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Abstract. Multiple landslide events occur often across the world which have the potential to cause signifi-
cant harm to both human life and property. Although a substantial amount of research has been conducted to
address mapping of landslides using Earth observation (EO) data, several gaps and uncertainties remain with
developing models to be operational at the global scale. The lack of a high-resolution globally distributed and
event-diverse dataset for landslide segmentation poses a challenge in developing machine learning models that
can accurately and robustly detect landslides in various regions, as the limited representation of landslide and
background classes can result in poor generalization performance of the models. To address this issue, we present
the High-Resolution Global landslide Detector Database (HR-GLDD), a high-resolution (HR) satellite dataset
(PlanetScope, 3 m pixel resolution) for landslide mapping composed of landslide instances from 10 different
physiographical regions globally in South and South-East Asia, East Asia, South America, and Central America.
The dataset contains five rainfall-triggered and five earthquake-triggered multiple landslide events that occurred
in varying geomorphological and topographical regions in the form of standardized image patches containing
four PlanetScope image bands (red, green, blue, and NIR) and a binary mask for landslide detection. The HR-
GLDD can be accessed through this link: https://doi.org/10.5281/zenodo.7189381 (Meena et al., 2022a, c). HR-
GLDD is one of the first datasets for landslide detection generated by high-resolution satellite imagery which can
be useful for applications in artificial intelligence for landslide segmentation and detection studies. Five state-
of-the-art deep learning models were used to test the transferability and robustness of the HR-GLDD. Moreover,
three recent landslide events were used for testing the performance and usability of the dataset to comment on
the detection of newly occurring significant landslide events. The deep learning models showed similar results
when testing the HR-GLDD at individual test sites, thereby indicating the robustness of the dataset for such pur-
poses. The HR-GLDD is open access and it has the potential to calibrate and develop models to produce reliable
inventories using high-resolution satellite imagery after the occurrence of new significant landslide events. The
HR-GLDD will be updated regularly by integrating data from new landslide events.
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1 Introduction

With the increasing impacts of climate change, increased
urbanization, and anthropogenic pressure in recent years,
the risk from hazards to population, infrastructure, and es-
sential life services has been exacerbated. Landslides are
quite ubiquitous and account for approximately 4.9 % of
all the natural disasters and 1.3 % of the fatalities in the
world (Guha-Sapir et al., 2009). Induced by natural (earth-
quakes, volcanic eruptions, meteorological events) and an-
thropogenic triggers (slope modifications, mining, landscape
engineering), the increase in the stress of slope materials
causes landslides, which can harm numerous elements at
risk. Landslides occur heterogeneously in many parts of
the world including the Central and South Americas, the
Caribbean islands, Asia, Turkey, the European Alps, and
East Africa (Froude and Petley, 2018). In the past 15 years,
we have seen a high number of events that have inadver-
tently led to the failure of thousands of slopes, causing dam-
age to essential linear infrastructures and population. Some
recent examples are Wenchuan, China (2008); Kedarnath,
India (2013); Kaikōura, New Zealand (2016); Jiuzhaigou,
China (2017); Dominica (2017); Porgera, Papua New Guinea
(2018); Hokkaido, Japan (2018); Belluno, Italy (2018); Haiti
(2021); and Sumatra, Indonesia (2022).

These examples indicate that landslide occurrences will
probably continue to increase in the short and medium term;
therefore, an effective capability of rapid mapping is required
to map future event-based landslides. In recent years, state-
of-the-art research has been conducted to better understand
the impact of natural hazards such as landslides and the cas-
cading effects on the elements at risk. A critical understand-
ing of these complex processes begins with the onset of map-
ping slope failures. This information about the failed slopes
is recorded and is documented in a “landslide inventory”.
Landslide inventories include information on the spatial loca-
tion and extent of the landslides and, if available, also crucial
information about (1) the time of occurrence, (2) the trig-
gering event that led slopes to fail, (3) the typology of the
landslides based on the accepted standard classifications like
Cruden and Varnes (1996) and Hungr et al. (2014), and (4)
the volume of the failure. However, regarding rapid mapping
of recently occurring landslides, information about the spa-
tial location, distribution, and intersection with affected ele-
ments at risk is important.

When it comes to detecting and mapping landslides over
remotely sensed images, it is safe to say that a lot of the cur-
rent literature in the past couple of years has devised and
spent time employing artificial intelligence (AI) models to
map landslides automatically, arguably, with good results.
These AI models can classify remote-sensing images to de-
note where the landslides are present in the analysed images.
However, the core prerequisite for employing AI models is a
reliable dataset to be used for training. Recent studies have
only focused on mapping landslides with AI but at scales that

