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Head-on collision of two solitary waves in the presence of linear shear currents is studied by use of the High-Level
Green-Naghdi (HLGN) theory. The finite difference method is used to solve the HLGN model in the time-domain
simulation. The initial values are obtained by the steady solution of solitary waves in the presence of linear shear
currents. Shear currents with different velocities are considered to assess their effect on the solitary-wave collision.
Three aspects of the head-on collision process in the presence of shear current are studied, namely the wave elevation,
velocity field and particle trajectory. Results show that the background linear shear current significantly affects the
wave elevation, velocity field and particle trajectory during the head-on collision. It is observed that in the presence of
the current, the wave elevation is narrower near the maximum surface displacement, and is wider near the still water
level. It is also shown that near the seafloor, the horizontal velocity is opposite of the current direction, while it is
following the current direction near the free surface. The opposite shear current results in formation of a vortex in the
fluid field. At the point of the collision, the vortex appears at a lower vertical position and shifts upstream of the current
direction. Following the particle trajectories in the presence of the shear current, it is observed that the particles do not
return to their initial positions after the head-on collisions, and the loop motions of the particles become smaller with
larger current velocities.

I. INTRODUCTION

The solitary wave has received significant attention from
the research community due to its interesting characteristics
and applications. Solitary waves have applications in water
waves, physics of optics, electricity and medicine. Here, our
primary attention is on the water-wave applications.

The KdV equation1 has been widely used to study solitary
waves. The KdV theory uses the first-order approximation
and it is mostly applicable to small-amplitude solitary waves.
Alternative solutions are required when large-amplitude soli-
tary waves are of interest, such as by solving Euler’s equa-
tions as in Dutykh and Clamond2 and by solving the High-
Level Green-Naghdi (HLGN, hereafter) equations by Zhao et
al.3 and solving the Irrotational Green-Naghdi (IGN) equa-
tions by Duan et al.4. Hunter and Vanden-Broeck5 presented
a method based on series truncation to calculate the highest
solitary wave in which the ratio of the wave amplitude to the
water depth was 0.83322. Wang and Liu6 presented experi-
mental data for surface elevation and particle velocity for the
nonlinearity parameter H/d ≤ 0.6. They assessed the accura-
cy of the numerical and approximate analytical solutions us-
ing these experimental data.

Current also plays an important role in the ocean dynam-
ics. Presence of the background current and vorticity change
the properties and behaviour of water waves. Freeman and
Johnson7 derived a modified KdV equation for waves on shear
currents. Dalrymple8 used the series expansion of the stream
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function formulation to study water waves propagating on cur-
rents with constant vorticity. They found that the current
changes the wavelength and the kinematics under the wave.
Meanwhile, the background current significantly affected the
wave profile. The boundary integral equation method was
used to obtain solutions of periodic waves in finite water depth
with the constant vorticity by Teles Da Silva and Peregrine9.
Swan10 provided experimental data of the surface elevation
and horizontal velocity for regular waves on currents with
constant vorticity. Results showed that strongly opposing s-
heared current modify the wave induced flow field and in-
crease the amplitude of the oscillatory motion significantly.
Vanden-Broeck11 obtained the solitary wave solutions in fi-
nite water depth with constant vorticity using the boundary
integral equation method. The branches of solutions and lim-
iting configurations were studied. Under the long-wave ap-
proximation, Choi12 obtained the wave profiles and stream-
lines of solitary waves in the presence of a linear shear current
by use of the asymptotic method. Choi12 found out that the
solitary-wave profile is narrower when the wave and the back-
ground current propagate in the same direction. The opposite
occurs when the solitary wave propagates against the curren-
t direction. Constantin et al.13 proved that the governing e-
quations have a nearly-Hamiltonian structure for water waves
with constant non-zero vorticity, which changes to Hamilto-
nian for steady waves. Pak and Chow14 used the perturbation
method to obtain the third-order solution of a solitary wave in
the presence of a linear shear current and second-order solu-
tions for other current-type cases. They compared the wave
profile and speed for a solitary wave in different-type shear
currents. Guyenne15 used the High-Order Spectral (HOS)
method to numerically simulate a solitary wave propagating
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in the background linear shear current in the time domain,
where the computational errors on energy, impulse and vol-
ume of the numerical tank are shown to affect the accuracy of
the simulations. Duan et al.16 used the HLGN model to ob-
tain the steady solution of solitary waves in the presence of
linear shear currents, including the wave profile, wave speed
and velocity field. Later, Wang et al.17 used the HLGN model
to study the vorticity field and particle trajectories of a soli-
tary wave in the presence of a nonlinear shear current. Gao et
al.18 developed the time-dependent conformal mapping tech-
niques to study hydroelastic solitary waves in the presence of
constant vorticity. Dynamics and stability of the generalized
solitary waves are examined. The nonlinear Schrödinger e-
quation was used to describe waves slowly modulated by the
linear shear current by Li et al.19. The current effect on mod-
ulational instability and wave steepness was studied. Later, Li
et al.20 and Li et al.21 derived the nonlinear Schrödinger equa-
tion to study the interfacial waves modulated by the linear s-
hear current. Wang et al.22 studied the flow dynamics beneath
flexural-gravity solitary waves by solving the fully nonlinear
equations. It was found that there was net vertical transport
of particles beneath some solitary waves due to wave-current
interactions.

