𝑤𝑟 > 0. This method is called the global weighted sum method. 

 

Figure 1. Flow chart for working methodology. 
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5.1. Working methodology 

The working method for solving the BOBISTP with fuzzy stochastic constraints involving normal 

distribution is presented in the flow chart. 

A real-life numerical example is presented for Model 1 to illustrate the model and methods. In 

the first step, we have to transform the bi-objective bi-item fuzzy stochastic constraint(s) into bi-

objective bi-item deterministic constraint(s) using the extended chance constrained technique 

following normal distribution. Second, we have to transform the bi-objective bi-item solid 

transportation problem into a single objective BISTP using the proposed global weighted sum method 

(GWSM). Then, the reduced problem is solved using the LINGO 18.0 software. 

6. Numerical example 

A chemical company named Bharath Alkalies and Chemicals Ltd. is a fast-growing company. The 

company is involved in producing chemical products like ammonia (Item 1) and benzene (Item 2). 

Currently, the company has two production plants, which are in Chennai (A1) and Ranipet (A2). The 

company with two branches (A1 and A2) supplies two types of chemical products (Item 1 and Item 2) 

to three states in India, Kerala (D1), Karnataka (D2) and Telangana (D3), through two different 

conveyances, truck (E1) and train (E2). The administrator of the company plans to transport the goods 

from the upcoming month. To start his project, he has to collect the primary records related to delivery 

capacity, demand, total profit, cost of a unit product, duration of transit and so on. However, he is not 

able to get the necessary data due to uncertain human and natural phenomena as given below. The 

demands for different products vary from state to state. The manufacturing company has to take 

responsibility to provide the appropriate conveyances. The supply of products is hindered due to 

unexpected events at the factory and weather conditions. Rainfall during the planning period is a 

critical indicator of getting raw material, a crucial resource. The parameters involved in the problem 

are intrinsically stochastic and labor availability is frequently fuzzy in nature. Thus, for the supplier 

𝑎𝑖
𝑝, the probability that the required number of products with item p available is 𝛽𝑖

𝑝
. The demand for 

products is uncertain by nature, too. It arises from inaccurate demand forecasting, fluctuating demand 

or unforeseen delivery delays. Therefore, for cities 𝑏𝑗
𝑝
, the probability of the expected demand for 

item p is 𝛾̃𝑗
𝑝. Similar to the transportation capacities, traffic jams and roadblocks make them unclear. 

A probability 𝜂̃𝑘is defined as the probability of two conveyances having available capacities 𝑒𝑘 with 

item p. Relying on prior experience, the company expects the supply, demand and conveyance 

parameter to follow a fuzzy normal uncertain distribution with known mean and variance. The 

transportation cost (cijk) 
and the duration of transit (tijk) 

from source to destination for the conveyance 

of two items are given in Tables 2 and 3.  

In Tables 2 and 3, the fuzzy stochastic constraint parameters are normally distributed as 

𝑁(𝜇̃𝑎𝑖
𝑝; 𝜎̃2𝑎𝑖

𝑝), 𝑁(𝜇̃𝑏𝑗
𝑝; 𝜎̃2𝑏𝑗

𝑝), 𝑁(𝜇𝑒𝑘; 𝜎̃
2
𝑒𝑘). The entrepreneurs might select the probabilities based on 

insights. Now, the probabilities of supplies, demands and conveyances are denoted as 𝛽𝑖
𝑝
, 𝛾̃𝑗

𝑝, 𝜂̃𝑘, 

which are expressed in triangular fuzzy numbers provided in Table 4.  
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It is essential to think about how to minimize the duration of transit while keeping expenses down. 

As a result, the entrepreneur seeks to minimize the transportation cost and the duration of transit. 

Table 2. cijk 
and tijk 

for Item 1. 

       Capacity 

𝑁(𝜇𝑒𝑘; 𝜎̃
2
𝑒𝑘) 

Conveyance E1  E1  E1  𝑁((49,50,51); 

(2,3,4)) 

 E2  E2  E2 𝑁((53,54,55); 

(3,4,5)) 

 D1 D2 D3 Supply 

𝑵(𝝁̃𝒂𝒊; 𝝈̃
𝟐
𝒂𝒊) 

A1 8(cijk) 

6(tijk) 

12 

8 

8
 

6 

9
 

7 

13
 

10 

11 

8
 

𝑁((24,25,26); 

(1,1.5,2)) 

A2 12 

9 

12 

7 

8 

7 

9 

10 

14 

8 

17 

11 

𝑁((32,33,34); 

(5,6,7)) 

Demand 

𝑁(𝜇𝑏𝑗; 𝜎̃
2
𝑏𝑗) 

𝑁((16,17,18); (5,6,8)) 𝑁((20,21,22); (0,1,2)) 𝑁((14,15,16); (5,6,7))  

Table 3. cijk 
and tijk 

for Item 2. 

