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Bat functional traits associated
with environmental, landscape,
and conservation variables in
Neotropical dry forests

Camila A. Díaz-B*†, Aída Otálora-Ardila*†,

María Camila Valdés-Cardona, Hugo F. López-Arévalo and

Olga L. Montenegro

Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales,

Grupo en Conservación y Manejo de Vida Silvestre, Bogotá, Colombia

Tropical dry forests are among the most threatened ecosystems worldwide. Bats’

role in those ecosystems is critical because of multiple bat-mediated processes.

Such processes are strongly related to bats’ functional traits. However, it is poorly

known which bat’s functional traits could relate to variations in environmental

conditions in tropical dry forests. In this study, we tested the hypotheses that

bat functional traits would be significantly associated with landscape variables,

climatic variables, and land-use intensity. For testing these hypotheses, we used

data from phyllostomid and mormoopid bats captured in mist nets and data

from non-phyllostomid insectivorous bat species registered by passive acoustic

monitoring. We considered six functional traits for phyllostomid and mormoopid

bats, and for non-phyllostomid insectivorous bats, we added two echolocation

parameters. We measured five environmental variables, two of local climate

(daily maximum temperature and wind speed) and three of landscape features

(total area of water and closeness, probability of finding caves, and conservation

status). The relationships between bat functional traits and environmental variables

were evaluated using the RLQ and the fourth-corner analysis. We captured

360 individuals belonging to 14 species with mist nets (Phyllostomidae and

Mormoopidae), and we identified 18 species and six sonotypes with acoustic

sampling (Emballonuridae, Mormoopidae, Molossidae, Natalidae, Noctilionidae,

and Vespertilionidae).We found that bats’ functional traits related to environmental

conditions were pulse structure, diet, vertical foraging stratification, and trophic

level, although these relationships varied among bats’ ecological roles. The

hematophagous were related to water bodies’ closeness, and animalivorous bats,

mostly mormoopids, showed a relationship with the probability of finding caves.

Insectivorous bats that mostly forage on the canopy and emit qCF calls were

significantly related to more conserved sites, and bats that emit qCF pulses were

significantly associated with less area covered by water. Our findings provide

insights into how bat functional traits vary in their relationships with environmental

conditions in harsh environments such as dry forests.
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1. Introduction

Tropical dry forests are among the most threatened forests
worldwide, and 54% are in South America (Miles et al., 2006).
In Colombia, tropical dry forests originally covered about nine
million hectares, but currently, only 8% of those forests remain in
isolated patches under different conservation statuses (Pizano et al.,
2014). Those tropical dry forest remnants are found within the
several biogeographic regions described by Hernández-Camacho
et al. (1992), mainly in the Caribbean (called Peri-Caribbean Arid
Belt), North Andean region (North Andean Province), and some
sites in the valleys of Magdalena, Cauca, Chicamocha, and Patia
rivers (Pizano et al., 2014). These areas are the most vulnerable
to climate change due to their evapotranspiration conditions, their
repercussion on the hydrological cycle, their role in variations of
annual runoff percentages, and the seasonality of rain and drought
(Solano Pita and Pérez Hernández, 2016). In particular, for the
dry ecosystems, the Peri-Caribbean Arid Belt is the biogeographic
province most vulnerable to such changes. Similarly, 10% of the
North Andean Province is considered highly vulnerable to climate
change. This area is covered by dry high Andean vegetation, sub-
Andean semi-arid vegetation, tropical dry forest, and tropical dry
scrub, such as those located toward the Chicamocha River valley
(Solano Pita and Pérez Hernández, 2016).

Dry environments pose challenges that demand biological
strategies to live in such conditions. However, despite conditions
of water limitation, many bat species thrive with success in
many arid zones (Conenna et al., 2021). Habitat features are also
important for such bat success in dry areas. For example, in hot-
dry environments, features such as the availability of caves are
important because they provide optimal roost sites, with more
humidity and thermal stability (Kunz, 1982). Also, variations
in environmental conditions, such as land-use changes (Farneda
et al., 2020) and climatic local features, may affect bat species
composition. Also, the frequency of some bat species’ functional
traits may be related to variations in environmental factors. For
example, as aridity increases, a rise in wing loading and wind aspect
ratio, as well as body size, and a decrease in echolocation frequency
were found in a study of bat functional traits in an aridity gradient
at a global scale (Conenna et al., 2021).

The vast majority of studies on bat functional ecology have
been conducted in moist broadleaf tropical forests (Farneda et al.,
2015, 2020; Castillo-Figueroa, 2020). Although some functional
information has been provided for bats in dry African areas
(Monadjem et al., 2020), in Neotropical dry forests still needs to be
better known. Most research on bats from Neotropical arid areas
has a taxonomic diversity approach, where the bats’ ecological role
is only suggested. For instance, most studies indicate that bats from
arid areas participate in ecological processes such as seed dispersal
(Sánchez et al., 2007; Molinari et al., 2012), columnar cactus
pollination (Marinkelle and Cadena, 1972; Petit, 1995; Nassar et al.,
1997), and insect predation (García-Morales et al., 2016). Some
studies provide actual data on the relationships between cactus
pollination and seed dispersal (Locatelli et al., 1997; Naranjo et al.,
2003; Arias-Cóyotl et al., 2006). However, more detailed data on
bat functional traits related to their functional role in the dry forest
are rarely presented. Similarly, some studies suggest that the wing

morphology and the echolocation pulse structure are predictive
features of bats’ ecosystem functionality associated with food
resource exploitation (Almeida et al., 2014; Marques et al., 2016;
Wordley et al., 2017). Despite the correlation between variations in
bat echolocation calls with vegetation structural features (Schnitzler
et al., 2003), this topic has been underexplored in Neotropical
species inhabiting the dry forest and arid areas. To provide useful
information to improve bat conservation in the Neotropics, it is key
to better understand the relationships between bat functional traits
and the environmental factors that allow some species to persist.
This knowledge is critical, especially in endangered ecosystems that
still harbor bat species.

