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Multi-agent Federated Reinforcement Learning
Strategy for Mobile Virtual Reality Delivery

Networks
Zhikai Liu, Navneet Garg, Member, IEEE, Tharmalingam Ratnarajah, Senior Member, IEEE.

Abstract—Virtual reality (VR) services have become increas-
ingly popular but presented challenges for wireless communi-
cations due to the large amounts of data requirements. In this
work, we consider a dynamic changing VR scenario and propose
a joint caching, computing, and communication (3C) strategy,
subject to bounded latency, power, caching, and computing
constraints, to minimize long-term discounted delay and energy
consumption for VR projection. Our approach involves a three-
layer communication system consisting of a cloud server, UAV
(Unmanned Aerial Vehicle) base stations with mMIMO (massive
Multiple-Input Multiple-Output) acting as edge servers, and
mobile user devices. To satisfy different users’ requirements, we
design eight service routes for 3C decisions. We then employ
federated multi-agent deep reinforcement learning (RL) to help
users obtain optimal service routes influenced by their location,
orientation, and content preference, with edge servers acting as
learning agents. For the RL part, we design multi-input and
output actor and critic networks deployed on edge servers. For
the Federated Learning (FL) part, we present the federated
average process and mathematically prove its convergence. Simu-
lation results demonstrate our proposed algorithm can effectively
reduce training loss, converge smoothly, and significantly reduce
both delay and energy consumption by approximately 18.3% and
25.6%, respectively.

Index Terms—3C strategy, multi-agent reinforcement learning,
federated learning, VR delivery, massive MIMO.

I. INTRODUCTION

A. Motivation

V Irtual reality (VR) application in wireless communication
networks is getting more attention since it can create a

high-definition VR world and bring an immersive experience
to users [1]. The global VR market size was valued at USD
21.83 billion in 2021 and is expected to expand at a compound
annual growth rate (CAGR) of 15.0% from 2022 to 2030 [2].
Therefore, how to minimize the enormous backhaul burden
and transmission load while satisfying user-perceived quality
of experience (QoE) [3] becomes one of the critical challenges
to mobile wireless networks. Mobile edge computing (MEC)
with caching has emerged as a promising solution for VR
delivery by equipping mobile high-capacity edge servers at the
network edge [4], [5]. In particular, MEC refers to performing
computation-intensive tasks at network edge nodes to mini-
mize the latency and energy consumption [6]. Edge caching
refers to proactively storing popular content in network edge
servers to reduce traffic redundancy and delivery delays [7].

This work was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grant number EP/T021063/1.

For the mobile VR delivery, it requires the projection task
to convert the 2D FoV (Field of View) to the 3D FoV [8],
which can be performed at either the edge server or the VR
devices. An FoV is the video segment corresponding to the
user’s position and orientation. In addition to computation
tasks, edge servers and VR devices can store related FoVs
to reduce communication latency and energy consumption.
Effectively utilizing and allocating the cache storage and
computing resources to complete this VR projection task has
been a popular research topic in the past few years [9]–[12].

In [13]–[17] for a multi-level edge IoT system, an edge node
offloading strategy is optimized with respect to 3C resources
subject to caching and computing constraints. In [18] for real-
time confrontation VR games, the average delay difference
among VR players is minimized for edge computing and
bandwidth resources. [19], [20] investigated the 3C problem
for mobile VR delivery to reduce the latency. However, [13]–
[20] ignore the energy consumption. To minimize energy
consumption, [21] exploits the trust among social users to
share resources under the 3C framework. [22] developed
an intent-based traffic control system that dynamically co-
ordinates edge computing and content caching. But [21],
[22] ignore delay. To minimize the cost of both delay and
energy consumption, different solutions are proposed including
dynamic programming [23], [24], integer linear programming
using branch and bound [25], semi-definite relaxation [26],
Lyapunov optimization [27], successive convex upper bound
minimization [28], [29], McCormick envelope optimization
[30], many-to-one Gale-Shapley (m-GS) matching algorithm
[31]. Further, specific to VR delivery, the joint delay and
energy consumption problem is investigated in [32]–[36], op-
timized by Lagrangian dual decomposition approach, strongly
polynomial algorithm of Schrijver, block coordinate descent
(BCD) method, Lagrangian relaxation (LR) suboptimal solu-
tion, and alternating direction method of multipliers (ADMM)
algorithm. In [37], for a similar problem, mMIMO (massive
Multiple-Input Multiple-Output)-aided relay nodes are consid-
ered to improve the physical layer performance.

