

Indian Journal of Agricultural Sciences 85 (12): 1578–85, December 2015/Article https://doi.org/10.56093/ijas.v85i12.54310

Effect of planting time and density on plant growth, seed yield and quality attributes in onion (*Allium cepa*) cv. Pusa Riddhi

SANJAY KUMAR¹, B S TOMAR², S K JAIN³, NAVEEN SINGH⁴, RAJENDER PARSAD⁵ and A D MUNSHI⁶

Indian Agricultural Research Institute, New Delhi 110 012

Received: 15 June 2015; Accepted: 25 June 2015

ABSTRACT

The present experiment was conducted to investigate the effect of planting time and density on plant growth, seed yield and quality attributes in onion (*Allium cepa* L.) cv. Pusa Riddhi at SPU, IARI, New Delhi during *rabi* 2013-14 and 2014-15. The experiment consists of three different planting dates, i.e. 15 October (T_1), 25 October (T_2) and 5 November (T_3) with three spacings, viz. 60×10 cm (S_1) 60×20 cm (S_2) 60×30 cm (S_3). The experimental results revealed that the date of planting and plant spacing had significant influence on growth attributes, flowering, yield and quality characters. The planting on 15 October (T_1) showed significant higher, seed scape height (101.4 cm), umbel diameter (6.54 cm), productive umbellates/umbel (414.73), seed setting (83.69%), seed yield/plant (8.71 g) and yield/ha (6.86 q), germination (%) (88.43), seedling length (9.48 cm), seedling dry weight (1.9 mg) and vigour index-I and II (8.33.32 and 167.08) than 25 October and 5 November planting. The plant spacing 60×30 cm (S_3) showed higher number of leaves/plant (40.89) seed scape height (102.26 cm), scape diameter (1.88 cm), total scapes/plant (11.72), umbel diameter (6.58 cm), productive scapes/plant (8.35), umbellates/umbel (503.52), productive umbellates/umbel (419.4), yield/umbel (3.48 g), seed yield/plant (12.43 g), seed yield/ha (6.22 q), 1000 seed weight (3.01 g), germination (%) (89.76) and seed vigour-I and II (918.56 and 172.96) than closer spacing. The incidence of disease, disease severity index and scape lodging (%) were significantly lower in 15 October (T_1) and 60×30 (S_3).

Key words: Onion, Planting time and density, Pusa Riddhi, Quality, Seed scape, Seed yield/ha, Umbellates

At present, in India onion (Allium cepa L.) seed production is largely concentrated in the state of Maharashtra, Karnataka, Gujarat and Madhya Pradesh and unable to meet the market demand of supply of quality seed. Hence, development of new alternative locations for onion seed production is a need of the hour. North India could be one of the potential onion growing regions but onion seed production in this region is greatly affected by biotic and abiotic factors and resulting lower seed yield and quality. The planting time is playing important role since,onion is a photo thermo sensitive plant (Jones and Mann 1963) and a small fluctuation in environment can affect the yield and quality of seed. The early planting of bulbs for seed production affects the emergence of seed head from bulb which demands low temperature conditions (Peters 1990) and delay in planting will have more incidences of disease, viz. Stemphylium blight, purple blotch and pest attack. The planting time also affects the seed setting percentage because perfect matching of honey bee activities

¹PhD Scholar (e mail: sanjaykumar10187@gmail.com) Division of Seed Science and Technology, ²Principal Scientist (e mail: bst_spu_iari@rediffmail.com), Seed Production Unit,³Professor, Division of Seed Science and Technology, ⁴Senior Scientist, Division of Genetics, ⁵Principal Scientist, Division of Plant Physiology, ⁶Head, Division of Experimental Design, IASRI, ⁷Professor, Division of Vegetable Science

for pollination and anthesis of flowers is required for better seed setting, which is highly depends on range of temperatures prevailing in seed production areas (Teshome et al. 2014). High temperature during pollination and seed maturation, leads to more abortion of flowers resulting into less seed yield and quality. Many researchers observed that early planting of bulbs gave significant higher seed vield and quality than late planting (Ibrahim et al. 1996, Mosleh 2008 and Anisuzzaman et al. 2009). Planting density is other important factor which affects the seed yield and quality. Brewster (1994) reported that optimum plant spacing and high quality seeds were considered important for optimum plant growth, high yield and quality in Allium species. Ayoub and Hala (2013) suggested that wider spacing of bulbs for onion seed production had given higher germination % and emergence percentage than closest spacing and similar results were reported by other workers (Narendra and Ahmed 2005, Mirshekari et al. 2008 and Asaduzzaman et al. 2012). In order to harvest higher bulb yield and enhance production, it is imperative to improve the availability of seed quality to the growers. However, the investigations were reported on various aspects and variety but the standardized seed production technology on new released onion cv. Pusa Riddhi is not available. Therefore, the present study was conducted to standardize the planting time and density for quality seed

December 2015]

production of onion cv. Pusa Riddhi under North Indian conditions.

