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On mathematical modeling of the
propagation of a wave ensemble
within an individual axon

Tanel Peets1*, Kert Tamm1 and Jüri Engelbrecht1,2

1Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia,
2Estonian Academy of Sciences, Tallinn, Estonia

The long history of studying the propagation of an action potential has revealed

that an electrical signal is accompanied by mechanical and thermal e�ects. All

these e�ects together generate an ensemble of waves. The consistent models of

such a complex phenomenon can be derived by using properly the fundamental

physical principles. In this paper, attention is paid to the analysis of concepts

of continuum physics that constitute a basis for deriving the mathematical

models which describe the emergence and propagation of a wave ensemble

in an axon. Such studies are interdisciplinary and based on biology, physics,

mathematics, and chemistry. The governing equations for the action potential

together with mechanical and thermal e�ects are derived starting from basics:

Maxwell equations, conservation of momentum, Fourier’s law, etc., but modified

following experimental studies in electrophysiology. Several ideas fromcontinuum

physics like external forces and internal variables can also be used in deriving the

corresponding models. Some mathematical concepts used in modeling are also

briefly described. A brief overview of several mathematical models is presented

that allows us to analyze the present ideas ofmodeling.Mostmathematicalmodels

deal with the propagation of signals in a healthy axon. Further analysis is needed for

better modeling the pathological situations and the explanation of the influence

of the structural details like the myelin sheath or the cytoskeleton in the axoplasm.

The future possible trends in improving the models are envisaged.
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1. Introduction

The propagation of signals in nerves is an extremely important chapter for

understanding life. We are still far from explaining all mental and cognitive processes,

but much is understood about the main physical mechanisms of electrophysiology.

Besides experimental studies, mathematical modeling is an excellent tool for gaining more

information about biological phenomena (Cohen, 2004). Detailed information on the

importance of mathematics is given in the report of the National Research Council (2005) of

the US.

Neural signaling is generally explained in terms of electrical action potentials (AP)

that propagate along the nerve axon. The mathematical backbone for modeling the AP is

the celebrated Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952) and the cable

equation (Rall, 1977). These models are also important for modeling dendrites and neural

networks (Hines and Carnevale, 2001; Ermentrout and Terman, 2010; Bressloff, 2014;

Giugliano et al., 2022).
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The contemporary understanding is that signals in single axons

cannot be understood in terms of electrical APs alone. It has

been shown by numerous experiments that an electrical signal

is accompanied by mechanical and thermal effects (Terakawa,

1985; Watanabe, 1986; Tasaki, 1988; Akkin et al., 2007; Gonzalez-

Perez et al., 2016; Ling et al., 2020 for example). This means

that signals in single axons is actually an ensemble of waves

with several components reflecting the various coupled physical

phenomena. The theoretical description of such a complex

situation is described in many studies (Kaufmann, 1989; Jerusalem

et al., 2019; Engelbrecht et al., 2021; Schneider, 2021).

An artistic sketch of a segment of the axon (which is the part

of nerve cell under study here) and the signals propagating on it

with the most essential structures of it can be seen in Figure 1.

Axon diameter varies from a micrometer in certain nerves of

the human brain to a millimeter in the giant fiber of the squid

(Lodish et al., 2004). Axon length varies from a few mm up to a

meter in some specialized neural cells. The lipid bilayer separating

the axoplasm inside the axon from the inter-cellular medium is

typically 3–4 nm in thickness and is a significant diffusion barrier

enabling concentration gradient to exist across it. In Figure 1

also the Na and K channels are shown (Doyle et al., 1998; Sula

et al., 2017). It must added that neurons have a rich morphology

(Peng et al., 2021) and their physical forms vary greatly. The

ensemble of waves is formed of an electrical AP, pressure wave in

axoplasm (Terakawa, 1985), longitudinal wave in biomembrane

(Griesbauer et al., 2012), transverse displacement of a bioemebrane

(Gonzalez-Perez et al., 2016), and temperature changes

(Tasaki and Byrne, 1992).

The analysis of the formation and propagation of an

ensemble needs interdisciplinary studies involving knowledge from

physics (electricity, mechanics, thermodynamics), chemistry, and

mathematics (see Alvargonzález, 2011; Contera, 2019; Schneider,

2021). However, it is not sufficient just use the results of one or

another branch of science, one should start by understanding the

fundamental principles that establish the backbones of phenomena.

This paves the way to understanding the pluralities that constitute

the whole ensemble. In what follows, the attention is focused

not on the formation of an AP but on the accompanying effects.

These effects are important for the understanding the general

energy balance during the signal propagation. A detailed analysis

of complex membrane properties on the formation of the AP with

emphasis on the simulation environment NEURON, is given, for

example, by Hines and Carnevale (2001). NEURON is a powerful

simulation tool that is not limited to single neurons, but also

neural networks with complex branching morphology. It includes

a catalog of different nerve cells and ion channels and the effect of

ion channel distribution on formation of the AP can be analyzed.

Its limitation, however, is that it does not include mechanical and

thermal effects measured in many experiments.

A metaphor from the 12th century is more known from a letter

by Isaac Newton dated 1675: “If I have seen further, it is by standing

on the shoulders of giants”. Indeed, this special issue is devoted

to Charles S. Sherrington and Edgar D. Adrian who received the

Nobel prize in 1932 for their discoveries regarding the functions of

neurons. It is worth noting here that the fundamental monograph

by Sherrington (1906) is entitled “The Integrative Action of the

Nervous System”. It means that more than 100 years ago he

was thinking about mutual influence and reciprocity of effects in

neurons. Contemporary studies follow this idea.