       Capacity 

𝑁(𝜇𝑒𝑘; 𝜎̃
2
𝑒𝑘) 

Conveyance E1  E1  E1  𝑁((49,50,51); 

(2,3,4)) 

 E2  E2  E2 𝑁((53,54,55); 

(3,4,5)) 

 D1 D2 D3 Supply 

𝑁(𝜇𝑎𝑖; 𝜎̃
2
𝑎𝑖) 

A1 11          

8
 

13
             

9 

9
              

7 

8
              

6 

12
           

12 

11
           

11 

𝑁((34,35,36); 

(2,3,4)) 

A2 14           

12 

17              

9 

11
             

8 

12
              

8 

15
           

10 

15
           

11 

𝑁((26,27,28); 

(5,6,7)) 

Demand 

𝑁(𝜇𝑏𝑗; 𝜎̃
2
𝑏𝑗) 

𝑁((23,24,25); (0,1,2)) 𝑁((16,17,18); (5,6,8)) 𝑁((16,17,18); (1,2,3))  

Table 4. Probabilities of supplies, demands and conveyances. 

1

1 = 𝟎. 𝟑̃=(0.2,0.3,0.4) 
2

1 = 𝟎. 𝟐̃= (0.1,0.2,0.3) 
1

2 = 𝟎. 𝟒̃=(0.3,0.4,0.5) 

2

2 = 𝟎. 𝟏̃= (0,0.1,0.2) 
𝛾̃1
1=0.4̃= (0.4,0.5,0.6) 𝛾̃1

2=0.3̃=(0.3,0.4,0.5) 

2

2 = 𝟎. 𝟓̃= (0.4,0.5,0.6) 
1

3 = 0.6̃= (0.5,0.6,0.7) 
𝛾̃3
2=0.7̃=(0.6,0.7,0.8) 

𝜂1=𝟎. 𝟒̃= (0.4,0.5,0.6) 𝜂2=0.7̃= (0.7,0.8,0.9)  
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Step 1a: Formulate the left-hand side alpha cut representation for bi-objective bi-item fuzzy 

stochastic constraints using Eqs (11) and (17) as shown in Tables 5 and 6.  

Table 5. Alpha cut representation for Item 1. 

       Capacity 

𝑵(𝝁̃𝒆𝒌; 𝝈̃
𝟐
𝒆𝒌) 

Conveyance E1  E1  E1  𝑁([49 + 𝛼, 5 − 𝛼]; 

[2 + 𝛼, 4 − 𝛼]) 

 E2  E2  E2 𝑁([54 + 𝛼, 5 − 𝛼]; 

[3 + 𝛼, 5 − 𝛼]) 

 D1 D2 D3 Supply 

𝑵(𝝁̃𝒂𝒊; 𝝈̃
𝟐
𝒂𝒊) 

A1 8           

6
         

 

12             

8                    
 

8
          

6 

9
             

7 

13
          

10 

11            

8
 

𝑁([24 + 𝛼, 2 − 𝛼]; 

[1 + 0.5𝛼, −0.5𝛼]) 

A2 12
         

9 

12
             

7 

8
             

7 

9
            

10 

14
             

8 

17
           

11 

𝑁([32 + 𝛼, 3 − 𝛼]; 

[5 + 𝛼, 7 − 𝛼]) 

Demand 

𝑁(𝜇𝑏𝑗; 𝜎̃
2
𝑏𝑗) 

𝑁([16 + 𝛼, 18 − 𝛼]; 

[5 + 𝛼, 8 − 2𝛼]) 

𝑁([20 + 𝛼, 22 − 𝛼]; 

[0 + 𝛼, 2 − 𝛼]) 

𝑁([14 + 𝛼, 16 − 𝛼]; 

[5 + 𝛼, 7 − 𝛼]) 

 

Table 6. Alpha cut representation for Item 2. 

       Capacity 

𝑁(𝜇𝑒𝑘; 𝜎̃
2
𝑒𝑘) 

Conveyance E1  E1  E1  𝑁([49 + 𝛼, 51

− 𝛼]; 

[2 + 𝛼, 4 − 𝛼]) 

 E2  E2  E2 𝑁([54 + 𝛼, 56

− 𝛼]; 

[3 + 𝛼, 5 − 𝛼]) 

 D1 D2 D3 Supply 

𝑵(𝝁̃𝒂𝒊; 𝝈̃
𝟐
𝒂𝒊) 

A1 11             

8
 

13
             

9 

9
              

7 

8
              

6 

12
           

12 

11
           

11 

𝑁([34 + 𝛼, 36

− 𝛼]; 

[2 + 𝛼, 4 − 𝛼]) 

A2 14           

12 

17              

9 

11
             

8 

12
              

8 

15
           

10 

15
           

11 

𝑁([26 + 𝛼, 28

− 𝛼]; 

[5 + 𝛼, 7 − 𝛼]) 

Demand 

𝑁(𝜇𝑏𝑗; 𝜎̃
2
𝑏𝑗) 

𝑁([23 + 𝛼, 2 − 𝛼]; 

[0 + 𝛼, 2 − 𝛼]) 

𝑁([16 + 𝛼, 1 − 𝛼]; 

[5 + 𝛼, 8 − 2𝛼]) 

𝑁([16 + 𝛼, 18 − 𝛼]; 

[1 + 𝛼, 3 − 𝛼]) 

 

Step 1b: Formulate the right-hand side alpha cut representation for Table 4 using Eqs (11) and 

(17) as shown below. 



21718 

AIMS Mathematics Volume 8, Issue 9, 21700–21731. 