are small or regional while also claiming that the proposed
models can cater towards rapid mapping of landslides at any
given time, location, and scale (Liu et al., 2022; Bhuyan et
al., 2023; Meena et al., 2021a, b, d, c; Nava et al., 2022a,
b, c; Meena et al., 2022b; Soares et al., 2022; Tang et al.,
2022; Yang et al., 2022; Yang and Xu, 2022). However, it
has seldom been the case that a genuine attempt has been
made to map landslides outside the regions which the mod-
els are initially trained on and to actually apply the proposed
models in capturing and mapping event-based landslides that
have recently occurred. Some other works by Prakash et al.
(2020) and Ghorbanzadeh et al. (2022) have attempted to
collectively detect and map landslides of different countries.
These showcase the power of employing AI for mapping
landslides. Recently, Bhuyan et al. (2023) made some strides
in mapping landslides at larger spatiotemporal scales to pro-
vide multi-temporal inventories of some famous events, but
more experiments exploring other geographical contexts are
required. The core of the studies mentioned also relies heav-
ily on the availability of quantity and quality data for train-
ing an AI model. The accessibility of such data can allow
a model (1) to identify landslides that were caused by dif-
ferent types of triggers (logically leading to the detection of
different types of landslides), (2) to map landslides in differ-
ent parts of the world that vary geomorphologically, and (3)
to improve the applicability of the model to mapping newly
occurring landslides triggered by events in recent times. The
contemporary works of the current literature bring about a
critical discussion about the availability and accessibility of
comprehensive and adequate data to effectively train models
to detect landslides. Both Prakash et al. (2020) and Ghor-
banzadeh et al. (2022) have used open-source Sentinel-2 im-
agery for multi-site landslide detection; however, consider-
ing the fact that the spatial resolution is 10 m, a lot of small
landslides are missed or not accurately captured (Meena et
al., 2022b, 2021d; Bhuyan et al., 2023). The latter sampled
data from four different areas/events with Sentinel-2 imagery
(four bands at 10 m spatial resolution, six at 20, and three at
60) and combined the Sentinel-2 imagery with digital eleva-
tion model (DEM)-derived data from ALOS-PALSAR. The
dataset we propose, instead, is sampled from 10 different
areas/events and uses 3 m spatial resolution imagery. Sam-
pling from more areas can provide a more diverse represen-
tation of both landslide and background classes, which can
improve the robustness of the model when applied to dif-
ferent regions. Moreover, a dataset with more diversity is
likely to generalize better to new unseen data than one with
limited diversity, making it more suitable for real-world de-
ployment. Sampling from 10 areas also provides better cov-
erage of the geographical region, reducing the risk of missing
important features or patterns. Higher spatial-resolution im-
agery captures more detail, allowing for more accurate iden-
tification and segmentation of landslide features. It also al-
lows obtaining a more detailed view, which can be useful
to identify small landslides or details that may be difficult
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to see in lower-resolution imagery. Moreover, it can provide
more context for the location, helping to better understand
the environment and the relationships between different ob-
jects and features. Therefore, the increased detail can result
in improved accuracy when classifying features and objects,
reducing the risk of misclassification.

To effectively and rapidly map landslides after an event,
it is required first to determine the spatial extent of the af-
fected areas. Collecting these data is frequently hazardous
since it involves individuals on the ground investigating land-
slides firsthand during or immediately after the event. With
the increased availability of satellite imagery, this task has the
potential to be completed not only remotely but also automat-
ically through the use of powerful deep learning algorithms.
Currently, adequate high-resolution satellite imagery of land-
slides is not widely available. To depict the complex and dy-
namic nature of the landslides, significant numbers of im-
ages must be provided. To this purpose, we present the High-
Resolution Global landslide Detector Database (HR-GLDD),
a large-scale satellite image dataset with assembled landslide
inventories. The database currently houses 10 geographical
areas and three recently transpired events (see Fig. 1), and we
plan to constantly update this database with newer events.

2 Study areas

The study areas were chosen based on the variety of trigger-
ing events that resulted in the occurrence of the landslides.
Because of the availability of very high-resolution (VHR)
archived PlanetScope imageries after 2016, the most sig-
nificant landslide events were considered. The geomorpho-
logical diversity of the study sites results in a collection of
complex landslide phenomena. We selected the imageries
based on the availability of cloud-free conditions in the ar-
eas and examined globally archived satellite remote-sensing
imageries from PlanetScope from the years between 2017
and 2022 (Table 1). We selected eight study sites across the
globe to assemble the database (see Fig. 1). To further test
the generalization capabilities of the models trained on the
proposed dataset, we choose three recently occurring events:
co-seismic landslides in Haiti (August 2021) and rainfall-
induced landslides in Indonesia (February 2022) and the
Democratic Republic of the Congo (April 2020) (Meena et
al., 2022a).

2.1 Porgera, Papua New Guinea

Papua New Guinea (PNG), located on the Australian conti-
nent, is the eastern half of the New Guinea. This region, char-
acterized by active volcanos, earthquakes, and steep slopes
with elevations of up to ∼ 4400 m a.s.l., is part of the Pa-
cific Ocean’s “Ring of Fire”. The geological and tectonic
makeup divides the island into four tectonic belts: stable plat-
form, fold belt, mobile belt, and Papuan Fold and Thrust belts
(Tanyaş et al., 2022b). Particularly in the east, where PNG

lies, there exists an accreted Paleozoic structure known as
the Tasman Orogen. Due to these unique geotectonic condi-
tions, the area is frequently affected by landslides associated
with the occurrence of earthquakes (Tanyaş et al., 2022b). On
25 February 2018, a severe earthquake struck the southern
region of the Papuan Fold and Thrust belt (central highlands
of PNG), reaching a magnitude of Mw 7.5. This event, the
highest magnitude in the region in the past century, caused
significant damage to buildings and energy structures while
also triggering a massive number of landslides. This 2018
earthquake in PNG instigated over 200 landslides across the
affected area, resulting in numerous fatalities and substan-
tial infrastructural damage. The primary causes of these land-
slides were the intense ground shaking and the region’s steep
topography. Additional influential factors included soil char-
acteristics, rainfall, and vegetation cover. A deep understand-
ing of these contributing elements can significantly enhance
landslide hazard assessments and aid in reducing future risk
(Dang et al., 2020; Xu et al., 2020). Characteristics of the
landslides included high relief, steep slopes, and weak lithol-
ogy. An impressive number of 11 600 landslide scars were
recorded post-event, with more than half surpassing an area
of 50 000 m2 (Tanyaş et al., 2022b). Given these realities,
effective strategies for managing landslide hazards in such
high-risk areas must be developed and implemented.

