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A B S T R A C T

There is a wide range of industrially-relevant problems where mechanical stresses directly affect kinetics of
chemical reactions. For example, this includes formation of oxide layers on parts of micro-electro-mechanical
systems (MEMS) and lithiation of Si in Li-ion batteries. Detailed understanding of these processes requires
thermodynamically-consistent theories describing the coupled thermo-chemo-mechanical behaviour of those
systems. Furthermore, as the majority of materials used in those systems have complex microstructures,
multiscale modelling techniques are required for efficient simulation of their behaviour. Hence, the purpose of
the present paper is two-fold: (1) to derive a thermodynamically-consistent thermo-chemo-mechanical theory;
and (2) to propose a two-scale modelling approach based on the concept of computational homogenisation for
the considered theory. The theory and the two-scale computational approach are implemented and tested using
a number of computational examples, including the case of the reaction locking due to mechanical stresses.
1. Introduction

Chemo-mechanics has been an emerging field that is highly rele-
vant for understanding of the influence of mechanical stresses on the
kinetics of chemical reactions in a variety of industrially-relevant prob-
lems (Huntz et al., 2002; Büttner and Zacharias, 2006; Keune and Boon,
2007; McDowell et al., 2013). This field focuses on the development
of theoretical frameworks and computational approaches that are able
to describe temperature-dependent chemo-mechanical processes that
can also be possibly coupled with other physical phenomena such as
electrical processes in advanced materials.

It is well-known that mechanical stresses can affect the rates of
chemical reactions (Hickenboth et al., 2007). Furthermore, some reac-
tions require a certain critical value of normal stress to be achieved
before a reaction on a surface can even start (Rana et al., 2022).
Mechanical forces can alter potential energy surfaces dynamically,
giving access to products unavailable by traditional reaction pathways,
which led to new developments in many fields, for example, in polymer
science (Wiggins et al., 2012; Klok et al., 2022). A recent overview of
the field of mechanochemistry from the materials science point of view
can be found in Pagola (2023).

The influence of stresses on the reaction kinetics is modelled in
various ways and at various scales. At the electronic structure scale,
there are theories accounting for the significant effect of mechanical
stresses on the activation barriers of chemical reactions, e.g. Konda
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et al. (2011) and Boscoboinik et al. (2020). Such theories have common
elements with the ones developed for calculating energy barriers in
stress-driven solid–solid phase transitions (Ghasemi and Gao, 2020).
At the atomistic scale, idealised models are used to derive approxi-
mate relations between the mechanical forces and rate constants of
the reactions, e.g. Walcott (2008). At the macroscopic scale, various
phenomenological models are typically used, e.g. Adams et al. (2017)
and Alrbaihat et al. (2022).

From the continuum mechanics point of view, chemical reactions
in solids have long been modelled as source/sink terms in the mass
balance equation for the diffusive species (Glansdorff and Prigogine,
1971). Within this field, some research works focus primarily on
mechano-diffusion and the effect of mechanical stresses on the kinetics
of the transport processes, without accounting for the source/sink terms
in the mass balance, e.g. Loeffel and Anand (2011), Bower et al. (2011),
Cui et al. (2012) and Levitas and Attariani (2014). Other research works
consider mechanics-diffusion-reaction as three coupled processes and
make a distinction between the stress-affected volumetric reactions,
e.g. Knyazeva (2003), Loeffel et al. (2013) and Drozdov (2014), and
the stress-affected localised reactions, e.g. Rao and Hughes (2000), Cui
et al. (2013) and Freidin et al. (2014).

The localised reactions take place at a propagating interface be-
tween the chemically transformed and untransformed phases, and the
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gaseous-type reactant, which is inserted into the solid, diffuses through
the transformed phase and it is consumed by the chemical reaction at
the interface. A recent overview of chemo-mechanical theories covering
localised reactions in solids can be found in Freidin and Vilchevskaya
(2020). There are also works where both volumetric and localised
reactions are modelled simultaneously; for example, in Cheng et al.
(2022), growth of an oxide layer (Cr2O3) on a Cr-Fe alloy is modelled,
accounting for the propagation of the oxide-metal interface, at which
Cr ions are split from the alloy, and for the chemical reaction between
Cr and O inside the volume of the oxide layer.

When the volumetric reactions are considered, different terminol-
ogy is used across the literature. The atoms of the gaseous-type reactant
can also be referred to as mobile and trapped/immobile (Drozdov,
2014), with trapping/immobilisation of the atoms corresponding to the
chemical reaction. However, the same equations are considered — the
mass balance with the volumetric source/sink term. The most recent
general thermo-chemo-mechanical theory that includes the separation
between the diffusion and the volumetric reaction processes can be
found in Qin and Zhong (2021).

As the majority of advanced materials undergoing the above chemo-
mechanical processes are highly heterogeneous with complex hier-
archical microstructures/morphologies, efficient predictive modelling
techniques require a multiscale approach. One such established tech-
nique is computational homogenisation (Geers et al., 2010; Yvonnet,
2019). It was initially developed to capture the mechanical behaviour
of advanced materials across micro and macro scales, and was subse-
quently extended to other processes, such as thermal (Özdemir et al.,
2008a) and thermo-mechanical (Özdemir et al., 2008b). Development
of this technique for chemo-mechanical or electro-chemo-mechanical
problems presents its own challenges, in particular, handling of the
diffusion and the reaction processes with their numerical implementa-
tion within the finite-strain framework. Some developments have been
proposed for coupled electro-chemo-mechanics, but either without the
explicit modelling of the reaction process (Salvadori et al., 2014, 2015),
or with accounting for it, but within the small-strain framework (Sal-
vadori et al., 2018). The most recent computational homogenisation
theories for the diffusion process can be found in Brassart and Stainier
(2019) and for coupled mechanics-diffusion in Waseem et al. (2020)
and Kaessmair et al. (2021).

The present paper aims to achieve a two-fold objective: (1) to derive
a general thermo-chemo-mechanical theory directly from the thermo-
dynamics framework of continuum mechanics (i.e with the fewest
possible number of assumptions), following the concept of separation of
the diffusion and the reaction processes; and (2) to propose a two-scale
approach for the theory with its computational treatment. The entire
proposed modelling framework is implemented numerically using the
recently-developed CutFEM approach and tested using a number of
computational examples, including the demonstration of the reaction
locking due to mechanical stresses.

2. Theory

2.1. Balance laws

The starting point for obtaining the set of governing equations
are the balance laws and the dissipation inequality, written for the
open system consisting of the deformable solid and the gaseous-type
constituent (will be referred to as ‘gas’) diffusing through the solid and
reacting with it, as illustrated in Fig. 1. The standard solid mechanics
approach is employed, where the current and the reference configura-
tions are considered. The balance laws are written with respect to the
reference configuration of the body. The same tensor notation is used as
in the previous publication by the authors, see Section 2 of Poluektov
and Figiel (2019). Here, 𝑭 = (∇0�⃗�)T is the deformation gradient, which
maps the reference configuration to the current configuration, and �⃗� as
the current position vector of a material point as a function of position
2

Fig. 1. The schematic illustration of a chemo-mechanical problem with the two-scale
split into the macroscopic domain and the representative volume element (RVE).

vector �⃗� of the point in the reference configuration and time 𝑡. The
displacement is denoted as 𝑢 = �⃗�−�⃗�. Nabla operator ∇0 is defined with
respect to the reference configuration. The volume change is denoted
as 𝐽 = det 𝑭 .

Path-connected domain 𝛺 ∈ R3 in the reference configuration is
considered. The gas is diffusing through the domain, hence its change
of mass can be written as
d
d𝑡 ∫𝛺

𝜌0∗ d𝛺 = −∫𝛤
𝑗 ⋅ �⃗�𝛤 d𝛤 + d

d𝑡 ∫𝛺
𝜁𝜙 d𝛺, (1)

where 𝜌0∗ is the mass density of the gas per unit volume of the reference
configuration, 𝑗 is the diffusive flux of the gas per unit surface in the
reference configuration, 𝛤 = 𝜕𝛺 is the boundary of domain 𝛺, vector
⃗𝛤 is the outward unit normal vector to 𝛤 , and field 𝜙 ∈ [0, 1] is
he extent of the reaction. The last term in Eq. (1) corresponds to
he production/consumption of the gas due to the chemical reaction.
arameter 𝜁 is the normalisation coefficient and corresponds to the
ass of the gas per unit volume of the reference configuration produced
ithin the entire reaction processes (i.e. from extent 𝜙 = 0 to extent

𝜙 = 1). Thus, in the case of the consumption of the gas during the
reaction, 𝜁 is negative. Diffusive flux 𝑗 is by definition proportional
to velocity 𝑉 0

∗ of the gas with respect to the points of the reference
configuration, 𝑗 = 𝜌0∗𝑉

0
∗ .

