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Introduction: Interpersonal neural synchronization (INS) demands a greater

understanding of a brain’s influence on others. Therefore, brain synchronization is

an even more complex system than intrasubject brain connectivity and must be

investigated. There is a need to develop novel methods for statistical inference in

this context.

Methods: In this study, motivated by the analysis of fNIRS hyperscanning data,

which measure the activity of multiple brains simultaneously, we propose a two-

step network estimation: Tabu search local method and global maximization

in the selected subgroup [partial conditional directed acyclic graph (DAG) +

multiregression dynamic model]. We illustrate this approach in a dataset of two

individuals who are playing the violin together.

Results: This study contributes new tools to the social neuroscience field, which

may provide new perspectives about intersubject interactions. Our proposed

approach estimates the best probabilistic network representation, in addition

to providing access to the time-varying parameters, which may be helpful in

understanding the brain-to-brain association of these two players.

Discussion: The illustration of the violin duo highlights the time-evolving changes

in the brain activation of an individual influencing the other one through a data-

driven analysis. We confirmed that one player was leading the other given the ROI

causal relation toward the other player.

KEYWORDS

dynamic network, state-space models, causal inference, dual brain, interactive social

neuroscience

1. Introduction

The brain is formed by a network in which different regions share information Horwitz

(2003). This brain network can be studied through functional connectivity, which represents

the patterns of statistical dependence on the activity of distinct brain regions, or through

effective connectivity, which means the causal influences of the activity of one region over

another. The variance-covariance matrix and the Bayesian network (BN) are examples of

methods used to estimate functional connectivity. Other methods can be used to study

effective connectivity, such as dynamic causal modeling (DCM) and the multiregression

dynamic model (MDM). For a given directed network structure, the MDMmodels the data

at each node as a linear combination of the parent nodes with time-varying connectivity

parameters. According to Queen and Smith (1993), the MDM can distinguish between

directed graphs corresponding to the same statistical dependence structure (which map onto
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the same undirected graphs), allowing for the accurate estimation

of the directions of edges (a simple example of this is also discussed

here). Moreover, the MDM can be observed as more than a static

network (similar to BN). Alternative examples of these dynamic

methods can be found in Burger et al. (2009), who used the dynamic

Bayesian network (DBN) and hiddenMarkov models (HMM) used

in human-robot interaction (DBN and HMM are a particular case

of MDM).

In any case, the problem of finding a common pattern of brain

connectivity for a given individual profile (healthy or with a specific

disease, e.g., Alzheimer’s disease) is not trivial owing to the presence

of noise and the high-dimensionality of the data (Nascimento et al.,

2020; Pinto-Orellana et al., 2020). For the MDM, Costa et al. (2015)

presented a score-based learning network approach using a linear

programming problem that finds the most likely network structure

while considering the subset comparison through their maximum

posterior probability (MAP) estimation. The authors demonstrated

the usefulness of their method on functional Magnetic Ressonance

Imaging (fMRI) data as it becomes unfeasible as the number of

nodes (i.e., brain regions) increases.

In addition to this challenge, in the field of social neuroscience,

understanding how the activity of the brain might influence

the activity of another brain, which is known as brain-to-

brain activity correlation, is also desirable. As examples, we

considered a classroom where the teacher and the students

interact or an orchestra where the musicians and the conductor

interact. Konvalinka and Roepstorff (2012) describes how mutually

interacting brains can be useful in social interaction. Balconi et al.

(2017) studied the effects of strategic cooperation on intra- and

inter-brain connectivity by functional near-infrared spectroscopy

(fNIRS). Jiang et al. (2019) developed a study entitled “BrainNet: a

multi-person brain-brain interface for direct collaboration between

brains,” among others.

Hyperscanning studies—measuring the activity of multiple

brains simultaneously—is a promising (flexible) paradigm

regarding the measurement of brain activity from two or more

people simultaneously while they are interacting. This could reveal

interpersonal brain mechanisms underlying interaction-mediated

brain-to-brain coupling Scholkmann et al. (2013). One experiment

that could be conducted to this end, focusing on two brains’

observations, is the study of violin duos playing together. The

fNIRS could be used to overcome functional magnetic resonance

imaging constraints, but few dynamic data-driven models have

been proposed. Thus, we aimed to apply a dynamic graphical

model to show dynamic changes in intersubject brain activity

dependence over time.