2.2 Kodagu, India

Kodagu district is located in Karnataka State, Western Ghats,
India. The area is characterized by elevations approximately
between 50 and 1750 m a.s.l., metamorphic rocks (e.g. am-
phibolite, gneiss, and schist), steep slopes, high annual pre-
cipitation of about 4000 mm, and the presence of croplands
(e.g. coffee, rice, and spices) (Jennifer et al., 2021; Meena
et al., 2021d). In August 2018, a rainfall-induced high-
magnitude mass movement event occurred in Kodagu; the
primary landslide type triggered was debris flow (Meena
et al., 2021d). A total of 343 landslides were recorded, in-
cluding mudflows, rockfalls, and debris flows (Meena et al.,
2021d). The event resulted in several instances of damage to
land resources and properties and in the loss of human lives
(Martha et al., 2019).

2.3 Rolante, Brazil

The Rolante River catchment study area is located in the
Rio Grande do Sul state, southern Brazil. The region being
part of the Serra Geral geomorphological unit has elevations
of up to ∼ 1000 m a.s.l. (Uehara et al., 2020). Moreover, it
is characterized by the presence of basaltic rocks and sand-
stones and annual precipitation thresholds between 1700 and
2000 mm (Soares et al., 2022). On 5 January 2017, a high-
magnitude rainfall-induced mass movement event was trig-
gered, and 308 landslides were registered (Gameiro et al.,
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Figure 1. Collection of rainfall- and earthquake-induced landslide events present in the HR-GLDD.

Table 1. Number of tiles, satellite information, and landslide statistics for each study area.

Study area Satellite Number of Study area Number of Minimum landslide Maximum landslide Total landslide
tiles in square kilometres landslides area (m2) area (m2) area (km2)

Kodagu, India, 2018 PlanetScope 530 4033.62 343 276.23 581 342.19 5.67

Rolante, Brazil, 2017 PlanetScope 33 24.62 113 381.76 81 277.53 0.67

Tiburon Peninsula, Haiti, 2021 PlanetScope 461 130.85 1394 200.74 473 696 8.24

Rasuwa, Nepal, 2017 PlanetScope 222 114.68 184 676.85 115 567.96 2.45

Hokkaido, Japan, 2018 PlanetScope 159 50.17 715 237.76 48 524.72 5.29

Wenchuan, China, 2017 PlanetScope 284 58.25 1415 23.78 98 467.96 3.19

Wenchuan China, 2018 PlanetScope 263 58.25 546 110.18 1 289 210.19 5.54

Sumatra, Indonesia, 2022 PlanetScope 403 22.56 584 302.26 6 206 089.32 9.73

Longchuan, China, 2019 PlanetScope 110 32.22 228 235.21 61 163.17 0.73

Hpa-An, Myanmar, 2018 PlanetScope 101 28.38 540 101.23 88 044.20 0.97

Porgera, Papua New Guinea,
2018

PlanetScope 725 304.94 491 262.65 259 392.71 5.48

Kaikōura, New Zealand, 2016 PlanetScope 287 150.75 246 676.67 165 943.82 3.50

Uvira, Democratic Republic of
the Congo, 2020

PlanetScope 247 38.64 394 500.25 106 094.52 1.61
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2021; Quevedo et al., 2020), resulting in several instances of
damage to the Rolante municipality.

2.4 Tiburon Peninsula, Haiti

The Tiburon Peninsula study area is located in the west-
ern part of Hispaniola (Haiti) with elevations of up to
2300 m a.s.l. The Tiburon Peninsula mainly consists of vol-
canic rocks such as basalts and sedimentary rocks, namely
limestones (Harp et al., 2016). The annual precipitation in
the area is more than 1600 mm (Alpert, 1942). On 14 Au-
gust 2021, the Tiburon Peninsula was struck by a Mw 7.2
earthquake, which was followed by several aftershocks. The
strongest one (Mw 5.7) occurred on 15 August 2021. Two
days after the mainshock the area was hit by the intense trop-
ical cyclone Grace. The combination of the two events trig-
gered thousands of landslides (Martinez et al., 2021) in the
Pic Macaya National Park located in the western part of the
peninsula.

2.5 Rasuwa, Nepal

The study area is located in the Rasuwa district (central
Nepal) in the higher Himalayas, with altitudes ranging from
904 to 3267 m a.s.l. and an annual average precipitation of
1800–2000 mm (Meena et al., 2022b). The geology includes
Proterozoic metamorphic rocks such as amphibolite, gneiss,
and schist (Tiwari et al., 2017). The area was struck by
the Mw 7.8 Gorkha earthquake on 25 April 2015. The in-
tense seismic sequence produced at least 25 000 landslides
(Roback et al., 2018).

