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1. Introduction

Nowadays, fractional differential equations play a main role in mathematics. Fractional calculus has
been rapidly developed due to its important applications in more and more fields, especially in control
theory, viscoelastic theory, electronic chemicals, fractal theory, and so on. The main advantage in the
study of differential equations of a fractional order is that fractional derivatives provide an excellent
tool for describing the memory and hereditary properties of various materials and processes. Therefore,
fractional order models are more realistic and practical than classical integer-order models [1–5]. For
more recent developments on fractional differential equations, see [6–18] and the references therein.

Differential equations with impulse effects were considered for the first time by Milman and
Myshkis, which can describe the observed evolution processes of several real world phenomena in
a natural manner. Dynamic processes with sudden changes in their states are usually governed by
impulsive differential equations, such as seasonal changes or harvesting in environmental sciences,
abrupt changes of prices in economics, and so on. They are widely used to model many problems
in control theory, population dynamics, medicine, and economics. Recently, fractional differential
equations with impulse effects have received a lot of attention, see [19–24].
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Differential equations are used to describe deterministic systems. In fact, some systems, such as
economics and biology, involve certain macro changes; in this case, instead of differential equations,
differential inclusions are used to describe the uncertainty of the system itself. Therefore, differential
inclusions have an important significance in many fields including differential variational inequalities,
projected dynamical systems, dynamic Coulomb friction problems and fuzzy set arithmetic [25,26].
In the past several decades, many methods and results concerning the solvability of differential
inclusions with boundary value problems were investigated. For example, in [27], M. Benchohora
and S. K. Ntouyas discussed the solvability of first order differential inclusions with periodic boundary
conditions. In [28], G. Grammel considered the boundary value problems for semi-continuous delayed
differential inclusions on Riemannian manifolds. B. C. Dhage proved some existence theorems for
hyperbolic differential inclusions in Banach algebras in [29]. N. S. Papageorgiou and V. Staicu
established the method of upper-lower solutions for nonlinear second order differential inclusions
in [30]. Moreover, Y. Chang and J. J. Nieto extended the study to the fractional differential inclusions
with boundary conditions by using the Bohnenblust-Karlin’s fixed point theorem in [31].

Various existence results of fractional differential inclusions with boundary conditions in the case
of order 0 < α < 1 have been obtained [32–36]. To the best of our knowledge, the results of fractional
differential inclusions of 1 < α < 2 with impulsive boundary conditions have not been obtained up
to now. Motivated by the above reasons, differential inclusion problems for fractional differential
inclusions of 1 < α < 2 with initial and impulsive boundary conditions are discussed in this paper.
Among of existing fractional order models, the Riemann-Liouville and Caputo operators are popularly
adopted by the researchers. Compared with Riemann-Liouville, the Caputo fractional operator is more
suitable for modelling physical phenomena because the initial conditions are given in an classical
form. As a consequence, this paper is based on the Caputo type fractional derivative. The purpose of
this paper is to investigate the existence of solutions to a Caputo fractional differential inclusion with
initial and impulsive boundary conditions described as follows:

CDαu(t) ∈ F(t, u), t ∈ [0,T ]\{t1, t2, · · · , tp},

∆u(tk) = Ik(u(t−k )),∆u′(tk) = Jk(u(t−k )),
u(0) = a, u′(0) = b,

(1.1)

where 1 < α < 2 , CDα is the Caputo fractional derivative defined by

CDαu(x) =
1

Γ(2 − α)

∫ x

tk
(x − t)1−αu′′(t)dt,

F : [0,T ]×X → 2X\∅ is a multi-valued mapping, Ik, Jk are multi-valued mapping from X to nonempty
closed, bounded and convex subset of X, 0 = t0 < t1 < · · · < tp < tp+1 = T, ∆u(tk) = u(t+

k ) − u(t−k ),
∆u′(tk) = u′(t+

k ) − u′(t−k ), u(t+
k ) = lim

h→0+
u(tk + h), u(t−k ) = lim

h→0−
u(tk − h), and k = 1, 2, · · · , p. In the

following, the sign J denotes [0,T ] for convenience.
The outline of this paper is as follows. In Section 2, some useful results on the Banach space

and preliminary facts on fractional derivative which will be used throughout this work are given. In
Section 3, sufficient conditions for the existence of solutions of Eq (1.1) is established by relying
on a fixed point theorem due to Dhage. In Section 4, two examples are provided to explicate the
applicability of our main result. Finally, some remarks and observations regarding the obtained result
are summarized in Section 5.
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2. Preliminaries

For convenience for the following proof, some necessary facts about multi-valued mapping and
lemmas are introduced in this section.