1.1. Interaction-mediated brain-to-brain
activity correlation

In recent decades, part of the neuroscience field has focused

on demonstrating the nervous system and its function through

individuals’ behavior (and inter-relations) (Liu and Pelowski, 2014).

For instance, some studies have discussed the brain connectivity

structure by gender (Wang et al., 2009; Baker et al., 2016; Pan et al.,

2017), age (Gong et al., 2009), or using other characteristics such

as intelligence (Song et al., 2008; Van Den Heuvel M. et al., 2008;

van denHeuvel M. P. et al., 2008), psychoactive ingestion (Palhano-

Fontes et al., 2019), and meditative states (Brefczynski-Lewis

et al., 2007; Brewer et al., 2011; Hasenkamp and Barsalou, 2012).

Nevertheless, all of them have targeted different methodologies

related to neuroanatomy. These methodologies also understand the

brain connection patterns in human actions, such as opening and

closing eyes (or moving any other body part), reading, writing,

playing sports, learning, sleeping, creating memories, and recalling

these memories (Hahn et al., 2018).

However interpersonal neural synchronization (INS) demands

a greater understanding of the influence that a brain may carry on

others rather than observing only a single brain response per time

(for further details, see Babiloni and Astolfi, 2014). Hyperscanning

studies are based on the simultaneous acquisition of brain dynamics

during a cooperative task, as a joint action or decision-making (Liu

et al., 2016, 2017).

Li et al. (2020) studied the cooperative behavior among

basketball players, in which significant INS was observed due to

the performed joint-drawing task but not the control task. Nguyen

et al. (2020) investigated the neural processes related to transferring

information across brains during naturalistic teaching and learning,

underlying the effective communication of complex information

across brains in classroom settings.

With more than only linking actions across subjects, studies

have revealed that inter-individuals’ neural representation can

even build memories, thereby promoting brain integration at

some influential level. Zadbood et al. (2017) uncovered the

intimate correspondences between memory encoding and event

construction and highlighted the essential role that our common

language plays in the process of transmitting one’s memories to

other brains. Chen et al. (2017) elucidated that the neural patterns

during perception are systematically altered across people into

shared memory representations for real-life events.

Most methods used in hyperscanning fMRI and fNIRS studies

are static or temporal correlation (Cui et al., 2012; Reindl et al.,

2022; Balconi and Angioletti, 2023; Morgan et al., 2023; Wei

et al., 2023) and Granger-based causality (Zhang et al., 2017; Chen

et al., 2020, 2023; Pan et al., 2021; Zhao et al., 2022). Examples

of the former method are the partial correlation coefficient and

wavelet transform coherence (WTC). These methods are used to

estimate functional connectivity and, therefore, do not distinguish

the causal relationships between nodes. Nonetheless, according

to neuroimaging literature, the latter is used to estimate directed

functional connectivity (Bilek et al., 2022), and according to

some studies, Granger causality theory cannot be suitable for

hemodynamic data (Smith et al., 2011; Babiloni and Astolfi, 2014).

Therefore, these approaches do not study putative causal synchrony

between brains (Bilek et al., 2022). Thus, Bilek et al. (2022) used

dynamic causal modeling (DCM) in the study of social interaction

to estimate the causal effect one brain might have on another.

However, DCM is a method for testing hypotheses, and initially

specifying some candidate network structures is necessary.

This study uses theMDMwith the Bayes factor (MDM-BF) that

considers the contemporaneous relationship between regions, i.e.,

the nodes are related at the same time, in contrast, for example,

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1132160
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


do Nascimento et al. 10.3389/fncom.2023.1132160

to a DBN in which the past of the parents is connected with the

present of the child. Moreover, the Kalman filtering method is used

to estimate the effective connectivity in a simple way. However,

in contrast to DCM, it can capture the dynamic nature of social

interaction. A similar objective can be observed in Li et al. (2021)

andWang et al. (2022), in which the researchers used a data-driven

approach based on sliding windows and k-mean clustering to

capture the dynamic modulation of inter-brain synchrony patterns.

However, it is based on temporal correlation and does not estimate

effective connectivity.

The MDM appears to accommodate fMRI data well (see e.g.,

Costa et al., 2015); therefore, it has been used in this study for the

first time with fNIRS data. Furthermore, this study proposes a new

method that can be used to learn the directed acyclic graph (DAG)

structure using the MDM faster than the method already available

in the literature (MDM-IPA) because this method does not create

the need to check all possible parents for each node. This can be

especially useful in social neuroscience—which involves estimating

both inter-brain and intra-brain connections and thus studying

brain function on the subject and dyadic levels.