2.6 Hokkaido, Japan

The Hokkaido study area is in northern Japan and has a high
presence of croplands. The area is characterized by eleva-
tions between 50 and 500 m a.s.l.; the geology is composed
of Neogene sedimentary rocks, formed by the accumulation
of numerous layers formed by materials ejected by the Taru-
mae volcano during several events over the years (Yamagishi
and Yamazaki, 2018; Wang et al., 2019; Zhao et al., 2020). A
severe earthquake hit the Hokkaido Iburi-Tobu area in Japan
on 6 September 2018. The earthquake registered a magnitude
of Mw 6.7 according to the Japan Meteorological Agency
(JMA) and its epicentre was at 42.72◦ N and 142.0◦ E (Ya-
magishi and Yamazaki, 2018), located along the southern
frontier of Hokkaido. The event triggered thousands of land-
slides (∼ 7059) in a concentrated area of 466 km2 (Zhao et
al., 2020) and was responsible for 36 deaths.

2.7 Wenchuan, China

The study area is in the Longmenshan region at the eastern
margin of the Tibetan Plateau, China. The location is char-
acterized by high elevations of up to 7500 m a.s.l.; the geol-
ogy consists of lithological units from the Mesozoic, Juras-

sic, Cretaceous, and Paleozoic and Precambrian formations
and three types of Quaternary sedimentary units (Qi et al.,
2010; Gorum et al., 2011). The area has been constantly af-
fected by earthquake-induced landslides over the years (e.g.
2017, 2018, 2019, 2021). The 2008 Wenchuan event is one
of the most destructive events of mass movements related to
earthquakes in the region (Fan et al., 2018). The Wenchuan
earthquake hit a magnitude ofMw 7.9. It was responsible for
triggering nearly 200 000 landslides (Xu and Xu, 2014) in ad-
dition to causing missing and injured persons and thousands
of human fatalities in a total area of 31 686.12 km2.

2.8 Sumatra, Indonesia

The investigated area is Mount Talamau (2912 m), which is a
compound volcano located in West Pasaman Regency, West
Sumatra Province, Indonesia. Geologically, the volcano con-
sists of andesite and basalt rocks belonging to Pleistocene–
Holocene age (Fadhila et al., 2019; Basofi et al., 2017). The
climate of the area is humid and tropical, and the mean an-
nual precipitation in the West Pasaman area is between 3500
and 4500 mm yr−1 (Ichsandya et al., 2022). The Mw 6.1
earthquake hit West Sumatra on 25 February 2022. This
event triggered several landslides in an area of 6 km2, along
the eastern and north-eastern flank of the Talamau volcano.

2.9 Longchuan, China

The study area is located in the vicinity of the village of
Mibei in Longchuan County, Guangdong Province, China,
with elevations of between 180 and 600 m. The area has a
subtropical monsoon climate, affected by frequent typhoons
and rainstorms from May to October. The average annual
precipitation ranges from 1300 to 2500 mm (Bai et al., 2021).
The area is composed of completely weathered Paleozoic
granite and Quaternary granite residual soil (Bai et al., 2021).
Between 10 and 13 June 2019, an intense rainfall event,
which was characterized by cumulative rainfall of 270 mm,
triggered 327 shallow landslides at between 300 and 400 m
of altitude and on slopes ranging from 35 to 45◦ (Feng et al.,
2022).

2.10 Hpa-An, Myanmar

The study area is located in Hpa-An district (central Kayin
State, south Myanmar) in a tropical and monsoon area with
a mean annual precipitation of between 4500 and 5000 mm
(Zin and Rutten, 2017) and elevations of up to 1300 m.
The area is part of the Shan Plateau sequence, which in-
cludes low-grade metamorphosed Precambrian, Paleozoic,
and Mesozoic sedimentary rocks. On 28–30 July 2018,
Myanmar was hit by an extreme rainfall event which caused
a flood in the Bago River basin and triggered 992 landslides
in Kayin State alone (Amatya et al., 2022).
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2.11 Kaikōura, New Zealand

The 2016 Kaikōura earthquake triggered more than 10 000
landslides in New Zealand, causing extensive damage and
disrupting transportation routes (Tanyaş et al., 2022a). The
landslides were complex and involved multiple failure mech-
anisms, including rockfalls, rock avalanches, and debris
flows. The intense shaking and steep topography of the re-
gion contributed to the landslides. To reduce the potential im-
pact of future earthquakes, it is crucial to improve the under-
standing of landslide mechanisms and develop effective early
warning systems (Massey et al., 2020; Abad et al., 2022).

2.12 Uvira, Democratic Republic of the Congo

The city of Uvira in the Democratic Republic of the Congo
experienced devastating landslides in 2020 due to heavy
rainfall, poor land management practices, and the steep to-
pography of the region. These landslides caused significant
damage to infrastructure and displaced thousands of people.
Landslides are a recurring hazard in the Democratic Repub-
lic of the Congo (DRC), with an average of 100 occurring
annually, and climate change is expected to exacerbate the
problem. Efforts to mitigate the risk of landslides can in-
clude improved land use practices, early warning systems,
and infrastructure designed to withstand landslides. Taking
a comprehensive approach is key to minimizing the impact
of landslides and protecting at-risk communities (Mokoso et
al., 2022; Deijns et al., 2022).