The change of the total linear momentum of the solid and the gas
within domain 𝛺 is
d
d𝑡 ∫𝛺

(

𝜌0𝑣 + 𝜌0∗𝑣∗
)

d𝛺 = ∫𝛤

(

𝑷 + 𝑷 ∗ − 𝑣∗𝑗
)

⋅ �⃗�𝛤 d𝛤 +

+ ∫𝛺

(

𝜌0�⃗� + 𝜌0∗�⃗�∗
)

d𝛺,
(2)

where 𝜌0 is the mass density of the solid per unit volume of the
reference configuration, 𝑣 and 𝑣∗ are the velocities of the points of the
solid and the gas, respectively, 𝑷 and 𝑷 ∗ are the first Piola–Kirchhoff
stress tensors of the solid and the gas, respectively, �⃗� and �⃗�∗ are the
volumetric forces acting on the solid and the gas, respectively. The
third term in the surface integral in Eq. (2) is the change of the
momentum due to the influx of the gas through the boundary. In
the current configuration, the Cauchy stress of the gas is hydrostatic.
When transformed to the reference configuration, the resulting first
Piola–Kirchhoff is 𝑷 ∗ = −𝑝∗𝐽𝑭 −T, where 𝑝∗ is the pressure of the gas.

The change of the total energy of the solid and the gas is

d
d𝑡 ∫𝛺

(

𝜌0𝑢 + 𝜌0∗𝑢∗ +
1
2
𝜌0𝑣 ⋅ 𝑣 + 1

2
𝜌0∗𝑣∗ ⋅ 𝑣∗

)

d𝛺 =

= ∫𝛤

(

𝑣 ⋅ 𝑷 + 𝑣∗ ⋅ 𝑷 ∗ − 𝑢∗𝑗 −
1
2
𝑣∗ ⋅ 𝑣∗𝑗 − ℎ⃗

)

⋅ �⃗�𝛤 d𝛤 +

+
(

𝜌0�⃗� ⋅ 𝑣 + 𝜌0 �⃗�∗ ⋅ 𝑣∗ + 𝜌0𝑟 + 𝜌0𝑟∗
)

d𝛺,

(3)
∫𝛺 ∗ ∗
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where 𝑢 and 𝑢∗ are the internal energies per unit of mass the solid and
he gas, respectively, 𝑟 and 𝑟∗ are the internal heat sources per unit
f mass of the solid and the gas, respectively, ℎ⃗ is the heat flux. The
urface integral in Eq. (3) consists of the rate of work of external load,
pplied to the solid and the gas, and of the influx of the energy due to
he diffusion. The energy itself consists of the internal energy and the
inetic energy.

Assuming that the solid and the gas are at the same temperature
ocally, the change of the entropy is

d
d𝑡 ∫𝛺

(

𝜌0𝑠 + 𝜌0∗𝑠∗
)

d𝛺 ≥ −∫𝛤

( 1
𝑇
ℎ⃗ + 𝑠∗𝑗

)

⋅ �⃗�𝛤 d𝛤 +

+ ∫𝛺

𝜌0𝑟 + 𝜌0∗𝑟∗
𝑇

d𝛺,
(4)

where 𝑠 and 𝑠∗ are the entropies per unit of mass the solid and the gas,
respectively, 𝑇 is the temperature. Similarly to the previous equations,
the surface integral contains the influx of the entropy due to the
diffusion.

After rewriting Eqs. (1)–(4) in the differential form and performing
substitutions (without any further assumptions), the system of the
governing equations (consisting of the mass, the momentum and the
energy balance equations) is obtained:

𝑀∗ �̇� = −∇0 ⋅ 𝑗 + 𝜁�̇�, (5)
(

𝜌0 +𝑀∗𝑐
) ̇⃗𝑣 + 2�̇� ⋅ 𝑗 + 𝑭 ⋅ ̇⃗𝑗 + 𝜁�̇�𝑣 =

= ∇0 ⋅

(

�̃� T −
𝑗𝑗
𝑀∗𝑐

⋅ 𝑭 T

)

+ 𝜌0�⃗� +𝑀∗𝑐�⃗�∗, (6)

𝑇 �̇� + �̇� 𝑆 + ̇𝑓 = 𝑅 − ∇0 ⋅ �⃗� − 1
𝑀∗

𝑗 ⋅ 𝑞 + �̇�𝜇∗ + �̃� T ∶ �̇� + �̇�𝑎, (7)

here 𝑀∗ is the molar masses of the gas, 𝑐 = 𝜌0∗∕𝑀∗ is the molar
oncentration of the gas per unit volume of the reference configuration,
̃ = 𝑷 +𝑷 ∗ is the total first Piola–Kirchhoff stress tensor, 𝑆 = 𝜌0𝑠+𝜌0∗𝑠∗
s the total entropy per unit volume of the reference configuration,
= 𝜌0𝑟+ 𝜌0∗𝑟∗ is the total heat source per unit volume of the reference

onfiguration, �⃗� = ℎ⃗+ 𝑠∗𝑇 𝑗 is the total heat flux, 𝜇∗ =𝑀∗𝜓∗+𝑝∗𝐽∕𝑐 is
he chemical potential, 𝜓 = 𝑢−𝑇 𝑠 and 𝜓∗ = 𝑢∗ −𝑇 𝑠∗ are the Helmholtz
nergies per unit of mass of the solid and of the gas, respectively,
= 𝜌0𝜓 + 𝜌0∗𝜓∗ is the total Helmholtz energy per unit volume of the

eference configuration, and quantities 𝑞 and 𝑎 are defined as

𝑞 = ∇0𝜇∗ +
1
𝑐
𝑭 T ⋅

(

∇0 ⋅ �̃�
T + 𝜌0�⃗� − 𝜌0 ̇⃗𝑣

)

, (8)

= −
𝜇∗𝜁
𝑀∗

+ 1
2
𝑣 ⋅ 𝑣𝜁 + 1

2
𝑪 ∶ 𝑗𝑗𝜁
𝑀2

∗ 𝑐2
+

𝑭 ∶ 𝑗𝑣𝜁
𝑀∗𝑐

, (9)

here 𝑪 = 𝑭 T ⋅𝑭 . The local form of the dissipation inequality becomes

�̇� 𝑆 − ̇𝑓 − �⃗� ⋅
∇0𝑇
𝑇

− 1
𝑀∗

𝑗 ⋅ 𝑞 + �̇�𝜇∗ + �̃� T ∶ �̇� + �̇�𝑎 ≥ 0. (10)

his form of the dissipation inequality will facilitate writing the depen-
ence of the thermodynamic fluxes as functions of the corresponding
hermodynamic forces.

.2. Choice of independent variables

To present the framework in the simplest possible way, the case
f chemo-elasticity (non-linear finite-strain case) is considered. How-
ver, as will be shown below, the framework is generalisable to more
omplex non-linear materials’ constitutive behaviour.

It is assumed that the total deformation gradient can be decomposed
nto the elastic and the non-mechanical parts:
3

= 𝑭 E ⋅ 𝑭 C, (11)
here 𝑭 C = 𝑭 C (𝑐, 𝜙, 𝑇 ). Now, variables 𝑭 E, 𝑐, 𝜙, 𝑇 can be taken to
e independent and the Helmholtz energy density is assumed to be a
unction of these variables:

= 𝑓
(

𝑭 E, 𝑐, 𝜙, 𝑇
)

. (12)

his means that the time derivatives of 𝑓 and 𝑭 become the following:

̇ =
𝜕𝑓
𝜕𝑭 E

∶ �̇� T
E +

𝜕𝑓
𝜕𝑐
�̇� +

𝜕𝑓
𝜕𝜙
�̇� +

𝜕𝑓
𝜕𝑇

�̇� , (13)

�̇� = �̇� E ⋅ 𝑭 C + 𝑭 E ⋅
𝜕𝑭 C
𝜕𝑐

�̇� + 𝑭 E ⋅
𝜕𝑭 C
𝜕𝜙

�̇� + 𝑭 E ⋅
𝜕𝑭 C
𝜕𝑇

�̇� . (14)

In general, the Helmholtz energy density can also be a function of ∇0𝜙
and other state variables, but this case is not considered in the present
paper.