In the above works [17]–[20], [23]–[36], an instance of joint
problem is considered. However, in dynamically changing en-
vironments, it is important to optimize long-term performance.
In this scenario, different deep learning-based approaches are
investigated in the literature, such as deep Q-learning network
(DQN) [21], double deep Q-learning network (DDQN) [13],
DDPG (Deep Deterministic Policy Gradient) [14], [15], [22],
Multi-Layer Perception (MLP) [16]. A centralized and online
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TABLE I
LITERATURE REVIEW FOR 3C STRATEGY

Paper [13]–[15] [16] [17] [18] [19] [20] [21], [22] [23]–[31] [32], [33] [34] [35] [36] [37] [38] [39] [40] [41] Proposed
Delay ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Energy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Learning RL MLP RL RL MARL MARL FL MARL+FL
mMIMO ✓ ✓

Service route 1 7 5 4 3 8 6 8

3C decision algorithm with imitation learning is proposed
in [38]. However, due to privacy issues and higher cooper-
ation overhead in the above works, multi-agent reinforcement
learning (MARL) algorithms are investigated. In [39], authors
solve the problem of dynamic caching and computational
offloading with random task arrival rate using decentralized
DDPG. Authors of [40] adaptively optimize cache placement
strategies based on an extended multi-armed bandit (MB).
Federated learning is adopted for caching in edge computing
in [41]. Federated learning can realize the joint participation
of multiple data sources in model training without the need
to transfer the original data, thereby accelerating the training
speed and improving privacy.

The above papers are categorized in table I. In summary,
the existing works for edge caching and computing strategy
in mobile VR delivery networks lack the investigation of
learning approaches with the objectives of long-term delay and
energy minimization in dynamically changing environments,
especially including massive MIMO.

B. VR service routes

For VR delivery, we consider a three-layer communication
infrastructure including a central cloud, UAV base stations,
and user VR devices, where the UAV base stations act as edge
servers to help users to project 2D FoV to 3D FoV. When the
2D FoV is cached at the edge server, the edge server can
project it to 3D FoV, and the user can download the 3D FoV
from the edge server. When no FoV is cached at the user or
edge server, users can download the 3D FoV from the cloud
server or download the 2D FoV and project it to 3D FoV
locally. Based on these choices, distributed computing and
caching decisions are defined in the following service routes:
(1) Local computing with local 2D FoV caching; (2) Edge
computing with edge 2D FoV caching; (3) Local computing
with downloading 2D FoV without caching; (4) Local comput-
ing with edge 2D FoV caching; (5) Edge computing with 2D
FoV downloading; (6) Downloading 3D FoV without caching;
(7) Local 3D caching; (8) Edge 3D caching.

Among these routes, the energy consumption ranking: (5) =
(2) > (4) > (3) = (1) > (6) = (8) > (7). The reason is
the energy consumption of route (5) includes edge computing
and the transmission of 3D FoV from the edge server to the
user; route (2) is similarly structured. Route (4) includes local
computing and the transmission of 2D FoV from the edge
server to the user, with local computing typically being more
energy efficient than edge computing due to the higher CPU-
cycle frequency of edge servers and 2D FoV having a smaller
data volume than 3D FoV. The energy consumption of route
(3) only includes local computing. Routes (1) and (3) have the
same energy consumption. The energy consumption of routes
(6) and (8) is caused by downloading 3D FoV from the edge

server, which is lower than that of computing. Finally, the
energy consumption of route (7) is zero.

Delay ranking: (5) > (3) > (4) ≈ (2) > (1) >
(6) > (8) > (7). The delay of the route (5) consists of
edge computing delay, the delay of downloading 2D FoV
from the cloud server to the edge server, and the delay of
downloading 3D FoV from the edge server to the user. The
delay of Route (3) includes local computing and downloading
2D FoV from the cloud server to the user. The delay of route
(4) includes local computing and the delay of downloading
2D FoV from the edge server to the user, which is usually
shorter than that from the cloud server. The delay of route (2)
includes edge computing and the delay of downloading 3D
FoV from the edge server to the user. The delay of route (2)
is approximated to that of the route (4), as edge computing
delay is typically shorter than local computing delay, but the
delay of downloading 3D FoV is greater. The delay of route
(1) is the local computing delay. The delay of routes (6) and
(8) is downloading 3D FoV from the cloud server and edge
server to the user, respectively. The delay of route (6) is greater
than that of route (8), and both are shorter than that of route
(1), as computing time is typically greater than transmitting
time. Finally, the delay of route (7) is zero.