In this study, we aimed to identify which bat functional traits
are related to environmental conditions in dry areas or northern
Colombia and how those relationships vary among bat species
with different ecological roles. Due to bat assemblages showing a
strong response to land-use transformation, vegetation loss, and
environmental variables (García-Morales et al., 2013; Azhar et al.,
2015; Farneda et al., 2015; Aguirre et al., 2016; Kahnonitch et al.,
2018; Conenna et al., 2021), we hypothesize that the bat functional
traits will be significantly related to landscape variables, climatic
variables, and land-use intensity. We tested these hypotheses
using data from phyllostomid and mormoopid bats captured
in mist nets and data from non-phyllostomid insectivorous bat
species registered by passive acoustic monitoring in several sites
of dry environments in northern Colombia. We expected that
animalivorous bat species with higher maneuverability and agility
to move within the forest (higher aspect ratio and relative wing
loading) would be positively associated with areas with good
conservation status and water bodies’ closeness. Also, we expected
that places with good conservation status and more suitable
landscapes (e.g., higher probability of finding caves and easier
access to water) would be critical environmental variables to
maintain bat functional traits.

2. Materials and methods

2.1. Study area

We conducted fieldwork in 21 sampling points grouped
in seven areas which we delimited by polygons based on
the bat’s mobility limits. Four polygons were located on the
Colombian Caribbean coast: Santa Marta (four sampling
points), Puerto Colombia (two sampling points), Piojó (four
sampling points), and Cartagena (two sampling points)
(Figure 1). The remaining three polygons were located in
the Chicamocha River Basin: Lagunetas (three sampling
points), Jordán (four sampling points), and Cepitá (two
sampling points).

The polygons of Santa Marta, Cartagena, Piojó, and Puerto
Colombia are located in the biogeographical province of the Peri-
Caribbean Arid Belt. A seasonally dry tropical forest dominates this
region. The average environmental temperature is 27◦C, reaching
up to 40◦C during the dry season. This biogeographical province
has low average yearly rainfall (400mm), strong winds, and high
evaporation rates (Hernández-Camacho et al., 1992).
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FIGURE 1

Map of the study area in Colombian dry forests. Sampling points in each polygon in (A) Caribbean Coast: 1. Santa Marta, 2. Puerto Colombia, 3. Piojó,

and 4. Cartagena. (B) Chicamocha River Basin: 5. Lagunetas, 6. Jordán, and 7. Cepitá.

The Cepitá, Jordán, and Lagunetas polygons are in the
Chicamocha River Basin, an arid zone located in the Norandina
Province in the Eastern Mountain range at elevations from 500 to
1,500m.a.s.l. (Figure 1B, Albesiano and Rangel-Churio, 2006). The
dominant vegetation of these polygons corresponds to semi-arid
vegetation and dry forests (Latorre et al., 2014). The environmental
average annual temperature ranges from 15.8 to 35.7◦C, and the
average yearly rainfall is 731mm (Albesiano et al., 2003).

2.2. Bat sampling

Phyllostomid and mormoopid bats were captured using mist
nets, and insectivorous bat species were recorded from passive
acoustic monitoring. For the mist-netting sampling, we used six
ground-level mist nets (two 6m, one 9m, and three 12m, 20mm
mesh, ECOTONE, Poland) at each sampling point. Mist nets were
active from 18:00 to 00:00 a.m. and were revised every 25min on
average. We calculated the sampling effort as m2

× mist net ×
hours (m.n.h), reaching a total effort of 12,508m.n.h. Each polygon
was sampled from two to four nights. Captured bats were measured
and marked in the wing membrane using tattoos and were released

at the same capture site. Capture and handling methods followed
the guidelines of the American Society of Mammalogists (Sikes
et al., 2011). Bat captures were authorized by licenses from
the Environmental Licenses National Agency, ANLA (Resolution
0255, 14/03/2014). Rare species with less than three captures and
captured in only one location were excluded, resulting in 14 species
for analysis.We captured 360 individuals, fromwhich we processed
290 different individual photographs; 14 species were represented.

Passive acoustic monitoring was carried out using two
SM4BAT FS recorders with an omnidirectional SMM-U2 ultrasonic
microphone (Wildlife Acoustics Inc., USA; frequency range 12–
180 kHz, sampling rate 360 kHz, resolution 16 bits). Microphones
were placed at 3m above the ground level. Both detectors were
active from 30min before sunset to 00:00 at each sampling site
for two to four nights per polygon. We used the Kaleidoscope Pro
software (ver. 5.4.1, Wildlife Acoustics, Inc, USA) to analyze and
classify the audio files. We carried out a manual classification of all
recordings to identify bat species calls following Pio et al. (2010),
Jung and Kalko (2011), López-Baucells et al. (2016), Arias-Aguilar
et al. (2018), and a regional reference library for bat calls gathered
by A. Otálora-Ardila (unpublished). In cases where identification
to species level was not possible, species with similar calls were

Frontiers in Forests andGlobal Change 03 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1082427
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Díaz-B et al. 10.3389/�gc.2023.1082427

grouped in sonotypes (Supplementary Table S1). We analyzed only
search phase sequences with at least three consecutive pulses
(McKenzie et al., 2002; Lloyd et al., 2006). We estimated the
following parameters: pulse structure, bandwidth, frequency of
maximum energy (FME), minimum frequency (minF), maximum
frequency (maxF), initial and final frequency (initial and final
F, respectively), pulse duration (Dur), and pulse interval (PI)
(Williams-Guillén and Perfecto, 2011). These measurements were
estimated by adjusting the spectrogram parameters: Fast Fourier
Transformation of size 1,024, window length equal to 5ms, and a
threshold of 10dB in a Hanning window in 5-s files (Torrent et al.,
2018; Tuneu-Corral et al., 2020). We recorded 61,259 audio files
from passive acoustic monitoring, where 56,172 were analyzed and
5,087 were excluded because they contained noise.

