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Abstract: Chemical engineers can model numerous interactions in a process using incidence graphs.
They are used to methodically map out a whole network of interconnected processes and controllers
to describe each component’s impact on the others. It makes it easier to visualize potential process
paths or a series of impacts. A Pythagorean fuzzy set is an effective tool to overcome ambiguity
and vagueness. In this paper, we introduce the concept of Pythagorean fuzzy incidence graphs. We
discuss the incidence path and characterize the strongest incidence path in Pythagorean fuzzy incidence
graphs. Furthermore, we propose the idea of Pythagorean fuzzy incidence cycles and Pythagorean
fuzzy incidence trees in Pythagorean fuzzy incidence graphs and give some essential results. We
illustrate the notions of Pythagorean fuzzy incidence cut vertices, Pythagorean fuzzy incidence bridges,
and Pythagorean fuzzy incidence cut pairs. We also establish some results about Pythagorean fuzzy
incidence cut pairs. Moreover, we study the types of incidence pairs and determine some crucial
results concerning strong incidence pairs in the Pythagorean fuzzy incidence graph. We also obtain the
characterization of Pythagorean fuzzy incidence cut pairs using α-strong incidence pairs and find the
relation between Pythagorean fuzzy incidence trees and α-strong incidence pairs. Finally, we provide
the application of Pythagorean fuzzy incidence graphs in the illegal wildlife trade.
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1. Introduction

Graphs are useful tools for data analysis, complicated system modeling and information
communication. They give us the ability to visualize and interpret data, which enables us to gain
greater insights and make more rational decisions. A graph is a practical tool for understanding
information about the connections between items. In operations research, system analysis and
economics, graph models are widely used. Yet, in many real-life circumstances, a graph-theoretic
issue may have a part that is uncertain and cannot be represented by a graph. Fuzzy models are
preferable to handle problems with uncertainty. In fuzzy graph theory as well, connectivity evolved
into a key idea. Connectivity is among the most essential concerns in graph theory and its
applications. A difficulty that highlights the significance of connectedness in fuzzy graphs is the fact
that total flow disconnection happens less frequently in physical issues than flow reduction between
pairs of vertices. Understanding complex systems, optimizing resource allocation, building effective
algorithms and obtaining insights into a variety of fields, ranging from social networks to biological
systems, all depend on the study of connectivity in graphs.

Zadeh [1] developed the idea of a fuzzy subset of a set as an extension of the crisp set to indicate
uncertainty. He considered the essential idea of a membership value. Since the crisp set only contains
the truth values, 0 (which means “false”) and 1 (which means “true”), it cannot be used to solve
ambiguous real-life problems. A fuzzy set (FS) allowed an object to have the value of membership
value within [0, 1]. The FS only considers a member’s value of membership in a set. Atanassov [2]
proposed the idea of intuitionistic fuzzy sets (IFSs) as a generalization of fuzzy sets. IFSs also consider
the nonmembership value of a member such that the sum of membership and nonmembership values of
a member is less than or equal to 1. Xu and Yager [3] called φ = (σφ, µφ), an intuitionistic fuzzy number
(IFN). Yager [4,5] regarded Pythagorean fuzzy sets (PFSs) as a novel extension of IFSs, defined by the
membership value and the nonmembership value fulfilling the condition that the sum of their squares
is less than 1. PFSs are more capable than IFSs to model the uncertainties in real life decision-making
problems. Yager and Abbasov [6] developed a relation between Pythagorean membership values and
complex numbers.

Kaufmann [7] was the first to propose the idea of fuzzy graphs (FGs). Rosenfeld [8] explored a
number of theoretical ideas, such as paths, cycles and connectedness in the FGs. Mathew and
Sunitha [9] investigated node and arc connectivity in FGs. Chakraborty and Mahapatra [10]
introduced the concept of intuitionistic fuzzy graphs (IFGs). Connectivity status of intuitionistic fuzzy
graphs was discussed by Bera et al. [11] with application. Naz et al. [12] proposed the concept of
Pythagorean fuzzy graphs (PFGs) along with their applications in decision-making. Akram and
Naz [13] studied the energy of PFGs with applications. For other extensions and notations, the readers
are referred to [14–17]. Akram et al. [18, 19] illustrated connectivity concepts in m-polar fuzzy
network models. Ahmad and Nawaz [20, 21] studied connectivity in directed rough fuzzy graphs
(DRFGs) and introduced the Wiener index of a DRFG. Ahmad and Batool [22] proposed the idea of
domination in DRFGs with an application. For other applications, the readers are referred to [23–26].

The drawback of FGs is that they provide no information concerning the impact of vertices on
edges. For example, suppose vertices indicate different hostels, and edges represent the roads linking
these hostels. We can create a graph to show the volume of traffic moving between the hostels. The
hostel with the most guests will have the most ramps. If S 1 and S 2 are two different hostels, and
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S 1S 2 is a road connecting them, then (S 2, S 1S 2) could reveal the ramp system from the road S 1S 2 to
the hostel S 2. The introduction of the concept of fuzzy incidence graphs was necessary to address
this gap in these graphs. In interconnection networks with influenced flows, fuzzy incidence graphs
are crucial. Thus, it is important to examine their connection features. Dinesh [27, 28] proposed the
concept of fuzzy incidence graphs (FIGs). Mordeson [29] developed the concept of incidence cut pairs
in FIGs. Malik et al. [30] investigated complementary FIGs. Mathew and Mordeson [31] illustrated
a variety of connectivity concepts in FIGs. They also covered other structural characteristics of FIGs.
Fang et al. [32] discussed the connectivity index and Wiener index of FIGs. They also developed three
different types of nodes in FIGs. Subsequently, Nazeer et al. [33] proposed the concepts of order, size,
dominance and strong pair domination in FIGs. Strong and weak fuzzy incidence dominance as well
as other forms of domination were also covered by them. Nazeer et al. [34] was the first to propose
the concepts of cyclic connectivity, fuzzy incidence cycle, cyclic connectivity index and average cyclic
connectivity index. For a more detailed and comprehensive study on FIGs, we may suggest [35] to the
reader. Nazeer et al. [36] proposed the concept of intuitionistic fuzzy incidence graphs (IFIGs), which
they describe as a generalization of FIGs with unique characteristics. In IFIGs, they discussed several
types of product, such as the Cartesian product, composition, tensor product and normal product.

FIGs and IFIGs have potential applications in a wide range of sectors, particularly in those
electrical, electronic and social networks where not only the edges and vertices are of interest, but
additionally how they are related to one another is crucial. However, several issues in real life cannot
be described using FIGs and IFIGs. We need a more general graph to handle these certain situations
since FIGs and IFIGs may not handle them effectively. The Pythagorean fuzzy incidence graphs
(PFIGs) would be a prominent research direction since uncertainties are well expressed using the
PFSs. In interconnection networks with influenced flows, PFIGs are essential. Therefore, it is
important to study their connectivity properties. Motivated by the factors above, the goal of our study
is to propose a generalization of connectivity of FIGs that operate effectively in a Pythagorean fuzzy
environment. The novel contributions of our study might be summed up as follows:

• The concept of incidence graph in Pythagorean fuzzy environment is introduced.
• In this work, we examine how the removal of a vertex, edge and pair from the PFIGs affects the

strength of a vertex-edge pair’s connectivity.
• We propose the idea of Pythagorean fuzzy incidence cycles and trees. Strong incidence pairs are

used to describe Pythagorean fuzzy incidence trees and cut pairs.
• We establish the existence of the strongest incidence path between every vertex and edge. Also,

we introduce some types of Pythagorean fuzzy incidence pairs, namely, α-strong incidence pairs,
β-strong incidence pairs and δ-weak incidence pairs.
• The issue of illicit trafficking in wildlife is addressed by the proposed tools.

The other contents of this paper are structured as follows: In Section 2 we define Pythagorean fuzzy
incidence graphs (PFIGs), incidence path and strength of incidence path. Pythagorean fuzzy incidence
cycle and Pythagorean fuzzy incidence trees and a few relevant propositions are presented in Section 3.
In Section 4, we discuss Pythagorean fuzzy incidence cut vertices, Pythagorean fuzzy incidence bridges
and Pythagorean fuzzy incidence cut pairs in PFIG and prove several propositions on Pythagorean
fuzzy incidence cut pairs. In Section 5, we define the strong Pythagorean fuzzy incidence pairs and
demonstrate the types of strong Pythagorean fuzzy incidence pairs. This section also includes the
concept of a strong incidence path and some results on strong Pythagorean incidence pairs. Section 6
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provides an application of PFIG in illegal wildlife trade. In Section 7, a comparison between our
research work and existing models is given. Lastly, in Section 8, we give some final remarks. The list
of abbreviations is given in Table 1.

Table 1. List of abbreviations.

Abbreviation Description
FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
FG Fuzzy graph
IFG Intuitionistic fuzzy graph
PFG Pythagorean fuzzy graphs
FIG Fuzzy incidence graph
IFIG Intuitionistic fuzzy incidence graph
PFIG Pythagorean fuzzy incidence graph
IP Incidence pair
IPt Incidence path
PFIC Pythagorean fuzzy incidence cycle
PFIT Pythagorean fuzzy incidence tree
PFIS Pythagorean fuzzy incidence subgraph
SPFIS Spanning Pythagorean fuzzy incidence subgraph
PFIF Pythagorean fuzzy incidence forest
PFICV Pythagorean fuzzy incidence cut vertex
PFICP Pythagorean fuzzy incidence cut pair
SIP Strong incidence pair

2. Pythagorean fuzzy incidence graphs

In this section, we first present a few essential concepts that are relevant to this research article. We
then define the Pythagorean fuzzy incidence graphs, subgraphs of Pythagorean fuzzy incidence graphs,
complete Pythagorean fuzzy incidence subgraphs and the strength of connectedness between any two
vertices of PFIGs. The notion of incidence graphs proposed by Dinesh [28] is defined below:

Definition 2.1. [28] An incidence graph on a non-empty set V is a triplet G = (V, E, I), where E ⊆
V × V, I ⊆ V × E.

Definition 2.2. [28] In an incidence graph G = (V, E, I), if (q̌, ťw̌) ∈ I, then (q̌, ťw̌) is called a pair or
incidence pair (IP).

Definition 2.3. [29] Let G = (V, E, I) be an incidence graph. A sequence

q̌0, (q̌0, q̌0q̌1), q̌0q̌1, (q̌1, q̌0q̌1), q̌1, (q̌1, q̌1q̌2), q̌1q̌2, (q̌2, q̌1q̌2),

q̌2, · · · , q̌n−1, (q̌n−1, q̌n−1q̌n), q̌n−1q̌n, (q̌n, q̌n−1q̌n), q̌n

is called a walk. It is closed if q̌0 = q̌n. It is a trail if the edges are distinct and an incidence trail if the
pairs are distinct. It is said to be a path if the vertices are distinct. A path is called a cycle if it is closed.
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All IPs are distinct by the definition of a cycle. We consider the below sequences to be walks:

q̌0, (q̌0, q̌0q̌1), q̌0q̌1, (q̌1, q̌0q̌1), q̌1, (q̌1, q̌1q̌2), q̌1q̌2, (q̌2, q̌1q̌2), q̌2, · · · ,

q̌n−1, (q̌n−1, q̌n−1q̌n), q̌n−1q̌n, (q̌n, q̌n−1q̌n), q̌n, (q̌n, q̌nq̌n+1), q̌nq̌n+1;

q̌q̌0, (q̌0, q̌q̌0), q̌0, (q̌0, q̌0q̌1), q̌0q̌1, (q̌1, q̌0q̌1), q̌1, (q̌1, q̌1q̌2), q̌1q̌2, (q̌2, q̌1q̌2),

q̌2, · · · , q̌n−1, (q̌n−1, q̌n−1q̌n), q̌n−1q̌n, (q̌n, q̌n−1q̌n), q̌n;

q̌q̌0, (q̌0, uq̌0), q̌0, (q̌0, q̌0q̌1), q̌0q̌1, (q̌1, q̌0q̌1), q̌1, (q̌1, q̌1q̌2), q̌1q̌2, (q̌2, q̌1q̌2),

q̌2, · · · , q̌n−1, (q̌n−1, q̌n−1q̌n), q̌n−1q̌n, (q̌n, q̌n−1q̌n), q̌n, (q̌n, q̌nq̌n+1), q̌nq̌n+1.

The latter is closed if q̌q̌0 = q̌nq̌n+1. They are called incidence paths (IPt if the vertices are distinct).
According to the definition of an incidence path, if q̌ť is on the incidence path, then IPs of the type
(q̌, q̌ť) and (ť, q̌ť) are also on the incidence path but not an IP of the form (q̌, ťw̌) with q̌ , ť , w̌.

Definition 2.4. [28] An incidence graph is said to be a connected incidence graph if every pair of
vertices is connected by an incidence path. A tree is an incidence connected graph with no cycles. It is
a forest if it is not connected.

Definition 2.5. [4, 5] A Pythagorean fuzzy set (PFS) on a universe X̌ is an object of the form

Ǎ = {< x̌, σǍ(x̌), µǍ(x̌) > | x̌ ∈ X̌},

where σǍ : X̌ → [0, 1] and µǍ : X̌ → [0, 1] represent the membership and non-membership functions
of Ǎ, respectively, such that for all x̌ ∈ X̌,

0 ≤ (σǍ(x̌))2 + (µǍ(x̌))2 ≤ 1.

πǍ(x̌) =
√

1 − (σǍ(x̌))2 − (µǍ(x̌))2 is called the degree of indeterminacy of element x̌ ∈ X̌.