3 High-Resolution Global landslide Detector
Database (HR-GLDD)

3.1 Dataset description

The dataset created in this study consists of images acquired
from the PlanetScope satellites (see Table 1) and landslide
inventories collected from the literature. For all the events,
landslides were manually delineated due to the unavailabil-
ity of existing inventories at high resolution. PlanetScope
is a constellation of approximately 130 satellites that ac-
quire images of the Earth daily with a 3 m spatial resolution.
The sensors acquire the images with eight spectral bands:
coastal blue (431–552 nm), blue (465–515 nm), green (547–
583 nm), yellow (600–620 nm), red (650–680 nm), red-edge
(697–713 nm), and NIR (845–885 nm) (Planet Team, 2019).
PlanetScope imagery consists of surface reflectance values
and 16 bit images. The images from both sensors are or-
thorectified and radiometrically corrected by the providers,
and we undertook the intra-sensor harmonization process for
the red, green, blue, and NIR bands that is offered by Plan-
etScope.

The dataset was prepared using only the red, green, blue,
and NIR bands. The pre-processing phase was based on three
steps: generation of binary masks, data sampling, and tile

patching (Meena et al., 2022a). We used manual image in-
terpretation to manually delineate landslide polygons. First,
the interpreted landslide polygons from each area were ras-
terized into a binary mask using the Rasterio Python library,
where “1” represents the landslides and “0” the background.
The satellite imagery, along with the mask, was then sam-
pled and patched into a regular grid that yields patches of
128× 128 pixels, which corresponds to 14.7 km2 per patch.
Since the imbalance between background area and landslides
is strong, the images that did not have any landslide-labelled
pixels were removed. The proportions for the positive sam-
ples of landslides against the non-landslides are 9.96 % and
90.04 %, respectively. Table 1 shows the number of tiles cre-
ated for each area.

3.2 Design of HR-GLDD

The performance evaluation of the study sites was carried
out using metrics and trained using five state-of-the-art U-
Net-like models, showcasing the capability and applicability
of the High-Resolution Global Landslide Detector Database
(HR-GLDD). We used a total of 10 geographically distinct
study sites distributed globally, where landslide events were
chosen including different triggering mechanisms such as
five earthquake-induced and five rainfall-induced landslides.
We separately divide the patches into 60 % for training, 20 %
for validation, and 20 % for testing the model capabilities. All
the sets are then mixed to create a unique dataset composed
of equal percentages of patches.

We designed three scenarios to train, predict, and evalu-
ate model performances in order to assess the robustness and
applicability of the HR-GLDD. Primarily, we evaluate the
model performances on the individual test sets (Meena et al.,
2022a). Secondly, we evaluate the performances of the mod-
els on the HR-GLDD test set. Moreover, finally, we test on
two completely unseen, recently occurring landslide events
in Haiti (2021) and Indonesia (2022) (see Fig. 2).

4 Methodology

4.1 Model architectures

The proposed dataset is evaluated through several state-of-
the-art U-Net like deep learning segmentation models. In the
past years, the U-Net (Abderrahim et al., 2020) has been used
in several landslide detection applications which yield gen-
erally the most reliable results (Bhuyan et al., 2022; Nava et
al., 2022a, b; Meena et al., 2022b). Therefore, we decided to
use it as a benchmark model when training on the proposed
dataset. Moreover, several improved versions of the same are
evaluated. We systematically trained the model using a va-
riety of combinations of the hyper-parameter batch size (8,
16, 32, 64), learning rate (5× 10−4, 10× 10−4, 5× 10−5,
10× 10−5), and the number of filters of the first convolu-
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Figure 2. Schematic representation of the division of different components of HR-GLDD. Collection 1 refers to the test and validation data
separated from the HR-GLDD. Collection 2 refers to the test dataset of individual sites. Asterisks represent two different images for the same
event. Collection 3 refers to the data from three recent events for testing purposes. Please note, while the Wenchuan event transpired in 2008,
we have utilized images from a considerably later period, specifically those taken in 2017 and 2018. In an attempt to ensure the precision and
accuracy of our analysis, we prioritized images with clearest, minimal cloud coverage.

tional layer (8, 16, 32, 64). A description of the employed
architectures is given in this section.

– U-Net. This architecture has been utilized in various
semantic segmentation applications, yielding generally
outstanding results (Abderrahim et al., 2020). U-Net
was employed initially in biomedical picture segmen-
tation (Ronneberger et al., 2015). Low-level represen-
tations are captured by a contracting path (encoder),
whereas a decoding path captures high-level represen-
tations. The encoding path consists of successive con-
volution blocks and is equivalent to a traditional con-
volutional neural network (CNN) structure. Two con-
volutional layers with a 3× 3 kernel size and a 2× 2
max-pooling layer are present within every convolu-
tional block. The rectified linear unit (ReLU) activation
function is used to activate each convolutional layer. A
2× 2 max-pooling layer is added to the convolutional
block’s end in the encoder route to conduct non-linear
downsampling, whereas, in the decoder path, a 2× 2
upsampling layer takes its place. The upsampling layer
is positioned right after a 3× 3 convolutional layer (see
Fig. S1). We refer to this combination as learnable up-
convolution.

– Residual U-Net (Res U-Net). Res U-Net (Diakogian-
nis et al., 2020) follows the same U shape as U-Net,
whereas here the above-explained convolutional blocks
are replaced by residual blocks. This architecture’s goal
is to improve the learning capacities of the conventional
U-Net as well as mitigate the gradient vanishing ef-

fect, especially when dealing with deep neural networks
(such as U-Net) (see Fig. S2).