Wave-wave interaction is an interesting topic to water-
wave mechanics and coastal-engineering applications. Soli-
tary waves propagating in the opposite directions pass through
each other and almost keep their identity intact after the col-
lision. Some laboratory experiments have been conducted on
the head-on collision of solitary waves without a background
current. Maxworthy23 confirmed that the maximum surface
displacement, observed at the collision point, was greater than
the sum of the amplitudes of two solitary waves during their
head-on collisions. Hammack et al.24 provided high resolu-
tion measurements of the surface elevation at different mo-
ments during the two solitary-wave head-on collisions. Be-
sides the surface elevation, Chen and Yeh25 measured the
phase shift, collision runup and rundown processes and the
energy loss by the collision. Later, Chen et al.26 measured
the velocity and acceleration field and vorticity during the
solitary-wave head-on collisions in laboratory. Umeyama et
al.27 experimentally studied the particle trajectories of head-
on collision of two equal solitary waves. Results showed that
most particles returned to their initial position, but not all. Lat-
er, Umeyama28 extended the laboratory experiments to un-
equal amplitudes cases. The particles returned toward their
initial positions after the collision with slightly diverted paths
comparing with those before the collision. The gap between
the two paths become more significant with larger difference
of the two wave heights.

Solitary-wave head-on collisions without background cur-
rent has been studied by numerical and theoretical approaches.
Byatt-Smith29 derived an integral equation for unsteady sur-
face waves, and showed that the maximum surface displace-
ment during head-on collisions of two solitary waves with e-
qual amplitude was more than twice the initial solitary-wave
amplitudes. Su and Mirie30 obtained a third-order solution
of the head-on collision of two solitary waves with arbitrary
amplitudes based on the perturbation method. They gave the

formulas to calculate the maximum surface displacement and
the phase shifts during the collisions. In a later study, Mirie
and Su31 considered the following wave trains (waves propa-
gating in the same directions as the solitary wave) and found
out that the following wave trains took the energy of solitary
waves and caused the wave-amplitude reduction after colli-
sions. Ertekin and Wehausen32 simulated the collision of t-
wo solitary waves by use of the Level I Green-Naghdi equa-
tions and showed the results of colliding processes, maximum
run-up and phase shift. Craig et al.33 performed a numerical
analysis to solve Euler’s equations by use of a pseudo-spectral
method for head-on collisions. They presented the relation-
ship between the amplitude change of solitary waves and the
energy carried away from the interaction. Chambarel et al.34

studied the head-on collision of two solitary waves by use of
the boundary integral equation. They investigated the maxi-
mum run-up, phase shift and acceleration field. Ertekin et al.35

used the Irrotational Green-Naghdi (IGN) equations with dif-
ferent levels and the original Green-Naghdi equations (Level
I) to study the collision of two solitary waves. They deter-
mined that the IGN Level III model was the converged level of
the IGN equations, which can be used to simulate the solitary-
wave collision in their test cases. Tong et al.36 created a nu-
merical wave tank based on the Harmonic Polynomial Cell
(HPC) method. Their numerical results on wave elevation of
the two solitary-wave collisions were in agreement with the
laboratory measurements of Chen and Yeh25. Zhang et al.37

