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Abstract—The just noticeable difference (JND) is the minimal
difference between stimuli that can be detected by a person.
The picture-wise just noticeable difference (PJND) for a given
reference image and a compression algorithm represents the
minimal level of compression that causes noticeable differences
in the reconstruction. These differences can only be observed in
some specific regions within the image, dubbed as JND-critical
regions. Identifying these regions can improve the development
of image compression algorithms. Due to the fact that visual
perception varies among individuals, determining the PJND
values and JND-critical regions for a target population of
consumers requires subjective assessment experiments involving
a sufficiently large number of observers. In this paper, we
propose a novel framework for conducting such experiments
using crowdsourcing. By applying this framework, we created a
novel PJND dataset, KonJND++, consisting of 300 source images,
compressed versions thereof under JPEG or BPG compression,
and an average of 43 ratings of PJND and 129 self-reported
locations of JND-critical regions for each source image. Our
experiments demonstrate the effectiveness and reliability of our
proposed framework, which is easy to be adapted for collecting
a large-scale dataset. The source code and dataset are available
at https://github.com/angchen-dev/LocJND.

Index Terms—Image quality assessment, just noticeable differ-
ence, JND-critical regions, crowdsourcing, distortion localization
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I. INTRODUCTION

The just noticeable difference (JND), also referred to as
the difference threshold, is the minimum change in stimulus
intensity required to produce a noticeable difference in sensory
experience [1]. The JND has been widely applied in the
multimedia domain, such as audio perceptual assessment [2]–
[4] and watermarking [5]. It has also been used to deter-
mine the optimal compression level for images [6], [7] and
videos [8]. For a given reference image, the picture-wise just
noticeable difference (PJND) refers to the minimal level of
its compressed version at which a viewer begins to perceive
noticeable differences [7].

The PJND of an image can be determined through either
subjective studies or estimated by objective methods, i.e.,
algorithms. While objective methods are required for real-
time applications, subjective studies are the foundation for

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – Project-ID 251654672 – TRR 161 (Project A05).

collecting benchmark data for the development and evaluation
of objective methods. The typical process for conducting
subjective studies to collect PJND data involves three steps [6],
[7], [9]–[11]. First, a set of pristine images is collected and
encoded at different levels of distortion using one or more
compression algorithms. Second, for each source image and
each codec, a group of human observers checks for visible
artifacts among the encoded images. Finally, a psychometric
function is fitted to the collected data yielding the PJND
threshold for each source and codec.

Several methods have been proposed to determine the PJND
of a given image, which can be categorized based on the
presentation of images for comparison. The most commonly
used presentations include 1) displaying a reference image
and a distorted image sequentially [8], [12], 2) displaying a
reference image and a distorted image side-by-side [9], [10],
[13], and 3) a sensitive method known as the flicker test, as
adopted by an ISO/IEC standard [14]. In addition, these meth-
ods can be categorized in terms of search strategies for PJND
identification, including standard binary search [13], relaxed
binary search [10], and slider-based search strategy [15].

Typically, distortions at the PJND compression level are
visible only in a few regions of the image [7]. We call these
regions JND-critical regions. In other words, starting from
the source image and decreasing the bitrate of the encoding,
artifacts will first be noticed in these JND-critical regions.
JND-critical regions collected from multiple observers can be
combined to form a new kind of saliency map for a given
image, referred to as the JND-criticality map.

Although understanding the impact of JND-critical regions
on PJND detection could contribute to the improvement of
image compression algorithms, existing subjective PJND
assessment studies have not yet considered JND-critical
regions [6], [7], [9]–[11]. To address this limitation, we
combine PJND assessment with a procedure to determine
JND-critical regions using a self-reported localization method.
Observers first identify the PJND for a source image and
the corresponding sequence of its compressed versions and
then click on the image to indicate the JND-critical regions.
Since each person’s visual system is unique, both the PJND
and JND-critical regions are subject to variation between
individuals. To ensure reliable results, it is necessary to
collect data from a large number of observers. For each
source image, the JND-criticality map is finally computed979-8-3503-1173-0/23/$31.00 ©2023 IEEE
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by applying Gaussian blur to the aggregated self-reported
locations as in [16]. To achieve our goals at a reasonable
cost, we conducted our experiment through crowdsourcing.

