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Abstract: Fusion of low-cost/low-power MEMS accelerometer/gyroscope sensors with Global Navigation 
Satellite Systems (GNSSs) is commonly used for vehicular localization, internet of things (IoT) tracking and 
Location-based Services (LBS). However, robust localization in dense urban areas is challenging due to GNSS 
service interruptions and satellite signal blockage. To overcome this problem, this paper describes a map-aided 
MEMS Accelerometer/Gyroscope/GNSS sensor fusion system for enhanced localization in dense urban areas 
under long GNSS outages. The work applies Extended Kalman Filter (EKF) to fuse GNSS measurements with 
MEMS Accelerometer/Gyroscope sensors in a loosely-coupled scheme. To support longer periods of GNSS 
outages, an advanced curve-to-curve map-matching algorithm using Hidden-Markov Models (HMM) is 
developed. Map-matched data points are used as position measurement feedback to the developed Kalman Filter. 
The developed map-aided fusion system was tested on real-road data collected in dense downtown area under 
long periods of GNSS service interruptions. The map-matching results showed 100 % accuracy under noisy 
GNSS. The results also showed robust localization performance under several minutes of GNSS blockage. The 
developed system is useful for autonomous cars navigation, LBS, and IoT localization in GNSS-denied areas. 
 
Keywords: GNSS, MEMS Accelerometer/Gyroscope, HMM and EKF. 
 
 
 
1. Introduction 

 

Global Navigation Satellite Systems (GNSS) are 
the main localization sensors used in modern 
electronic systems. The first operational satellite-
based navigation system was the U.S. system known 
as “Global Positioning System (GPS)” [1]. The GPS 
framework has been significantly enhanced over the 
past two decades. According to the FAA GPS 
Performance Analysis Report [2], horizontal accuracy 
of GPS (Standard Positioning Service “SPS”) is within 

3.351 m with a 95 % confidence level. However, in 
typical environments, this accuracy is affected by 
several factors such as atmospheric effects, sky 
blockage, and receiver quality. Considering the 
economical consideration that requires in-car 
GPS/GNSS receivers to be manufactured at low cost, 
the error is larger in practice. GNSS technology have 
been significantly improved by having more satellites 
in the sky [3-5]. In addition, GNSS accuracy can be 
significantly improved using several techniques such 
as differential GNSS (DGNSS), Augmented GNSS, 
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Precise Positioning Services (PPS), or real-time 
kinematics (RTK). However, localization in dense 
urban areas is still challenging due to GNSS signals 
multipath or complete outage for extended periods in 
scenarios like tunnels and/or urban canyons. 
Therefore, fusion of GNSS with other sensors is a 
common trend that has been widely adopted. 

Fusion of GNSS with self-contained dead-
reckoning relative motion sensors (e.g. inertial 
measurement units “IMU”) such as low-cost/low-
power MEMS accelerometer and gyroscope [4] 
sensors can bridge short GNSS outages. GNSS and 
accelerometer/gyroscope sensors can be fused using 
Extended Kalman Filter (EKF) [5]. In the fusion 
process, the localization state transition is triggered by 
IMU sensors (accelerometer and gyroscopes) while 
GNSS measurements are used as external 
observations. The observations in our case is GNSS 
location and speed measurements. This EKF fusion 
scheme is known as loosely-coupled EKF.  

Although the GNSS/IMU fusion provides high-
rate robust localization, the localization accuracy 
drifts quickly under GNSS outages leading to 
significant drifts as illustrated in Fig. 1. In addition, 
under signal reflections and refractions induced by 
high buildings, GNSS accuracy deteriorates leading to 
significantly noisy positioning as can be seen in Fig. 2. 
To solve these accuracy and availability problems and 
to provide accurate uninterrupted navigation services 
under these challenges, the integration of digital road 
maps with IMU and GNSS has been recently 
considered [6-7].  

Road maps are currently widely available in 
modern car systems and high-definition (HD) [8] maps 
are currently being developed to enable self-driving 
cars and automated connected vehicles [8]. In contrast 
to conventional maps that human normally uses to 
display information, HD maps are different in the level 
of accuracy, comprehensiveness, resolution and 
details. HD maps are currently being developed on a 
large scale as can be seen in [9]. To support  
automated driving technology where positioning 
availability in real-time is crucial, this work proposes 
the integration of commercially available maps with 
GNSS and IMU. While digital road map network [10] 
is used in this paper, the same concepts are applicable 
to HD maps.  