used a two-phase flow model based on Adaptive Mesh Refine-
ment grid to study the effect of a submerged bottom-mounted
barrier on the head-on collision of two solitary waves. The
submerged bottom-mounted barrier affected the wave ampli-
tudes and resulted in the vortex shedding. Karakoc et al.38

implemented a sextic B-spline functions Subdomain approach
to study the nonlinear generalized equal width equation with
some fixed choices initial and boundary conditions. The col-
lision of two solitary waves was simulated to demonstrate
the accuracy and efficiency of the method. Choi39 studied
a strongly nonlinear long wave system expanded by a single
small parameter, the ratio of the water depth to the character-
istic wavelength. The numerical results on the head-on colli-
sion between two counter-propagating solitary waves showed
good agreement with the laboratory measurements of Chen
and Yeh25.

Very few studies focus on the solitary-wave collision in the
presence of a current. Umeyama40 conducted laboratory ex-
periments on the rear-end collisions of two solitary waves in
the presence of a uniform current. The experimental data
showed that the uniform current without vorticity had a lit-
tle effect on the wave surface, but affected the velocity field
significantly.

Background current is usually present in the oceans, and
are commonly nonuniform9. As mentioned before, many s-
tudies pointed out that the linear shear current changes the
properties of solitary waves significantly. The head-on colli-
sion of two solitary waves without currents were also studied
widely. However, the linear shear current effect has not been
considered on the head-on collision of the two solitary waves.
This study aims to address such gaps. Thus, the motivation of
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this work is to study the effect of the linear shear current on
the head-on collision of two solitary waves. Here, we use the
HLGN equations to study this problem, including the wave
elevation, velocity field and particle trajectory.

This paper is organized as follows. In Section II, the HLGN
theory is introduced. Section III presents the initial conditions
and validates their accuracy. In Section IV, numerical cases of
the head-on collision of two solitary waves in the presence of
a linear shear current are presented. Conclusions are reached
in Section V.

II. HLGN THEORY

In this study, the fluid is assumed as incompressible and
inviscid. The flow can be rotational in general. The origin of
the two-dimensional coordinate system is located at the still-
water level (SWL, hereafter), x (positive to the right) is the
horizontal axis and z (positive up) is the vertical axis. z =
η(x, t) represents the free surface and z = −d represents the
bottom, where d is the constant water depth and t is time.

The mass conservation equation is written as

∂u
∂x

+
∂w
∂ z

= 0, (1)

where u and w are the horizontal and vertical velocity compo-
nents, respectively.

The momentum conservation equations are written as

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

=− 1
ρ

∂ p
∂x

, (2a)

∂w
∂ t

+u
∂w
∂x

+w
∂w
∂ z

=− 1
ρ

∂ p
∂ z

−g, (2b)

where ρ is the constant fluid-mass density, p is pressure and g
is gravitational acceleration. The free-surface pressure is the
atmospheric pressure that can be treated as zero (without loss
of generality).

The boundary kinematic conditions of the free surface and
the flat bottom are written as

w =
∂η
∂ t

+u
∂η
∂x

(z = η(x, t)), (3a)

w = 0 (z =−d). (3b)

In the HLGN model, the velocity field is assumed as

u(x,z, t) =
K−1

∑
n=0

un(x, t)zn, (4a)

w(x,z, t) =
K

∑
n=0

wn(x, t)zn, (4b)

where un and wn are the unknown velocity coefficients that are
part of the solution. K is the level of the HLGN model (e.g.,
HLGN-4 model when K = 4), see Zhao et al.41.

Substituting Eq. (4) into Eq. (1) gives

wn =−1
n

∂un−1

∂x
(n = 1,2, . . . ,K). (5)

Substituting Eq. (4) into Eq. (2), after multiplying each
term by zn and integrating from bottom −d to free surface η
along the vertical direction and substituting p with the inte-
grated pressure, we obtain

∂
∂x

(Gn +gS1n)+nEn−1 − (−d)n ∂
∂x

(G0 +gS10) = 0

(n = 1,2, · · · ,K),
(6)

where

Gn =
K

∑
m=0

(
∂wm

∂ t
S2mn +

∂wm

∂x
Qmn +wmHmn

)
, (7a)

En =
K

∑
m=0

(
∂um

∂ t
S2mn +

∂um

∂x
Qmn +umHmn

)
, (7b)

Qmn =
K

∑
r=0

urS3mrn, Hmn =
K

∑
r=0

wrS4mrn, (7c)