Our main contributions can be summarized as follows:
i. We introduce the concept of JND-critical regions, which

widens the traditional approach to PJND assessment.
ii. We propose a method to assess PJND and JND-critical

regions jointly. It combines a flicker test with slider-
based search and incorporates the self-reported local-
ization method. Conducting the study through Amazon
Mechanical Turk (AMT) renders it effective and cost-
efficient. To the best of our knowledge, this is the first
subjective study that collected both PJND and JND-
critical regions.

iii. We supply a new image dataset KonJND++, annotated
with PJND ratings and JND-critical regions. It contains
300 source images, with corresponding distorted images
obtained using the JPEG or BPG compression scheme.
For each source image, an average of 43 PJND ratings
and 129 clicked locations are provided.

II. RELATED WORK

A. PJND-based image datasets

Multiple PJND-based image databases [6], [7], [9]–[11]
have been published in recent years. Jin et al. [6] conducted
a subjective assessment experiment in the lab to collect PJND
ratings for JPEG-encoded images. A reference image and a
distorted image were presented side-by-side, and a bisection
method was used to select the appropriate distorted image [17].

Shen et al. [11] created a PJND dataset for VVC-
compressed images, also using a lab-based study with side-
by-side presentation and standard binary search.

Lin et al. [7] proposed a crowdsourcing-based framework to
efficiently conduct subjective PJND assessments. The authors
used the flicker test [14] to enhance sensitivity and a slider-
based adjustment method to speed up the experiment. As a
result, the authors created the largest PJND dataset to date,
KonJND-1k, consisting of 1,008 source images and their
corresponding distorted images compressed using JPEG or
Better Portable Graphics (BPG) compressions.

B. Other relevant work

Jiang et al. [18] conducted a crowdsourcing experiment
that captures human visual exploration behavior in task-free
situations by recording mouse-tracking movements. Using a
general-purpose mouse, rather than an eye-tracker, enabled the
collection of a large-scale dataset with 10,000 images.

Hosu et al. [19] conducted crowdsourcing experiments for
self-reported attention in image quality assessment (IQA) tasks
using a simple point-and-click annotation method. Results
compared to lab-based eye-tracking experiments indicated that
using point-and-click method is accurate enough for collecting
self-reported attention in IQA tasks via crowdsourcing.

Pergament et al. [20] introduced a tool that collects spatio-
temporal importance maps of videos. Observers can adjust the

Step 1: Find the PJND

... ...

Step 2: Report JND-critical regions

Distortion Level:51Distortion Level:0 Distortion Level:57 Distortion Level:100Distortion Level:57

Fig. 1: Workflow for localizing JND-critical regions: Partici-
pants adjust a slider to find the PJND value (Step 1), followed
by reporting three JND-critical regions (Step 2).

quality of a specific area of the video by annotating the map
and the video stream displays the effects of the annotation. In
a separate subjective study, the authors compared importance-
map-generated videos with the encoded baseline using a two-
alternative forced choice approach. The results showed that
spatio-temporal importance map compressed videos were 1.9
times more preferred than traditionally compressed videos for
a given bitrate.

III. ASSESSMENT OF PJND AND LOCALIZATION OF
JND-CRITICAL REGIONS

Our method to localize JND-critical regions proceeds in
two steps, as shown in Fig. 1. The first step is to obtain the
PJND value using the assessment method described in [7],
where a reference image and its distorted version are displayed
alternatively at a frequency of 8Hz [14]. This means the ref-
erence image appears (and disappears) four times per second,
and while the reference is not shown, the distorted image is
displayed instead at exactly the same location on the monitor.

The perceived amplitude of the resulting flicker effect
depends on the image distortion. Participants use a slider to
adjust the compression level such that they can just detect a
flicker effect in at least three separate regions of the image.
The slider position is mapped (details provided in VI) to the
codec quality parameter such that the distorted images can
easily be browsed in a sorted sequence.

After identifying their individual PJND thresholds, partici-
pants report the locations of three detected flickering regions
by clicking on the image with their mouse. In our graphical
user interface (GUI), a green cross indicates each clicked
location for feedback.

IV. IMAGE SAMPLING AND PILOT STUDY

Our images were sampled from the KonJND-1k dataset [7],
which contains 504 source images compressed with JPEG and
another 504 compressed with BPG. Also, all annotated PJNDs
are provided in this dataset.