This novel method consists of two steps: in the first one, the

tabu search algorithm would be applied to find a partial conditional

directed acyclic graph (partial conditional DAG). The tabu search

is a combinatorial optimization algorithm used to find an optimal

network structure by local searches, as explained in the next section.

Then, the Markov equivalence class would be found, that is, DAGs

that encode the same statistical properties, and the DAG with

the highest log predictive likelihood (LPL) score from the MDM

would be chosen. This search method can also be used to estimate

individual brain networks.

Based on such evidence, which highlights the possibility

of studying the brain-to-brain activity correlation, in the next

subsection, we have discussed an extension class of DBNs that can

be used to represent these brain dynamic and causal structures

(from now on, whenever we refer to causality, it is associated with

effective connectivity via MDM-BF, unless indicated differently).

This study is divided into four parts. In Section 2, we

have described the fNIRS data analyzed and the methods

used to estimate brain connectivity as a graph-based model.

Section 3 describes the evaluation, through synthetic data,

of the robustness of the dynamic graphical model. Then,

Section 4 presents the empirical results, and finally, Section

5 presents the discussion of the proposed method and

the findings.

2. Materials and methods

We present a proof-of-concept based on a hyperscanning

experiment in which the human interaction is investigated

from brain-to-brain activity dependence. The methodological

approach adopted in this study was divided into four main

steps, aiming to estimate the brain’s dynamics and interactions.

The developed R script in this study is available at https://

github.com/ProfNascimento/MDM-BF (accessed on April 20th,

2023).

2.1. The data

This study dataset was first presented as a case study experiment

(Balardin et al., 2017) that considered two individuals who played

in a violin duo. In the current study, we have investigated the brain-

to-brain coupling (and the direction) and explored which brain

regions of a violinist are linked to the other.

The fNIRS signals acquired are demonstrated in Figure 1 (for

further experiment details, see Balardin et al., 2017). Hemodynamic

changes were obtained from the optical changes collected using

the continuous wave functional near-infrared spectroscopy system

(NIRScout 16x16, NIRx Medical Technologies, Glen Head, NY)

with 16 LED light sources (760 and 850 nm) and 16 detectors

per musician, at a sampling rate of 7.81 Hz. Channel aggregation

was conducted by considering the EEG 10-10 system in which the

optodes were placed.

The participants were at a professional level, right-handed, and

men aged 41 and 50 years old. They were instructed to play a 32-

s stretch of Allegro, by Antonio Vivaldi, from Concerto No 1 in

E major, op. 8, RV 269, “Spring." Hyperscanning was performed

considering 23 channels of the right motor hemisphere and the

temporoparietal junction of the two violinists (Balardin et al.,

2017). The first 36 s of acquisition refers to the duo playing and

the remaining refers to a resting-state condition.

2.2. Dataflow

Figure 2 demonstrates a data processing flow chart. Given the

computational cost of searching for the likely topology of the

graph, at first, the tabu search algorithmwas applied using Bayesian

networks to reduce the sub-graph structure to be sought. Then, the

result was transformed into a partial conditional directed acyclic

graph (DAG), enabling it to proceed under the causal inference

paradigm (Pearl, 2009; Oates et al., 2015). After that, the most

likely undirected network structure found was implied in Markov

equivalent graphs, and then, the MDM was applied to unravel

directionality through the maximization of the LPL, that is, Bayes

factor. By adopting a particle filter supposing Gaussian noises

(often known as the Kalman filter), we compared the MAP graphs

to obtain themost likely DAG.Once the DAG is defined, theMDM-

BF can present the dynamic strength of these estimated links.

This adopted methodology enables the estimation of complex brain

structures whenever the number of vertices (nodes) is >11 with a

sample size > 100 points (for further details, see Costa et al., 2015,

Table 01, p. 456), without computational constraints.

2.3. The multiregression dynamic model

The MDM models multivariate time series, studying putative

causal relations among its variables over time (Queen and

Smith, 1993; Queen and Albers, 2009). This class of models

is extremely powerful, given that it can discriminate complex

multivariate relations up to a finite r-th time series, with length

t, set as (Yt(1),Yt(2), ...,Yt(r)). Moreover, the joint distribution

(P(Yt(1),Yt(2), ...,Yt(r))) is estimated regardless of the presence
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FIGURE 1

Violin duo experiment: inter-subjects’ experiment icon (A); fNIRS (B) and the observed brain region (C).

