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Background: Inflammation has been implicated in core features of depression 
pathophysiology and treatment resistance. Therefore, new challenges in the 
discovery of inflammatory mediators implicated in depression have emerged. 
MicroRNAs (miRNAs) have been found aberrantly expressed in several pathologies, 
increasing their potential as biomarkers and therapeutical targets. In this study, the 
aim was to assess the changes and biomarker potential of inflammation-related 
miRNAs in depression patients.

Methods: Depression diagnosis was performed according to the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). 40 healthy controls 
and 32 depression patients were included in the study. The levels of inflammatory 
cytokines were measured in plasma, and expression levels of cytokines and 
inflammation-related miRNAs were evaluated in peripheral blood mononuclear 
cells (PBMCs).

Results: Depression patients were found to have a pro-inflammatory profile 
in plasma, with significantly higher levels of TNF-α and CCL2 compared with 
controls. In PBMCs of depression patients, TNF-α and IL-6 expression levels 
were significantly up and downregulated, respectively. Moreover, miR-342 
levels were found upregulated, while miR-146a and miR-155 were significantly 
downregulated. miR-342 expression levels were positively correlated with 
TNF-α. Importantly, when analyzed as a diagnostic panel, receiver operating 
characteristics (ROC) analysis of miR-342, miR-146a, miR-155  in combination, 
showed to be highly specific and sensitive in distinguishing between depression 
patients and healthy controls.

Conclusion: In summary, these findings suggest that inflammation-related 
miRNAs are aberrantly expressed in depression patients. Moreover, we  show 
evidences on the potential of the combination of dysregulated miRNAs as a 
powerful diagnostic tool for depression.
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1. Introduction

Depression ranks as the most prevalent psychiatric disorder, with 
estimated over 280 million sufferers worldwide (WHO2023), and a 
lifetime prevalence of 10–20% (1). It also figures among the top three 
causes of disability worldwide and can affect individuals of all ages 
throughout their entire lifespan, with a higher prevalence in women 
(2). Conventional pharmacological treatments for depression are 
mainly based on the monoamines theory of depression, targeting 
neurotransmission regulation (3). However, it is estimated that 
between 30 to 50% of patients with major depression do not respond 
to the prescribed schemes of antidepressant medication (4–6), 
reinforcing the need to stratify patients, and understand the 
multifactorial etiology of this disorder. It is now clear that the major 
reason, still preventing a most accurate diagnosis as well as the 
development of better pharmacotherapies, is the poor understanding 
of the molecular pathology underlying depression. This leads to 
narrative and observation-based diagnosis, disregarding the biological 
particularities of each patient (7). Thus, there is an urgent need to 
establish complementary diagnostics tests, by defining diagnosis and 
prognosis biomarkers, as well as to develop a wider spectrum of novel 
therapeutics to target other possible underlying disease mechanisms.

Over the last decades, research has strongly focused on the 
inflammatory/immune hypothesis of depression, with most treatment 
resistant patients presenting a hyper-activation of the immune system 
(8–10). Clinical presentation of depression has long been compared 
with the so called “sickness behavior,” which occurs when individuals 
suffer from an inflammatory/infectious disease (11, 12). Moreover, the 
relation between depression and inflammation has been strongly 
suggested by patients with chronic inflammatory conditions, such as 
rheumatoid arthritis, psoriasis, inflammatory bowel disease and 
multiple sclerosis, among others (13–17). While the incidence of 
depression in patients with chronic inflammatory diseases is 
substantially higher, acute exacerbations of these diseases may also 
be preceded by stressful events or depressive episodes (9). Based on 
these findings, clinical trials have been exploring the potential of anti-
inflammatory therapies to treat depression. While most of the reports 
suggest that anti-inflammatory agents play an efficient antidepressant 
role and are reasonably safe (18), others cast doubts on the potential 
therapeutic benefits of adjunctive anti-inflammatory drugs for the 
acute management of depression (19). Nonetheless, it is evident that 
a move away from symptom-based to a biological-based diagnosis is 
urgently needed. Innovative trial designs, with biologically based 
clinical outcomes, and more selective drugs, will prevent researchers 
from failing to take advantage of the increasing knowledge regarding 
the role of inflammation in depression.

