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the identity matrix previously studied. The variational principle of this problem is obtained by using 

two methods: the direct method of the calculus of variations and the semi-inverse method. New 
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improve and extend many previously known results. 

Keywords: forced damped vibration system; the variational principle; periodic solutions; the least 

action principle; the saddle point theorem 

Mathematics Subject Classification: 34C25, 58E30,58E50 

 

1. Introduction 

Consider the following forced damped vibration systems: 
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where 0T , )(0,1 R T;Lq , 
0

( ) ( )
t

Q t q s ds=  , )(0,1 NR T;Lf  , )]([)( tatA ij=  is an invertible 

symmetric NN   matrix-valued function defined in ],0[ T  with )]0,([ TCa
ij
  for all Nji ,2,1, =  

and there exists a positive constant   such that 2| | ( ( ) , ),A t     for all NR , . [0, ]a.e t T  

and RRTF N →],0[:  satisfies the following assumption: 

(A) ),( xtF  is measurable in t  for every NRx  and continuously differentiable in x  for 

]0[ T,t.a.e  , and there exist )( ++ R,RCa , );,0(1 + RTLb  such that 

,tbxax,tF )()()(   )()()( tbxax,tF  , for all 
NRx  and ]0[ T,t.a.e  . 

When 0)( tq , NNItA =)(  and 0)( tf , the forced damped vibration systems [i.e., (1.1)] 

reduce to the following classical second order non-autonomous Hamiltonian systems: 
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        (1.2) 

By the variational method, many existence results have been obtained under some suitable conditions 

in the last two decades. The readers may refer to [1–12] for more relevant results. In particular, Wang 

and Zhang [4] gave the following two existence theorems of periodic solutions of problem (1.2). 

Theorem A. Suppose that F  satisfies assumption (A) and the following conditions: 

)(
1

H There exist constants ,C 0
0
  ,K 0

1
  ,K 0

2
  )10[ ,  and a non-negative function 

))[0,);([0, ++Ch  with the properties: 

(i) ),0[                                   )()( + ,t,s,tsthsh  

(ii) 0( ) ( ( )  ( ) )         , [0, ),h s t C h s h t s t+  +   +  

(iii) 21
)(0 KtKth + 

         [0, ),t  +  

(iv) +→)(th              as +→t  . 

Moreover, there exist )0(1 + R;T,Lf  and )0(1 + R;T,Lg  such that 

)()()()( tgxhtfx,tF + , for NRx , ].0[ T,t.a.e   

)(
2

H  There exists a non-negative function ))[0,);([0, ++Ch  which satisfies the conditions 

(i)–(iv) and +→
T

dtx,tF
|x|h 0

2
)(

)(

1
, as .x +→||   

Then problem (1.2) has at least one solution which minimizes the functional   on 1

TH . 

Theorem B. Suppose that )(
1

H  and assumption (A) hold. Assume that 

)(
3

H  −→
T

dtx,tF
|x|h 0

2
)(

)(

1
as +→||  x . Then problem (1.2) has at least one solution in 1

TH . 

With the increase in research, scholars began to study a more general form of Hamiltonian 

systems: damped vibration systems. In damped vibration, due to the need of the system overcoming 

resistance, the displacement and energy of vibration continuously reduced and their decreasing trend 

is correlated to factors such as the natural frequency and damping coefficient of the system. 

Therefore, the damped vibration system is greatly based on physics and can be one of the important 
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mathematical models. 

Wu [13] studied the existence of periodic solutions of the following damped vibration systems: 
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      (1.3) 

where )()( tutq   is called damping term. The systems [i.e., (1.3)] are called damped vibration 

systems in physics. Wu put forward the variational principle of problem (1.3) for the first time and 

studied further the existence of periodic solution of problem (1.3). Subsequently, in case ,tA 0)( =  

Wang [14] studied the existence of periodic solution of the corresponding system. 

In addition, the vibration of a nonlinear vibration system under the action of a periodic dynamic 

force )(tf  is called forced vibration. Take the spring oscillator model as an example. Suppose that 

the spring oscillator is subjected to both resistance 
t

x

d

d
−  and dynamic force tF cos

0 , and then 

Dynamic equation of the spring oscillator is 

2

02

d d
m cos .

d d

x x
kx F t

t t
 = − − +  

This equation is a special forced damped vibration system. Another example is the famous Duffing 

oscillator model: Assume that it is subjected to both resistance xc  and dynamic force cosf t , and 

then the dynamic equation of the forced damped vibration of the Duffing oscillator is 

2
3

2

d
m c ( ) cos .

d

x
x k x x f t

t
 + + + =  

The forced damped vibration systems [i.e., (1.1)] we have studied are more general than the two 

equations above. Therefore, the systems [i.e., (1.1)] are proved to not only have a very strong 

physical background but also be a more general class of new systems.  