In a pilot study, we aimed to annotate 50 images that
were used to generate ground truth for testing crowd worker
attention in our main study. For each codec, we first sampled
25 images as “gold standard” images [23]. These images
were to be used not only to educate crowd workers on the
concepts of PJND and JND-critical regions but also to remove
unreliable workers during the subsequent study questions. For
this sampling, we sorted all 504 source images corresponding
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Fig. 2: The workflow of our study for JND-critical region localization. 1) Qualification HIT. Eligibility check: The study
was only accessible to workers who had a positive record on AMT, and the GUI required that the worker’s device, browser,
and screen resolution met the requirements. Calibration: To ensure all workers viewed the images at the same physical size,
workers were required to place a payment card [21] on the screen and adjust a red frame until it fits the card size. The GUI
then calculated the value of pixels per inch (PPI) based on the card and frame size and scaled the displayed images accordingly.
After that, workers were asked to adjust their viewing distance to 30 cm [22]. Training and quiz session: To be eligible for
study HITs, a worker must have completed a training session and passed a quiz to get a qualification label. 2) Study HITs.
Workers could conduct the study HITs only if they had obtained their qualification labels and passed the eligibility check and
calibration. A worker was allowed to participate in up to 20 study HITs.

to each codec with increasing PJND into 25 bins. From each
of these bins, we selected the source image that showed the
smallest variance of subjective PJNDs as this indicated better
agreement on reported PJND values and, therefore, better
suitability to test crowd worker attention.

For each codec in the main study, 150 images were sampled
from the corresponding remaining 479 images in the KonJND-
1k dataset. To ensure diversity in PJND values, we sorted the
images in ascending order according to their mean PJND, then
selected images at positions ⌈479i/150⌉, i = 0, 1, 2, . . . , 149.
In total, we arrived at 2 × (25 + 150) = 350 images to be
annotated in our crowdsourcing experiments.

V. CROWDSOURCING JND-CRITICAL REGIONS

We conducted a main study on Amazon Mechanical Turk
(AMT), a well-known crowdsourcing platform that allows to
publish human intelligence tasks (HITs) to a large force of
crowd workers. Fig. 2 shows the workflow. Similar to the
KonJND-1k study, a quality control mechanism was intro-
duced to ensure the collection of reliable PJND values.

The study consisted of a qualification HIT and multiple
study HITs. The qualification HIT aimed to teach workers
how to use the GUI and participate in the study. In the study
HITs, we subsequently collect PJND ratings and JND-critical
region annotations. Only participants that passed a quiz in the
qualification HIT were allowed to contribute to the study HITs.

We followed the “gold standard” approach [23] with estab-
lished ground truths to test the reliability of the participants.

The ground truths were derived from the annotated data of the
pilot study. Details about generating ground truth for “gold
standard” images are discussed in Section VI.

A. Qualification HIT

While participating in the qualification HIT, workers were
allowed to read the instructions on how to report the PJND
value and JND-critical regions. To help illustrate the concept,
an example was provided, showing three locations corre-
sponding to three flickering regions. In the training session,
if workers failed to report correct PJND or locations, they
were shown the ground truths and required to repeat the
assessment until their answers were correct. Participants were
only allowed to report three locations if the reported PJND
was within the acceptable range. The ground truth range of the
PJND was displayed as text, and the ground truth JND-critical
regions were depicted by a heat map, as shown in Fig. 2. After
reporting correct PJND values and locations, workers moved
on to the next image. We used five manually selected “gold
standard” images for training.

In the quiz session, we required the workers to perform
with an accuracy of 70% in order to be allowed to access
study HITs. Accuracy was defined as

accuracy =
b+ c

2a
, (1)

where a = 10 is the number of manually selected “gold
standard” images in the quiz session, b is the number of
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with three stronger distortion regions (green dotted circles).

correctly reported PJND values, and c is the number of images
with at least two correctly reported locations.

We ran a script on our server to download the results from
AMT in real-time and calculated the accuracy for each quali-
fication HIT. Workers received a notification by email shortly
after completion. Workers who passed the quiz received a link
to a study HIT and were assigned an AMT qualification label.
This was used as a token to participate in further study HITs.