In this sense, microRNAs (miRNAs) have recently emerged as 
important mediators in the pathophysiology of inflammation-related 
depression, with potential to be used as therapeutical targets and/or 
biomarkers (20–22). miRNAs are small non-coding RNAs that 
regulate multiple target transcripts, influencing entire gene networks 
in processes such as inflammation (inflammiRs), neurogenesis and 
neuronal plasticity (23–25). In this context, miRs like miR-145 and 
miR-146a have been recurrently associated with anti-inflammatory, 
neurogenesis and neuroprotective mechanisms (26–29), while 
miR-155 is known to have a dual role depending on the inflammatory 
stage, by acutely function as a strong promotor of anti-pathogen 
responses and lately limit the strength of the resulting NF-kB 

dependent inflammatory response (30, 31). Recently, our group found 
that miR-342 is upregulated in vitro, in tumor necrosis factor-α 
(TNF-α) activated microglia (32), and in vivo, in the hippocampus of 
rats exhibiting depressive-like behaviors, increased hippocampal 
TNF-α expression and microglia activation (33). Based on these 
features, we  hypothesize that these inflammiRs may appear 
dysregulated in depression, with strong genetic support for associating 
them and their targets with this condition.

In this study, we evaluated the levels of inflammatory cytokines in 
plasma and peripheral blood mononuclear cells (PBMCs), and the 
expression levels of miR-145, miR-146a, miR-155 and miR-342 in 
PBMCs. The results show a pro-inflammatory profile in plasma of 
depression patients, with increased TNF-α and CCL2, as well as 
significant correlations between the levels of different pro-and anti-
inflammatory mediators. In PBMCs, TNF-α and IL-6 expression levels 
were significantly up and downregulated, respectively. Also, miRNA-
342 was found significantly upregulated, while miRNA-155 and 
miRNA-146a were significantly downregulated in depression patients 
compared with healthy controls. The levels of these miRNAs corelated 
with those of the inflammatory cytokines, and the receiver operating 
characteristics (ROC) analysis of their levels, showed higher 
significance and area under the curve, when miRNA-342, miRNA-155 
and miRNA-146a were considered together. In summary, the results 
presented here, open new possibilities for the use of miRNA panels as 
depression biological biomarkers.

2. Materials and methods

2.1. Ethics statement

All obtained human samples and procedures were performed in 
agreement with the principles of the Declaration of Helsinki. Blood 
samples were collected from patients enrolled at the psychiatry 
departments of Centro Hospitalar do Tâmega e Sousa, EPE and Centro 
Hospitalar de Vila Nova de Gaia/Espinho, EPE; and from healthy blood 
donors, at Serviço de Imunohemoterapia, Centro Hospitalar 
Universitário de São João, after informed consent. All experimental 
protocols were conducted following the approval and 
recommendations of the Ethics Committees for the hospitals involved.

2.2. Experimental design

Patients admitted to the Department of Psychiatry and Mental 
Health of Centro Hospitalar do Tâmega e Sousa (Penafiel, Portugal) and 
outpatients from the Department of Psychiatry and Mental Health of 
Centro Hospitalar Vila Nova de Gaia/Espinho (Vila Nova de Gaia, 
Portugal), admitted to the hospitals with a major depression episode 
and that agreed to take part, were enrolled in the study. Participants 
ranged in age from 18–65 years and entered the study after screening 
and diagnosis of major depressive disorder was confirmed by two 
psychiatrists, as described previously (6, 10). Briefly, screening included 
a structured clinical interview to assess the presence of major 
psychiatric syndromes according to the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5), an assessment of 
current psychiatric symptoms, and a determination of previous 
antidepressant treatment. Blood samples were obtained from 
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depression patients at the time they were admitted to hospital. Single 
blood samples were also obtained from healthy control subjects at the 
Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São 
João (Porto, Portugal). Healthy control subjects were screened to rule 
out a personal or family history (first-degree relative) of psychiatric 
disorder. Patients and controls were excluded from the study if 
presenting any of the following: (i) psychotic symptoms; (ii) presence 
of an infectious or inflammatory illness or the regular use of anti-
inflammatory medication; (iii) Inability to completely understand and 
fill in the self-assessment instruments; (iv) Being part of another study 
or with other psychological/psychopharmacological treatment.