This paper aims to analyze some physical and mathematical

fundamentals needed for building up models for signals in

in a single axon. Section 2 is devoted to the explanation of

physical effects. First, the derivation of the cable equation and

its modifications has analyzed that form the basis for describing

the action potential (AP). For describing the mechanical effects

in axons, the wave equations need also the conservation laws

as the basis. Then the importance of the Fourier law is briefly

stressed. Attention is based on a special concept in continuum

mechanics—the idea of internal variables that could compensate for

insufficient knowledge about a physical mechanism to be modeled.

Internal variables are also used by Hodgkin and Huxley (1952) for

modeling the ion currents but could be used also for modeling

thermal processes. Section 2 includes also some concepts of

mathematics that must be properly used in modeling. In Section 3

we proceed to the general analysis based on concepts explained in

previous Sections. Section 4 describes several mathematical models

proposed so far for coupling the physical effects. The forward look

is presented in Section 5. The main idea is to grasp better the

physical internal structure of axons (myelin sheath, properties of

ion channels, cytoskeleton in axoplasm etc.) to derive models able

to describe not only the normal situation but also pathological

cases. Conclusions are given in Section 6.

2. Fundamental principles as a basis
for modeling

2.1. Physics

2.1.1. Modeling of the action potential
Electrophysiology treats a signal in nerves as an electrical

impulse. The classical experiments (Hodgkin and Huxley, 1952)

have demonstrated that in an axon, this signal (AP) has an

asymmetric shape. The axon itself is modeled as a long slender tube

with a wall composed of a lipid bilayer. The governing equation for

the AP is the cable equation (see Hodgkin and Huxley, 1952; Rall,

1977). To understand the application of the cable equation, wemust

return to basic ideas.

All the dynamic processes in nature are governed by physical

laws. Considering the continuum physics, all electromagnetic

processes are governed by Maxwell equations. These involve the

conservation and constitutive laws for describing the charges and

fluxes (Eringen and Maugin, 1990):

- conservation laws of magnetic flux and electric charge;

- constitutive laws: Ohm’s law, Gauss’ law, Faraday’s law, Ampere’s

law.

Using these laws, it is possible to derive the governing equations

for a one dimensional transmission line called also the telegraph

equations (Lucht, 2014). In terms of potential difference (i.e.,

voltage) V(x, t) and current i(x, t) these equations are:

∂V

∂x
= −L

∂i

∂t
− Ri, (1a)
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FIGURE 1

Left panel: Not-to-scale sketch of an axon and the signal ensemble propagation in it. Right panel: A sketch of a nerve cell.

∂i

∂x
= −C

∂V

∂t
− GV , (1b)

where L is the inductance, C – capacitance per unit length, G –

conductance per unit length and R – resistance per unit length.

It is possible to express Equations (1) as one second order partial

differential equation (PDE):

∂2V

∂x2
− LC

∂2V

∂t2
− (LG+ RC)

∂V

∂t
− RGV = 0. (2)

Note that here radial and angular components of voltage are

neglected.

For a process in an axon, the following assumptions are made

(Bressloff, 2014):

- magnetic fields due to the movement of electric charge can be

neglected;

- changes in ionic concentrations are sufficiently small so that

Ohm’s law holds;

Applying these assumptions, the governing equation called the

cable equation, used by Hodgkin and Huxley (1952) reads:

∂2V

∂x2
= RC

∂V

∂t
+ RI, (3)

where R = 1/(πa2G), a is the axon radius and I is the ion current.

In many studies, the governing cable equation is derived based on

a model circuit with discrete elements (Hodgkin and Huxley, 1952;

Nelson et al., 2003; Ermentrout and Terman, 2010; Bressloff, 2014).

Rall (1977) has shown that the flow of current across the

membrane experiences much greater resistance than the core

resistance for short length. Due to these relative resistances, steady

state solutions for potential along a current exist. For transient

properties of a cable also capacitance must be accounted for. Steady

state and transient solutions for cable equation are dependent on

the boundary and initial conditions (Rall, 1977; Giugliano et al.,

2022).

According to studies made by Hodgkin and Huxley, ion

current I depends on the opening and closing of K and Na

ion channels (Hodgkin and Huxley, 1952). The decisive role in

their phenomenological model is played by the phenomenological

variables n, m, and h which lie between zero and unity. These

variables are described by relaxation equations. The number of

coefficients in the Hodgkin-Huxley (HH) model is rather high and

needs special tuning for concrete cases. For the general analysis

often a simpler model is used which relies only on one ion current.

This model is called after FitzHugh and Nagumo (FHN) and in

original notations reads (Nagumo et al., 1962):

h
∂2u

∂s2
=

1

c

∂u

∂t
− w−

(

u−
u3

3

)

, (4a)

c
∂w

∂t
+ bw = a− u, (4b)

where u is the voltage, w the recovery current, s is distance along

a nerve axon, and h, c, b, and a are positive coefficients. The

FHN model explains the basic properties of the AP: the threshold,

the asymmetric shape, and the refraction period. Although its

coefficients are not related to actual experiments, this model is

widely used for describing the processes in excitable media.

The cable equation and the corresponding part of the FHN

model are parabolic equations because inductivity is neglected.