– Attention U-Net and Attention Res U-Net (Attn-U-Net
and Attn-res-U-Net). In the conventional U-Net as well
as in the Res U-Net, cascading convolutions have been
shown to provide false alerts for tiny objects with high
form variability (Oktay et al., 2018). To select perti-
nent spatial information from low-level maps and there-
fore alleviate the problem, soft attention gates (AGs) are
added (see Figs. S3, S4). The attention gates are built on
skip connections, which actively inhibit activations in
unnecessary areas, lowering the number of duplicated
features (Abraham and Khan, 2019).

– Attention Deep Supervision Multi-Scale (ADSMS) U-
Net. This architecture adopts the Attention U-Net struc-
ture, while, in addition, multi-scale image pyramid in-
puts are fed to the model and a deep supervision strat-
egy is applied (Abraham and Khan, 2019). In practice,
multi-scale inputs enable the model to gather those class
data, which are more readily available at various sizes.
This holds true for both background features and land-
slides. Lastly, where training data are few and networks
are relatively shallow, deep supervision conducts a po-
tent “regularization”. More details about the deep super-
vision strategy used are available in the following sec-
tion (see Fig. S5).
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4.2 Model training

To train the deep learning (DL) models, we utilized Dice loss
(DLc) (Eq. 2) (Milletari et al., 2016) as the loss function:

DSCc =
∑N
i=1picgic+ ε∑N

i=1pic+ gic+ ε
. (1)

Equation (1) illustrates a two-class Dice score coefficient
(DSC) variation for the landslide class c, where gic ∈ [0,1]
and pic ∈ [0,1] are the ground truth and predicted labels, re-
spectively. Furthermore, the numerical stability is assured by
avoiding division by 0, while N specifies the total number of
picture pixels.

DLc =
∑

1−DSCc (2)

As an exception, in the ADSMS U-Net model, every high-
dimensional feature representation is regulated by focal
Tversky loss to avoid loss over-suppression, while the final
output is controlled by the conventional Tversky loss (Eq. 4).
The focal Tversky loss is a type of loss function that focuses
training on challenging cases, specifically those with a Tver-
sky similarity index (TIc) (Eq. 3) of less than 0.5.

TIc =
∑N
i=1picgic + ε∑N

i=1picgic + α
∑N
i=1picgic + β

∑N
i=1picgic + ε

(3)

The focal Tversky loss (FTLc) function incorporates the
likelihoods of pixels belonging to the landslide class (pic)
and the background class (pic) as well as the corresponding
ground truth labels (gic and gic). It is designed to handle sig-
nificant class imbalances and can be adjusted by modifying
the α and β weights to prioritize recall.

The FTLc function is defined as follows:

FTLc =
∑

c
(1 − TIc)1/γ , (4)

where γ ranges between 1 and 3.
This deep supervision strategy, described in Lee et al.

(2014), requires intermediate layers to be semantically dis-
criminative at all scales. Furthermore, it contributes to ensur-
ing that the attention unit has the power to change responses
to a wide variety of visual foreground material. This strategy
is adopted from Abraham and Khan (2019), who propose it
along with the ADSMS U-Net architecture. As the loss func-
tion optimizer, for all the models, we used a stochastic gra-
dient descent strategy based on an adaptive estimate of first-
and second-order moments (Adam), which is useful in prob-
lems with uncertain data and sparse gradients (Kingma and
Ba, 2014). The precision, recall, F1 score, and intersection
over union (IOU) score, the most common accuracy evalu-
ation measures for segmentation models, all of which have
been utilized in several landslide detection studies, were used
to measure how well the applied DL models performed in
detecting landslides. The appropriate combinations of hyper-
parameters must be used while training such DL models in
order to optimize the model and, therefore, output the best
results.

5 Results

5.1 HR-GLDD evaluation results

The robustness and applicability of the HR-GLDD was tested
using the best model weight. We train and calibrate the mod-
els using the HR-GLDD. The best weights for each model
are selected based on the model performances on the mixed
test set of the HR-GLDD dataset. After running the models
on the test dataset, a batch size of 16 and an Adam optimizer
with a learning rate of 5.00×10−4 resulted in the best model
weight. To further evaluate the efficiency and generalization
capabilities of the models, we use the model on three unseen
datasets to map landslides in the two different geomorpho-
logical areas that were recently affected by multiple landslide
events. We chose the most recent events: the event which oc-
curred after the Uvira, Democratic Republic of the Congo
(DRC), heavy rainfall event of April 2020; the Haiti earth-
quake in August 2021; and the event in Sumatra, Indonesia,
after a heavy rainfall event in February 2022. A total of 247,
461, and 403 unseen image patches were evaluated for DRC,
Haiti, and Indonesia, respectively.