2.3. Functional traits of bats

For phyllostomid and mormoopid bats, we considered six
functional traits: body mass, relative wing loading, aspect ratio,
diet, trophic level, and vertical stratification. For insectivorous bats,
we added two parameters related to their echolocation behavior
associated with habitat use and foraging strategies: frequency of
maximum energy (FME) and pulse structure (Kalko et al., 1996;
Schnitzler et al., 2003; Wordley et al., 2017; Table 1).

Body mass has been used as a body size estimator for bats,
and it is related to their flight mobility and agility (Jung and
Threlfall, 2018). Wing morphology traits have been demonstrated
to correlate with flight speed and maneuverability (Norberg and
Rayner, 1987). We estimated relative wing loading and aspect
ratio following Norberg and Rayner (1987) and Wordley et al.
(2017). We took pictures of the dorsal view of the right wing and
body of at least five individuals of each species at each sampling
location, except for gestating females. Images were analyzed using
ImageJ 1.8.0 software (National Institutes of Health, USA) to
estimate the wingspan (E) and total wing area (A). Considering
gravity’s acceleration, body mass (M) was calculated as the average
body weight (AM) multiplied by 9.81 ms2. With these three
data, we calculated the relative wing loading (rWL) as rWL=
(M/A)/(AM1/3) and the aspect ratio (AR) as AR= E2/A. For
insectivorous species that we did not capture in the field, we
took these data from specimens deposited in the “Alberto Cadena
García” Mammal Collection at Universidad Nacional de Colombia.
We measured at least five individuals per species collected in
each study polygon. We prioritized specimens preserved in liquid,
recently captured, with data about weight at the time of capture.
In the case of dry-preserved individuals, the softening of the
wings was made following Andrade et al. (2013). Finally, for
those insectivorous species not represented in that mammal
collection, data were taken from the literature. In total, we analyzed
pictures from 302 individuals of 30 species, where 88 were taken
from seven species deposited at the “Alberto Cadena García”
mammalogy collection and 214 from individuals captured during
fieldwork. Measures of the four additional species are taken from
the literature.

We established six categories for a diet based on literature:
nectarivore, insectivore, frugivore, omnivore, sanguinivore, and

piscivore/insectivore (Ramírez-Chaves et al., 2008; Ríos-Blanco
and Pérez-Torres, 2015). For the trophic level, we established
two broad categories: phytophagous and animalivorous. We
determined vertical stratification for phyllostomid and mormoopid
bats following Farneda et al. (2015), where we considered
three categories: understory, canopy, and no preference. For
insectivorous bat species, we followed Kalko et al. (1996) and
Marques et al. (2016), where we established two categories for
vertical stratification: canopy and under canopy. We considered
FME and pulse structure for insectivorous bats following Schnitzler
and Kalko (2001), Wordley et al. (2017), and Núñez et al. (2019).
We measured these two echolocation variables from a maximum
of five recordings per species per hour in 5-s files. Data for
FME were estimated for all the species identified. In the case of
similar species grouped in sonotypes, we calculated the average
FME of all species within each sonotype. We established four
categories for pulse structure: (1) constant frequency (CF), usually
emitted by species associated with highly cluttered space close
to vegetation or the ground, (2) quasi-constant frequency (qCF)
emitted by open-space insectivores, (3) frequency modulated (FM)
emitted by background-cluttered space aerial insectivores, and (4)
frequencymodulated quasi-constant frequency (FM-qCF) emitted
by aerial insectivores in highly cluttered spaces.

2.4. Environmental conditions of dry zones

In total, we measured five environmental variables. We
included two climatic variables: daily maximum temperature and
wind speed.We also considered three landscape variables: total area
of water bodies, distance from sampling sites to water bodies, and
probability of finding caves. Finally, we estimated the conservation
status of each sampled polygon.

Data for maximum temperature were obtained from the closest
hydrometeorological stations to the sampling points (CENICAFE,
2021; DIMAR, 2021; IDEAM, 2022). We estimated the median
for the single daily maximum temperature value reported from all
sampled nights in each polygon. For wind speed, we calculated the
median from values obtained every 10min during each sampling
night (18:00–00:00) in each polygon.

We used ESRI ArcMap 10.2 and ERDAS Imagine 10.0 software
based on 2020 Sentinel-2A satellite images (10 and 20m resolution)
to measure the landscape variables, such as the total area of
water bodies (ha) in each sampling polygon and the distance
from sampling sites to water bodies. To determine the probability
of finding caves, we identified the presence of caves, sinkholes,
karst terrain, coastal erosion, and falling rocks, following Galvis-
Gómez (2018) and Posada (2008). Using the algorithm Near in
ArcGIS 10.2 software, we estimated the minimum distance of each
sampling point to any of the geomorphological features previously
mentioned. Once the distances were calculated, we determined the
probability of finding caves by establishing four categories based on
the Jenks Natural Breaks algorithm in ArcGIS 10.2 (Beyer, 2004):
low (0.0 to 1.0 values), medium (2.0 to 3.0 values), high (3.0 to 4.0
values), and very high (higher than 4.0) in each sampling polygon.

We determined the conservation status in each polygon
based on the land-use intensity factor in Colombia, following
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TABLE 1 Description of the functional traits selected for the bat species captured and registered using acoustic sampling in Colombian dry forests.