Caching cost ranking: (7) > (8) > (2) = (4) > (1) >
(3) = (6) = (5). The reason is the edge server has a larger
cache than the user device. Therefore, the caching cost of local
3D caching is greater than that of edge 3D caching, which is
further greater than the cost of local 2D caching, followed by
the least cost of edge 2D caching. Therefore, how to make an
optimal service route selection is a tough decision problem.

In the literature, authors have considered the different num-
ber of service routes. The work in [18] assumes only one
service route, where the edge server provides computing ser-
vices to VR users. Authors in [34] choose three service routes
((1),(3),(5)), which are increased to five choices for scheduling
two consecutive tasks in [20]. In [32], [33], VR contents
are delivered via four routes including ((1),(3),(5),(7)). In
[36], authors ignore routes (4) and (7) compared with the
proposed work. Further, in [19], they ignore the route (5),
while only [35] considers all eight service routes as in this
paper. However, [35] does not consider a dynamically chang-
ing environment, only providing one instance problem.
C. Contribution

Table I describes the literature review. This is the first
3C strategy study for VR delivery, considering long-term
performance in a dynamic changing environment, where both
the delay and the energy consumption are optimized. More-
over, we use a multi-agent federated reinforcement learning
algorithm, enhanced mMIMO physical technique, and com-
prehensive eight service routes, which are ignored in some
previous works, to improve the 3C strategy performance.
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Specifically, we first consider a system model including
a central cloud, multiple UAV base stations with mMIMO,
and multiple single antenna user devices. Then, we develop
a time-slotted model and a VR scenario in which VR users
request FoV step by step. To obtain the optimal service routes
for each user’s FoV requests for minimizing system latency
and energy consumption, we formulate a joint 3C problem
as a Markov Decision Process (MDP) with the long-term
discounted objective subject to caching, computing, latency,
and power constraints. To solve this problem, we use a
federated multi-agent reinforcement learning algorithm, where
all UAV base stations act as learning agents and are deployed
actor and critic networks. For the federated learning process,
we mathematically analyze and prove its convergence. The
main contributions of this paper are summarized as follows.

1) We develop a three-layer system model with mMIMO
for VR delivery, where UAV base stations with high caching
and computing capacity act as edge servers and help users
complete the VR projection tasks. Then, a time-slotted model
and a VR scenario are developed. Based on the system model,
we designed eight service routes to satisfy different users’
requirements and make joint 3C decisions.

2) To minimize the long-term delay and energy consumption
in the dynamic environment under the caching, computing,
latency, and power constraints, we design a multi-agent feder-
ated reinforcement learning algorithm where the edge servers
act as learning agents. To realize this, we construct multi-
input and output actor and critic networks and deploy them
at edge servers. Thus, edge servers can learn and obtain the
optimal service routes for the associated users according to
their locations, orientations, and video preferences.

3) To improve network privacy and performance, we con-
sider a federated averaging process and mathematically ana-
lyze and prove its convergence by proving the average squared
gradient norm is bounded. Through simulations, the penalty
parameters and weight of energy consumption are discussed.
As the training episodes grow, the critic loss, total delay, and
energy consumption can be reduced and converge smoothly.
The algorithm performance of different learning rates, cache
sizes, and CPU frequencies is presented. By comparing with
other baselines [19], [34], [42], [43], our proposed algorithm
can reduce the delay and energy consumption by approxi-
mately 18.3% and 25.6%.

D. Organization
The remainder of the paper is structured as follows. In

Section II, we present the system model and analyze the
service routes. In Section III, we formulate the optimization
problem. The multi-agent reinforcement learning algorithm is
given in Section IV. Section V describes edge-federated multi-
agent learning. The simulation results are discussed in Section
VI. Finally. Section VII brings the paper to a conclusion.

E. Notations
Scalars, vectors, matrices, and sets are represented by the

lower case (a), lower case bold face (a), upper creates bold-
face (A), and calligraphic (A) letters respectively. Transpose
of matrices is denoted by (.)T . The notation ∥.∥2 denotes the
l2 norm. |K| denotes the cardinality of the set K.
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Fig. 1. The system model.