MATERIALS AND METHODS

The present experiment was conducted for two consecutive years during rabi season of 2013-14 and 2014-15 at Seed Production Unit Farm, Indian Agricultural Research Institute, New Delhi. The treatment consist of three planting dates (T1-15 October, T2-25 October and T3-5 November) as main plot and three spacing (S_1 - 60 cm×10 cm, S₂- 60 cm×20 cm, S₃-60 cm×30 cm) as sub plot with plot size of 3 m×3 m (9 m²). The medium size (60-80 g) bulbs of onion cv. Pusa Riddhi which were produced in previous season and stored under farm conditions were planted according to the combinations of treatments. The treatment plots were uniformly fertilized with 100:50:50 kg/ha (N: P: K) and full amount of P and K and half amount of N was applied as basal dose. The remaining half N was applied as ridge dressing. The necessary plant protection measures were adopted for control of pests and diseases. Fipronil (reagent) @ 10 kg/acre as basal application and imidacloprid (30.5%) @ 0.5ml/liter of water and jump (Fipronil) @40g/ha were applied to control thrips and other insects. Two spray of nativo (Tebuconazole 50% + Trifloxystrobin 25% WG) (a) 100g/acre was applied at 25 DAP and at bolting stage to avoid the fungal diseases (stemphylium blight and purple blotch). Earthing up was practiced in each plot at 75 DAP to avoid lodging of seed scapes in later stages, i.e. flowering and maturation. The observations on number of leaves, scape height, diameter, productive seed scape, PDI and umbel traits were recorded from randomly selected 10 plants. The seed yield attributes was recorded on plot basis after harvesting. The seed quality attributes were evaluated as per the guidelines of ISTA, 2012 while, seed vigour-I and II and EC were calculated as suggested by Abdul-Baki and Anderson (1973) and Agrawal and Dadlani (1987), respectively. Total leaf chlorophyll was measured as method suggested by Hiscox and Israelstam (1979) by using dimethyl sulfoxide (DMSO). The disease severity on seed scape was scored based on 0-4 scales (Behera et al. 2013) as follows; 0= No disease symptoms, 1=1-25% seed scape area infected, 2=25-50% seed scape area infected, 3=50-75% seed scape area infected, 4=57-100% seed scape area infected and percentage disease index (PDI) was calculated by the formula given by Wheeler (1969).

PDI= Total sum of numerical ratings	100
Number of observations	Maximum disease rating

The data on quantity observations recorded were subjected to statistical analysis by adopting split plot design using SAS 9.3 and the percentage data were transformed into arcsine value for analysis.

RESULTS AND DISCUSSION

Effects on growth attributes

The experimental results presented in Table 1 showed that planting density had significant effect on number of leaves/plant and S₃ has produced more number of leaves (40.89) as compared to $S_2(37.05)$ and $S_1(34.12)$ which might be due to the availability of higher nutrients and light under lower density of plants and resulting into better number of leaves/plant. The results are in agreement with Asaduzzaman et al. (2012). The T₃ has taken less period (55.72) for seed scape emergence than T_1 (66.44) and T_2 (60.33) (Table 1) which could be due to low temperature conditions during December and January and promoted the bolting of seed scape and its development. The spacing and interaction (T×S) did not have any significant effect on seed scape emergence. The planting time and density had significant effect on seed scape height and maximum height was recorded under T₁ (101.74 cm) than T₂ and T₃ (101.74, 100.61cm) (Table 1), respectively, which could be attributed to conducive climatic condition, that promoted the higher photosynthesis and more mobilization of assimilates.

The significant higher seed scape height was observed under $S_3(102.26 \text{ cm})$ followed by $S_2(101.17 \text{ cm})$ and $S_1(99.36)$ which could be due to limited competition for nourishment of plants at wider spacing than closer. The results are in agreements with Helaly and Karam (2012) and Pandey *et al.* (1992).