Eqs. (13)–(14) are substituted into Eq. (10). The resulting dissi-
pation inequality should be fulfilled under various different thermo-
dynamic paths. The standard way of enforcing this is requiring the
multiplies, which are in front of the time derivatives of the independent
variables that can change arbitrarily, to be zeros. This gives

�̃� =
𝜕𝑓
𝜕𝑭 E

⋅ 𝑭 −T
C , (15)

= −
𝜕𝑓
𝜕𝑇

+ �̃� T ∶
(

𝑭 E ⋅
𝜕𝑭 C
𝜕𝑇

)

, (16)

𝜇∗ =
𝜕𝑓
𝜕𝑐

− �̃� T ∶
(

𝑭 E ⋅
𝜕𝑭 C
𝜕𝑐

)

, (17)

which correspond to multipliers in front of �̇� E, �̇� , �̇�, respectively. The
dissipation inequality becomes the following:

−�⃗� ⋅
∇0𝑇
𝑇

− 1
𝑀∗

𝑗 ⋅ 𝑞 + 𝐴�̇� ≥ 0, (18)

where �̇� has the physical meaning of the reaction rate and 𝐴 is the
hemical affinity:

= −
𝜇∗𝜁
𝑀∗

−
𝜕𝑓
𝜕𝜙

+ �̃� T ∶
(

𝑭 E ⋅
𝜕𝑭 C
𝜕𝜙

)

+
𝑣 ⋅ 𝑣𝜁
2

+
𝑪 ∶ 𝑗𝑗𝜁
2𝑀2

∗ 𝑐2
+
𝑭 ∶ 𝑗𝑣𝜁
𝑀∗𝑐

. (19)

It should be mentioned that the way of obtaining dissipation inequality
(18) is relatively standard for coupled problems in mechanics, and
similar sequence of steps has been previously used to obtain expressions
for the chemical affinity in chemo-mechanical models (Qin and Zhong,
2021). However, in the present paper, the dynamic terms responsible
for the inertial effects have not been neglected, hence, expression (19)
also contains the dynamic terms, not present in the previous works.

To ensure that the entropy production due to the heat propagation
and due to the gas diffusion are non-negative, the following constitutive
laws can be enforced:

�⃗� = −𝜦 ⋅
∇0𝑇
𝑇

, (20)

⃗= − 1
𝑀∗

𝑲 ⋅ 𝑞, (21)

where 𝜦 and 𝑲 are positive-definite tensors. The remaining part of the
dissipation inequality corresponds to the entropy production due to the
chemical reaction:

𝐴�̇� ≥ 0. (22)

Eq. (22) allows choosing a constitutive law for reaction rate 𝜔 as
a function the driving force for the chemical reaction (the chemical
affinity):

�̇� = 𝜔, 𝜔 = 𝜔 (𝐴) . (23)

Finally, it can be useful to substitute relations (13)–(17) and (19)
into (7), which leads to the following governing equation for the heat
propagation:

𝑇 𝜕𝑆
𝜕𝑇

�̇� = 𝑅 − ∇0 ⋅ �⃗� +𝑲−1 ∶ 𝑗𝑗 +
(

𝐴 − 𝑇 𝜕𝑆
𝜕𝜙

)

�̇� −

− 𝑇 𝜕𝑆
𝜕𝑐
�̇� − 𝑇 𝜕𝑆

𝜕𝑭 E
∶ �̇� T

E,
(24)

where the decomposition of �̇� similar to Eq. (13) has been used.
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2.2.1. Chemo-elasto-plasticity
If elasto-viscoplasticity is considered, the total deformation gra-

dient can be decomposed into the elastic, the viscoplastic and the
non-mechanical parts:

𝑭 = 𝑭 E ⋅ 𝑭 P ⋅ 𝑭 C. (25)

ubstitution into Eq. (10) and splitting the result into a set of stronger
nequalities leads to

̃ =
𝜕𝑓
𝜕𝑭 E

⋅ 𝑭 −T
P ⋅ 𝑭 −T

C , (26)
(

𝑭 C ⋅ �̃� T ⋅ 𝑭 E

)

∶ �̇� P ≥ 0, (27)

where the first equation replaces Eq. (15), giving an expression for
the first Piola–Kirchhoff stress tensor, while the second equation is an
additional inequality that should be used to write the evolution law for
the plastic deformations. In particular, it is straightforward to rewrite
inequality (27) using the objective tensors:

𝐽 �̃� ∶ 𝑫P ≥ 0, (28)

where �̃� = 𝐽−1�̃� ⋅ 𝑭 T is the Cauchy stress and

𝑫P = 1
2
(

𝑳P +𝑳T
P
)

, 𝑳P = 𝑭 E ⋅ �̇� P ⋅ 𝑭 −1
P ⋅ 𝑭 −1

E .

Now, one can write an evolution law for 𝑫P as a function of �̃� that
satisfies the inequality. It should also be noted that, in presence of 𝑭 P,
Eqs. (16), (17) and (19) will have an obvious change — tensor 𝑭 E will
be replaced by 𝑭 E ⋅ 𝑭 P, while Eq. (24) will have an additional term

−𝑇 𝜕𝑆
𝜕𝑭 P

∶ �̇� T
P

at the right-hand side. This section provides just an example of how
inelasticity can be incorporated into the framework. From now on-
wards, for the purpose of the paper, it is sufficient to consider only
chemo-elasticity.

2.3. Simplifications of the theoretical framework

2.3.1. Quasi-statics
In chemo-mechanics, it can be useful to distinguish the time scales

of the mechanical and of the chemical processes. Typical chemical
reaction times are much higher than the time scale of the inertial
effects in solids. For example, 1 micrometre of Si nanowire undergoes
reaction with Li in 50–100 seconds (Liu et al., 2011). Therefore, the
dynamical terms in the linear momentum balance can be neglected.
More specifically, the first and the fourth terms of Eq. (6) that contain
the acceleration and the velocity of the material points, respectively,
are neglected. Assuming that the strain of the solid and the diffusive
flux are changing relatively slowly, the second and the third terms
of Eq. (6) that contain the time derivatives of 𝑭 and 𝑗, respectively,
are also neglected. This leads to a quasi-static version of the linear
momentum balance equation:

∇0 ⋅

(

�̃� T −
𝑗𝑗
𝑀∗𝑐

⋅ 𝑭 T

)

+ 𝜌0�⃗� +𝑀∗𝑐�⃗�∗ = 0⃗. (29)

urthermore, the dynamical terms (containing 𝑣) in the chemical affin-
ty can also be neglected:

= −
𝜇∗𝜁
𝑀∗

−
𝜕𝑓
𝜕𝜙

+ �̃� T ∶
(

𝑭 E ⋅
𝜕𝑭 C
𝜕𝜙

)

+ 1
2
𝑪 ∶ 𝑗𝑗𝜁
𝑀2

∗ 𝑐2
. (30)

imilarly, terms with 𝑣 and ̇⃗𝑣 are neglected in Eqs. (8)–(9).

.3.2. Further assumptions
In order to introduce two scales and to couple them, two additional

ssumptions are made. First, volumetric forces �⃗� and �⃗�∗ acting on the
olid and the gas, respectively, are neglected. Second, terms containing
4

⃗𝑗 in the linear momentum balance equation, the energy balance equa-
ion and the dissipation inequality have the dynamic nature, therefore,
re assumed to be small compared to the other terms. This leads to the
ollowing linear momentum balance equation:

0 ⋅ �̃�
T = 0⃗. (31)

onsequently, variables 𝑞 and 𝑎 become

⃗ = ∇0𝜇∗, (32)

𝑎 = −
𝜇∗𝜁
𝑀∗

, (33)

and the chemical affinity reduces to

𝐴 = −
𝜇∗𝜁
𝑀∗

−
𝜕𝑓
𝜕𝜙

+ �̃� T ∶
(

𝑭 E ⋅
𝜕𝑭 C
𝜕𝜙

)

. (34)

2.4. Two-scale treatment of mechanics-diffusion-reaction

Two different scales are considered: macroscopic and microscopic.
Both scales are described with the same governing equations, intro-
duced above. The scales are coupled — the microscopic scale has the
macroscopic fields as boundary conditions, while constitutive laws at
the macroscopic scale are obtained by averaging the microscopic scale
quantities. The goal of this section is to summarise the micro–micro
coupling.

It is sufficient to consider an isothermal macroscopic scale model.
In this case, the problem simplifies, and only the mechanics-diffusion-
reaction part must be treated in a two-scale way. There are already
established techniques for performing computational homogenisation
of the thermal part, e.g. Özdemir et al. (2008a,b), and they can be
separately added to the framework described in the present paper.

Following the assumptions of Sections 2.3.1 and 2.3.2, the macro-
scopic governing equations can be written as

𝑀∗�̇�
M = −∇M

0 ⋅ 𝑗M + 𝜁�̇�M, (35)

∇M
0 ⋅ �̃�MT = 0⃗, (36)

where the equations have exactly the same structure as Eqs. (5) and
(31), but superscript ‘M’ is added to quantities defined at the macro-
scopic scale; superscript ‘MT’ denotes a macroscopic tensor that is
transposed. Furthermore, operator ∇M

0 is defined as differentiation
with respect to position vector �⃗�M of the point of the macroscopic
scale model in the reference configuration. The displacement at the
macroscopic scale is denoted as 𝑢M = �⃗�M − �⃗�M.