FIGURE 2

Visual summary of the methodological framework. Tabu search algorithm reduced the sub-graph structure to be sought. Then, the result was

transformed into a partial conditional DAG, and the outcome was compared using the MDM-BF.

of a Gaussianity (for further details, please see Queen and Smith,

1993, who have retained the proof of the consistency of this

method of non-Gaussian processes). The MDM is formed by using

univariate regression dynamic linear models (DLMs), in which

the observation Yt(r) is regressed onto its parents, with Gaussian

residuals, such as in Equation (1).

Yt(r) ∼N (Ft(r)
′
θ t(r),Vt(r))

θ t ∼N (Gtθ t−1,Wt),
(1)

where Yt(r) is an observable variable at time t and brain region

r, r = 1, . . . , n regions, t = 1, . . . ,T time points, N denotes

the Gaussian distribution, θ
′
t = (θ t(1)

′, . . . , θ t(n)
′), θ t(r)

′ is the

pr-dimensional parameter vector for Yt(r), and, when it is not

intercepted, it represents the effective connectivity between node

r and its descendent (also called parents). Ft(r) is the set of the

parents, and for nodes that do not have parents, Ft(r) = 1. Gt

increments the state equation in the form, giving extra variance.

In addition, Wt(r) are pr square matrices that form Wt =

blockdiag{Wt(1), . . . ,Wt(n)}. Note that, when Wt(r) is a matrix

with all elements equal to zero, the MDM becomes the BN.

The parameters can be estimated using well-known Kalman filter

recurrences over time (see, for example, West and Harrison, 2006).

By so doing, the DLM is described by the set {Ft(r),Vt,Gt ,Wt},

although, in practice, establishing the Wt is challenging; therefore,

a strategy called “discounting” (stochastic shifting) is adopted.

Wt =
1− δ

δ
× Ct−1, (2)

where Wt is specified directly through a discount factor δ ∈ (0, 1],

and Ct−1 is the posterior variance of θ t .

Before proceeding, three terminologies are important for

distinguishing estimation processes: (i) Filtering is a procedure that

aims to update the current estimates as new data are observed, i.e.,

P(θt | Y1 : t); (ii) smoothing is a retrospective analysis that has all the

observations and calculates the conditional distribution θ given the
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heading from the complete data, P(θt | Y1 :T); and (iii) prediction

is a forecast procedure that estimates the next observation based on

the distribution, P(θt+1 | Y1 : t).

2.4. The proposed learning network

The learning network process used in this study is 2-fold: (i) an

estimation process of a Bayesian network structure, the tabu search

algorithm, and (ii) choosing a structure via the MDM in Markov

equivalent networks, that is, partial conditional DAG→MDM-BF.

This methodological combination is an alternative to reduce the

np-hard (dimensional) complexity search problem of the network

estimation.

First, the initial estimation process is related to traditional

methods in Bayesian networks (time-invariant structure). This

approach was performed using a score-based method via standard

tabu search with Bayesian information criterion (BIC). In general,

this method searches for a Bayesian network structure that

maximizes BIC. A Tabu search (Glover, 1986) may be viewed as

a meta-heuristic algorithm to perform a greedy search and to

avoid local minima. Thus, the procedure records information about

changes recently made in BN structures, using one or more tabu

lists. The tabu lists are managed by recording moves in a sequential

order. Each time a new link is added to the end of a list, the oldest

arc on the list is dropped from the beginning. Thus, each structure

generated by adding or removing links is appraised by the BIC

scoring (Nagarajan et al., 2013). The tabu algorithm adopted here

can be found in the bnlearn package from the R software (R Core

Team, 2022). Furthermore, every statistical analysis used in this

study adopted the software R.

As it is well known that the BN search approaches have trouble

distinguishing Markov equivalent structures, the next step was to

find the graphs that are Markov equivalent to one resulting from

the tabu search. Afterward, the network structure with the largest

score of MDM among these Markov equivalent graphs was chosen.

The pcalg package was used to obtain the partial conditional DAG.