We now define a Pythagorean fuzzy incidence graph.

Definition 2.6. A PFIG on a non-empty set V is an ordered triplet Ǧ = (J̌, Ǩ, Ľ), where
J̌ =< V, σJ̌, µJ̌ > is a PFS on V , Ǩ =< E, σǨ , µǨ > is a PFS on E ⊆ V × V such that

σǨ(ǎǩ) ≤ min{σJ̌(ǎ), σJ̌(ǩ)},

µǨ(ǎǩ) ≤ max{µJ̌(ǎ), µJ̌(ǩ)},

for all ǎ, ǩ ∈ V , and Ľ =< I, σĽ, µĽ > is a PFS on I ⊆ V × E such that

σĽ(ǎ, ǩľ) ≤ min{σJ̌(ǎ), σǨ(ǩľ)},

µĽ(ǎ, ǩľ) ≤ max{µJ̌(ǎ), µǨ(ǩľ)},

for all (ǎ, ǩľ) ∈ I.
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Although pairs of the type (ǎ, ǩľ), where ǎ , ǩ , ľ are allowed under the definition of PFIG, only
pairs of the form (ǎ, ǎǩ) will be taken into consideration.

Example 2.1. Consider an incidence graph G = (V, E, I),where V = {q̌, ť, ǎ, ǩ, ľ}, E = {ǎǩ, ǎľ, ǩq̌, ľq̌, ǎq̌,
ǩť, q̌ť} ⊆ V × V , and I = {(ǎ, ǎǩ), (ǩ, ǎǩ), (ǎ, ǎľ), (ľ, ǎľ), (ľ, ľq̌), (q̌, ľq̌), (ǩ, ǩq̌), (q̌, ǩq̌), (ǎ, ǎq̌), (ť, ǩť), (ť, q̌ť)}
⊆ V × E. Let J̌, Ǩ and Ľ be the PFSs defined on V , E and I, respectively:
J̌ = {(q̌, 0.5, 0.6), (ť, 0.4, 0.9), (ǎ, 0.7, 0.5), (ǩ, 0.6, 0.7), (ľ, 0.8, 0.5)},
Ǩ = {(ǎǩ, 0.4, 0.6), (ǎľ, 0.6, 0.4), (ǩq̌, 0.5, 0.5), (ľq̌, 0.5, 0.6), (ǎq̌, 0.4, 0.6), (ǩť, 0.3, 0.8), (q̌ť, 0.4, 0.9)},
Ľ = {((ǎ, ǎǩ), 0.4, 0.5), ((ǩ, ǎǩ), 0.4, 0.7), ((ǎ, ǎľ), 0.4, 0.5), ((ľ, ǎľ), 0.6, 0.5), ((ľ, ľq̌), 0.4, 0.6), ((q̌, ľq̌), 0.4,

0.4), ((ǩ, ǩq̌), 0.5, 0.7), ((q̌, ǩq̌), 0.4, 0.5), ((ǎ, ǎq̌), 0.4, 0.6), ((ť, ǩť), 0.2, 0.7), ((ť, q̌ť), 0.3, 0.7)}.
By routine calculations, it is easy to see from Figure 1 that Ǧ = (J̌, Ǩ, Ľ) is a PFIG.

b

(ǎ, 0.7, 0.5) (ǩ, 0.6, 0.7)

(ľ, 0.8, 0.5) (q̌, 0.5, 0.6)

(ť, 0.4, 0.9)

(0.5, 0.6)

(0
.6

,0
.4

)

(0.5,0.5)

(0.4,0.6)

(0.3, 0.8)

(0.4, 0.9)

(0.4, 0.6)

b

b

b

b

b

(0.4, 0.5) (0.4, 0.7)

(0
.4

,0
.5

)
(0

.6
,0

.5
)

(0.4, 0.5)

(0.4, 0.6) (0.4, 0.4)

(0.3, 0.7)

(0.2, 0.7)

(0.4,0.5)

(0
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,0
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)

Figure 1. Pythagorean fuzzy incidence graph (PFIG).

Definition 2.7. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. The supports of J̌, Ǩ and Ľ, respectively, are defined
below:
supp(J̌) = {ǎ ∈ V | σJ̌(ǎ) , 0 or µJ̌(ǎ) , 0},
supp(Ǩ) = {ǎǩ ∈ E | σǨ(ǎǩ) , 0 or µǨ(ǎǩ) , 0},
supp(Ľ) = {(ǎ, ǎǩ) ∈ V × E | σĽ(ǎ, ǎǩ) , 0 or µĽ(ǎ, ǎǩ) , 0}.

Definition 2.8. The incidence strength of PFIG Ǧ = (J̌, Ǩ, Ľ) is defined by IS Ǧ = (σIS
Ǧ
, µIS

Ǧ
), where

σIS
Ǧ

= min{σĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)} and µIS
Ǧ

= max{µĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)}.

Example 2.2. Consider a PFIG Ǧ = (J̌, Ǩ, Ľ) as shown in Figure 1. Then,
σIS

Ǧ
= min{σĽ(ǎ, ǎǩ), σĽ(ǩ, ǎǩ), σĽ(ǎ, ǎľ), σĽ(ľ, ǎľ), σĽ(ľ, ľq̌), σĽ(q̌, ľq̌), σĽ(ǩ, ǩq̌), σĽ(q̌, ǩq̌), σĽ(ǎ, ǎq̌),
σĽ(ť, ǩť), σĽ(ť, q̌ť)}

= min{0.4, 0.4, 0.4, 0.6, 0.4, 0.4, 0.5, 0.4, 0.4, 0.2, 0.3} = 0.2,
µIS

Ǧ
= max{µĽ(ǎ, ǎǩ), µĽ(ǩ, ǎǩ), µĽ(ǎ, ǎľ), µĽ(ľ, ǎľ), µĽ(ľ, ľq̌), µĽ(q̌, ľq̌), µĽ(ǩ, ǩq̌), µĽ(q̌, ǩq̌), µĽ(ǎ, ǎq̌),
µĽ(ť, ǩť), µĽ(ť, q̌ť)}

= max{0.5, 0.7, 0.5, 0.5, 0.6, 0.4, 0.7, 0.5, 0.6, 0.7, 0.7} = 0.7.
Thus, the incidence strength of Ǧ is IS Ǧ = (σIS

Ǧ
, µIS

Ǧ
) = (0.2, 0.7).

Definition 2.9. A PFIG Ȟ = (M̌, Q̌, Š ) is called a partial Pythagorean fuzzy incidence subgraph of
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PFIG Ǧ = (J̌, Ǩ, Ľ) if

σM̌(ǎ) ≤ σJ̌(ǎ), µM̌(ǎ) ≥ µJ̌(ǎ) ∀ ǎ ∈ supp(M̌),

σQ̌(ǎǩ) ≤ σǨ(ǎǩ), µQ̌(ǎǩ) ≥ µǨ(ǎǩ) ∀ ǎǩ ∈ supp(Q̌),

σŠ (ǎ, ǎǩ) ≤ σĽ(ǎ, ǎǩ), µŠ (ǎ, ǎǩ) ≥ µĽ(ǎ, ǎǩ) ∀ (ǎ, ǎǩ) ∈ supp(Š ).

Example 2.3. Consider a PFIG Ǧ = (J̌, Ǩ, Ľ) as shown in Figure 1. Let M̌ = {(q̌, 0.4, 0.7), (ť, 0.2, 0.9),
(ǎ, 0.5, 0.7), (ǩ, 0.4, 0.8), (ľ, 0.6, 0.7)}, Q̌ = {(ǎǩ, 0.2, 0.7), (ǎľ, 0.4, 0.5), (ľq̌, 0.3, 0.6), (ǎq̌, 0.3, 0.6), (ǩq̌,
0.4, 0.7), (q̌ť, 0.2, 0.9)}, and Š = {((ǎ, ǎǩ), 0.2, 0.6), (ǩ, ǎǩ), 0.2, 0.7), ((ǎ, ǎľ), 0.3, 0.6), ((ľ, ǎľ), 0.4, 0.6),
((ľ, ľq̌), 0.2, 0.7), ((q̌, ľq̌), 0.3, 0.5), ((ǎ, ǎq̌), 0.3, 0.7), ((ǩ, ǩq̌), 0.3, 0.8), ((ť, q̌ť), 0.2, 0.8)}.
By direct calculations, it is easy to see from Figure 2 that Ȟ = (M̌, Q̌, Š ) is a partial Pythagorean fuzzy
incidence subgraph of Ǧ = (J̌, Ǩ, Ľ).

b
(ǎ, 0.5, 0.7) (ǩ, 0.4, 0.8)

(ľ, 0.6, 0.7) (q̌, 0.4, 0.7)

(ť, 0.2, 0.9)

(0.3, 0.6)

(0
.4

,0
.5

)

(0.4,0.7)
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b

b

b

b

b
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.3

,0
.6

)
(0

.4
,0

.6
)

(0.3, 0.7)

(0.2, 0.7) (0.3, 0.5)

(0.2, 0.9)

(0
.3

,0
.8

)

Figure 2. Partial Pythagorean fuzzy subgraph Ȟ of Ǧ given in Figure 1.

Definition 2.10. A PFIG Ȟ = (M̌, Q̌, Š ) is called a Pythagorean fuzzy incidence subgraph (PFIS) of
PFIG Ǧ = (J̌, Ǩ, Ľ) if

σM̌(ǎ) = σJ̌(ǎ), µM̌(ǎ) = µJ̌(ǎ) ∀ ǎ ∈ supp(M̌),

σQ̌(ǎǩ) = σǨ(ǎǩ), µQ̌(ǎǩ) = µǨ(ǎǩ) ∀ ǎǩ ∈ supp(Q̌),

σŠ (ǎ, ǎǩ) = σĽ(ǎ, ǎǩ), µŠ (ǎ, ǎǩ) = µĽ(ǎ, ǎǩ) ∀ (ǎ, ǎǩ) ∈ supp(Š ).

A PFIS Ȟ = (M̌, Q̌, Š ) is said to bea spanning Pythagorean fuzzy incidence subgraph (SPFIS) of
PFIG Ǧ = (J̌, Ǩ, Ľ) if supp(M̌) = supp(J̌).

Example 2.4. Consider a PFIG Ǧ = (J̌, Ǩ, Ľ) as shown in Figure 1. A PFIS and SPFIS of Ǧ = (J̌, Ǩ, Ľ)
are shown in Figures 3 and 4, respectively.
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Figure 3. PFIS of Ǧ given in Figure 1.
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(ǎ, 0.7, 0.5) (ǩ, 0.6, 0.7)
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Figure 4. SPFIS of Ǧ given in Figure 1.

Definition 2.11. A PFIG Ǧ = (J̌, Ǩ, Ľ) is called a complete PFIG if

σǨ(ǎǩ) = min{σJ̌(ǎ), σJ̌(ǩ)}, µǨ(ǎǩ) = max{µJ̌(ǎ), µJ̌(ǩ)} ∀ ǎ, ǩ ∈ V,

σĽ(ǎ, ǎǩ) = min{σJ̌(ǎ), σǨ(ǎǩ)}, µĽ(ǎ, ǎǩ) = max{µJ̌(ǎ), µǨ(ǎǩ)} ∀ (ǎ, ǎǩ) ∈ V × E.

Example 2.5. Let Ǧ = (J̌, Ǩ, Ľ) with J̌ = {(x, 0.5, 0.3), (y, 0.7, 0.4), (z, 0.6, 0.2)} be a PFIG as shown in
Figure 5. By routine calculations, it is easy to see that Ǧ = (J̌, Ǩ, Ľ) is a complete PFIG.
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Figure 5. Complete PFIG.

Definition 2.12. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IPt is a walk of distinct vertices, edges and pairs.

Definition 2.13. The incidence strength of an IPt P̌ of PFIG Ǧ = (J̌, Ǩ, Ľ), denoted by IS P̌, is defined
by

IS P̌ = (σIS
P̌
, µIS

P̌
),

where σIS
P̌

= min{σĽ(ǎ, ǎǩ) : (ǎ, ǎǩ) ∈ P̌} and µIS
P̌

= max{µĽ(ǎ, ǎǩ) : (ǎ, ǎǩ) ∈ P̌} are σ-incidence
strength and µ-incidence strength of P̌, respectively.

Example 2.6. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 6. Consider a q̌− ľ IPt between vertices
q̌ and ľ,

P̌1 : q̌, (q̌, q̌ť), q̌ť, (ť, q̌ť), ť, (ť, ťw̌), ťw̌, (w̌, ťw̌), w̌, (w̌, w̌ľ), w̌ľ, (ľ, w̌ľ), ľ.

The σ-incidence strength of an IPt P̌1 is given by

σIS
P̌1

= min{σĽ(q̌, q̌ť), σĽ(ť, q̌ť), σĽ(ť, ťw̌), σĽ(w̌, ťw̌), σĽ(w̌, w̌ľ), σĽ(ľ, w̌ľ)}
= min{0.6, 0.7, 0.4, 0.5, 0.3, 0.2} = 0.2,

and the µ-incidence strength of an IPt P̌1 is given by

µIS
P̌1

= max{µĽ(q̌, q̌ť), µĽ(ť, q̌ť), µĽ(ť, ťw̌), µĽ(w̌, ťw̌), µĽ(w̌, w̌ľ), µĽ(ľ, w̌ľ)}
= max{0.5, 0.3, 0.4, 0.3, 0.5, 0.7} = 0.7.

