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Abstract: As the capacity and scale of distribution networks continue to expand, and
distributed generation technology is increasingly mature, the traditional fault location is no
longer applicable to an active distribution network and "two-way" power flow structure.
In this paper, a fault location method based on Karrenbauer transform and support vector
machine regression (SVR) is proposed. Firstly, according to the influence of Karrenbauer
transformation on phase angle difference before and after section fault in a low-voltage
active distribution network, the fault regions and types are inferred preliminarily. Then, in
the feature extraction stage, combined with the characteristics of distribution network fault
mechanism, the fault feature sample set is established by using the phase angle difference
of the Karrenbauer current. Finally, the fault category prediction model based on SVR was
established to solve the problem of a single-phase mode transformation modulus and the
indistinct identification of two-phase short circuits, then more accurate fault segments and
categories were obtained. The proposed fault location method is simulated and verified by
building a distribution network system model. The results show that compared with other
methods in the field of fault detection, the fault location accuracy of the proposed method
can reach 98.56%, which can enhance the robustness of rapid fault location.

Key words: distributed generation, distribution network fault location, fault type, Karren-
bauer transform, SVR agent prediction model

1. Introduction

With the increasingly tense energy situation in the world, distributed generation technology
has developed rapidly in recent years. It has the advantages of cleanness, high efficiency, en-
vironmental friendliness, energy diversification, etc., and conforms to the national sustainable
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development strategy [1]. More and more distributed generation (DG) is connected, which leads
to problems such as limited fault current, unclear fault characteristics and complex harmonics in
fault location of distribution networks, and seriously affects the correctness of fault diagnosis.
Therefore, with the access of DG, the distribution network has put forward higher requirements
for fault location technology.

The existing method simplifies the protection device by using the traditional single ended
three section current protection configuration [2], but faces the following problems:

1. The distribution network has uneven distribution of line parameters. There are branches on

the main feeder, and the main feeder and side branch contain intermediate loads. After the
fault occurs, the fault impedance is large and the fault current level is low [3].

2. It is difficult to extract and analyze fault features. DG in an active distribution network is
usually connected to the distribution network through power electronic devices. This will
lead to the limitation of fault current, unclear fault characteristics and complex harmonics in
the active distribution network, which will seriously affect the correctness of fault diagnosis
and location.

3. Traditional fault location methods are difficult to apply. Due to the mutual coupling between
distribution network faults and power quality problems, the weak characteristics and high-
frequency transient characteristics of distribution network faults become more obvious,
and the difficulty of fault diagnosis and processing increases, which makes fault location
with DG a technical problem [4].

In recent years, many scholars have carried out a lot of research on fault location methods
of distribution networks with DG. Divided into two categories: a direct method and indirect
method [5]. The direct method is mainly combined with the topology to analyze the over-current
and voltage loss when the fault occurs. The transient traveling wave-based method [6], matrix
algorithm [7], optimization algorithm [8], are widely used. This kind of method has a simple
principle, strong universality, and high accuracy, but it also requires a high adoption rate of
measurement and data processing devices, which is no longer applicable to a modern intelligent
power grid. The indirect method mainly uses artificial intelligence technology to summarize and
calculate the information uploaded based on the feeder terminal unit (FTU) and build a historical
fault knowledge model of multiple factors [9]. Such methods include the Petri net [10], linked
list method [11], genetic algorithm [12] and Bayesian network [13]. This method has a direct
modeling mode and high fault tolerance, but it is easy to cause information loss and distortion,
so it requires high communication and computing.

In modern distribution networks, a micro-synchronous phasor measurement unit (u-PMU)
provides a comprehensive and reliable data base for distribution network positioning technology
based on artificial intelligence [14, 15]. The limited utilization of the active distribution network
fault location method of the p-PMU has good adaptability to fault types including a short circuit
and broken line, but it is mainly aimed at the single-fault location of distribution networks,
not multiple-fault location [16]. In the distribution network fault location based on machine
learning (ML), convolutional neural networks (CNNs) first used the original and sampled data
of three-phase voltage and current signals of the fault category and non-fault category for fault
detection, showing better performance in terms of accuracy and computation [17]. The CNN
fault area location model based on migration learning can quickly complete accurate fault area
location in the case of small samples and is not affected by fault factors such as transition
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resistance [18]. The method of Graph Attention Network (GAT) has a good application effect
in different distribution network topology changes and scenarios, but it cannot be applied to
distribution networks with completely different topology structures, and its universality is not
high enough [19, 20]. The Bayesian network organically combines causal knowledge and prior
probability information, uses probability theory to deal with the uncertainty caused by conditional
correlation between different knowledge components, and uses the Bayesian theorem to calculate
a posterior probability, which can calculate the fault probability of each component under the
current fault symptom, to achieve fault diagnosis and location [21]. The above methods do not
need to establish an accurate mathematical model, but there are still the following challenges in
the actual research process:

1. Tt is difficult to obtain data samples.

2. Model precision training is difficult.

Based on the above, this paper presents a fault location method for distribution networks
with DG based on traditional phase-mode transformation and ML. Karrenbauer transformation
can transform the phase domain system into a module domain system without electromagnetic
coupling, eliminating the difficulties in analyzing the transient process of single-phase ground
fault directly in the phase domain. The calculated Karrenbauer current phase angle difference
is used to establish the fault feature sample set to solve the problem of data sample acquisition.
According to the fault type and area location, multiple binary classification problems can be
superimposed into multiple classification problems, and SVR is used as the training sample set
of an agent prediction model to realize the diagnosis of fault sections and their types. Finally,
a distribution network system model is built, and the comparison analysis and verification show
that the proposed method can quickly identify fault sections and types.

2. Distribution network fault location method based on
Karrenbauer transform

A PMU is a device for measuring, outputting and dynamically recording the synchronous
phase. The device uses the global positioning system (GPS) to measure the amplitude and phase
information of electrical quantities at nodes with high accuracy, synchronization and real-time.
The amplitude and phase errors are only 0.5% and 0.01° [22,23]. To isolate faults quickly and
accurately in the active distribution network with effectively grounded neutral points and diagnose
faults in a timely and comprehensive manner, this paper uses p-PMU-measured current and phase
angle information data at both ends of the section for calculation.

2.1. Fault judgment principle of distribution network section with DG

In the distribution network, the distribution line is short. After the DG is connected, the active
distribution network can be divided into several double ended power supply sections without
branches according to the line nodes. This section can be divided into two situations, one is that
there is power supply access at both ends of the section, and the other is that there is power supply
access at one end and load connection at the other end. As shown in Fig. 1, the node currents at
the nodes p and g at both ends of the section are I, and I, respectively (the reference positive
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direction defining the current in the system is from the node p to the node g).

Ab(p,q) =0, -0, ey

where 6, and 6, are the phase angles of the single-phase full current at the nodes p and ¢,
respectively.

Phase B

Phase C 7 p q

Fig. 1. Schematic diagram of three-phase network in a section
(both ends relate to power supply)

Let the three-phase currents at the node p of the section be I, Iz and I, respectively,

jA = \/EIA sin(wt+9A) =1x/04
jBI\/EIB sin(wt+93)=13493 s 2)
jc = \/EIC sin(wt + Qc) =Ic/0¢c

where: 14, Ip and I are the effective values of the three-phase currents, 64, 6p and 6¢ are the
phase angles of the three-phase current phasors.

During normal operation, the phase angle difference of the single-phase full current in the
section is 0. In case of fault, the full current phase angle difference of the fault phase is not 0, but
it is difficult to distinguish the ground short-circuit fault and the phase to phase short-circuit fault
in two phases, and it is necessary to provide criteria for further judgment.

In order to overcome the above problems and realize the rapid preparation and positioning
judgment of the fault section, the current phase angle difference under phase-mode transformation
is used to realize the fault location of the section.

2.2. Distribution network fault criterion based on Karrenbauer transform

In the distribution network, it is difficult to directly analyze the transient process of single-
phase grounding fault in the phase domain because of the asymmetry of line parameters in
the medium and low-voltage distribution network and the electromagnetic coupling between the
three-phase systems. Therefore, it is necessary to transform the phase domain system into a model
domain system without electromagnetic coupling through coordinate transformation. The com-
monly used symmetric component transformation (C.L. Fortescue transformation) has complex
factors, but it is not suitable for asymmetric systems. The result of instantaneous symmetric
component transformation is complex and has no definite meaning [24]. Biaxial transformation
(R.H. Park transformation) is mostly used for synchronous motor analysis and the analysis of
symmetrical faults, while E. Clarke transformation has a complex fault model when single-phase



Vol. 72 (2023) Fault location of distribution network with distributed generation 465

grounding is applied [25]. Therefore, the Karrenbauer transform is adopted in this paper to reduce
the fault judgment amount and change the three-phase system to a 0-mode @ Mold § Mold system.
For the balanced line, its parameter matrix is not affected, while for the unbalanced line,
based on Karrenbauer transformation, the high-precision decoupling is realized through matrix
diagonalization. The process is as follows:
Karrenbauer transformation matrix is

1
T,=[1 -2 1]. 3)
1

The relationship between phase current and mode current is expressed as:

In=T,'Ip. 4
Simplification
Iy 1 1 1 1][la
Iy =3 1 -1 0]|lg], 5)
s 1o -1 |ic

where: Ij is the ground modulus obtained by the three-phase current of the node through Karren-
bauer transformation, /, and i/g is the two line moduli obtained by the three-phase current of the
node through Karrenbauer transformation.