B. Study HITs

Once workers received their qualification label, they were
allowed to conduct study HITs. Each study HIT had 11
images, ten of them were randomly selected from the source
images (without replacement) and one was selected from the
image set of the pilot study as a “gold standard” image. To
ensure the PJND ratings were collected from a broad group
of observers, workers were limited to completing up to 20
study HITs. The qualification label was revoked once a worker
reached this limit.

The cumulative accuracy of a worker on “gold standard”
images of completed study HITs was calculated by Eq. (1)
in real-time. As each study HIT had one “gold standard”
image, a was equal to the number of finished study HITs
of the worker. After finishing 10 study HITs, workers whose
cumulative accuracy was less than 70% were not allowed to
continue, and their results were removed as outliers.

VI. GROUND TRUTH GOLD STANDARD IMAGES

We monitored the attentiveness and compliance of our
study participants by posing “gold standard” images. If their
responses were considered unacceptable, their accuracy ratings
decreased. The “gold standard” images and their distorted
versions were constructed to establish well-defined criteria for
acceptable responses regarding both the PJND rating and the
JND-critical region localization.

To generate the ground truth range of acceptable PJND
ratings, we followed the same procedures as developed in [7],
where a sigmoid function with a randomly selected center is
used to defined the expected PJND and the acceptable range

of PJND values. For brevity, we omit the details and refer the
reader to the given reference.

To generate three clearly visible ground truth JND-critical
regions for each “gold standard” test image, we selected
their centers and locally increased the distortion level in their
neighborhoods. To map distorted images into 100 distortion
levels (corresponding to 100 slider positions), let Id, d =
0, 1, . . . , 100 denote the sequence of distorted images of a
source image at distortion levels d. Thus, image I0 denotes
the source image. For JPEG compression, image Id, d > 0 is
compressed using JPEG’s quality factor (QF) equal to 101−d.
For each distortion level d in the range of ground truth PJND,
we defined a greater distortion level by f(d) = ⌈80 + d/5⌉.
As the quantizer parameters (QP) of BPG compression range
from 1 to 51, to conveniently map QP values into 100
distortion levels, we only used QP values ranging from 1
to 50. A distorted image Id, d > 0 is compressed using
QP equal to ⌈d/2⌉. In this case, we applied the function
f(d) = min{⌈1.4d⌉, 100} to generate If(d).

For d in the range of ground truth PJND, we blended images
Id with If(d). The blending coefficients are defined by three
image pixel locations (ui, vi), i = 1, 2, 3 and σ = 35 pixels.
We let

w(x, y) =
1

c

3∑
i=1

ϕui,vi,σ(x, y),

where ϕu,v,σ is the 2D standard normal distribution centered at
(u, v) with variance σ2, and c is a normalization constant such
that the maximum of w is equal to 1. The blending function
can be interpreted as a synthetic JND-criticality map. Then we
summed the two images Id and If(d), weighted by 1−w and
w, respectively. Fig. 3 illustrates the procedure.

We selected the locations of the ground truth JND-critical
regions based on the JND-criticality maps from the self-
reported locations in our pilot study. We identified the local
maxima of the maps by the mean shift clustering method [24],
and for each one, we computed the sum of pixel values in
a 7 × 7 window centered at the maximum. The three local
maxima with the largest sums were selected as centers of the
ground truth JND-critical regions.

In our experiment, each of the three synthesized JND-
critical regions was considered covered by a mouse click of a
study participant when the mouse pixel coordinates had a eu-
clidean distance from the center (ui, vi) of the corresponding
region of at most 2σ. The overall response of a participant for
the test image was considered correct if the chosen PJND was
in the defined ground truth range and at least two of the three
JND-critical regions were selected.

VII. RESULT AND DISCUSSION

A. Setup

Our main study contains 30 study HITs, where each HIT
consists of 10 source images and one “gold standard” image.
For each image, we collected assignments from 50 workers.
In other words, 50 compound responses consisting of a PJND
and three reported locations were collected for each image.



In total, we collected 16,500 responses, 15,000 for the study
images and 1,500 for the “gold standard” test images.

B. Outlier removal

In the study HITs, the reliability of the workers could not
be fully assured even though they had passed the qualification
quiz session. Some workers might have lost focus and attention
during the experiment. Therefore, we followed the same
procedures as used in the KonJND-1k study [7] to remove
outliers at both the worker level and HIT level.