Thus, the incidence strength of an IPt P̌1 is IS P̌1
= (σIS

P̌1
, µIS

P̌1
) = (0.2, 0.7). Consider an ǎ − ťw̌ IPt

between a vertex ǎ and an edge ťw̌,

P̌2 : ǎ, (ǎ, ǎǩ), ǎǩ, (ǩ, ǎǩ), ǩ, (ǩ, ǩť), ǩť, (ť, ǩť), ť, (ť, ťw̌), ťw̌.
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The σ-incidence strength of an IPt P̌2 is given by

σIS
P̌2

= min{σĽ(ǎ, ǎǩ), σĽ(ǩ, ǎǩ), σĽ(ǩ, ǩť), σĽ(ť, ǩť), σĽ(ť, ťw̌)}
= min{0.2, 0.1, 0.4, 0.3, 0.4} = 0.1,

and the µ-incidence strength of an IPt P̌2 is given by

µIS
P̌2

= max{µĽ(ǎ, ǎǩ), µĽ(ǩ, ǎǩ), µĽ(ǩ, ǩť), µĽ(ť, ǩť), µĽ(ť, ťw̌)}
= max{0.6, 0.8, 0.7, 0.5, 0.4} = 0.8.

Thus, the incidence strength of an IPt P̌2 is IS P̌2
= (σIS

P̌2
, µIS

P̌2
) = (0.1, 0.8). Consider an ǎǩ − w̌ľ IPt

between edges ǎǩ and w̌ľ,

P̌3 : ǎǩ, (ǩ, ǎǩ), ǩ, (ǩ, ǩť), ǩť, (ť, ǩť), ť, (ť, ťw̌), ťw̌, (w̌, ťw̌), w̌, (w̌, w̌ľ), w̌ľ.

The σ-incidence strength of an IPt P̌3 is given by

σIS
P̌3

= min{σĽ(ǩ, ǎǩ), σĽ(ǩ, ǩť), σĽ(ť, ǩť), σĽ(ť, ťw̌), σĽ(w̌, ťw̌), σĽ(w̌, w̌ľ)}
= min{0.1, 0.4, 0.3, 0.4, 0.5, 0.3} = 0.1,

and the µ-incidence strength of an IPt P̌3 is given by

µIS
P̌3

= max{µĽ(ǩ, ǎǩ), µĽ(ǩ, ǩť), µĽ(ť, ǩť), µĽ(ť, ťw̌), µĽ(w̌, ťw̌), µĽ(w̌, w̌ľ)}
= max{0.8, 0.7, 0.5, 0.4, 0.3, 0.5} = 0.8.

Thus, the incidence strength of an IPt P̌3 is IS P̌3
= (σIS

P̌3
, µIS

P̌3
) = (0.1, 0.8).

Definition 2.14. In a PFIG Ǧ = (J̌, Ǩ, Ľ), the incidence strength of connectedness between vertices ǎ
and ǩ, denoted by ICONNǦ(ǎ, ǩ), is defined by

ICONNǦ(ǎ, ǩ) = (ICONNσ(Ǧ)(ǎ, ǩ), ICONNµ(Ǧ)(ǎ, ǩ)),

where ICONNσ(Ǧ)(ǎ, ǩ) = max{σIS
P̌i
} and ICONNµ(Ǧ)(ǎ, ǩ) = min{µIS

P̌i
} are σ-incidence strength and

µ-incidence strength of connectedness between ǎ and ǩ, respectively. Here P̌i represents all possible
IPts between ǎ and ǩ.

We now define incidence strength of connectedness of an IPt between a vertex and an edge in PFIG.

Definition 2.15. A vertex ǎ and an edge ǩľ in a PFIG Ǧ = (J̌, Ǩ, Ľ) are called connected if an IPt exists
between them.

Definition 2.16. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. The incidence strength of connectedness between a
vertex ǎ and an edge ǩľ, denoted by ICONNǦ(ǎ, ǩľ), is defined by

ICONNǦ(ǎ, ǩľ) = (ICONNσ(Ǧ)(ǎ, ǩľ), ICONNµ(Ǧ)(ǎ, ǩľ)),

where ICONNσ(Ǧ)(ǎ, ǩľ) = max{σIS
P̌i
} and ICONNµ(Ǧ)(ǎ, ǩľ) = min{µIS

P̌i
} are σ-incidence strength and

µ-incidence strength of connectedness between ǎ and ǩľ, respectively. Here P̌i represents all possible
IPts between ǎ and ǩľ.
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Example 2.7. Consider a PFIG Ǧ = (J̌, Ǩ, Ľ) as shown in Figure 6. All possible q̌ − ǩľ IPts are
P̌1 : q̌, (q̌, q̌ǎ), q̌ǎ, (ǎ, q̌ǎ), ǎ, (ǎ, ǎǩ), ǎǩ, (ǩ, ǎǩ), ǩ, (ǩ, ǩť), ǩť, ť, (ť, ťw̌), ťw̌, (w̌, ťw̌), w̌, (w̌, w̌ľ), w̌ľ, (ľ, w̌ľ),
ľ, (ľ, ľǩ), ľǩ = ǩľ;
P̌2 : q̌, (q̌, q̌ť), q̌ť, (ť, q̌ť), ť, (ť, ťw̌), ťw̌, (w̌, ťw̌), w̌, (w̌, w̌ľ), w̌ľ, (ľ, w̌ľ), ľ, (ľ, ľǩ), ľǩ = ǩľ;
P̌3 : q̌, (q̌, q̌ť), q̌ť, (ť, q̌ť), ť, (ť, ťǩ), ťǩ, (ǩ, ťǩ), ǩ, (ǩ, ǩľ), ǩľ;
P̌4 : q̌, (q̌, q̌ǎ), q̌ǎ, (ǎ, q̌ǎ), ǎ, (ǎ, ǎǩ), ǎǩ, (ǩ, ǎǩ), ǩ, (ǩ, ǩľ), ǩľ.

(q̌, 0.8, 0.5)
(
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,
0
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,
0
.4

)
(w̌, 0.6, 0.3)

(ǎ, 0.5, 0.6)

(
ǩ
,
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,
0
.8

)

(ľ, 0.3, 0.7)

(0.2, 0.8)

(0.7, 0.4)

(0.2, 0.7)
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)

(0
.4
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)
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(0.6, 0.5) (0.7, 0.3)
bb

(0.4, 0.4)

(0.2, 0.6)

(0.5, 0.3)

(0.1, 0.8) (0.2, 0.7) (0.2, 0.6)

(0.3,0.5)

(0.3,0.5)
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)

bbb

b
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)

Figure 6. Incidence paths in PFIG.

The incidence strengths of these IPts are given by

IS P̌1
= (σIS

P̌1
, µIS

P̌1
) = (0.1, 0.8),

IS P̌2
= (σIS

P̌2
, µIS

P̌2
) = (0.2, 0.7),

IS P̌3
= (σIS

P̌3
, µIS

P̌3
) = (0.2, 0.7),

IS P̌4
= (σIS

P̌4
, µIS

P̌4
) = (0.1, 0.8).

The σ-incidence strength and µ-incidence strength of connectedness are given by

ICONNσ(Ǧ)(q̌, ǩľ) = max{σIS
P̌1
, σIS

P̌2
, σIS

P̌3
, σIS

P̌4
}

= max{0.1, 0.2, 0.2, 0.1}
= 0.2.
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ICONNµ(Ǧ)(q̌, ǩľ) = min{µIS
P̌1
, µIS

P̌2
, µIS

P̌3
, µIS

P̌4
}

= min{0.8, 0.7, 0.7, 0.8}
= 0.7.

Thus, ICONNǦ(q̌, ǩľ) = (ICONNσ(Ǧ)(q̌, ǩľ), ICONNµ(Ǧ)(q̌, ǩľ)) = (0.2, 0.7).
All possible q̌ − q̌ǎ IPts are
P̌1 : q̌, (q̌, q̌ť), q̌ť, (ť, q̌ť), ť, (ť, ťw̌), ťw̌, (w̌, ťw̌), w̌, (w̌, w̌ľ), w̌ľ, (ľ, w̌ľ), ľ, (ľ, ľǩ), ľǩ, (ǩ, ľǩ), ǩ, (ǩ, ǩǎ), ǩǎ,
(ǎ, ǩǎ), ǎ, (ǎ, ǎq̌), ǎq̌ = q̌ǎ;
P̌2 : q̌, (q̌, q̌ť), q̌ť, (ť, q̌ť), ť, (ť, ťǩ), ťǩ, (ǩ, ťǩ), ǩ, (ǩ, ǩǎ), ǩǎ, (ǎ, ǩǎ), ǎ, (ǎ, ǎq̌), ǎq̌ = q̌ǎ;
P̌3 : q̌, (q̌, q̌ǎ), q̌ǎ.
The incidence strengths of these IPts are given by

IS P̌1
= (σIS

P̌1
, µIS

P̌1
) = (0.1, 0.8),

IS P̌2
= (σIS

P̌2
, µIS

P̌2
) = (0.1, 0.8),

IS P̌3
= (σIS

P̌3
, µIS

P̌3
) = (0.3, 0.4).

The σ-incidence strength and µ-incidence strength of connectedness are given by

ICONNσ(Ǧ)(q̌, q̌ǎ) = max{σIS
P̌1
, σIS

P̌2
, σIS

P̌3
}

= max{0.1, 0.1, 0.3}
= 0.3.

ICONNµ(Ǧ)(q̌, q̌ǎ) = min{µIS
P̌1
, µIS

P̌2
, µIS

P̌3
}

= min{0.8, 0.8, 0.4}
= 0.4.

Thus, ICONNǦ(q̌, q̌ǎ) = (ICONNσ(Ǧ)(q̌, q̌ǎ), ICONNµ(Ǧ)(q̌, q̌ǎ)) = (0.3, 0.4).

Proposition 2.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG and Ȟ = (M̌, Q̌, Š ) be a PFIS of Ǧ. Then, for every
(ǎ, ǎǩ) ∈ supp(Š ),

ICONNσ(Ȟ)(ǎ, ǎǩ) ≤ ICONNσ(Ǧ)(ǎ, ǎǩ), ICONNµ(Ȟ)(ǎ, ǎǩ) ≥ ICONNµ(Ǧ)(ǎ, ǎǩ).

Definition 2.17. An ǎ − ǩľ IPt P̌ in a PFIG Ǧ = (J̌, Ǩ, Ľ) is called a strongest ǎ − ǩľ IPt if its incidence
strength equals ICONNǦ(ǎ, ǩľ), i.e., ICONNσ(Ǧ)(ǎ, ǩľ) = σIS

P̌
and ICONNµ(Ǧ)(ǎ, ǩľ) = µIS

P̌
.

Remark 2.1. An IPt P̌1 is said to have more incidence strength than an IPt P̌2 if σIS
P̌1
> σIS

P̌2
, µIS

P̌1
< µIS

P̌2
.

Note that the strongest IPt does not have to be unique.

Example 2.8. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 7. All possible ň − m̌ň IPts are
P̌1 : ň, (ň, m̌ň), m̌ň;
P̌2 : ň, (ň, ňǒ), ňǒ, (ǒ, ňǒ), ǒ, (ǒ, ǒm̌), ǒm̌, (m̌, ǒm̌), m̌, (m̌, m̌ň), m̌ň;
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P̌3 : ň, (ň, ňp̌), ňp̌, ( p̌, ňp̌), p̌, ( p̌, p̌m̌), p̌m̌, (m̌, p̌m̌), m̌, (m̌, m̌ň), m̌ň.
The incidence strengths of these IPts are given by

IS P̌1
= (σIS

P̌1
, µIS

P̌1
) = (0.3, 0.6),

IS P̌2
= (σIS

P̌2
, µIS

P̌2
) = (0.4, 0.6),

IS P̌3
= (σIS

P̌3
, µIS

P̌3
) = (0.2, 0.8).

Thus, ICONNǦ(ň, m̌ň) = (ICONNσ(Ǧ)(ň, m̌ň), ICONNµ(Ǧ)(ň, m̌ň)) = (0.4, 0.6).

b

b

b

b
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.7

)
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(0.4, 0.5) (0.3, 0.6)

(0.4,0.6)

(0.5,0.5)
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)

(0.5, 0.6)

(0.4, 0.5)
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(0.2, 0.8)

Figure 7. Strongest IPt in PFIG.

The IPt P̌2 : ň, (ň, ňǒ), ňǒ, (ǒ, ňǒ), ǒ, (ǒ, ǒm̌), ǒm̌, (m̌, ǒm̌), m̌, (m̌, m̌ň), m̌ň is a strongest n − nm IPt
since ICONNσ(Ǧ)(ň, m̌ň) = σIS

P̌2
and ICONNµ(Ǧ)(ň, m̌ň) = µIS

P̌2
. Similarly, ň, (ň, ňǒ), ňǒ is the strongest

ň − ňǒ IPt. Note that both p̌, (p̌, p̌m̌), m̌p̌, (m̌, p̌m̌), m̌, (m̌, m̌ň), m̌ň, (ň, m̌ň), ň, (ň, ňp̌), ňp̌ and
p̌, (p̌, p̌m̌), m̌p̌, (m̌, p̌m̌), m̌, (m̌, m̌ǒ), m̌ǒ, (ǒ, m̌ǒ), ǒ, (ǒ, ǒň), ǒň, (ň, ǒň), ň, (ň, ň p̌), ňp̌ are strongest p̌ − ňp̌
IPts.

