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In the post-COVID-19 era, countries are paying more attention to the energy
transition as well as tackling the increasingly severe climate crisis. Renewable
energy has attracted much attention because of its low economic costs
and environmental friendliness. However, renewable energy cannot be widely
adopted due to its high intermittency and volatility, which threaten the security
and stability of power grids and hinder the operation and scheduling of power
systems. Therefore, research on renewable power forecasting is important for
integrating renewable energy and the power grid and improving operational
efficiency. In this mini-review, we compare two kinds of common renewable
power forecasting methods: machine learning methods and statistical methods.
Then, the advantages and disadvantages of the two methods are discussed
from different perspectives. Finally, the current challenges and feasible research
directions for renewable energy forecasting are listed.
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1 Introduction

The COVID-19 pandemic had a huge impact on the world economy, society, and public
health and was one of the most terrible disasters in human history. The “post-COVID-19
era” is an era in which economic growth, international relations, industrial development,
and people’s consumption habits have greatly changed due to the pandemic (Schwab and
Malleret, 2020). While the impacts of the pandemic on human society will persist for a long
time, climate change is also gaining more attention as another serious crisis. The United
Nations has listed climate change as a key issue in its recent Sustainable Development
Goals (SDGs), which have been adopted into the 2030 Agenda (Usman et al., 2021). We can
ascertain the reason: climate change can create catastrophic events, and its effects will be
long-lasting, cumulative, and irreversible after a tipping point is reached (Jiao et al., 2020).
CO2 emissions from the power sector decreased significantly during COVID-19, but this
was largely due to the economic recession (Bertram et al., 2021). A green economic recovery
in the post-COVID-19 era has prompted countries to think about the energy transition.
The restructuring of global value chains in the post-COVID-19 era also notably brings new
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opportunities for a transition to green and low-carbon energy
(Ministry of Ecology and Environment of the People’s Republic of
 China, 2020).

To address global climate change and ensure energy security,
many countries and regions have increasingly sought to shift to a
low-carbon development paradigm and formulated corresponding
strategies and policies (International Energy Agency, 2021). In 2021,
the European Union (EU) set a new target of 40% renewable energy
as a share of primary energy (up from32%) by 2030 in the “European
Climate Law” (Council of the European Union, 2021). In October
2021, the Japanese government released “The Sixth Strategic Energy
Plan,” which proposes to use renewable energy as the main source of
electricity and increase the proportion of installed renewable energy
to 36%–38% by 2030 (Ministry of Economy, Trade and Industry,
2021). In November 2021, the U.S. published “The Long-Term
Strategy of the United States: Pathways to Net-Zero Greenhouse Gas
Emissions by 2050”, outlining plans to achieve net zero emissions
by 2050 (United States Department of State, 2021). In June 2022,
China’s National Energy Administration released the “14th Five-
Year Plan for Renewable Energy Development” to increase annual
renewable energy generation to approximately 3.3 trillion kW hours
by 2025 (National Development and Reform Commission, 2022).
Efforts at the policy level have opened new horizons for energy
transformation in the post-COVID-19 era.

As a vital area of the energy transition, renewable
energy generation is gaining increasing attention in the post-
COVID-19 era. Renewable energy consists of energy from
natural sources, including the sun, wind, water, and biofuels
(International Energy Agency, 2023). Compared with fossil energy,
renewable energy has absolute advantages in terms of environmental
friendliness (Bauer et al., 2016; Li et al., 2021; Li and Haneklaus,
2022). In addition, long-term reliance on traditional nonrenewable
energy sources results in resource depletion, while renewable energy
generation has better sustainability (VanDeventer et al., 2019).
However, the chaotic nature of the meteorological system leads
to intermittent and fluctuating wind and PV power generation,
while the grid input requires stability and smoothness. Furthermore,
connecting a large number of new energy sources to the grid directly
threatens the safety and stability of grid operation (Li et al., 2021;
Krechowicz et al., 2022). This instability is not conducive to the
economic dispatch of electricity, and the frequent abandonment
of wind and solar causes the utilization of renewable energy to
be very low (Fan et al., 2022). If PV and wind power generation
can be predicted more accurately and timely, it can effectively
promote beneficial grid connections and the efficient utilization of
new energy sources (Barbieri et al., 2017; Alkesaiberi et al., 2022).
Therefore, research on the prediction of renewable energy power
generation has important research value and practical significance.