At the worker level, we identified and removed five workers
who had a cumulative accuracy of less than 70% on “gold stan-
dard” images after completing 10 study HITs, indicating that
they may have paid insufficient attention to the experiment.
As a result, 540 responses from these workers were excluded,
leaving a total of 14,460 responses.

At the HIT level, we filtered out results that deviated
significantly from the mean PJND value and were inconsistent
with the consensus of all workers. We applied the same method
as in [7]. For each HIT, we removed 10% of the results, i.e.,
the results of 5 workers of a HIT were filtered out. As a result,
a total of 12,960 responses remained.

Fig. 4: Samples of the collected dataset in our study. The
images in the first column were compressed by JPEG, JPEG,
BPG, and BPG, respectively.

In addition, we excluded extreme PJND ratings that fell
below 5 or exceed 95. As a result, the dataset consists of 300
source images with an average of 43 PJND values and 129
reported locations of JND-critical regions for each image. We
named it the KonJND++ dataset. Fig. 4 shows four examples
of the dataset.
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Fig. 5: A mean PJND values comparison between the Kon-
JND++ dataset and KonJND-1k dataset on (a) JPEG compres-
sion and (b) BPG compression. Each dot represents the mean
PJND values of a source image.

C. Comparison of the KonJND++ and KonJND-1k datasets

To check for consistency with the KonJND-1k dataset, we
compared the PJND samples of the KonJND++ dataset with
those from the KonJND-1k dataset for the same 300 source
images.

A scatterplot comparing the mean PJND values of images
from both datasets is shown in Fig. 5. The regression lines for
each compression method are

f(K̄I) =

{
0.65K̄I + 29.73 for JPEG,
0.74K̄I + 10.97 for BPG,

where K̄I denotes the mean PJND value of a reference image
(I) in the KonJND-1k dataset.

It is apparent that most of the mean PJND values from the
KonJND++ dataset are higher than those from the KonJND-
1k dataset. This difference is regarded as a natural bias. It
is likely caused by the additional task in our study, requiring
participants to report three flickering locations, which caused
them to select larger distortion levels so they could perceive
multiple flickering regions.

In addition, we computed the Spearman rank order corre-
lation between the PJND values of the KonJND++ and those
in KonJND-1k. The SROCC is 0.828 for JPEG compression
and 0.740 for BPG. This high correlation indicates a good
agreement between the two studies.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we present a framework for collecting PJND
values and JND-critical regions, and we created a dataset
named KonJND++ that consists of 300 source images. The
framework is intended to collect large-scale datasets through
crowdsourced experiments for training deep learning models,
e.g. to predict JND-criticality maps for various applications.

JND-criticality maps could be combined with visual atten-
tion maps [18]. The JND-criticality map indicates regions with
strong compression artifacts, while the visual attention map
represents human attention with respect to the image contents.



Combining them may be beneficial for research on saliency-
based compression, local quality prediction, or even foveated
image and video coding [25]–[28].

A further subjective study is required to verify whether
compressing the JND-critical regions less than other areas can
improve perceived image quality at a given bitrate. This study
can be a side-by-side flicker test where viewers are asked to
select which side has a stronger flicker effect. On one side
an adaptively compressed image with locally enlarged bitrate
in the JND-critical regions alternates with the corresponding
source image, and on the other side a standard compressed
image with the same overall bitrate alternates with the source.
If the flicker effect is stronger on the side with the standard
compressed image, it will be confirmed that the JND-critical
regions can improve image quality of compressed images.

IX. CONCLUSION

We introduced the concept of JND-critical regions that
may help in the development of perceptually guided image
and video compression algorithms. We designed a PJND
assessment method that involves collecting PJND using a
flicker test with slider-based adjustment and collecting JND-
critical regions which are the regions where flicker effects are
first perceived at the PJND level. To ensure the quality of
data collected through crowdsourcing, we designed a robust
framework that integrates our PJND assessment method and
uses synthetic JND-critical regions as ground truth for training
workers and worker reliability filtering. Our crowdsourcing
experiment yielded a dataset of 300 source images and their
compressed versions processed with JPEG or BPG, each
annotated by 43 PJND ratings and 129 self-reported JND-
critical regions. This dataset is named KonJND++ and will be
made available online and provides valuable information for
the field of image compression and quality assessment.
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