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ABSTRACT 

The rhizosphere is where crucial processes for the productivity of viticultural systems occur. 
The composition of the bacterial communities associated with the rhizosphere of grapevines 
is known to depend on plant genotype. However, the genotype of grafted grapevines differs 
between scion and rootstock; the role of each genotype is unclear. To untangle the effect of 
scion and rootstock, the rRNA (V4–V5 region of 16S rRNA) extracted from the rhizosphere of 
the grape varieties Riesling and Mueller-Thurgau ungrafted vs grafted on different rootstocks 
was sequenced. The bioinformatic analysis with tools designed to be robust for compositional 
data showed that the investigated rootstocks or scions or combinations, respectively, recruited 
bacterial communities with distinguishable traits. Statistical differences were revealed between 
ungrafted Riesling vs Mueller-Thurgau, between grafted Riesling vs ungrafted Riesling, and 
between ungrafted Mueller-Thurgau vs grafted Mueller-Thurgau. Thus, confirming the role 
of scion and rootstock genotype as a driver of the structure and composition of bacterial 
communities in the rhizosphere of grapevines.
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INTRODUCTION 

Plants are colonised below and above ground by a 
variety of microbes that serve their mutualistic benefits.  
The rhizosphere microbiome is often described as a positive 
interaction between plants and microorganisms (Ryan et al., 
2009; Taye et al., 2019). In particular, the microbiota 
associated with the plant rhizosphere is involved in important 
processes such as growth modulation, defence responses, and 
nutrient uptake (Berendsen et al., 2012; Durán et al., 2018;  
Hu et al., 2018; Li et al., 2020; Schlaeppi and Bulgarelli, 2015; 
Zhang et al., 2019). To date, the majority of rhizobiome studies 
has focused on model plants such as Arabidopsis thaliana 
(Alegria Terrazas et al., 2016) or annual crop plants such as 
barley (Bulgarelli et al., 2013), canola, wheat, pea, and lentil 
(Cordero et al., 2020), oilseed rape (Etesami and Alikhani, 
2016) and maize (Peiffer et al., 2013). However, it is 
also remarkably important to consider the rhizosphere 
microorganisms of perennial plants, such as grapevines 
(Marasco et al., 2018), for supporting crop growth, especially 
under difficult conditions (Timmusk et al., 2014).

Microbial communities associated with grapevines and 
wine, respectively, have already been extensively studied 
(Burns et al., 2016; Hendgen et al., 2018; Holland et al., 
2014). In vineyard soil, the microbial communities have 
been described, for example, as a function of spatial 
distribution or management practices (Bokulich et al., 2014; 
Hendgen et al., 2018; Holland et al., 2014; Vega-Avila et al., 
2015). Most of these studies were based on soil samples taken 
near the grapevines, not on veritable rhizosphere samples. 
Nonetheless, the rhizosphere is the location where crucial 
processes for the productivity of agricultural systems take 
place, mediated by microorganisms. Therefore, the processes 
and microorganisms in the rhizosphere need to be considered 
to study the direct interaction between the grapevine root and 
the surrounding soil.

The choice of grapevine rootstock variety impacts the 
microorganisms in the grapevine rhizosphere (Berlanas et al., 
2019; Marasco et al., 2018). Since the 19th century, Vitis 
vinifera cultivars have been grown as scions grafted 
onto Phylloxera-tolerant Vitis sp. rootstocks. However, 
understanding the mechanisms underlying grafted vines and 
the interactions between scion and rootstock is still beginning 
(as reviewed by Gautier et al., 2019). For future research, the 
selection of the rootstock is, thus, inevitable, also with regard 
to its microbial community (Zarraonaindia et al., 2015). 
Vink et al. (2021) investigated differences in the microbial 
communities in the rhizosphere of an 11-year-old grapevine 
of four scion cultivars and four rootstock types regarding 
alpha and beta diversity indices, concluding that bacterial 
diversity is affected by both scion and rootstock variety. 
However, this effect depends on the diversity measures 
and the specific rootstock-scion combinations considered  
(Vink et al., 2021). Further studies on this specific topic 
are needed (Berlanas et al., 2019). Therefore, a study was 
conducted under controlled conditions to reduce the variability 
resulting from all factors except the genotype of the rootstock and 