Combining existing Eq. (5) and Eq. (2) above:

T
1a=§(1A—IB)
R (6)
Ip =3 (Ia=1Ic)

So, we can get that after Karrenbauer transformation, the @ Mold S phase angle of mode
current is:

( I4sinf4 — Ipsinfg )
6, = arctan

Ipocos04 — Ipcosfp

(7

IASiI‘IHA—IC sin@c ’
0 = arctan
Ipocos04 — Ic cosOc

2.3. Characteristic analysis before and after fault

The load rate of the main line in the distribution network with DG is often low. For normal
operation, the distributed capacitance current is negligible compared with the load current on the
line. Therefore, after Karrenbauer transformation, the section line model in normal operation is
the @ Mold sum g Phase angle difference analysis of mode current. The system model is shown
in Fig. 2.

During normal operation, the current phasor flowing through the section is 7, the current
phasors at the nodes p and ¢ at both ends of the section are, respectively, [ p and fq, and the
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Fig. 2. System model of a section under normal conditions

voltage phasors at the corresponding two nodes are:

Up=UpZ0
e o
When the three-phase line is in normal operation without fault, it can be obtained that
i=i,=1i,. ©)
The equivalent impedance of this section is:
AZg=Rs+j Xy =2Z,/0y, (10)

where R; is the equivalent resistance of the section and X is the equivalent reactance of the
section. By combining Egs. (8), (9) and (10) we get:

I=

Up-U, Uplb,-U,26, \/U}; +Ug =20, Uy 050y =0) ,
- - N

AZ, Zs 20, R+ X7
Upsinfy —Upsinfpg (11)
UjscosOys —Ugcosfp

Oay = arctan (

S

( XS )
6 = arctan [ —
R

where: O,y is the phase angle of the voltage drop from the node p to the node g, and 6y is the
impedance angle. In combination with Eq. (9), it can be obtained that the current phase angle
under normal conditions is:

AO(p,q) = Ory — 05 =6, — 0, =0°. (12)

To sum up, when the actual section operates normally, after Karrenbauer transformation «
Mold sum S the phase angle differences of the mode currents are all 0°. Similarly, ignore the
parallel admittance of the line, and analyze the section equivalent line model in the case of fault,
as shown in Fig. 3.

After the fault, the current phasors flowing through the nodes p and g at both ends of the
section are I, and I, 7, respectively, and the voltage phasors at the corresponding two nodes are

{Upf =UpsL0,5

) . (13)
Ugr =Uqy L04r
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Phase C p !,;f ,,,,,,,,,,,,,,,,, I af

Fig. 3. System model of a section after phase A grounding fault

Its equivalent impedance is divided into two parts Z;,, and Z,, where:
AZ'Sf = Zsp + Z.Sq = Rsf +j . Xsf = Zsf Zesf . (14)

Similarly, the fault currents flowing through the nodes p and g at both ends of the section in
the case of fault are corresponding to / pr and iq #» and the expressions of the currents flowing in
the section are, respectively:

Us + U3 =2Upp Uy cos(b)r — Oy)

I,r = Z(6 — 6y
pf 2 X2 (Oavy —05(p))
sf sf
0au(p) = arctan Uprsinfpp — Uy sinfsy , (15)
UpycosOyr —Uys cosbsy
Xsf
0s(p) = arctan
Rsy
X U?, +U> —2Uquf COS(qu —Qf)
Iy =4 L —L 2 L(0aus —05(q))
Rsf +Xsf
QA (p) — arctan Uqf sianf — Uf sin st . (16)
vr UyrcosOyr — Uy cosbsy
X
05(q) = arctan (Rsf )

sf

To sum up, the expression of the current phase angle difference Af; ; (pq) in this section after
fault is:

MLy (p.9) = D01y (p) = A01 1 (q) = (08, = 0,(p)) = (08, —0s(@)) . ()

In the above formula, it should be noted that 65(p) = 65(g) holds in the actual line, it can be
obtained that:

Aby ¢ (p,q) #0°. (13)

According to the analysis of the characteristics before and after the fault, the faults of the active
distribution network can be divided into four categories: single phase ground short-circuit fault
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(AG, BG, CG), two-phase ground short-circuit fault (ABG, BCG, ACG), two-phase short-circuit
fault (AB, BC, AC) and three-phase short-circuit fault (ABCG). When Karrenbauer transform
is used to analyze @ Mold S, the phase angle difference of the mode current can detect various
faults in the section, especially the @ module can detect a ground fault, the S module can detect
the interphase fault.