3. Pythagorean fuzzy incidence cycles and trees

In this section, we define the notions of Pythagorean fuzzy incidence cycles and Pythagorean fuzzy
incidence trees in Pythagorean fuzzy incidence graphs and then prove several propositions. The
definition of cycle of a PFIG Ǧ = (J̌, Ǩ, Ľ) is given below:

Definition 3.1. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a cycle if (supp(J̌), supp(Ǩ), supp(Ľ)) is a cycle.

Definition 3.2. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy cycle if (supp(J̌), supp(Ǩ), supp(Ľ))
is a cycle and no unique q̌ť ∈ supp(Ǩ) exists such that σǨ(q̌ť) = min{σǨ(ǎǩ) | ǎǩ ∈ supp(Ǩ)} and
µǨ(q̌ť) = max{µǨ(ǎǩ) | ǎǩ ∈ supp(Ǩ)}.
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Definition 3.3. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy incidence cycle (PFIC) if it is a
Pythagorean fuzzy cycle and no unique (q̌, q̌ť) ∈ supp(Ľ) exists such that

σĽ(q̌, q̌ť) = min{σĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)},
µĽ(q̌, q̌ť) = max{µĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)}.

Definition 3.4. A pair (q̌, q̌ť) is called a weakest IP of cycle C if σĽ(q̌, q̌ť) = min{σĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ C}
and µĽ(q̌, q̌ť) = max{µĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ C}.

Example 3.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 8. Consider the walk

m̌, (m̌, m̌ň), m̌ň, (ň, m̌ň), ň, (ň, ňǒ), ňǒ, (ǒ, ňǒ), ǒ, (ǒ, ǒ p̌), ǒp̌, (p̌, ǒp̌), p̌, ( p̌, p̌m̌), p̌m̌, (m̌, p̌m̌), m̌.

It is a cycle.

b

b b

b
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(0.2, 0.6)

(0.4, 0.6)
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)
(0.4,0.5)

Figure 8. Pythagorean fuzzy incidence cycle (PFIC).

Since

σǨ(m̌ň) = min{σǨ(m̌ň), σǨ(ňǒ), σǨ(ǒp̌), σǨ( p̌m̌)}
= min{0.3, 0.4, 0.4, 0.3} = 0.3,

µǨ(m̌ň) = max{µǨ(m̌ň), µǨ(ňǒ), µǨ(ǒp̌), µǨ( p̌m̌)}
= max{0.7, 0.5, 0.6, 0.7} = 0.7,

and also σǨ( p̌m̌) = 0.3, µǨ( p̌m̌) = 0.7. Thus, Ǧ is a Pythagorean fuzzy cycle. Ǧ is a PFIC since

σĽ(ǒ, ňǒ) = min{σĽ(m̌, m̌ň), σĽ(ň, m̌ň), σĽ(ň, ňǒ), σĽ(ǒ, ňǒ), σĽ(ǒ, ǒp̌), σĽ( p̌, ǒp̌), σĽ( p̌, p̌m̌), σĽ(m̌, p̌m̌)}
= min{0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.3, 0.2} = 0.2,

µĽ(ǒ, ňǒ) = max{µĽ(m̌, m̌ň), µĽ(ň, m̌ň), µĽ(ň, ňǒ), µĽ(ǒ, ňǒ), µĽ(ǒ, ǒp̌), µĽ(p̌, ǒ p̌), µĽ( p̌, p̌m̌), µĽ(m̌, p̌m̌)}
= max{0.6, 0.7, 0.6, 0.6, 0.7, 0.6, 0.6, 0.6} = 0.7,

and also σĽ(ǒ, ǒp̌) = σĽ(m̌, m̌p̌) = 0.2, µĽ(ǒ, ǒp̌) = µĽ(m̌, m̌p̌) = 0.7.
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Definition 3.5. A connected PFIG Ǧ = (J̌, Ǩ, Ľ) is a tree if (supp(J̌), supp(Ǩ), supp(Ľ)) is a tree.

Definition 3.6. A connected PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy tree if it has a Pythagorean
fuzzy incidence spanning subgraph Ť = (M̌, Q̌, Š ) which is a tree such that for all ǎǩ not in Ť , σǨ(ǎǩ) <
CONNσ(Ť )(ǎ, ǩ) and µǨ(ǎǩ) > CONNµ(Ť )(ǎ, ǩ).

Definition 3.7. A connected PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy incidence tree (PFIT) if it has
a Pythagorean fuzzy incidence spanning subgraph Ť = (M̌, Q̌, Š ) which is a tree such that for every
(ǎ, ǎǩ) not in Ť ,

σĽ(ǎ, ǎǩ) < ICONNσ(Ť )(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) > ICONNµ(Ť )(ǎ, ǎǩ).

Example 3.2. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 9. It is easy to see that Ǧ has a SPFIS
Ť = (M̌, Q̌, Š ) as shown in Figure 10. This is a tree, and CONNσ(Ť )(q̌, ǎ) = 0.3,CONNµ(Ť )(q̌, ǎ) = 0.7.
Since q̌ǎ ∈ supp(Ǩ) \ supp(Q̌) satisfies

σǨ(q̌, ǎ) < CONNσ(Ť )(q̌, ǎ),
µǨ(q̌, ǎ) > CONNµ(Ť )(q̌, ǎ).

Thus, Ǧ is a Pythagorean fuzzy tree. Also, ICONNσ(Ť )(ǎ, ǎq̌) = 0.2, ICONNµ(Ť )(ǎ, ǎq̌) = 0.7, and
ICONNσ(Ť )(q̌, ǎq̌) = 0.2, ICONNµ(Ť )(q̌, ǎq̌) = 0.7. Since (ǎ, ǎq̌) ∈ supp(Ľ) \ supp(Š ),

σĽ(ǎ, ǎq̌) < ICONNσ(Ť )(ǎ, ǎq̌),
µĽ(ǎ, ǎq̌) > ICONNµ(Ť )(ǎ, ǎq̌),

and (q̌, ǎq̌) ∈ supp(Ľ) \ supp(Š ),

σĽ(q̌, ǎq̌) < ICONNσ(Ť )(q̌, ǎq̌),
µĽ(q̌, ǎq̌) > ICONNµ(Ť )(q̌, ǎq̌).

Thus, Ǧ = (J̌, Ǩ, Ľ) is a PFIT.

b

b b

b
(q̌, 0.3, 0.9) (ť, 0.4, 0.8)

(w̌, 0.4, 0.7)(ǎ, 0.5, 0.6)

(0.3, 0.7)

(0.3, 0.6) (0.3, 0.7)

(0.2, 0.6)

(0.4, 0.6)

(0.4, 0.7)

(0
.2

,0
.6

)
(0.1,0.8)

(0.3,0.6)
(0

.1
,0

.8
)

(0
.2

,0
.8

)
(0.4,0.5)

Figure 9. PFIG Ǧ = (J̌, Ǩ, Ľ).

AIMS Mathematics Volume 8, Issue 9, 21793–21827.



21808

b

b b

b
(q̌, 0.3, 0.9) (ť, 0.4, 0.8)

(w̌, 0.4, 0.7)(ǎ, 0.5, 0.6)

(0.3, 0.7)

(0.3, 0.6) (0.3, 0.7)

(0.2, 0.6)

(0.4, 0.6)

(0.4, 0.7)

(0
.2

,0
.6

)

(0.3,0.6)(0.4,0.5)

Figure 10. Spanning subgraph Ť = (M̌, Q̌, Š ) of Ǧ.

Definition 3.8. The PFIG Ǧ = (J̌, Ǩ, Ľ) is a forest if (supp(J̌), supp(Ǩ), supp(Ľ)) is a forest.

Definition 3.9. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy forest if it has a Pythagorean fuzzy
incidence spanning subgraph F̌ = (M̌, Q̌, Š ) which is a forest such that for all ǎǩ not in F̌, σǨ(ǎǩ) <
CONNσ(F̌)(ǎ, ǩ) and µǨ(ǎǩ) > CONNµ(F̌)(ǎ, ǩ).

Definition 3.10. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a Pythagorean fuzzy incidence forest (PFIF) if it has a
Pythagorean fuzzy incidence spanning subgraph F̌ = (M̌, Q̌, Š ) which is a forest such that for every
(ǎ, ǎǩ) not in F̌,

σĽ(ǎ, ǎǩ) < ICONNσ(F̌)(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) > ICONNµ(F̌)(ǎ, ǎǩ).

Proposition 3.1. A PFIG Ǧ = (J̌, Ǩ, Ľ) is a PFIF if and only if in any cycle of Ǧ, there is an IP (ǎ, ǎǩ)
such that σĽ(ǎ, ǎǩ) < ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) > ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ).

Proof. The result is trivially true if there are no cycles. Let (ǎ, ǎǩ) ∈ Ǧ and let (ǎ, ǎǩ) belong to a
Pythagorean fuzzy cycle such that

σĽ(ǎ, ǎǩ) < ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

µĽ(ǎ, ǎǩ) > ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ).

Let (ǎ, ǎǩ) be a weakest IP of cycle C, i.e.,

σĽ(ǎ, ǎǩ) = min{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ C},
µĽ(ǎ, ǎǩ) = max{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ C}.

Then, PFIS obtained after deleting IP (ǎ, ǎǩ) is a PFIF. Remove IPs in a similar manner if there are
any further cycles. The removed IP will always have a lesser incidence strength than those eliminated
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previously at each step. The PFIS that remains after deletion of IPs is a PFIF. As a result, there is an IPt
P̌ between ǎ and ǎǩ such that σIS

P̌
> σĽ(ǎ, ǎǩ), µIS

P̌
< µĽ(ǎ, ǎǩ) and does not include (ǎ, ǎǩ). If earlier

deleted IPs still exist in P̌, we can use an IPt with more incidence strength to bypass them.
Conversely, if Ǧ is a PFIF, and C is any cycle, then by definition, there exist (ǎ, ǎǩ) IPs of C not in F̌

such that

σĽ(ǎ, ǎǩ) < ICONNσ(F̌)(ǎ, ǎǩ) ≤ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

µĽ(ǎ, ǎǩ) > ICONNµ(F̌)(ǎ, ǎǩ) ≥ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

where F̌ is as in the PFIF definition. �

Proposition 3.2. If there is at most one IPt between any vertex ǎ and edge ǎǩ of PFIG Ǧ = (J̌, Ǩ, Ľ)
with the most incidence strength, then Ǧ is a PFIF.

Proof. Let Ǧ be not a PFIF. Then, by Proposition 3.1, ∃ a cycle C in Ǧ such that for all (ǎ, ǎǩ) ∈ C,
σĽ(ǎ, ǎǩ) ≥ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) ≤ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ). Therefore ǎ, (ǎ, ǎǩ), ǎǩ
is the strongest IPt between ǎ and ǎǩ. Suppose (ǎ, ǎǩ) is a weakest IP of cycle C, and then σĽ(ǎ, ǎǩ) =

min{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ C} and µĽ(ǎ, ǎǩ) = max{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ C}. Hence, the remaining portion
of C is the IPt between ǎ and ǎǩ with the most incidence strength, which is a contradiction. Hence, Ǧ
is a PFIF. �

Proposition 3.3. Let Ǧ = (J̌, Ǩ, Ľ) be a cycle. Then, Ǧ is a PFIC if and only if Ǧ is not a PFIT.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIC. Then, ∃ at least two IPs (ǎ, ǎǩ) ∈ supp(Ľ) with

σĽ(ǎ, ǎǩ) = min{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)},
µĽ(ǎ, ǎǩ) = max{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)}.

Let Ť = (M̌, Q̌, Š ) be a spanning PFIT in Ǧ = (J̌, Ǩ, Ľ). Then, there exists (q̌, q̌ť) such that
supp(Ľ) \ supp(Š ) = {(q̌, q̌ť)}. Hence, IPt between q̌ and q̌ť in Ť = (M̌, Q̌, Š ) such that
σĽ(q̌, q̌ť) < ICONNσ(Ť )(q̌, q̌ť) and µĽ(q̌, q̌ť) > ICONNµ(Ť )(q̌, q̌ť) does not exist. Thus, Ť = (M̌, Q̌, Š ) is
not a PFIT.
Conversely, assume that Ǧ = (J̌, Ǩ, Ľ) is not a PFIT. Since Ǧ is a cycle, ∀ (q̌, q̌ť) ∈ supp(Ľ), we have a
SPFIS Ť = (M̌, Q̌, Š ) which is a tree. σŠ (q̌, q̌ť) = 0 = µŠ (q̌, q̌ť),

ICONNσ(Ť )(q̌, q̌ť) ≤ σĽ(q̌, q̌ť),
ICONNµ(Ť )(q̌, q̌ť) ≥ µĽ(q̌, q̌ť),

and σŠ (ǎ, ǎǩ) = σĽ(ǎ, ǎǩ), µŠ (ǎ, ǎǩ) = µĽ(ǎ, ǎǩ), ∀ (ǎ, ǎǩ) ∈ supp(Ľ) \ {(q̌, q̌ť)}. Hence, IP (ǎ, ǎǩ) for
which σĽ(ǎ, ǎǩ) = min{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)} and µĽ(ǎ, ǎǩ) = max{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)}
holds is not unique. Thus, Ǧ = (J̌, Ǩ, Ľ) is a PFIC. �

Proposition 3.4. If Ǧ = (J̌, Ǩ, Ľ) is a PFIT, and Ǧ∗ = (supp(J̌), supp(Ǩ), supp(Ľ)) is not a tree,
then there exists at least one IP (ǎ, ǎǩ) such that σĽ(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) >
ICONNGµ(Ǧ)(ǎ, ǎǩ).
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Proof. Since Ǧ is a PFIT, there exists a SPFIS Ť = (M̌, Q̌, Š ) that is a tree, and for every (ǎ, ǎǩ) < Ť ,

σĽ(ǎ, ǎǩ) < ICONNσ(Ť )(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) > ICONNµ(Ť )(ǎ, ǎǩ).