𝛽̃1
1
= (0.2 + 0.1𝛼, 0.4 − 0.1𝛼) 𝛽̃2

1
= (0.1 + 0.1𝛼, 0.3 − 0.1𝛼) 𝛽̃2

1
= (0.3 + 0.1𝛼, 0.5 − 0.1𝛼) 

𝛽̃2
2
= (0 + 0.1𝛼, 0.2 − 0.1𝛼) 𝛾̃1

1 = (0.4 + 0.1𝛼, 0.6 − 0.1𝛼) 𝛾̃1
2 = (0.3 + 0.1𝛼, 0.5 − 0.1𝛼) 

𝛾̃2
1 = (0.6 + 0.1𝛼, 0.8 − 0.1𝛼) 𝛾̃2

2 = (0.4 + 0.1𝛼, 0.6 − 0.1𝛼) 𝛾̃3
1 = (0.5 + 0.1𝛼, 0.7 − 0.1𝛼) 

𝛾̃3
2 = (0.6 + 0.1𝛼, 0.8 − 0.1𝛼) 𝜂̃1 = (0.4 + 0.1𝛼, 0.6 − 0.1𝛼)  𝜂̃2 = (0.1 + 0.1𝛼, 0.3 − 0.1𝛼) 

Step 2: Using Eqs (16), (21), (22), we have reduced the problem (R) into problem (P1) as shown 

in Tables 7 and 8. 

Table 7. (P1) for Item 1. 

       Capacity 

𝜙−1(1 − 𝜂∗𝑘)𝜎∗𝑒𝑘
+ 𝜇∗𝑒𝑘

 

Conveyance E1  E1  E1  = 𝜑−1(0.4 + 0.1𝛼) ∗ 

√2 + 𝛼 + (49 + 𝛼)

  E2  E2  E2 = 𝜑−1(0.7 + 0.1𝛼) ∗ 

√3 + 𝛼 + (54 + 𝛼) 

 D1 D2 D3 Supply 

𝜙−1(1 − 𝛽∗𝑝
𝑖
)𝜎∗𝑎𝑝𝑖

+ 𝜇∗𝑎𝑝𝑖
 

A1 8
 
           

6 

12           

8
 

8
            

6 

9
            

7 

13
           

10 

11           

8
 

𝜑−1(0.6 + 0.1𝛼) ∗ 

√1 + 0.5𝛼 + (24 + 𝛼) 

A2 12
         

9 

12
             

7 

8
             

7 

9
            

10 

14
             

8 

17
           

11 

= 𝜑−1(0.5 + 0.1𝛼) ∗ 

√5 + 𝛼 + (32 + 𝛼)

 Demand 

𝜙−1 (𝛾∗𝑗
𝑝) 𝜎∗𝑏𝑗

𝑝

+ 𝜇∗
𝑏𝑗
𝑝  

= 𝜑−1(0.6 − 0.1𝛼) ∗ 

√8 − 2𝛼 + (18 − 𝛼)

 

= 𝜑−1(0.8 − 0.1𝛼) ∗ 

√2 − 𝛼 + (22 − 𝛼)

 

= 𝜑−1(0.7 − 0.1𝛼) ∗ 

√7 − 𝛼 + (16 − 𝛼)

 

 

Table 8. (P1) for Item 2. 

       Capacity 

𝜙−1(1 − 𝜂∗𝑘)𝜎∗𝑒𝑘
+ 𝜇∗𝑒𝑘

 

Conveyance E1  E1  E1  = 𝜑−1(0.4 + 0.1𝛼) ∗ 

√2 + 𝛼 + (49 + 𝛼)

  E2  E2  E2 = 𝜑−1(0.7 + 0.1𝛼) ∗ 

√3 + 𝛼 + (54 + 𝛼) 

 D1 D2 D3 Supply 

𝜙−1(1 − 𝛽∗𝑝
𝑖
)𝜎∗𝑎𝑝𝑖

+ 𝜇∗𝑎𝑝𝑖
 

A1 11             

8
 

13
             

9 

9
              

7 

8
              

6 

12
           

12 

11
           

11 

= 𝜑−1(0.7 + 0.1𝛼) ∗ 

√2 + 𝛼 + (35 + 𝛼) 

A2 14           

12 

17              

9 

11
             

8 

12
              

8 

15
           

10 

15
           

11 

= 𝜑−1(0.8 + 0.1𝛼) ∗ 

√5 + 𝛼 + (26 + 𝛼)

 Demand 

𝜙−1(𝛾∗𝑗
𝑝)𝜎∗𝑏𝑗

𝑝
 + 𝜇

∗
𝑏𝑗
𝑝 

= 𝜑−1(0.5 − 0.1𝛼) ∗ 

√2 − 𝛼 + (25 − 𝛼)

 

= 𝜑−1(0.6 − 0.1𝛼) ∗ 

√8 − 2𝛼 + (18 − 𝛼)

 

= 𝜑−1(0.8 − 0.1𝛼) ∗ 

√3 − 𝛼 + (18 − 𝛼)
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Step 3: Choose any alpha value between 0 and 1. Using Theorem 4.1, find 𝜙−1 by choosing 

𝛼 = 0.5. The equivalent deterministic constraints are shown in Tables 9 and 10.  