II. SYSTEM MODEL

As shown in Figure 1, we consider a three-layer wireless
network having user devices (playing VR contents), edge
servers (UAV base stations), and the cloud server (macro base
station (MBS)). Each of S edge servers, indexed in the set
S = {1, . . . , S}, is equipped with MS antennas. The sth edge
server is associated |Ks| single-antenna users indexed in the
set Ks. It is assumed that each edge server serves the same
number of users, and only the distribution of the users and the
distance between them to the edge server differ. Thus, |Ks| is
a constant. This assumption is reasonable since, in VR games,
sports, or other applications, an equal number of players in
different groups is typically maintained to ensure fairness and
balance. Among the 3-layer system, the generation of 3D
VR FoV needs four steps: 1) Stitching: obtains a spherical
video by merging videos captured by a multi-camera array.;
2) Equirectangular projection: obtains a 2D video by flattening
the spherical video; 3) Extraction: extracts the 2D FoV of the
viewpoint captured by the tracker on the mobile VR device
from the 2D video; 4) Projection: projects the 2D FoV into
a 3D FoV. After the projection, the tracker and rendering
components can be computed on the VR device to produce the
final 3D VR video. It is noted that the first three pre-processing
steps of stitching, equirectangular projection, and extraction
are performed offline on the cloud server. This approach can
reduce the computational load on both the edge server and
VR device and reduce traffic within the wireless network. But
the projection can be executed either at the edge server or
VR device. Therefore we developed eight service routes to
customize personalized services for each user [44].
A. Time-slotted model and VR scenario

We adopt a time-slotted model, as depicted in Figure 2, to
demonstrate the structure of each time interval. At the start
of each time slot, the FoV content placement phase (CPP) is
carried out, which is based on the selected service route from
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tth time slot

tth 

CPP
tth CDP tth IEP

  t+1th 

CPP
t+1th CDP

  t+1th 

IEP

t+1th time slot

Fig. 2. A typical time slot structure of the dynamic process.

the previous time slot. This service route is determined via
the content request and cache information from the preceding
time slot. Subsequently, the content delivery phase (CDP)
commences, in which computing resources are allocated based
on the number of requests, and content delivery is executed.
Finally, the information exchange phase (IEP) occurs, during
which computation tasks are established in accordance with
the constraint requirements, the request information and cache
status are collected, and the 3C strategy is updated accordingly.

It is assumed that each user is playing VR content in
separate rooms, which is reasonable since movement and
actions needed in VR interactions require moderate real-world
space. The geographical area of each room (each VR video) is
divided into M = L1 ×L2 grids (M modules), where L1, L2

represent the length and width of the room respectively. Each
module contains N equirectangular FoVs. At every time slot
between the CPP and CDP, users traverse Ns steps from one
grid to another Ns grids step by step while observing Ns FoVs
from their positions within these grids. As a result, users are
limited to only requesting Ns FoVs per time slot, as their line
of sight can only be directed in one specific direction during
each interval. We use Rk,t denote the requested FoV set of
user k at time slot t, where |Rk,t| = Ns.
B. Physical layer model

1) Downlink rate at user devices and edge server from the
cloud server: In the downlink channel from the cloud server
to the k-th user, the averaged achievable rate can be defined
as

Rk,c = Bkc · log2
(
1 +

Pk,c

PLk,c ·N0Bkc

)
, (1)

where Pk,c is the transmit power from the cloud server to the
k-th user device; PLk,c is the average path loss of the air-to-
ground (A2G) channel between the device and the cloud server
[45]; N0 is the noise power; Bkc is the downlink bandwidth.

Similarly, the downlink rate at the s-th edge server
form cloud server can be expressed as Rs,c = Bsc ·
log2

(
1 +

Ps,c

PLs,c·N0Bsc

)
.