However, nonsignificant interaction was recorded between planting time and density. The seed scape diameter was significantly superior under S3 (1.88) followed by S2 and S1 (1.83 cm and 1.80 cm) (Table 1). The higher seed scape diameter in S3 might be due to better availability of nutrition's and photo synthetically active radiations (Helaly and Karam 2012).

Effects on flowering and seed scape traits

The significantly higher days was taken by T_1 (126.0) for initiation of flowering than T_2 (122.65) and T_3 (120.50) (Table 2) due to the rising temperature at the end of February which favoured initiation of flowering in late plantings than 15 October. The umbel diameter had significantly affected by changing in planting density. The maximum umbel diameter was recorded under S_3 (6.58) and gradual reduction was noted with high density (S2: 6.31 and S₃, 6.05) (Table 2). Similarly, higher number of scapes/ plant was observed under S_3 (11.72) (Table 2) followed by S_2 and S_1 (10.06 and 9.23), respectively. The higher seed scapes/plant in S₃ is associated with more number of leaves under wider spacing (S_3) which might be converted more light energy into chemical energy and influenced more number of seed scapes per plant (Pandey et al. 1992). The numerically higher seed scapes was produce in T₃ (10.44) but it is statistically at par with others. Planting density had significant effect on productive seed scape and 60×30 cm had given highest value (8.35) than 60×20 cm (6.82) and 60×10 cm (5.01) which might be due to low disease incidence and severity under wider spacing (Table 3). The interaction between T×S showed nonsignificant effect for productive seed scapes/plant.

		Tat	ole 1 Effec	ct of plantin	g time and	density on ξ	growth attri	butes in oni	ion cv. Pust	a Riddhi (Pc	ooled data c	Table 1 Effect of planting time and density on growth attributes in onion cv. Pusa Riddhi (Pooled data of 2013-14 and 2014-15)	and 2014-1	[5]		
DOP		Number (Number of leaves/plant	ınt	Se	Seed scape emergence (days)	nergence (di	ays)		Seed scape	Seed scape height (cm)			Seed scape diameter (cm)	diameter ((cm)
	\mathbf{S}_1	\mathbf{S}_2	s,	Mean	$\mathbf{S}_{\mathbf{l}}$	\mathbf{S}_2	s3	Mean	\mathbf{S}_1	S ²	S	Mean	S.	$^{\rm S}_{\rm S}$	ŝ	Mean
T_1	35.41	38.13	42.28	38.61	66.0	66.16	67.16	66.44 ^a	99.81	102.10	103.30	101.74ª	1.83	1.85	1.93	1.87
${\rm T}_2$	33.86	36.98	40.78	37.21	60.6	60.16	60.16	60.33^{b}	98.98	100.75	102.10	100.61 ^b	1.79	1.85	1.85	1.83
T_3	33.10	36.03	39.61	36.25	55.3	56.0	55.83	55.72°	99.30	100.65	101.37	100.44°	1.79	1.79	1.84	1.80
Mean	34.12°	37.05 ^b	40.89 ^a		60.6	60.7	61.05		99.36°	101.17^{b}	102.26 ^a		1.80^{b}	1.83 ^b	1.88 ^a	
		Signific	Significance (5%)			Significance (5%)	1ce (5%)			Significo	Significance (5%)			Significa	Significance (5%)	
Т		. •	NS			\mathbf{S}^*	*				S*			Z	NS	
S			S*			NS	S			~	S*			S	S*	
$\mathbf{T}\times\mathbf{S}$			NS			NS	S			4	NS			Z	NS	
DOP- Di are sowr	DOP- Date of planting, T ₁ are sown with group letters	ing, T ₁ - 1 p letters	5 October,	T ₂ - 25 Octol	ber, T ₃ - 5 N	lovember, N	IS- Non sig	nificant, S-	significant,	, S ₁ - Spacin _i	g 60 ×10cm	DOP- Date of planting, T_1 - 15 October, T_2 - 25 October, T_3 - 5 November, NS- Non significant, S- significant, S_1- Spacing 60 × 10cm, S_2- 60 × 20cm, S_3- 60 × 30cm, *Significant effects are sown with group letters	0cm, S ₃ - 6	0×30 cm,	*Significa	nt effects