Table 9. Deterministic constraints for Item 1. 

       Capacity 

Conveyance E1  E1  E1  49.30 

 E2  E2  E2 54.76 

 D1 D2 D3 Supply 

A1 8           

6 

12            

8
 

8
            

6 

9
             

7 

13
           

10 

11            

8
 

 

24.93 

A2 12
         

9 

12
             

7 

8
             

7 

9
            

10 

14
             

8 

17
           

11 

32.8 

Demand 17.83 22.33

 

16.48

 

 

Table 10. Deterministic constraints for Item 2. 

       Capacity 

Conveyance E1  E1  E1  49.30 

 E2  E2  E2 54.76 

 D1 D2 D3 Supply 

A1 11             

8
 

13
             

9 

9
              

7 

8
              

6 

12
           

12 

11
           

11 

35.57 

 

A2 14           

12 

17              

9 

11
             

8 

12
              

8 

15
           

10 

15
           

11 

28.93 

Demand 24.35 17.83

 

18.57

 

 

Step 4: Tables 9 and 10 together are called a bi-objective bi-item solid transportation problem 

with deterministic constraints (BOBISTP-DC). Check if the BOBISTP-DC is balanced. If not, add a 

dummy availability or demand or conveyance. The costs of assigning dummy cells are always zero.  

Step 5: Transform the balanced BOBISTP-DC into single objective BISTP-DC using the 

proposed Global weighted sum method (GWSM). 

Step 5a: In the balanced BOBISTP-DC, take one objective function at a time subject to the 

constraints and exclude other objectives. Find the optimal solution to each objective using Lingo 18.0 

software. The optimal solutions for first and second objectives are 𝑧̱1 = 970.245 and 𝑧̱2 = 707.67. 

The optimal number of quantities to be produced by the chemical company for z1 is 𝑥111
1 =14.205, 

𝑥132
1 =10.725, 𝑥212

1 =3.625, 𝑥221
1 =22.33, 𝑥231

1 =5.755, 𝑥242
1 =1.09, 𝑥122

2 =17, 𝑥132
2 =18.57, 𝑥211

2 =6.98, 

𝑥213
2  =18.17, 𝑥221

2  =0.83, 𝑥242
2  =3.75. For z2 it is 𝑥121

1  =22.33, 𝑥132
1  =2.6, 𝑥212

1  =17.83, 𝑥231
1  =13.88, 

𝑥242
1 =1.09, 𝑥111

2 =13.09, 𝑥122
2 =17.83, 𝑥132

2 =0.4, 𝑥133
2 =4.25, 𝑥212

2 =11.26, 𝑥233
2 =13.75, 𝑥242

2 =3.75.  

Step 5b: Consider the optimal solutions 𝑧̱1 = 970.245 and 𝑧̱2 = 707.67 obtained in Step 5a as 

the ideal solutions. 

Step 5c: Using Step 5b, formulate the mathematical model (G) with weights 0.5 to each objective 

as follows: 

(G) Minimize 𝜆 

subject to the constraints (16), (21), (22), (6) and 𝜆 ≥ 0, 
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where 𝜆 = Minimize {0.5 (
𝑧1−970.245

970.245
)
2

+ 0.5 (
𝑧2−707.67

707.67
)
2

}

1

2

. 

Solve the problem (G) using Lingo 18.0 software. The calculation of Lingo 18.0 is performed 

with an Intel(R) Core (TM) i3-7100U CPU @ 2.40GHz and 4 GB RAM. Then, the optimal number of 

quantities to be produced by the chemical company is 𝑥111
1  = 8.62, 𝑥132

1  = 16.31, 𝑥212
1  = 9.21, 

𝑥221
1 =22.33, 𝑥231

1 =0.17, 𝑥242
1 =1.09, 𝑥111

2 =17.82, 𝑥122
2 = 17.75, 𝑥212

2 =5.09, 𝑥213
2 =1.44, 𝑥221

2 =0.029, 

𝑥222
2  =0.053, 𝑥231

2  =0.33, 𝑥232
2  =1.5, 𝑥233

2  =16.72, 𝑥242
2  =3.75, and the optimal compromise solutions 

are z1= 992.9835, z2= 719.7665, 𝜆 = 0.0205. 

6.1. Results and discussion 

In this paper, a BOBISTP with fuzzy stochastic constraints involving normal distributions has 

been constructed. In some situations, such as insufficient information in transportation, fluctuations in 

market value, etc., treat all the parameters in the BOBISTP as uncertain. In rare cases, uncertainty can 

occur in any one of the parameters in the problem. Due to this reason, BOBISTP with fuzzy stochastic 

constraints is categorized into four models. The fact that these models are constructed from different 

points of view is worth noting. The usage of the models is dependent on the entrepreneur’s preference. 

A real-life example is presented for Model 1, and it is reduced to a single objective BISTP-DC by our 

proposed methods. The reduced problem is then solved using the Lingo 18.0 software to obtain the 

optimal compromise solution as z1 = 992.9835, z2 = 719.7665, 𝜆 = 0.0205. 