Renewable power forecasting uses the change patterns of
historical data and information to directly or indirectly predict
power generation in the future. Power forecasting is used to
maintain grid security and stability and to provide information to
make decisions regarding power dispatch (Mahmoud et al., 2018;
Netsanet et al., 2018).The research ofmany current studies ismainly
focused on grid dispatch and control, power system planning and
maintenance, and power plant siting (Demolli et al., 2019; Ma et al.,
2019; Chen and Liu, 2020; Dupré et al., 2020; Wang and Lin,
2023). Mainstream methods can be divided into physical, machine

learning, and statistical methods (Mellit et al., 2020). The physical
methods refer to the direct calculation of wind and PV power
generation through physical models. Machine learning focuses on
learning hidden features in historical data that can be applied to new
sample data for classification or prediction (Samuel, 1967). Power
generation prediction can be considered a regression problem,
and support vector machines, random forests, extreme learning
machines, and deep learning algorithms are receiving increasing
attention as solutions to this problem. Statistical methods are based
on historical data, from which information is extracted to predict
time series. For example, statistical methods aim to determine
the relationship between power generation and historical data
such as wind speed and direction, solar irradiance, humidity, and
temperature (Zheng et al., 2020). Traditional statistical methods
mainly contain time series methods such as ARMA, ARIMA, and
ARMAX.This paper focuses on the two most common approaches,
statistical and machine learning methods.

2 Machine learning methods and
statistical methods

2.1 Machine learning methods

In early research on the prediction of renewable power
generation, traditional machine learningmethods were widely used,
the most representative of which are support vector machines
(SVMs) (Fonseca et al., 2012; Shi et al., 2012) and artificial neural
networks (ANNs) (Izgi et al., 2012; Dumitru et al., 2016; Son et al.,
2018). With the development of this research field, traditional
machine learning methods have gradually been replaced by hybrid
machine learning methods, ensemble learning methods, and deep
learning methods.

Hybrid machine learning methods combine the advantages of
more than two methods to achieve better prediction results. A
key direction is to introduce intelligent optimization algorithms
into traditional machine learning to improve the performance
of the algorithms. The most commonly used hybrid methods
in renewable energy generation forecasting have been based on
support vector machines (SVMs) and extreme learning machines
(ELMs). SVM is a nonlinear classifier based on the kernel method,
which can avoid the disadvantages of overfitting (Olatomiwa et al.,
2015). VanDeventer et al. (2019) introduced a genetic algorithm
(GA) based on the support vector machine and demonstrated
that the GASVM model can reduce the root mean square error
(RMSE) by 98% in short-term PV power prediction compared to
the conventional SVMmodel. Similarly, Xiao et al. (2022) proposed
an SVM model based on gray wolf optimization (GWO-SVM),
which can significantly reduce the RMSE in PV power prediction.
ELM is a special single-layer feedforward neural network with fast
learning ability and good generalization. Acikgoz et al. (2020) used
ELM for short-termwindpower output prediction and improved the
training speed by more than 140 times compared to ANN methods
on different time scales and seasons. Wu et al. (2020) considered
the impact of different weather conditions on PV predictions and
used the kernel extreme learning machine (KELM) combined with
the firefly algorithm (FA) and the variational modal decomposition
algorithm (VMD), resulting in a normalized root mean square error
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(NRMSE) and normalized mean absolute error (NMAE) below
10% for all weather conditions. Guermoui et al. (2021) improved
the accuracy of ELM in multisegment ultrashort-term prediction
by decomposing PV power series according to frequency range
through an iterative filter (IF) decomposition method. Li et al.
(2021) proposed an enhanced crow search algorithm (ENCSA) for
ELM parameter optimization, which resulted in a mean absolute
percentage error (MAPE) consistently below 4% in short-term
wind power prediction. Another popular research direction is the
combination of two machine learning models. Gastón et al. (2010)
combined k-nearest neighbor (K-NN) and SVM to predict solar
radiance with a substantial improvement in prediction accuracy
compared to traditional methods. Shi et al. (2013) proposed a short-
term wind power prediction model combining radial basis function
neural network (RBFNN) and least squares support vector machine
(LS-SVM), which achieved excellent results in ultra-short-term
wind power generation prediction 15 min in advance. Yang et al.
(2014) and Dong et al. (2015) used ANN combined with SVM
for PV prediction. The results show that the prediction error of
the hybrid method is smaller than that of the traditional single
machine learning method. Theocharides et al. (2021) proposed a
framework for a PV generation forecasting method combining
ANN and K-means, which showed good performance in terms
of prediction accuracy and stability. Lu et al. (2021) proposed a
combined wind power prediction model based on ELM and LS-
SVM, which demonstrated that the method can effectively improve
prediction accuracy using historical data from a wind farm in
Ningxia Hui Autonomous Region, China.