Once the partial DAG structure was established, only a

few subsets of possibilities remain to be sought. At this point,

the maximum likelihood approach was adopted to determine

the best options for the subgroup. The assumption from the

MDM is that the standardized conditional one-step forecast

errors have an approximate Gaussian distribution, although not

based on stationary time series, and are serially independent

with constant variance. Under these assumptions, the joint log

predictive likelihood (LPL) has the closed form of a noncentral t

distribution and is easily found in the Kalman filter (Costa et al.,

2015). Remembering that Y = {Yt(1), · · · ,Yt(r)} if time-invariant

Y = {Y(1), · · · ,Y(r)}, considering a multivariate non-central t

distribution function

f (Y|µ, σ 26, ν) =
Ŵ[(ν + r)/2]

(πν)r/2|σ 26|1/2Ŵ[ν/2]
(

1+
(Y− µ)′6−1(Y− µ)

σ 2ν

)−(ν+r)/2

(3)

FIGURE 3

Data were simulated considering two nodes. The MDM method

through Kalman filter estimation performs an estimate of direction

and its time-varying strength.

in which µ is the vector of the means and 6 is the variance-

covariance matrix under the Bayesian framework

P(τ ,Y|µ, σ 26, ν) ∝ P(Y|τ ,µ, σ 26)P(τ |ν) (4)

Y|τ ,µ, σ 26 ∼ N(µ, (σ 26/τ )) (5)

τ |ν ∼ Ga(ν/2, ν/2) (6)

and then assuming that the conditional distribution of each

Yt(r) is given by the previous information set Ft−1, one can simply

consider a regression structure for the conditional mean µt =

Ft(r)
′
θ t(r) and 6t = Vt

log(f (Yt(1), · · · ,Yt(r)|Ft−1)) = log(L(Ft(r)
′
θ t(r),Vt|Ft−1))

= LPL(Ft(r)
′
θ t(r),Vt|Ft−1) (7)

Therefore, the LPL is the score of the MDM used in the

learning network process, and in the following section, Section 3,

a simple example of the ability of this score to distinguish two

Markov equivalent graphs is given. It must be mentioned that local

Gaussian models do not imply, necessarily, a posterior symmetrical

multivariate distribution (for further details, see Queen and Smith,

1993).

3. Simulating the MDM

This simulation study aimed to present the performance of

the MDM in estimating the network structure and relationship

strength (parameter θ) between the two nodes over time. Each time

series contains 300 observations, that is, t = {1, . . . , 300}. Figure 3

represents the theoretical (known) network, in which node 1 (n1)

is the parent of node 2 (n2). The data simulation was performed by

using R software.

For instance, let us suppose that two signals, n1(t) and n2(t),

are related, and they can be written as a first-order linear-Gaussian

state-space model (these models presenting Gaussian noises are

often called the Kalman filter, which is a special case of a particle

filter for contemporaneous influence), as demonstrated in the

following equations:

n1t = θ
(1)
t + v

(1)
t ,v

(1)
t ∼ N (0, 0.12) (8)

n2t = θ
(2)
t + θ

(3)
t n1t + v

(2)
t ,v

(2)
t ∼ N (0, 0.12), (9)

θ
(k)
t = θ

(k)
t−1 + w

(k)
t ,w

(k)
t ∼ N (0, 0.12) (10)

in which k = {1, 2, 3}, and v(1), v(2), and w,(k) are independent.

There are structural equations containing time-varying parameters
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FIGURE 4

The result of the data-driven model MDM-BF is represented in two parts, structure selection and dynamic estimation. The left-hand panel describes

the score (LPL) of each possible network arrangement (as a time-varying score). Three possible network outcomes were adjusted, n1 impacting n2

(solid line), n2 impacting n1 (dash line), and both nodes being independent (dot line), and at all times, n1→ n2 presents a higher score (then, the most

likely structure). The right-hand panel shows the dynamic of the link strength, given the selected network (n1→ n2), that is, the dynamic of θ (3)
t . The

red line represents the true value, the blue solid line is the smooth posterior mean (and the dashed lines are the credible intervals containing 95%),

and the green line is the filter posterior mean.

θ
(1)
t , θ

(2)
t , and θ

(3)
t . The parameters θ

(1)
t and θ

(2)
t are the drift that

translates the strength for each node i at time t. The parameter

θ
(3)
t is assumed to represent the form of the exchangeable sample

information, in which (n1) impacts into (n2), and then, later, this

is observed as a causal strength (in neuroscience, the effective

neuronal connectivity).

After generating and processing the synthetic network, the left-

hand panel of Figure 4 shows the estimated LPL for each possible

network set (that is, n1→ n2, n2→ n1, and both independent

nodes) by a discount factor (DF). In the inference process of

the MDM-BF, W
(r)
t can be written in the function of a DF that

represents the loss of information in the change of parameter θ

between times t − 1 and t. The DF varies between zero and one,

in a way that the closer the DF is to one, the more stable the

system is. When DF assumes the value one, W
(r)
t is the matrix

of zeros, and the MDM becomes a BN (Costa et al., 2015). After

selecting the most likely model, the strength dynamism of the

connection is calculated through a time-varying parameter (θt)

approach. The right-hand panel of Figure 4 shows the true value

and the MDM dynamic estimation regarding the causal effect

between the nodes.