2.4.1. Macro to micro transition
The diffusion problem is considered first and the homogenisation of

the diffusion is written similarly to Brassart and Stainier (2019), how-
ever, also accounting for the reaction. There is some freedom in selec-
tion of quantities for the upscaling. As it will be evident later, choosing
the chemical potential as such quantity leads to an energetically-
consistent coupling. Therefore, the chemical potential at the micro-
scopic scale is represented as

𝜇∗ = 𝜇M∗ + ∇M
0 𝜇

M
∗ ⋅

(

�⃗� − �⃗�ref
)

+ 𝜇f∗, (37)

where 𝜇M∗ is the macroscopic chemical potential (spatially-constant at
he microscopic scale), �⃗�ref is some reference position vector, 𝜇f∗ is
he remaining (fluctuation) part of the chemical potential (spatially-
nhomogeneous at the microscopic scale). Such representation allows
riting the volume average of the gradient of the chemical potential:

1
𝑉𝛺 ∫𝛺

∇0𝜇∗ d𝛺 = ∇M
0 𝜇

M
∗ + 1

𝑉𝛺 ∫𝛺
∇0𝜇

f
∗ d𝛺 =

= ∇M
0 𝜇

M
∗ + 1

𝑉𝛺 ∫𝛤
�⃗�𝛤𝜇

f
∗ d𝛤 ,

(38)

where 𝑉𝛺 is the volume of the microscopic domain (or representative
volume element, RVE).
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The macro to micro transition is now performed by demanding
the consistency between the volume-averaged microscopic and the
macroscopic chemical potential gradients. To have such consistency,
the fluctuation part of the chemical potential is assumed to be zero at
the boundary of the RVE:

𝜇f∗ = 0 on 𝛤 , (39)

which is done similarly to Salvadori et al. (2015). Thus, Eqs. (37) and
(39) together provide the boundary conditions imposed on chemical
potential 𝜇∗ at the microscopic scale. The macroscopic scale, in turn,
must provide 𝜇M∗ and ∇M

0 𝜇
M
∗ to enforce these boundary conditions.

The computational homogenisation for the mechanical part is well-
established and can be found in textbooks, e.g. Yvonnet (2019). It
does not change due to the coupling with the diffusion-reaction. For
completeness, it is useful to summarise the key points. The current
position vector at the microscopic scale is represented as

�⃗� = �⃗�M + 𝑭M ⋅
(

�⃗� − �⃗�ref
)

+ �⃗�f , 𝑭M =
(

∇M
0 �⃗�

M)T , (40)

where 𝑭M and �⃗�M are the deformation gradient and the position vector
at the macroscopic scale. It is easy to see that

1
𝑉𝛺 ∫𝛺

𝑭 d𝛺 = 𝑭M + 1
𝑉𝛺 ∫𝛤

�⃗�f �⃗�𝛤 d𝛤 . (41)

An established way of forcing the last term of Eq. (41) to be zero is
applying e.g. the prescribed displacement or the periodic boundary
conditions (since this step is standard, the details are omitted). Since
the mechanical equations are invariant with respect to the rigid-body
motion, �⃗�M and �⃗�ref are not needed for the mechanical part. Thus, the
macro scale must provide 𝑭M to enforce the boundary conditions at the

icro scale.

.4.2. Micro to macro transition
An established way of achieving the consistency between the two

cales is the Hill–Mandel condition, which requires the volume-averaged
icroscopic and the macroscopic internal energy rates to be equal. The

ate of change of the internal energy is the right-hand side of Eq. (7),
hich under assumptions of Sections 2.3.1–2.3.2 becomes the follow-

ng:

d
d𝑡

(

𝜌0𝑢 + 𝜌0∗𝑢∗
)

= − 1
𝑀∗

𝑗 ⋅ ∇0𝜇∗ + �̇�𝜇∗ + �̃� T ∶ �̇� − �̇�
𝜇∗𝜁
𝑀∗

. (42)

or convenience, the Hill–Mandel condition can be split into two parts
the diffusion-reaction and the mechanics parts:

HM1 =
1
𝑉𝛺 ∫𝛺

(

𝜇∗
(

𝑀∗ �̇� − 𝜁�̇�
)

− 𝑗 ⋅ ∇0𝜇∗
)

d𝛺 =

= 𝜇M∗
(

𝑀∗ �̇�
M − 𝜁�̇�M)

− 𝑗M ⋅ ∇M
0 𝜇

M
∗ , (43)

𝐼HM2 =
1
𝑉𝛺 ∫𝛺

�̃� T ∶ �̇� d𝛺 = �̃�MT ∶ �̇�M. (44)

sing Eq. (5), it is easy to see that

0 ⋅
(

𝜇∗𝑗
)

= 𝑗 ⋅ ∇0𝜇∗ + 𝜇∗∇0 ⋅ 𝑗 = 𝑗 ⋅ ∇0𝜇∗ − 𝜇∗
(

𝑀∗�̇� − 𝜁�̇�
)

. (45)

sing Eqs. (37) and (39), the left-hand side of Eq. (43) becomes

HM1 = − 1
𝑉𝛺 ∫𝛤

�⃗�𝛤 ⋅ 𝑗𝜇∗ d𝛤 =

= − 1
𝑉𝛺 ∫𝛤

�⃗�𝛤 ⋅ 𝑗
(

𝜇M∗ + ∇M
0 𝜇

M
∗ ⋅

(

�⃗� − �⃗�ref
))

d𝛤 =

= −
𝜇M∗
𝑉𝛺 ∫𝛺

∇0 ⋅ 𝑗 d𝛺 −
∇M
0 𝜇

M
∗

𝑉𝛺
⋅ ∫𝛤

(

�⃗� − �⃗�ref
)

�⃗�𝛤 ⋅ 𝑗 d𝛤 .

(46)

sing Eq. (5) again and equating the right-hand sides of Eqs. (43) and
46) results in

̇M = 1
𝑉𝛺 ∫𝛺

�̇� d𝛺 (47)

̇M = 1 �̇� d𝛺 (48)
5

𝑉𝛺 ∫𝛺
𝑗M = 1
𝑉𝛺 ∫𝛤

(

�⃗� − �⃗�ref
)

�⃗�𝛤 ⋅ 𝑗 d𝛤 . (49)

elations (47) and (49) have been obtained in the past by multi-
le authors, in particular (Brassart and Stainier, 2019). Thus, at the
acroscopic scale, i.e. in Eq. (35), the reaction and the concentration

hange rates (�̇�M and �̇�M, respectively) are not calculated from other
macroscopic quantities, but are obtained from the microscopic scale
by volume-averaging, as well as diffusive flux 𝑗M. At the macroscopic
scale, the unknown variable is field 𝜇M∗ , with respect to which Eq. (35)
must be solved.

The mechanical part is again standard. Using Eqs. (36) and (40), as
well as the appropriate boundary conditions, e.g. periodic, it is easy to
show that Eq. (44) is fulfilled if

�̃�M = 1
𝑉𝛺 ∫𝛺

�̃� d𝛺. (50)

Thus, at the macroscopic scale, Eq. (36) is solved with respect to
the macroscopic displacement, while the macroscopic Piola–Kirchhoff
stress is obtained from the microscopic scale by volume-averaging. The
quantities that are passed between the macro and the micro scales are
summarised in Fig. 1.

2.5. Computational scheme

The full mechanics-diffusion-reaction-temperature problem com-
prises of Eqs. (5), (6), (23), (24), which must be solved with respect
to 𝑐, 𝜙, 𝑇 , 𝑢 that are the functions of 𝑡 and �⃗�, and which contain quan-
tities that are defined by Eqs. (8), (15)–(17), (19)–(21); additionally,
functional dependencies for �⃗�, �⃗�∗, 𝑅, 𝑝∗, 𝜔, 𝑓 , 𝑭 C must be specified for
the particular problem.

The simplified mechanics-diffusion-reaction problem under assump-
tions of Sections 2.3.1–2.3.2 and for isothermal conditions comprises
of Eqs. (5), (23), (31), which must be solved with respect to 𝑐, 𝜙, 𝑢
that are the functions of 𝑡 and �⃗�, and which contain quantities that
are defined by Eqs. (15), (17), (21), (32), (34); additionally, functional
dependencies for 𝜔, 𝑓 , 𝑭 C must be specified for the particular problem.