Ensemble learning models combine multiple single machine
learning models to obtain better accuracy and generalization.
Commonly used ensemble strategies include bagging, boosting,
and stacking (Voyant et al., 2017). The bagging strategy focuses on
reducing the variance by training multiple parallel base learners.
Random forest is a bagging ensemble algorithm that uses decision
trees as base learners, which shows good stability and generalization
ability in the field of wind power prediction (Mahmud et al.,
2021; Ziane et al., 2021) and can cope with random fluctuations
in historical data or interference from unrelated weather factors
(Lahouar et al., 2017; Shi et al., 2018). The boosting strategy focuses
on reducing bias and is an additive method that continuously
trains new learners. Xiong et al. (2022) and Fan et al. (2022)
significantly improved the accuracy of short-term wind and PV
power prediction using the XGBoost algorithm. The stacking
strategy differs from bagging and boosting in that its base learners
are usually heterogeneous, and it uses meta-learning to effectively
combine multiple base learners for prediction. Chen and Liu (2020)
and Rosa et al. (2022) improved the accuracy of wind power output
prediction with a stacking ensemble strategy that takes advantage
of the strengths of each prediction model in extracting different
features.

Deep learning is a new research direction in the field of machine
learning. Deep learning methods can automatically extract high-
dimensional features from data. Previous research mostly used
ANN models for power generation prediction (Izgi et al., 2012;
Dumitru et al., 2016; Son et al., 2018). However, compared to ANNs
with independent inputs, recurrent neural networks (RNNs) can
better exploit the dependencies in time series. Pang et al. (2020)
demonstrated that the RNNmethod improves the normalizedmean

bias error (NMBE) and RMSE by 47% and 26%, respectively,
compared to the ANN method for short-term solar radiation
prediction. Although the traditional RNN method can make
good use of the information of the data, it suffers from the
problems of short-term memory and gradient instability. Jung et al.
(2020) demonstrated the effectiveness of LSTM-RNN for long-
term prediction using an RNN model containing LSTM units for
more than 63 months of data generated from multiple PV plants.
Mellit et al. (2021) conducted experiments on PV power prediction
over four different short-term time horizons and demonstrated
that LSTM performed the best. Ahn and Park (2021) introduced
LSTM units into a deep RNN for ultrashort-term and short-term
prediction, and the prediction accuracy was above 92% in all cases.
Li et al. (2020) introduced attention mechanisms in the traditional
LSTM to reduce the effects of random variations in wind power.
Luo et al. (2021) combined physical laws and domain knowledge
to impose constraints on LSTM to reduce unreasonable PV power
prediction results and improve the robustness of the predictions.
Shahid et al. (2021) introduced a GA into LSTM and improved the
accuracy of wind power prediction by 6%–35% compared to existing
techniques. Hu and Chen (2018) used a combined model of LSTM
and ELM to predict wind speed and outperformed SVM, LSTM,
and ELM models alone in predictions 10 min and 1 h in advance.
Carrera et al. (2020) used deep feedforward networks (DFN) and
RNN trained on historical weather forecast data and demonstrated
that the models are more accurate in predicting PV generation
1 day ahead than a single machine learning method. Hossain et al.
(2021) proposed a hybridmodel based on convolutional layers, gated
recurrent unit (GRU) layers, and a fully connected neural network
for wind power prediction, which reduced MAE, RMSE, and
MAPE by 2.11%, 0.72%, and 16.88%, respectively, for wind power
generation from Australian capital wind farm compared to RNN.
Meng et al. (2022) combined a convolutional neural network (CNN)
and bidirectional gated recurrent unit (BiGRU) to propose an ultra-
short-termwind power predictionmodel and demonstrated that the
model has lower prediction error and higher solving efficiency. The
methods mentioned above are summarized in Table 1.