If supplies at the origin alone are uncertain, due to unavoidable delays and troubles in the 

production and so on, then Model 2 is constructed. The same numerical example under section 6 is 

considered for Model 2 by choosing Item 1 and Item 2 demand values as 𝑏1
1 = 18, 𝑏1

2 = 24, 𝑏2
1 =

21 , 𝑏2
2 = 19 , 𝑏3

1 = 17 , 𝑏3
2 = 18  and conveyance values as 𝑒1 = 50 , 𝑒2 = 55 , where all the 

objective values and supply constraint values remain the same as in Tables 2 and 3. The same procedure 

which is followed in Model 1 is adopted for solving Model 2 to obtain the optimal allocations and 

optimal compromise solution which is shown in Table 11. If demands at the destination alone are 

uncertain, due to fluctuating demands, unforeseen delivery delays and so on, then Model 3 is 

constructed. The same numerical example is considered for Model 3 by choosing Item 1 and Item 2 

supply values as 𝑎1
1 = 25, 𝑎1

2 = 36, 𝑎2
1 = 33, 𝑎2

2 = 29 and conveyance values as 𝑒1 = 50, 𝑒2 =

55, where all the objective values and demand constraint values remain the same as in Tables 2 and 3. 

The same procedure which is followed in Model 1 is adopted for solving Model 3 to obtain the optimal 

allocations and optimal compromise solution which is shown in Table 11. If only conveyance 

capacities are uncertain, due to road blocks, insurgency, land slide, etc. in some routes, then, Model 4 

is constructed. The same numerical example is considered for Model 3 by choosing Item 1 and Item 2 

supply values as 𝑎1
1 = 25, 𝑎1

2 = 36, 𝑎2
1 = 33, 𝑎2

2 = 29 and conveyance values as 𝑒1 = 50, 𝑒2 =

55, where all the objective values and conveyance constraint values remain the same as in Tables 2 

and 3. The same procedure which is followed in Model 1 is adopted for solving Model 4 to obtain the 

optimal allocations and optimal compromise solution which is shown in Table 11. To assess the 

performance of the proposed method, our solutions of all models are compared with the global criteria 

method (GCM) [46] and fuzzy programming approach (FPA) [47]. The solutions of these methods are 

shown in Table 11. 
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Table 11. The results of the four models and the compared methods. 