2) Downlink rate at user devices from the edge server:
The received signal of mMIMO at the k-th VR device from
the s-th edge server can be given as [46]

yks = hHksxs + nk

= hHkswskdsk +
∑

k′ ̸=k,k′∈Ks

hHkswsk′dsk′ + nk, (2)
where hks is the MS × 1 CSI vector from the s-th edge
server to the k-th VR device; xs =

∑
k∈Ks

wskdsk is
the transmitted signal from the sth edge server such that
E |dsk|2 = 1 where dsk is the distance and E∥xs∥22 ≤ Ps;
nk ∼ CN

(
0, σ2

)
denotes the additive Gaussian noise. The

signal-to-interference-plus-noise ratio (SINR) at the k-th VR
device can be obtained as

γks =
E
∥∥hHkswsk

∥∥2
σ2 +

∑
j ̸=k,j∈Ks

E
∥∥hHkswsj

∥∥2 , (3)

yielding the achievable rate Rk,s = Bks log2 (1 + γks), where
Bks is the allocated channel bandwidth. The edge server can
utilize zero-forcing to mitigate the interference provided the
condition that the number of antennas at the edge server must
be at least the number of connected users, that is, MS ≥ |Ks|.

C. Edge caching and computing model
For simplicity, we refer the nk-th 2D formatted FoV of the

mk-th module within the fk-th video, requested by the k-th
user using the tuple notation ik = (fk,mk, nk) ∈ I = [F ] ×
[M ]× [N ], where each user is assumed to request videos only
from the video library having F videos, that is, fk ∈ [F ] =
1, . . . , F . Similarly, the 3D-formatted FoVs are indexed by
īk ∈ I. The cloud server is assumed to store the whole library,
whereas the edge servers and user devices have limited cache
capacities. The cache of the user devices and edge servers
is able to store the VR content in advance in either 2D or
3D format. Let Ce,s and Cu,k denote the sets for the content
caching with cache capacities Ce,s and Cu,k at the sth edge
server and the kth user device, respectively. At time slot t,
Ce,s(i, t), Ce,s(̄i, t), Cu,k(i, t), Cu,k (̄i, t) ∈ {0, 1}.

The VR devices can play only 3D content. Therefore, the
conversion of 2D content to 3D requires computations. Let
ηi represent the required CPU computing workload (in the
number of CPU cycles) of the i-th FoV. Additionally, we
use τki and ρki to denote the allowable delay and energy
consumption threshold for the FoV i at the kth user. Actual
latency and energy consumption cannot exceed this threshold.
Since some FoV contents can be cached and computed in
advance, that is, if users have not requested the ith content,
these threshold values can be set to higher (until requests
occur), e.g., τ̄ki = ρ̄ki =∞, ∀i /∈ Rk,t,∀k. The cloud server
manages distributed computing and caching.

D. Service routes
We consider the requested contents of users are delivered

via 3C decisions, which are defined to be performed in the
eight routes described as follows. It is noted that users request
FoVs from the edge server, and each edge server knows the
requests of its associated users at the IEP. However, the cloud
server and other edge servers do not have access to the requests
of other associated users. The time to transmit the FoV index
by the user device is negligible as compared to downloading
time of 2D FoV or 3D FoV. So request processing time can
be merged with downloading time.

1) Route 1: local computing with local 2D FoV caching:
When the desired FoV content is cached at the kth user in
the 2D format, the computing task is expand this content to
3D format such that it satisfies the delay constraint ηi

gk
≤ τ̄ki,

where gk denotes the CPU-cycle frequency (in cycles/second)
for the k-th VR device. The corresponding energy consump-
tion is given as κηig2k, where κ = 10−11 represents the energy
conversion efficiency depends on the chip architecture [44].

2) Route 2: edge computing with edge 2D FoV caching:
When the requested 2D FoV content is stored at the sth edge
server, the edge server can perform edge computations and
then transmit the 3D FoV to the VR device by downlink
channel from the edge server to the user. The total delay of this
process can be expressed as ηi

gs
+ Lī

Rk,s
, where gs denotes the



5

TABLE II
CACHING AND COMPUTING DECISION TABLE AS ”E”: EDGE, ”L”: LOCAL.