Hybrid machine learning methods have the advantage of being
able to exploit the strengths of different methods to improve
the prediction of machine learning models. However, intelligent
optimization algorithms are often uncontrollable and slow to
converge. It is also a challenge to choose the most suitable model
for hybridization. The advantage of ensemble learning is the ability
to organically combine multiple single machine learning models
to obtain more accurate, stable, and robust results. However, the
disadvantages are increased complexity and time consumption. The
advantage of deep learning is its powerful learning ability, so it
can handle many complex problems and a large amount of data.
However, it requires powerful computational resources, and the
model is difficult to build and train.

2.2 Statistical methods

Statistical methods mainly include persistence methods,
regression methods, exponential smoothing methods, and time
series methods. Most research works in the field of wind power
forecasting use time series methods (Das et al., 2018).
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TABLE 1 Power prediction of renewable energy generation based onmachine learningmethods.

Methods Category Literature Model Predictionv
question

Time frame

Machine Learning
Methods

Traditional Machine
Learning Models

Fonseca et al. (2012) SVM Photovoltaic One year

Shi et al. (2012) SVM Photovoltaic One day

Izgi et al. (2012) ANN Photovoltaic 5 min, 35 min

Dumitru et al. (2016) ANN Photovoltaic 2 years

Son et al. (2018) ANN Photovoltaic One year

Hybrid Machine
Learning Models

VanDeventer et al. (2019) GASVM Photovoltaic One hour

Xiao et al. (2022) GWO-SVM Photovoltaic N/A

Acikgoz et al. (2020) ELM Wind power 2,3,4 h

Wu et al. (2020) FA-KELM Photovoltaic One day

Guermoui et al. (2021) IF-ELM Photovoltaic One hour

Li et al. (2021) ENCSA-ELM Wind power One day

Gastón et al. (2010) KNN-SVM Photovoltaic N/A

Shi et al. (2013) RBFNN-LSSVM Wind power 15 min

Yang et al. (2014) ANN-SVM Photovoltaic One day

Dong et al. (2015) ANN-SVM Photovoltaic One hour

Theocharides et al. (2021) ANN-K-means Photovoltaic One day

Lu et al. (2021) ELM-LSSVM Wind power 3 days

Ensemble Learning
Models

Ziane et al. (2021) RF Photovoltaic One year

Mahmud et al. (2021) RF Photovoltaic One year, 1 week, 1 day

Lahouar et al. (2017) RF Wind power One hour

Shi et al. (2018) RF Wind power One day

Xiong et al. (2022) BH-XGBoost Wind power 10 days

Fan et al. (2022) XGBoost、LightGBM Photovoltaic、Wind power One week

Chen and Liu (2020) Stacking Ensemble Wind power 18 h

Rosa et al. (2022) Stacking Ensemble Wind power 15 min

Deep Learning Models

Pang et al. (2020) RNN Photovoltaic One day

Jung et al. (2020) LSTM-RNN Photovoltaic One month

Mellit et al. (2021) LSTM Photovoltaic 1,5,30,60 min

Ahn and Park (2021) LSTM-RNN Photovoltaic 5 min, 15 min

Li et al. (2020) LSTM Wind power One day

Luo et al. (2021) PC-LSTM Photovoltaic One hour

Shahid et al. (2021) GLSTM Wind power One hour

Hu and Chen (2018) LSTM-ELM Wind power 10 min, One hour

Carrera et al. (2020) DFN-RNN Photovoltaic One day

Hossain et al. (2021) CNN-GRU-FCNN Wind power 5 min

Meng et al. (2022) ACNN-BiGRU Wind power 30 min

Note:①N/A indicates that the time horizon of the forecast is not explicitly stated in the text.
②This article is about the power generation prediction of direct or indirect wind and PVs, including wind speed prediction and solar radiation prediction.