Let (X, ‖·‖) be a Banach space. A multi-valued mapping H : X → 2X\∅ is convex (closed) valued if⋃
x∈X

H(x) is convex (closed). H is bounded on bounded sets if ∪
x∈B

H(x) is bounded in X for any bounded

set B of X .
H is called upper semi-continuous on X if for each x0 ∈ X, the set H(x0) is a nonempty closed

subset of X, and if for each open subset B of X containing H(x0), there exists an open neighbourhood
N of x0 such that H(N) ⊂ B. H is said to be completely continuous if H(B) is relatively compact for
every bounded subset B of X.

If the multi-valued mapping H is completely continuous with nonempty compact values, then H is
upper semi-continuous if and only if H has a closed graph (i.e., xn → x̄, yn → ȳ, yn ∈ H(xn) implies
ȳ ∈ H(x̄)).

Recall that the Pompeiu-Hausdorff distance of the closed subsets A, B of X is defined by the
following:

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)},

where d(x, B) = inf
y∈B

d(x, y).

In the following, Pcl,cv,bd(X) denotes the set of all nonempty bounded, closed and convex subsets of
X, and Pcp,cv(X) denotes all nonempty compact and convex subsets of X. H has a fixed point if there is
x ∈ X such that x ∈ H(X). For more details on multi-valued mapping, see the books of J. P. Aubin and
H. Frankowska in [36] and S. Hu and N. S. Papageogiou in [37].

Definition 2.1. [33] H : J × X → P(X) is called Carathéodory if t 7→ H(t, x) is measurable for each
x ∈ X, and x 7→ H(t, x) upper semi-continuous for almost every t ∈ [0,T ].

Furthermore, H : J × X → P(X) is called L1-Carathéodory if for each l > 0, there exists a function
ml ∈ L1(J,R+) such that

‖H(t, x)‖ = sup
v(t)∈H(t,x)

{|v|} ≤ ml(t),

for almost all t ∈ J, and for each fixed ‖x‖ ≤ l.

The following lemmas are crucial in this paper.

Lemma 2.1. [29] Let (X, ‖·‖) be a Banach space, A : X → Pcl,cv,bd(X), B : X → Pcp,cv(X) are
multi-valued operators satisfying

(i)A is a contraction.

(ii) B is compact and upper semi-continuous.
If the set E = {u ∈ X|u ∈ δAu + δBu, 0 ≤ δ ≤ 1} is bounded, then the operator A + B has a fixed

point.

Lemma 2.2. [29] Let (X, ‖·‖) be a Banach space, H : J × X → Pcp,cv(X) is L1-Carathéodory. Let Γ be
a linear continuous operator from L1(J, X) to C(J, X), then the operator

Γ ◦ S H : C(J, X)→ Pcp,cv(C(J, X)), y→ (Γ ◦ S H)(y) = Γ(S H,y)
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is a closed graph operator in C(J, X) ×C(J, X), where

S H,x := {h(t) ∈ L1(J) : h(t) ∈ H(t, x) f or a.e.t ∈ J}, f or each f ixed x ∈ X.

Following, this preliminary facts on the fractional derivative which will be used throughout this
work are given.

Definition 2.2. The fractional integration of order α is defined by

Iαt0 x(t) =
1

Γ(α)

∫ t

t0
(t − τ)(α−1)x(τ)dτ,

where x ∈ L1[0,+∞).

Definition 2.3. The Caputo fractional derivative of order α is defined by

Dα
t0 x(t) =

1
Γ(n − α)

∫ t

t0
(t − τ)n−α−1x(n)(τ)dτ,

where n − 1 < α < n and x(n) ∈ L1[0,+∞).