Generally, a nonlinear vibration system is complex and it is difficult to get a strong solution to a 

differential equation. In recent years, the variational method has been used by many scholars to study 

the existence of solutions of differential equations, such as the classical second order non-autonomous 

Hamiltonian systems [i.e., (1.2)] (see [1–12]), the damped vibration systems [i.e., (1.3)] (See [13,14]) 

and the damped random impulsive differential equations under Dirichlet boundary value conditions 

(See [15–17]). The variational principle, including the Hamilton principle, is widely used in the 

nonlinear vibration theory. For the case of Hamiltonian-based frequency formulation for nonlinear 

oscillators (See [18]), its Hamilton principle is established by the semi-inverse method. 

Inspired by [4,13], we obtain a new class of forced damped vibration systems [i.e., (1.1)] and 

decide to study the existence of periodic solutions of this problem by the variational method. We 

explore, in depth, the existence of variational construction for problem (1.1) and study further the 

existence of periodic solutions of it under some solvability conditions by following the least action 

principle and the Saddle Point Theorem 4.7 in [3], and obtain two new existence theorems. 

2. The variational principle 

Let us suppose 1

TH = u|RT,u N→]0[:{  is absolutely continuous, )()0( Tuu = , );0( N2 R T,Lu } 

with the inner product 
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where )(  ,  and | |
 
are the usual inner product and norm of NR . The corresponding norm is 

defined by  

2

1

0

2

0

2 )(|)(| 




 += 

TT

dttudttuu  , for 
1

THu . 

Then, 1

T
H  is obviously a Hilbert space. 

Set 

2

1

0

)(

0

)(

0
))(,)(())(),()(( 





 += 

T
tQ

T
tQ dttutuedttututAeu  , for 

1

THu . 

Obviously, the norm 
0
  is equivalent to the usual one   on 1

T
H . The proof is similar to the 

corresponding parts in [19]. 

Let }0|{
~

0

11 == 
T

TT
udtHuH , it is easy to know that 1

~
T

H  is a subset of 1

TH , and 1

TH = 1
~

T
N HR  . 

It follows from Proposition 1.3 in [3] that 

 
TT

dttu
T

dttu
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2

2

2
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2

)(
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, for every 1~
THu  (Wirtinger’s inequality), 

and 




T

dttu
T

u
0

22

)(
12

 , for every 1~
THu  (Sobolev’s inequality). 

Hence, 

,dttu
T

u
T

+
0

2

2

2
2

)()
4

1( 
  

for every .H
~

u
T

1        
(2.1) 

Define the functional ( )u  on 1

TH  by 

( u ) =  ++
T

tQ
T

tQ
T

tQ dttu,tfedttu,tFedttu,tutAe
0

)(

0

)(

0

)( ))()(())(())()()((
2

1
 .   (2.2) 

We have the following facts. 

Theorem 2.1. The functional ( )u  is continuously differentiable and weak lower semi-continuous 

on 1

TH . 

Proof. Set ]))(()())((
2

1
[)( )( x,tfxt,Fyy,tAeyx,t,L tQ ++=  for all NRyx,   and ][0 T,t . Then 

)( yx,t,L  satisfies all assumptions of Theorem 1.4 in [3]. Hence, by Theorem 1.4 in [3], we know 

that the functional ( )u  is continuously differentiable on 1

TH  and  

( ( ), )u v = 
T

tQ dttvtutAe
0

)( ))(),()((   +
T

tQ dttv,tu,tFe
0

)( ))())((( +
T

tQ dttv,tfe
0

)( ))()(( , 



22166 

AIMS Mathematics  Volume 8, Issue 9, 22162–22177. 

for all 1

T
Hvu,  . Moreover, the proof for the weak lower semi-continuity of ( )u  is similar to the 

corresponding parts in [3, P12-13]. 

Theorem 2.2. If 1

THu  is a solution of the Euler equation ( ) 0u = , then u  is a solution of 

problem (1.1). 