scion with potted grapevines. In three different experimental 
designs, the rhizobiome of two ungrafted Vitis vinifera 
varieties (Riesling and Mueller-Thurgau) were compared 
with varieties of Riesling and Mueller-Thurgau grapevines 
grafted on different rootstocks. A metabarcode analysis 
was performed on the extracted RNA (Carvalhais et al., 
2012; Garoutte et al., 2016; Turner et al., 2013) to get a 
better insight into the active microbiome of the grapevine 
rhizosphere. To the best of our knowledge, no compositional 
data analyses of 16S rRNA data of the grapevine rhizosphere 
microbiome with different scions and rootstock cultivars have 
been carried out before. Data derived from high-throughput 
sequencing of biological samples must be considered as 
compositions rather than counts, as ratio-based analyses can 
lead to qualitatively incorrect conclusions (Fernandes et al., 
2014; McLaren et al., 2019; Quinn et al., 2019). The effect of 
the grape variety and rootstock, respectively, on the bacterial 
communities in the rhizosphere could be investigated due to 
the controlled experimental conditions.

MATERIALS AND METHODS 

2.1 Plant material
The independent experiments were located at Hochschule 
Geisenheim, University, Germany. The grapevines were 
planted in pots (15 cm × 15 cm × 18.5 cm) with soil 
(Einheitserde Typ ED 73, H. Nitsch & Sohn GmbH & Co. 
KG, Kreuztal, Germany) in 2019 and 2020, respectively 
(Table 1). The grapevines for time point May 2019 were 
grown in an open greenhouse under field conditions for 
three months. The grapevines for time points October 2019 
and October 2020 were grown in an open greenhouse under 
field conditions for six months. They were watered whenever 
it was required. Additionally, the grapevines were managed 
according to Good Agricultural Practices. In May 2019, 
ungrafted Mueller-Thurgau und Riesling grapevines, as well 
as soil-filled pots without grapevines used as controls, were 
examined. In the same year, additional Riesling grapevines, 
grafted on four different rootstocks (Vitis berlandieri Planch. 
× Vitis riparia Michx. cv. SO4; Vitis riparia × Vitis cinerea 
Engelm. cv. Boerner; Vitis berlandieri Planch. × Vitis 
riparia Michx. cv. 125AA; and Vitis berlandieri Planch.  
× Vitis riparia Michx. cv. Teleki 8 B) were investigated.  
In 2020 ungrafted Mueller-Thurgau and Riesling grapevines, 
soil-filled pots without grapevines as control, Riesling 
grapevines with four different rootstocks (Vitis berlandieri 
Planch. × Vitis riparia Michx. cv. SO4; Vitis riparia × Vitis 
cinerea Engelm. cv. Boerner; Vitis berlandieri Planch. × Vitis 
riparia Michx. cv. 125AA; and Vitis berlandieri Planch.  
× Vitis riparia Michx. cv. Teleki 8 B) and Mueller-Thurgau 
with three different rootstocks (Vitis berlandieri Planch.  
× Vitis riparia Michx. cv. SO4; Vitis berlandieri Planch.  
× Vitis riparia Michx. cv. 125AA; and Vitis berlandieri 
Planch. × Vitis riparia Michx. cv. Kober 5 BB) were 
examined. 
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2.2 Rhizosphere sampling 
Rhizosphere sampling was performed at three different 
time points for the three experimental setups: May 2019, 
October 2019, and October 2020. A total of four Riesling, 
four Mueller-Thurgau, and four controls were sampled 
in May 2019. Five samples per grapevine rootstock were 
collected in October 2019. Additionally, nine controls, 
nine ungrafted Riesling and Mueller-Thurgau, and 
three samples per grapevine rootstock were collected in 
October 2020. Only soil attaching to the roots was considered 
as rhizosphere soil for sampling and microbiome analyses.  
For controls (“No plant”), bulk soil was sampled in the same 
horizons of the pot as where the roots of the vines grow in 
the pots with a plant.