2.3. Plasma and PBMCs isolation

Peripheral blood was collected using VACUETTE® Tubes EDTA 
K3 (Greiner Bio-One, France). Blood components were separated by 
centrifuging at 1200 g, for 20 min, at room temperature (RT), without 
break. Plasma was collected and centrifuged twice at 2500 g, for 10 min 
at 4°C before being aliquoted and stored at-80°C. Medial layer 
containing PBMCs was slowly collected and transferred into a new 
15 mL centrifuge tube. PBMCs were diluted in an equal volume of PBS 
1x, slowly layered over Lymphoprep™ (Ratio 1:1, StemCell 
Technologies, Canada) and centrifuged at 800 g, for 20 min, at RT, 
without break. Medial layer containing enriched PBMCs was collected 
and cells washed twice with PBS 1x (300 g, 10 min, at 4°C) before 
being lysed with TRIzol® (Invitrogen, MA, United States).

2.4. RNA extraction

Total RNA was extracted using TRIzol® according to the 
manufacturer’s instructions. RNA concentration and purity were 
evaluated in a NanoDrop  1,000 (ThermoFisher Scientific, MA, 
United States). Ratios of 260/280 and 260/230 nm ranged between 1.8 
and 2.2. RNA integrity was evaluated by agarose gel electrophoresis or 
by Experion™ automated electrophoresis system (Bio-Rad, CA, 
United States).

2.5. Reverse transcription and real-time 
quantitative polymerase chain reaction 
(RT-qPCR)

For gene expression analysis, RNA was treated with TURBO 
DNA-free Kit (Invitrogen) and cDNA was synthesized using Random 
Hexamers (Invitrogen), dNTPs (Bioline, OH, United  States) and 
SuperScript® III Reverse Transcriptase (Invitrogen). qPCR was carried 
out in CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad) 
using cDNA, primers and iQ SYBR Green Supermix (Bio-Rad). 
GAPDH was used as reference gene. Oligonucleotides used for qPCR 
experiments are shown in Supplementary Table S1.

miR-145-5p, miR-146a-5p, miR-155-5p and miR-342-3p expression 
was evaluated using TaqMan miRNA assays (Applied Biosystems, MA, 
United States). Briefly, cDNA was synthesized using 30 ng of RNA as a 
template, gene-specific stem-loop Reverse Transcription primer, and 
the TaqMan microRNA reverse transcription kit (Applied Biosystems). 
qPCR was carried out in CFX384 Touch™ Real-Time PCR Detection 

System (Bio-Rad) using cDNA, TaqMan probe and SsoAdvancedTM 
Universal Probes Supermix (Bio-Rad). Small nuclear RNA U6 was used 
as reference gene. All runs were performed in duplicate. Relative 
expression levels were calculated using the quantification cycle (Cq) 
method, according to MIQE guidelines (34).

2.6. Enzyme-linked immunosorbent assay 
(ELISA)

CCL2, IL-6, IL-1β, TNF-α, IL-4 and IL-10 levels were evaluated 
by ELISA, according to the manufacturer’s instructions (ELISA 
MAX™ Deluxe Set, BioLegend, CA, United States). Absorbance was 
measured in a plate reader at 450 nm, with wavelength correction at 
570 nm. Cytokine concentrations (pg/mL) were determined using a 
standard calibration curve.

2.7. Statistical analysis

Statistical analysis was performed using GraphPad Prism version 
7 (GraphPad Software, Inc.). Gaussian distribution was tested by the 
D’Agostino & Pearson and the Shapiro–Wilk normality tests. For 
non-normal distribution data, statistical differences were evaluated by 
unpaired Mann–Whitney rank test. When data passed normality test, 
unpaired T-tests were performed. Spearman correlation analyses 
(non-parametric data) between plasma cytokines, cytokine mRNA 
levels and miRNA levels in PBMCs were performed considering only 
depression subjects. The total number of individuals and statistical 
tests used are identified in each figure legend. Statistical significance 
was considered for p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s.: 
non-significant). The diagnostic value of the tested miRNAs 
(individually or combined) was calculated using receiver operating 
characteristics (ROC) curve in GraphPad. For that, miRNAs relative 
expression values were previously combined using the binary logistic 
toll on SPSS considering the experimental group as the dependent 
variable and the different tested miRNAs as covariates. The area under 
the curve (AUC) measured the ability of each miRNA or the miRNA 
panel to distinguish between both groups, and the value of p tested the 
null hypothesis that the AUC equals 0.5.