2.4. Simulation analysis

To verify the effectiveness of the Karrenbauer transformation criterion for the fault location of
distribution networks in this paper, the standard microgrid proposed by CIGRE in document [26]
is selected.

The network used in this paper is a reference low-voltage (LV) grid developed in Microgrids,
which was later adopted by GIGRE TF C6.04.02 as a benchmark LV system, consisting of LV
feeders. The benchmark network maintains the important technical characteristic of real utility
grids, whereas, at the same time, it dispenses with the complexity of actual networks, to permit
efficient modeling of microgrid operation for steady state and transient simulations. The power grid
model is built with Matlab/Simulink software for verification. The distribution network system
includes 10 double-ended sections. To reflect the fault location advantages of the algorithm in
this paper in the multi-source distribution network, 4 DGs are added to the distribution network,
and the simulation model is shown in Fig. 4.

Load 1
Transtormer [ ] @—»load3
20kV/0.4kV «l&  <|E |
o o pa)
OO et L3 £ s F 5 o 0 o
L g = = ¥
| 70m  35m 70m 105m ~ 70m I
e s = D
System power - o Load 5
supply S
20kV/50Hz =
Load 2 €——@
od Load 4

Fig. 4. Distribution network simulation system model

2.4.1. System parameter

In this model, the total installed capacity of DG is 485.25 kW, the permeability is 40%.
Different types of DG access are considered in the system. In this paper, the sampling frequency
is 50 Hz, the simulation time is 0.2 s, and the fault occurrence time is 0.065 s. Among them, since
Section 6 is a three-phase balanced double-ended power supply type section, and the distance
between DG at both ends is relatively close, which can better verify the effectiveness of this
method. Therefore, the fault point is set in Section 6, and the transition resistance of the fault is
0.01 Q. The specific parameters are shown in Table 1.

Figure 5 is a comparison diagram of the change of zero sequence current in time zone 6 when
the system is in normal operation and when the phase A ground short-circuit fault occurs. When
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Table 1. Specific parameters of the distribution network simulation system model

Parameter name Specific values
SG 20 kV/50 Hz
Transformer 20/0.4 kV, 50 Hz, 400 kVA
DG1 Batteries 50 kW
DG2 Microturbine 31.25 kW
DG type
DG3 Doubly fed induction generator (DFIG) 100 kW
DG4 Photovoltaics (PV) 100 kW
Load 1 15 kW
Load 2 72 kW
Load Load 3 55 kW
Load 4 15 kW
Load 5 47 kW

the neutral point is not grounded, since the output fault current of each circuit is caused by the
short circuit between the grounding capacitor and the fault point, it can be clearly seen that the
fault line current changes when the fault occurs in 0.065 s.

100

T T
—— In normal state
—— Failure

-10 . . . . . . . . .
0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11
T/s

Fig. 5. Zero-sequence current diagram under normal state and fault state

2.4.2. Analysis of simulation results

The Karrenbauer transformation criterion is used to locate the fault of distribution networks,
and the influence of various fault types, different transition resistances and line parameters on the
system model is verified. At the same time, the robustness under different types of DG is verified.

1. Multiple fault types

The same fault location (Section 6) and transition resistance (0.01 ) are set in the system
model, the fault types of single-phase ground short circuit, two-phase ground short circuit, phase-
to-phase short circuit and three-phase short circuit are simulated and verified, respectively. To
ensure accurate identification and analysis of simulation results, the threshold value of the phase
angle difference of Karrenbauer transform mode current is set to 0°. Figure 6 is a simulation
waveform diagram of the phase angle difference of different fault types based on the Karrenbauer
transformation criterion.
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(a) When a single-phase grounding fault occurs
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(b) When AB two-phase ground short-circuit fault occurs
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-100[ —BCg L
—BC

-200 I I | | |
0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125  0.135
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(c) When BC two-phase ground short-circuit and BC phase fault occurs