JOP	I	nitiation of	Initiation of flowering (Days)	(Days)		Total se	Total seed scape/plant	lant		Productive	Productive seed scape /plant	/plant		Umbel dia	Umbel diameter (cm)	
	S	S_2	S3	Mean	S ₁	S_2	S3	Mean	S_1	S ²	ŝ	Mean	S	s_2	Š	Mean
	126.16	126.83	126.00	126.00 ^a	9.28	10.01	11.76	10.35	5.1	6.78	8.48	6.78	6.28	6.43	6.92	6.54 ^a
Γ ₂	122.33	122.83	121.33	122.65 ^b	9.13	9.98	11.56	10.22	4.88	7.0	8.43	6.77	5.88	6.31	6.61	6.27 ^b
[3	119.50	121.16	120.66	120.50°	9.30	10.20	11.83	10.44	5.07	6.7	8.15	6.63	6.00	6.18	6.23	6.13 ^b
Mean	122.65	123.60	122.66		9.23°	10.06^{b}	11.72 ^a		5.01°	6.82 ^b	8.35 ^a		6.05°	6.31 ^b	6.58 ^a	
		Signific	Significance (5%)			Significance (5%)	1ce (5%)			Significe	Significance (5%)			Significo	Significance (5%)	
			S*			NS	S			4	NS				S*	
			NS			\$	*			~ 1	S*			U,	S*	
$\mathbf{T} \times \mathbf{S}$		ļ	NS			NS	S			4	NS			4	NS	

60

DOP- Date of planting, T_1 - 15 October, T_2 - 25 October, T_3 - 5 November, NS- Non significant, S- significant, S₁- Spacing 60 × 10cm, S₂- 60 × 20cm, S₃- 60 × 30cm, *Significant effects are sown with group letters

	Table 3	Effect of plai	nting time and	Table 3 Effect of planting time and density on disease incidence and lodging percentage in onion cv. Pusa Riddhi (Pooled data of 2013-14 and 2014-15)	ase incidence a	nd lodging per	centage in onic	on cv. Pusa Rido	dhi (Pooled data	t of 2013-14 ar	nd 2014-15)	
DOP		Disease infec	Disease infected plant (%)			Percentage d	Percentage disease index (PDI)	DI)		Seed sca	Seed scape lodging (%)	
	S.	S_2	S3	Mean	S	S_2	ŝ	Mean	S_1	S_2	S	Mean
T ₁	56.71	31.92	25.54	38.06	8.00	6.00	6.22	6.74	45.46	30.16	24.16	33.26
	(48.85)	(34.38)	(30.34)	(37.85)	(23.97)	(22.16)	(19.44)	(21.86)	(42.38)	(33.29)	(29.40)	(35.02)
T_2	54.72	37.51	24.05	38.76	8.41	6.33	5.25	6.66	46.43	28.29	22.08	32.27
	(47.70)	(37.73)	(29.35)	(38.26)	(23.89)	(22.11)	(20.96)	(22.32)	(42.93)	(32.03)	(27.99)	(34.32)
T_3	58.40	40.13	27.36	41.96	8.75	6.33	5.97	7.01	43.75	29.22	21.06	31.34
	(51.08)	(40.53)	(32.56)	(41.39)	(23.10)	(21.43)	(20.12)	(21.55)	(41.36)	(32.68)	(27.21)	(33.75)
Mean	58.61	38.52	27.65		8.38	6.22	5.81		45.21	29.23	22.43	
	(51.21) ^a	(39.55) ^b	(32.75) ^c		(23.65) ^a	(21.9) ^b	(20.17) ^c		(42.22) ^a	(32.67) ^b	(28.20) ^c	
		Significance (5%)	1ce (5%)			Significance (5%)	e (5%)			Significo	Significance (5%)	
Т		NS	S			NS					NS	
S		S*	~			S*					S*	
$\mathbf{T}\times\mathbf{S}$		NS	S			NS					NS	
DOP- Da effects ar	DOP- Date of planting, T_1 - 15 Oct effects are sown with group letters	T ₁ - 15 Octobe: oup letters	r, T ₂ - 25 Octob	er, T ₃ - 5 Noven	ıber, NS- Non s	ignificant, S- s	significant, S ₁ -	Spacing 60cm >	< 10cm, S ₂ - 60ci	m \times 20cm, S ₃ -	DOP- Date of planting. T_1 - 15 October, T_2 - 25 October, T_3 - 5 November, NS- Non significant, S- significant, S ₁ - Spacing 60cm × 10cm, S ₂ - 60cm × 20cm, S ₃ - 60cm × 30cm, *Significant effects are sown with group letters	*Significant

Effects on disease incidence and seed scape lodging (%)