2.3 RNA extraction, Reverse-Transcriptase-PCR, and Ion 
Torrent Sequencing
RNA extraction from the rhizosphere soil and cDNA 
amplification were done according to Rosado-Porto et al. 
(2021). First Ion Torrent PCR was performed with a KAPA 
HiFi Polymerase kit (VWR International GmbH, Darmstadt, 
Germany), amplifying the partial sequence of the hypervariable 
regions (V4 and V5) of the 16S rRNA gene with the primer 
520F (5’-AYTGGGYDTAAAGNG-3’, (Claesson et al., 
2009)) and 926R (5′-CCGYCAATTYMTTTRAGTTT-3’, 
(Engelbrektson et al., 2010)). Amplification parameters 
were 3 min at 95 °C followed by 35 cycles at 98 °C for 20 s, 
55 °C for 30 s, 72 °C for 30 s, and finally, 72 °C for 5 min. 
Second Ion Torrent PCR with primers, including barcodes 
and Ion Torrent sequencing adapters, was conducted with the 

PCR product from the first Ion Torrent PCR, as suggested 
by Berry et al. (2011). The PCR was performed with the 
following amplification parameters: 3 min at 95 °C followed 
by 10 cycles at 98 °C for 20 s, 55 °C for 30 s, 72 °C for 
30 s, and finally, 72 °C for 7 min. The PCR products were 
applied to a 1 % agarose gel and subsequently purified using 
NucleoSpin® Gel and PCR Clean-up (MACHEREY-NAGEL 
GmbH & Co. KG, Düren, Germany). Further, this product 
was purified with DNA purification beads NucleoMagVR 
NGS clean-up kit (MACHEREY-NAGEL GmbH & Co. KG, 
Düren, Germany). The Ion Torrent Sequencing was done 
according to Kaplan et al. (2019).

2.4 Bioinformatic analysis of the sequencing data
Bioinformatic analysis was performed with QIIME 2 2020.11 
(Bolyen et al., 2019). The obtained raw sequences were 
demultiplexed using cutadapt (Martin, 2011) with no errors 
allowed in the barcode sequences. Quality control, sequence 
denoising, clustering to amplicon sequence variants (ASVs), 
dereplication, and removal of chimaera sequences were 
conducted with DADA2 (Callahan et al., 2016) (via q2-dada2). 
Thereby, the first 15 base pairs (bp) were removed, and the 
sequences were cut to a length of 312 bp (May 2019), 317 bp 
(October 2019), and 312 bp (October 2020), respectively. 
Sequences that did not pass the quality control were removed. 
Therefore, two samples of 125AA (Timepoint October 2019) 
and one sample of SO4 (Timepoint October 2019) were 
not considered in the following analysis. Afterwards, the 
taxonomy was assigned as described previously by Dries 
et al. (2021a), and all ASVs belonging to chloroplasts and 
mitochondria were removed. All ASVs were aligned with 

time point grape variety (n) rootstock

May 2019

Mueller-Thurgau (4) ungrafted

Riesling (4) ungrafted

No plant (4) Control

October 2019

Riesling (5) SO4

Riesling (5) 125AA

Riesling (5) Boerner

Riesling (5) 8B

October 2020

Riesling (9) ungrafted

Riesling (3) SO4

Riesling (3) 125AA

Riesling (3) Boerner

Riesling (3) 8B

Mueller-Thurgau (9) ungrafted

Mueller-Thurgau (3) SO4

Mueller-Thurgau (3) 125AA

Mueller-Thurgau (3) Kober 5BB

No plant (9) Control

TABLE 1. Grape varieties and rootstocks were used for rhizosphere sampling at three different experimental time 
points. Number of plants sampled (n).
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MAFFT (Katoh & Standley, 2013) (via q2-alignment) and 
used for constructing a phylogeny with fasttree2 (Price et al., 
2010) (via q2-phylogeny). The feature table was filtered for 
the 20 dominant bacterial families, and taxabarplots were 
created with GraphPad Prism version 9.3.1 for Windows 
(GraphPad Software, San Diego, California USA, www.
graphpad.com). Alpha diversity metrics (Shannon, Simpson, 
and observed features) and significances were calculated 
with Kruskal-Wallis or PERMANOVA (Anderson, 2017), 
respectively. Beta diversity was measured using DEICODE 
(Martino et al., 2019) with a filtered beta diversity ordination 
file. For this purpose, all feature counts below 10 and all 
sample counts below 500 were removed. Beta diversity for 
all time points was visualised within a compositional biplot, 
displaying the eight most important features. From the ASVs 
shown as arrows in the DEICODE graphs, a more accurate 
taxonomic affiliation was done with a pairwise alignment 
at the online database EzBioCloud (Yoon et al., 2017).  
The distance matrices were also analysed by the PERMANOVA 
test, using 999 permutations. The significance of differential 
abundance was determined using ALDEx2 (Fernandes et al., 
2013). Therefore, all feature frequency counts below 10 and 
all sample counts below 2 were removed. 