Lemma 2.3. The following Caputo fractional differential equation
CDαu(t) = f (t), t ∈ [0,T ]\{tk},

∆u(tk) = Ik(u(t−k )),∆u′(tk) = Jk(u(t−k )),
u(0) = a, u′(0) = b,

(2.1)

is equivalent to the integral equation as follows

u (t) =



1
Γ(α)

∫ t

0
(t − s)

α−1
f (s)ds + a + bt, f or t ∈ T0,∫ t

tk
(t−s)α−1

Γ(α) f (s)ds +
k∑

i=1
[
∫ ti

ti−1

(ti−s)α−1

Γ(α) f (s)ds + Ii(u(t−i ))]

+
k−1∑
i=1

(tk − ti)[
∫ ti

ti−1

(ti−s)α−2

Γ(α−1) f (s)ds + Ji(u(t−i ))]

+
k∑

i=1
(t − tk)[

∫ ti
ti−1

(ti−s)α−2

Γ(α−1) f (s)ds + Ji(u(t−i ))] + a + bt, f or t ∈ Tk.

Proof. Let T0 = [0, t1],T1 = (t1, t2], · · · ,Tp−1 = (tp−1, tp],Tp = (tp,T ], and u is a solution of Eq (2.1).
Then, for t ∈ T0, there exist constants c0, c1 ∈ R such that

u (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds − c0 − c1t, (2.2)

u′ (t) =
1

Γ(α − 1)

∫ t

0
(t − s)α−2 f (s)ds − c1.

For t ∈ T1, there exist constants d0, d1 ∈ R such that

u (t) =
1

Γ(α)

∫ t

t1
(t − s)α−1 f (s)ds − d0 − d1(t − t1),
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u′ (t) =
1

Γ(α − 1)

∫ t

t1
(t − s)α−2 f (s)ds − d1.

Then, we have

u(t−1 ) =
1

Γ(α)

∫ t1

0
(t1 − s)α−1 f (s)ds − c0 − c1t1, u(t+

1 ) = −d0,

u′(t−1 ) =
1

Γ(α − 1)

∫ t1

0
(t1 − s)α−2 f (s)ds − c1, u′(t+

1 ) = −d1.

In view of ∆u(t1) = I1(u(t1)),∆u′(t1) = J1(u(t1)), we further have

−d0 =
1

Γ(α)

∫ t1

0
(t1 − s)α−1 f (s)ds − c0 − c1t1 + I1(u(t−1 )),

−d1 =
1

Γ(α − 1)

∫ t1

0
(t1 − s)α−2 f (s)ds − c1 + J1(u(t−1 )).

Consequently, for t ∈ T1,

u (t) =
1

Γ(α)

∫ t1

0
(t1 − s)α−1 f (s)ds +

t − t1

Γ(α − 1)

∫ t1

0
(t1 − s)α−2 f (s)ds

+
1

Γ(α)

∫ t

t1
(t − s)α−1 f (s)ds + I1(u(t1)) + (t − t1)J1(u(t1)) − c0 − c1t.

By a similar process, for t ∈ Tk, k = 1, 2, · · · , p, we can get

u (t) =

∫ t

tk

(t − s)α−1

Γ(α)
f (s)ds +

k∑
i=1

[
∫ ti

ti−1

(ti − s)α−1

Γ(α)
f (s)ds + Ii(u(t−i ))]

+

k−1∑
i=1

(tk − ti)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
f (s)ds + Ji(u(t−i ))]

+

k∑
i=1

(t − tk)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
f (s)ds + Ji(u(t−i ))] − c0 − c1t.

(2.3)

Notice that for the initial conditions u(0) = a, u′(0) = b, one can easily find that

c0 = −a, c1 = −b.

After substituting the values of c0 and c1 into Eqs (2.2) and (2.3), the conclusion is derived and the
proof is completed. �

3. Main results on existence of solutions

In this section, the existence result to problem (1.1) is established. We provide the following
assumptions:

(A1) F : [0,T ] × X → Pcp,cv(X) is L1-Carathéodory.
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(A2) There exist constants ak , bk such that

Hd(Ik(x), Ik(y)) ≤ ak |y − x| , Hd(Jk(x), Jk(y)) ≤ bk |y − x| ,∀y, x ∈ X

and
p∑

i=1
(ak + 2Tbk) < 1.

(A3) There exists a continuous nondecreasing function ψ : [0,∞] → [0,∞] and p ∈ L1[0,T ] such
that

‖F(t, x)‖ = sup
v(t)∈F(t,x)

{|v|} ≤ p(t)ψ(|x|),

for almost all t ∈ [0,T ], and for each x ∈ X, where ψ satisfies∫ ∞

c0

ds
ψ(s)

> c1‖p‖L1 ,

and

c0 =

p∑
i=1

(ai |Ii(0)| + 2Tbi |Ji(0)|) + |a + bT |

1 −
p∑

i=1
(ai + 2Tbi)

,

c1 =

Tα−1

Γ(α) + 2Tα−1

Γ(α)

1 −
p∑

i=1
(ai + 2Tbi)

.