The two-scale mechanics-diffusion-reaction problem comprises of
Eqs. (35), (36) at the macroscopic scale, which must be solved with
respect to 𝜇M∗ , 𝑢M that the functions of 𝑡 and �⃗�M. At each macroscopic
point, macroscopic quantities are defined as averages of the micro-
scopic quantities according to Eqs. (47)–(50). Within each microscopic
domain, the simplified mechanics-diffusion-reaction problem is solved
with the corresponding boundary conditions, which depend on 𝜇M∗ ,
∇M
0 𝜇

M
∗ , 𝑭M at each corresponding macroscopic point.

2.5.1. Local problem
As mentioned above, the local problem comprises of Eqs. (5), (23),

(31). The underlying equations of the problem can be solved using the
finite-element method, requiring the weak forms of the equations that
can be obtained in the standard way. However, care must be taken
when representing the time derivatives in the discrete form. The use of
the implicit time-stepping in all equations will lead to a fully-coupled
system of equations, which must be solved using the Newton–Raphson
method in general case.

From the implementational point of view, it is more convenient to
solve the equations sequentially within one time step. To facilitate this,
the explicit time-stepping to handle the reaction can be used. It is easy
to see that the resulting weak problem formulation consists in finding
𝑐𝑛, 𝜙𝑛, 𝑢𝑛, such that

∫𝛺

(

𝑀∗
𝑐𝑛 − 𝑐𝑛−1

Δ𝑡
𝜃 − 𝑗𝑛 ⋅ ∇0𝜃 − 𝜁𝜔𝑛−1𝜃

)

d𝛺 + ∫𝛤
�⃗�𝛤 ⋅ 𝑗𝑛𝜃 d𝛤 = 0, (51)

∫𝛺
�̃� 𝑛 ∶ ∇0𝜃 d𝛺 − ∫𝛤

�̃� 𝑛 ∶ �⃗�𝛤 𝜃 d𝛤 = 0, (52)

𝜙𝑛 − 𝜙𝑛−1
Δ𝑡

= 𝜔𝑛−1, (53)
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for any test functions 𝜃, 𝜃, where the unknown and the test functions
elong to the appropriate functional spaces. Here, subscripts 𝑛 and 𝑛−1
ndicate that the quantities are taken at the corresponding time steps.

Diffusive flux 𝑗 depends on ∇0𝜇∗, which depends on derivatives
f 𝑢 (via 𝑷 and 𝑭 ) in general case. However, in mechanics-diffusion-
eaction problems, a solid skeleton approach is sometimes adopted, e.g.
reidin et al. (2014), which implies that the non-mechanical deforma-
ion does not depend on concentration 𝑐 and depends only on reaction
xtent 𝜙, i.e. 𝜕𝑭 C∕𝜕𝑐 = 𝟎. In this case, Eqs. (51) and (52) can be solved
equentially within one time step, as Eq. (51) does not depend on 𝑢𝑛
but still depends on 𝑢𝑛−1 via 𝜔𝑛−1). Thus, within one step, Eq. (53) is
olved first with respect to 𝜙𝑛, then Eq. (51) is solved to find 𝑐𝑛, and
inally Eq. (52) is solved with respect to 𝑢𝑛.

If the solid-skeleton approach is not adopted, then 𝑗𝑛 in Eq. (51)
an be taken to be dependent on derivatives of 𝑐𝑛 and 𝑢𝑛−1. Such
ybrid explicit–implicit scheme will still allow solving Eqs. (51) and
52) separately, without the need to form one big system of equations.

The suggested-above numerical approach aims at illustrating schema
cally the handling of the time derivatives in the equations. As for
he spatial derivatives, more complex finite-element approaches can be
sed, e.g. XFEM (Belytschko and Black, 1999; Moës et al., 1999; Be-
ytschko et al., 2009) or CutFEM (Burman and Hansbo, 2012; Burman
t al., 2015) for handling cracks/interfaces. In this case, the weak forms
ill have additional terms, depending on the approach.

.5.2. Two-scale problem
First, the weak problem formulation of the macroscopic problem is

ritten that consists in finding 𝜇M∗𝑛, 𝑢M𝑛 , such that

∫𝛺M

(

𝑀∗�̇�
M
𝑛 𝜃

M − 𝑗M𝑛 ⋅ ∇M
0 𝜃

M − 𝜁�̇�M
𝑛 𝜃

M
)

d𝛺M +

+ ∫𝛤M
�⃗�M
𝛤 ⋅ 𝑗M𝑛 𝜃

M d𝛤M = 0, (54)

∫𝛺M
�̃�M
𝑛 ∶ ∇M

0 𝜃
M d𝛺M − ∫𝛤M

�̃�M
𝑛 ∶ �⃗�M

𝛤 𝜃
M d𝛤M = 0, (55)

or any test functions 𝜃M, 𝜃M, where the unknown and the test functions
elong to the appropriate functional spaces. Subscript 𝑛 indicates that
he quantities are taken at the current time step. The macroscopic
omain, its boundary and the external normal to the boundary are
enoted as 𝛺M, 𝛤M and �⃗�M

𝛤 , respectively.
It must be emphasised that at each material point (integration

oint), �̇�M𝑛 , �̇�M
𝑛 , 𝑗M𝑛 , �̃�M

𝑛 are obtained by volume-averaging of the
uantities of the corresponding RVE using Eqs. (47)–(50). Since the
roblem is non-linear, a global Newton–Raphson (NR) loop should be
mployed to find the macroscopic unknowns, while each local problem
hould have a local NR loop to find the microscopic quantities.

The local problem is solved with respect to concentration 𝑐, how-
ver, the boundary conditions are applied in the form of chemical
otential 𝜇∗ according to Eqs. (37) and (39). Depending on the ex-
ression for the chemical potential, this might create difficulties for
onvergence of the global NR loop. In particular, during the develop-
ent of the code, it has been found that when the ideal gas chemical
otential is used, 𝜇∗ = 𝜇0 + 𝑅g𝑇 ln

(

𝑐∕𝑐0
)

, the exponential dependency
etween 𝑐 and 𝜇∗ leads to NR convergence problems when 𝑐 is close to
ero.

A possible solution for such NR convergence problems consists of
wo parts. The first part is to introduce a different macroscopic degree
f freedom 𝑐M = 𝑐0 exp

((

𝜇M∗ − 𝜇0
)

∕𝑅g𝑇
)

and to solve the macroscopic
roblem with respect to 𝑐M and not 𝜇M∗ . It should be noted that 𝑐M
s not equal to 𝑐M, as the latter is obtained from the micro scale by
olume-averaging. Furthermore, 𝑐M and 𝑐M are defined at different
oints — the former is defined at the nodes (as DOFs), while the latter
s defined at the integration points (since the RVEs are associated with
he integration points). The second part is linearising the boundary
onditions for the micro scale with respect to 𝑐M and ∇M𝑐M.
6

0

. Numerical examples

The proposed framework has been implemented in Matlab. The
ain feature of the implementation is the use of the CutFEM method (Bu
an et al., 2015; Hansbo et al., 2017) to handle the local problem.
he CutFEM method originates from Hansbo and Hansbo (2002) and
urman and Hansbo (2012) and has been recently extended to large-
eformation problems of solid mechanics (Poluektov and Figiel, 2019,
022). This allows creating RVEs with interfaces, e.g. inclusion-matrix,
nd handling these interfaces in a computationally-efficient way by cre-
ting a structured background mesh and allowing the interfaces to cut
hrough the elements. The computational handling of the mechanical
roblem has already been described in Poluektov and Figiel (2022);
herefore, only the diffusion-reaction part is covered in Appendix.

.1. Link to experimental studies

The numerical examples below illustrate the elements of the pro-
osed theory and are inspired by experimental observations for Si-based
i-ion battery systems. In particular, the first computational example
s related to van Havenbergh et al. (2016), where it has been ex-
erimentally observed that the chemical reaction between Si and Li
n coated Si nanoparticles locks due to the mechanical stresses. The
hird computational example follows (Müller et al., 2018; Kumar et al.,
020), where it has been found that various irreversible mechani-
al degradation processes occur at the electrode micro scale, which
ncludes active particles (where the reaction takes place) detaching
rom the surrounding matrix material, and leading to the capacity
ade. Further discussion on the outcome of the numerical simulations
n relation to the experimental results is provided in the subsequent
ections below (3.4 and 3.6).