Starting from the initial hyperbolic model like Equations (2),

(3) it is possible to derive an evolution equation describing the

propagation of one wave only like the celebrated Korteweg-deVries

equation. In this case, leaving aside the derivation (for details see
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FIGURE 2

Block schemes for the noted models—(A) El Hady and Machta (2015); (B) Jérusalem et al. (2014); (C) Chen et al. (2019); (D) Schneider (2021); (E)

Rvachev (2010); (F) Engelbrecht et al. (2021).
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Engelbrecht, 1981), the final form in original notations is:

∂2z

∂x∂ξ
+ f (z)

∂z

∂ξ
+ b00z = 0, (5a)

f (z) = µ(b0 + b1 + b2z
2), (5b)

where z is a properly scaled voltage, ξ is the moving coordinate

(ξ = c0t − x), µ and bi are constants. Velocity c0 is obtained from

the hyperbolic equation, but it is not the final velocity of the pulse.

Function f (z) corresponds to the FHN (one ion current). The full

analysis of Equation (5) is presented by Engelbrecht (1991).

The detailed analysis of cellular mechanisms influencing the

shape and the velocity of an AP in single neurons and neuron

networks is given by Hines and Carnevale (2001), Clay (2005),

and Debanne et al. (2011). For modeling the accompanying effects,

the HH or the FHN classical models are sufficient to build up

the coupling mechanisms. Note that ephaptic coupling that is an

essential mechanism of interaction in sciatic nerves (Scott, 2002),

modulation of axonal transmission delays (Schmidt et al., 2021),

synchronous firing (Han et al., 2018), etc., are not analyzed here.

2.1.2. Mechanical waves and conservation laws
All mechanical processes in the continuum are governed by

conservation laws. Following Eringen (1962) and Eringen and

Maugin (1990), these are:

- conservation of mass;

- conservation of momentum;

- conservation of moment of momentum;

- - conservation of energy.

In addition, the entropy inequality is used and stress-strain

relation(s) are proposed. From axioms needed for a constitutive

theory (Eringen and Maugin, 1990), the axiom of equipresence is

of special importance: all constitutive response functionals must

be considered as being dependent on the same list of constitutive

variables until the contrary is deduced. The scale analysis helps with

a proper choice of variables.

For modeling dynamic processes, the basic law is the

conservation of momentum (in a different presentation this is the

Second Newton’s Law). The simplest governing equation for a

wave in a continuum is the wave equation which is the 2nd order

PDE and predicts the finite velocity of the process. The simple

wave equationmust be modified to describe dispersion, dissipation,

coupling, thermal effects etc. In these cases, the higher-order terms

appear in the governing equation but the basis is preserved. For an

axon, one should be able to model the longitudinal wave (LW) in

the biomembrane and the pressure wave (PW) in the axoplasm.

For the LW, Heimburg and Jackson (2005) have proposed a

governing equation including nonlinear and dispersive effects. This

equation in the improved form (Engelbrecht et al., 2015) is the

following:

∂2u

∂t2
=

∂

∂x

[

(

c20 + pu+ qu2
) ∂u

∂x

]

− h1
∂4

∂x4
+ h2

∂4

∂x2∂t2
, (6)

where u is the density change and p, q, h1, h2 are coefficients.

Note that the term with coefficient h1 models elastic effects and

the term with coefficient h2 describes inertial effects of the lipids

which constitute the biomembrane. Including the 4th order mixed

derivatives means actually following the axiom of equipresence,

which means that all effects of the same order must be taken

into account simultaneously (Engelbrecht et al., 2021). This is

comparable to modeling of microstructured solids (Berezovski,

2020).

For the PW, the wave equation can be used but a dissipation

effect must be included. In the simplest form, it means a time

derivative of the variable. Then the governing equation is:

∂2P

∂t2
= c22

∂2P

∂x2
− µ2

∂P

∂t
, (7)

where P is pressure in axoplasm, c2 is the characteristic velocity and

µ2 is viscous dampening.

In terms of continuum mechanics, the biomembrane and the

axoplasmic fluid can be considered likemicrostructuredmedia. The

main effect of the microstructure is related to dispersion. Tamm

et al. (2022) have used the analogy from solid mechanics to model

the longitudinal waves in the myelin sheath resulting in narrowing

the profile. The question whether such an analogy could be also

used for axoplasmic fluid, is open. The main difficulty is to find the

physical parameters of biological “microstructured” media.

2.1.3. Heat generation and physical laws
The propagation of signals along the axon is accompanied

by temperature changes. Although these changes are small, the

experiments have registered these changes (Abbott et al., 1958;

Howarth et al., 1968; Tasaki et al., 1989). For modeling thermal

effects, one should again return to basics. According to Joule’s law

heat is related to electric current and according to Fourier’s law heat

flux is related to the temperature gradient. As we are interested in

temperature then the basic effect must be described by the Fourier’s

law:

q = −k
∂T

∂x
, (8)

where q is the heat flux, T is the temperature and constant k is the

thermal conductivity. Consequently, the governing equation for the

temperature is the heat equation

∂T

∂t
=

k

chρ

∂2T

∂x2
, (9)

where ch is the heat capacity and ρ – the density of the axoplasmic

fluid.

2.1.4. Internal variables
In continuum mechanics, it is well-known that the internal

structure at the micro level may affect the process at the macro

level. This influence can be described by using the concept

of internal variables. Contrary to the observable variables that

can be measured, internal variables are hidden and cannot be

measured but the effects caused by them can give additional

information about the process. A contemporary presentation of the

formalism of internal variables is presented by Maugin (1990) and
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Maugin and Muschik (1994), illustrated by many examples in

continuum physics (mechanics). In general, an internal variable is

governed by an evolution equation

dx

dt
=

α − α0

τ
, (10)

where α is an internal variable, α0 its equilibrium value and τ–the

relaxation time.