Functional traits Scale Attribute Source

Body mass Continuous Value in grams Data from our captures,
museums, and literature

Relative wing loading Continuous (Weight/wing area)/(mass1/3) Data from our captures,
museums, and literature

Aspect ratio Continuous Wingspan2/wing area
Wing area (m2) includes the area of two wings, the entire uropatagium and the
portion of the body between the wings. Wingspan (m) was understood as the
distance between the wingtips.

Data from our captures,
museums, and literature

Diet Categorical Nectarivore, insectivore, frugivore, omnivore, sanguinivore, Piscivore/insectivore Data from literature

Trophic level Categorical Animalivorous or phytophagous Data from literature

Vertical foraging stratification Categorical Understory and canopy for phyllostomid and mormoopid bats
Canopy and under canopy for insectivorous bat species

Data from literature

Frequency of maximum
energy (FME)

Continuous Value in kiloHertz (kHz) Our data

Pulse structure Categorical Constant frequency (CF)
quasi-constant frequency (qCF)
frequency modulated (FM)
frequency-modulated quasi-constant frequency (FM-qCF)

Our data

Correa Ayram et al. (2020). To estimate this factor, we considered
variables, such as land use, human population density, distance to
roads, distance to human settlements, and vegetation percentage
(detailed information in Díaz-Beltrán, 2021). All these variables
were estimated using ESRI ArcMap 10.2 and ERDAS Imagine 10.0
software based on 2020 Sentinel-2A satellite images (10 and 20m
resolution). Values closer to 0 for the intensity factor indicate low
anthropogenic alteration, while values close to 5 indicate higher
anthropogenic pressure.

2.5. Data analysis

2.5.1. Bat functional traits and environmental
conditions

The relationships between bat functional traits and
environmental variables were evaluated using the RLQ and
the fourth-corner analysis. The RLQ analysis is a multivariate
ordination method that analyzes the covariance between functional
traits of the species (Q matrix) and environmental variables (R
matrix) mediated by the abundance or occurrence of the species (L
matrix). We analyzed table L through a correspondence analysis
(CA) and the R and Q matrix through a principal component
analysis (PCA). Both PCAs were made following the Hill–Smith
method, which allows the inclusion of qualitative and quantitative
variables (Legendre et al., 1997). We used the fourth-corner
analysis to test the significance between bivariate associations
(Dolédec et al., 1996; Dray et al., 2014), such as the relationships
between functional traits and environmental variables. The
significance of the relationship between bat functional traits
and environmental conditions was assessed based on 49,999
permutations. For this analysis, we test model 6, which adjusts
the species according to their traits and the imposition of the
environment, and it also corrects the level of type 1 error (Dray
et al., 2014). We used model 6 which is a combination of model

2 and model 4. Model 2 tests the hypothesis that the distribution
of species with fixed traits is not influenced by the environmental
conditions, and model 4 tests the hypothesis that the species
composition of samples with fixed environmental conditions is
not influenced by the species characteristics. Finally, the analysis
uses chi-square tests for qualitative variables and Pearson’s tests for
quantitative variables with an alpha value= 0.05.

We performed RLQ and the fourth-corner analyses for two
data sets: one for phyllostomid and mormoopid bats and the
other for insectivorous bat species (Emballonuridae, Molossidae,
Mormoopidae, Natalidae, Noctilionidae, and Vespertilionidae
families). For phyllostomid and mormoopid bats, the matrix
L was built using the bat abundance estimated from mist-
netting sampling, and traits, such as FME and pulse structure,
were not included in the matrix Q. Due to the difficulty
in estimating the number of insectivorous bats from passive
acoustic sampling, the matrix L was based on the presence–
absence of these species. Because all insectivorous bat species
have the same trophic level (i.e., animalivorous), this variable
was not considered for insectivorous bats. However, in matrix Q,
we included functional traits associated with their echolocation
calls: FME and call structure. All these analyses were carried
out using the ade4 and FD package (Dray and Dufour, 2007;
Laliberté et al., 2014) in R version 4.1.1 (R Core Team,
2021).

3. Results

We captured 360 individuals belonging to 14 species with mist
nets (Phyllostomidae and Mormoopidae), and we identified 18
species and 6 sonotypes with acoustic sampling (Emballonuridae,
Mormoopidae, Molossidae, Natalidae, Noctilionidae, and
Vespertilionidae) (Supplementary Table S1).
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TABLE 2 Values for the environmental variables estimated in each polygon in Colombian dry forests.

Environmental
variable

Polygon

Cepitá Jordán Lagunetas Cartagena Piojó Puerto
Colombia

Santa Marta

Conservation status (Fint) 2.2 1.4 1.2 1 0.4 4.2 2.2

Daily maximum temperature
(◦C)

24.45 26.54 26.3 33.36 33.96 27.41 34.76

Wind speed (km/h) 28.9 20.07 24.78 24.11 33.85 33.67 28.21

Total area of water bodies (ha) 13.5 17.4 2.3 51 750.5 761.4 59

Distance to water bodies (m) 2117.9 1074.43 652.1 3142.23 963.3 630 2812.8

Finding caves probability 1 3.25 2.3 2.25 1.5 2 2.2

3.1. Environmental conditions in dry zones

The daily maximum temperature varied between 24 and 34◦C,
and the wind speed varied between 20 and 33 km/h. The Santa
Marta polygon had the highest temperature, while Jordán had the
lowest wind speed (Table 2). Regarding the landscape variables,
Puerto Colombia had the highest total area covered by water and
the shortest average distance between water bodies. In contrast,
Cartagena had the largest distance between water bodies. On the
other hand, the probability of finding caves was higher in the
Jordán and Lagunetas polygons (Table 2). In general, conservation
status varied from 0.4 in Piojó to 4.2 in Puerto Colombia.
Except for Puerto Colombia, all sampled polygons exhibited good
conservation status (Table 2).