0 A

50 I I I | I I I
0.055  0.065 0.075 0.085 0.095  0.105 0.115 0.125  0.135
T’s

(d) AC phase-to-phase short circuit fault

Fig. 6. Simulation waveform diagram under various fault states

Figure 6(a) is a waveform diagram of phase angle difference when a single-phase ground
short-circuit fault (AG, BG, CG) occurs in combination with Eq. (7). Figure 6(b) is a waveform
diagram of phase angle difference when phase AB is short circuited to ground. In combination
with the above analysis of Karrenbauer transform mode current, the threshold value of phase
angle difference fluctuates greatly. Figure 6(c) is a waveform comparison diagram when BC
phase-to-phase fault and BC phase-to-ground short-circuit fault occur. It is known that the phase
angle difference fluctuates above the threshold value when two-phase to ground fault occurs, and
the waveform is obviously unstable when phase-to-phase fault occurs. Figure 6(d) shows that the
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phase angle difference fluctuates above and below the threshold value when AC phase-to-phase
short-circuit fault occurs, and the fluctuation range is small.

To sum up, the phase angle difference of Karrenbauer transform mode current changes
significantly after the fault occurs in Section 6 at 0.065 s. The simulation result analysis is
consistent with the previous theory, and multi type fault location can be realized.

2. Effect of transition resistance

When the fault location is set at the A-phase grounding short-circuit fault of Section 6, the
fault location results are affected when the transition resistance is set to 0.01 €, 50 ©, 100 Q and
300 €, respectively. As shown in Table 2, the positioning accuracy is above 98%, indicating that
the proposed method is not easily affected by the size of transition resistance.

Table 2. Analysis of fault location results of different transition resistors

Transition resistance/Q Positioning accuracy/% Fault type
0.01 99.5 Ag
50 98.98 Ag
100 98.5 Ag
300 98.37 Ag

3. Influence of changing line parameters

The long term operation of the distribution network will be the affected by natural environment,
climate, and other factors, which will make the actual value of the saving impedance in the system
model deviate from the stored value set in advance in the system model. Therefore, considering
the influence of line parameter changes, all parameter values stored in advance during simulation
are adjusted to 0.9 to 1.1 times of the original value. As shown in Table 3, the results show that
the fault location is not affected by the change of line parameters.

Table 3. Fault location results under different fault types when line parameters change

Change times of line Fault type Error c?mpared with
parameters normal line parameters

Single-phase grounding short circuit 0.0015

0.9 Two-phase grounding short circuit 0.0048
Phase-to-phase short circuit 0.0023

Three-phase grounding short circuit 0.0035

Single-phase grounding short circuit 0.003

11 Two-phase grounding short circuit 0.0045
Phase-to-phase short circuit 0.0012

Three-phase grounding short circuit 0.0067
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3. A distribution network fault location model based on SVR

Although the Karrenbauer transformation-based method in the previous section can quickly
and accurately identify the type of fault, a single-phase modulus cannot reflect the characteristics
of all faults, which is not conducive to the calculation of a large amount of data in the smart
distribution network, while the SVR-based agent prediction model can solve the rapid calculation
of complex features in the smart distribution network.

When a single-phase ground fault occurs in the distribution network, the three-phase voltage
and current transient values will show nonlinear and non-stationary signals. Support vector
machine regression (SVR) is a new general functional machine learning method. Compared
with other traditional learning methods, it has better generalization ability in solving small
sample analysis and nonlinear problems. It has significant advantages and is widely used in
binary classification, pattern recognition and regression methods. The SVR-based fault location
flowchart of the DG-containing distribution network is shown in Fig. 7.

Collect sample sets by using fault
characteristics and influencing factors

Data preprocessing

| Establish initial SVR prediction model |

ramne SV,
| T@m{ng SVR |<—| K-fold cross validation
prediction model -

| Test SVR prediction model | GS optimization model

Hyperparametric

leet the predicti
accurac

Fig. 7. SVR based fault location process of distribution network with DG

3.1. Data preprocessing

Due to the information correlation between features and the appearance of overlapping data,
if all of them are used as the feature input of training sets and test sets for fault classification and
identification and fault location, the data volume will be large, and the fault type identification
and location will be inaccurate. Therefore, feature selection and extraction shall be carried out for
samples before training. Three-phase zero-sequence voltage, three-phase zero sequence current
and the phase angle difference of Karrenbauer mode current are used as input for the sample set,
and the fault category as well as the fault location section are used as sample output.
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To improve the accuracy of the fault classification and location prediction model training of
the distribution network with DG, the sample output data shall be normalized as shown in Eq. (19)
before training.

A; = Amin
Amax - Amin '
where: Apax and Apin are the maximum and minimum values of the sample output data, respec-
tively, A; is the fault category and location under the DG distribution network prediction model,
y; represents the sample response value of x; after normalization.