Proof. Since ( ) 0u = , then 

0 ( ( ), )u v= = 
T

tQ dttvtutAe
0

)( ))(),()((   +
T

tQ dttv,tu,tFe
0

)( ))())((( +
T

tQ dttv,tfe
0

)( ))()(( , 

for all 1

T
Hvu,  . i.e., 


T

tQ dttvtutAe
0

)( ))(),()((   +−=
T

tQ dttv,tftu,tFe
0

)( ))()())((( , for all 
1

T
Hv . 

By the Fundamental Lemma and Remarks in [3, P6-7], we know that )()()( tutAe tQ   has a weak-derivative, 

and 

))()(( )( tutAe tQ  )]())(([)( tftu,tFe tQ += ， ]0[ T,t.a.e  .    (2.3) 

)()()( tutAe tQ   ++=
t

sQ Cdssfsu,sFe
0

)( )]())(([ ， ]0[ T,t.a.e  .    (2.4) 

0)]())(([
0

)(

 =+
T

tQ dttftu,tFe ,         (2.5) 

where C  is a constant. We identify the equivalence class )()()( tutAe tQ   and its continuous representation 

 ++
t

sQ Cdssfsu,sFe
0

)( )]())(([ . 

Then, by (2.4), we have 

0)0()0()0( =uAeQ  . 

i.e., 0)0( =u . 

By (2.4) and (2.5), one has 

0)()()( =TuTAe TQ  . 

i.e., 0)()( =Tue TQ  . 

By the existence of )(tu , we draw a conclusion similar to (2.5), that is 

0)(
0 =
T

dttu . 

i.e., 0)()0( =− Tuu . 
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Therefore, u  satisfies the following periodic boundary condition 

0)()0()()0( )( =−=− TuuTueu TQ  . 

Moreover, by (2.3), u  satisfies the following forced damped vibration equation 

)())(()()()())()(( tftu,tFtutqtAtutA +=+  ， ]0[ T,t.a.e  . 

Hence, u  is a solution of problem (1.1). This completes the proof. 

From the proof of Theorems 2.1 and 2.2, it can be seen that the variational principle of problem (1.1) 

is indeed the ( )u [i.e., (2.2)] we defined above. 

In fact, we can also directly derive the variational principle of problem (1.1) by using the 

semi-inverse method [18]. The derivation process is as follows. 

In case 0)( tq , we can easily obtain the following variational principle: 

1( )u = .dttu,tftu,tFtu,tutA
T

))()(())(())()()((
2

1

0

++   

In order to obtain the variational principle of problem (1.1), we introduce an integrating factor 

)(tg  which is an unknown function of time, and consider the following integral: 

2( )u = dt,u,u,uGtu,tftu,tFtu,tutAtg
ttt

T

)}())]()(())(())()()((
2

1
)[({

0

 +++ ,   (2.6) 

where G  is an unknown function of u  and/or its derivatives. The semi-inverse method is to identify 

such g  and G  that the stationary condition of Eq (2.6) satisfies problem (1.1). The Euler–Lagrange 

equation of Eq (2.6) reads 

0))]()()[((())())(()(( =+−+
u

G
tutAtgtftu,tFtg




 ,      (2.7) 

where 
u

G




 is called variational derivative [20–22] defined as 

−
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−




=

ttt
u
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tu
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tu

G

u

G
2

2




. 

We re-write Eq (2.7) in the form 

u

G

g
tftu,tFtutAtutA

g

g




++=+

 1
))())((())()(())()((  .     (2.8) 

Comparing Eq (2.8) with problem (1.1), we set 

)(tq
g

g
=


, 0=




u

G
. 

Therefore, we have 
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)(

0

)( exp tQ
t

edssqg ==  , 0=G . 

Consequently, we obtain the needed variational principle for problem (1.1), which reads 

2( )u = dttu,tftu,tFtu,tutAe
T

tQ ))]()(())(())()()((
2

1
[

0

)( ++  . 

Obviously, 
2( ) ( )u u = . 

3. Existence of solutions for the forced damped vibration systems 

In convenience, we set 

,ed tQ

T,t

)(

]0[
1

max


=  ,ed tQ

T,t

)(

]0[
2

min


=  .aa
ij

T,t
N,,j,i

}{max
]0[

1

=

=
  

Theorem 3.1. Let )(),(),( 21 xFxtFxtF += , suppose that )(
1

x,tF  and )(
2

xF  satisfy assumption (A) and 

the following conditions： 

)(
1

H  There exist constants ,C 0
1
  ,K 0

1
  )1,

2

1
(  and a non-negative function 

))[0,);([0,
1

++Ch  with the properties: 

(i) 
1 1( ) ( )                                     , , [0, )h s h t s t s t    + , 

(ii) )0[             ) )(  )(()(
1111

+++ ,t,sthshCtsh , 

(iii) 
1

1
)(

lim K
s

sh
s


+→ 

. 