This work is an extension to the conference paper 
published by the authors in [11]. In contrast to existing 
map-matching methods that applies open-loop point-
to-curve map projection, this work uses Hidden 
Markov Models (HMM) as an enhanced curve-to-
curve map matching technique. According to state-of-
art surveys [12], HMM is known for its accuracy in 
complex geometry and dense topology road networks. 
In addition, the proposed work applies the projected 
map-points as measurements update (feedback) to the 
developed EKF in a closed-loop map-matching 
scheme. This closed-loop approach provides more 
robust and accuracy filtering under long periods of 
GNSS outages. 

 

 
 

Fig. 1. Localization error reset in GNSS Outage using Road 
Networks Maps. 

 
 

 
 

Fig. 2. NSS errors due to multipath in urban areas. Red is 
GNSS and green is ground-truth solution. 

 
 

2. INS/GNSS Fusion System 
 

The vehicle’s kinematics can be modelled as 
dynamic system of states vector ( ) that changes over 
time according to the following differential equations: 

 ( ) = ( ( ), ( )) + ( ), (1) 
 ( ) = ℎ( ( )) + ( ), (2) 
 

where (. )	is the nonlinear dynamic model,	 ( ) is 
the stochastic system noise vector, ( )	is the control 
signal vector, ( ) is the external measurements 
vector,	ℎ(. )	is the nonlinear measurement model and ( ) is the stochastic measurement noise vector. In 
this work, Kalman filter is adopted due to its real-time 
efficient performance [4-5]. However, Kalman filter 
works only under linear systems. Therefore, the 
differential equations in (1) and (2) must be linearized. 
Commonly, first order Taylor series expansion is used 
to obtain the following linearized system model: 

 ( ) = ( ) ( ) + ( ), (3) 
 ( ) = ( ) + ( ), (4) 
 ( ) = ( ), ( ) , (5) 

 ( ) = ℎ( ( ))
 (6) 
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The Kalman Filter provides optimal estimation of 
the error state  assuming ( ) and ( ) are zero-
mean Gaussian noise vectors with covariance matrices 
defined by: 

 ( ) = ( ) ( )  (7) 
 ( ) = ( ) ( )  (8) 
 

and  is the error vector with zero-mean and a 
covariance matrix P defined by: 

 ( ) = ( ) ( )  (9) 
 
In discrete form, derivative can be approximated  

as follows:  
 ≈ − , (10) 

 
where T is the sampling period. To program the 
filtering algorithms within a digital system, Eqs. (3) 
and (4) can be written in discrete form as follows:  

 = ( + ) +  (11) 
 = +  (12) 
 
The optimal estimation of the error vector, , 

given measurements, , is calculated using two steps: 
prediction step 

 = ( , ) (13) 
 = ( + ) ( + ) + (14) 
 

and update step 
 = ( + ) , (15) 

 = + [ − ℎ( )], (16) 
 = ( − )  (17) 
 
In the proposed system, the vehcile’s Kinematic 

model is used as the system model of Eq. (1) where the 
triggering control signal u(t) is the raw  
accelerometers and gyroscope measurements. The 
system states vector can be described as follows: = ( ); ( ); ; ( ); ( ) , where ( )is the 
position vector defined in a local navigation frame , ( ) is the velocity vector defined in local navigation 
frame ,  is the vehicle’s orientation with respect to 
local-level navigation frame , ( ) and	 ( ) are 
errors of accelerometers and gyroscope measurements 
respectively. For 3D rigid body kinematics,	 (. ) is a 
nonlinear mapping between vehicle state and control 
signals at time  and the vehicle’s state in the next 
instant of time + . For a rigid body in 3D, the 
differential equations that describes (. ) is given  
by [5]: 

( )( ) = ( )( ) (18) 
 ( )( ) = ( ) ( )( ) − ( ) +	( )( ) − ( ) + 2 ( ) ( )( ) (19) 

 ( ) = ( )( )( ) − ( ) − ( ) + ( )  
(20) 

 ( ) here is the direction cosine matrix that 
represents the vehicle’s orientation. Rearding 
accelerometer and gyroscope errors, they are modeled 
using a Gauss-Markov random process as follows: 