Service route Caching decisions Computing decisions Delay Energy
(E2D, E3D, L2D, L3D)

e1 (0, 0, 1, 0) Local ηi
gk

κηig
2
k

e2 (1, 0, 0, 0) Edge ηi
gs

+
Lī

Rk,s
κηig

2
s +

PsLī
Rk,s

e3 (0, 0, 0, 0) Local Li
Rk,c

+ ηi
gk

κηig
2
k

e4 (1, 0, 0, 0) Local ηi
gk

+ Li
Rk,s

κηig
2
k + PsLi

Rk,s

e5 (0, 0, 0, 0) Edge ηi
gs

+ Li
Rs,c

+ Li
Rk,s

κηig
2
s +

PsLī
Rk,s

e6 (0, 0, 0, 0) 0 Lī
Rk,c

0
e7 (0, 0, 0, 1) 0 0 0
e8 (0, 1, 0, 0) 0 Lī

Rk,s

PsLī
Rk,s

CPU-cycle frequency (in cycles/second) of the sth edge server.
The corresponding energy consumption is κηig2s +

PsLī

Rk,s
.

3) Route 3: local computing with downloading 2D FoV
without caching: The user can download the 2D FoV content
directly from the cloud server by the downlink channel from
the cloud server to the user and then perform computations
locally for 3D. The execution delay and energy constraints
can be written as Li

Rk,c
+ ηi

gk
≤ τ̄ki and κηig2k ≤ ρ̄ki, where it

is assumed that the cloud server is not constrained for energy.
4) Route 4: local computing with edge 2D FoV caching:

When the edge server caches the 2D FoV, the user can also
download the 2D FoV from the edge server by the downlink
channel from the edge server to the user and compute locally.
The total delay and corresponding energy consumption are
ηi
gk

+ Li

Rk,s
and κηig2k +

PsLi

Rk,s
.

5) Route 5: edge computing with 2D FoV downloading:
The edge server can download the 2D FoV from the cloud
server by the downlink channel from the cloud server to the
edge server. Then the edge server performs edge computations
and transmits the 3D FoV to the user device by the downlink
channel from the edge server to the user. The total delay and
energy consumption are ηi

gs
+ Li

Rs,c
+ Lī

Rk,s
and κηig2s +

PsLī

Rk,s
.

6) Route 6: downloading 3D FoV without caching: The
user can also download the 3D FoV directly from the cloud
server by the downlink channel from the cloud server to the
user. With no constraint on energy in this route, the incurred
delay can be given as Lī

Rk,c
.

7) Route 7: local 3D caching: It is also possible for the
user to cache the content in the 3D format without expanding
computations, which leads to zero energy expense and delay.

8) Route 8: edge 3D caching: When the edge server caches
the 3D format, the user can download the 3D FoV from the
edge server by the downlink channel between them. The total
delay and energy consumption are Lī

Rk,s
and PsLī

Rk,s
.

Let xki ∈ {e1, . . . , e8} represents the 8× 1 route selection
vector, where ej denote the jth column of an identity matrix
I8, that is, 1Txki = 1,∀k ∈ Ks, i ∈ I. For each user, delay
and energy constraints can be expressed as

τTkixki ≤ τ̄ki, ρTkixki ≤ ρ̄ki,∀k ∈ Ks,∀i ∈ I, (4)

where τTki ∈ R1×8 and ρTki ∈ R1×8 are the delay and energy
consumption vectors, respectively, containing the correspond-
ing values of eight service routes.
E. Caching decisions

Based on the content preference of users and cache status,
the FoV contents are cached at both the edge servers and

users. Based on the number of requests and users’ content
preferences, the content caching is decided using variables
Ce,s(i), Cu,k(i),∀i ∈ I, k ∈ Ks, s ∈ S . The user device and
edge server can cache either 2D or 3D content. This decision
can be presented as ci = (Ce,s(i), Ce,s(̄i), Cu,k(i), Cu,k (̄i)) ∈
bin4 (8, 4, 2, 1, 0) = B,∀i ∈ I, where bin4(n) represents the
base-2 binary value of the integer n. These eight choices
support the eight routes for computing and caching, which
are summarized in Table II.

III. PROBLEM FORMULATION

As shown in Figure 2, the joint 3C optimization problem is
depicted as a dynamic process. The user’s request for FoV is
based on their movement within the room, which progresses
step by step, resulting in the subsequent user request at
time t being related to that of the previous time t − 1.
Hence, the joint 3C optimization problem can be framed as a
Markov decision process (MDP) problem for learning optimal
decision-making policies in dynamic environments, with the
user’s request for FoV being time-varying and unknown in
advance. Our objective is to minimize the long-term, network-
wide discounted energy consumption and delay by optimizing
the service route selection for each user. The problem is also
subject to constraints such as cache constraints and computing
load constraints on both the edge server and the user device.
It is important to note that the optimized solution for an
individual time slot may not necessarily solve the long-term
discounted optimization problem, as the objective function
depends on the states of previous time slots. Thus, the joint
optimization problem can be formulated as

min
xki(t)