.2. Constitutive relations

As mentioned above, a particular problem must be supplemented by
he constitutive relations. The laws assumed for the numerical examples
re relatively simple, but are sufficient to demonstrate the physical
ffects in the coupled mechanics-diffusion-reaction problems. The non-
echanical deformation is assumed to depend only on the reaction

xtent and is assumed to be of the plane strain type:

C = (1 + 𝑔𝜙)
(

𝑒1𝑒1 + 𝑒2𝑒2
)

+ 𝑒3𝑒3, (56)

here parameter 𝑔 controls the amount of material deformation due
o the reaction. The free energy density is assumed to consist of three
arts corresponding to the mechanics, the diffusion and the reaction:

= 𝑓0 + 𝐽C𝐾
(

𝐽E − 1 − ln 𝐽E
)

+ 𝐽C
𝐺
2

(

𝐽−2∕3
E 𝑭 E ∶ 𝑭 T

E − 3
)

+

+ 𝑅g𝑇
(

𝑐 ln 𝑐
𝑐0

− 𝑐
)

+ 𝑅g𝑇
𝜌0𝑛t
𝑀u𝑛u

(𝜙 ln𝜙 − 𝜙) ,
(57)

here 𝑓0 is a constant, 𝐽C,E = det 𝑭 C,E, parameters 𝐾 and 𝐺 are the bulk
nd shear moduli, 𝑅g is the universal gas constant, 𝑐0 is some reference
oncentration, 𝑛t and 𝑛u are the stoichiometric coefficients of the
eaction corresponding to the transformed and the untransformed solid,
espectively, 𝑀u is the molar mass of the chemically untransformed
olid. The proportionality tensor between the gradient of the chemical
otential and the diffusive flux is assumed to be

= 𝐷𝑐𝑰 , (58)

here 𝐷 is the diffusivity parameter and 𝑰 is the identity tensor. Fi-
ally, the reaction rate dependence on the chemical affinity is assumed
o be similar to one proposed in Glansdorff and Prigogine (1971):

= 𝑘∗

(

1 − exp

(

−
𝑀u𝐴
0

))

(

𝑐
)𝑛∗∕𝑛u

, (59)

𝜌 𝑅g𝑇 𝑐0
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where 𝑘∗ is the kinetic constant, 𝑛∗ is the stoichiometric coefficient of
the reaction corresponding to the gas.

As seen from Eq. (57), for the numerical simulations, the pressure
of the gas is neglected. Since the purpose of the numerical examples is
to provide the simplest possible demonstration of the capabilities of the
proposed theory and the two-scale modelling scheme, absence of 𝑝∗ is
assumed to avoid formulating the constitutive equations for it. This is
also a valid assumption in a number of cases, for example, when the
reaction between Li and Si is considered, since the reaction-induced
volumetric swelling (McDowell et al., 2013) of up to 300% produces
stresses that should be far greater than pressure of the diffusing Li ions.

For the numerical examples, the elastic moduli of the solid are
assumed to be independent of the reaction extent. In case when real
materials are modelled quantitatively, this dependency is not difficult
to include. Parameters 𝐾 and 𝐺 simply become some functions of
reaction extent 𝜙. In this case, the experimental information on the
dependence of the elastic moduli on the reaction extent is required.

3.2.1. On mechanics-diffusion-reaction coupling
In the theoretical framework, presented in Section 2, all three

processes are fully coupled. In particular, Eq. (11) shows that, in
general, both 𝑐 and 𝜙 can produce transformation strain, which (in most
cases) will lead to the emergence of the mechanical stresses. Eq. (17)
shows that 𝜇∗ depends on �̃� , and since 𝑗 depends on ∇0𝜇∗ via 𝑞, the
mechanical stresses influence the diffusion process. Eq. (19) shows that
𝐴 depends on �̃� , and since 𝐴 is the driving force for the reaction
according to Eq. (23), the mechanical stresses influence the reaction
kinetics. The interdependence between the diffusion and the reaction
processes obviously follows from Eqs. (5), (19) and (23).

When Eqs. (17) and (19) are inspected closely, it can be seen that
�̃� is multiplied by 𝜕𝑭 C∕𝜕𝑐 and 𝜕𝑭 C∕𝜕𝜙, respectively. Therefore, the
diffusion process depends directly on the stresses if 𝑭 C depends on
𝑐, while the reaction process depends directly on the stresses if 𝑭 C
depends on 𝜙.

In the constitutive equations used for the numerical examples,
Eq. (56), it is assumed that 𝑭 C depends only on 𝜙. This is so-called solid
skeleton approach and it has been used in the past by other researchers,
e.g. Freidin et al. (2014).

In addition, it should be emphasised that in the above, only the
direct influence of the mechanical stresses on the diffusion process is
discussed. Since mass balance Eq. (5) contains the source/sink term,
which is proportional to the chemical reaction rate, the mechanics-
reaction coupling leads to the indirect influence of the mechanical
stresses on the diffusion process.

3.2.2. Inclusion-matrix interface
In Section 3.6, an RVE with the microstructure is considered, in

which an inclusion is embedded into a matrix. The problem assumes
that the inclusion-matrix interface allows debonding. The entire com-
putational domain 𝛺 is split into subdomains 𝛺± by interface 𝛤∗.
The following interface conditions are used for the linear momentum
balance equation:

𝑷 + ⋅ �⃗�I = 𝑷 − ⋅ �⃗�I, (60)
(

𝑷 + + 𝑷 −
)

⋅ �⃗�I = −2𝜒
(

𝑢+ − 𝑢−
)

exp
(

−𝛿 |
|

𝑢+ − 𝑢−||
)

, (61)

where �⃗�I is the interface normal, defined as the outer normal to 𝛺+,
subscripts ‘+’ and ‘−’ indicate quantities belonging to different sides
of the interface, 𝜒 and 𝛿 are the interface parameters. Eq. (60) is the
continuity of tractions at the interface (i.e. there are no additional
forces acting at the interface). Eq. (61) is the so-called exponential
cohesive zone law, derived from the energy of the interface that can
describe a wide variety of fracture behaviours (Rose et al., 1981). The
minus sign of the right-hand side of Eq. (61) is due to the orientation

⃗

7

of 𝑁I.
To account for the influence of the interface opening on the diffu-
sion, the following interface conditions are used for the mass balance
equation:

𝑗+ ⋅ �⃗�I = 𝑗− ⋅ �⃗�I, (62)

�̃�
(

𝑗+ + 𝑗−
)

⋅ �⃗�I = 2
(

𝑐+ − 𝑐−
)

, �̃� = 𝜅 |
|

𝑢+ − 𝑢−||
2 , (63)

where 𝜅 is the interface parameter. Eqs. (62) and (63) have the struc-
ture of membrane boundary conditions (Kosztołowicz and Mrówczyński,
2001), where �̃� is the inverse of the membrane permeability coefficient.
It is assumed that when the interface separation takes place, it creates
a barrier for the diffusion, similar to what a membrane would create.
Intuitively, one might think that the permeability of such barrier should
drop rapidly with the interface opening; therefore, the dependence of
�̃� on |

|

𝑢+ − 𝑢−|| is introduced in an ad hoc way. The plus sign of the
right-hand side of Eq. (63) is again due to the orientation of �⃗�I.

3.3. Stationary homogeneous solution, reaction locking

There is a number of physical effects arising in problems with
mechanics-diffusion-reaction coupling, one of which is the chemical
reaction locking due to mechanical stresses. Within the continuum
mechanics field, this effect has been first modelled in Freidin et al.
(2014), Freidin (2015), Freidin et al. (2016b,a) and Poluektov et al.
(2018) for the stress-affected localised chemical reactions (taking place
at a propagating interface between the chemically transformed and
untransformed phases), where analytical and numerical studies were
performed based on the concept of the chemical affinity tensor. In
the case of localised reactions, the chemical affinity is a tensorial
quantity due to the chemical reaction taking place at an oriented
surface element, as opposed to the scalar chemical affinity, Eq. (19),
that arises when the chemical reaction takes place in an elementary
volume element.

The easiest way to understand this effect is to consider mechanically
constrained homogeneous material, i.e. 𝑭 = 𝑰 . From Eq. (23), it can be
seen that the chemical reaction stops when 𝜔 = 0. The diffusion, in
turn, continues until the concentration field is at the saturation level,
i.e. 𝑐 = 𝑐0. Substituting these conditions as well as the constitutive
relations into 𝜔 = 0 gives

1 − 𝜙𝑛t∕𝑛uL exp

(

𝑀u

𝜌0𝑅g𝑇
𝑔
(

1 + 𝑔𝜙L
)

(

4𝐾 ln
(

1 + 𝑔𝜙L
)

+

+𝐺
3

(

4
(

1 + 𝑔𝜙L
)−2∕3 + 5

(

1 + 𝑔𝜙L
)4∕3 − 9

))

)

= 0,

(64)

where 𝜙L is the value of the reaction extent at which the reaction locks.
When Eq. (64) is solved numerically with respect to 𝜙L, it can be seen
that for non-zero 𝑔, the value of 𝜙L is less than 1, i.e. the expansion due
to the reaction creates mechanical stresses, which affect the reaction
rate such that the full transformation of the material cannot be achieved
— the reaction stops earlier. The reaction extent at locking will of
course be dependent on parameters 𝑔, 𝐾, 𝐺 and 𝑀u

(

𝜌0𝑅g𝑇
)−1.