The results presented in Table 3 showed that, planting density had significant effect on disease incidence, PDI and scape lodging %. The percentage of disease infected plants was low in S_3 (27.65) as compared to $S_2(38.52\%)$ and $S_1(58.61)$. The severity of disease (PDI) was also low under S_3 (5.81) followed by S_2 (6.22) and S_1 (8.38). The enhanced disease infection and severity mainly; stemphylium blight and purple blotch was due to less interception of light and air under higher density which provide congenial conditions for fungal growth and development at closer spacing than wider spacing. The closer spacing (S_1) showed significant higher seed scape lodging (45.21%) and reduction trend was observed along with increase in spacing as recorded in S_2 and S_3 (29.33%) and 22.43%) respectively, which might be due to the higher level of disease incidence and severity under closely spaced plants.

Effect on number of umbellates/umbel and seed setting (%)

Plant spacing had significant effect on number of umbellates/umbel (Table 4) and S_3 (503.4) had given higher number of umbellates/umbel than S_2 (491.4) and S_1 (471.68) due to better availability of photosynthates and less competition for nutrients, moisture and light source (Anisuzzaman *et al.* 2009). The effect of planting time and interaction between planting time and density were found statistically at par.

The productive umbellates/umbel significantly influenced from change in planting time and density. The higher productive umbellates/umbel was recorded under T1 (414.73) planting followed by T2 (378.67) and T3 (367.97) (Table 4). The low productive umbellates/umbel in late planting attributed to lower umbel diameter and number of umbellates/umbel, more number of aborted flowers, reduced pollen viability and stigma receptivity due to prevailing high temperatures at flowering. Secondly, low activity of honeybees under higher temperature resulting into less pollination. Among different plant spacing, S₃ (419.73) had given significantly higher number of productive umbellates per plant than S_2 (391.48) and S_1 (350.49) due to more number of umbellates/umbel at wider spacing. The interaction between T×S showed significant effect on productive umbellates/umbel and highest productive umbellates/umbel were recorded in T₁S₃ (450.97) followed by $T_1S_2(418.73)$ and $T_2S_3(413.50)$ with lowest number was recorded in T_3S_1 (335.97) (Table 4). Similar result was reported by Asaduzzaman et al. (2012). The results presented in (Table 4) showed that seed setting % have marked differences with respect to planting time, density and their interaction effect. Significantly highest and lowest seed setting % was noted in T_1 (83.69) and T_3 (75.61) respectively. Significantly highest seed setting % was recorded in S_3 (83.24), followed by S_2 (79.62) and S_1 (74.35) and trend was in agreement with Teshome et al. (2014). The delaying in planting and close spacing showed

DOP		Total uml	Total umbellates/umbel			Productive un	Productive umbellates/umbel			Seed se	Seed setting (%)	
	S_1	S_2	S3	Mean	S_1	S_2	S	Mean	S_1	\mathbf{S}_2	S.	Mean
T	476.87	495.33	512.50	494.90	374.50	418.73	450.97	414.73 ^a	78.55	84.52	88.01	83.69
									(62.49)	(66.90)	(69.75)	(66.38)a
Γ_2	465.67	488.67	501.67	486.37	341.00	381.50	413.50	378.67^{b}	73.29	78.03	82.43	77.61
									(58.91)	(62.03)	(65.20)	$(62.05)^{b}$
Γ_3	472.50	490.20	496.40	485.33	335.97	374.20	393.73	367.97^{b}	71.23	76.31	79.29	75.61
									(57.61)	(60.88)	(62.92)	$(60.47)^{b}$
Mean	471.68°	491.40^{b}	503.52 ^a		350.49°	391.48^{b}	419.4 ^a		74.35	79.62	83.24	
									(59.67)°	(63.27) ^b	(65.96) ^a	
		Significance (5%)	nce (5%)			Significance (5%)	; (5%)			Signific	Significance (5%)	
L		Z	NS			S.					S*	
		Ň	S*			S.					S*	
$\mathbf{I} \times \mathbf{S}$		Z	NS			S *					S*	

reduction trend in seed set % was due to higher pollination and optimum time for seed development. Significant differences were also observed for $T \times S$ interaction and highest seed setting (%) was noticed in T_1S_3 (88.01%), followed by T_1S_2 (84.52%) and lowest in T_3S_1 (71.23%).