3.2. Relation between bat functional traits
and environmental conditions

For phyllostomid and mormoopid bats, the first and second
axes of the RLQ analysis explained 89.1 and 8.1% of the association
between the traits and environmental variables (Table 3A), whereas,
for insectivorous bats, they explained 79.6 and 18.9% (Table 3C).
The first axis in the Hill–Smith PCA of the tables R (environmental
variables) and Q (traits) explained 52.8 and 39.8% for phyllostomid
and mormoopid bats and 43.6 and 30.4% for insectivorous bats.
Regarding Table L (abundance and presence per site), the first axis
of the correspondence analysis explained 38.8% of the variance for
phyllostomid and mormoopid bats and 33.4% for insectivorous
bats (Tables 3B, D).

For phyllostomid and mormoopid bats, Santa Marta and
Cartagena polygons formed a distinct group and showed
an association with a higher probability of finding caves
(Supplementary Figure S1A). The abundance of insectivorous
(mostly mormoopids) and nectarivorous bats was related to
environmental variables, such as distance to water bodies,
temperature, and the probability of finding caves (Figure 2;
Supplementary Figures S1A–C). In contrast, frugivorous
bats were associated with Piojó and Cepitá polygons, which
exhibited higher and intermediate conservation status (Figure 2;
Supplementary Figures S1A–C). Regarding the non-phyllostomid

insectivorous bats, Santa Marta and Cartagena polygons were
grouped and were associated with the highest distance to
water bodies (Supplementary Figure S1D). The presence of
piscivorous/insectivorous bat species that exhibit an FM-qCF call
type was related to a larger area covered by water. This pattern
was also observed for insectivorous species with CF pulse structure
(Figure 2; Supplementary Figures S1D–F). Insectivorous bat
species with qCF pulse structure (molossids and emballonurids)
that predominantly forage in the canopy were associated with more
distant water bodies (Figure 2; Supplementary Figures S1D–F).

According to the global test of the fourth-corner analysis, we
did not find strong evidence to suggest that species composition
depends on the environmental conditions (model 2, p = 0.48)
or the species traits (model 4, p = 0.5) for phyllostomid and
mormoopid bats. However, there were significant and positive
relationships between a higher abundance of hematophagous
bats and nearest water bodies and animalivorous bats and a
higher and intermediate probability of finding caves (Figure 3).
For insectivorous bat species, the global test of the fourth-
corner analysis did not find strong evidence to suggest that
species composition depends on environmental conditions (model
2, p = 0.37) but showed evidence for the association between
species composition and functional traits (model 4, p < 0.001).
Nevertheless, there were significant and positive relationships
between more conserved sites and the presence of bats that mostly
forage on the canopy and emit qCF calls and between bats that emit
qCF pulses with intermediate and smaller areas covered by water
(Figure 3).

4. Discussion

Our findings showed evidence for a significant association
between some bat functional traits to landscape variables and land-
use intensity, affecting the sensitivity of several bat species. While
the fourth-corner analysis did not find evidence that Phyllostomid
bats depend on environmental conditions, insectivorous species
showed evidence that traits, such as vertical foraging and
pulse structure, are related to landscape characteristics and the
conservation status of the dry forests. Bat responses to habitat
alteration and landscape attributes have been explored more
in the Neotropical rainforest ecosystems, and most of them
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TABLE 3 Results for the RLQ analysis using bat functional traits and

environmental variables in Colombian dry forests.

Phyllostomidae and Mormoopidae

Axis 1 (%) Axis 2 (%)

A

R (PCA Hill–Smith) 3.17 (52.8) 1.23 (20.5)

L (CA) 0.59 (38.8) 0.33 (21.6)

Q (PCA Hill–Smith) 3.19 (39.8) 2.02 (25.2)

B

RLQ eigenvalues 1.72 (89.1) 0.17 (8.8)

Covariance 1.31 0.41

Correlation: L 0.56 0.35

Projected variance: R 2.99 4.09

Projected variance: Q 1.84 3.11

Emballonuridae, Molossidae, Mormoopidae,
Natalidae, Noctilionidae, and Vespertilionidae

Axis 1 (%) Axis 2 (%)

C

R (PCA Hill–Smith) 2.61 (43.6) 1.72 (28.8)

L (CA) 0.25 (33.4) 0.17 (23.1)

Q (PCA Hill–Smith) 2.74 (30.4) 1.93 (21.5)

D

RLQ eigenvalues 0.42 (79.6) 0.10 (18.9)

Covariance 0.65 0.32

Correlation: L 0.27 0.21

Projected variance: R 2.35 3.98

Projected variance: Q 2.52 3.95

Eigenvalues and percentage of total co-inertia for the first two axes, showing ordinations of

tables R, L, and Q for phyllostomid and mormoopid bats (A) and insectivorous bats (C).

Summary of RLQ analysis: eigenvalues and percentage of total co-inertia accounted by the

first two RLQ axes, covariance and correlation (and % variance) with the correspondence

analysis of the L matrix and projected variance (and % variance) with the R and Q matrices

for phyllostomid andmormoopid bats (B) and insectivorous bats (D). Table R: environmental

variables by site, table L: species abundance by site, table Q: functional traits of the species.

PCA: principal component analysis, CA: correspondence analysis.

focused on Phyllostomid bats (Farneda et al., 2015, 2020; Meyer
et al., 2016). Few studies include data about the functional traits
of aerial insectivorous bats and their vulnerability to habitat
modification (Núñez et al., 2019). Therefore, our study brings
essential information about the sensitivity of both bat groups
to habitat disturbances in highly threatened ecosystems like
dry forests.