Methods Model 1 

z1 z2 𝜆 Values of Decision variable 

Proposed  

method 

992.9835 719.7665 0.0205 𝑥111
1 = 8.62, 𝑥132

1 = 16.31, 𝑥212
1 = 9.21, 𝑥221

1 =22.33, 

𝑥231
1 =0.17, 𝑥242

1 =1.09, 𝑥111
2 =17.82, 𝑥122

2 = 17.75, 

𝑥212
2 =5.09, 𝑥213

2 =1.44, 𝑥221
2 =0.029, 𝑥222

2 =0.053, 

𝑥231
2 =0.33, 𝑥232

2 =1.5, 𝑥233
2 =16.72, 𝑥242

2 =3.75 

GCM 992.9839 719.77 0.029 𝑥111
1 = 8.53, 𝑥132

1 = 16.39, 𝑥212
1 = 9.21, 𝑥221

1 =22.33, 

𝑥231
1 =0.083, 𝑥242

1 =1.09, 𝑥111
2 =18.08, 𝑥122

2 = 17.48, 

𝑥212
2 =5.09, 𝑥213

2 =1.17, 𝑥221
2 =0.13, 𝑥222

2 =0.21, 𝑥231
2 =0.13, 

𝑥232
2 =1.43, 𝑥233

2 =16.99, 𝑥242
2 =3.75 

FPA 1044.23 927.68 0.0601 𝑥111
1 = 13.29, 𝑥132

1 = 3.67, 𝑥133
1 = 6.87, 𝑥142

1 = 1.09 

 𝑥213
1 =4.53, 𝑥222

1 =22.33, 𝑥233
1 =5.93, 𝑥121

2 =7.98, 𝑥122
2 = 

9,02, 𝑥132
2 =18.57, 𝑥211

2 =24.35, 𝑥223
2 =0.83, 𝑥242

2 =5.75 

 Model 2 

z1 z2 𝜆  

Proposed  

method 

1006.958 722.92 0.0222 x1
111= 9.46, 𝑥132

1 = 15.47, 𝑥212
1 = 8.54, 𝑥221

1 =21, 𝑥231
1 =1.53, 

𝑥242
1 =1.73, 𝑥111

2 =16.98, 𝑥122
2 = 18.58, 𝑥212

2 =6.05, 

𝑥213
2 =0.95, 𝑥221

2 =0.182, 𝑥222
2 =0.23, 𝑥231

2 =0.847, 

𝑥232
2 =0.881, 𝑥233

2 =16.27, 𝑥242
2 =3.5 

GCM 1006.958 722.922 0.031 x1
111= 8.76, 𝑥132

1 = 16.16, 𝑥212
1 = 9.23, 𝑥221

1 =21, 𝑥231
1 =0.83, 

𝑥242
1 =1.73, 𝑥111

2 =17.83, 𝑥122
2 = 17.73, 𝑥212

2 =5.87, 

𝑥213
2 =0.75, 𝑥221

2 =0.062, 𝑥222
2 =0.08, 𝑥231

2 =1.06, 𝑥232
2 =0.08, 

𝑥233
2 =16.93, 𝑥242

2 =3.5 

FPA 1103.01 968.67 0.0707 𝑥111
1 = 3.388, 𝑥132

1 = 2.81, 𝑥131
1 = 15.811, 𝑥133

1 = 1.188, 

𝑥142
1 = 1.73 𝑥213

1 =11.8, 𝑥222
1 =21, 𝑥242

1 =2, 𝑥122
2 =17.57, 

𝑥131
2 = 6.8, 𝑥132

2 =11.2, 𝑥211
2 =24, 𝑥223

2 =1.43, 𝑥242
2 =3.5 

 Model 3 

z1 z2 𝜆  

Proposed  

method 

993.049 720.5601 0.0202 𝑥111
1 = 8.69, 𝑥132

1 = 16.30, 𝑥212
1 = 9.13, 𝑥221

1 =21.33, 

𝑥231
1 =1.78, 𝑥242

1 =1.36, 𝑥111
2 =18.27, 𝑥122

2 = 17.73, 

𝑥212
2 =4.85, 𝑥213

2 =1.22, 𝑥221
2 =0.04, 𝑥222

2 =0.06, 𝑥231
2 =0.47, 

𝑥232
2 =1.31, 𝑥233

2 =16.77, 𝑥242
2 =4.25 

GCM 993.050 720.56 0.028 𝑥111
1 = 8.61, 𝑥132

1 = 16.38, 𝑥212
1 = 9.21, 𝑥221

1 =22.33, 

𝑥231
1 =0.09, 𝑥242

1 =1.36, 𝑥111
2 =18.58, 𝑥122

2 = 17.41, 

𝑥212
2 =4.87, 𝑥213

2 =0.89, 𝑥221
2 =0.162, 𝑥222

2 =0.25, 𝑥231
2 =0.21, 

𝑥232
2 =1.24, 𝑥233

2 =17.10, 𝑥242
2 =4.25 

FPA 1096.84 969.89 0.0702 𝑥111
1 = 2.98, 𝑥113

1 = 4.17, 𝑥131
1 = 13.72, 𝑥133

1 = 2.75, 𝑥142
1 = 

1.36 𝑥213
1 =10.67, 𝑥222

1 =22.33, 𝑥122
2 =17.43, 𝑥131

2 = 8.94, 

𝑥132
2 =9.63, 𝑥211

2 =24.35, 𝑥223
2 =0.4, 𝑥242

2 =4.25 

    Continued on next page 
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Methods Model 4 

z1 z2 𝜆  

Proposed  

method 

977.521 705.742 0.019 𝑥111
1 = 9.37, 𝑥132

1 = 15.62, 𝑥212
1 = 8.62, 𝑥221

1 =21, 𝑥231
1 =1.37, 

𝑥242
1 =2, 𝑥111

2 =17.26, 𝑥122
2 = 18.73, 𝑥212

2 =5.05, 𝑥213
2 =1.68, 

𝑥221
2 =0.11, 𝑥222

2 =0.15, 𝑥231
2 =0.77, 𝑥232

2 =0.567, 

𝑥233
2 =17.25, x2

242=4 

GCM 977.528 705.745 0.028 𝑥111
1 = 8.94, 𝑥132

1 = 16.05, 𝑥212
1 = 9.05, 𝑥221

1 =21, 𝑥231
1 =0.94, 

𝑥242
1 =2, 𝑥111

2 =17.76, 𝑥122
2 = 18.32, 𝑥212

2 =4.91, 𝑥213
2 =1.4, 

𝑥221
2 =0.26, 𝑥222

2 =0.4, 𝑥231
2 =0.46, 𝑥233

2 =17.53, 𝑥242
2 =4 

FPA 1086.12 956.12 0.0698 𝑥111
1 = 2.179, 𝑥113

1 = 3.82, 𝑥131
1 = 14.88, 𝑥133

1 = 2.11, 𝑥142
1 = 

2, 𝑥213
1 =12, 𝑥222

1 =21, 𝑥242
1 =2, 𝑥111

2 =17.26, 𝑥122
2 = 18, 

𝑥131
2 =8.24, 𝑥132

2 =9.76, 𝑥211
2 =24, 𝑥223

2 =1, 𝑥242
2 =4 

From Table 11, it is clear that the optimal compromise (OC) solution of the problem using our 

proposed method is very much closer to GCM and better than FPA. We can also note that the value of 

𝜆 slightly deviates from all compared methods. The solutions obtained from all four models prove that 

the proposed method is a practical method to solve the bi-objective bi-item solid transportation 

problem with fuzzy stochastic constraints involving normal distribution. It is important to note that 

diverse different perspectives are used to build these models. Moreover, we cannot declare one Model 

to be superior to another in the decision-making process since the entrepreneur’s preferences determine 

how the models are being used. The OC solutions for all four models are individually compared with 

the OC solutions of GCM and FPA, shown graphically in Figure 2. Figure 2 shows that the obtained 

transportation cost and duration of transit are similar to GCM and better than FPA. 