Rajagopalan and Santoso (2009) used the autoregressive moving
average (ARMA) to forecast wind power within 1 hour. Gao et al.
(2009) introduced an autoregressive conditional heteroskedasticity

model (ARCH) based on the ARMA model to solve the problem
of variance variation of wind speed time series, which has
higher prediction accuracy than the classical ARMA model in
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TABLE 2 Power prediction of renewable energy generation based on statistical methods.

Methods Category Literature Model Prediction problem Time horizon

Statistical Methods

ARMA
Rajagopalan and Santoso (2009) ARMA Wind power One hour

Gao et al. (2009) ARMA-ARCH Wind power One day

ARIMA

Abdelaziz et al. (2012) ARIMA Wind power 6 h

Zhang et al. (2014) ARIMA Photovoltaic One day

Dokuz al. (2018) ARIMA Wind power One year

ARMAX
Li et al. (2014) ARMAX Photovoltaic One day

Lydia et al. (2016) ARMAX Wind power One hour

NARX Cadenas et al. (2016) NARX Wind power 10 min, 1 hour

Note:①N/A indicates that the time horizon of the forecast is not explicitly stated in the text.
②This article is about the power generation prediction of direct or indirect wind and PVs, including wind speed prediction and solar radiation prediction.

wind power prediction. The limitation of ARMA is its inability
to handle nonstationary series, which restricts its performance
on complex forecasting tasks (Diagne et al., 2013). Abdelaziz et al.
(2012) used an autoregressive integrated moving average (ARIMA)
model to obtain a greater than 50.49% improvement in accuracy
over the persistence model for short-term wind power prediction.
Zhang et al. (2014) used theARIMAmodel for short-termPVpower
prediction that outperformed two machine learning methods, the
RBFNN, and the LS-SVM; Dokuz al. (2018) used the DBSCAN
clustering algorithm to preprocess the original data before ARIMA
prediction and reduced the RMSE by 20% in long-term wind
speed prediction; Li et al. (2014) proposed ARMAX for PV power
prediction by using relevant meteorological variables such as
temperature, precipitation, and sunshine duration as exogenous
inputs, and demonstrated that ARMAX can reduce the RMSE
of the ARIMA and RBFNN models by 26.7% and 22.8%,
respectively; Lydia et al. (2016) proposed a nonlinear ARMAX that
outperformed linear ARMAX in short-term wind speed prediction;
Cadenas et al. (2016) used a nonlinear autoregressive model with
exogenous inputs (NARX) to predict future wind speeds, and the
prediction was more accurate than a univariate method such as
ARIMA.Themethods mentioned above are summarized in Table 2.

2.3 Comparison

In contrast to statistical methods, machine learning methods
have been widely used in recent years. In terms of the time
horizon of prediction, current research mostly focuses on short-
term power generation prediction, in which both statistical and
machine learning methods show good performance, but their
performance in long-term prediction needs to be improved. In
terms of modeling difficulty, statistical methods models do not
require large amounts of data to build models, while machine
learning models require large amounts of data to train. In terms
of applicability, statistical methods describe the relationship
between current and historical values. However, this also means
that these methods are only suitable for predicting phenomena
related to historical data, and most models can only handle linear
relationships (Demolli et al., 2019). Machine learning methods are
capable of handling complex multivariate prediction problems and

capturing nonlinear relationships for a wider range of applications
(Donadio et al., 2021; Rahman et al., 2021). Cocchi et al. (2018)
demonstrated that machine learning methods have higher
prediction accuracy than statistical methods in complex power
generation prediction problems. Statistical methods have good
interpretability, but machine learning methods are often considered
to be “black box problems” (Kane et al., 2014; Alsaigh et al., 2023).