RESULTS 

3.1. Bacterial alpha diversity across the 
different experimental set-ups
The 20 dominating bacterial families for the three-time 
points are shown in Figures 1 and 2. Control soil showed 
clear differences in the 20 dominating bacterial families 
compared to the ungrafted Mueller-Thurgau and Riesling 
(Figure 1A). In the rhizosphere of Riesling grapevine grafted 
onto four different rootstocks (SO4, 125AA, Boerner, 
8B), the dominating bacterial families in the rhizosphere 
showed no clear differences of the 20 dominating families 
comparing the four rootstocks (Figure 1B). For time point 
October 2020 (Figure 2), some differences were found 
between Riesling and Mueller-Thurgau ungrafted compared 
to the grafted varieties and the control of the 20 dominating 
bacterial families.

For ungrafted grape varieties Mueller-Thurgau and Riesling, 
significant effects of the grape variety were found in alpha 
diversity indices Shannon and observed features (Table 2). 
No statistical differences were found regarding the alpha 
diversity Simpson index. However, while the Shannon–
Wiener index is strongly influenced by species richness and 

Time point grape variety Shannon Simpson Observed features

May     2019

Mueller-Thurgau vs Riesling 0.03 * 1.00 ns 0.03 *

Mueller-Thurgau vs Control 0.25 ns 1.00 ns 0.56 ns

Riesling vs Control 0.03 * 1.00 ns 0.03 *

TABLE 2. Results of Kruskal-Wallis pairwise tests of alpha diversity indices per ungrafted grape variety or control, 
respectively, for time point May 2019. 

Significant differences (corrected p-value < 0.05) are indicated with *, and no differences are indicated with ns = not significant. For 
time points October 2019 and October 2020, no statistical differences were measured, thus, they are not listed in this table.

time point grape variety PERMANOVA

May 2019

Mueller-Thurgau vs Riesling 0.03 *

Mueller-Thurgau vs Control 0.03 *

Riesling vs Control 0.03 *

October 2020

Mueller-Thurgau ungrafted vs Mueller-Thurgau grafted 0.001 *

Mueller-Thurgau ungrafted vs Riesling ungrafted 0.002 *

Mueller-Thurgau ungrafted vs Riesling grafted 0.001 *

Mueller-Thurgau ungrafted vs Control 0.001 *

Mueller-Thurgau grafted vs Riesling ungrafted 0.001 *

Mueller-Thurgau grafted vs Riesling grafted 0.21 ns

Mueller-Thurgau grafted vs Control 0.001 *

Riesling ungrafted vs Riesling grafted 0.001 *

Riesling ungrafted vs Control 0.001 *

Riesling grafted vs Control 0.001 *

TABLE 3. Bacterial beta diversity results of PERMANOVA pairwise tests. 

Significant differences (corrected p-value < 0.05) are indicated with *; pairs with no statistical differences are not shown in this table.  
In October 2019, no significant differences were measured.
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by rare species, the Simpson index gives more weight to 
evenness and common species. For the grape variety Riesling 
with four different rootstocks, examined in October 2019, 
and for time point October 2020, no statistical differences 
were found in the alpha diversity (Shannon, Simpson, and 
observed features). 

3.2. Bacterial beta diversity across the different 
experimental set-ups
The compositional beta diversity metric was calculated using 
a robust Aitchison PCA via DEICODE. Aitchison distance is a 
Euclidean distance between samples after centre log ratio (clr) 
transformation. For all experimental set-ups and time points, 

FIGURE 1. Relative abundance of different bacterial families (in %) in the rhizosphere of grapevine (time point May 
2019 and October 2019). A) The 20 most dominating bacterial families in the rhizosphere of ungrafted Riesling, 
ungrafted Mueller-Thurgau, and a control (time point May 2019). B) The 20 most dominating bacterial families in the 
rhizosphere of the Riesling grapevine grafted onto four different rootstocks (SO4, 125AA, Boerner, 8B, time point 
October 2019).