3. Results

3.1. Depression patients show increased 
levels of inflammatory mediators in plasma

A total of 72 subjects were included in the study. The depression 
group was composed of 32 subjects (27 females and 5 males) with a 
mean age of 38.81 ± 2.13, while 40 healthy subjects (23 females and 17 
males), with a mean age of 37.95 ± 1.71, were included in the control 
group (Supplementary Table S2).

Dysregulated levels of inflammatory mediators have been 
described in depression patients (8), so the plasma levels of several 
inflammatory markers were evaluated by ELISA. Results revealed that 
the classical pro-inflammatory cytokine TNF-α (p = 0.0011) and also 
the CCL2 chemokine (p = 0.0453), were significantly upregulated in 
depression patients compared with healthy controls (Figure  1). 
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Although not significantly altered, IL-6 levels tend to be upregulated 
(p = 0.0691) and IL-4 downregulated (p = 0.0746) in depression patients 
(Figure 1). Plasma levels of IL-1β and IL-10 were not significantly 
different between depression patients and healthy controls (Figure 1). 
Next, Spearman correlations were used to understand the correlation 
between the levels of these different inflammatory mediators. The 
results revealed that depression patients’ plasma levels of CCL2, IL-6, 
IL-4 and IL-10 were all positively correlated (Supplementary Table S3).

3.2. TNF-α expression is increased in 
PBMCs of depression patients

To further explore the contribution of circulating immune cells to 
the changes observed on inflammatory markers, their mRNA levels 
were evaluated in PBMCs by RT-qPCR. Results revealed that, in 
agreement with the increased plasma levels, TNF-α mRNA levels were 
significantly upregulated (p = 0.0073). Interestingly, while protein 
levels of IL-6 in plasma showed a tendency for increase, its mRNA 
levels in PBMCs were significantly downregulated (p < 0.001) in 
depression patients compared with healthy controls (Figure  2). 
Although IL-1β mRNA levels tend be  upregulated in depression 
patients (p = 0.0606, Figure 2), no significant differences were found 

between the mRNA levels of IL-1β nor CCL2 in PBMCs of depression 
patients and healthy controls. Interestingly, a positive Spearman 
correlation was maintained at the mRNA level in PBMCs of depression 
patients, between CCL2, IL-6 and TNF-α (Supplementary Table S4).

3.3. Correlation between miRNAs and 
inflammatory cytokines in PBMCs of 
depression patients

Next, the regulation of inflammatory markers was explored, by 
investigating the levels of several miRNAs that can target inflammatory 
mediators, like TNF-α. miR-342, miR-145, miR-146a and miR-155 
expression levels in PBMCs of depression patients and healthy controls 
were evaluated by RT-qPCR. Results revealed that miR-342 is 
significantly upregulated (p = 0.0117), while miR-146a (p < 0.001) and 
miR-155 (p = 0.0056) levels are significantly downregulated in PBMCs 
of depression patients compared with healthy controls (Figure  3). 
miR-145 expression levels tend to be downregulated in PBMCs of 
depression patients, but this decrease is not statistically significant 
(p = 0.067, Figure 3). Spearman correlation analysis showed that TNF-α 
mRNA levels were significantly positively correlated with miR-342 
(r = 0.4274, p = 0.0472), while IL-6 mRNA levels were significantly 

FIGURE 1

Plasma levels of inflammatory cytokines in depression patients versus healthy controls. Blood components were separated, and plasma was used to 
measure CCL2, IL-6, IL-1β, TNF-α, IL-4 and IL-10 levels by ELISA, according to the manufacturer’s instructions. All samples were tested simultaneously 
and under the same conditions for each cytokine. Cytokine concentrations [(pg/mL)] were determined using a standard calibration curve, and results 
are presented as mean  ±  SEM. Each dot represents an individual (control or depression patient). Statistical differences between groups were evaluated 
using Mann–Whitney non-parametric unpaired test (*** p  <  0.001, + p  <  0.1). N: Healthy controls  =  40; Depression patients  =  32.
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correlated with miR-145 levels (r = 0.4850, p = 0.0221). On the other 
hand, IL-1β mRNA levels were negatively correlated with miR-155 
levels (−0.5697, p = 0.0056, Table  1). No statistically significant 
correlations were observed between the expression levels of the tested 
miRNAs in PBMCs of depression patients (Supplementary Table S5).