This concept is actually used in the modeling of processes

in nerves although not attributed to continuum mechanics.

The celebrated HH model involves “phenomenological” variables

n, m, h that describe changes from zero to unity. These

phenomenological variables in terms of continuum mechanics

can be interpreted as internal variables (Maugin and Engelbrecht,

1994).

For explaining the sources of heat generation, Abbott et al.

(1958) have suggested that exothermic reactions might be taken

into account but no model was proposed. Tamm et al. (2019) have

proposed to use the concept of internal variables for modeling

the influence of endo- and exothermic reactions to temperature

changes accompanying the AP.

2.1.5. External forces
As said before, the wave equations in continuummechanics are

derived by using the conservation ofmomentum (see Section 2.1.2).

This can be expressed as force is equal to the change of momentum

per change of time (see Engelbrecht et al., 2021). Indeed, in terms

of stress, the governing equation is:

(

Kijxk,j
)

,i
+ ρ0(fk − Ak) = 0, (11)

where Kij is the Kirchoff stress tensor, xk are space variables, ρ0 is

the density of the material, fk are the components of the body force

and Ak are the components of the acceleration. Here the tensor

concept (Eringen, 1962) is used, k, i, j = 1, 2, 3 and comma denotes

the partial derivative with respect to space coordinate xk.

In physical terms, the additional force can be interpreted as an

influence of other fields. Actually, this reflects Euler’s first law: “The

time rate of change of momentum of a body is equal to the sum

of the forces acting on the body” (see Slattery, 1971). These forces

according to Slattery (1971) are called mutual forces. In biology,

one has to note the Du Bois-Reymond law (cited after Hall, 1999):

“... the variation of current density, and not the absolute value of the

current density at any given time, acts as a stimulus to muscle or a

motor nerve". It means that for coupling, the mutual forces must be

determined and they depend on changes in fields.

These concepts can be used for coupling all the effects which in

our case means coupling electrical, mechanical, and thermal effects.

2.1.6. Terminology
Interdisciplinary studies involve several research fields and

attention should be paid to the proper usage of notions.

Within the framework of modeling the signals in nerves, some

remarks are needed.

The first remark concerns solitons. According to the general

understanding, solitons exist in a nonlinear dispersive medium

and (i) have a stable form; (ii) are localized in space; (iii) restore

their speed and structure after interaction with similar entities

(Ablowitz, 2011). These properties must be checked before using

the notion of solitons. The iconic Korteweg-deVries equation

is an excellent example of how these properties are checked.

When not then in physics the notion of “solitary wave” is

used. It must be stressed that the AP is not a soliton (Scott,

1999).

The second remark concerns surface waves. In physics, the

surface waves propagate along the interface between different

media and are well-studied in geophysics (Malischewsky, 1987).

The spatial amplitude of a surface wave is confined to the vicinity

of the interface, i.e., there is a strong amplitude-depth dependence

reflected by the decrease of the amplitude with the distance

from the interface. The idea that the longitudinal waves in a

biomembrane are surface waves (El Hady and Machta, 2015)

is interesting but needs special analysis from the viewpoint of

classical theory.

2.2. Mathematics

Mathematical modeling means casting a process or a

phenomenon into a mathematical representation. In biology,

mathematical modeling has gained more and more attention. The

features of modeling in biology are discussed in a Report by the

US National Research Council (2005). Among the properties and

possibilities listed in this Report are:

- models highlight basic concepts of wide applicability;

- models uncover new phenomena or concepts to explore;

- models can link what is known to what is yet unknown, etc.

Once a process is described mathematically, it needs the

proper analysis. Concerning the propagation of the AP and the

accompanying effects, the mathematical analysis is presented in

many studies (Nelson et al., 2003; Ermentrout and Terman, 2010).

Leaving aside the details of such an analysis, we mention here

some important aspects that must be followed in deriving the

mathematical models of nerve impulse propagation.

First, following the physical considerations (Section 2.1.5), the

changes in one field will affect the other fields. In mathematical

terms, it means that the changes are reflected by derivatives of

variables with respect to time or space coordinates. Consequently,

the forms of the coupling forces must include derivatives of

variables that help to clarify the possible physical mechanisms of

coupling (Engelbrecht et al., 2021).

Second, it is well-known in continuum mechanics that the

transverse displacement w of a slender tube is proportional to the

longitudinal deformation ux (Engelbrecht et al., 2015). This means

that if the longitudinal displacement u is unipolar then w is bipolar.

The experiments where w has been measured in the biomembrane

demonstrate that this is plausible (Terakawa, 1985; Tasaki, 1988).

Note that if considering the transverse displacement as a unipolar

pulse then the corresponding longitudinal displacement u must be

a kink-type, i.e., after passing the pulse the biomembrane has a

permanent change that is physically impossible.

Frontiers inCellularNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncel.2023.1222785
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Peets et al. 10.3389/fncel.2023.1222785

Third, the full system of coupled equations involving the AP

and accompanying effects is a system of nonlinear and linear PDEs.

It involves hyperbolic (for wave-type phenomena) and parabolic

(for heat-type phenomena) equations and solving this system needs

numerical methods of high accuracy. For solving the coupled

equations, Chen et al. (2019) have used the finite element method,

and Engelbrecht et al. (2021) have used the pseudospectral method.