The steps are summarized in Algorithm 1 summarized

as follows:

In this case, the network with the highest LPL values was

network n1 → n2, which generated the data. Markov equivalent

networks have the same dependency relations between the nodes

and have equivalent/equal LPL. Therefore, when the discount

factor is 1, as we mentioned, there is no variation in the

state parameters over time, and the MDM simply becomes

a BN. Then, unsurprisingly, the direction n1→ n2 or n2→

n1 does not matter (see the left-hand panel of Figure 4).

Thus, this study presents an indication that the MDM-BF

is efficient in distinguishing structures that can be Markov

equivalent. Here, we described the simplest case of a network

Read the DATA

Apply the TABU search using the Bayesian Network to

estimate the invariant structure

if n1 9 n2 or n2 9 n1 then

n1, n2 are independent

else

n1 → n2 or n2 → n1

Then, n1 is connected to n2 but partial

conditional, that is, the direction will be ignored

at this point. For a greater number of nodes, every

combination will be tested.

end if

Calculate LPL from the TABU search subgroup, the

partial conditional DAG (n1 → n2 or n2 → n1).

Then, the choice will be the DAG with the maximum

LPL (that is, the directions that are established).

Once the DAG is set, the dynamic linear model

is adjusted on the DAG regression structure

(time-varying parameters estimation step, that

is MDM-BF).

Algorithm 1. Causal inference MDM-BF schematic (based on Figure 2).

structure (with only two nodes) for the sake of simplicity

and visualization; nevertheless, the results are expandable to

higher complexities (see e.g., in Costa et al., 2015). The

next section discusses the results obtained in neuroscience

application tasks.
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FIGURE 5

A butterfly plot illustrating the 23 oxyhemoglobin (HbO) signals from violinist A.

FIGURE 6

A boxplot comparing the 23 HbO signals among both musicians. This graph depicts the dispersion of the HbO of each violinist.

4. Experimental results

fNIRS enables simultaneous recording, making it possible to

study the influence of brain-to-brain coupling through social

interaction experiments. Figure 5 shows the fNIRS data during

the music duration (218 time points) from violinist A in the

23 channels.

4.1. Dynamic brain-to-brain evolution

The study of the network involved the brains of the two

violinists and considered 46 nodes, the first 23 ones corresponding

to the first subject, and the remaining ones to the second subject

(Figure 6). The learning of the network structure was carried

out by comparing the Markov equivalent networks to the graph

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1132160
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


do Nascimento et al. 10.3389/fncom.2023.1132160

FIGURE 7

The average of the posterior mean of the strength of connectivity i → j over time, in which i indexes rows and j columns (representing each observed

HbO). This matrix is divided into four blocks, in which the diagonal block is related to the musicians’ activation of their own brain (in the red dashed

line), and the anti-diagonal block to the brain-to-brain activity correlations. (A) (top-left quadrant) is from the functional brain structure of violinist A,

and (B) (bottom-right quadrant) is from violinist B.

estimated by the tabu method and using the LPL of the MDM. The

combination of the tabu search algorithm, partial conditional DAG,

and the MDM-BF helped enhance the computation efficiency,

bringing back the best network structure chosen for each subject.

The brain activation dynamic was analyzed by using the state-

space model, obtained from the MDM-BF through its posterior

mean smoothing process. It is worth mentioning that only

positive connections (ignoring the few small negative estimates,

as physiological interpretations are difficult to make) were

presented, which enabled us to take into account their neurological

interpretability. Moreover, these connections represent the neural

activation resulting from one region’s influences over another.

Figure 7 presents the results of the graph-based MDM, as a

matrix in which each element is the average of the posterior mean

of the strength of connectivity i → j over time, in which i

(parents) indexes rows and j (children) indexes columns (thematrix

causal relation direction is described from the row to the column).

Moreover, this matrix is divided into four blocks, in which the

diagonal block is intrasubject connectivity, for violinist A, at the top

left square and for violinist B, at the lower right square. In contrast,

the antidiagonal block shows intersubject connectivity, in which the

influence of the brain regions of violinist A to B is at the top right,

whereas the influence of violinist B to A is at the lower left.