Finally, the potential for these miRNAs to be used as biological 
quantitative diagnostic markers for depression was explored. ROC 
analysis was performed to evaluate the ability of the differently 
expressed miRNAs to distinguish between depression patients and 
healthy controls, individually or in combination. The area under the 
curve (AUC) for miR-342, miR-146a and miR-155 when tested 
individually was 0.667 (CI = 0.53–0.80, p = 0.0164), 0.736 (CI = 0.62–
0.85, p = 0.0007) and 0.691 (CI = 0.57–0.81, p = 0.006) respectively. 
When tested as a miRNA panel, sensitivity (80.6%) and specificity 
(72.5%) increased significantly and the use of the three miRNAs in 
combination was the best classifier (AUC = 0.842, CI = 0.75–0.93, 
p < 0.0001; Figure 4 and Supplementary Table S6).

4. Discussion

In this study, we evaluated whether the levels of inflammatory 
cytokines and the expression levels of miR-145, miR-146a, miR-155 

and miR-342 in PBMCs, were altered in depression patients, compared 
with healthy controls. Depression patients were found to have 
significantly higher levels of TNF-α and CCL2 in the plasma, and 
increased expression levels of TNF-α together with decreased IL-6, in 
PBMCs. Moreover, miR-342 levels were found upregulated, while 
miR-146a and miR-155 were significantly downregulated in PBMCs 
of depression patients. Of note, expression levels of miR-342 positively 
correlated with those of TNF-α in PBMCs. Importantly, when these 
three miRNAs were analyzed as diagnostic panel, their ROC analysis, 
showed to be  highly significant, with an area under the curve 
of 0.8419.

In recent years, the immune system has emerged as a key player 
in depression symptomatology and treatment resistance (35). A 
segment of depression patients exhibits chronic inflammation, shown 
by increased systemic levels of inflammation-related markers, 
including cytokines and other inflammatory mediators, such as 
C-Reactive Protein (CRP), which have been correlated with more 
severe depression symptoms (8, 36). In this study, we  found an 
upregulation of TNF-α and CCL2 levels in the plasma of depression 
patients. These findings are in accordance with the literature, as 
TNF-α and CCL2 have been recurrently found upregulated in 
depression patients, either at baseline and in treatment-resistant 
patients (8, 37). On the other hand, plasma levels of IL-6 and IL-1β 

FIGURE 2

Levels of pro-inflammatory cytokines in PBMCs of depression patients versus healthy controls. Blood components were separated, PBMCs collected, 
and RNA extracted using TRIzol. CCL2, IL-6, IL-1β, TNF-α mRNA levels in PBMCs were evaluated by RT-qPCR using GAPDH as internal control. Relative 
expression levels were calculated using the quantification cycle (Cq) method, according to MIQE guidelines, and results are presented as mean  ±  SEM. 
Each dot represents an individual (Control or Depression patient). Statistical differences between groups were evaluated using Mann–Whitney non-
parametric unpaired test (*** p  <  0.001, ** p  <  0.01 and  +  p  <  0.1). N: Healthy controls  =  23; Depression patients  =  22.
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were not significantly upregulated in the segment of patients 
analyzed. Despite being frequently dysregulated in inflammation-
related disorders, IL-1β has not been consistently found increased in 
depression patients (38). In the case of IL-6, literature has been 
supporting an increase in plasma of depression patients (39). 
Although there is a tendency to be  upregulated, no significant 
differences were found for IL-6 in depression patients versus healthy 

controls, in the current study. Regarding anti-inflammatory cytokines 
IL-4 and IL-10 were unchanged between depression patients and 
controls. A recent report by Yuan et al., assessing reproducibility and 
specificity of inflammation-related markers in major psychiatric 
disorders, also found no changes in plasma levels of IL-4 and 
reported inconsistent findings on the levels of IL-10  in 
depression (38).

FIGURE 3

miRNA expression levels in PBMCs of depression patients versus healthy controls. miR-342, miR-145, miR-146a and miR-155 expression levels in 
PBMCs were evaluated by RT-qPCR using U6 snRNA as internal control. Relative expression levels were calculated using the quantification cycle (Cq) 
method, according to MIQE guidelines, and results are presented as mean  ±  SEM. Each dot represents an individual (Control or Depression patient). 
Statistical differences between groups were evaluated using Mann–Whitney non-parametric unpaired test or unpaired T-test (** p  <  0.01, * p  <  0.05 
and  +  p  <  0.1). N: Healthy controls  =  40; Depression patients  =  32.