FIGURE 2. Relative abundance of different bacterial families (in %) in the rhizosphere of grapevine (time point 
October 2020). The 20 most dominating bacterial families in the rhizosphere of ungrafted Mueller-Thurgau, ungrafted 
Riesling, Riesling grafted onto different rootstocks (SO4, 125AA, Boerner, and 8B), Mueller-Thurgau grafted onto 
different rootstocks (SO4, 125AA, 5BB), and a control. 
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FIGURE 3. PCoA biplots are calculated based on a robust Aitchison community dissimilarity distance matrix with 
arrows illustrating the ASVs strongly influencing the principal component axis. Taxonomic affiliations of the arrows 
showed the next related sequences with accession numbers found by pairwise alignment at EzBioCloud Database. 
Numbers in the brackets show the percentage of identity of the ASV sequence with the next related sequence. A) Beta 
diversity of bacterial rhizosphere communities for ungrafted Riesling and ungrafted Mueller-Thurgau grape variety and 
a control (time point May 2019). Statistical differences were detected between all groups (PERMANOVA, p = 0.002). 
B) Beta diversity of bacterial rhizosphere communities for the Riesling grape variety with four different rootstocks 
(time point October 2019). No statistical differences were detected (PERMANOVA, p > 0.05). C) Beta diversity 
of bacterial rhizosphere communities for the Riesling grape variety ungrafted and with four different rootstocks, the 
Mueller-Thurgau grape variety ungrafted and with three different rootstocks, and a control (October 2020). Statistical 
differences were detected (PERMANOVA, p = 0.001).
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significant differences in the beta diversity of the bacterial 
communities were detected (Figure 3). The determinant of the 
bacterial communities in the rhizosphere is the grape variety 
and rootstock, or grape variety and rootstock combination, 
respectively. PERMANOVA pairwise results reveal statistical 
differences (Table 2) for the time point May 2019 between 
Mueller-Thurgau and Riesling (p = 0.03), Mueller-Thurgau 
and control (p = 0.03), and Riesling and control (p = 0.03). 
No statistical significances for time point October 2019 
were detected between the rootstocks (p > 0.05), so no 
arrows illustrating ASVs strongly influencing the principal 
component axis are visible. Moreover, statistical differences 
were detected for time point October 2020 between 
Mueller-Thurgau ungrafted vs Mueller-Thurgau grafted onto 
different rootstocks, Mueller-Thurgau ungrafted vs Riesling 
ungrafted, Mueller-Thurgau ungrafted vs Riesling grafted 
onto different rootstocks, and Mueller-Thurgau ungrafted vs 
the control (p < 0.05, Table 3). Statistical differences were 
also detected between Mueller-Thurgau grafted vs Riesling 
ungrafted, Mueller-Thurgau grafted vs the control, Riesling 
ungrafted vs Riesling grafted onto different rootstocks, 
Riesling ungrafted vs the control, and Riesling grafted vs the 
control (p < 0.5, Table 3). However, no statistical differences 
in beta diversity were detected between Mueller-Thurgau 
grafted and Riesling grafted (p = 0.21, Table 3).

DEICODE allows the display of a biplot by showing not 
only the Aitchison distances but also the taxa (in the form of 
an arrow) that most strongly influence principal component 
axes. The eight most important taxa influencing the principal 
component axes shown in each figure are members of the 
phyla Verrucomicrobia, Proteobacteria, Acidobacteria, 
and Chloroflexi. According to the taxonomic classification, 
Verrucomicrobia, Proteobacteria, Acidobacteria, and 
Chloroflexi also form the main composition of the 
predominant phyla in the rhizosphere of the different 
rootstock or shoot genotypes or combinations. A bacterium 
related to Nevskia terrae influenced the rhizosphere 
microbiome of Mueller-Thurgau, whereas Nevskia soli 
and Longimicrobium terrae influenced the rhizosphere 
microbiome of Riesling (Figure 3). A sequence next relative 
to the bacterium Racemicystis persica (KX443485, 91.06 %) 
belonging to the Proteobacteria phylum and Polyangiaceae 
family is one of the eight most important features in two of 
the three experimental set-ups (Figure 3).