 

Figure 2. Comparison between existing methods. 
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6.2. Managerial insights 

The managerial implications of this research are as follows: 

The bi-objective bi-item item solid transportation problem with fuzzy stochastic constraints plays 

a vital role in many situations of managerial decision-making problems, such as planning of many 

complex three-dimensional resource allocation problems in the domain of industrial production, in 

which all the parameters are of fuzzy stochastic form. In such type of problem, the proposed method 

helps the entrepreneurs get to know more information about the objective functions and can be easily 

adjusted to suit the system constraints. Therefore, the entrepreneur is able to make more suitable 

decisions with the help of the present study.  

 

7. Sensitivity analysis 

Sensitivity analysis (SA) is carried out for the optimality in the BOBISTP with fuzzy stochastic 

constraint in respect of fluctuations in probabilities in uncertain parameters such as source, demand 

and conveyance. For the SA, we used the problem (M1) with an alpha value of 0.5. The problem (M1) 

is solved by changing the probability (0̃ ≤ 𝑃 ≤ 1̃), where P is the probability on 𝑎𝑖
𝑝
 or 𝑏𝑗

𝑝
 or 𝑒𝑘. 

By choosing any two parameters’ probabilities as constant at 0.5̃  and the remaining parameter’s 

probability varying between 0̃  and 1̃ , SA solves the problem (M1) with varying probabilities on 

constraint parameters to obtain an optimal compromise solution.  

The probability findings for 𝑎𝑖 , 𝑏𝑗  and 𝑒𝑘  from SA are listed in Tables 12–14. In this SA, 

Figures 3 and 4 show the graphical representations of the transportation cost and duration of transit in 

relation to the probability for 𝑎𝑖 . With the probability of 𝑎𝑖 , the cost and duration of transit are 

gradually increasing. At p(ai) > 0.5̃, transportation cost and time are gradually decreasing, as shown 

in Figures 3 and 4. It is worth mentioning that at a probability value of 0.6̃, transportation cost is 

sensitive to the variation of the probability of supply availability. A decision-maker can select 

appropriate probability for supply availability with the aid of this analysis. Likewise, we can determine 

the SA for 𝑏𝑗. In this analysis, Figures 5 and 6 illustrate how the transportation cost and time fluctuate 

in relation to the probability of 𝑏𝑗 . As the probability of 𝑏𝑗  increases, the cost of transportation 

gradually increases. At 0.5̃ < 𝑝(𝑏𝑗) <  0.6̃, transportation cost stagnates, and then at p(bj) > 0.6̃ it 

gradually decreases, as shown in Figure 5. As the probability of 𝑏𝑗increases, the duration of transit 

gradually increases. At p(bj) > 0.6̃ it gradually decreases, as shown in Figure 6. It is worth noting that 

at a probability value from 0.4̃ to 0.6̃, transportation cost and duration of transit are sensitive to the 

variation of the probability in demand requirements. Sensitivity analysis of the conveyance capacity 

reveals that there was substantial impact on the cost of transportation and impact on the duration of 

transit. This is because the capacity of the conveyance has bearing on how quickly the conveyance 

moves. According to Table 14, when the probability of conveyance capacity increases, the 

transportation cost and the duration of transit gradually decrease. Figure 7 and Figure 8 demonstrate 

the sensitivity to the probability for conveyance capacity. Some fascinating patterns can be seen in the 

SA of the probability. By comprehending the sensitivity patterns of probability for uncertain 

parameters, entrepreneurs can gain knowledge and the ability to construct the transportation system. 
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The results of the optimal transportation cost and duration of transit are displayed in Figures 3–8. The 

SA of BOBISTP with fuzzy stochastic constraint is accomplished by varying the probabilities of 

constraints in Tables 12–14. 

Table 12. SA for varying probability of supplies. 

S.no Fuzzy stochastic supply 

(𝛽̃𝑝
𝑖
) 

Fuzzy stochastic demand 

(𝛾̃𝑗
𝑝

) 

Fuzzy stochastic 

conveyance (𝜂𝑘) 

Transportation 

Cost 

Duration of 

transit 

1 0.1̃   882.1407 655.8256 

2 0.2̃   912.9049 721.0749 

3 0.3̃   946.6450 749.1950 

4 0.4̃   976.6450 774.1150 

5 0.5̃ 0.5̃ 0.5̃ 1006.285 798.7550 

6 0.6̃   1016.275 806.4250 

7 0.7̃   998.7050 792.7550 

8 0.8̃   963.2750 765.9250 

9 0.9̃   903.7650 720.8550 

Table 13. SA for varying probability of demands. 

S.no Fuzzy stochastic 

supply (𝛽̃𝑝
𝑖
) 

Fuzzy stochastic demand (𝛾̃𝑗
𝑝

) Fuzzy stochastic 

conveyance (𝜂𝑘) 

Transportation 

Cost 

Duration of 

transit 

1  0.1̃  834.8800 665.6100 

2  0.2̃  887.2400 710.0100 

3  0.3̃  930.1700 742.8600 

4  0.4̃  968.7950 772.0850 

5 0.5̃ 0.5̃ 0.5̃ 1006.285 798.755 

6  0.6̃  1001.585 790.4750 

7  0.7̃  945.3650 742.9350 

8  0.8̃  875.2400 683.5900 

9  0.9̃  757.4000 602.8700 

Table 14. SA for varying probability of conveyances. 