In line with our results, other bat studies in tropical
dry ecosystems have found significant relationships between
bats’ functional traits, environmental conditions, and landscape
attributes. Functional traits, such as wing morphology and body
size, were related to environmental characteristics such as vertical
vegetation stratification (Olaya-Rodrigúez et al., 2019), plant cover
type (García-Herrera et al., 2020), and vegetation structure and

composition (Martínez-Ferreira et al., 2020). Similarly, in the
Amazonian rainforest, trophic level and body mass are good
predictors for phyllostomid bats (Farneda et al., 2015). In contrast,
for aerial insectivorous bats, the call structure is a functional trait
more susceptible to forest fragmentation (Núñez et al., 2019).

In contrast to our prediction, we did not find evidence that
the abundance of animalivorous bats was associated with more
conserved areas and water bodies’ closeness. This pattern could
be explained because we captured only five animalivorous species:
one phyllostomid and four mormoopids. However, animalivorous
bats were positively associated with the probability of finding
caves. Caves take relevance in dry forests characterized by extreme
climatic conditions because these roosts offer protection against
temperature fluctuations and predators and support reproduction,
breeding, and other social behaviors (Kunz, 1982). Similarly, other
studies show that mormoopids have a strong dependence on caves
in Neotropical dry forests or semi-arid ecosystems, where they
form large colonies (Bonaccorso et al., 1992; Rodríguez-Durán,
2009; Torres-Flores and López-Wilchis, 2018; Otálora-Ardila et al.,
2020), which may reach >10,000 individuals, as registered in our
study. Although ca. 40% of worldwide bat species use subterranean
habitats as roosts (Frick et al., 2020), it is possible that some species
rarely or never use caves as shelter. Consequently, bats that avoid
caves could bias the relationship between this landscape feature and
the species’ composition and traits. However, 70% of the species
registered through mist nets and passive acoustic monitoring are
considered primary and regular cave-dwelling bats (Arita, 1993).

As expected, we found a positive association between more
conserved sites and species traits. Our data showed a positive
relationship between the presence of aerial insectivorous bats that
mostly forage on the canopy and that emit qCF calls. The polygons
with better conservation status were characterized by having more
vegetation cover, less intense land use, low population density,
and being more distant to populated centers. Similarly, in islands
formed by hydroelectric dams in Central Brazilian Amazon and
East Asia, species with qCF pulse structure were associated with
less disturbed environments like continuous forests and with larger
and more connected islands and forest patches (López-Bosch et al.,
2022; Colombo et al., 2023). However, other studies have found that
bats that emit qCF pulses seem to benefit from fragmentation and
the decrease in the size of islands and forest patches (Núñez et al.,
2019; Hazard et al., 2023).

Vertical foraging niche as a variable that reflects the impact of
habitat transformation has been previously tested in phyllostomid
and aerial insectivorous bats. While it had low support for
phyllostomids (Farneda et al., 2015), it had a significant relationship
with insectivorous that emit qCF and FM-qCF (Núñez et al.,
2019). However, it was unclear which vertical stratum was more
closely related to insectivorous bat species’ foraging activity or
pulse structure (Núñez et al., 2019). In our study, the presence of
insectivorous bats that emit qCF pulses was positively associated
with foraging at the canopy. Similarly, other studies suggest that
the activity and richness of insectivorous bats increase at the
canopy (Marques et al., 2016; Rojo Cruz et al., 2019), with most
of the recorded species emitting qCF calls (Marques et al., 2016).
The association between bats that emit qCF calls and canopy
is likely due to an increase in insect food resources at this
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FIGURE 2

Plot from the RLQ analysis between bat functional traits and environmental variables along RLQ axis 1 in Colombian dry forests. (A) Phyllostomidae

and Mormoopidae. (B) Insectivorous bats: Emballonuridae, Molossidae, Mormoopidae, Natalidae, Noctilionidae, Vespertilionidae. Gray:

environmental variables. Black: bat species traits.

FIGURE 3

P-values resulting from the fourth-corner test for bivariate associations between bat species traits and environmental variables in Colombian dry

forests. (A) Phyllostomidae and Mormoopidae. (B) Insectivorous bats: Emballonuridae, Molossidae, Mormoopidae, Natalidae, Noctilionidae,

Vespertilionidae. Red square: significant and positive association; gray square: non-significant association.
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stratum (Jung et al., 2012; Marques et al., 2016). Although insect
availability is higher at the canopy in tropical rainforests (Basset
et al., 2003; De Souza Amorim et al., 2022), there is scarce and
contrasting information on this issue in dry forests (Vega-Badillo
et al., 2018; Camero-Rubio et al., 2021). Open spaces between tree
crowns at the canopy result in less cluttered habitats, which are
more suitable for foraging and flight maneuverability (Marques
et al., 2016). Also, there are fewer multidirectional reflections of
echolocation calls in uncluttered spaces (Brigham et al., 1997).
Therefore, bats tend to make less effort to discriminate between
prey and background echoes (Brigham et al., 1997), which could
be particularly advantageous for species that emit qCF pulses.

Bats use water bodies for foraging (Ciechanowski, 2002;
Razgour et al., 2010), and in dry environments where water
is highly fluctuating, it could be an essential resource and
determinant in bat survival and diversity (Korine et al., 2016).
According to our predictions, places with easier access to water
would be critical to maintaining species traits, where we found a
significant and positive relationship between a higher abundance
of hematophagous bats and the nearest water bodies. Similar
patterns have been documented in dry forests in Mexico, where
the sanguinivore species Desmodus rotundus was more abundant
in pastures close to water-filled sinkholes and riparian forests
(MacSwiney et al., 2007; Avila-Cabadilla et al., 2012; Mendoza-
Sáenz et al., 2021). Riparian forests and other water resources
could promote mobility and provide food and water to native
and domestic mammals (Polania Ortiz, 2012; Pineda-Cendales
et al., 2020). Therefore, the probability that D. rotundus find food
resources near water might increase (Ávila-Flores et al., 2019).
Additionally, livestockmanagement observed in the sampled places
indicated that cattle or goats frequently use riparian vegetation,
streams, or artificial water bodies (Botero et al., 2009).