3.3 Changes in the rhizosphere microbial community
Compositional differential abundance analyses indicated 
that several bacterial genera in the rhizosphere were 
affected. ALDEx2 demonstrated that for the time point of 
May 2019, in total, 26 bacterial genera differed according 
to the grape variety. Bacterial genera with the highest fold 
changes belonged to Rhodospirillaceae, Opitutaceae, 
Burkholderiaceae, Polyangiaceae, and “Solibacteraceae” 
(Tables 1–3, Supplementary Material). An uncultured 
bacterium relative to the Candidatus Solibacter showed 
the highest fold changes (fold change 1640.65 Control vs 
Mueller-Thurgau and fold change 862.6 Control vs Riesling). 
This bacterial genus is also displayed in Figure 3A) as an 

ASV strongly influencing the principal component axis.  
For time point October 2019, no genera differ according to 
the different rootstocks and Riesling grape variety. For time 
point October 2020, ALDEx2 demonstrated 560 bacterial 
genera in total differing according to the grape variety or 
rootstock or combinations, respectively. The highest log fold 
changes showed Nevskiaceae (also displayed in Figure 3C), 
Acidobacteriaceae, “Solibacteraceae”, Comamonadaceae, 
Caulobacteraceae (Phenylobacterium deserti, also shown in 
Figure 3C), Opitutaceae, and Steroidobacteraceae. Statistical 
different genera were detected for time point October 2020 
between Mueller-Thurgau ungrafted vs Mueller-Thurgau 
grafted onto different rootstocks, Mueller-Thurgau ungrafted 
vs Riesling ungrafted, Mueller-Thurgau ungrafted vs Riesling 
grafted onto different rootstocks, Mueller-Thurgau ungrafted 
vs the control, Riesling ungrafted vs Riesling grafted onto 
different rootstocks, and Riesling grafted vs the control 
(Tables 4–9, Supplementary Material). Between Riesling 
grafted vs Mueller-Thurgau grafted, no statistical differences 
regarding the bacterial genera were detected. 

DISCUSSION 

The experimental design of this study aimed at minimizing 
the variability coming from all factors except grape variety 
and rootstock genotype using grapevines in pots under the 
same environmental conditions. The differences in the 
bacterial communities between the two grape varieties, 
Riesling and Mueller-Thurgau, ungrafted and grafted onto 
different rootstocks, were investigated using compositional 
data analyses. The observed ASVs revealed that the rootstock 
and scion rhizosphere, respectively, recruited complex 
bacterial communities mainly composed of Proteobacteria, 
Verrucomicrobiota, Chloroflexi, Myxococcota, Acidobacteria, 
and Gemmatimonadota. A similar study by Dries et al. (2021a) 
with ungrafted grapevine rootstocks also showed the phyla 
Proteobacteria, Acidobacteria, and Gemmatimonadota 
as some of the predominant bacterial communities in 
the rhizosphere. Other studies have come to comparable 
conclusions, independent of factors such as grape variety 
and rootstock (Berlanas et al., 2019; Coller et al., 2019; 
Marasco et al., 2018; Novello et al., 2017; Torres et al., 2021; 
Vink et al., 2021; Zarraonaindia et al., 2015). Gobbi et al. 
(2022) showed in their study that Proteobacteria occurred 
with the highest relative abundances, and Actinobacteria 
and Acidobacteria were the second-most or third-most 
abundant bacterial phylum. In this study, we also detected 
Actinobacteria in the samples (Supplementary Material), 
but not as one of the most abundant bacterial phyla, which 
could be due to the commercial soil used for the experiments.  
The dominating families give a higher resolution on the 
taxonomic level which is more suitable for comparison 
than the phyla level. During all experimental time points, 
Opitutaceae, Reyranellaceae, “Solibacteraceae”, and 
Solimonadaceae were found as dominating families, 
among others (Figures 1 and 2). This is also consistent 
with a study conducted by Marasco et al. (2018). They 
revealed “Solibacteraceae” as one of the families shaping the 
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topology of the bacterial network in the grafted root system  
(Marasco et al., 2018). Comamonadaceae (Figures 1A and 
2) were also found in a study by D’Amico et al. (2018) in 
the rhizosphere of grapevine rootstocks 5BB and Paulsen 
1103. As a wider variety of bacteria is found in soil, it can be 
assumed that soil serves as a primary reservoir for potential 
plant-associated bacteria (Zarraonaindia et al., 2015). 
However, soil, as well as the rhizosphere, can also form a 
path of infection for soil-borne pathogens (Berlanas et al., 
2019). For grapevines, this includes pathogens such as 
Fusarium oxysporum (Freire Cruz and Carvalho Pires, 2014) 
or Sorosphaera viticola (Neuhauser, 2009). 