S1n =
∫ η

−d
zndz, S2mn =

∫ η

−d
zm+ndz, (7d)

S3mrn =
∫ η

−d
zm+r+ndz, S4mrn = m

∫ η

−d
zm+r+n−1dz, (7e)

uK = 0. (7f)

Substituting Eq. (4) into Eq. (3), we have

∂η
∂ t

=
K

∑
n=0

ηn
(

wn −
∂η
∂x

un

)
, (8a)

w0 =−
K

∑
n=1

wn(−d)n. (8b)

We use Eq. (5) and Eq. (8b) to eliminate the vertical-
velocity component wn. Hence, there are K + 1 number of
unknowns, namely η and un (n = 0,1, · · · ,K−1). On the oth-
er hand, Eq. (6) and Eq. (8a) provide the K + 1 equations.
This system of equations is closed and solvable. The finite d-
ifference method is used to solve the HLGN model in the time
domain simulation. Details of the algorithm used to solve the
HLGN model can be found in Zhao et al.41.

III. INITIAL CONDITIONS

In this section, we present two kinds of initial conditions of
the HLGN model, including:

1) single solitary-wave propagation in the presence of a lin-
ear shear current;

2) head-on collision of two solitary waves in the presence
of a linear shear current.

The following numerical tests are also performed to vali-
date the accuracy of the initial conditions in this section.

A. Single solitary-wave propagation in the presence of a
linear shear current

For the first kind of initial conditions, we consider the s-
ingle solitary-wave propagation in the presence of a linear
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z=-d

SWLz=0

uc(z)=U(1+z/d)

FIG. 1. Sketch of the linear shear current.

shear current. The linear shear-current type is described as
uc(z) = U(1+ z/d) as shown in Fig. 1, where U is the cur-
rent speed at the SWL. Related parameters of the cases are
shown in Table I, where H is the solitary wave amplitude and
c0 =

√
gd.

TABLE I. Parameters of the two cases of single solitary-wave prop-
agation in a linear shear current uc(z) =U(1+ z/d).

Case H/d U/c0 Solitary-wave propagation direction

1 0.3 -0.5 left to right (Opposite)
2 0.3 -0.5 right to left (Following)

The initial values are obtained by the steady solution of
solitary waves in the presence of a linear shear current, see
Duan et al.16, including the wave profile η ′(X), velocity co-
efficients u′n(X)(n = 0, · · · ,K − 1) and wave speed c′, where
the primes in the variables represent the initial values of the
solitary waves in the computational domain. We set the initial
solitary-wave solutions in the region x1 ≤ x ≤ x2. The sketch
of Case 1 is shown in Fig. 2. The linear shear current is set
everywhere, for x < x1 and x > x2.

As shown in Fig. 2, when we consider the single solitary
wave propagating from left to right (i.e. propagating in the
opposing shear current, Case 1), initial values in the region
x1 ≤ x ≤ x2 are given by:

η(x; t = 0) = η ′(X), (9a)

un(x; t = 0) = u′n(X) (n = 0, · · · ,K −1), (9b)

∂η(x; t = 0)
∂ t

=−c′
∂η ′(X)

∂X
, (9c)

where X = x−x0, x0 is the initial position of the solitary-wave
crest in the global coordinate system oxz.

When we consider the single solitary wave propagating
from right to left (i.e. propagating in the following shear cur-
rent, Case 2), the initial values in the region x1 ≤ x ≤ x2 are

given by:

η(x; t = 0) = η ′(X), (10a)

un(x; t = 0) =−u′n(X) (n = 0, · · · ,K −1), (10b)

∂η(x; t = 0)
∂ t

= c′
∂η ′(X)

∂X
. (10c)

After comparing results of the HLGN model for different
level K (given in Eq. (4)), we have determined that the HLGN-
5 model provides the converged HLGN results for this case.
For the details of the convergence tests of the HLGN mod-
el, we refer the reader to Zhao et al.41. Figures 3(a) and 3(b)
show the profiles of the solitary wave during its propagation
at different times for the opposing-current case (Case 1) and
the following-current case (Case 2), respectively, where we re-
center all the wave crests at x/d = 0. The initial values are ob-
tained by the steady solution of solitary waves in the presence
of a linear shear current in Duan et al.16. We observe that dur-
ing the solitary-wave propagation in the linear shear current,
the wave profiles do not change, both for the opposing-current
case and following-current case. It is demonstrated that initial
conditions of the single solitary-wave propagation in the pres-
ence of a linear shear current are accurate.