Vi = (i=1.2.....n), (19)

3.2. Fault location prediction model based on SVR

As a statistical machine learning theory, support vector machines (SVMs) were introduced
by Vapnik and Corte in 1995 as an alternative technology for polynomials, radial functions, and
multi-layer perceptual classifiers. The weights of neurons are determined by solving quadratic
programming (QP) problems with linear, inequality and equality constraints rather than solving
nonconvex problems. It is an unconstrained minimization problem. Hu Wei, Liu Keyan, and others
proposed an intelligent distribution network fault location method based on local anomaly factors
and the SVM classification of voltage data. A supervised learning algorithm is used to analyze data
in classification and regression analysis. The fault data in this paper are trained based on an SVM
algorithm, and different fault types in the fault area are reasonably classified [27,28]. However,
at this stage, the topology of intelligent distribution networks is complex, and the selected fault
input features are relatively simple.

The basic principle of SVR is to find the optimal classification surface, so that for the
linear inseparable problem, the kernel function is usually introduced to map the low-dimensional
nonlinear inseparable samples to the high-dimensional linear separable space, to find the optimal
classification surface in the transformed high-dimensional space. The introduction of the kernel
function realizes the linear classification after the nonlinear transformation, but the computational
complexity is not increased. The modeling and solution process is as follows [29]:

1. Given training sample set

X:{(xl’yl)""’(xi’yi)7""(xn7yn)}7 (20)

where x; and y; are the phase angle difference of the group i zero sequence current, zero sequence
voltage, Karrenbauer mode current and their fault type, fault location section, i.e., input and
output of fault feature samples; n is the number of training samples.

2. Construct regression model

fX) =w"o(X) +0b, Q1)

where: f(X) is the regression estimation function of the support vector, ¢(X) and X is the
nonlinear function that maps the sample X to the high-dimensional feature space; w and b are the
undetermined parameters of the model, which are also the key to SVR model training.

3. Model parameter solution

As shown in Fig. 8, a spacing band with width 2¢ is constructed with f(X) as the center. It
is assumed that the maximum deviation of &€ between f(x;) and y; can be tolerated, that is, when



474 S. Wang, K. Zhao Arch. Elect. Eng.

the absolute value of the difference between f(x;) and y; is greater than &, the ¢ insensitive loss
function [ is introduced (& — insensitive 10ss).

0, yi—fx)l<e

. (22)
yi=fGol, =y —f@)l>e

le (xi,y0) = {

@
o o,” ‘%’C?\f(x)-s
- ‘0

- ////g OTypeII

> x

Fig. 8. Schematic diagram of SVR

When the training sample point falls into the red interval band, when the difference between
the return value f(x;) of the regression function and the sample output value y; is less than or
equal to &, the loss is considered to be 0, that is, the training sample is correctly predicted, and
the sample point falling outside the interval band is also called the support vector. Therefore, the
SVR problem can be formalized as:

min 3 ] + c;zg (F@) —y1). (23)

Relaxation variables &; and &; are introduced to characterize the degree to which the sample
does not satisfy the constraint. The above formula can be rewritten as:

1 n .
max L =min=|w|?+C + &
fi,f{,b,w 2” ” ;f (é:l é:l)

fxi)—yi<e+é , o4
str (f()—yi<e+é

&>0, £>0,i=1,2,...,n

where: L is the objective function, C is the regularization constant, also known as the penalty
coefficient. The larger C, the greater the penalty for the sample whose error exceeds &; € specifies
the error limit of the SVR function.

However, Eq. (24) is still a quadratic programming problem. In order to facilitate the solution
and introduce the Lagrange function according to the structural risk minimization criterion, we
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convert L into a dual form, as shown in Eq. (25).

n n n
. . 1 . .
max L= (yi(a—a)—e@+a)) -5 > > (G -a) (@ - ) K (x;,x))
&.éb.w — 2 L4
i=1 i=1 j=1
" . (25)
D@ -a) =0
s.t.: {4
0<ea; a4,<C

where K (x;,x;) = ¢! (x;)¢(x;) is the kernel function. @;, d; is the Lagrange multiplier. The
optimal solution obtained by solving Eq. (25) is:

a=la,a,. .. a] 26)
a=la ...

Therefore, it can be further concluded that the parameters w and b are

w= > (r - ) p(x;)
i=1

1
b= Z [)’i‘ Z (0; —a;) K (xi,xj) — € ) 27)

sy 0<a;<C X; ESW
1 .