The alpha diversity indices in this study revealed higher 
observed features for ungrafted Riesling grape varieties 
in May 2019 (Table 2). This may indicate that ungrafted 
Riesling grapevines could recruit a higher number of bacteria 
in their rhizosphere than Mueller-Thurgau grapevines.  
The underlying reason for this varying colonisation could 
originate from the root exudates. Indeed, root exudates are 
strongly influenced by the cultivar, and they are considered 
among the most important factors in the recruitment of the 
microbiome (Kusstatscher et al., 2021; Marasco et al., 2018; 
Wei et al., 2019). As a key role in the rhizosphere ecosystem, it 
is essential to understand the root exudation patterns to unravel 
the subsequent effects on the surrounding soil and microbial 
communities (Yee et al., 2021). Berlanas et al. (2019) 
investigated in their study the grapevine rootstock variety 
as one of the factors shaping the vineyard microbiome. In a 
study conducted by Vink et al. (2021), the authors observed 
highly specific cultivar–rootstock interaction effects on the 
microbiome only occurring for a few specific rootstock–
cultivar combinations. In a recent study by Marasco et al. 
(2022), the authors showed that the interaction of rootstock 
and scion resulted to be more important in shaping the root 
system microbiome than the rootstock and scion considered 
separately. They investigated four different rootstocks and 
three scions in seven combinations (Marasco et al., 2022). 

The alpha diversity indices for Riesling and Mueller-Thurgau 
grafted onto different grapevine rootstocks revealed no 
statistical differences (Table 2). However, three out of 
four rootstocks used for this experiment have emerged from 
the same breeding: Vitis berlandieri Planch. × Vitis riparia 
Michx., which may be an explanation of the statistical 
same bacterial communities in the rhizosphere. The fact 
that most cultivated grapevines are genetic chimaeras with 
two different genotypes (Marín et al., 2021) complicates 
the separation of the genotypes from each other regarding 
their related microbial communities. Hence, all the studies 
indicate that certain taxa are always apparently present at 
all times in the rhizosphere of the grapevine. However, no 
statistical differences regarding alpha diversity indices were 
found between ungrafted Mueller-Thurgau and ungrafted 
Riesling for the time point October 2020, which could be 
due to differences between May 2019 and October 2020 
regarding the time of growth in the greenhouse under field 
conditions. Since grapevines for May 2019 were grown only 

four months instead of six months, alpha diversity indices 
could have been changed. 

The beta diversity revealed statistical differences in the three 
experimental setups. Pairwise PERMANOVA results showed 
statistical differences between ungrafted Mueller-Thurgau 
and ungrafted Riesling grape varieties but no statistical 
differences between different rootstocks. The results indicate 
that the grape variety may be a driving factor of the bacterial 
communities in the rhizosphere, while the combination of 
grafted vine and rootstock may have a minor effect. This is 
also in accordance with a former study, showing the ungrafted 
grapevine rootstocks as a driver of the bacterial communities 
(Dries et al., 2021a). Thus, it might be concluded that grafting 
grapevines onto rootstocks implies a change in bacterial 
communities. Moreover, Vink et al. (2021) revealed in their 
study that the main determinant of the bacterial communities 
was scion variety for the alpha diversity and a significant 
interaction between scion and rootstocks regarding the beta 
diversity. However, the authors did not refer to ungrafted 
grape varieties. In another study conducted by Berlanas et al. 
(2019), they described the rootstock genotype as the most 
important factor in shaping the microbiome. Wright et al. 
(2022) revealed that the rootstock was a significant factor 
driving the root microbiome with the grape variety New York 
Muscat ungrafted and grafted onto two different rootstocks. 