3.4. Computational example — reaction locking

This section aims at verifying the implementation of the coupling.
First, the reaction locking effect is modelled computationally and is
then compared to the analytical solution from Eq. (64). Afterwards,
a non-homogeneous stress distribution is created, leading to a non-
homogeneous reaction extent at the locked state.

Since the purpose of the present paper is the presentation of the
computational framework, units are omitted for all quantities. The unit
square geometry is considered. The geometry is meshed using linear
triangular finite elements composing a structured mesh. All elements
of the mesh are isosceles right triangles with side lengths of Δ𝑋. In the

mechanical part of the problem, the plane strain case is considered.
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Fig. 2. The time evolution of the volume-average reaction extent compared to the analytical stationary solution (a) and the spatial distribution of the reaction extent (insets) for
the mechanically constrained problem. For brevity, 𝑀u∕𝜌0 is denoted as 𝑏. The snapshots of the spatial distribution of the reaction extent and the von Mises stress (b) for the
mechanical problem with the indented boundaries. The reference configuration of the geometry is used for the contour plots.
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The values of parameters 𝑀∗, 𝑅g𝑇 , 𝑐0, 𝐷, 𝑘∗, 𝑛t , 𝑛u, 𝑛∗ are taken
o be equal to 1. The reaction parameter is taken to be 𝜁 = −1,
ndicating the consumption of the diffusive species due to the reaction.
he elastic parameters are taken to be 𝐾 = 10 and 𝐺 = 2. Parameter
is varied — values of 0.2 and 0.3 are used to demonstrate different

ases. Parameter 𝑀u∕𝜌0 is also varied — values of 0.2 and 1 are used.
umerical parameters Δ𝑋 = 1∕16 and Δ𝑡 = 1∕4 are used.

The first problem considers a fully constrained domain; therefore,
⃗ = 0⃗ is applied at the external boundary of the domain. The second
roblem creates a non-homogeneous stress state; therefore, 𝑢 = 0⃗ is
nforced at the left and the right boundaries and

⃗ = �⃗�𝛤
(

0.2 |
|

𝑋1 − 0.5|
|

− 0.1
)

s applied at the top and the bottom boundaries. For the diffusion
roblem,

⃗𝛤 ⋅ 𝑗 − 𝛼
(

𝑐 − 𝑐b
)

= 0

s applied at the bottom boundary, with 𝛼 = 0.1 and 𝑐b = 1, and
⃗𝛤 ⋅𝑗 = 0 is applied at the other boundaries, where 𝑐b is some reference
oncentration having the physical meaning of the maximum achievable
oncentration. Furthermore, 𝑐 = 0 and 𝜙 = 0 are used for the initial
onditions.

Both problems are illustrated in Fig. 2. For the first problem, the
olume-average reaction extent is calculated (similarly to Eq. (48)),
lotted as a function of time (solid line) and compared to the analytical
olution (dashed line, 𝜙L obtained from Eq. (64)). It can be seen that
s time increases, the computational solution approaches the analytical
olution for different parameter combinations. Within the transient
egime, the reaction extent gradually increases from the bottom to the
op of the domain, which is of course due to the supply of the diffusive
pecies from the bottom boundary.

For the second problem, the spatial distributions of the reaction
xtent and the von Mises stress1 are plotted for different moments of
ime. For this problem, 𝑔 = 0.2 and 𝑀u∕𝜌0 = 1 are used. Since the
arameters are the same as for the first problem, it can be expected
hat at 𝑡 = 125 the stationary solution is already reached. It can be
een that the reaction extent at the locked state is inhomogeneous with
ower values corresponding to zones of high stresses.

1 This stress is defined as usual as 𝜎VM =
√

(3∕2)𝝈d ∶ 𝝈d, where 𝝈d =
− 1∕3 𝝈 ∶ 𝑰𝑰 and 𝝈 = 𝐽−1𝑷 ⋅ 𝑭 T.
8

( )
The chemical reaction locking due to the mechanical stresses is
n experimentally-observed effect. For example, in van Havenbergh
t al. (2016), it has been observed for the reaction between Si and Li
n coated Si nanoparticles. Different types of coatings led to different
ompletion degrees of the reaction before locking. Coatings, which
onstrain the material more, led to higher stresses, resulting in the
maller lithiation degree (i.e. earlier reaction locking). Here, this effect
s modelled in a somewhat different setting, for a fully-constrained
lane strain geometry. However, the trend is qualitatively similar —
igher volumetric expansion due to the reaction (parameter 𝑔) leads
o higher stresses and hence to the reaction locking at an earlier
ompletion degree.

.5. Computational example — two-scale simulation, perfect inclusion-
atrix interface

This section aims at demonstrating the implementation of the two-
cale framework. The plane-strain 2D problem is considered. A com-
osite material with a microstructure is modelled. The microstructure
epresents circular inclusions embedded into a matrix and arranged in
regular square grid. The chemical reaction can take place only within

he inclusions, while the diffusion can take place both in the matrix and
n the inclusions. The composite material with the initially chemically-
ntransformed inclusions is first subjected to the influx of the diffusive
pecies, leading to the chemical reaction within the inclusions, and
hen subjected to the boundary conditions creating the outflow of
he diffusive species, leading to the reverse chemical reaction. Such
xample can roughly correspond to a heterogeneous energy-storage
aterial undergoing one charge/discharge cycle.

The two-scale representation is used to model the composite ma-
erial, with the homogeneous macroscopic scale and the RVEs with
nclusions at the microscopic scale. The material is constrained at the
acroscopic scale; therefore, this scale is assumed to be uniform me-

hanically and 𝑭M = 𝑰 is prescribed, without solving the macroscopic
inear momentum balance equation.

The influx/outflow takes place only at the left boundary of the rect-
ngular macroscopic geometry of the composite material. This bound-
ry condition is also assumed to be uniform along the boundary;
herefore, the macroscopic diffusion and reaction extent fields are non-
niform only in the horizontal dimension. Thus, for the macroscopic
iffusion-reaction equation, a 1D domain of length 10 is taken with
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Fig. 3. The time evolution of the spatial distribution of the concentration at the macroscopic scale in the two-scale simulation (a) and the dependence of the concentration at the
eft and the right edges of the macroscopic domain on time (b). The schematic illustration of the macroscopic 1D domain (centre) and the snapshots of the spatial distribution of
he reaction extent and the von Mises stress in the RVEs (c). The reference configuration of the geometry is used for the contour plots.
3
m

c
a
d

f
a
d
l
l
f
t
p

I
d
p
c

𝑭

i

i
t
r
F
g

acroscopic spatial step Δ𝑋M = 2.5 and the following boundary
onditions:

𝑒1 ⋅ 𝑗
M + 𝛼

(

𝑐M − 𝑐b
)

= 0, at the left boundary,
𝑒1 ⋅ 𝑗

M = 0, at the right boundary,

here 𝛼 = 0.1. Here, 𝑐b = 1 for 𝑡 < 250, creating influx of the diffusive
pecies, and 𝑐b = 0 for 𝑡 ≥ 250, creating the outflow of the diffusive
pecies leading to a reverse reaction.

For the RVE, the same as in the previous example unit square
eometry is used, with the same mesh; however, now there is a cir-
ular interface with the radius of 0.27 separating the inclusion (inner
ubdomain with 𝐾 = 10 and 𝐺 = 2, where the reaction takes place,
∗ = 1) and the matrix (outer subdomain with 𝐾 = 20 and 𝐺 = 4, where
here is no chemical reaction, 𝑘∗ = 0). The CutFEM method handles
he interface intersecting the elements. Perfect interface conditions are
sed, i.e. Eqs. (60) and (62) as well as 𝑢+ = 𝑢− and 𝑐+ = 𝑐−. The periodic
oundary conditions are prescribed for the mechanical part. For the
iffusion problem, 𝑐 = 0 and 𝜙 = 0 are used for the initial conditions.
he remaining parameters are the same as in the second problem of
ection 3.4.

The evolution of macroscopic concentration 𝑐M is illustrated in
ig. 3. The profile is decaying is space, since the supply of the diffusive
pecies is at the left boundary, and the concentration grows in time up
o 𝑡 = 250. From this moment onwards, the concentration decreases.

ithin the RVEs, the reaction extent is close to being uniform inside
he inclusion, with small variations. During the first stage, when the
VEs are compared, the reaction extent decreases from left to right.
igher reaction extent corresponds to higher expansion of the material
9

nd to higher stresses. o
.6. Computational example — two-scale simulation, imperfect inclusion-
atrix interface

This section aims at demonstrating the capability to model more
omplex physical effects in the microstructure, in particular, debonding
t the inclusion-matrix interface and the influence of the interface
amage on the diffusion and the reaction.