Our data also indicated that environmental variables such as the
total area covered by water are essential to support species traits,
where we found a significant and positive relationship between
the occurrence of bats that emit qCF pulses and intermediate
and smaller areas covered by water. Also, we observed an
association between the biggest areas covered by water with the
presence of piscivorous/insectivorous bats that emit FM-qCF calls
and insectivorous bats with CF pulse structure, although these
relationships were not significant. Studies have shown that the
richness and activity of insectivorous bats are positively associated
with the increment in the size of water bodies in deserts and
temperate and tropical forests (MacSwiney et al., 2009; Razgour
et al., 2010; López-González et al., 2015; Torrent et al., 2018). It
has been suggested that the biggest water bodies could be related
to higher insectivorous bats’ richness and activity because they
could offer more food insect availability (López-González et al.,
2015; Straka et al., 2020), larger area for drinking water (Razgour
et al., 2010), and more opportunities for the spatial partitioning
(MacSwiney et al., 2009; Razgour et al., 2010). Although we did
not evaluate the insect diversity, some insects show higher richness
in riparian forests or habitats with higher water availability in
tropical dry forests (Altamiranda-Saavedra, 2009; Vargas-Zapata
et al., 2011; Peña and Reinoso, 2016; Casas-Pinilla et al., 2017;
Vega-Badillo et al., 2018). Our results revealed that intermediate
or smaller areas covered by water showed a high occurrence of

bats that emit qCF calls, which reach between 40 and 60% of all
insectivorous species registered. This pattern has been previously
observed in tropical rainforests and dry forests, where the 38 and
47% were open-space foragers emitting qCF pulses (MacSwiney
et al., 2009; Torrent et al., 2018). Despite the general relationship
between the higher richness of insectivorous bat species and
the size of water bodies, methodological differences hamper the
comparison and interpretation among studies due to geographic
scale and the criteria to categorize the size and availability of
water bodies. In our case, the total amount of water was calculated
on an intermediate geographic scale where polygons with lower
amounts reached ∼11,000 m2 of water. In contrast, other bat
studies considered 200 m2 as small water bodies (Razgour et al.,
2010; López-González et al., 2015; Torrent et al., 2018).

Although we did not find any significant relationship for
frugivores and nectarivores with the environmental conditions,
we found a strong association from RLQ analysis between a
higher abundance of heavier frugivorous bats with intermediate
conservation status and the biggest area covered by water.
Notably, we captured more frugivorous bats in areas covered
with primary vegetation varied from 66.6 to 83.5% and with
artificial water bodies. Association between the frugivore bats
with higher forest coverage has been previously observed in dry
forests in Mexico (Avila-Cabadilla et al., 2012) and in Colombia
(Ballesteros-Correa and Pérez-Torres, 2022). Frugivorous bats were
positively associated with open dry forest and non-forest metrics
in Guatemala (Chambers et al., 2016). The association between the
higher abundance of frugivore species with more native vegetation
and riparian forests could be explained by the high quantity of
plants that produce fruits (Avila-Cabadilla et al., 2012) and offer
roosts in the foliage (Martínez-Ferreira et al., 2020).

Our data indicated an association between a higher abundance
of nectarivorous species with high and intermediate conservation
areas and an intermediate probability of finding roosts.
Nectarivorous bats are commonly registered in early-stage
vegetational succession (∼30 years of regeneration) (Farneda
et al., 2018) and in open areas and forest edges (Avila-Cabadilla
et al., 2014; Otálora-Ardila and López-Arévalo, 2021). Therefore,
a higher abundance of nectarivores in intermediate conservation
areas could be associated with the preference of species such as
Glossophaga soricina, G. longirostris, and Leptonycterys curasoae
for foraging in less complex habitats, such as xeric zones, thorn
scrub, and arid grasslands (Alvarez et al., 1991; Cole and Wilson,
2006). Due to Glossophaga spp. and Leptonycteris spp. rely on a
variety of sensory abilities such as olfactory and visual cues, spatial
working memory, and echolocation (Henry and Stoner, 2011;
Clare et al., 2014; Moreira-Hernández et al., 2021) to find the floral
resources, the preference for foraging in open or less structured
ecosystems could facilitate the task of food searching rather than
indicating a preference for disturbed habitats. Nectarivore species
were associated with an intermediate probability of finding roosts,
determined in part by the roosts found. While Glossophaga spp. are
considered regular cave dwellers, L. curasoae is a cave-dependent
bat (Arita, 1993), where they aggregate in numerous colonies and
use them as a nursery (Simal et al., 2015, 2022). Therefore, caves are
a vital element that might be associated with high bat abundance,
particularly for L. curasoae.
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Weobserved differences in species traits between the Caribbean
coast and the Chicamocha River Basin. For phyllostomid and
mormoopid bats, the abundance of heavier frugivorous bats was
higher in the Chicamocha than in the Caribbean. This pattern
might be related to the fact that we captured twice as many
individuals of Sturnira lilium (20.1 g) and Artibeus lituratus (65.6 g)
in Chicamocha. A similar pattern of species composition in dry
forests was observed by Sánchez et al. (2007) and Ballesteros-
Correa and Pérez-Torres (2022). These species show changes
in niche breadth associated with seasonal food availability in
tropical dry forests (Shipley and Twining, 2020). Although they can
consume alternative resources, such as pollen/nectar of columnar
cacti (Sánchez et al., 2007; MacSwiney et al., 2017), we did not
estimate the number of these plants in our study area, but cacti
were more abundant in the Chicamocha River Basin than in the
Caribbean (Pers. Obs). In contrast, nectarivore and mormoopids
were more abundant on the Caribbean coast, particularly in
Cartagena’s polygon, due to the roosts found, which are used for
several nectarivore and mormopid species. Most of these species
are considered cave-dwelling bats (Arita, 1993).