∞∑
τ=t

∑
s∈S

∑
k∈Ks

∑
i∈Rk,t

γτ−t
(
min

(
τTki(t)xki(t), τ̄ki(t)

)
+ βmin

(
ρTki(t)xki(t), ρ̄ki(t))

)
(5a)

subject to ,∑
i∈Rs,t

Ce,s(i, t)Li + Ce,s(̄i, t)Lī ≤ Ce,s,∀s ∈ S, (5b)

∑
i∈Rk,t

Cu,k(i, t)Li+Cu,k (̄i, t)Lī≤Cu,k,∀k∈Ks,∀s∈S, (5c)

∑
i∈Rs,t

ηe,s(i, t) ≤We,s,∀s ∈ S, (5d)

∑
i∈Rk,t

ηu,k(i, t) ≤Wu,k,∀k ∈ Ks, s ∈ S. (5e)



6

The first item of (5a) denotes the delay with the selected
service route and latency constraint, while the second item
denotes the energy consumption with the selected service route
and energy consumption constraint. Constraint (5b) denotes
the caching constraint at the edge server, which means the
sum of requested FoV, including 2D and 3D FoV, cached at
the edge server should be less than the edge cache size. Con-
straint (5c) denotes the caching constraint at the user devices.
Constraint (5d) denotes the computing constraint at the edge
server, which means the sum of the required CPU computing
workload at the edge server should be less than the maximum
edge computing load. Constraint (5e) denotes the computing
constraint at the user devices. We,s and Wu,k denote the
maximum computing load of the sth edge server and the kth

user device. ηe,s(i, t) and ηu,k(i, t) denote the sum of the CPU
computing workload of all computing tasks allocated at the
edge server and user device, respectively. Rs,t = {ik, k ∈ Ks}
denotes the requested FoV of all associated users of the s-th
edge server at time slot t, |Rs,t| = Ns×|Ks|. β is the weight
of the energy consumption. γ is the discounted factor.

In the above problem, the caching and computing entities
are interdependent and cannot be decoupled. Since the solution
is computationally intensive and useful to certain devices (each
user prefers their own content delivery solution), the multi-
agent reinforcement learning approach is adopted, which is
described in the next section.

IV. MULTI-AGENT REINFORCEMENT LEARNING MODEL

In this section, first, the components of reinforcement learn-
ing are presented, followed by the details of multi-agent RL
and the corresponding algorithm.

A. Motivation of MARL

The service route selection process can be conceptualized
as a dynamic MDP. As depicted in Figure 2, FoV content
placement is executed during the content placement phase of
time slot t, utilizing the information from the previous time
slot to determine the service route selection action. Following
the content delivery phase, an information exchange phase
takes place where the state of the system is updated based
on the user requests and cache placement, thereby revealing
the next state. With this information, the reward is calculated,
and the state is updated before the end of the time slot t.

The RL algorithm is an appropriate solution to solve this
MDP problem. Additionally, the large number of users in the
system creates a significant time complexity when optimizing
service route selection using a cloud server, leading to an
excessive burden on the infrastructure. To mitigate this, edge
servers can serve as learning agents, selecting service routes
for themselves and the users they are assigned to. Furthermore,
edge servers can collaborate with one another through fed-
erated aggregation to improve the overall network’s learning
performance. Thus, we employ MARL to tackle this issue.

The reason why users are not chosen as learning agents
is that they need to possess knowledge of the edge server’s
current caching and computing information in order to perform
caching and computing actions, which would result in a
violation of public information privacy security since a single

edge server serves multiple users. Additionally, user equipment
has limited computing and learning capabilities, making it
more efficient for the edge server to assume this responsibility.

B. States, action, rewards at edge server

1) States: The s-th edge server is connected to Ks users
and performs reinforcement learning operations. At time slot
t, the state at the edge server contains the local observations
of the environment and the status of the assigned user devices,
including cache states of the edge server and assigned user,
and the user requested FoV set, given as,

se,s(t) = (Ce,s(t),Rs,t, Cu,k(t),∀k ∈ Ks)

∈ 2|Rs,t| ×
∏
k∈Ks

2|Rk,t| × |Rk,t|, (6)

where 2 is due to each cache state being a binary value.
2) Action: At time slot t, action at the edge server is to se-

lect the service route and perform the cache and computations,
that is,

ae,s(t) = (xki(t),∀k, i ∈ Rs,t) ∈
∏
k∈Ks

8|Rk,t|, (7)

where 8 is the number of service routes, and the cache updates
are subjected to the cache constraint.