+n— Z Yi — Z (ozj—aj)K(xi,xj)+s
SV 0<a;<C XjEsW

where nyg, is the number of support vectors. Therefore, the regression function of the support
vector machine can be obtained by bringing Eq. (27) into Eq. (21):

fx)=wlhox) +b= an (4;i — ) " (x;))p(x) +b = an (di —a;) K (x;,x) +b. (28)
i=1 i=1

4. Selection of kernel function

To construct an SVR with good performance, the selection of a kernel function is the key. The
selection of a kernel function includes two parts: one is the selection of a kernel function type,
and the other is the selection of relevant parameters after determining the kernel function type.
The Gaussian radial basis kernel function (RBF) selected in this paper is a kernel function with
strong locality, few hyperparameters relative to a polynomial kernel function, high accuracy, and
good approximation characteristics.

2
K (r1ox) = exp [~ —enp (< v ). 9)
20

where y = 1/ 202, that is, the width of the RBF v. The larger the Gaussian distribution is, the
thinner and longer it is, and it is easy to over fit y. The smaller the Gaussian distribution is, the
shorter and fatter the Gaussian distribution is, and the smoothing effect is too large to obtain
a high accuracy on the training set, and it is easy to under fit.
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3.3. SVR hyperparametric optimization based on GS-CV

To make full use of the limited data to obtain higher prediction accuracy, the super parameter
optimization of the SVR model is carried out in combination with grid search and cross validation,
and the best super parameter combination is determined. The steps are as follows:

Step 1: Determining the hyperparameters (C, ) in the value range. The commonly used value
range is [2710, 210],

Step 2: Hyperparametric gridding. Due to the large span of the parameter range, take the loga-
rithm of the value range of the super parameter with 2 as the base to obtain (log, C, log, 4)€[-10, 10].
Cross values are taken at intervals of 0.25, and a total of 81 X 81 = 6561 kinds of super parameter
combinations.

Step 3: K-fold cross validation. From 100 sets of sample data, 85 were taken as training data
sets and 15 were taken as test data sets. Let k = 5, then divide the training data set into 5 pieces,
and each piece of data is taken as the verification set in turn. Evaluate the quality of the model
trained by the remaining 3 pieces of data, and finally take the hyperparameter with the smallest
mean square prediction error as the optimal hyperparameter in the cross verification.

Step 4: Hyperparametric combined mesh search. Select the next group of hyperparametric
combinations and repeat step 3 until the hyperparametric combination with the minimum mean
square error is found as the optimal SVR model hyperparametric under the current sample set.
When different parameter combinations (C, y) correspond to the same cross validation accuracy,
a set of parameters with smaller C is generally selected to improve the generalization ability of
the model.

3.4. Accuracy evaluation standard

The prediction accuracy of an SVR proxy model needs to rely on the corresponding error
criteria for performance evaluation. In this paper, the mean square error and correlation coefficient
are selected as the prediction accuracy evaluation indicators of the proxy model.

1. The mean square error (MSE) is often used to describe the error between the predicted
value and the sample value, and its expression is

1< )
MSE:—§ =902, 30
”i=1(y 9i) (30)

where: n is the number of tests samples, y; is the theoretical response value of the source function,
9; is the predicted value of the source function proxy model.

The closer the mean square error is to 0, the higher the prediction accuracy is.

2. Coefficient of determination (R?) is often used to describe the fitting degree of the regression
model to the observed value, and its expression is:

i (vi = 9)*

L E—
Z (i = 9)?
i1

R? = 31)
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The value range of the determination coefficient is [—oo, 1]. The closer R? is to 1, the more
significant the regression equation is, indicating the poor prediction ability of the model.

4. Result analysis

4.1. Accuracy evaluation and result analysis of proxy model

1. Fault location analysis

Taking the distribution network model in Fig. 4 as an example, the prediction performance
is evaluated based on the simulation data under Karrenbauer transformation. The abscissa is the
layout number, and the ordinate is the 10 sections included in the model. As can be seen from
9(a), in the case of faults in different sections, the real value is close to the predicted value, except
for minor errors. In the training set prediction accuracy evaluation, the MSE is 0.00196, close
to 0. The determination coefficient R? is about 0.92941, close to 1, and the positioning result is
accurate. Input the test sample into SVR, output the label of the sample, and determine the fault
section corresponding to the label. The fault area location accuracy is 98%, as shown in 9(b).