3. Concepts taken into account

Despite excellent experimental studies, there is an urgent need

to build up the general overarching theory. This should be based on

taking all the essential physical effects into account as mentioned

by Kaufmann (1989): “electrical action potentials are inseparable

from the force, displacement, temperature, entropy and other ...

variables”. Andersen et al. (2009) added that there is a need “to

frame a theory that incorporates all observed phenomena in one

coherent and predictive theory of nerve signal propagation”. The

general idea is to start by bridging the physical considerations and

biological functions as stated by Schneider (2021). He stresses the

importance of energy and momentum conservation and calls “to

be aware of those laws right from the start and implement them in

our models ...”.

Based on the brief analysis of physical principles in Section 2

(see also Engelbrecht et al., 2021) it is possible to formulate the

following basic requirements for modeling:

- the signals in nerves constitute an ensemble of waves including

electrical, mechanical and thermal components along and across

the axis of a nerve;

- the governing equations for the components of the ensemble

stem from the laws of physics including the conservation laws;

- the conservation laws of continuum physics form a consistent

system which must be preserved in modifications by satisfying

the axioms of the constitutive theory;

- in dynamical processes, every variation of fields acts as a

stimulus (coupling force) to other fields.

The crucial stage in modeling is to understand the biological

functions of processes in nerves. Numerous experiments have

demonstrated the quantitative changes of variables and by

combining them with mathematical formulation, some additional

recommendations for modeling can be proposed:

- in the first approximation, the coupling forces are determined by

first-order polynomials of gradients (space derivatives) or time

derivatives; in 1D setting gradients mean changes along the axis,

time derivatives across the axis;

- unipolar pulses have bi-polar derivatives and if considered as

structural parts of coupling forces, are energetically stable;

- the hidden (in terms of direct measurements) processes can be

described by internal variables which need additional physical

parameters to be determined (equilibrium level and relaxation

time);

- the mechanical waves propagating in the biomembrane (the

longitudinal u and transverse w displacements) are reciprocally

coupled by the so-called Rayleigh-love correction (ux and w)

meaning that the longitudinal deformation ux is always coupled

with a transverse displacement w and vice versa;

- the axiom of equipresence must be followed (for example, the

elastic and inertial properties of the phospholipidsmust be taken

into account simultaneously).

The coupling of various physical effects needs not only a clear

mathematical formulation corresponding to physics but also the

determination of physical parameters. This is a real challenge for

experimental studies in vivo and in vitro. However, the in silico

experiments permit to cover of a large area of quantitative physical

parameters and finding suitable sets of them.

4. Analysis of mathematical models

The numerous experiments starting from the celebrated

Hodgkin and Huxley (1952) have shown that the main carrier of

information in axons is the AP with an asymmetric shape (see

the overviews by Clay, 2005; Debanne et al., 2011). The wave

ensemble is composed of the AP, the longitudinal (LW) wave in

the biomembrane and the corresponding transverse (TW) wave,

the pressure wave (PW) in the axoplasm and temperature change

2 accompanied by some biochemical changes.

The emergence and propagation of an AP under the influence

of various ion channels and structural properties of an axon are

intensively studied (Hines and Carnevale, 2001; Debanne et al.,

2011; Goriely et al., 2015). Here we focus on the modeling of the

emergence of accompanying effects. In most studies, the AP has a

triggering role for all the other effects and this statement is called

the Hodgkin-Huxley paradigm.

El Hady and Machta (2015) have elaborated a mathematical

model based on the assumption that the potential energy is stored

in the biomembrane and the kinetic energy in the axoplasmic fluid.

The model takes the AP without calculations as a gaussian pulse

and the attention is to determine the LW, TW, and 2. It is stated

that the mechanical modes are driven by the changes of separation

across the membrane. Although the PW is not described, it is

assumed that its (called the bulk flow) influence is seen as the

surface waves, i.e., waves in the biomembrane. The question is

that according to the general understanding (see Malischewsky,

1987), surface waves are depth-dependent and this property is not

analyzed. The heat is assumed to depend on summing up the

amplitudes of LW and PW, however, a detailed analysis of such

an assumption is not given. The profiles of the LW, TW, and 2

correspond qualitatively to the measured ones.

A model of coupled electrical and mechanical effects based on

the spring-dampers (dashpots) system is proposed by Jérusalem

et al. (2014). This model describes the process in a myelinated

axon and the difference in the behavior of the nodes of Ranvier

and internodal regions is taken into account by the Hodgkin-

Huxley model and cable theory. Tian et al. (2019) also used

a similar mechanoelectrical coupled model of axons under

mechanical loading.

Chen et al. (2019) proposed a coupled

mechanoelectrophysiological model for axons that is based

on using the flexoelectric effect. This means that changes (c.f.

Section 2.1.5) of voltage field during an AP induce strain gradient

fields on the axon resulting in a change of the membrane surface

curvature (usually called the reverse flexoelectric effect). The AP

is governed by the Hodgkin-Huxley model and cable equation,
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and both unmyelinated and myelinated cases are analyzed. The

biomembrane is taken as an elastic or viscoelastic cylinder with a

thin wall and the conservation of momentum is used for deriving

the corresponding model of mechanical effects in such a cylinder.

This model includes the body force due to the flexoelectric effect.

The change in the axon diameter is taken into account together

with the changes in the membrane capacitance and resistance. The

finite-element method is used for the numerical simulation and

the calculated TW has a bipolar shape. The model permits the

reciprocity of electrical and mechanical effects.