Moreover, there exist )0(1

21

+ R;T,Lr,r  such that 

)()()()(
2111

trxhtrx,tF + , for NRx , ]0[ T,t.a.e  . 

)(
2

H  There exist a constant 0
2
K  and two functions )(01 + RT;,Lk  with 

TKd

d
dttk

T

21

2

0

3
)(


  and 

))[0,);([0,
2

++Ch  which is non-decreasing, such that
       

)()())()((
222

|yx|htky,xyFxF −−− , for NRy,x  , ]0[ T,t.a.e  , 

and  

22

2 )(
suplim K

s

sh

s


+→

. 

)(
3

H  +→

T
tQ

x
dtxtFe

x 0

)(

2||
),(

||

1
lim


2

0
1

2

2

1

2

1

2

1 ))((
3 

T

dttr
d

TKdC


. 

Then problem (1.1) has at least one solution which minimizes the functional ( )u  on 1

TH . 

Proof. It is clear that 
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T

tQ dttututAe
0

)( ))(),()((
2

1
 

T

dttud
0

2

2 |)(|
2

1
  

2

22
2

1
ud = .    (3.1) 

It follows from condition )(
1

H  and Sobolev’s inequality that 

 −
T

tQ dtutFtutFe
0

11

)( )],())(,([  

( )  +=
T

tQ dsdttu~,tu~su,tFe
0

1

0
1

)( )()((  

   ++
T T

tQtQ dsdt|tu~|tredsdt|tu~||tu~su|htre
0 0

1

0
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11
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0 0 0
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0 0
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2 2
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0 0
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T T

C d h u h u u r t dt C u t dt
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1

2 2
1 1 1 1 1 1 1 1 2

0 0 0
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T T T

C d h u u r t dt C d h u u r t dt C u t dt
  

= + +    

2 2 22 1 1
1 1 1 1 1 1 1 3 1

0 0
1 1 2

3
( ( | | )( ( ) ) ) ( ) ( )

3

T Td C d T
C d u h u r t dt C d K u C u r t dt

C d T d



  
 + + +   

1

2 2
2

0
( | ( ) | )

T

C u t dt+   

12 2
2 12 22 1 1 2

1 1 1 1 1 12 20 0
2
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4 3 12
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 + +   

1

2
1 3 1 1 2 20
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12

TT
C C d r t dt C u+ + .               (3.2) 

It follows from the condition )(
2

H  and Sobolev’s inequality that 
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2
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2
~)(
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T
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2

2
0

21 )(
12

udttk
TKd T

 ,          (3.3) 

for sufficiently large 


u~ . By Sobolev’s inequality, we have 
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Thus, by (3.1)–(3.4), we obtain 
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Since 

+→u    +→+ 2

1
2

2

2

)( uu  ,        (3.6) 

and 0)(
124 0

212 − 
T

dttk
TKdd
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TKd

d
dttk
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0

3
)(


 , it follows from ),(

1
H  ),(

3
H  (3.5) and (3.6) that 

( )u →+  as ,u +→  i.e., ( )u  is coercive. By Theorem 1.1 and Corollary 1.1 in [3] (i.e., the 

least action principle), we complete the proof of Theorem 3.1. 

Remark 1. The condition 1

1
)(

lim K
s

sh
s


+→ 

 in Theorem 3.1 is weaker than the condition 21
)( KtKth + 

 

in Theorem 1.1 in [4]  (i.e., Theorem A in the present paper), so that Theorem 3.1 generalizes Theorem 1.1 

in [4] even in the case of 0)(
2

=xF , 0)( tq , NN
ItA


=)(  and 0)( tf . 

Theorem 3.2. Let )(),(),( 21 xFxtFxtF += , and suppose that )(
1

x,tF  and )(
2

xF  satisfy assumption (A) 

and )(
2

H . If the following conditions hold: 
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1
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Moreover, there exist )0(1
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Then problem (1.1) has at least one solution on 1

TH . 

Proof. We will use the Saddle Point Theorem 4.7 in [3] to prove Theorem 3.2. First, we prove that 

the functional ( )u  satisfies the (PS) condition. Suppose that }{
n

u  is a (PS) sequence for ( )u , 

that is, lim ( ) 0n
n

u
→
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It follows from (2.1) that 
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which contradicts the boundedness of ( )nu . Therefore, }{ |u|
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 is bounded, and then }{
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bounded by (3.7). We conclude that the (PS) condition is satisfied. 
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for all 1~
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, that is, )(
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l is proved. 