The main result in this paper is presented as follows.

Theorem 3.1. Assume conditions (A1)–(A3) hold, then problem (1.1) has at least one solution on
[0,T ].

Proof. Consider the following space:

PC(J, X) ={u : J → X|u ∈ C(Tk), k = 0, 1, 2, · · · , p,

u(tk
−), u(tk

+) exist with u(tk) = u(tk
−), k = 1, 2, · · · , p}

which is a Banach space with norm ‖u‖PC = sup
t∈J
|u(t)|. Now, let us transform the differential inclusion

problem (1.1) into a fixed point problem. By (A1), for each u ∈ X, the set

S F,u = {v(t) ∈ L1[0,T ] : v(t) ∈ F(t, u) f or a.e.t ∈ [0,T ]}

is nonempty. Multi-valued mapping N : PC(J, X)→ 2PC(J,X)\∅ is defined as follows:

N(u) = {h(t) ∈ PC(J, X)|h(t) = G(t, v), v ∈ S F,u},

where

G(t, v) =

∫ t

tk

(t − s)α−1

Γ(α)
v(s)ds +

k∑
i=1

[
∫ ti

ti−1

(ti − s)α−1

Γ(α)
v(s)ds + Ii(u(ti

−))]

+

k−1∑
i=1

(tk − ti)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds + Ji(u(ti

−))]

+

k∑
i=1

(t − tk)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds + Ji(u(ti

−))] + a + bt.
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Then, the fixed-point of N is a solution of problem (1.1). Consider the multivalued operators A, B :
PC(J, X)→ 2PC(J,X)\∅ defined by

A(u) = {h ∈ PC(J, X)|h(t) =

k∑
i=1

Ii(u(ti
−)) +

k−1∑
i=1

(tk − ti)Ji(u(ti
−)) +

k∑
i=1

(t − tk)Ji(u(ti
−))},

and

B(u) = {h ∈ PC(J, X)|h(t) =

∫ t

tk

(t − s)α−1

Γ(α)
v(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v(s)ds

+

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds

+

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds+a + bt}.

Step 1. A has a closed, bounded and convex value. Additionally, A is a contraction.
Since Ik, Jk are multi-valued mapping from X to nonempty closed, bounded and convex subset of

X, and A has a closed, bounded and convex value.
Then, let u1, u2 ∈ PC(J, X); by (A2) we have

Hd(A(u1), A(u2)) ≤
k∑

i=1

Hd(Ii(u1(ti)), Ii(u2(ti))) +

k∑
i=1

T Hd(Ji(u1(ti)),Ji(u2(ti)))

+

k−1∑
i=1

(tk − ti)Hd(Ji(u1(ti)), Ji(u2(ti)))

≤

k∑
i=1

(ak + Tbk + Tbk) |u1(ti) − u2(ti)|

≤

p∑
i=1

(ak + 2Tbk) sup
t∈J
|u1(t) − u2(t)|

=

p∑
i=1

(ak + 2Tbk) ‖u1 − u2‖ .

The following is the definiton of multi-valued operator: a multi-valued operator A is called a
contraction if and only if there exists 0 < λ < 1 such that for each x, y ∈ X.

Hd(A(x), A(y)) ≤ λd(x, y),

From (A2), it follows that A is a contraction.
Step 2. For every u ∈ PC(J,R) , the multi-valued operator B(u) is convex.
In fact, let h1, h2 ∈ B(u), then, there exist v1, v2 ∈ S F,u such that for arbitrary t ∈ [0,T ],

h1(t) =

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v1ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v1(s)ds

+

∫ t

tk

(t − s)α−1

Γ(α)
v1(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v1(s)ds+a + bt,
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h2(t) =

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v2(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v2(s)ds

+

∫ t

tk

(t − s)α−1

Γ(α)
v2(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v2(s)ds+a + bt.