A mathematical model involving all the components of the

wave ensemble (AP, LW, TW, PW, 2) is proposed by Engelbrecht

et al. (2021). This model is based on the Hodgkin-Huxley paradigm

and the governing equations of all the components of the ensemble

except the TW are derived from the basic principles and coupled

by additional forces expressing the coupling mechanisms. The TW

is related to the gradient of the LW. For modeling the effects

from exo- and endothermic reactions to temperature changes, the

concept of internal variables is used. In this model, the main

attention is on modeling the accompanying effects and therefore

a simplified model for the AP - the FitzHugh-Nagumo model -

is used in most calculations, although it is possible to use also

the standard Hodgkin-Huxley model. The numerical simulation by

the pseudospectral method demonstrated a good qualitative match

with experimental studies.

A different idea for explaining the signals in nerves is proposed

by Heimburg and Jackson (2005) who consider a main signal as an

“electromechanical soliton". This signal is a longitudinal wave of

phase transition in the biomembrane and all the other phenomena

in nerves are triggered by this mechanical wave. Although this

model can describe the whole process from a different viewpoint

compared with the Hodgkin-Huxley model, it is not clear how the

electrical signal measured by numerous experiments, is formed. It

is assumed that the membrane potential is linearly proportional

to the density change (Heimburg and Jackson, 2005) but this

assumption does not explain the measured asymmetric shape

of an AP (asymmetry means an overshoot) or the refractional

overshoot (cf. the Hodgkin-Huxley or FitzHugh-Nagumo models).

One should, however, note that the Heimburg-Jackson model is of

great importance for explaining the dynamics in the general theory

of cells where the phase transition may occur.

Schneider (2021) has studied experimentally and theoretically

processes in monolayers that also permit better understand the

processes in bilayers. This makes possible to unite electrical and

mechanical pulses in lipids and state that the acoustic pulses in

lipids have similarity to action potentials (Mussel and Schneider,

2019).

In principle, there is one more possibility to generate signals

in nerves. Rvachev (2010) has assumed that the pressure wave

PW in the axoplasmic fluid can trigger other phenomena in axons

including the formation of an AP.

This short overview overview (see Figure 2) on recently

proposed mathematical models must be enlarged by indicating also

possible shortcomings in general. As noted in studies mentioned

above, the presented models need to be improved following the

experimental studies and better understanding the mechanisms

of coupling. As far as the processes of coupling are complicated,

the number of parameters to be determined is high. In overviews

by Drukarch et al. (2018) and Holland et al. (2019) beside the

historical facts the criticism about the phenomenological nature

of several models is presented. Indeed, even the phenomenological

character of the Hodgkin-Huxley model can be disputed but there

is no better model which would be as widely accepted in the

scientific community. The model proposed by Engelbrecht et al.

(2021) uses also phenomenological relations and as mentioned

by authors, needs experimental studies for determining the

parameters. Actually, as noted by El Hady and Machta (2015),

our knowledge about the physical properties of axons needs more

data to be used in models. Consistency of governing equations are

usually guaranteed by using properly the physical considerations.

One of the questions raised by Drukarch et al. (2018) is the

influence of the transverse displacement of the biomembrane on

system properties. Chen et al. (2019) have taken it into account

together with possible changes in the capacitance and the resistance

of the biomembrane. Although the transverse displacement is small

(in the scale of 1–2 nm), its influence on physical properties (albeit

small), should be taken into account in further studies.

In modeling, attention must be paid to scales of structures and

processes. The observations are summarized as follows:

• Wavelengths of the propagating signals are essential for the

modeling.. If the signal duration is 2 ms and velocity is 2

m/s then the spatial length of the signal from start to finish

is roughly 4 mm. If the duration is 2 ms and velocity 100

m/s then the spatial length of the signal from start to finish

is roughly 20 cm. However, it must be noted that depending

on the shape of the signal the spectral composition could

include higher harmonics or frequency components with

shorter wavelengths which could, in theory, be short enough

to be sensitive toward smaller structures like ion channels or

maybe even larger proteins.

• Axon diameter varies from a micrometer in certain nerves of

the human brain to a millimeter in the giant fiber of the squid

(Lodish et al., 2004). Axon length varies from a millimeters up

to about a meter (giant fiber of the squid).

• The cycle of membrane depolarization, hyperpolarization, and

return to the resting value that constitutes an action potential

lasts 1–2 ms and can occur hundreds of times a second in a

typical neuron (Lodish et al., 2004).

• Node of Ranvier (a structure found on myelinated axons) is

typically around 1 µm in length and has a high density of ion

channels (Lodish et al., 2004).

• Myelin sheath segment is typically from≈ 50 to≈ 300 µm in

length.

• Lipid bi-layer is typically 3–4 nm in thickness.

• Mechanical transverse displacement during AP propagation is

typically≈ 1 nm in amplitude (Iwasa et al., 1980; Tasaki et al.,

1989).

• Mammals have about 50 different small-molecule pumps

(Lodish et al., 2004) (i.e., the ion channels of various kind).

• Pure phospholipid bilayers are essentially impermeable to

water, but most cellular membranes contain water-channel

proteins that facilitate the rapid movement of water in and out

of cells (Lodish et al., 2004).

• Special transport processes involving microtubules move

proteins and membranes from their sites of synthesis in the
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cell body down the length of the axon to the terminals (Lodish

et al., 2004) (i.e., the cytoskeleton).

• The electrochemical gradients are essentially independent of

the supply of ATP over the short time (Lodish et al., 2004)—

meaning that AP can be propagated from a few hundred to up

to a thousand times even if the ATP supply is suppressed in an

axon from existing gradient across the membrane.