By making use of the Saddle Point Theorem 4.7 in [3], we prove that problem (1.1) has at least 

one solution on 1

TH . 

Remark 2. The condition 
1

1
)(

lim K
s

sh
s


+→ 

 in Theorem 3.2 is weaker than the condition 
21

)( KtKth +   in 

Theorem 1.2 in [4] (i.e., Theorem B in the present paper), so that Theorem 3.2 generalizes Theorem 1.2 

in [4] even in the case of 0)(
2

=xF , 0)( tq , 
NN

ItA


=)(  and 0)( tf . 

4. Examples 

In this section, we give two examples to illustrate the feasibility and effectiveness of our main 

conclusions. 
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It is easy to see that )(tA , )(
1

x,tF , )(
2

xF  and )(|
1

|xh  satisfy all conditions of Theorem 3.1. 

Hence, problem (1.1) has at least one solution on 
1

T
H . 
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Example 4.2. Let  
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The derivation of other conditions for Theorem 3.2 is the same as Example 4.1. 

It is clear that )(tA , )(
1

x,tF , )(
2

xF  and )(|
1

|xh  satisfy all conditions of Theorem 3.2. 

Therefore, problem (1.1) has at least one solution on 
1

T
H . 

5. Conclusions 

In this paper, we study the existence of periodic solutions of the forced damped vibration systems 

[i.e., (1.1)] by using the variational method and the critical point theory. 

First, we provide an expression for functional ( )u  and further prove that the functional ( )u  

is continuously differentiable and weak lower semi-continuous. 

Then, we prove that the critical point of ( )u  is a solution of problem (1.1) in the sense of 

weak-derivative. Moreover, we directly derive the variational principle of problem (1.1) via the 

semi-inverse method. 

Finally, it is proved that problem (1.1) has at least one solution under the given sufficient 

conditions through the least action principle and the saddle point theorem. 

In the future, we can continue to study this problem by looking for new sufficient conditions. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

This work was supported in part by the National Natural Science Foundation of China 

(No.11861005), the Joint Special Fund Project for Basic Research of Local Undergraduate 



22176 

AIMS Mathematics  Volume 8, Issue 9, 22162–22177. 

Universities in Yunnan Province (No.202101BA070001-219) and Foundation of Dali University 

(No.KY2319101540). 

Conflict of interest 

There is no conflict of interest. 

References 

1. X. P. Wu, C. L. Tang, Periodic solutions of a class of non-autonomous second order systems, J. 

Math. Anal. Appl., 236 (1999), 227–235. https://doi.org/10.1006/jmaa.1999.6408 

2. P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 

33 (1980), 609–633. https://doi.org/10.1002/cpa.3160330504 

3. J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, New York: Springer, 1989. 

https://doi.org/10.1007/978-1-4757-2061-7 

4. Z. Wang, J. Zhang, Periodic solutions of a class of second order non-autonomous Hamiltonian 

systems, Nonlinear Anal-Theor., 72 (2010), 4480–4487. https://doi.org/10.1016/j.na.2010.02.023 

5. Z. Wang, J. Zhang, New existence results on periodic solutions of non-autonomous second order 

Hamiltonian systems, Appl. Math. Lett., 79 (2018), 43–50. 

https://doi.org/10.1016/j.aml.2017.11.016 

6. C. L. Tang, Periodic solutions for nonautonomous second order systems with sublinear 

nonlinearity, Proc. Amer. Math. Soc., 126 (1998), 3263–3270. 

https://doi.org/10.1090/S0002-9939-98-04706-6 

7. G. Bonanno, R. Livrea, M. Schechter, Some notes on a superlinear second order Hamiltonian 

system, manuscripta math., 154 (2017), 59–77. https://doi.org/10.1007/s00229-016-0903-6 

8. J. Pipan, M. Schechter, Non-autonomous second order Hamiltonian systems, J. Differ. Equ., 257 

(2014), 351–373. https://doi.org/10.1016/j.jde.2014.03.016 

9. N. Aizmahin, T. An, The existence of periodic solutions of non-autonomous second-order 

Hamiltonian systems, Nonlinear Anal-Theor., 74 (2011), 4862–4867. 