S.no Fuzzy stochastic supply 

(𝛽̃𝑝
𝑖
) 

Fuzzy stochastic demand 

(𝛾̃𝑗
𝑝

) 

Fuzzy stochastic 

conveyance (𝜂𝑘) 

Transportation Cost Duration of 

transit 

1   0.1̃ 1094.331 785.5391 

2   0.2̃ 1075.668 772.2717 

3   0.3̃ 1060.741 761.6594 

4   0.4̃ 1047.455 752.2150 

5 0.5̃ 0.5̃ 0.5̃ 1034.316 742.8737 

6   0.6̃ 1021.020 733.4396 

7   0.7̃ 1005.595 723.3250 

8   0.8̃ 986.3141 710.6759 

9   0.9̃ 952.5489 690.8011 
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Figure 3. Optimal compromise transportation cost (𝑎𝑖
𝑝
). 

 

Figure 4. Optimal compromise transportation time (𝑎𝑖
𝑝
). 

 

Figure 5. Optimal compromise transportation cost (𝑏𝑗
𝑝). 
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Figure 6. Optimal compromise transportation time (𝑏𝑗
𝑝). 

 

Figure 7. Optimal compromise transportation cost (𝑒𝑘). 

 

Figure 8. Optimal compromise transportation time (𝑒𝑘). 
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Figure 9. Comparison of SA on the cost by varying constraint parameters. 

 

Figure 10. Comparison of SA on the time by varying constraint parameters. 

In this study, in an imprecise environment, the best solution is obtained by varying the supply 

availabilities than by varying the other constraint probability parameters. To describe the difference 

graphically, the sensitivities to the probabilistic parameters varying, 𝑎𝑖, 𝑏𝑗 and 𝑒𝑘, are picturized in 

Figures 9 and 10 with the help of radar charts. In this study, the problem (M1) attained the best solutions 

in an unpredictable situation. It is easy to contemplate more conservative decisions in extremely 

uncertain conditions. The results show that there is varying probability in constraints with a different 

value for the cost of transportation and duration of transit. When the optimization problem is more 

ambiguous, it is customary to shift toward more conservative solutions. It has been discovered that 

more conservative solutions are chosen as optimal when modeling BOBISTP with fuzzy stochastic 

constraints, the uncertainty introduced by the probabilities for 𝑎𝑖, 𝑏𝑗 and 𝑒𝑘. On the other hand, this 
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study shows the necessity of understanding the sensitivity of constraints in the face of increasing 

uncertainty. It aids entrepreneurs in selecting the appropriate degree of uncertainty for ambiguous 

parameters. Additionally, it offers entrepreneurs guidance in selecting acceptable restrictions for 

uncertain parameter level probability. 

8. Conclusions and future scope 

A bi-objective bi-item solid transportation problem with fuzzy stochastic constraints involving 

normal distribution has been formulated in this research. The formulated problem is with the 

coefficients of objective functions in the deterministic form, and the constraint parameters are in fuzzy 

stochastic form. In instances like a lack of information, a fluctuating market value, production delays, 

roadblocks, etc., all the parameters or any one of the parameters of the problem can occasionally be 

unclear, which might lead to uncertainty in supply, demand and conveyance. As a result, the problem 

is categorized into four models based on various circumstances. Initially, the extended chance-

constrained technique with normal distribution is applied to transform the fuzzy stochastic constraint(s) 

of the BOBISTP to the equivalent deterministic constraint(s). Due to the conflicting nature of the 

objective functions, the proposed global weighted sum method is used to reduce the bi-objective bi-

item solid transportation problem with deterministic constraint(s) into a single objective bi-item solid 

transportation problem with deterministic constraint(s). The reduced problem is then solved using 

Lingo 18.0 software to obtain the optimal compromise solution. We have considered one numerical 

example to test the effectiveness of our proposed method, and a comparison is made between the 

proposed method and other existing methods. The obtained solutions demonstrate that our proposed 

method provides an optimal compromise solution that is similar to GCM and better than FPA. The 

sensitivity analysis performed for the BOBISTP with all constraints considered fuzzy stochastic shows 

that it is crucial to understand the sensitivity of constraints against increasing uncertainty.  

In the literature, there is a gap of study of STPs with multiple objectives with multiple items with 

fuzzy stochastic parameters. This study has removed this gap by introducing a bi-objective bi-item 

solid transportation problem with fuzzy stochastic constraints involving normal distribution. This 

study provides ideas about how fuzzy stochastic constraints in BOBISTP can be transformed into 

deterministic constraints and also about turning multi-objective optimization problems into single 

objective optimization problems. Still, in this study, we have some limitations where the cost and 

duration of transportation in the objectives are deterministic. To overcome this in our further study, we 

intend to examine BOBISTP situations while taking costs and duration of transit of transportation as 

uncertain because uncertainty can occur in the cost and time due to financial conditions, road 

congestion, etc. Based on the study of this paper, more decision making problems could be considered. 

In two stage bi-objective bi-item solid transportation problem with fuzzy stochastic constraints and 

two stage multi-objective multi-item fixed charge transportation problem, the same working 

methodology can be adopted to optimize the profit or loss. In spite of this, the problem can also be 

extended to a model using type-2 fuzzy parameters following distributions like the log-normal 

distribution, Weibull distribution, etc. 
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