• AP can move down an axon without diminution at speeds

up to 1 m/s (without myelin sheath) (Lodish et al., 2004). In

non-myelinated neurons, the conduction velocity of an action

potential is roughly proportional to the diameter of the axon

(Lodish et al., 2004).

• The presence of a myelin sheath around an axon increases the

velocity of impulse conduction to 10–100 m/s (Lodish et al.,

2004).

• The myelin sheath is a stack of specialized plasma membrane

sheets produced by a glial cell that wraps itself around the axon

(Lodish et al., 2004).

• Two proteins predominate in the myelin membrane

around peripheral axons: P0, which causes adjacent plasma

membranes to stack tightly together, and PMP22 (Lodish

et al., 2004).

• Tight junctions between the axon and the glial cell plasma

membrane in the paranodal junctions immediately adjacent

to the nodes may prevent diffusion of Na channels and

Na/K pumps away from the nodes (Lodish et al., 2004)

(although none of the noted models deal with the ionic

channel distribution along the axon explicitly).

The scales listed above permit summarizing the main features

of the nerve pulse propagation. Typical processes in time happen

from microseconds (phase change of the lipid bi-layer in some of

the described models) up to hundreds of milliseconds (temperature

effects persisting after the nerve pulse has passed in some models)

with most of the models predominantly focused on describing

effects that are from a millisecond up to a few tens of milliseconds

in time and, roughly, in phase with the main driving signal

(AP or mechanical change in most of the described models). In

spatial resolution the noted models fall roughly in two broad

categories, first the models that are the most focused on the

lipid membrane and the changes happening within (membrane

thickness 3–4 nm, membrane displacement of roughly 1 nm but

along the axon the signal can be from millimeters up to tens of cm

in scale) and second, the models that are taking a more “continuum

mechanics” approach, focusing more on the macroscopic effects in

spatial scales comparable to the length of the axon and sometimes

including influence of the smaller structures (like, for example,

mechanosentitivity of some ion channels) in a roundabout way

indirectly through parametrization of the models.

An open question is what effects described in various models

are essential for a functioning of nerves and what are secondary

effects accompanying the main driving signal. For example,

Drukarch et al. (2018) have raised a question of membrane capacity

change due to the change of axon radius. In their view this change

is large enough and it must be taken into account. In the first

approximation the membrane capacitance can be modeled as a

plate capacitor (Heimburg, 2012) meaning that the capacitance

is proportional to the surface area and inversely proportional to

the -thickness of biomembrane. A mammalian axons can have

diameter up to 25 µm and a change of radius by 1–2 nm (as

shown in experiments) means a change of surface area by about

0.004–0.008% which is small enough to be discarded at the first

approximation. For an axon with a radius of 1 µm the change of

surface area would be 0.1–0.2%. On the other hand it has been

shown in laboratory setting (Heimburg, 2012) that in case of a

synthetic biomembrane not only area increases but also a thickness

of the biomembrane shrinks. In this case a reduction of thickness

in the order of 0.5 nm the capacitance would change by 14–20%.

To our knowledge there have not been measurements of shrinking

of the membrane thickness in actual nerve pulse propagation.

However, extrapolating the result from synthetic membranes is

questionable as this would also mean a change in axon length by

roughly 25%. Due to the robustness of the nerve pulse modeling

framework developed by Engelbrecht et al. (2021), the possible

effect of changing capacitance can be easily added to the model.

Chen et al. (2019) model this effect as an integral over the axon

diameter and it is recalculated at every step.

Because of nonlinearities included in some of the models there

might be scenarios where a small disturbances lead to large changes.

That said, life is surprisingly robust and resilient, so if a givenmodel

assumes super-criticality to work or is highly sensitive toward small

changes in its parameters one has to question if a given model can

describe a normally operating nerve or is it more relevant for some

kind of specific pathological scenario.

Finally, while mathematical modeling is certainly a powerful

tool, eventually experimental data is needed to check how

well reality agrees with what the models predict or assume.

Unfortunately, the kinds of experiments needed to really determine

what effects are important and what could be neglected as not

as important are not easy to do for various reasons. Ideally, a

simultaneous measurement of all the effects described in various

models presented above and on several subsequent locations along

the same axon would allow the determination what the noted

models have gotten right and highlight any shortcoming as well.

5. Future research

Based on the analysis in the previous Section, several ideas

could be listed for the further research which should give more

information not only for a healthy axon but also improving

understanding about the pathological cases is evenmore important.

Firstly, more data about the physical properties of an axon

could better reflect the reality including the structure of an axon

as well as the environment. The mathematical models described

in Section 4 give the ideas for experiments that needs a good

collaboration between theoreticians and experimentalists. The US

National Research Council (2005) stresses the importance of

mathematical models which “... are useful for formalizing intuitive

understandings, even if those understandings are partial and

incomplete.” It seems that a special attention should be focused

on coupling mechanisms. For example, coupling forces proposed

by Engelbrecht et al. (2021) involve several parameters that need

quantification. These estimationsmust be accompanied by the scale

analysis. In some studies it is assumed that the changes in the axon

diameter and the corresponding changes of physical properties are

Frontiers inCellularNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncel.2023.1222785
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Peets et al. 10.3389/fncel.2023.1222785

small and can be neglected. In the Hodgkin-Huxley model the

K and Na ion currents are taken into account (in the FitzHugh-

Nagumo model just one generalized current) but the general

understanding about the structure of axons and ion channels is

more detailed. It is known that the structure of ion channels is

complicated and may play a different role in the process of the ion

pumping, especially in myelinated nerves (Arancibia-Carcamo and

Attwell, 2014; Nicoletti et al., 2021). This concerns differences in

the nodes of Ranvier, paranodes and juxtaparanodes that might be

of importance for neuronal dysfunction. The process of formation

of an AP in the axon hillock raises the question how the other

accompanying effects are generated from their equilibrium states.