Effect on seed yielding attributes

Planting density had significant effect on seed yield/ umbel and maximum yield/umbel was recorded in S_3 (3.48g) followed by S_2 (3.31g) and S_1 (3.14g) (Table 5). The seed yield/umbel was higher due to bigger umbel diameter, more productive umbellates/umbel and higher seed setting (%) (El-Aweel and Ghobashi 1999). The interaction between T×S was non-significant for this trait.

The significantly higher seed yield/plant was recorded in $T_1(8.71g)$ and $S_3(12.43g)$ while, minimum was recorded in $T_3(8.21g)$ and $S_1(5.31g)$ (Table 5). The higher seed yield/ plant under early planting and wider spacing was due to less disease severity, higher number of productive seed scape, higher seed setting (%) and less lodging % and results are in conformity with Teshome et al. (2014). The planting time and density had also significant effect on seed yield/plot and per ha (Table 5). The higher seed yield/ plot was recorded in T_1 (685.01g) and S_1 (716.72g) than other planting time and spacing. The highest seed yield/ha was recorded under T_1 (6.86q) and S_1 (7.17q) while lowest was found in T_3 (6.4q) and S_3 (6.22q). The higher seed yield/ha under closer spacing was due to higher plant population under S1 than S2 and S3. The results are in agreement with Atif (2004) which had also reported higher seed yield/ha under closer spacing.

Effects on seed quality attributes

Planting density had significant effect on 1000 seed weight and electrical conductivity (EC). The S₃ had given higher 1000 seed weight (3.01g) than S₂ (2.76g) and S₁ (2.91g). The EC of seed leachates was lower in S₃ (21.95uS/ cm/g) followed by S₂ (23.93uS/cm/g) and S₁ (25.39uS/cm/ g). However, numerically it was higher in T₃ (23.44 uS/cm/ g) than T₂ (23.65 uS/cm/g) and T₁ (24.18 uS/cm/g).

Time of planting and density showed significant effect on germination (%) and higher germination was recorded in T₁ (88.33 %) and S₃ (89.76%). The lower germination (%) was recorded in late planting (85.63 %) and closer spacing (84.64%). The planting time had significant effect on seedling length and higher seedling length was noted in T₁ (9.48cm) followed by T₂ (9.02cm) and T₃ (8.51cm). The maximum seedling length was recorded in S₃ (10.37cm) than S₁ (7.78cm). The higher seedling dry weight was noted in T₁ (1.90 mg) and S₃ (1.95 mg) and lower seedling dry weight was observed in T₃ (1.67 mg) and S₁ (1.63 mg) (Table 6).

The planting time and density had significant effect on seed vigour index and T_1 showed significantly higher seed vigour index-I (833.32) and vigour index-II (167.08) than late planting (Table 7). The wider spacing (S₃) had showed higher seed vigour index-I (918.56) and vigour index-II (172.96) followed by S₂ (754.32 and 148.88) and S₁

62

DOP		Seed yiel	Seed yield/umbel (g)	<u> </u>		Seed y	Seed yield/plant (g)	(g)		Seed	Seed yield/plot (gm)	m)		Seed yi	Seed yield/ha (q)	
	S_1	S_2	s.	Mean	S_1	S ₂	ŝ	Mean	S	S ²	ŝ	Mean	$\mathbf{S}_{\mathbf{I}}$	S ₂	Š	Mean
T ₁	3.29	3.51	3.71	3.50	5.58	7.86	12.70	8.71 ^a	753.50	668.33	635.00	685.61 ^a	7.54	6.68	6.35	6.86 ^a
T_2	3.11	3.22	3.41	3.25	5.30	7.59	12.42	8.43 ^b	715.00	645.00	620.83	660.28 ^b	7.15	6.45	6.21	6.6 ^b
T_3	3.01	3.21	3.32	3.18	5.05	7.41	12.18	8.21 ^b	681.67	630.00	609.17	640.28°	6.82	6.30	6.09	6.4 ^c
Mean	3.14°	3.31 ^b	3.48 ^a		5.31c	7.62 ^b	12.43 ^a		716.72 ^a	647.78 ^b	621.67 ^b		7.17a	6.48 ^b	6.22 ^b	
		Signific	Significance (5%)			Signific	Significance (5%)			Signifi	Significance (5%)			Signific	Significance (5%)	
Г)	NS)	S*)	S*)	S*	
S			S*				S*				S*				S*	
$\mathbf{T}\times\mathbf{S}$			NS			,	NS				NS			, .	NS	
		Tal	Table 6 Effe	Effect of planting time and density on seed quality traits in onion cv. Pusa Riddhi (Pooled data of 2013-14 and 2014-15)	ng time and	density on	ı seed quali	ty traits in o	nion cv. Pu	sa Riddhi (Pooled data	ı of 2013-14	4 and 2014	-15)		
DOP		1000 s	1000 seed weight (g)	(g)		Germin	Germination (%)			Seedling	Seedling length (cm)		Seed	Seedling dry weight (mg)	sight (mg)	
	S_1	S_2	s.	Mean	S	S_2	s.	Mean	S	S_2	s.	Mean	$\mathbf{S}_{\mathbf{l}}$	S_2	S_3	Mean
r,	2.80	2.99	3.13	2.97	85.72	88.0	91.28	88.33	8.17	9.25	11.03	9.48ª	1.72	1.81	2.18	1.9ª
, H	2.79	2 89	2.97	2 88	(67.78) 84.55	(69.79) 86.05	(72.28) 89.89	(70.14) ^a 86.83	7 87	8 91	10.29	9 02b	1 64	1.75	1 89	1.76 ^b
4					(66.85)	(68.06)	(71.47)	$(68.8)^{b}$								
T_3	2.71	2.85	2.94	2.83	83.66	85.11	88.11	85.63	7.30	8.46	9.79	8.51c	1.54	1.69	1.78	1.67 ^b
1					(66.15)	(67.29)	(69.83)	(67.76) ^c								
Mean	2.76°	2.91^{b}	3.01 ^a		84.64	86.38	89.76		7.78c	8.87b	10.37^{a}		1.63°	1.75 ^b	1.95 ^a	