Also,

ICONNσ(Ť )(ǎ, ǎǩ) ≤ ICONNσ(Ǧ)(ǎ, ǎǩ),
ICONNµ(Ť )(ǎ, ǎǩ) ≥ ICONNσ(Ǧ)(ǎ, ǎǩ).

Thus, for every (ǎ, ǎǩ) < Ť ,

σĽ(ǎ, ǎǩ) < ICONNσ(Ǧ)(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) > ICONNµ(Ǧ)(ǎ, ǎǩ).

Thus, one IP (ǎ, ǎǩ) < Ť exists. �

Proposition 3.5. If Ǧ = (J̌, Ǩ, Ľ) is a PFIT, then Ǧ is not a complete PFIG.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a complete PFIG, and then for all (ǎ, ǎǩ)

σĽ(ǎ, ǎǩ) = ICONNσ(Ǧ)(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) = ICONNµ(Ǧ)(ǎ, ǎǩ).

Since Ǧ = (J̌, Ǩ, Ľ) is a PFIT, for every (ǎ, ǎǩ) not in Ť = (M̌, Q̌, Š )

σĽ(ǎ, ǎǩ) < ICONNσ(Ť )(ǎ, ǎǩ),
µĽ(ǎ, ǎǩ) > ICONNµ(Ť )(ǎ, ǎǩ),

where Ť = (M̌, Q̌, Š ) is a SPFIS of Ǧ = (J̌, Ǩ, Ľ), which is a tree. Thus,

ICONNσ(Ǧ)(ǎ, ǎǩ) < ICONNσ(Ť )(ǎ, ǎǩ),
ICONNµ(Ǧ)(ǎ, ǎǩ) > ICONNµ(Ť )(ǎ, ǎǩ),

which is not possible. Hence, Ǧ = (J̌, Ǩ, Ľ) is not a complete PFIG. �

4. Pythagorean fuzzy incidence cut vertices, bridges and cut pairs

In this section, we define Pythagorean fuzzy incidence cut vertices, Pythagorean fuzzy incidence
bridges and Pythagorean fuzzy incidence cut pairs. We also establish some results about Pythagorean
fuzzy incidence cut pairs. The notion of Pythagorean fuzzy incidence cut vertices is defined below:

Definition 4.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. Let ľ ∈ V and Ẽ be the set difference of E and the set of
edges with ľ as an end vertex. Then, ľ is called a Pythagorean fuzzy incidence cut vertex (PFICV) of Ǧ,
if ICONNGσ(Ǧ\{ľ})(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and ICONNGµ(Ǧ\{ľ})(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ) for
some pair (ǎ, ǎǩ) ∈ V × Ẽ such that ǎ , ľ , ǩ.
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Definition 4.2. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. Let q̌ť ∈ E and Ẽ = E \ {q̌ť}. Then, q̌ť is called a
Pythagorean fuzzy incidence bridge of Ǧ, if ICONNGσ(Ǧ\{q̌ť})(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and
ICONNGµ(Ǧ\{q̌ť})(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ) for some pair (ǎ, ǎǩ) ∈ V × Ẽ such that ǎǩ , q̌ť.

Definition 4.3. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. A pair (q̌, q̌ť) ∈ supp(Ľ) is called a Pythagorean fuzzy
incidence cut pair (PFICP) of Ǧ if ICONNGσ(Ǧ\{(q̌,q̌ť)})(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and
ICONNGµ(Ǧ\{(q̌,q̌ť)})(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ) for some pair (q̌, q̌ť) in Ǧ.

Example 4.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 11.

b b

b b

(ť1 , 0.4, 0.6) (ť2 , 0.5, 0.8)

(ť3 , 0.6, 0.3)(ť4 , 0.7, 0.5)
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(0.6, 0.4)

(0
.4

,0
.5

)
(0.5,0.6)

(0
.4

,0
.4

)

(0
.5

,0
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)

(0.4,0.7)

(0.4,0.6)

(0.3, 0.6) (0.2, 0.8)

(0.4, 0.5) (0.4, 0.3)

Figure 11. Incidence cut vertices, bridges and cut pairs in PFIG.

By routine calculation, it is easy to see that ť3 is PFICV, ť2ť3, ť3ť4, ť4 ť1 are Pythagorean incidence
bridges, and all incidence pairs except (ť2, ť1ť2) are PFICPs.

Proposition 4.1. If Ǧ = (J̌, Ǩ, Ľ) is a PFIF, then the pairs of F̌ = (M̌, Q̌, Š ) (as in Definition 3.10) are
exactly the PFICPs of Ǧ.

Proposition 4.2. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. Then, the following statements are equivalent:

(1) ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) < σĽ(ǎ, ǎǩ), ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) > µĽ(ǎ, ǎǩ).

(2) (ǎ, ǎǩ) is a PFICP.

(3) (ǎ, ǎǩ) is not the weakest IP of any cycle.

Proof. The following three implications are proven by contrapositive:
(1)⇒ (2) If (ǎ, ǎǩ) is not a PFICP, then

ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) = ICONNGσ(Ǧ)(ǎ, ǎǩ) ≥ σĽ(ǎ, ǎǩ),

ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) = ICONNGµ(Ǧ)(ǎ, ǎǩ) ≤ µĽ(ǎ, ǎǩ).

(2)⇒ (3) Assume that the weakest IP in a cycle is (ǎ, ǎǩ). Then, the rest of the cycle can be used as an
IPt between ǎ and ǎǩ to convert any IPt involving (ǎ, ǎǩ) into a path not involving (ǎ, ǎǩ) but at least as
strong. Thus, (ǎ, ǎǩ) is not a PFICP.
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(3)⇒ (1) Let
ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≥ σĽ(ǎ, ǎǩ),

ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≤ µĽ(ǎ, ǎǩ).

Then, there exists an IPt P̌ between ǎ and ǎǩ that does not include (ǎ, ǎǩ) such that σIS
P̌
≥ σĽ(ǎ, ǎǩ) and

µIS
P̌
≤ µĽ(ǎ, ǎǩ). Then, the cycle formed by this IPt P̌ and (ǎ, ǎǩ) has (ǎ, ǎǩ) as its weakest IP. �

Proposition 4.3. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG and (ǎ, ǎǩ) ∈ supp(Ľ). If (ǎ, ǎǩ) is a PFICP, then
σĽ(ǎ, ǎǩ) = ICONNGσ(Ǧ)(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) = ICONNGµ(Ǧ)(ǎ, ǎǩ).

Proof. Suppose σĽ(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ). Then, a
strongest ǎ − ǎǩ IPt exists between such that for all IPs (q̌, q̌ť) in the IPt, σĽ(q̌, q̌ť) > σĽ(ǎ, ǎǩ) and
µĽ(q̌, q̌ť) < µĽ(ǎ, ǎǩ). Then, the cycle formed by this IPt P̌ and (ǎ, ǎǩ) has (ǎ, ǎǩ) as its weakest IP.
Hence, (ǎ, ǎǩ) is not a PFICP. �

Proposition 4.4. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. If ľ is a common vertex of at least two PFICPs, then ľ is
a PFICV.

Proof. Let (ľ, ǎľ) and (ľ, ǩľ) be two PFICPs. Then, q̌, ť ∈ V exists such that every strongest q̌ − ť IPt
contains (ľ, ǎľ). If ľ , q̌ and ľ , ť, then ľ is a PFICV. Let ľ = q̌ or ľ = ť, and then every strongest q̌− ľ IPt
contains (ľ, ǎľ), or every strongest ľ − ť IPt contains (ľ, ǩľ). Assume that ľ is not a PFICV. Then, at least
one strongest IPt P̌ exists between every two vertices not containing ľ. Then, the cycle C is formed by
this IPt P̌ with (ľ, ǎľ) and (ľ, ǩľ). We will discuss two cases:

(1) Suppose that ǎ, (ǎ, ǎľ), ǎľ, (ľ, ǎľ), ľ, (ľ, ľǩ), ľǩ, (ǩ, ľǩ), ǩ is not a strongest IPt. Then, (ľ, ǎľ) or (ľ, ǩľ) or
both will be weakest IPs of the cycle C, which contradicts that (ľ, ǎľ) and (ľ, ǩľ) are PFICPs.

(2) Suppose that P̌1 : ǎ, (ǎ, ǎľ), ǎľ, (ľ, ǎľ), ľ, (ľ, ľǩ), ľǩ, (ǩ, ľǩ), ǩ is a strongest IPt joining ľ and ǩ. Then,
σIS

P̌1
= min{σĽ(ľ, ǎľ), σĽ(ľ, ǩľ)}, and µIS

P̌1
= max{µĽ(ľ, ǎľ), µĽ(ľ, ǩľ)}), the strength of IPt P̌. Thus, for

all (q̌, q̌ť) ∈ P̌
σĽ(q̌, q̌ť) ≥ σĽ(ľ, ǎľ), µĽ(q̌, q̌ť) < µĽ(ľ, ǎľ)

and
σĽ(q̌, q̌ť) ≥ σĽ(ľ, ǩľ), µĽ(q̌, q̌ť) < µĽ(ľ, ǩľ).

Thus, both (ľ, ǎľ) and (ľ, ǩľ) are the weakest IPs of the cycle C, which is a contradiction.

�

Proposition 4.5. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIT. Then, the internal vertices of a SPFIS Ť = (M̌, Q̌, Š ),
which is a tree, are the PFICVs of Ǧ.

Proof. Let ľ ∈ Ǧ = (J̌, Ǩ, Ľ) such that ľ is not an end vertex of Ť . Then, ľ is the common vertex of
at least two IPs in Ť , which are PFICPs of Ǧ. Thus, by Proposition 4.4, ľ is a PFICV. Let ľ be an end
vertex of Ť . Then, ľ is not a PFICV, or else there would exist ǎ , ľ and ǩ , ľ such that every strongest
ǎ − ǩ IPt contains ľ, and one such IPt lies in Ť , which is impossible since ľ is an end vertex of Ť . �

Corollary 4.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIT. Then, a PFICV ľ of Ǧ is the common vertex of at least two
PFICPs.
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5. Connectivity in Pythagorean fuzzy incidence graphs

In this section, we first define the strong incidence pairs and weak incidence pairs in Pythagorean
fuzzy incidence graphs. Then, we obtain the characterization of Pythagorean fuzzy incidence cut pairs
using a-strong incidence pairs. Also, we examine the connectivity of Pythagorean fuzzy incidence
graphs by various theorems.

Definition 5.1. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IP (q̌, q̌ť) is said to be a strong incidence pair (SIP) if
σĽ(q̌, q̌ť) ≥ ICONNσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) and µĽ(q̌, q̌ť) ≤ ICONNµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).
A SIP is called an α-SIP if σĽ(q̌, q̌ť) > ICONNσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) and µĽ(q̌, q̌ť) < ICONNµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).
A SIP is called a β-SIP if σĽ(q̌, q̌ť) = ICONNσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) and µĽ(q̌, q̌ť) = ICONNµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).

Note that a SIP need not to be an α-SIP or a β-SIP.

Definition 5.2. An IP (q̌, q̌ť) is said to be a δ-weak IP if σĽ(q̌, q̌ť) ≤ ICONNσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) and
µĽ(q̌, q̌ť) ≥ ICONNµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).

Definition 5.3. An IP (q̌, q̌ť) is said to be a δ∗-IP if it is a δ-weak IP with
σĽ(q̌, q̌ť) > min{σĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)} and µĽ(q̌, q̌ť) < max{µĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)}.

Example 5.1. In Figure 7. Consider an IP (m̌, m̌ň) of Ǧ with σĽ(m̌, m̌ň) = 0.4 and µĽ(m̌, m̌ň) = 0.5.
All possible m̌ − m̌ň IPts in Ǧ are
P̌1 : m̌, (m̌, m̌ň), m̌ň;
P̌2 : m̌, (m̌, m̌p̌), m̌p̌, ( p̌, m̌p̌), p̌, ( p̌, p̌ň), p̌ň, (ň, p̌ň), ň, (ň, ňm̌), ňm̌ = m̌ň;
P̌3 : m̌, (m̌, m̌ǒ), m̌ǒ, (ǒ, m̌ǒ), ǒ, (ǒ, ǒň), ǒň, (ň, ǒň), ň, (ň, ňm̌), ňm̌ = m̌ň.
The incidence strengths of these IPts are given by

IS P̌1
= (σIS

P̌1
, µIS

P̌1
) = (0.4, 0.5),

IS P̌2
= (σIS

P̌2
, µIS

P̌2
) = (0.2, 0.8),

IS P̌3
= (σIS

P̌3
, µIS

P̌3
) = (0.3, 0.6).

The σ-incidence strength and µ-incidence strength of connectedness are given by

ICONNσ(Ǧ)(m̌, m̌ň) = max{σIS
P̌1
, σIS

P̌2
, σIS

P̌3
}

= max{0.4, 0.2, 0.3}
= 0.4,

ICONNµ(Ǧ)(m̌, m̌ň) = min{µIS
P̌1
, µIS

P̌2
, µIS

P̌3
}

= min{0.5, 0.8, 0.6}
= 0.5.