 ( ) = − ( ) + 2 ( ), (21) 

 ( ) = − ( ) + 2 ( ), (22) 

 
where ,	 ,	  and  are the time constants 
and covariates of Gauss-Markov process [5] [5] 
models of accelerometer and gyroscopes biases 
respectively. ( ) is the trigonometric function of the 
vehicle’s Euler angles vector ( ) defined as 3×3 
matrix: 
 ( ) = , (23) 

 
where  
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(24) 

 ( )	is the rotation rate of the local-level navigation 
frame  with respect to the earth frame due to motion 
of the vehicle on the ellipsoid surface of Earth and ( )	is the rotation rate of earth frame with respect to 
the imaginary non-rotating inertial navigation frame 
due to Earth’s rotation.  

To avoid singularities and numerical instability, 
the direction cosine matrix ( ) is converted to 
quaternion variable ( ) = [ ] [9, 20] and 
the numerical integration is performed in the 
quaternion domain according to the following 
equation: 

 ( ) = 12 ( )	( )( ) − ( ) − ( ) + ( )  
(25) 
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In Eq. (25), ( ), ( ), ( ) , and ( )  are the 

gyroscope measurements, gyroscope biases, transport 
rate, and earth rate vectors in quaternion vector form. 
In the quaternion domain, the orientation state 
equation is linear as shown in Eq. (10) instead of the 
trigonometric functions used in	 ( ). The calculated 
quaternion states are then transformed back direction 
cosine matrix ( ) as follows: 

 ( ) =	+ + + 2( − ) 2( − )2( + ) − + − 2( − )2( + ) 2( + ) − − +  

(26) 
 
The Kalman filter receives updates from GNSS 

position and velocity and map-matched position. 
Therefore, the measurement model is defined  
as follows: 

 ( ) 	( 	 ) − ( )
( ) − ( ) = , (27) 

 
where H is defined accordingly. The measurement 
noise covariance matrix (the R matrix) for GNSS 
measurements updates is given by: 

 = _ _  (28) 

 
The measurement noise covariance matrix (the R 

matrix) for map-positions updates is given by: 
 = _  (29) 
 

where 0 	is the 3 by 3 zeros matrix, _ is the 
3×3 diagonal matrix which represents GNSS position 
error covariance, _  is the 3×3 diagonal matrix 
which represents GNSS velocity error covariance, and _  is the 3×3 diagonal matrix that represents 
error covariance matrix for map-matched position. 
The design matrix H is given by: 

 = 0 00 0  (30) 

 
 

3. Enhanced Performance via Map-
Matching 
 
Localization errors due to GNSS multipath and 

IMU drifts can be reduced by map-matching and by 
using the projected position on road map links to reset 
localization errors as can be seen Fig. 3. This 
technique is called map-matching (MM)-feedback 
which greatly enhances the accuracy as seen in Fig. 2. 
In Fig. 1, map-matching enhances the error covariance 
in the lateral direction of the moving object. In Fig. 3, 

map-matching enhances localization error covariance 
in both lateral and longitudinal directions of the 
moving platform. In this work, an enhanced curve-to-
curve map-matching algorithms using Hidden-
Markov Models (HMM) is described. 

 
 

 
 

Fig. 3. Map-matching improved accuracy in GNSS outage. 
 
 

3.1. Hidden Markov Models (HMM) 
 
HMMs framework has been widely used to  

model random processes that are going through a 
series of hidden states and generating noisy 
observables. A Markov model is a stochastic model 
that describes the observations of a sequence of states = [ (1), (2), (3). . . . , ( )], where ( ) depends 
only on ( − 1). Under this assumption, the series of 
sequence ( ) is called a Markov Process [13]. The 
transition from state ( − 1) to state ( ) is modeled 
by a conditional transition probability given by: 

 = ( ) = | ( − 1) =  (31) 
 
This conditional transition probability forms a 

Markov model. The probability of any observed 
sequence under a certain Markov Process and Markov 
model  is given by: 

 ( (1), (2), (3). . . . , ( )| ) =	(1) ∏ ( + 1)| ( )  (32) 

 
If the states are not directly measurable (hidden) 

but can be indirectly observed through a sequence of 
outputs (1), (2), (3). . . . , ( ) , the process is 
called a Hidden Markov Process. An illustrative 
diagram of HMM is shown in Fig. 4. The HMM in this 
case is characterized by the transition probability and 
an emission probability that represents the probability 
that a given state ( ) generates an output ( ): 

 ( ) → ( )   
 

given a sequence of outputs, HMM can estimate the 
most probable sequence of states (1), (2), (3). . . . , ( ) , that explains the 
observed outputs. This problem is solved by selecting 
the sequence of states that maximizes the HMM 
probability as follows: 
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= ∈ ( ), ( ),... ( ) 	(1) → (1) ∏ ( + 1)| ( )( + 1) → ( + 1)  
(33) 

 
 

 
 

Fig. 4. Markov Process Diagram. 
 