TABLE 1 Spearman correlations between cytokines mRNA levels and miRNA levels in PBMCs of depression patients.

PBMCs

miR-342 miR-145 miR-146a miR-155

r p-value r p-value r p-value r p-value

PBMCs

CCL2 0.3145 0.1539 0.4150 0.0547 0.2275 0.3084 0.2320 0.2986

IL-6 0.3642 0.0956 0.4850 0.0221 −0.0254 0.9106 0.0592 0.7932

IL-1β −0.2795 0.2077 0.0367 0.8711 −0.1383 0.5392 −0.5697 0.0056

TNF-α 0.4274 0.0472 0.3879 0.0744 −0.0909 0.6874 0.1507 0.5030

The coefficient r and p-value for each correlation are presented. Statistically significant correlations are bolded (p < 0.05).
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Inflammation is known to play a role in core features of depression, 
particularly due to the action of central nervous system (CNS) activated 
microglia and astrocytes, infiltrated and peripheral BMCs (particularly 
monocytes/macrophages and T lymphocytes), as well as the 
immunoreactive molecules (e.g., cytokines and chemokines) they 
release (40, 41). Since brain tissue is rarely available for study, the 
analysis of other peripheral information sources, such as saliva, plasma, 
serum and particularly PBMCs, has received increasing attention. In 
fact, previous studies have shown that peripheral blood cells share 
more than 80% of the transcriptome with brain tissue, therefore 
offering a potential diagnostic tool that can dynamically reflect changes 
in brain macro-and micro-environments (42). In this sense, 
we analyzed the expression levels of several inflammatory molecules in 
PBMCs of both depression and healthy subjects. In line with what was 
observed in plasma, TNF-α mRNA levels were found upregulated in 
depression patients compared with healthy controls, suggesting that 
PBMCs might be  contributing to the observed increased levels in 
plasma. On the contrary, while CCL2 levels in plasma were found 
upregulated in depression patients, mRNA levels of this cytokine in 
PBMCs remained unaltered. Moreover, despite a tendency to an 

increase in plasma, IL-6 mRNA levels were found downregulated in 
the PBMCs of depression patients, in what we hypothesize could be a 
mechanism of negative feedback, to compensate the increased levels of 
IL-6 and other dysregulated cytokines in plasma. In fact, this 
disconnection between cytokine plasma levels and circulating 
inflammatory cells phenotype was also reported before (43). 
Hasselmann et  al. found that despite depression patients showing 
higher frequency and higher absolute numbers of non-classical 
monocytes, there was no correlation between those changes and 
circulating levels of CRP, IL-6, IL-1β, or TNF-α (43). Although being 
frequently overlapped, these findings support the need to distinguish 
between cytokine levels measured in plasma/serum and mRNA levels 
detected in circulating inflammatory cells, in order to fully understand 
the contribution of immune cells and the cascade of activation states 
they go through during chronic systemic inflammation. In the current 
study, patients with reported inflammation and/or infection, and/or 
the use of anti-inflammatory medication were not included. The CRP 
levels were not measured and used as an exclusion criteria for any 
inflammation or infection, as this protein has been found significantly 
upregulated in a subgroup of depression patients (8).