Our data indicated that piscivore/insectivore species were
mostly recorded in Piojó, Cartagena, and Puerto Colombia,
whereas Noctilio leporinus was only recorded in Piojó. This pattern
was associated with the larger area covered by water observed on
the Caribbean coast, whichmight offer more resources (MacSwiney
et al., 2009; see above, Razgour et al., 2010; López-González et al.,
2015; Straka et al., 2020). The insectivore species that forage
under the canopy corresponds mainly to mormoopid species that
were acoustically registered in the Caribbean polygons and due
to several roosts found there. Additionally, we captured three
times more phyllostomid and mormoopid bats and recorded
more insectivorous species in the Caribbean polygons than in
the Chicamocha River Basin. A pattern likely related to the
difference in altitude: While the Caribbean coast is between 0
and 199m.a.s.l., the Chicamocha ranged from 483 to 1,540m.a.s.l.
It is well-documented that Andean bat communities have fewer
insectivorous species than lowland forests (Soriano, 2000).

4.1. Potential caveats

Bat sampling covered only the dry season, not gathering
information about the climatic variation throughout the year. In
dry forests, changes in bat species composition, richness, and
abundance were associated with seasonality (Sánchez et al., 2007;
Avila-Cabadilla et al., 2014; Ballesteros-Correa and Pérez-Torres,
2022). However, we sampled a wide variety of localities covering
a large area in Colombian dry forests and captured a total of
19 species. This species richness was higher or similar to those
reported in other studies in this particular ecosystem (Sánchez et al.,
2007; Avila-Cabadilla et al., 2014; Martínez-Ferreira et al., 2020).
In this context of information loss, we only used presence/absence
data of insectivore bat species due to the difficulty in estimating
the abundance from passive acoustic sampling. Although our
results based on the presence/absence data showed significant trait–
environment relationships, the observed patterns could correspond
to an underestimation of the community’s functional structure.
Additionally, some bias may be related to climatic variables, such

as temperature and wind speed measured during the bat sampling
periods with suitable meteorological conditions, such as no rain
or strong winds. Furthermore, we did not include diet-related
information for aerial insectivorous bats. Although most studies
focusing on functional bat ecology include diet as one relevant trait
associated with human-modified landscapes (Cisneros et al., 2016;
Farneda et al., 2020), we did not include information about the type
of diet due to general lack of information for many insectivorous
species (Villalobos-Chaves and Santana, 2022).

4.2. Conservation implications

Our data indicated a positive association between more
conserved sites and a more complete set of bat functional
traits. Polygons with better conservation status were characterized
by having more vegetation cover and less human impact.
In the Neotropical dry forests, preserving landscapes that
include continuous and large areas is urgent to maintain the
ecosystem services bats provide in these ecosystems. Similarly, the
conservation and restoration of riparian forests are critical for the
long-term preservation of phyllostomid and aerial insectivorous
bats in tropical dry forests. In disturbed landscapes, riparian forests
have been considered favorable habitats for bats because they
offer food and roost resources and promote movement between
fragments (Estrada and Coates-Estrada, 2001; Meyer et al., 2016).

Mammals that inhabit dry forests and arid zones must cope
with water seasonality and scarcity, particularly during the dry
season (Stoner and Timm, 2011). Our data suggested that a large
area covered by water was associated with the abundance or
presence of many bat species. Therefore, to maintain bat diversity
in tropical dry forests, the preservation of water bodies must be
promoted. Lakes of different sizes, even the artificial ponds built
for livestock management, could sustain and promote several vital
resources for insectivores and piscivore/insectivore bats. Large and
temporary water bodies are essential because they provide water
even during the dry season, whenmost aquatic resources disappear,
have been deviated, drained, or altered. Additionally, larger water
areas have the highest probability of remaining, particularly under
the current weather changes associated with climate change.

Our data also indicated that caves are essential for the survival
of nectarivore and animalivore bats in dry forests. Caves are
key landscape elements that are considered biodiversity hotspots
(Phelps et al., 2016). The caves in our study area are used by
some specialists and vulnerable species that are strongly cave-
dependent (e.g., L. curasoae). The large colonies observed in
this study of insectivorous bats could be beneficial for nearby
agricultural producers due to the significant suppression of insects
by bats, including potential crop plagues or human disease vectors
(McCracken et al., 2012; Medellín et al., 2017; Puig-Montserrat
et al., 2020).
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SUPPLEMENTARY FIGURE S1

Results of the RLQ analysis (two first axis) showing the associations between

bat species traits and environmental variables in Colombian dry forests.

Eigenvalues and species (eigenvalues showed in the box) for phyllostomidae

and mormoopidae (A) and insectivorous bat species (D), principal

component analysis (PCA Hill–Smith) showing the covariation of

environmental variables for phyllostomidae and mormoopidae (B) and

insectivorous bat species (E), and bat’s functional traits for phyllostomidae

and mormoopidae (C) and insectivorous bat species (F).

SUPPLEMENTARY TABLE S1

Values for the bat species traits in Colombian dry forests. AR, Aspect ratio;

rWL, Relative wing loading; VS, Vertical stratification; TL, Trophic level; FME,

Frequency of maximum energy; PS, Pulse structure.
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