Experimental results for landslide detection by utilizing
the HR-GLDD are presented in Table 2. Overall, all the mod-
els performed consistently in collections 2 and 3. The F1
score evaluation results for each test case of all the mod-
els demonstrate the applicability of the HR-GLDD training
dataset for landslide detection results. The average F1 score
for the HR-GLDD test dataset (collection 1) across all the
models was around 0.7045. Furthermore, the same was ob-
served at the individual test sites in collection 2. We also no-
tice that the precision and recall are well balanced, ranging
between 0.6346–0.7661 and 0.6672–0.8121, respectively, in-
dicating stable model predictions. In collection 3, the metrics
reveal positive outcomes in terms of mapping the landslides
following the respective events, with an average F1 score of
0.5562 for DRC, 0.7947 for Haiti, and 0.8603 for Indone-
sia. The recall values are higher than the precision values for
all the models, resulting in an average F1 score of 0.7045
for collection 3 (see Table 2). Higher values of recall in all
models mean that the models were able to identify landslide-
labelled pixels. However due to the use of only the optical
bands, the spectral signatures of other similar features (such
as riverbeds and flat barren areas) were labelled as landslides,
which resulted in false predictions, thereby accounting for
lower precision.

In Fig. 3 we chose a single image patch to showcase the
predictions of the various models with respect to the refer-
enced ground truth. Despite the differences in the spectral
fingerprints of the satellite images for each study site and the
events initiated by an earthquake or rainfall, the models were
still capable of recognizing landslide features (see Figs. 4, 5,
and 6). In particular, we were able to map the recent events
in DRC (2020), Haiti (2021), and Indonesia (2022).
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Table 2. F1 scores of different DL models across sites and HR-GLDD test dataset along with three unseen test sites.

Study sites U-Net Res-U-Net Attn-U-Net Attn-res-U-Net ADSMS-U-Net

Collection 1
(HR-GLDD test)

0.7904 0.6825 0.7446 0.6477 0.6576

Collection 2

Kodagu, India, 2018 0.7674 0.6980 0.7628 0.6664 0.6796

Rolante, Brazil, 2017 0.7739 0.6913 0.6539 0.6830 0.6726

Rasuwa, Nepal, 2015 0.8972 0.8149 0.8419 0.7695 0.7976

Hokkaido, Japan, 2018 0.8159 0.7479 0.8124 0.7317 0.7552

Wenchuan, China, 2017 0.7781 0.6507 0.6981 0.6162 0.6739

Wenchuan, China, 2018 0.8077 0.6886 0.7295 0.6704 0.6557

Longchuan, China, 2019 0.6842 0.5076 0.5422 0.4829 0.4398

Hpa-An, Myanmar, 2018 0.8415 0.7861 0.7826 0.7405 0.7709

Porgera, Papua New Guinea,
2018

0.7515 0.6150 0.7568 0.6572 0.6261

Kaikōura, New Zealand, 2016 0.7496 0.5456 0.7335 0.4922 0.6494

Collection 3

Sumatra, Indonesia, 2022 0.8832 0.8810 0.8232 0.8534 0.8608

Tiburon Peninsula, Haiti, 2021 0.8357 0.8055 0.7869 0.7648 0.7808

Uvira, Democratic Republic of
the Congo, 2020

0.5937 0.5366 0.5682 0.5008 0.5819

6 Discussions

6.1 Advantages of using HR images

The spatial resolution of PlanetScope imagery enables the
detection of small-size landslides that open-access satellite
missions like Sentinel and Landsat frequently miss due to
their spatial and temporal resolution (Meena et al., 2022b;
Meena et al., 2021d). Moreover, even though Sentinel-2 has
additional spectral bands, the lack of improved spatial reso-
lution inhibits precise boundary delineation and landslide lo-
calization. The most prominent features of PlanetScope im-
agery, in addition to its competitive spatial resolution, are
its daily temporal resolution and global coverage. Since the
satellites have identical sensors, the imageries are orthorec-
tified and image pre-processing is simplified and more ac-
curate. Because PlanetScope imagery provides global cover-
age, we may extend our study sites to new locations for gen-
erating more quality datasets that allow for a better model
generalization.

6.2 Quality of HR-GLDD

The quality of any machine learning (ML)/deep learning
(DL) model depends on the data that it is trained on, and

the HR-GLDD aims to meet this fundamental requirement.
To our knowledge, no other quality datasets exist that can
accommodate the wide range of landslide-triggering events
and topographical diversity needed for efficient model train-
ing, as the HR-GLDD is a strong collection of various land-
slide events caused both by rainfall and earthquakes. The
HR-GLDD is designed to calibrate models able to map new
events that will occur in the future. The models investigated
in our study gave promising and consistent results for two
unseen datasets generated by completely different events, in-
dicating a well-prepared, dependable, and resilient dataset.
However, there are clear limitations with the HR-GLDD that
must be considered. These problems primarily stem from
issues with manually delineated polygons and various un-
certainties caused by satellite imagery. A number of differ-
ent variables, including the mapping scale, the date, and the
quality of the satellite imagery, affect how accurate an in-
ventory is. The radiometric resolution and cloud coverage
are additional variables that affect the generation of manual
inventories. Additionally, the haze effect caused by instru-
ment errors hinders model performances. Subjectivity in the
landslide polygon boundaries results from the amalgamation
problem, which is caused by elements like the investigators’
level of experience and the goal of the study.
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Figure 3. Landslide predictions made by the different DL models against the ground truth. The base image is shown as a false colour
composite (FCC) to better visualize the scars of the landslides.

Earth Syst. Sci. Data, 15, 3283–3298, 2023 https://doi.org/10.5194/essd-15-3283-2023



S. R. Meena et al.: HR-GLDD 3293

Figure 4. Comparison of ground truth landslides with predictions from the DL models for the unseen dataset of Haiti (we utilized various
colour coding schemes for the visualization of deep learning (DL)-based landslide detection results, allowing for a visual distinction between
polygons generated from manual delineation).