B. Head-on collision of two solitary waves in the presence of
a linear shear current

We also consider the head-on collision of two solitary
waves in the presence of a linear shear current. Initial con-
ditions are shown in Fig. 4. The solution of solitary wave
propagating from left to right is set in region x1 ≤ x ≤ x2, and
the solution of solitary wave propagating from right to left is
set in region x3 ≤ x ≤ x4. c1

′ and c2
′ are speeds of the right-

going solitary wave and the left-going solitary wave, respec-
tively. The linear shear current is set everywhere outside these
regions.

To validate the accuracy of initial conditions, we study the
head-on collision of two solitary waves in the absence of cur-
rent numerically by use of the HLGN model, and compare our
results with the results of the Harmonic Polynomial Cell (H-
PC) method of Tong et al.36 and the experimental data of Chen
and Yeh25 (further discussion on head-on collision of two soli-
tary waves in the presence of a linear shear current will be pro-
vided in the next section). Parameters of this case are shown
in Table II, where (H/d)L is the amplitude of the left solitary
wave propagating to the right, and (H/d)R is the amplitude
of the right solitary wave propagating to the left. Note that in
this case, there is no current, i.e. U/c0 = 0. Initial amplitudes
of the two solitary waves we select are (H/d)L = 0.4014 and
(H/d)R = 0.3887, which are captured from Fig. 4(a) of Chen
and Yeh25. In this case, we have determined that the HLGN-4
model provides the converged HLGN results for this case.

The comparison between the HLGN results, HPC results of
Tong et al.36 and the experimental data of Chen and Yeh25 of
the surface elevation snapshots at different times is shown in
Fig. 5. We note that t

√
g/d = 0 is taken as the moment when

the maximum surface displacement occurs. From Fig. 5, we
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FIG. 2. Initial conditions of Case 1 for the single solitary-wave propagation in the presence of a linear shear current.
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(a) Solitary wave propagating from left to right, Case 1.
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(b) Solitary wave propagating from right to left, Case 2.

FIG. 3. Profiles of the solitary wave propagating in the linear shear
current at different times, U/c0 =−0.5,H/d = 0.3.

observe that the HLGN results and the HPC results show very
good agreement, and they both match the experimental data
well. It is demonstrated that initial conditions to simulate the
head-on collision of the two solitary waves in the absence of
a current are accurate.

Based on the cases discussed in this section, it is shown
that initial conditions are set properly to simulate the single
solitary-wave propagation in the presence of a linear shear
current, and the head-on collision of the two solitary waves in

TABLE II. Parameters of the head-on collision of the two solitary
waves in the absence of current.

Case (H/d)L (H/d)R U/c0

3 0.4014 0.3887 0

the absence of current by the HLGN model. Next, the HLGN
model will be used to study the head-on collision of two soli-
tary waves in the presence of a linear shear current.

IV. RESULTS AND DISCUSSION

In this section, the head-on collision of two solitary waves
in the presence of a linear shear current is studied by use of
the HLGN model discussed in the previous sections. Re-
sults presented include the surface elevation, velocity field
and particle trajectory. The linear shear current is described
as uc(z) = U(1 + z/d) and is shown in Fig. 1. In this s-
tudy, we consider two solitary waves with the same amplitude
H/d = 0.3. Parameters of the cases considered here are given
in Table III.

TABLE III. Parameters of the head-on collision of the two solitary
waves in the presence of a linear shear current, uc(z) =U(1+ z/d).

Case (H/d)L (H/d)R U/c0

4 0.3 0.3 0
5 0.3 0.3 -0.1
6 0.3 0.3 -0.3
7 0.3 0.3 -0.5

Initially, we place the two steady solitary waves in a lin-
ear shear current in the computational domain. The length of
the computational domain is x/d = 150. The peak of the left
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FIG. 4. Initial conditions for the head-on collision of two solitary waves in the presence of a linear shear current.
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wave is initially located at x/d = 45, and the peak of the right
wave is initially located at x/d = 120. We set the background
linear shear current everywhere outside the two solitary-wave
regions. After comparing results of the HLGN model for dif-
ferent level K, we observe that the HLGN-5 model provides
the converged results in this case as well. The computation-
al time on Intel Core i7-8850H CPU with 2.60 GHz is about
10 minutes for simulating wave propagation for 40 seconds in
these cases. The memory usage is about 20 MB.