 

HMM estimation method is called “decoding” and 
it is solved using the Viterbi Algorithm [14]. In the 
proposed system, the hidden states represent map links 
and the observable outputs are the vehicle poses. To 
develop a robust map-matching framework, the 
vehicle pose history, roads geometry, and map 
topology constraints must be considered. Therefore, 
the emission and transition probabilities of a HMM are 
formulated such that they reflect all the 
aforementioned constraints. The HMM-based 
framework is illustrated in Fig. 5. The emission 
probabilities are calculated as follows: 

 = ∑ ∈ , (34) 

 
where 	is the set of all map segments within 50 m 
distance from current vehicle position in the ith epoch. 
The weighting parameter  is calculated as follows: 

 = + ‖ ‖ , (35) 
 

where is the distance from the vehicle’s estimated 
position in the ith epoch and its projection on the lth 
map segment.  is the normalized angle difference 
between the vehicle’s estimated heading in the ith 
epoch and the heading of the lth map segment. The 
parameters A, a, B, and b are constants chosen to 
achieve balanced weighting that considers both 
distance and direction of motion consistency. The 
transition probabilities are calculated as follows: 

 = ∑ ∈ , (36) 

 

where  is the probability of transition from lth map 
link to mth map link given the vehicle’ position at 
epochs i and j respectively. is the set of all map links 

connected to lth map link. The weighting parameter 
 is calculated as follows 

 = , (37) 
 

where  is the normalized angle difference 
between the vehicle’s estimated heading in the ith and 
jth epochs,  is the normalized angle difference 
between the heading of the lth and mth map segments 
and  is the connectivity parameter that determines 
if map segments lth and mth are topologically connected 
and c is a constant parameter. 

In our proposed system, the possible road network 
map segments were represented as hidden states, 
whereas the vehcile’s location was an observable state. 
In this case, vehicle’s dynamics and road network 
topology are used to build transition probability matrix 
while emission probabilities represented the 
probability that a given state (i.e. road segment) 
generates an output (vehicle’s location). Fig. 3 shows 
how the problem is modeled as a HMM. Viterbi 
Algorithm [3] was used to find the sequence of road 
map segments that most likely to have generated the 
observed locations. To develop a robust map-
matching framework, the vehicle location and 
orientation history, roads geometry, and map topology 
constraints were considered in calculating emission 
and transition probabilities. Fig. 6 shows the system 
components. 

 
 

 
Fig. 5. Map-matching as HMM. 

 
 

 
 

Fig. 6. Overall System Block Diagram. 
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4. Experimental Setup 
 
To collect road data and test the developed 

HMM/EKF algorithms, an embedded system that 
interface with GNSS receiver and IMU has been 
realized on a Jetson TX2 board shown in Fig. 7. The 
Jetson TX2 computer is interfaced with Ublox-7 
GNSS receiver and MPU 9250 IMU. Map data has 
been obtained from Navteq road network map data 
from HERE [15]. 

 
 

 
 

Fig. 7. The developed sensors logging platform. 
 
 

A series of experiments were performed in both 
GNSS available and denied environments, in order to 
obtain and validate results. Table 1 shows the 
specifications of the developed sensors logger 
systems, whereas Fig. 8 shows an experimental car 
equipped by the developed logger and a ground-truth 
navigation system ProPak6 from Novatel [8]. All data 
has been synchronized using the GPS timing. 

 
 
Table 1. Specifications of the data logger sensors. 

 
Specification Value 

MPU9250 IMU 
Accelerometer technology 
Accelerometer random noise 
Gyroscope technology 
Gyroscope noise 

 
MEMS 
0.0294 ( ⁄ /√ ) 
MEMS 
0.01 (°/ /√ ) 

U-blox 8 GNSS Receiver 
Horizontal location accuracy 
Velocity accuracy 

 
2.5 m 
0.1 m/s 

 
 

 
 

Fig. 8. Experimental Car. 