December 2015]

Significance (5%)

Significance (5%)

Significance (5%)

Significance (5%)

F \sim

 $(71.39)^{a}$ 89.76

(68.38)^b

(66.93)°

63

EFFECT OF PLANTING TIME AND DENSITY ON ONION

Table 7 Effect of planting time and density on germination (%), Seed Vigour Index-I and II in onion cv. Pusa Riddhi (Pooled data of 2013-14 and 2014-15)

DOP		Seed v	igour index	x-I		Seed vig	our index-I	Ι		EC (uS	/cm/g)	
	S ₁	S ₂	S ₃	Mean	S_1	S_2	S ₃	Mean	S_1	S_2	S ₃	Mean
T ₁	690.09	807.77	1002.1	833.32ª	144.81	158.35	198.08	167.08ª	25.06	23.59	21.68	23.44
T_2	634.66	744.42	914.90	764.66 ^b	135.16	148.40	168.00	150.52 ^b	25.10	23.62	22.23	23.65
T ₃	595.02	710.78	838.67	714.82°	122.26	139.87	152.80	138.31 ^b	26.00	24.60	21.94	24.18
Mean	639.92°	754.32 ^b	918.56ª		134.08°	148.88 ^b	172.96 ^a		25.39ª	23.93 ^b	21.95°	
		Significat	nce (5%)			Significanc	re (5%)			Significan	ce (5%)	
Т		S	*			S*				NS		
S		S	*			S*				S*		
$T \times S$		S	*			S*				NS		

DOP- Date of planting , T₁- 15 October, T₂- 25 October, T₃- 5 November, NS- Non significant, S- significant, S₁- Spacing 60cm \times 10cm, S₂- 60cm \times 20cm, S₃- 60cm \times 30cm, *Significant effects are sown with group letters

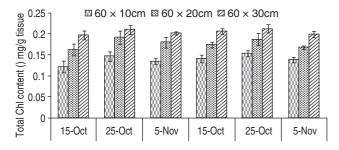


Fig 1 Effect of planting time and density on total chlorophyll content

(148.88 and 134.08), respectively. The interaction between T ×S also showed significant effect on vigour index-I and II and higher vigour index-I and II was recorded in T_1S_3 (1000.2 and 198.08) followed by T_2S_3 (914.90 and 168), respectively, which could be due to better development of seed under optimum temperature for different seed metabolic activities and better accumulation of seed storage materials under wider spacing. The similar results for seed quality attributes were recorded by Helaly and Karam (2012) and Teshome *et al.* (2014).

Effect on leaf chlorophyll content

The total chlorophyll content was also found minimum under closer spacing than wider spacing (Fig 1). This was due to shading effect to lower canopy of plants, causing poor transmission of the photosynthetically active radiation (PAR).

Based upon the results recorded in this experiment it could be concluded that for attaining better plant growth, seed setting, higher seed yield and quality attributes, the seed production of onion cv. Pusa Riddhi should be undertaken at 15 October with 60×30 cm spacing in Delhi condition.