The problem setup is the same as in the previous example, apart
rom the following. The inclusions are initially chemically transformed
nd the concentration is at the saturation level. The boundary con-
itions create the outflow of the diffusive species from the domain,
eading to the reverse reaction. The decrease of the reaction extent
eads to the shrinkage of the inclusions and consequently to the inter-
ace damage. Two different scenarios are considered, corresponding to
he perfectly transparent interface for the diffusion and to the interface
ermeability influenced by the interface damage.

The same macroscopic boundary conditions are used, with 𝑐b = 0.
nterface conditions (60)–(63) are used with 𝜒 = 10 and 𝛿 = 10. Two
ifferent scenarios are considered 𝜅 = 0 and 𝜅 = 107. For the diffusion
roblem, 𝑐 = 1 and 𝜙 = 1 are used for the initial conditions. The
hemical deformation gradient is changed to

C = (1 + 𝑔 (𝜙 − 1))
(

𝑒1𝑒1 + 𝑒2𝑒2
)

+ 𝑒3𝑒3, (65)

ndicating that 𝑭 C = 𝑰 initially.
The evolution of the volume-average reaction extent within the

nclusions and the snapshots of the RVE geometry (corresponding to
he first element of the macroscopic domain) are shown in Fig. 4. The
everse reaction takes place — the reaction extent decreases in time.
urthermore, the reaction extent in the left element of the macroscopic
eometry decays faster than in the right element due to the outflow
f the diffusive species from the left. The rate of decay is influenced
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Fig. 4. The time-dependence of the volume-average reaction extent within the inclusions in the RVEs corresponding to the first and the fourth elements of the macroscopic domain
(a). The snapshots of the spatial distribution of the von Mises stress in the RVEs in the current configuration of the geometry also showing debonding at the interface for the case
of gap-independent interface permeability (b).
by the interface conditions — when the interface permeability depends
on the interface damage, the rate of the outflow of the diffusive species
from the inclusion is significantly decreased, leading to a slower reverse
reaction rate inside the inclusion.

The influence of the interface damage on the diffusion and the
reaction processes is observed experimentally. For example, in Müller
et al. (2018), graphite-silicon composite electrode materials of Li-ion
batteries have been cycled and it has been experimentally observed
that active Si particles (where the reaction takes place) can detach
from the carbon-binder matrix material, leading to the capacity fade.
The formation of gaps between the active particles and the matrix
prevents Li ions from diffusing into and out of the active material and
participating in the chemical reaction. Here, this effect is modelled
in a somewhat different setting. Since no mechanical irreversibility
(e.g. material plasticity or damage) is built into the constitutive rela-
tions presented in Section 3.2, the formation of the gap and its influence
on the diffusion and the reaction processes is investigated within one
‘cycle’, but with various inclusion-matrix interface parameters. Quali-
tatively similar trend can be seen — when it is assumed that the gap
reduces the permeability of the inclusion-matrix interface, the reaction
rate inside the inclusions is inhibited due to inability of the diffusive
species to be transported out of the inclusions.

4. Conclusions

A general thermo-chemo-mechanical theory and the corresponding
two-scale framework were proposed to model chemo-mechanical pro-
cesses in advanced heterogeneous materials. The theory was derived
under reversible (non-linear elastic) finite strains, with an explanation
of how future extensions to irreversible (inelastic) mechanical defor-
mations can be incorporated into the theoretical framework. As the
kinetics of the transport and the reaction processes are described as
separate, they can be affected by the mechanical stresses in different
ways. For the purpose of incorporating into a two-scale approach
using computational homogenisation, the framework was simplified
to the quasi-static case. A detailed computational scheme to handle
the equations was presented. For numerical examples, a set of simple
constitutive laws was assumed, and the framework was implemented in
Matlab for a 2D-micro-to-1D-macro two-scale approach, using the Cut-
FEM method that handles the interfaces in a computationally-efficient
way. Several numerical examples were included in the paper to show
the effect of reaction locking due to mechanical stresses and a more
complex scenario when the diffusive species propagate through the
microstructure with inclusions undergoing both the chemical reaction
and the interfacial damage (debonding from the matrix) due to the
chemically-induced contraction. The proposed approach can be used to
asses the effects of the stresses on chemo-physical processes occurring
in advanced systems such as batteries, and exploit a more efficient
material use at the micro scale, given the macroscopically applied
operating conditions.
10
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Appendix. Computational handling of diffusion-reaction using
CutFEM

Weak forms (51) and (52) are the simplest (standard FEM) weak
forms of the corresponding equations. They illustrate the handling
of the time derivatives in the equations. However, one of the main
features of the current work is consideration of the microstructures
with interfaces and handling them using computationally-efficient non-
conforming-mesh method, more specifically, CutFEM. The mechanical
part and the finite-element formulation is covered in the previous
publication by the authors (Poluektov and Figiel, 2022); furthermore,
this appendix relies on the reader being familiar with the basis of the
CutFEM method, explained in e.g. Hansbo and Hansbo (2004), Hansbo
(2005) and Hansbo et al. (2017). To complete the description of the
computational part, this appendix summarises the diffusion-reaction
problem with interfaces and its weak form used in CutFEM.

The strong form of the problem consists in Eq. (5) with some
boundary conditions and with interface conditions (62) and (63). For
brevity, the interface conditions are rewritten as

�̃�𝑝 = [[𝑐]] , 𝑝 =
⟨

𝑗
⟩

⋅ �⃗�I. (66)

First, the energy of the interface is written as

𝛱∗ = ∫𝛤∗

( 1
2
𝑆ℎ ([[𝑐]] − �̃�𝑝)2 + 𝑝 [[𝑐]] −

1
2
�̃�𝑝2

)

d𝛤∗, (67)

𝑆ℎ =
(ℎ
𝜆
+ �̃�

)−1
,
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where ℎ is the typical mesh size and 𝜆 is the penalty parameter. The
variation of 𝛱∗ results in

𝛿𝛱∗ = ∫𝛤∗

(

𝑆ℎ
(

[[𝑐]] + ℎ
𝜆
𝑝
)

[[𝜃]] + ℎ
𝜆

((

[[𝑐]] + ℎ
𝜆
𝑝
)

𝑆ℎ − 𝑝
)

𝛿𝑝
)

d𝛤∗, (68)

𝛿𝑝 = �⃗�I ⋅

⟨

𝜕𝑗
𝜕∇0𝑐

⋅ ∇0𝜃

⟩

, (69)

where 𝜃± = 𝛿𝑐± are the test functions belonging to domains 𝛺±. Next,
the following inter-element stabilisation term is introduced:

𝛿𝛱I =
∑

𝛤f∈∗
+

𝑘ℎ∫𝛤f

[[

�⃗�f ⋅ ∇0𝑐+
]]

e
⋅
[[

�⃗�f ⋅ ∇0𝜃+
]]

e
d𝛤f +

+
∑

𝛤f∈∗
−

𝑘ℎ∫𝛤f

[[

�⃗�f ⋅ ∇0𝑐−
]]

e
⋅
[[

�⃗�f ⋅ ∇0𝜃−
]]

e
d𝛤f ,

(70)

where ∗
± are the sets of element boundaries that belong to the elements

covering the interface, the elements, in turn, belong to the meshes
covering domains 𝛺±. Further details can be found in Section 2.5 of
Poluektov and Figiel (2022). Here, 𝑘 is the stabilisation parameter,
vector �⃗�f is the normal to boundary 𝛤f , and [[⋅]]e denotes the jump of
the quantity across the element boundary. Finally, the bulk terms are
written as in Eq. (51),

𝛿𝛱± = ∫𝛺±

(

𝑀∗�̇�±𝜃± − 𝑗± ⋅ ∇0𝜃± − 𝜁𝜔±𝜃±
)

d𝛺± +

+ ∫𝛤±
�⃗�𝛤 ⋅ 𝑗±𝜃± d𝛤±,

(71)

where it is implied that the time derivatives can be handled implicitly
or explicitly. Furthermore, the distinction is made between the reaction
rates 𝜔± defined within domains 𝛺±. The resulting weak problem
formulation consists in finding 𝑐±, such that

𝛿𝛱+ + 𝛿𝛱− + 𝛿𝛱∗ + 𝛿𝛱I = 0. (72)

for any test functions 𝜃±, where the unknown and the test functions
belong to the appropriate functional spaces. It can be seen that this
appendix is mainly a simplification of Section 2.3 of Poluektov and
Figiel (2022) for the scalar case, which is, in turn, based on Hansbo
and Hansbo (2004).
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