5. Results 
 
In this section, sample of the obtained results in 

downtown Toronto is demonstrated. First, to test the 
standalone GNSS accuracy, we run a simple static test 
where the Ublox GNSS calculated position is recorded 
and compared against the ground truth position. The 
test was performed in urban area but mostly open-sky. 
Fig. 9, Fig. 10 and Fig. 11 show the north, east, and 
vertical positioning accuracy respectively. As can be 
seen, the accuracy is consistent with the reported 
accuracy in the US FFA GPS accuracy report in [2]. 
Improving this accuracy down to sub-meter can be 
done with IMU fusion. However, if GNSS is blocked 
or severely interrupted, standalone IMU/odometery 
solution will drift leading to wrong map segment 
selection as can be seen in Fig. 12. This drift will grow 
without bound if not corrected by map-matching. 

 
 

 
 

Fig. 9. Standard GPS Test (North Position Accuracy). 
 
 

 
 

Fig. 10. Standard GPS Test (East Position Accuracy). 
 
 

 
 

Fig. 11. Standard GPS Test (Vertical Position Accuracy). 
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Fig. 12. IMU/odometer solution drift leading to wrong map 
segment selection. The circle indicates the start of the 
GNSS outage, and the rectangle indicates the drift that 

leads to wrong map segment selection. 
 
 

Fig. 13 and Fig. 14 demonstrate the benefit of the 
described HMM-based map-matching fusion. As can 
be seen in the figures, map-aided solution successfully 
identifies the map segment on which the vehicle is 
moving on.  

 
 

 
 

Fig. 13. Map-matching in an intersection. Map aided 
solution is in yellow shows the correct track while red 

curves show the road map network. 
 
 

 
 

Fig. 14. Map-matching in an exit. Map aided solution is 
in yellow shows the correct track while red curves show  

the road map network. 

The accuracy is demonstrated under challenging 
road network intersection with a bridge (Fig. 13) and 
in a high-way exit fork (Fig. 14). Table 2 shows the 
localization error under four 60-seconds GNSS 
outages with and without the developed map-aided 
fusion system. During the outage, only IMU is used 
without any additional measurements from the car 
speed measurements or non-holonomic constrains. 

To test long GNSS outage, a simulated GNSS 
outage of 20 minutes has been tested. As can be seen 
from Fig. 15, the system sustained reliable map-
matching and enhanced accuracy for the entire 
20 minutes with a sub-meter overall localization error. 

 
 

Table 2. The localization error under four 60-seconds 
GNSS outages with and without the developed map-aided 

fusion system. 
 

 

2D horizontal error (m) without map-
matching (IMU odometry only, no 

GNSS, non-holonomic constraints, no 
speed measurements) 

Outage 
1 

Outage 
2 

Outage 
3 

Outage 
4 

RMSE 19.73 19.05 18.64 18.84 
Max 
Error 

44.61 37.34 38.44 41.21 

 

2D horizontal error (m) with map-
matching (IMU odometry only plus 

HMM map feedback) 
Outage 

1
Outage 

2
Outage 

3 
Outage 

4
RMSE 0.65 0.79 0.45 0.69 
Max 
Error 

1.78 1.62 1.69 1.83 

 
 

 
 

Fig. 15. Improved accuracy in long GNSS outage 
in Downtown area (20 minutes). 

 
 

6. Conclusion 
 
This work introduced an enhanced HMM-based 

map-aided IMU/GNSS sensor fusion system on an 
embedded platform. HMM has been shown to be a 
robust and accurate map-matching framework that can 
support continuous navigation for long periods of 
GNSS outages. An outage of 20 minutes has been 
tested with sub-meter positioning accuracy and 100 % 
map segment selection accuracy has been achieved. 
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By introducing this proposed implementation of 
HMM-based map-matching IMU/GNSS fusion, this 
work will open the door for a new generation of robust 
and efficient localization systems that will enable 
several emerging applications such as self-driving cars 
and internet of things. Although segment-based road 
network maps have been used in this work, the concept 
is applicable to emerging HD maps to enable self-
driving cars to navigate in GNSS-denied and 
challenging areas. 
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