For each β ∈ (0, 1), since F has a convex value, S F,u is convex, then, βv1 + (1 − β)v2 ∈ S F,u. Denote
v3 = βv1 + (1 − β)v2, then, we get

βh1 + (1 − β)h2 =

∫ t

tk

(t − s)α−1

Γ(α)
v3(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v3(s)ds

+

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v3(s)ds

+

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v3(s)ds+a + bt,

so βh1 + (1 − β)h2 ∈ S F,u. Consequently, B(u) is convex.
Step 3. There exists a positive number l such that B maps Bl into a bounded set, where Bl = {x ∈

PC(J, X)| ‖x‖ ≤ l}.
For each l > 0, there exists a function ul ∈ Bl, hl ∈ B(ul), such that vl ∈ S F,u, then, we can get

sup
t∈[0,T ]

|hl(t)| ≤ |a + bT | +
Tα−1

Γ(α)

∫ t

tk
|vl(s)|ds +

Tα−1

Γ(α − 1)

∫ tk

t0
|vl(s)|ds

+

k−1∑
i=1

Tα−1

Γ(α − 1)

∫ ti

ti−1

|vl(s)|ds +

k∑
i=1

Tα−1

Γ(α − 1)

∫ ti

ti−1

|vl(s)|ds

≤ |a + bT | +
Tα−1

Γ(α)

∫ T

0
|vl(s)|ds +

Tα−1

Γ(α − 1)

∫ T

0
|vl(s)|ds +

Tα−1

Γ(α − 1)

∫ T

0
|vl(s)|ds

≤ |a + bT | + (
Tα−1

Γ(α)
+

Tα−1

2Γ(α − 1)
)
∫ T

0
ml(s)ds

= |a + bT | + (
Tα−1

Γ(α)
+

Tα−1

2Γ(α − 1)
) ‖ml‖L1 .

That’s to say,

‖hl‖ ≤ |a + bT | + (
Tα−1

Γ(α)
+

Tα−1

2Γ(α − 1)
) ‖ml‖L1 .

Consequently, B maps Bl into a bounded set.
Step 4. B(Bl) is compact.
In fact, by Step 2, we know that B(Bl) is bounded. In what follows, we only need to show that B(Bl)
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is equi-continuous. Let u ∈ Bl, h ∈ B(Bl), then, there exists v ∈ S F,u such that

h(t) =

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds

+

∫ t

tk

(t − s)α−1

Γ(α)
v(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds+a + bt.

∀ε, ∃δ(ε), for each |t′ − t′′| ≤ δ, let t′ < t′′, and t′, t′′ ∈ Tk,

|h(t′) − h(t′′)|

≤

∫ t′′

tk

(t′′ − s)α−1

Γ(α)
ml(s)ds −

∫ t′

tk

(t′ − s)α−1

Γ(α)
ml(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
ml(s)ds

∣∣∣t1 − t2
∣∣∣ + |b| |t′ − t′′|

≤ |t′ − t′′| [
∫ ξ

tk

(ξ − s)α−2

Γ(α − 1)
ml(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
ml(s)ds + |b|]

≤ (|b| +
Tα−2

Γ(α − 1)
‖ml‖L1) |t′ − t′′|

< ε.

For t′ ≤ tk < t′′,

h(t′′) − h(t′)

=

∫ t′′

tk

(t′′ − s)α−1

Γ(α)
v(s)ds −

∫ t′

tk−1

(t′ − s)α−1

Γ(α)
v(s)ds

+

∫ tk

tk−1

(tk − s)α−1

Γ(α)
v(s)ds +

k−1∑
i=1

(tk − tk−1)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds

+

k−1∑
i=1

(tk − tk−1)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds +

k−1∑
i=1

(t′′ − t′)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds

+ (t′′ − tk)
∫ tk

tk−1

(ti − s)α−2

Γ(α − 1)
v(s)ds + b(t′′ − t′),
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then,

|h(t′) − h(t′′)|

≤

∫ t′′

tk−1

(t′′ − s)α−1

Γ(α)
mlds −

∫ t′

tk−1

(t′ − s)α−1

Γ(α)
mlds + |b| |t′ − t′′|

+

k−1∑
i=1

(t′′ − t′)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
mlds + (t′′ − tk)

∫ tk

tk−1

(ti − s)α−2

Γ(α − 1)
mlds

≤ (t′′ − t′)
∫ ξ

tk−1

(ξ − s)α−2

Γ(α − 1)
mlds +

k−1∑
i=1

(t′′ − t′)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
mlds

+ (t′′ − t′)
∫ tk

tk−1

(ti − s)α−2

Γ(α − 1)
mlds + |b| |t′ − t′′|

≤ (|b| + 2
Tα−2

Γ(α − 1)
‖ml‖L1) |t′ − t′′|

< ε.