A. Wave-surface elevation

We first focus on the wave-surface elevation during the
head-on collisions. Case 7 is considered as an example, and
the wave-surface elevation during the collision at differen-
t times are shown in Fig. 6, where t

√
g/d = 0 is the time

when the maximum surface displacement occurs. Initially, the
left wave, propagating in the opposite direction of the current,
is wider than the right wave, propagating in the same direc-
tion as the current, as shown in Fig. 6(a). As the time pass-
es, the two solitary waves encounter as shown in Fig. 6(b),
where it is observed that the amplitudes of the waves have al-
most remained intact. At time t

√
g/d =−2.21, very close to

the time when the maximum surface displacement occurs, the
amplitude of solitary wave propagating to the left increases
faster than the solitary wave propagating to the right, shown
in Fig. 6(c). The maximum surface displacement occurs at
time t

√
g/d = 0, shown in Fig. 6(d). It is found that the

maximum surface displacement is z/d = 0.656, about 1.09
times larger than the sum of the two solitary-wave amplitudes,
2H/d = 0.6. After the collision and as the solitary waves are
about to pass through the point of maximum surface displace-
ment, the solitary wave propagating to the left keeps its larger
amplitude than that of the right-going solitary wave, shown in
Fig. 6(e). At last, the two solitary waves separate from each
other as shown in Fig. 6(f). In Fig. 6(g), we also observe
some following wave trains for each solitary wave. It is ob-
served that when the maximum surface displacement occurs,
it is symmetrical for the no-current case, as shown in Fig. 7(a).
While in the presence of the background linear shear current,
the wave elevation becomes asymmetrical at the point of max-
imum displacement, as shown in Fig. 7(b). It is observed that
near the peak of the wave at the point of maximum surface
displacement, the two sides of the wave are on top of each
other, while near the SWL, the right-side elevation is wider
than the left-side elevation.

Next, the effect of the current strength on the wave el-
evation at the point of the maximum surface displacement
is considered. The wave-surface elevations when the max-
imum surface displacement occurs for the current strengths
U/c0 = 0,−0.1,−0.3 and −0.5 (Cases 4-7) are shown in Fig.
8, where we re-center the maximum surface displacements at
the same position x/d = 0. Near the maximum surface dis-
placement, the wave elevation is narrower with the stronger
current. While near the SWL, the wave profile is wider with
increasing current velocity.

The temporal variations of the peak horizontal positions of

the two solitary waves of Case 7 are shown in Fig. 9, where
t
√

g/d = 0 is the time when the maximum surface displace-
ment occurs. The linear fitting result is also shown in Fig. 9.
It is observed that there is only one wave peak propagating
from right to left for the duration Tr near t

√
g/d = 0. Wave

speeds of the two waves increase slightly after the collision.
Next, the current effect on the phase lag time, Tr, is studied

when only a single crest exists in the domain following the
studies of Cooker et al.42 and Tong et al.36. Results of the
phase lag time in the presence of linear shear current is shown
in Table IV. When U/c0 =−0.1 and −0.3, the current causes
larger phase lag time comparing with the no-current case.

TABLE IV. Phase lag time of the head-on collision of the two solitary
waves in the presence of linear shear current.

Case U/c0 Tr(g/d)0.5

4 0 3.19
5 −0.1 3.50
6 −0.3 3.51

B. Velocity field

In this section, we first present the distribution of the hor-
izontal velocity along the water column at the maximum
surface displacement followed by discussion about the two-
dimensional velocity field.

Distributions of the horizontal velocity under the peak of
the wave of Cases 5-7 are shown in Fig. 10, where we re-
center the maximum surface displacement at x/d = 0. For
comparison purposes, we also present the horizontal veloci-
ty of the current only. We note that for the no-current case
(Case 4), the horizontal velocity along the water column at
the maximum surface displacement is zero when the two soli-
tary waves have the same amplitude (similar conclusion has
been reached by Chen et al.26).

From Fig. 10, it is observed that the change in the current
velocity significantly affects the horizontal velocity distribu-
tion. The horizontal velocity is positive (i.e. the opposite di-
rection to the background current) near the bottom, while it is
negative (i.e. the same direction to the background current)
near the surface. It is also observed that at the collision point,
the velocity near the surface is significantly larger than the ve-
locity induced by the current only. The difference becomes
more significant for larger current velocities.