After the deletion of IP (m̌, m̌ň), we have ICONNσ(Ǧ\{(m̌,m̌ň)})(m̌, m̌ň) = 0.3, ICONNµ(Ǧ\{(m̌,m̌ň)})(m̌, m̌ň) =

0.6. σĽ(m̌, m̌ň) > ICONNσ(Ǧ\{(m̌,m̌ň)})(m̌, m̌ň) and µĽ(m̌, m̌ň) < ICONNµ(Ǧ\{(m̌,m̌ň)})(m̌, m̌ň). Thus, (m̌, m̌ň)
is an α-SIP. Similarly, ( p̌, p̌m̌), (m̌, m̌ǒ), (ň, ňǒ), (ǒ, ǒň), (m̌, m̌p̌), (ǒ, ǒm̌), (ň, ňp̌) are SIPs. In particular,
(ň, ňǒ), (ǒ, ǒň), (m̌, m̌p̌), (ǒ, ǒm̌), (ň, ňp̌) are α-strong IPs. The IPs ( p̌, p̌ň), (ň, ňm̌) are δ-weak IPs. In
particular, (ň, ňm̌) is δ∗-IP. There is no β-SIP in Ǧ.
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Definition 5.4. In a PFIG Ǧ = (J̌, Ǩ, Ľ), an ǎ − ǎǩ IPt P̌ is called a strong IPt if all (q̌, q̌ť) in P̌ are
strong. In particular, it is called an α-strong IPt if all the IPs in an IPt are α-strong, and it is called a
β-strong IPt if all the pairs in an IPt are β-strong. A strong IPt that is closed is called a strong incidence
cycle.

Remark 5.1. In a PFIG, the strongest IPt need not be a strong IPt, and a strong IPt need not be the
strongest IPt.

Example 5.2. Consider a PFIG as shown in Figure 7. The ň − m̌ň IPt
P̌ : ň, (ň, ňǒ), ňǒ, (ǒ, ňǒ), ǒ, (ǒ, ǒm̌), ǒm̌, (m̌, ǒm̌), m̌, (m̌, m̌ň), m̌ň is a strong IPt since all the IPs in P̌ are
strong. Similarly, an p̌− ňp̌ IPt P̃ : p̌, ( p̌, p̌m̌), m̌p̌, (m̌, p̌m̌), m̌, (m̌, m̌ǒ), m̌ǒ, (ǒ, m̌ǒ), ǒ, (ǒ, ǒň), ǒň, (ň, ǒň
), ň, (ň, ňp̌), ň p̌ is a strong IPt. Note that both P̌ and P̃ IPts are strong as well as strongest IPts. Now
consider another strongest p̌ − p̌ň IPt p̌, ( p̌, p̌m̌), m̌p̌, (m̌, p̌m̌), m̌, (m̌, m̌ň), m̌ň, (ň, m̌ň), ň, (ň, ňp̌), ňp̌.
This is not a strong IPt since IP (ň, m̌ň) is δ-weak IP. The ǒ − m̌ǒ IPt ǒ, (ǒ, ǒň), ǒň, (ň, ǒň), ň, (ň, ňm̌),
ňm̌, (m̌, ňm̌), m̌, (m̌, m̌ǒ), m̌ǒ is neither a strongest IPt nor a strong IPt.

Proposition 5.1. A PFIC is a strong incidence cycle.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIC. Then, (supp(J̌), supp(Ǩ), supp(Ľ)) is a cycle such that ∃ no
unique q̌ť ∈ supp(Ǩ) such that σǨ(q̌ť) = min{σǨ(ǎǩ) | ǎǩ ∈ supp(Ǩ)} and µǨ(q̌ť) = max{µǨ(ǎǩ) | ǎǩ ∈
supp(Ǩ)} and ∃ no unique (q̌, q̌ť) ∈ supp(Ľ) such that

σĽ(q̌, q̌ť) = min{σĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)},
µĽ(q̌, q̌ť) = max{µĽ(ǎ, ǎǩ) | (ǎ, ǎǩ) ∈ supp(Ľ)}.

We have to show that each IP in Ǧ is a SIP. Let (ǎ, ǎǩ) ∈ supp(Ľ) be not a SIP. Then, it is a δ-
weak IP. Thus, σĽ(ǎ, ǎǩ) ≤ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ), and µĽ(ǎ, ǎǩ) ≥ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ). Since
(supp(J̌), supp(Ǩ), supp(Ľ)) is a cycle, every IP (q̌, q̌ť) ∈ Ǧ \ {(ǎ, ǎǩ)} satisfies

σĽ(q̌, q̌ť) > ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(q̌, q̌ť), µĽ(q̌, q̌ť) < ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(q̌, q̌ť),

which contradict that Ǧ is a PFIC. Thus, (ǎ, ǎǩ) is a SIP. �

Proposition 5.2. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IP (ǎ, ǎǩ) in Ǧ such that σĽ(ǎ, ǎǩ) = max{σĽ(q̌, q̌ť)
| (q̌, q̌ť) ∈ supp(Ľ)} and µĽ(ǎ, ǎǩ) = min{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)} is a SIP.

Proof. Let P̌ be an ǎ − ǎǩ IPt in Ǧ. Then, σIS
P̌
≤ σĽ(ǎ, ǎǩ) and µIS

P̌
≥ µĽ(ǎ, ǎǩ). If (ǎ, ǎǩ) is a unique

IP such that σĽ(ǎ, ǎǩ) = max{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)} and µĽ(ǎ, ǎǩ) = min{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈
supp(Ľ)}, then for every q̌ − q̌ť IPt P̃ in Ǧ,

σIS
P̃ ≤ σĽ(q̌, q̌ť) < σĽ(ǎ, ǎǩ),

µIS
P̃ ≥ µĽ(q̌, q̌ť) > σĽ(ǎ, ǎǩ),

where (q̌, q̌ť) is a pair other than (ǎ, ǎǩ), and hence,

σĽ(ǎ, ǎǩ) ≥ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

µĽ(ǎ, ǎǩ) ≤ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ).
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Thus, (ǎ, ǎǩ) is a SIP. If (ǎ, ǎǩ) is not unique, then for every q̌− q̌ť IPt P̃ in Ǧ \{(ǎ, ǎǩ)}, σIS
P̃

= σĽ(ǎ, ǎǩ),
and µIS

P̃
= µĽ(ǎ, ǎǩ). If ∃ an ǎ − ǎǩ IPt P̌ in Ǧ \ {(ǎ, ǎǩ)}, then σIS

P̌
= σĽ(ǎ, ǎǩ) and µIS

P̌
= µĽ(ǎ, ǎǩ).

Hence (ǎ, ǎǩ) is a β-SIP. Otherwise, it is an α-SIP. �

The converse of this proposition is not necessarily true.

Example 5.3. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG as shown in Figure 12. Note that σĽ(m̌, m̌ň) = 0.5 =

max{σĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)}, and µĽ(m̌, m̌ň) = 0.5 = min{µĽ(q̌, q̌ť) | (q̌, q̌ť) ∈ supp(Ľ)}, and
(m̌, m̌ň) is a SIP. (ǎ, m̌ǎ) is also an α-SIP in Ǧ but σĽ(ǎ, m̌ǎ) , 0.5, µĽ(ǎ, m̌ǎ) , 0.4.

(m̌, 0.8, 0.2)

(ǎ, 0.4, 0.5) (ň, 0.7, 0.6)

(0
.4

, 0
.4

)
(0.6, 0.5)

(0.3, 0.3)

(0
.4

, 0
.5

)

(0
.3

, 0
.4

)

(0.3, 0.5) (0.2, 0.5)

(0.5, 0.4)

(0.5, 0.6)

b

b

b

Figure 12. PFIG with strong pairs.

Proposition 5.3. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IP (ǎ, ǎǩ) in Ǧ such that
σĽ(ǎ, ǎǩ) = min{σJ̌(ǎ), σǨ(ǎǩ)} and µĽ(ǎ, ǎǩ) = max{µJ̌(ǎ), µǨ(ǎǩ)} is a SIP.

Proof. Consider the PFIG Ǧ \ {(ǎ, ǎǩ)}. If Ǧ \ {(ǎ, ǎǩ)} is disconnected, then (ǎ, ǎǩ) is a PFICP, and so

σĽ(ǎ, ǎǩ) = ICONNσ(Ǧ)(ǎ, ǎǩ) ≥ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

µĽ(ǎ, ǎǩ) = ICONNµ(Ǧ)(ǎ, ǎǩ) ≤ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ).

Hence, (ǎ, ǎǩ) is a SIP by definition. If Ǧ \ {(ǎ, ǎǩ)} is connected, then ∃ pairs (ǎ, ǎľ) for some ľ , ǩ
such that (ǎ, ǎľ), (ǩ, ǎǩ) ∈ P̌, where P̌ is an IPt between ǎ and ǎǩ in Ǧ \ {(ǎ, ǎǩ)}. Hence,

σIS
P̌
≤ min{σĽ(ǎ, ǎľ), σĽ(ǩ, ǎǩ)} ≤ min{σJ̌(ǎ), σǨ(ǎľ), σJ̌(ǩ), σǨ(ǎǩ)} ≤ min{σJ̌(ǎ), σǨ(ǎǩ)} = σĽ(ǎ, ǎǩ),

µIS
P̌
≥ max{µĽ(ǎ, ǎľ), µĽ(ǩ, ǎǩ)} ≥ max{µJ̌(ǎ), µǨ(ǎľ), µJ̌(ǩ), µǨ(ǎǩ)} ≥ max{µJ̌(ǎ), µǨ(ǎǩ)} = µĽ(ǎ, ǎǩ).

That is, σĽ(ǎ, ǎǩ) ≥ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) ≤ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ). Hence (ǎ, ǎǩ) is
a SIP. �

The converse of the above proposition is not necessarily true. In Figure 7,
σĽ(ň, ňǎ) = min{σJ̌(ň), σǨ(ňǎ)} and µĽ(ň, ňǎ) = max{µJ̌(ň), µǨ(ňǎ)}, and (ň, ňǎ) is a SIP. The IP
(ǎ, ňǎ) is also a SIP but σĽ(ǎ, ňǎ) , min{σJ̌(ǎ), σǨ(ňǎ)} and µĽ(ǎ, ňǎ) , max{µJ̌(ǎ), µǨ(ňǎ)}.
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Proposition 5.4. In a PFIG, every PFICP is a SIP.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. Let (ǎ, ǎǩ) ∈ supp(Ľ) be a PFICP. Then, by definition,

ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ),

ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ).

If possible, assume that (ǎ, ǎǩ) is not a SIP. Then, σĽ(ǎ, ǎǩ) < ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ), and
µĽ(ǎ, ǎǩ) > ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ). Let P̌ be a strongest ǎ − ǎǩ IPt in Ǧ \ {(ǎ, ǎǩ)}, and then P̌
together with (ǎ, ǎǩ) forms a PFIC whose weakest IP is (ǎ, ǎǩ). By Proposition 4.2, it is impossible
since (ǎ, ǎǩ) is a PFICP. �

Proposition 5.5. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IP (ǎ, ǎǩ) in Ǧ is a SIP if and only if σĽ(ǎ, ǎǩ) =

ICONNσ(Ǧ)(ǎ, ǎǩ), µĽ(ǎ, ǎǩ) = ICONNµ(Ǧ)(ǎ, ǎǩ).

Proof. Assume that (ǎ, ǎǩ) ∈ supp(Ľ) is a SIP. Since P̌ : ǎ, (ǎ, ǎǩ), ǎǩ is a IPt between ǎ and ǎǩ,
ICONNGσ(Ǧ)(ǎ, ǎǩ) ≥ σĽ(ǎ, ǎǩ), ICONNGµ(Ǧ)(ǎ, ǎǩ) ≤ µĽ(ǎ, ǎǩ). If P̌ is a unique IPt between ǎ and
ǎǩ, the result is trivial. Now, let Q̌ be another IPt between ǎ and ǎǩ in Ǧ. Then, Q̌ is an IPt in Ǧ\{(ǎ, ǎǩ)}
such that σIS

Q̌
≤ ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ), µIS

Q̌
≥ ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ). Since (ǎ, ǎǩ) is a SIP,

ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≤ σĽ(ǎ, ǎǩ), and ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≥ µĽ(ǎ, ǎǩ). Thus, σĽ(ǎ, ǎǩ) ≥
σIS

Q̌
and µĽ(ǎ, ǎǩ) ≤ µIS

Q̌
. σĽ(ǎ, ǎǩ) = σIS

P̌
and µĽ(ǎ, ǎǩ) = µIS

P̌
. Thus, ICONNσ(Ǧ)(ǎ, ǎǩ) = σĽ(ǎ, ǎǩ)

and ICONNµ(Ǧ)(ǎ, ǎǩ) = µĽ(ǎ, ǎǩ).
Conversely, If σĽ(ǎ, ǎǩ) = ICONNσ(Ǧ)(ǎ, ǎǩ) and µĽ(ǎ, ǎǩ) = ICONNµ(Ǧ)(ǎ, ǎǩ), then

ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≤ ICONNσ(Ǧ)(ǎ, ǎǩ) = σĽ(ǎ, ǎǩ),

ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) ≥ ICONNµ(Ǧ(ǎ, ǎǩ) = µĽ(ǎ, ǎǩ).

Hence, (ǎ, ǎǩ) is a SIP. �

Proposition 5.6. Let Ǧ = (J̌, Ǩ, Ľ) be a connected PFIG. Then, there exists a SIP between any vertex
ǎ and edge ǩľ in Ǧ.