Therefore, ∀ε, ∃δ(ε) < min{tk+1 − tk,
ε

(|b|+2 Tα−2
Γ(α−1) ‖ml‖L1 )

}, for each t′, t′′ ∈ [0,T ], |t′ − t′′| ≤ δ, such that

|h(t′) − h(t′′)| < ε.

Thus, B(Bl) is equi-continuous.
Step 5. B has a closed graph. It is to say that if un → u∗, hn ∈ B(un) and hn → h∗, then h∗ ∈ B(u∗).

It is proved that there exists v∗ ∈ S F,u∗ , such that

h∗ =

∫ t

tk

(t − s)α−1

Γ(α)
v∗(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v∗(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds

+

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds + a + bt.

Consider the linear and continuous operator Γ from L1(J; X) to C(J; X), and defined by

(Γv)(t) =

∫ t

tk

(t − s)α−1

Γ(α)
v(s)ds +

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds

+

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds.

From Lemma 2.2, it follows that Γ ◦ S F is a closed graph operator, and from the definition of Γ, one
has fn ∈ Γ ◦ S F , fn → f∗, there exists v∗ ∈ S F,u∗ , such that

f∗ =

∫ t

tk

(t − s)α−1

Γ(α)
v∗(s)ds + +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds

+

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v∗(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds,
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where

fn =

∫ t

tk

(t − s)α−1

Γ(α)
vn(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
vn(s)ds

+

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
vn(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
vn(s)ds.

Then, un → u∗, hn = fn + a + bt → f∗ + a + bt = h∗, there exists v∗ ∈ S F,u∗ , such that

h∗ =a + bt +

∫ t

tk

(t − s)α−1

Γ(α)
v∗(s)ds +

k−1∑
i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds

+

k∑
i=1

∫ ti

ti−1

(ti − s)α−1

Γ(α)
v∗(s)ds +

k∑
i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v∗(s)ds.

Hence, the multi-valued operator B has a closed graph. Therefore, B is a compact multi-valued
mapping and upper semi-continuous with closed convex value.

Step 6. The set E = {u ∈ PC(J, X)|u ∈ δAu + δBu, 0 ≤ δ ≤ 1} is bounded.
∀u ∈ E, there exists v ∈ S F,u such that

u(t) =δ[
∫ t

tk

(t − s)α−1

Γ(α)
v(s)ds +

k∑
i=1

[
∫ ti

ti−1

(ti − s)α−1

Γ(α)
v(s)ds + Ii(u(ti

−))]

+

k−1∑
i=1

(tk − ti)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds + Ji(u(ti

−))]

+

k∑
i=1

(t − tk)[
∫ ti

ti−1

(ti − s)α−2

Γ(α − 1)
v(s)ds + Ji(u(ti

−))] + a + bt].

Then, ∀t ∈ [0,T ],

|u(t)| ≤ (
Tα−1

Γ(α)
+

2Tα−1

Γ(α − 1)
)
∫ t

0
|v(s)| ds +

k∑
i=1

|Ii(u(ti))| + 2T
k∑

i=1

|Ji(u(ti))| + a + bT

≤ (
Tα−1

Γ(α)
+

2Tα−1

Γ(α − 1)
)
∫ t

0
p(s)ψ(|u(s)|)ds +

p∑
i=1

(ai |Ii(0)| + 2Tbi |Ji(0)|)

+

k∑
i=1

(ai |u(ti)| + 2Tbi |u(ti)|) + |a + bT | .

Set c =
p∑

i=1
(ai |Ii(0)| + 2Tbi |Ji(0)|) + |a + bT |, M = Tα−1

Γ(α) + 2Tα−1

Γ(α−1) .

Then, it is established that

|u(t)| ≤ c + M
∫ t

0
p(s)ψ(|u(s)|)ds +

k∑
i=1

(ai |u(ti)| + 2Tbi |u(ti)|). (3.1)
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Consider the function µ be defined by

µ(t) = sup
0≤s≤t
{|u(s)|}, f or t ∈ J.