https://doi.org/10.1016/j.na.2011.04.060 

10. J. Ma, C. L. Tang, Periodic solutions for some nonautonomous second order systems, J. Math. 

Anal. Appl., 275 (2002), 482–494. https://doi.org/10.1016/S0022-247X(02)00636-4 

11. C. Tang, Periodic solutions of non-autonomous second order systems, J. Math. Anal. Appl., 202 

(1996), 465–469. https://doi.org/10.1006/jmaa.1996.0327 

12. Z. Wang, J. Zhang, M. Chen, A unified approach to periodic solutions for a class of 

non-autonomous second order Hamiltonian systems, Nonlinear Anal.-Real, 58 (2021), 103218. 

https://doi.org/10.1016/j.nonrwa.2020.103218 

13. X. Wu, S. Chen, K. Teng, On variational methods for a class of damped vibration problems, 

Nonlinear Anal-Theor., 68 (2008), 1432–1441. https://doi.org/10.1016/j.na.2006.12.043 

14. Z. Wang, J. Zhang, Existence of periodic solutions for a class of damped vibration problems, C. R. 

Math., 356 (2018), 597–612. https://doi.org/10.1016/j.crma.2018.04.014 

15. Q. B. Yin, Y. Guo, D. Wu, X. B. Shu, Existence and multiplicity of mild solutions for first-order 

Hamilton random impulsive differential equations with Dirichlet boundary conditions, Qual. 

Theory Dyn. Syst., 22 (2023), 47. https://doi.org/10.1007/s12346-023-00748-5 

https://doi.org/10.1006/jmaa.1999.6408
https://doi.org/10.1002/cpa.3160330504
https://doi.org/10.1007/978-1-4757-2061-7
https://doi.org/10.1016/j.na.2010.02.023
https://doi.org/10.1016/j.aml.2017.11.016
https://doi.org/10.1090/S0002-9939-98-04706-6
https://doi.org/10.1007/s00229-016-0903-6
https://doi.org/10.1016/j.jde.2014.03.016
https://doi.org/10.1016/j.na.2011.04.060
https://doi.org/10.1016/S0022-247X(02)00636-4
https://doi.org/10.1006/jmaa.1996.0327
https://doi.org/10.1016/j.nonrwa.2020.103218
https://doi.org/10.1016/j.na.2006.12.043
https://doi.org/10.1016/j.crma.2018.04.014
https://doi.org/10.1007/s12346-023-00748-5


22177 

AIMS Mathematics  Volume 8, Issue 9, 22162–22177. 

16. S. Wang, X. B. Shu, L. Shu, Existence of solutions to a class of damped random impulsive 

differential equations under Dirichlet boundary value conditions, AIMS Mathematics, 7 (2022), 

7685–7705. https://doi.org/10.3934/math.2022431 

17. Y. Guo, X. B. Shu, Q. Yin, Existence of solutions for first-order Hamiltonian random impulsive 

differential equations with Dirichlet boundary conditions, Discrete Cont. Dyn.-B, 27 (2022), 

4455–4471. https://doi.org/10.3934/dcdsb.2021236 

18. H. J. Ma, Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration 

systems, FACTA Univ.-Ser: Mech., 20 (2022), 445–455. 

https://doi.org/10.22190/FUME220420023M 

19. F. Faraci, R. Livrea, Infinitely many periodic solutions for a second-order non-autonomous 

system, Nonlinear Anal-Theor., 54 (2003), 417–429. 

https://doi.org/10.1016/S0362-546X(03)00099-3 

20. J. H. He, Semi-inverse method of establishing generalized variational principles for fluid 

mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet Eng., 14 (1997), 

23–28. https://doi.org/10.1515/TJJ.1997.14.1.23 

21. J. H. He, A classical variational model for micropolar elastodynamics, Int. J. Nonlinear Sci. 

Numer. Simulat., 1 (2000), 133–138. https://doi.org/10.1515/IJNSNS.2000.1.2.133 

22. J. H. He, Hamilton principle and generalized variational principles of linear 

thermopiezoelectricity, J. Appl. Mech., 68 (2001), 666–667. https://doi.org/10.1115/1.1352067 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 

https://doi.org/10.3934/math.2022431
https://doi.org/10.3934/dcdsb.2021236
https://doi.org/10.22190/FUME220420023M
https://doi.org/10.1016/S0362-546X(03)00099-3
https://doi.org/10.1515/TJJ.1997.14.1.23
https://doi.org/10.1515/IJNSNS.2000.1.2.133
https://doi.org/10.1115/1.1352067