FIGURE 4

ROC analysis of the differently expressed miRNAs. ROC analysis was performed to evaluate the sensitivity of miR-342, miR-146a and miR-155 to 
distinguish between depression patients and controls when used individually or in combination as a miRNA panel. The area under the curve (AUC) 
represents the measure of the ability of each miRNA or the miRNA panel to distinguish between both groups, and the value of p tests the null 
hypothesis AUC equals 0.5. N: Healthy controls  =  40; Depression patients  =  32.
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miRNAs’ unique expression patterns and ability to modulate 
mRNA levels of a large number of target genes, often related to 
disease-associated pathological processes, such as in inflammation-
related depression, increases their desirability as diagnostic markers 
(44–46). In this study, an overexpression of miR-342 and a 
downregulation of miR-146a and miR-155  in the PBMCs of 
depression patients were found. Previously, our group have elucidated 
the role of miR-342 as a crucial mediator of TNF-α-driven microglia 
activation (32) and identified it as being upregulated in the 
hippocampus of rats exhibiting depressive-like behaviors (33). In 
vitro, after being found upregulated in TNF-α stimulated microglia, 
miR-342 microglial overexpression per se was shown to be sufficient 
to induce neurotoxicity, activating the NF-kB pathway, and leading 
to increased microglial secretion of TNF-α and IL-1β, whereas in vivo 
increased hippocampal levels of miR-342 were positively correlated 
with TNF-α expression, microglia activation and depressive-like 
behaviors (33). In fact, microglia activation has been associated with 
neurodegenerative diseases and psychiatric disorders, including 
depression (47). In response to adverse stimuli, such as psychological 
stress, brain injuries or infections, microglia overproduce 
proinflammatory cytokines and chemokines that not only influence 
the surrounding microenvironment but also promote the recruitment 
of peripheral immune cells (48, 49). This results in exacerbated 
neuroinflammation, leading to an imbalance of several brain 
functions, some of which characteristic of depression (47, 50). To our 
knowledge, this is the first study reporting increased expression levels 
of miR-342 in depression patients. Importantly, miR-342 levels were 
positively correlated with TNF-α levels, showing that a strong 
interplay between TNF-α and miR-342 is also found in humans, and 
outside the brain in circulating cells. miR-146a has been shown to 
attenuate deleterious processes associated with dysregulated 
inflammation in several diseases, including rheumatoid arthritis and 
atopic dermatitis (51). miR-146a acts as a mitigator of inflammatory 
responses by targeting key molecules of NF-kB and JAK–STAT 
signaling pathways, thereby reducing pro-inflammatory cytokines 
production, such as TNF-α and IL-8 (52, 53). In pathologies with 
chronic low-grade baseline inflammation, miR-146a have been 
recurrently found downregulated (54–56), indicating that its 
dysregulation contributes to pathology. Previously, miR-146a was 
found downregulated in the prefrontal cortex of suicide victims 
diagnosed with clinical depression (57). Here, we show that miR-146a 
levels are also downregulated in the PBMCs of depression patients, 
which may partially explain the observed increase of TNF-α levels. 
In agreement, a recent study performed by Hung et al. evaluating the 
expression levels of intracellular miRNAs that regulate TLR4 
signaling in PBMCs and monocytes of depression patients, found a 
downregulation of miR-146a and miR-155 in PBMCs (58). In the 
current study, we  also found miR-155 levels downregulated in 
PBMCs of depression patients. miR-155 is known as a master 
regulator of inflammation performing both pro-and anti-
inflammatory functions (59). miR-155 is normally found upregulated 
in acute inflammatory responses as its expression is highly induced 
by TLR ligands/activation (60). In early inflammatory responses 
stages, miR-155 targets the suppressor of cytokine signaling 1 
(SOCS1), a key molecule of the classical negative feedback system 
that regulates cytokine signal transduction (61). In turn, when 
inflammation is chronically exacerbated, miR-155 overexpression 
attenuates inflammation intensity by targeting key TLR-signaling 

downstream molecules (62). Specifically, by targeting NF-kB p65, 
miR-155 overexpression has been shown to serve as a negative 
feedback regulator of inflammation, reducing TNF-α production (63, 
64). Thus, we hypothesize that the upregulation of TNF-α levels in 
plasma and PBMCs of depression patients may result from a 
combined increase of miR-342, a TNF-α promoter, and 
downregulation of miR-155 and miR-146a, TNF-α negative 
regulators. Importantly, ROC analysis revealed that, when used in 
combination, the expression levels of miR-342, miR-146a and 
miR-155, constitute a diagnostic panel with increased sensibility and 
specificity. The combination of miRNAs in panels has been shown to 
increase their accuracy and diagnosis value, when compared to the 
use of single miRNAs (65).

In this study the systemic changes in the cytokine profile and 
inflammiRs were analyzed, but other important mediators, like those 
of the neuroendocrine system (e.g., cortisol), or other inflammatory 
mediators (e.g., CRP) were not evaluated, which is a limitation of the 
study and should be addressed in the future.

5. Conclusion

Globally, we  show that depression patients have increased 
systemic inflammation, reflected on increased plasma levels of TNF-α 
and CCL2, increased TNF-α mRNA levels in PBMCs, and 
dysregulated expression of key and inflammation-related miRNAs in 
PBMCs. Future work should investigate the potential use of miR-342, 
miR-146a and miR-155 as a miRNA panel to diagnose depression and 
monitor treatment response, particularly in cases with exacerbated 
baseline inflammation.
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