Then, by Eq (3.1),

µ(t) ≤ c + M
∫ t

0
p(s)ψ(µ(s))ds +

k∑
i=1

(aiµ(t) + 2Tbiµ(t)). (3.2)

Thus, Eq (3.2) yields

(1 −
p∑

i=1

(ai + 2Tbi))µ(t) ≤ c + M
∫ t

0
p(s)ψ(µ(s))ds. (3.3)

It follows from Eq (3.3) and (A3) that

µ(t) ≤ c0 + c1

∫ t

0
p(s)ψ(µ(s))ds. (3.4)

Let us take the right-hand side of the above inequality as ν(t) i.e,

ν(t) ≤ c0 + c1

∫ t

0
p(s)ψ(µ(s))ds. (3.5)

Then, we have
µ(t) ≤ ν(t) f or t ∈ J and ν(0) = c0.

Differentiating both sides of Eq (3.5) obtains

ν′(t) ≤ c1 p(t)ψ(µ(t)).

Using the nondecreasing character of ψ, we get

ν′(t) ≤ c1 p(t)ψ(ν(t)).

Thus, we have
ν′(t)
ψ(ν(t))

≤ c1 p(t). (3.6)

Integrating both sides of Eq (3.6) from 0 to t, we get∫ t

0

ν′(s)
ψ(ν(s))

ds ≤ c1

∫ t

0
p(s)ds < ∞.

By a change of variables and (A3), we get∫ ν(t)

ν(0)

1
ψ(s)

ds ≤ c1 ‖p‖L1 <

∫ ∞

c0

1
ψ(s)

ds.

Thus, there exists a constant K1 such that for t ∈ J, µ(t) ≤ ν(t) ≤ K1. Now, from the definition of µ, it
follows that |u(t)| ≤ K1.

Therefore,
‖u‖ ≤ K1.

That is to say, the set E = {u ∈ PC(J, X)|u ∈ δAu + δBu, 0 ≤ δ ≤ 1} is bounded.
As a consequence of Lemma 2.1, we know that A + B has a fixed point which is a solution of the

problem (1.1). �
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4. Application

In what follows, some concrete cases are discussed to describe the existence and properties of the
function ml, ψ, p.

Corollary 4.1. (Sub-linear Growth). Suppose (A1), (A2) and the following condition hold: (H1) There
exists a function φ(t) ∈ L1([0,T ],R+), 0 < δ < 1, such that

‖F(t, x)‖ ≤ φ(t)|x|δ.

Then problem (1.1) has at least one solution on [0,T ].

Proof. In this case, let ml(t) = φ(t)|l|δ ∈ L1([0,T ],R+), p(t) = φ(t), and ψ(s) = sδ. Then,∫ ∞

c0

ds
ψ(s)

=
1

1 − δ
s(1−δ)| ∞c0 = ∞ > c1‖p‖L1 ,

where c0, c1 are defined in (A3). Hence an application of Theorem 3.1 asserts the conclusion. �

Corollary 4.2. (Quadratic Controlled Growth). Suppose (A1), (A2) and the following condition hold:
(H2) There exists a function φ(t) ∈ L1([0,T ],R+),such that

‖F(t, x)‖ ≤ φ(t)|x|2.

Then, problem (1.1) has at least one solution on [0,T ] provided by

c0c1‖φ‖L1 < 1.

Proof. In this case, let ml(t) = φ(t)|l|2, p(t) = φ(t), and ψ(s) = s2. Then,∫ ∞

c0

ds
ψ(s)

= −
1
s
| ∞c0 =

1
c0
,

where c0, c1 are defined in (A3). Theorem 3.1 claims that problem (1.1) has at least one solution
provided

c0c1‖φ‖L1 < 1.

�

5. Conclusions

In recent years, the fractional differential equation has aroused a research upsurge of scholars due to
its wide application. Because of the diversity of dynamical system, the usual deterministic model
cannot satisfy the needs of practical problems; therefore we focus on fractional order differential
inclusion. First, the Caputo fractional differential inclusion with initial and impulsive boundary
conditions is established. Then, the existence of solutions is proved using the fixed-point theorem
of Dhage for multi-valued operators with some assumptions. Additionally, two supportive examples
are given to clarify the applicability of our presented result. This research can be extended to a more
general higher-order fractional differential inclusions with impulsive boundary conditions in a similar
way.
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