Stronger connections are represented in the matrix by the

darker color, while lighter regions represent weak or absent

connections. As expected, the strongest connections are in the

primarily diagonal block, which represents the intrasubject brain

connections. The anti-diagonal block reveals that the intersubject

connectivities are less prevalent and less strong. Thus, based on a

standard 10-10 EEG montage, we aggregated the channel numbers

1, 2, 3, and 4 as dorsal frontal Regions of Interest (ROIs) 6, 7,

8, 10, and 11 as sensorimotor ROIs, and 12, 13, 15, 16, and 21

as temporoparietal junction (TPJ) and calculated the mean of

the influence of each region. A summary of the intra-individual

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1132160
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


do Nascimento et al. 10.3389/fncom.2023.1132160

FIGURE 8

ROIs’ mean representation, according to the 10-10 EEG montage, of the intra-individuals connectivity as well as the inter-individual based on the

MDM-BF.

connectivity (summed through the ROIs’ mean according to the 10-

10 EEGmontage) vs. inter-individual connectivity is represented in

Figure 8. The causal direction is from the row to the column, that is,

the highest ROI activity from violinist A was from the frontal into

the sensorimotor, whereas for violinist B, the causal relation from

TPJ into sensorimotor was not strong. Moreover, the strongest

observed values across inter-brains were from all three ROIs from

violinist A to the TPJ from violinist B (left-bottom picture in the

third column).

Broadly speaking, these causal relationships are estimated

based on the best-adjusted joint probability distribution between

the NIRScout (16 LED light sources leading to 23 time series

from each violinist) represented as a network. In the best model,

first, the partial DAGs obtained can be said to present the

intra- and inter-individual connections, and then, the conditional

independence of the time series is incorporated according to

the assumptions of the model. First, the best network structure

for each participant is estimated independently, and then, the

hyperscanning network structure is also estimated independently

from the others. Nonetheless, the three network dynamics cannot

be regarded as totally independent because only thetas can show

that (if they are zeros). Moreover, a “partializing relationship” can

be observed across structures conditioned to the inter-individual

vs. intra-individual as the obtained DAGs.

Figure 9 shows the visual representation of the summation of

this antidiagonal block as a graph. For instance, themost influenced

regions were sensorimotor and TPJ, as results of the INS, and the

results demonstrated that violinist B was influenced by violinist A,

as the highest positive value goes from the sensorimotor (violinist

A) → TPJ (musician B), and the highest negative value goes from
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FIGURE 9

Graph-based representation resulting from the musicians’ brain-to-brain synchrony through the ROIs: dorsal frontal, sensorimotor, and

temporoparietal. Moreover, this graph is the summation of channels that represent the mutual interactions across the musicians’ brains (estimated

from the MDM’s antidiagonal blocks demonstrated in Figure 7). High activity was seen to influence the sensorimotor and temporoparietal for both

musicians; nonetheless, no e�ective correlation of brain-to-brain activity was observed directly toward the dorsal frontal. The numbers in black are

positive values, and those in red are negative values. The results highlight that musician B followed musician A, as the highest positive value goes

from sensorimotor (musician A) → TPJ (musician B), and the highest negative value goes from dorsal frontal (musician B) → TPJ (musician A),

suggesting a reverse causal direction.

dorsal frontal (violinist B) → TPJ (musician A), suggesting a

reverse causal direction.

The uncertainty can be associated with confidence intervals

(CI) toward this ROI causal connectivity, which was obtained

through the non-parametric bootstrap algorithm (Carpenter and

Bithell, 2000), using the MDM average of each posterior. We used

the nptest package while considering the mean statistic method,

a confidence level of 0.95, and the number of replicates of 50,000

(Table 1). A statistical significance was observed from the dorsal

frontal channels’ behavior (musician A) → TPJ (musician B),

sensorimotor channels’ behavior (musician A) → sensorimotor

(musician B). In the other direction, it was observed from the dorsal

frontal channels’ behavior (musician B)→ sensorimotor (musician

A), dorsal frontal (musician B) → TPJ (musician A), and TPJ

(musician B) → TPJ (musician A). The other relations were not

statistically significant.

Additionally, by using theMDM class, one can make inferences

regarding the time-varying strength of the network’s links. For

instance, the dynamic change among some channels was noticeable,

especially during the resting-stage period (delimited by after the red

line), as shown in Figure 10. It is clear that the estimated dynamic

of the network links was captured by the MDM.