Ratios of the horizontal velocity at the peak, ua, and on the
seafloor, ub, for Cases 5-7 are given in Table V for when the
maximum surface displacement occurs. As mentioned before,
ua/c0 and ub/c0 ratios increase with larger current velocities.
It is remarkable that the ua/U and ub/U remain approximately
constant for all cases; they are about 1.40 and −0.37, respec-
tively.

To better investigate the current strength effects, the hori-
zontal velocity along the water column under the maximum
displacement for Cases 4-7 are shown in Fig. 11(a). It is
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FIG. 6. Surface elevation during the head-on collision at different times before and after collision, (H/d)L = (H/d)R = 0.3,U/c0 = −0.5,
Case 7.

found that as the current-strength increases, both the horizon-
tal velocities at the bottom and the free surface increase. Al-
so, in all cases, the zero horizonal velocity occurs at almost
the same depth, at about z/d =−0.63. Currents do not affect
the position of the zero horizonal velocity. The linear super-
position of the two steady solitary waves in the presence of
linear shear current for Cases 4-7 is shown in Fig. 11(b). The

zero linear-superposition horizontal velocity is also at almost
the same depth, at about z/d = −0.83, which is lower than
z/d = −0.63. The zero horizonal velocity is shifted up be-
cause of the head-on collision.

Next, we consider two moments of the head-on collision
process of Case 7; namely at t

√
g/d =−32.21 (initial condi-

tion) and t
√

g/d = 0 (when the maximum surface displace-
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TABLE V. Ratios of the horizontal velocity under the peak of the
wave.

Case U/c0 ua/c0 ub/c0 ua/U ub/U
5 -0.1 -0.140 0.037 1.400 -0.370
6 -0.3 -0.420 0.110 1.400 -0.367
7 -0.5 -0.707 0.184 1.414 -0.368

ment occurs). Figure 12 shows the velocity field under the
two solitary waves, at t

√
g/d = −32.21, including the sec-

tion of the left solitary wave x/d = 30∼60 in Fig. 12(a) and
the section of the right solitary wave x/d = 105∼135 in Fig.
12(b). We observe the formation of an obvious vortex near
z/d =−0.3 under the wave crest for the solitary wave propa-
gating in the opposing shear current (left solitary wave), and
the center of the vortex is marked with red dot as seen in
Fig. 12(a). However, no such vortex is found for the solitary
wave propagating in the following shear current (right solitary
wave), as shown in Fig. 12(b).

The velocity field when the maximum surface displacement
occurs is shown in Fig. 13(a). The red dot is used to mark
the center of the vortex. Presence of a vortex is observed,
although it is not as strong and clear as before. In order to
see the vortex clearly, we enlarge the velocity field in Fig.
13(b). At this moment, the vertical position of the center of
the vortex is at about z/d =−0.61, which is much lower than
the initial position at about z/d =−0.3 shown in Fig. 12(a). It
is also observed that the horizontal position of the vortex is not
exactly under the maximum surface displacement. Instead, it
is shifted slightly to the right side of the horizontal position of
the maximum surface displacement.

C. Particle trajectory

In this subsection, we consider the particle trajectories dur-
ing the collision process for Cases 4-7. To obtain the particle
trajectories, we use a Lagrangian approach and keep track of
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FIG. 10. Horizontal velocity along the water column at the point
of maximum surface displacement, (H/d)L = (H/d)R = 0.3, Cases
5-7.
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the motion of nine particles, initially located at various hor-
izontal and vertical positions shown in Fig. 14 by the black
circles. c1 and c2 are speeds of the right-going solitary wave
and the left-going solitary wave, respectively.

We first briefly introduce the numerical method to track the
particle trajectory. Suppose at initial time t0, a given particle
is at (x0,z0). We can obtain the new position (x1,z1) of the
particle at time t1 as

x1 = x0 +
∫ t1

t0
udt, (11a)

z1 = z0 +
∫ t1

t0
wdt, (11b)

where dt is the time step. In this work, we select dt = 10−6s
in order to track the particle trajectory accurately.