Figure 5. Comparison of ground truth landslides with predictions from the DL models for the unseen dataset of Indonesia (we utilized
various colour coding schemes for the visualization of deep learning (DL)-based landslide detection results, allowing for a visual distinction
between polygons generated from manual delineation).

6.3 Significance of the HR-GLDD

A thorough hazard and risk framework is made possible by
quality landslide inventories; however, generating such in-
ventories at large scales takes a large amount of time and
resources. This is where such automatic pipelines can truly
shine at creating inventories which can be used for the suc-
cessive phases of a hazard and risk. Local, regional, and
national stakeholders may include such inventories in their
risk reduction efforts thanks to the availability of inventories
produced automatically. Furthermore, this information may
serve as the foundation for a legal framework that imple-
ments landslide risk. A landslide risk reduction plan is now
more crucial than ever given the anticipated rise in world-
wide landslide activity brought on by climate change. Higher
landslide activity is expected in the future due to a number of

factors, including an increase in the frequency and intensity
of seismic events, anthropogenic events, heavy precipitation
events, rising groundwater levels, storm surges, and a general
rise in relative sea level. Therefore, it is essential to compre-
hend the underlying mechanisms of landslides better and cre-
ate practical risk reduction techniques to save people’s lives
and property.

6.4 Automated pipeline for HR-GLDD

At the moment, automated techniques are the only viable
solution for mapping vast regions with an accuracy appro-
priate to operational objectives. Nonetheless, reliable, repro-
ducible, and accurate processes for automating landslide de-
tection across huge data stacks are still absent. As a re-
sult, many landslide-affected regions remain unmapped be-
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Figure 6. Comparison of ground truth landslides with predictions from the DL models for the unseen dataset of DRC (we utilized various
colour coding schemes for the visualization of deep learning (DL)-based landslide detection results, allowing for a visual distinction between
polygons generated from manual delineation).

cause (1) they are challenging to map using standard methods
and (2) using high-resolution imagery is costly and labour-
intensive, with a substantial part of the mapping process de-
pendent on human judgement. By overcoming these chal-
lenges, automated pipelines that address these issues can
considerably reduce the requirement for human involvement
and pave the way for the development of reliable real-time
mapping and monitoring of natural hazards at continental and
global scales. Based on the quality of HR-GLDD, the relia-
bility of automated pipelines, and the rapidly growing avail-
ability of HR satellite imagery, we can realistically envision
mapping of landslide instances and contribute to generating
and updating landslide inventories at large scales, spatially
and, potentially, also temporally (Bhuyan et al., 2023).

Providing an expert-based, high-quality, and scientifically
validated landslide inventory to scientific communities is es-
sential for frameworks of modelling, landslide prediction,
machine learning, and deep learning research. The HR-
GLDD dataset has been verified, which increases the avail-
ability of much-needed training datasets for automated map-
ping algorithms. The consistently long time taken to compile
landslide inventories manually contrasts with the rise in data
accessible for landslide mapping. The development of tech-
nologies to successfully automate the procedure is the future
direction in landslide inventory mapping. The precedence of
a quality dataset is noted where Bhuyan et al. (2023) com-
mented that the need for quality datasets will provide a valu-
able incentive for training and developing algorithms.

The current dataset is an excellent resource for training
and developing future algorithms for this purpose. Auto-
mated mapping methods, particularly when combined with
publicly available elevation models, can potentially improve
our results in future investigations.

7 Data availability

The data, working codes, and a docu-
ment with metadata are freely available at
https://doi.org/10.5281/zenodo.7189381 (Meena et
al., 2022c) and https://github.com/kushanavbhuyan/
HR-GLDD-A-Global-Landslide-Mapping-Data-Repository
(last access: 19 July 2023), where data in the format of arrays
and model configurations in the framework of TensorFlow
can be displayed and used for the reproducibility of our
results (Meena et al., 2022a). We also submit the generated
landslide inventories in the form of an Environmental
Systems Research Institute (ESRI) shapefile. Modules for
deep learning can be found at https://www.tensorflow.org/
(Abadi et al., 2016), and original satellite imageries can be
found at https://www.planet.com/ (Planet Team, 2019).

8 Code availability

Code used to produce data described in this paper,
as well as to create figures and tables, can be ac-
cessed at https://github.com/kushanavbhuyan/HR-GLDD-A-
Global-Landslide-Mapping-Data-Repository. Our data are
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freely available at https://doi.org/10.5281/zenodo.7189381
(Meena et al., 2022c) as indicated in the section “Data avail-
ability”.

9 Conclusions

Mapping landslides through space is a challenging endeav-
our. Automated efforts for the same have been explored to
some extent, but a transferrable method based on a robust
dataset has not yet been investigated. In this paper, we pro-
pose a reliable dataset which can be employed by deep learn-
ing algorithms to detect new landslides accurately. The pre-
dictive capabilities demonstrate the usefulness and applica-
tion of the dataset to map landslides at large scales. However,
the model’s predictability must be investigated further in or-
der to identify particular problems to enhance the findings
and predictive capabilities for more complicated landscapes.
Overall, despite the limitations, the findings are promising,
since it is the first time such an HR dataset has been created
that caters to a transferable approach of mapping landslides
at so many different geomorphological and geographical lo-
cations.
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