It is known (Fields, 2014) that the initial segment of an axon

controls the shape of the AP. More knowledge about emergence

of the wave ensemble could cast more light on possible dysfunction

of nerves.

Secondly, attention should be paid how to take the structural

elements like cytoskeleton (Singh et al., 2021), molecular

mechanisms (Contera, 2019), and chemical potentials (Heimburg,

2010) into account. The axoplasmic fluid can be modeled as a

microstructured fluid but first the analysis of scales is needed to

demonstrate that such effects influence the process. The simplest,

even somewhat naive accounting of cytoskeleton influence would

be just assuming that it changes viscosity of the axoplasm or acts

as some kind of dampening spring on a cell membrane. However,

there is also some experimental evidence [see, for example,

Terakawa (1985) where removal of cytoskeleton influences an

experimentally measured pressure response by an order of

magnitude] that the cytoskeleton might influence the functioning

and properties of an axon by a significant amount. Cytoskeleton

interacting with cell membrane could change its stiffness (Franke

et al., 2009) or even take part in the signal propagation. Then

there is a question if the presence of a cytoskeleton could affect

the local temperature changes accompanying the nerve signals.

Is it continuous, could it conduct heat at different velocity along

the axon than a simple diffusive heat propagation in water

would indicate, does it have much different heat capacity than

axoplasm, and so forth are all different questions that might

change something. After all, there is a lot of chemistry going

on in the metabolism of cells and chemistry could be highly

sensitive toward local temperature and also to the local pH of

the environment. And all that is before one considers its role in

processes and metabolism of the nervous cells that are happening

at longer time scales than a typical duration of a single nerve

signal pulse. From that perspective, a more accurate representation

of a cytoskeleton in the mathematical models could allow one

to describe causal connections that might be missed in a more

abstract description where the influence of the cytoskeleton, even

if taken into account, is hidden away in some static parameter

affecting a single aspect of the model. Unfortunately, as noted in

the previous chapter, more experimental observations would be

needed. It is not impossible that after more detailed experimental

work emerges the cytoskeleton could be considered as important

for the signal propagation in nerves as the cell membrane is, as

an example.

Thirdly, the interdisciplinarity also may help in building the

mathematical models. For example, the description of nonlinear

fractional waves in phospholipid monolayers (Kappler et al., 2017)

may be used for modeling the processes in biomembranes as

a transition between the hyperbolic (wave-type) and parabolic

(diffusive-type) behaviors. The concept of internal variables may

beside the description of exo- and endothermic reactions also used

for more accurately describing the influence of the cytoskeleton on

themechanical properties (membrane stiffness, axoplasm viscosity)

or small scale geometry (for example, myelin distribution along

the axon). In the classical HH model the phenomenological

variables used for ionic currents are, in essence, internal variables

describing the kinematics of “hidden” physical structure in the

form of total summarized effect of various individual ionic

channels and their opening and closing through their effect on the

macroscopic/observable process which is the AP. Another aspect

that could benefit from additional clarification in the mathematical

models is the role of chemistry in the process of nervous pulse

propagation. However, here one should be careful by keeping

in mind the time and space scales of the problem, diffusion, in

general, is relatively slow, however, over short enough distances

both chemistry and diffusion could be fast enough to influence

the dynamics of nerve signal propagation. And, obviously,

the mathematical models constructed for describing idealized

structures on which idealized nervous signals are propagating

would need eventually a practical application in medicine which

deals with real living systems where almost everything affects

everything else so the constructed models need to be robust enough

to be able to deal with all that somehow.

Fourthly, the general energy balance between the electrical,

mechanical and thermal effects must be better explained. There

are several studies where this problem is analyzed (de A. Nogueira

and Conde Garcia, 1983; Mussel and Schneider, 2019; Engelbrecht

et al., 2021; Peets et al., 2021) but the full analysis is still absent.

In this context, an interesting question is whether the mechanisms

of heat transfer will be better explained by modifications of

Fourier’s law like proposed for biological tissues by Shomali et al.

(2022).

Toffler (1984) has noted once upon time that: “One of the

most highly developed skills in contemporary Western civilization

is dissection: the split-up of problems into their smallest possible

components. We are good at it. So good, we often forget to put the

pieces back together again.” So, we should do our best to fit the

smaller, manageable, understandable details back together, figure

out what is truly important and what is small enough to be safe

to leave aside for the sake of simplicity and then, so to say, see

the forest among all the trees. Understand how all the individual

interesting details affect the larger picture.

6. Conclusions

We have demonstrated that for modeling signals in nerves, the

physical considerations must be followed. Biological systems are

extremely complicated and the governing equations for describing

processes need modifications to reflect their behavior. It is said that

“Newton rules biology” (Pennycuick, 1992) and “Mathematics is

biology’s next microscope” (Cohen, 2004) but experimental results

must be carefully checked to estimate the correctness of models.

The rules of modeling should follow simple principles: check the

laws of physics, modify the constitutive relations (dependencies
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of variables) for grasping the measured effects, and remember

that every change in a field variable will cause a change in other

variables but the formalism (mathematics) must be related to

physical mechanisms. The strength of mathematical modeling is

related to the possibility to proceed with in silico experiments that

also could help to determine the physical parameters in addition to

experiments in vivo or in vitro.
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