Several studies have combined the advantages of machine
learning methods in fitting nonlinearities with the advantages
of statistical methods in fitting linearities. Cadenas and Rivera
(2010) and Jiao (2018) both developed hybrid models of ARIMA
models and ANNs. ARIMA was first used to make wind speed
predictions and then the obtained errors were used to build
neural networks, which predicted wind speed with higher accuracy
than the ARIMA and ANN models working separately. Wu
and Chen (2011) combined ARMA and time delay neural
network (TDNN) to predict solar radiation and also achieved
good results. In addition, Liu et al. (2012) proposed the use of
ARIMA to determine the structure of ANN, and the MAPE
was reduced by 27.38% in multi-step prediction compared to
that predicted by ARIMA alone. Zhang et al. (2020b) combined
a hybrid machine learning model with an ARIMA model to
predict the wind speed for the next 4 h and demonstrated that
the prediction error of this method was significantly reduced.

3 Discussion

The above analysis shows that machine learning methods are
more common than statistical methods in practical renewable
energy generation forecasting efforts. However, existing machine
learning prediction methods have some shortcomings. The
prediction models proposed in many studies only target specific
regions and time horizons, resulting in models that do not apply
to prediction tasks in a wider range of scenarios (Wang et al.,
2019). The machine learning models mentioned above were studied
using different datasets, and their predictions were influenced by
the local climate and geography (Liu et al., 2022). Additionally,
machine learning methods perform differently in different time
horizons (Lonij et al., 2013; Lipperheide et al., 2015; Das et al.,
2018). Therefore, it is difficult to compare the performance of
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individual models with different spatiotemporal characteristics
(Krechowicz et al., 2022). In addition, the prediction and decision
steps of traditional power systems are executed separately.
Accurate prediction results can provide useful information
for decision-making (Mahmoud et al., 2018; Netsanet et al.,
2018). However, this separation of forecasting and decision-
making leads to an information gap between the forecaster
and the decision-maker (Yu et al., 2021; Zhao et al., 2022).
Moreover, this framework is not conducive to the simultaneous
improvement of the quality of forecasting and decision-making.

In this paper, the following future research directions are
proposed to address the above issues.

(1) Constructing multiscale and all-around prediction models.
Sufficient and validmultiscale information needs to be extracted
atmultiple temporal and spatial scales tomatch current patterns
of change in renewable energy generation, select and integrate
multiple prediction models that fit current characteristics,
cover larger regions of PV and wind farm clusters, support
prediction tasks with multiple timescales, and move toward
more integrated and comprehensive applications (Chen et al.,
2019; Jiang et al., 2019; Zhang et al., 2020a; Wang et al., 2022;
Che et al., 2023).

(2) Building integrated models for forecasting and decision-
making. The integration of renewable energy forecasting
models and application-specific decision models into a unified
framework avoids the loss of important information in the
forecasting phase and facilitates the synergistic optimization of
forecasting and decision-making (Yan and Wang, 2022; Zhao,
2022).

4 Conclusion

As a key area of the energy transition, renewable power
generation forecasting technology has become a hotspot for
research. Accurate power prediction of renewable energy generation
is beneficial to the safety and stability of the power grid and
economic dispatch. In this paper, we review relevant research
in renewable energy generation forecasting by machine learning
methods and statistical methods. The discussion of machine
learning methods and statistical methods provides us with
the following conclusions: 1) Machine learning methods are
capable of dealing with complex nonlinear relationships, and
statistical methods are mostly applicable to linear relationships.
2) Machine learning methods, especially deep learning methods,

can perform well on large-scale datasets, and statistical methods
are mostly applicable to small-scale data. 3) Machine learning
methods are less interpretable, while statistical methods tend to
have better interpretability. However, the models proposed in
the existing research are only for specific scenarios. In power
systems, the prediction and decision steps are separated. Based
on these problems, we propose that future research addresses the
construction of unified forecasting models and integrated models
for forecasting and decision-making. This review provides some
reference for the research of machine learning in the field of
prediction of renewable energy generation. Ji and Chee, 2011.
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