REFERENCES

- Abdul-Baki AA and Anderson J D.1973. Vigour determination in soybean by multiple criteria. *Crop Science***13:** 630–7.
- Anisuzzaman M, Ashrafuzzaman M, Mohd R I, Uddin M K and Rahim M A. 2009. Planting time and mulching effect on

onion development and seed production. *African Journal of Biotechnology* **8 (3)**: 412–6.

- Asaduzzaman M, Mainul M H, Mahmudul M H, Moniruzzaman M and Mohammad H K H. 2012. Effect of bulb size and plant spacing on seed production of onion (*Allium cepa L.*).*Bangladesh Journal of Agricultural Research* **37(3)**: 405–14.
- Atif Y M. 2004. Effect of bulb size and plant density on onion seed production under rainfed conditions. *Minufiya Journal of Agricultural Research* 29: 1 339–46.
- Ayoub Z E and Hala M O. 2013. Effect of plant spacing on onion (*Allium cepa* L.) seeds quality. Universal Journal of Applied Science 1(2): 52–5.
- Behera S, Santra P, Chattopadhyay S, Das S and Maity T K. 2013. Variation in onion varieties for reaction to natural infection of *Alternaria porri* (Ellis) Ciff. and *Stemphylium vasicarium* (Wallr.). *Bioscan* 8(3): 759–61.
- Brewster J L.1994. Onions and Other Vegetable Alliums. CAB International, Wallingford, UK, p 236.
- Dadlani M and Agrawal P K.1987.*Techniques in Seed Science* and *Technology*, pp 103–4. South Asian Publishers, New Delhi.
- El-Aweel M A T and Ghobashi A A. 1999.Seed production in onion as influenced by dates of planting in the Sultanate of Oman.Assiut Journal of Agricultural Science 30: 43–53.
- FAO.2013. Current world agriculture production 2011/2012. Food and Agricultural Organization of the United Nations, Rome.
- Helaly M A and Karam S S.2012.Influence of planting date on the production and quality of onion seeds. *Journal of Horticultural Science and Ornamental Plants* 4(3): 275–9.
- Hiscox J D and Israelstam G F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. *Canadian Journal of Botany*. **57**: 1 332–4.
- Ibrahim M Y, Mostafa A K, HegazyA M and El-Kafoury A K. 1996. Flowering behavior of Egyptian onion cv. Giza 20 affected by planting date. *Proceedings of 7th Conference on Agronomy*, 9-19 Sept, pp 635–42.
- ISTA. 2012. Seed testing rules, Publ. *The International Seed Testing* Association, 8303.barsserssorf, CH-Switzerland.
- Jones H A and Mann L K. 1963. Onions and Their Allies. Leonard Hill, London, p 169.
- Mirshekari B, Mobasher M and Biroonara A. 2008. Determination of best sowing time, bulb diameter and intra row spacing of azarshahr red onion, a new variety in Iran. *Acta Horticulturale* **771**.

64

December 2015]

- Mosleh M D. 2008. Effect of mother bulb size and planting time on growth, bulb and seed yield of onion. *Bangladesh Journal of Agricultural Research* **33(3)**: 531–7.
- Narendra S and Ahmed Z. 2005. Influence of bulb size and spacing on onion seed production in leh (ladakh). *Vegetable Science* **32(1)**: 101–2.
- National Horticulture Board. 2013-14. Indian Horticulture Data Base, Ministry of Agriculture, Gurgaon, Haryana.
- Pandey U B, Panwar D S and Sharma V P. 1992. Effect of spacing and levels of nitrogen on growth and seed yield of *kharif* onion. *Seed Research* 20(2):147–8.
- Peters R J. 1990.Seed production in onion and other Allium species. (In) Onion and Allied Crops, Volume 1: Botany, Physiology and Genetics, pp 103–24. Rabinowitch, H D and J L Brewester (Eds.). CRC Press, Boca Raton, FL, USA.
- Teshome A, Derbew B, Sentayehu A and Yehenew G. 2014. Effect of planting time and mother bulb size on onion (*Allium cepa* L.) seed yield and quality at Kobo Woreda, Northern Ethopia. *International Journal of Agricultural Research* **9(5)**: 231–41.
- Wheeler B E. 1969. *An Introduction to Plant Disease*, pp 43–6. John Wiley and Sons Ltd, London, UK.