Positioning training accuracy [Z5e ™ Real section Positioning prediction accuracy [—se— Real section
Accuracy=0.9294 —@- - Forecast section| Accuracv=0.9866 —@ -Forecast section|

10—9— — o @ 10 ¥ r~
8 8
5 ? ,
=4 Is)
= 6F ! 5 6
3 3
2 2 z
=41 = 4r
o )
0 0 L ]
05 I5 25 35 45 55 65 75 85 0 3 6 9 12 15
Number Number
(a) Training set (b) Test set

Fig. 9. Model prediction results of fault location training set and test set

2. Fault type analysis

According to the fact that the fault type is a multi classification problem superposed by
multiple binary classification problems, the fault types in Section 2 are effectively used for SVR
model training and testing. The abscissa is the layout number, and the labels of ordinates 1~10
are 10 fault categories. As shown in Fig. 10(a), after training 85 samples, the sample points of
measurement data are gathered in different areas, and the R? of the fault type recognition training
set can reach 0.94118, so the training performance is very superior. It can be seen from Fig. 10(b)
that the predicted value basically coincides with the real value, the prediction accuracy of the
fault type identification test set can reach 93.3%, the MSE is 0.00123, approaching 0, and a good
classification effect can be obtained.
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Fault type

Type training accuracy
Accuracy=0.9412

Type prediction accuracy
Accuracy=0.9333
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Fig. 10. Model prediction results of fault type set training and test set

4.2. Accuracy comparison of fault location in distribution network under different methods

To prove that the method proposed in this paper has high accuracy in fault location, this
section also applies several common machine learning and neural network algorithms to fault
location. The details are as follows:

1.

The gradient lifting tree is used to establish the fault diagnosis model of low-voltage
intelligent distribution networks, and a fixed number of interpolations are used to replace
the measured values of specific branches, which can adapt to the change of network topology
to a certain extent but cannot accurately locate the fault section.

. A neural network algorithm is widely used in the transient protection and fault line selection

of smart grids. The CNN can effectively avoid the over fitting of the training process in the
recognition of fault sections and has a good feature extraction ability. But the algorithm is
easy to fall into a local minimum, and the required samples are large, and the convergence
speed is very slow.

. The graph neural network (GNN)-based method is extended to the graph domain to mine the

topological relationship between nodes, which improves the accuracy of location. However,
the universality and practicability of the model under the change of network topology are
not considered.

. A Bayesian probability model evaluates the fitting degree between the possible fault section

and the actual over-current information of the switch, and judges that the feeder section
that can best explain the over-current information is the fault location result. This method
has high fault tolerance. However, this method uses a single information source, which is
limited by the problem that the fault section is misjudged when the current information is
wrong.

Random forest (RF) is an integrated algorithm composed of decision trees, which can train
and predict samples. Only consider the case where the fault occurs at the node, while the
fault usually occurs in the distribution network circuit.

In conclusion, SVR requires fewer samples and has better convergence speed and gener-
alization ability than other methods. In addition, SVR combined with traditional Karrenbauer
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transform can fully mine the characteristic information of voltage and current during fault and es-
tablish a good sample library. Therefore, the SVR method has great advantages. The comparison
results are shown in Table 4.

Table 4. Comparison of fault location results of different methods

Method | o system | durston | | postioning | 20U
Gradient lifting tree 95.68% 92.24s 1.43s 85.24%
CNN 93.54% 85.52s 0.97s 95.03%
GNN 82.93% 87.68s 1.05s 93.5%
Bayesian estimation 94.29% 90.44s 1.23s 82.13%
RF 80.75% 88.21s 0.98s 92.43%
SVR 96.16% 93.66s 0.91s 98.56%

5. Conclusions

In the face of difficulties in sample acquisition and model accurate training in distribution
network fault location, this paper uses Karrenbauer transformation and an SVR agent prediction
model to realize fault type identification and location of distribution networks with distributed
generation. The following conclusions are drawn.

1. In view of the asymmetry of LV distribution network line parameters and the electromag-
netic coupling between each phase line of the three-phase system, Karrenbauer transforma-
tion is used to calculate, deduce, and compare the current, voltage, phase angle and other
information data measured before and after the fault at both ends of the section, obtain
the phase angle difference of Karrenbauer transformation mode current, and preliminarily
detect the fault section.

2. Because a single-phase mode transformation modulus cannot reflect the characteristics
of all faults, using the electrical quantity information after Karrenbauer transformation,
a sampling data set based on SVR is established to build a fast agent prediction model.
The test results show that the decision coefficient R2 of the regression model is close to
1, which has a high prediction accuracy, and is conducive to the complex calculation of
a large amount of data in the intelligent distribution network.

3. Through simulation verification, and compared with other methods, this method is not
affected by the change of transition resistance and line parameters and can effectively
use the electrical characteristics of the distribution network to better achieve the accurate
location and type identification of different faults in the distribution network, with high
accuracy and robustness.
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