The initial locations of the particles are chosen by having
a priori knowledge about the location of the maximum dis-
placement due to the collision of the solitary waves. The mid-
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FIG. 12. Velocity field of the two solitary waves in the presence of
shear current at t

√
g/d =−32.21, (H/d)L = (H/d)R = 0.3,U/c0 =

−0.5, Case 7.

dle column particles are placed at the location of the max-
imum displacement. The left column particles and right col-
umn particles, shown in Fig. 14, are then set at equal distances
x/d = 16 on the left and right of the middle column particles,
respectively. To capture the change in particle trajectory with
depth, the particles are distributed at three rows in the vertical
direction. The top row is on the SWL (z/d = 0), and the lower
rows are at z/d = −0.2 and −0.5. The initial location of all
nine particles are shown in Fig. 14. These particle trajectories
of Cases 4-7 are shown in Fig. 15, where the black circles
represent the initial particle positions.

For the no-current case (Case 4) shown in Figs. 15(a) to
15(c), it is found that all particles follow a path and eventu-
ally return approximately to their initial positions. Moreover,
the trajectories of the left particles and the right particles are
symmetrical for particles at the same vertical positions.

For Case 5, U/c0 = −0.1, the particle trajectories are
shown in Figs. 15(d) to 15(f), and obvious differences are ob-
served when compared with the no-current case, even though
the current velocity is not large. None of the particles return
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FIG. 13. Velocity field under the maximum displacement point at
t
√

g/d = 0, (H/d)L = (H/d)R = 0.3,U/c0 =−0.5, Case 7.

to their initial positions. Closed loops and motion peak are
found for the left and right column particle trajectories at all
three vertical positions. The left column particles first make
closed-loop motions followed by phugoid motions. On the
contrary, the right column particles first undergo phugoid mo-
tions followed by the closed-loop motions. No closed loops
are observed for the middle column particles in this case.

The trajectories of Case 6, U/c0 =−0.3, are shown in Figs.
15(g) to 15(i). With the stronger current velocity in this case,
the closed loops are only observed for the trajectories of the
left and the right column particles at z/d =−0.5. The closed-
loop motion is also observed for the middle column particle at
z/d =−0.5.

Figures. 15(j) to 15(l) show the particle trajectories of
Case 7 with U/c0 = −0.5, where the current strength is the
strongest among all cases. The closed loops do not exist
anymore and when compared with Cases 5-6, two peaks,
rather than one peak, for the middle-particle trajectories at
z/d =−0.2 is observed.
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V. SUMMARY AND CONCLUSIONS

The HLGN model is developed to study the head-on colli-
sions of solitary waves in the presence of linear shear current.
Only two solitary waves with the same amplitudes are consid-
ered in this study, although this is not a requirement in general.
Four conditions are considered by varying the current velocity
from zero to a strong current with U/c0 =−0.5.

It is understood that the head-on collision process is re-
markably affected by initial conditions. To ensure suitabili-
ty and accuracy of the initial conditions, results of the model
are first compared with existing data of the literature for (i)
a solitary wave propagating over a shearing current, and (ii)
solitary-wave collision, in the absence of a background cur-
rent. Excellent agreements with the laboratory measurements
and other theoretical solutions are observed. The HLGN mod-
el is then used to study solitary-wave collision in the presence
of a linear shear current.

It is shown that the profile of the maximum surface dis-
placement is significantly affected by the background linear
shear current. It is found that stronger current leads to a nar-
rower wave elevation near the maximum surface displacement
and a wider elevation near the SWL.

It is observed that the background shear current has a signif-
icant effect on the horizontal velocity along the water column
at the point of maximum surface displacement. The direction
of the horizontal velocity is opposite of the current direction
near the seafloor, and following the current direction near the
free surface. Stronger currents lead to larger horizontal veloc-
ities at both the bottom and free surface. Vortex is formed in
the fluid field due to the propagation of a solitary wave over
an opposing current. At the point of the collision and maxi-
mum surface displacement, the vertical position of the vortex
is lower than that of the initial vortex, and its horizontal posi-
tion is shifted upstream.

We also present the particle trajectories during the head-on

collision process. It is found that the particle follows a loop
motion. The loop motions become smaller with larger current
velocities. At the point of the maximum surface displacement,
smaller loop motions are caused by the strong current under
the surface.
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FIG. 15. Particle trajectories of Cases 4-7, (H/d)L = (H/d)R = 0.3, see Table III for current velocities of each case.
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