It is clear that intra-subject effective connectivity is stronger

than the brain-to-brain coupling strength. Tasks involving music

were reported previously and appear to induce brain activation

TABLE 1 Non-parametric bootstrap of the ROIs’ mean.

Regions influence CI 95%

Frontal_A→ TPJ_B 0.00001 0.00581

Sensor_A→ Sensor_B −0.01053 −0.00107

Frontal_B→ Sensor_A −0.00790 −0.00161

Frontal_B→ TPJ_A −0.02136 −0.00311

TPJ_B→ TPJ_A 0.00080 0.00422

(Li et al., 2015). Berkowitz and Ansari (2010) discussed the

importance of the observed brain region (right TPJ, also called

rTPJ) in musicians. Luo et al. (2014) showed neuroimaging toward

long-term musical training, which shows an impact on emotional

and cognitive function, suggesting the presence of neuroplasticity

in the rTPJ.

The sensorimotor and TPJ ROIs presented a greater activation

influence from the INS; furthermore, the MDM could capture that

musician B was following musician A, which also provides some

evidence toward the brain synchronization theory. The hypotheses

for the ROIs’ inter-individual connections relate to a distinct

activation, for instance, highlighted in the literature as resulting

from the assessment of different body movements (Kimura, 1977)
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FIGURE 10

An illustration of the dynamics of the six parameters related to the INS inter-activated fNIRS, through their smoothing posterior mean time-varying

parameters (solid blue line), with 95% credible interval (dashed green line). Thus, the resting-stage moment is represented by the rectangular-shaded

areas and the red-solid line represents the time-point of the end of the music. Based on the two higher causal ROI relations (in module), the three

top charts are associated with some sensorimotor channels’ behavior (musician A) → TPJ (musician B), and the three bottom charts are associated

with some dorsal frontal channels’ behavior (musician B) → TPJ (musician A).

or even emotions felt through visual stimuli due to the execution of

the activity (Zaitchik et al., 2010).

5. Final remarks

The current study proposes the MDM-BF for fNIRS data

obtained in hyperscanning experiments, i.e., simultaneous

acquisition, while two or more subjects are interacting. The

illustration in a violin duo confirmed the existence of influences of

one brain over the other. In the individual brain network analysis

for each violinist, it was observed that, although the brain regions

work together, some areas play different roles. In other words, some

regions connect to others with greater strength. Moreover, this

data-driven analysis demonstrated, through their INS estimation,

that the influence between violinists is not symmetric and also

time-evolving. Therefore, theMDM-BF appears to be a competitive

model that is better for hyperscanning studies (due to estimating

the effective connectivity) than other methods based on correlation

or the consideration of static connections (which only estimate

functional connectivity), corroborating similar results that have

already been presented in other fields of neuroscience (Costa et al.,

2015). In addition, the MDM-BF estimated the inter-brain network

using the contemporaneous relationship between regions, without

needing to consider the Granger causality.

In the INS analysis [also known as Thinking Through Other

Minds (TTOM)], the regions activated on the violinists are

represented by the ROI activation and, through the data-driven

model, corresponded to the expected results observed in the

experimentation (in which musician A was the leader in the duo);

that is, the quantification obtained from the MDM-BF brain region

connections are highlighted, as shown in Figure 9. However, as this

study considered only a pair of violinists, further studies targeting

the brain mapping should be conducted to associate the pattern

with more in-depth details regarding those connections. In general,

the connections estimated by the MDM-BF for the joint matrix

of connections represent the brain ROIs’ activity correlations and

their dynamic over time, in which all regions present positive

meaning and strong connections.

Different for DCM, in this study, social brain network

structures could be better explored. The study also analyzed

the synchronized dynamical system = globally, as well as the

communication of specific parts of the brain. Moreover, the novel

procedure for the learning structure network that is presented in

this study, or others that are used with the MDM (as the MDM-BF

or the MDM-DGM) can be easily applied in other scenarios, such

as communication and computer-mediated cooperation games.

Furthermore, this approach can be suitable for other neuroscience

studies that aim to estimate brain networks and have a large number

of nodes. A natural next step will be to incorporate informative

priors, in which targets transform the researchers’ prior knowledge

into hyper-parameters. In addition, parametric space shrinkage

should be investigated as an alternative to score-based structure

selection. In other words, as a complement to the MDM-BF

method, the number of time-varying parameter estimations can

be reduced based on some a priori information or some specific

criteria.
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