Proposition 5.7. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG. An IP (ǎ, ǎǩ) is a PFICP if and only if it is an α-SIP.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG and let (ǎ, ǎǩ) ∈ supp(Ľ) be a PFICP of Ǧ. Then, by
Proposition 4.2, ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) < σĽ(ǎ, ǎǩ), and ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) > µĽ(ǎ, ǎǩ).
Thus, (ǎ, ǎǩ) is an α-SIP.
Conversely, assume that (ǎ, ǎǩ) is an α-SIP. Then, by definition, P̌ : ǎ, (ǎ, ǎǩ), ǎǩ is the unique
strongest ǎ − ǎǩ IPt, and so

ICONNGσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) < σĽ(ǎ, ǎǩ),

ICONNGµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ) > µĽ(ǎ, ǎǩ).

Hence, (ǎ, ǎǩ) is a PFICP. �

Proposition 5.8. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIT. An IP (q̌, q̌ť) in Ǧ is a SIP if and only if (q̌, q̌ť) ∈ Ť ,
where Ť = (M̌, Q̌, Š ) is a tree in the definition of PFIT.
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Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIT and let Ť = (M̌, Q̌, Š ) be a tree such that for every (ǎ, ǎǩ) < Ť ,
σĽ(ǎ, ǎǩ) < ICONNσ(Ť )(ǎ, ǎǩ), and µĽ(ǎ, ǎǩ) > ICONNµ(Ť )(ǎ, ǎǩ). Let (q̌, q̌ť) be a strong IP. If (q̌, q̌ť) <
Ť , then σĽ(q̌, q̌ť) < ICONNσ(Ť )(q̌, q̌ť), and µĽ(q̌, q̌ť) > ICONNµ(Ť )(q̌, q̌ť). Since (q̌, q̌ť) is a SIP,

σĽ(q̌, q̌ť) ≥ ICONNGσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť),

µĽ(q̌, q̌ť) ≤ ICONNGµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).

Since (q̌, q̌ť) < Ť , Ť is PFIS of Ǧ \ (q̌, q̌ť), and hence

σĽ(q̌, q̌ť) ≥ ICONNGσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) ≥ ICONNσ(Ť )(q̌, q̌ť),

µĽ(q̌, q̌ť) ≤ ICONNGµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť) ≤ ICONNµ(Ť )(q̌, q̌ť),

which is a contradiction.
Conversely, assume that (q̌, q̌ť) ∈ supp(Ľ). By Proposition 4.1, (q̌, q̌ť) is a PFICP. By Proposition 5.7,
(q̌, q̌ť) is a SIP. �

Proposition 5.9. A connected PFIG is a PFIT if and only if it has no β-SIP.

Proof. Let Ǧ = (J̌, Ǩ, Ľ) be a connected PFIG. If Ǧ is PFIT, then ∃ a unique Ť = (M̌, Q̌, Š ) so that
every (ǎ, ǎǩ) ∈ Ť is PFICP and hence is an α-SIP. By definition of a PFIT, all (q̌, q̌ť) such that (q̌, q̌ť) ∈ Ǧ
but (q̌, q̌ť) < Ť are δ-weak IPs. Thus, Ǧ has no β-SIP.
Conversely, assume that Ǧ has β-SIP. If Ǧ has no cycles, then Ǧ is a PFIT. Now, let C be a cycle in Ǧ.
Then, C has only an α-SIP and δ-weak IP. All pairs of C cannot be α-SIPs. Hence, in every cycle of Ǧ
∃ a unique δ-weak IP. By Proposition 3.1, Ǧ is a PFIT. �

Proposition 5.10. Let Ǧ = (J̌, Ǩ, Ľ) be a connected PFIG. Ǧ is a PFIT if and only if there exists a
unique strong IPt between any vertex and edge. In particular, this IPt will be an α-strong IPt.

Proof. Let Ǧ be a PFIT. Then, by Proposition 5.6, there exists a strong IPt P̌ between any vertex
ǎ ∈ supp(J̌) and edge ǩľ ∈ supp(Ǩ). By Proposition 5.8, this IPt P̌ lies entirely in the associated
maximum spanning tree Ť = (M̌, Q̌, Š ), and such IPt is unique since Ť is a tree. Since Ť has no β-SIPs,
this IPt will be an α-strong IPt.
Conversely, suppose ∃ a unique strong IPt between any vertex and edge of Ǧ. Let Ǧ be not a PFIT, and
then there is a cycle C in Ǧ such that for every (ǎ, ǎǩ) ∈ C,

σĽ(ǎ, ǎǩ) ≥ ICONNσ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ),

µĽ(ǎ, ǎǩ) ≤ ICONNµ(Ǧ\{(ǎ,ǎǩ)})(ǎ, ǎǩ).

That is, every IP (ǎ, ǎǩ) ∈ Ľ is a SIP, which is a contradiction to our assumption that the strong IPt is
unique. �

Proposition 5.11. Let Ǧ = (J̌, Ǩ, Ľ) be a PFIG and let P̌ be a strong IPt between q̌ and q̌ť. Then, P̌ is
a strongest q̌ − q̌ť IPt in the following cases:

(1) P̌ contains only α-SIPs.

(2) P̌ is a unique strong q̌ − q̌ť IPt.
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(3) Incidence strengths of all q̌ − q̌ť IPts in Ǧ are equal.

Proposition 5.12. A complete PFIG has no δ-weak IPs.

Proof. Suppose that (q̌, q̌ť) is a δ-weak IP of a complete PFIG Ǧ = (J̌, Ǩ, Ľ). Then,

σĽ(q̌, q̌ť) ≤ ICONNσ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť),
µĽ(q̌, q̌ť) ≥ ICONNµ(Ǧ\{(q̌,q̌ť)})(q̌, q̌ť).

Thus, there exists a stronger IPt P̌ than path P̃ : q̌, (q̌, q̌ť), q̌ť between q̌ and q̌ť in Ǧ. Then,

σĽ(q̌, q̌ť) = σĽ(ť, q̌ť) < σIS
P̌
,

µĽ(q̌, q̌ť) = µĽ(ť, q̌ť) > µIS
P̌
.

That is, for every (ǎ, ǎǩ) ∈ P̌, σĽ(ǎ, ǎǩ) > σĽ(q̌, q̌ť), and µĽ(ǎ, ǎǩ) < µĽ(q̌, q̌ť). Let w̌ be the first
vertex in P̌ after q̌. Then σĽ(q̌, q̌w̌) > σĽ(q̌, q̌ť), and µĽ(q̌, q̌w̌) < µĽ(q̌, q̌ť). This is not possible as
σĽ(q̌, q̌w̌) = min{σJ̌(u), σǨ(uw)} = σĽ(q̌, q̌ť), and µĽ(q̌, q̌w̌) = max{µJ̌(u), µǨ(uw)} = µĽ(q̌, q̌ť). Thus,
Ǧ has no δ-weak IP. �

6. Application: Recognition of countries participating in illegal wildlife trade

Graph theory has expanded greatly as a result of a wide variety of applications in optimization
issues, combinatorial issues, linguistics, chemistry, physics and other fields. In this section, we describe
a real-world application of PFIGs.

Due to the numerous benefits of wildlife on human life, wildlife trading is getting more popular
with the increase of population. People in many countries are accustomed to a lifestyle that fuels the
demand for wildlife. Wildlife crime is seen as a low-risk, high-reward dirty industry, currently
estimated to be the fourth most profitable global crime, after the trafficking of drugs,humans and
firearms. From the Americas to Asia to Africa, wildlife trade is unfortunately still common in many
continents. It is a big business, bringing in estimated billions of dollars of illegal revenue. The golden
triangle of Laos, Thailand and Myanmar is a global hub for illegal wildlife trade and trafficking.
China is the largest importer of illegal wildlife and animal products, driving demands for animals
from around the world. Wildlife trade alone is a major threat to some species, but its impact is
frequently made worse by habitat loss and other pressures. Criminals mostly devise many creative
ways to transport illegal wildlife focusing on the path of processing and sale. It is difficult for law
enforcement to find concealed ways. So, police should be aware of the latest trends in the illegal
wildlife trade market. We can use the PFIG to highlight the safest path chosen by dangerous
international networks for illegal wildlife trade between two countries and can also tell the removal of
which country reduces the safety of that path. Consider a few countries of the world, where illegal
wildlife trade is a major threat to wildlife, in the following set:
W̌ = {S outh A f rica,Mozambique,Kenya,Uganda,China,Myanmar,Thailand, Laos,Vietnam}. PFS
J̌ defined on set W̌ is presented in Table 2.
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Table 2. PFS J̌ on set W̌.

Country Law enforcement efforts of the country Involvement of the country in organized
for illegal wildlife trade illegal wildlife trade

W̌ σJ̌ µJ̌

South Africa 0.5 0.7
Mozambique 0.3 0.8

Kenya 0.6 0.3
Uganda 0.7 0.4
China 0.6 0.5

Myanmar 0.4 0.2
Thailand 0.3 0.8

Laos 0.2 0.9
Vietnam 0.3 0.9

In Table 2, σJ̌ indicates law enforcement efforts of the country for illegal wildlife trade, µJ̌ indicates
the involvement of the country in organized illegal wildlife trade, and the neutral approach of the
country to illegal wildlife trade can be considered as a degree of indeterminacy. We define PFS Ǩ
on Ž ⊆ W̌ × W̌ in Table 3. An element of PFS Ǩ represents illegal wildlife trade between those two
countries.

Table 3. PFS Ǩ on set Ž.

Ž Rate of illegal wildlife trade World’s negative thinking
for that illegal wildlife trade

σǨ µǨ

(Vietnam, Thailand) 0.3 0.9
(China, Laos) 0.2 0.7

(Uganda, South Africa) 0.5 0.6
(Laos, Uganda) 0.2 0.9
(Kenya, China) 0.6 0.5

(South Africa, Myanmar) 0.4 0.6
(Kenya, Uganda) 0.6 0.5

(Myanmar, Thailand) 0.3 0.6
(Vietnam, China) 0.3 0.8

(Mozambique, Uganda) 0.3 0.7
(Myanmar, Mozambique) 0.2 0.8

(South Africa, Kenya) 0.4 0.4
(Vietnam, Myanmar) 0.2 0.9

In Table 3, σǨ indicates the rate of illegal wildlife trade between countries, and µǨ indicates the
rate of the world’s negative thinking or disliking for that illegal wildlife trade. Membership and
non-membership values of each pair of countries are according to σǨ(ǎǩ) ≤ min{σJ̌(ǎ), σJ̌(ǩ)}, µǨ(ǎǩ)
≤ max{µJ̌(ǎ), µJ̌(ǩ)} and (σǨ(ǎǩ))2 + (µǨ(ǎǩ))2 ≤ 1 for all ǎ, ǩ ∈ W̌. Let us use the following alphabets
for country names:
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S= South Africa, MZ= Mozambique, K= Kenya, U= Uganda, C= China, M= Myanmar, TH=

Thailand, LS= Laos, VT= Vietnam. Now, we define a PFS Ľ on Y̌ ⊆ W̌ × Ž in Table 4.

Table 4. PFS Ľ on Y̌ .

Y̌ Degree of safety Degree of risk Y̌ Degree of safety Degree of risk
σĽ µĽ σĽ µĽ

(VT, (VT, TH)) 0.3 0.9 (TH, (VT, TH)) 0.1 0.7
(C, (C, LS)) 0.2 0.6 (LS, (C, LS)) 0.1 0.8
(U, (U, S)) 0.4 0.5 (S, (U, S)) 0.3 0.6

(LS, (LS, U)) 0.2 0.9 (U, (LS, U)) 0.1 0.7
(K, (K, C)) 0.5 0.3 (C, (K, C)) 0.6 0.4
(S, (S, M)) 0.4 0.7 (M, (S, M)) 0.3 0.6
(K, (K, U)) 0.5 0.4 (U, (K, U)) 0.5 0.4

(M, (M, TH)) 0.3 0.5 (TH, (M, TH)) 0.3 0.6
(VT, (VT, C)) 0.2 0.8 (C, (VT, C)) 0.3 0.8

(MZ, (MZ, U)) 0.3 0.7 (U, (MZ, U)) 0.2 0.5
(M, (M, MZ)) 0.2 0.5 (MZ, (M, MZ)) 0.1 0.7

(S, (S, K)) 0.4 0.3 (K, (S, K)) 0.3 0.4
(VT, (VT, M)) 0.1 0.9 (M, (VT, M)) 0.2 0.7

Trafficking routes for illegal wildlife frequently do not follow direct lines between source
and destination countries; they can be circuitous and involve multiple transit stages. Let
σĽ(VT, (VT,T H)) and µĽ(VT, (VT,T H)) represent the degree of safety and degree of risk for illegal
wildlife trade, respectively, to use Vietnam as a source country, travel on (VT,T H) and arrive at
destination country Thailand. Similarly, the membership and non-membership values of the other
pairs of PFIGs are shown in Table 4. Membership and non-membership values of each pair of
countries are according to σĽ(ǎ, ǎǩ) ≤ min{σJ̌(ǎ), σǨ(ǎ, ǎǩ)}, µĽ(ǎ, ǎǩ) ≤ max{µJ̌(ǎ), µǨ(ǎ, ǎǩ)} and
(σĽ(ǎ, ǎǩ))2 + (µĽ(ǎ, ǎǩ))2 ≤ 1 for all (ǎ, ǎǩ) ∈ W̌ × Ž. PFIG Ǧ = (J̌, Ǩ, Ľ) is shown in Figure 13.
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Figure 13. PFIG Ǧ.
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To make clear how the values in Table 5 are obtained, we show a calculation example for the bold
entry (K, (K,C)) in Table 5. The possible incidence paths are as follows:

Q̌1 : K, (K, (K,C)), (K,C);

Q̌2 : K, (K, (K,U)), (K,U), (U, (K,U)),U, (U, (U, LS )), (U, LS ), (LS , (U, LS )), LS , (LS , (LS ,C)),

(LS ,C), (C, (LS ,C)),C, (C, (C,K)), (C,K) = (K,C);

Q̌3 : K, (K, (K, S )), (K, S ), (S , (K, S )), S , (S , (S ,U)), (S ,U), (U, (S ,U)),U, (U, (U, LS )), (U, LS ),

(LS , (U, LS )), LS , (LS , (LS ,C)), (LS ,C), (LS , (C, LS )),C, (C, (C,K)), (C,K) = (K,C);

Q̌4 : K, (K, (K,U)), (K,U), (U, (K,U)),U, (U, (U, S )), (U, S ), (S , (U, S )), S , (S , (S ,M)), (S ,M), (M,

(S ,M)),M, (M, (M,T H)), (M,T H), (T H, (M,T H)),T H, (T H, (T H, ,VT )), (T H,VT ), (VT,

(VT,T H)),VT, (VT, (VT,C)), (VT,C), (C, (VT,C)),C, (C, (C,K)), (C,K) = (K,C);

Q̌5 : K, (K, (K, S )), (K, S ), (S , (K, S )), S , (S , (S ,M)), (S ,M), (M, (S ,M)),M, (M, (M,VT )), (M,VT ),

(VT, (M,VT )),VT, (VT, (VT,C)), (VT,C), (C, (VT,C)),C, (C, (C,K)), (C,K) = (K,C);

Q̌6 : K, (K, (K, S )), (K, S ), (S , (K, S )), S , (S , (S ,M)), (S ,M), (M, (S ,M)),M, (M, (M,T H)), (M,T H),

(T H, (M,T H)),T H, (T H, (T H, ,VT )), (T H,VT ), (VT, (VT,T H)),VT, (VT, (VT,C)),

(VT,C), (C, (VT,C)),C, (C, (C,K)), (C,K) = (K,C);

Q̌7 : K, (K, (K, S )), (K, S ), (S , (K, S )), S , (S , (S ,M)), (S ,M), (M, (S ,M)),M, (M, (M,MZ)), (M,MZ),

(MZ, (M,MZ)),MZ, (MZ, (MZ,U)), (MZ,U), (U, (U,MZ)),U, (U, (U, LS )), (U, LS ), (LS ,

(U, LS )), LS , (LS , (LS ,C)), (LS ,C), (LS , (C, LS )),C, (C, (C,K)), (C,K) = (K,C);

Q̌8 : K, (K, (K,U)), (K,U), (U, (K,U)),U, (U, (U, S )), (U, S ), (S , (U, S )), S , (S , (S ,M)), (S ,M),

(M, (S ,M)),M, (M, (M,VT )), (M,VT ), (VT, (M,VT )),VT, (VT, (VT,C)), (VT,C),

(C, (VT,C)),C, (C, (C,K)), (C,K) = (K,C).

The incidence strengths of these IPts are given by

IS Q̌1
= (σIS

Q̌1
, µIS

Q̌1
) = (0.5, 0.3),

IS Q̌2
= (σIS

Q̌2
, µIS

Q̌2
) = (0.1, 0.9),

IS Q̌3
= (σIS

Q̌3
, µIS

Q̌3
) = (0.1, 0.9).

IS Q̌4
= (σIS

Q̌4
, µIS

Q̌4
) = (0.2, 0.8),

IS Q̌5
= (σIS

Q̌5
, µIS

Q̌5
) = (0.1, 0.9),

IS Q̌6
= (σIS

Q̌6
, µIS

Q̌6
) = (0.1, 0.9),

IS Q̌7
= (σIS

Q̌7
, µIS

Q̌7
) = (0.1, 0.8),

IS Q̌8
= (σIS

Q̌8
, µIS

Q̌8
) = (0.1, 0.9).
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Table 5. Incidence strength of connectedness between a vertex ǎ and an edge ǎǩ of Ǧ.

Pair ICONNǦ(ǎ, ǎǩ) Pair ICONNǦ(ǎ, ǎǩ)
(ǎ, ǎǩ) ∈ Y̌ (ǎ, ǎǩ) ∈ Y̌

(VT, (VT, TH)) (0.3, 0.8) (TH, (VT, TH)) (0.2, 0.7)
(C, (C, LS)) (0.2, 0.6) (LS, (C, LS)) (0.1, 0.8)
(U, (U, S)) (0.4, 0.5) (S, (U, S)) (0.3, 0.5)

(LS, (LS, U)) (0.2, 0.8) (U, (LS, U)) (0.1, 0.7)
(K, (K, C)) (0.5, 0.3) (C, (K, C)) (0.6, 0.4)
(S, (S, M)) (0.4, 0.7) (M, (S, M)) (0.3, 0.5)
(K, (K, U)) (0.5, 0.4) (U, (K, U)) (0.5, 0.4)

(M, (M, TH)) (0.3, 0.5) (TH, (M, TH)) (0.3, 0.6)
(VT, (VT, C)) (0.2, 0.8) (C, (VT, C)) (0.3, 0.8)

(MZ, (MZ, U)) (0.3, 0.7) (U, (MZ, U)) (0.2, 0.5)
(M, (M, MZ)) (0.2, 0.5) (MZ, (M, MZ)) (0.2, 0.7)

(S, (S, K)) (0.4, 0.3) (K, (S, K)) (0.3, 0.4)
(VT, (VT, M)) (0.2, 0.8) (M, (VT, M)) (0.2, 0.7)

The σ-incidence strength and µ-incidence strength of connectedness are given by

ICONNσ(Ǧ)(K, (K,C)) = max{σIS
Q̌1
, σIS

Q̌2
, σIS

Q̌3
, σIS

Q̌4
, σIS

Q̌5
, σIS

Q̌6
, σIS

Q̌7
, σIS

Q̌8
}

= max{0.5, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1}
= 0.5,

ICONNµ(Ǧ)(K, (K,C)) = min{µIS
Q̌1
, µIS

Q̌2
, µIS

Q̌3
, µIS

Q̌4
, µIS

Q̌5
, µIS

Q̌6
, µIS

Q̌7
, µIS

Q̌8
}

= min{0.3, 0.9, 0.9, 0.8, 0.9, 0.9, 0.8, 0.9}
= 0.3.

Thus, ICONNǦ(K, (K,C)) = (ICONNσ(Ǧ)(K, (K,C)), ICONNµ(Ǧ)(K, (K,C))) = (0.5, 0.3).
If we remove the pair (K, (K,C)) from the graph, then

ICONNσ(Ǧ\{(K,(K,C))})(K, (K,C)) = 0.2, ICONNµ(Ǧ\{(K,(K,C))})(K, (K,C)) = 0.8.

σĽ(K, (K,C)) > ICONNσ(Ǧ\{(K,(K,C))})(K, (K,C)), and µĽ(K, (K,C)) < ICONNµ(Ǧ\{(K,(K,C))})(K, (K,C)).
Thus, (K, (K,C)) is an α-SIP and so by Proposition 5.7 is a PFICP of Ǧ.

σĽ(ǎ, ǎǩ), and µĽ(ǎ, ǎǩ) represent the degree of safety and degree of risk of IPts between ǎ and ǩ.
Then, ICONNǦ(ǎ, ǎǩ) represents the IPt with the highest safety and smallest risk among all such IPts.
Hence such an IPt is the safest path to travel.

The incidence strength of connectedness between a vertex ǎ and an edge ǎǩ of Ǧ = (J̌, Ǩ, Ľ) are
calculated in Table 5. Suppose (q̌, q̌ť) is a PFICP. Then, (ǎ, ǎǩ) exists such that
ICONNGσ(Ǧ\{(q̌,q̌ť)})(ǎ, ǎǩ) < ICONNGσ(Ǧ)(ǎ, ǎǩ) and
ICONNGµ(Ǧ\{(q̌,q̌ť)})(ǎ, ǎǩ) > ICONNGµ(Ǧ)(ǎ, ǎǩ). Thus, the removal of pair (q̌, q̌ť) would make the
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path less safe. There are two safest IPts between from VT to (VT, M) with ICONNǦ(VT, (VT,M)) =

(0.2, 0.8) such as:

P̌1 : VT, (VT, (VT,C)), (VT,C), (C, (VT,C)),C, (C, (C,K)), (C,K), (K, (C,K)),K, (K, (K, S )), (K, S ),

(S , (K, S )), S , (S , (S ,M)), (S ,M), (M, (S ,M)),M, (M, (M,VT ), (M,VT ),

P̌2 : VT, (VT, (VT,C)), (VT,C), (C, (VT,C)),C, (C, (C,K)), (C,K), (K, (C,K)),K, (K, (K,U)), (K,U),

(U, (K,U)),U, (U, (U, S )), (U, S ), (S , (U, S )), S , (S , (S ,M)), (S ,M), (M, (S ,M)),M, (M, (M,VT )), (M,VT ).

These paths are shown in Figure 14. Let us remove PFICP (C, (C,K)) from Ǧ. Then,
ICONNG(Ǧ−{(C,(C,K))})(VT, (VT,M)) = (0.1, 0.9). Thus, removal of (C, (C,K)) reduces the safety of the
path. Similarly, removal of pairs (C, (C, LS )), (U, (U, S )), (K, (K,C)), (M, (M, S )), (K, (K,U)), (U, (U,
K)), (M, (M,T H)), (T H, (M,T H)), (V, (V,C)), (C, (C,V)), (U, (U,MZ)), (M, (M,MZ)), (S , (S ,K)) and
(M, (M,VT )) reduce the safety of the path.
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Figure 14. Safest paths in Ǧ.

7. Comparative analysis

In this section, we compare our suggested model to existing models to determine its validity and
superiority. In comparison to FS and IFS, PFS is a more powerful model for handling uncertainty.
FSs address the ambiguity of belongingness, whereas IFSs provide information regarding the
hesitancy of a statement. A PFS effectively handles uncertain data by extending the range for the
assignment of membership and non-membership values. In Figure 13, a PFIG indicates a network of
illegal wildlife trade in nine different countries, South Africa, Mozambique, Kenya, Uganda, China,
Myanmar, Thailand, Laos and Vietnam. The edge between any two countries represents the illegal
wildlife trade between those two countries, and the membership and non-membership values indicate
the rate of illegal wildlife trade between countries and the rate of the world’s negative thinking or
disliking of that illegal wildlife trade, respectively. Moreover, let σĽ(C1, (C1C2)) and µĽ(C1, (C1C2)),
represent the degree of safety and degree of risk for illegal wildlife trade, respectively, to use C1 as a
source country, travel on (C1C2) and arrive at destination country C2. The ICONNǦ(C1, (C1C2))
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represents the IPt with the highest safety and smallest risk among all such IPts. In the case of graphs,
incidence pairs are not present, and thus graphs do not provide any information about the safety of the
path. In the case of incidence graphs, the membership value of each incidence pair is 1, and thus
ICONNǦ(C1, (C1C2)) = 1 for all incidence pairs of the network. Hence, we cannot determine the
safest path to travel. In the case of fuzzy incidence graphs, the nonmembership value of each pair is
missing, and thus the ICONNǦ(C1, (C1C2)) does not provide any information about how risky the
path is to travel on. In the case of IFIGs, σJ̌(C1) + µJ̌(C1) ≤ 1, for each C1. Thus, in the case of
(S outhA f rica, 0.5, 0.7), 0.5 + 0.7 � 1, and hence IFIGs do not have the ability to handle such
information. Similarly, all the other concepts in fuzzy incidence graph structure as fuzzy incidence
cycle, fuzzy incidence tree, fuzzy incidence cut vertices, fuzzy incidence bridges, fuzzy incidence cut
pairs, and strong incidence pairs, use only the membership value of the problem. Nevertheless, in
real-life scenarios where the non-satisfactory factor is also present, the fuzzy incidence graph model
fails to illustrate non-satisfactory factors along with satisfactory factors. In comparison to fuzzy
incidence graphs, Pythagorean fuzzy incidence graphs offer a more comprehensive description of
relationships between objects. Problems where an element does not belong to a particular subset or
where the degree of exclusion varies, can be modeled using nonmembership values. This adaptability
enables more precise modeling of challenging real-world scenarios.

8. Conclusions

One of the key factors that affect a network is connectivity. Particularly in real life, connectivity
is essential for problems like internet routing and transport network flow. We introduce the idea of
PFIGs in this article. We discussed the strength IPt between a vertex and an edge in PFIGs. We also
proposed the concepts of PFICs and PFITs and provided some important related results. We illustrated
the notions of PFICVs and PFICPs in PFIG and proved essential propositions concerning PFICPs.
We discussed α-strong, β-strong and δ-weak IPs. We proved that any vertex and edge have a strong
IPt between them. Moreover, we used strong pairs to characterize various Pythagorean incidence
structures. We also obtained the characterization of PFICs using α-SIPs and determined the relation
between PFITs and α-SIPs. Finally, we provided an application of PFIGs in the illegal wildlife trade
network.

This research work can be further extended to include the analysis of (1) connectivity indices of
PFIGs, (2) cyclic connectivity index of PFIGs, (3) average cyclic connectivity index of PFIGs and (4)
Wiener index of PFIGs.
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