Comparing the ASVs strongly influencing the principal 
component axis from the PCoA biplot (Figure 3) with the 
results of the compositional differential abundance analyses 
(ALDEx2, Tables 1–3, Supplementary Material) for time 
point May 2019 revealed ASVs next relative to Nevskia 
terrae, uncultured Candidatus Solibacter, and uncultured 
Deltaproteobacteria as those taxa appearing in both analyses. 
Nevskia terrae was already described as a bacterium isolated 
from soil in Korea (Kim et al., 2011), belonging to the 
Xanthomonadaceae. Some members of this family are already 
described as plant-growth-promoting (Cutiño-Jiménez et al., 
2020). Candidatus Solibacter was described previously as a 
bacteria inhabiting the rhizosphere of walnut trees (Bai et al., 
2020) and Deltaproteobacteria in rice (Zhang et al., 2018). 
For time point October 2020, all eight displayed ASVs 
strongly influencing the principal component axis from the 
DEICODE beta diversity also appeared in the compositional 
abundance analyses (ALDEx2, Tables 4–9, Supplementary 
Material). The next relative Phenylobacterium deserti was 
first isolated from desert soil (Khan et al., 2017), and other 
Phenylobacterium were also isolated from different soil 
samples (Khan et al., 2018; Li et al., 2019). The next relative of 
uncultured “Acidibacter” belongs to Gammaproteobacteria; 
members of this class are known for plant growth-promoting 
traits, inhabiting the rhizosphere (Madhaiyan et al., 
2017), root nodules (Ibáñez et al., 2009), or plant tissue 
(Madhaiyan et al., 2020). 

However, further research on this topic is needed to reveal 
all effects of rootstock and grapevine scion combinations on 
the bacterial communities in the rhizosphere. Here, it should 
be emphasised again that in practice, Vitis vinifera cultivars 
are usually grown as scions grafted onto Phylloxera-tolerant 
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Vitis sp. Darriaut et al. (2022) indicate that grapevines can 
select different but potentially beneficial microorganisms via 
rootstock and scion genotypes. The effects of rootstock-scion 
interactions should, therefore, be considered primarily from 
a practical perspective. Nevertheless, it is remarkable that 
the bacterial communities change with grafting. Therefore, 
the next approach should be to find out whether this change 
brings advantages or even disadvantages. Moreover, it is 
important to understand the complexity of the grapevine 
holobiont as a crucial issue for the future of the wine industry 
(as reviewed by Bettenfeld et al., 2021). In addition, the 
effects on the growth and health of the vine must be revealed 
from a practical perspective. A thorough understanding 
of microorganisms in vineyard soil and the complex 
relationships between microbial communities, soil properties, 
and plants are crucial for enhancing plant productivity, 
grape production, biogeochemical processes, and vineyard 
management practices (Di Liu et al., 2019; Dries et al., 
2021b; Holland et al., 2014; Liang et al., 2019; Yee et al., 
2021). Inferring, the colonisation of the microorganisms in 
the rhizosphere and the root exudation patterns of grapevine 
must be investigated. Future research in this field is inevitably 
required to provide a better understanding of the rhizospheric 
grapevine microbiome in the context of root exudates, grape 
variety, and rootstock, as well as different environmental 
conditions.

CONCLUSION 

The results from these experimental designs reveal differences 
in the bacterial communities in the rhizosphere of grafted or 
ungrafted grapevine varieties, respectively. The bacteria in 
the rhizosphere of grapevine are affected by both grapevine 
variety and scion-rootstock combination. While differences 
were observed between ungrafted vs grafted grape varieties, 
especially in terms of beta diversity, no differences were 
observed between the different rootstocks. Thus, the grapevine 
cultivar appears to have a predominant role compared with 
the rootstock in shaping the rhizosphere microbiota. Further 
research is needed to provide a better understanding of the 
different microorganisms in the grapevine rhizosphere 
regarding the scion-rootstock combinations. Moreover, the 
effects on the grapevine growth and health, and also on the 
wine quality, have to be revealed. 
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