3) Reward: At time slot t, the system reward can be defined
as the sum of negative delay and energy consumption, as
per Eq. (5a) since our objective is to enhance the reward
while minimizing both the delay and energy consumption.
Additionally, the penalty parameters are multiplied by each
constraint.

rs(t)=
∑
k∈Ks
i∈Rk,t

−min
[
τTki(t)xki(t),τ̄ki(t)

]∑
i∈Rk,t,k∈Ks

τ̄ki(t)
−
βmin

[
ρTki(t)xki(t), ρ̄ki(t)

]∑
i∈Rk,t,k∈Ks

ρ̄ki(t)

+ λ1

max

0,

 ∑
i∈Rs,t

Ce,s(i, t)Li + Ce,s(̄i, t)Lī

− Ce,s
2

+λ2
∑
k∈Ks

max

0,
 ∑
i∈∈Rk,t

Cu,k(i, t)Li+ Cu,k (̄i, t)Lī

− Cu,k
2

+ λ3

max

0,
∑
i∈Rs,t

ηe,s(i, t)−We,s

2

+ λ4
∑
k∈Ks

max

0,
∑
i∈Rk,t

ηu,k(i, t)−Wu,k

2

, (8)

where λn > 0, n ∈ {1, 2, 3, 4} denote the penalty parameter
to determine the penalty magnitude. The delay and energy
consumption are divided by a sum of delay constraints for
normalization.

C. Multi-agent Actor-Critic Framework

In this algorithm, the critic and actor networks are deployed
on each edge server, which trains the networks and makes
action decisions for itself and connected users. The actor
network aims to output the action that maximizes the Q
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value (long-term reward) based on the state, while the critic
network aims to output the estimated Q value as accurately as
possible based on the state action pair. To prevent the training
process from spiraling around, the target networks are also
deployed on edge servers with the same structure as the current
network but with different update times. In summary, there are
four neural networks deployed at each agent, namely: current
actor network, target actor network, current critic network, and
target critic network.

Algorithm 1 Federated Multi-agent reinforcement learning.

1: Randomly initialize network parameters θt,ϕt and set
target net θ′t ← θt,ϕ′t ← ϕt

2: for episode= 1, . . . , Ne do
3: for step t = 1, . . . , T do
4: for each agent s ∈ S do
5: if |B(s)| < Bz then
6: Randomly select actions ae,s(t);
7: else
8: Receive observations se,s(t);
9: Obtain actions ae,s(t) = As(se,s(t);θts);

10: end if
11: end for
12: Interact with the environment to gather
{s(t),a(t), r(t), s′(t + 1)}, and append it to the
experience buffer B;

13: for each agent s ∈ S do
14: if |B(s)| ≥ Bz then
15: Sample {se,s(t),ae,s(t), re,s(t), s′e,s(t +

1)} from B(s);
16: Obtain new actions by a′e,s(t + 1) =

A′
s(s

′
e,s(t+ 1);θ′

s
t
);

17: Obtain new Q-values by Q′(s′e,s(t +

1),a′e,s(t+ 1)) = C′s(s′e,s(t+ 1),a′e,s(t+ 1);ϕ′
s
t
);

18: Calculate discounted long-term Q value by
Eq. (11);

19: Calculate loss function of actor and critic
networks by Eq. (10) and (12);

20: Update network parameters using Eq .(13)
and (14);

21: end if
22: end for
23: if t mod Tu = 0 then
24: Update target networks parameters by Eq. (9);
25: end if
26: if t mod Nu = 0 then
27: Perform federated learning by Eq. (15);
28: end if
29: end for
30: end for

1) Neural Network Design: Because the data sizes of input
states and output actions are different, the network should
be developed using the appropriate data structures. For each
agent, we construct multiple input-output neural networks in
order to learn various actions via multiple states.

The actor networks are designed based on the MLP (Multi-

layer Perceptron) network. In this network, the inputs are the
states of the edge server, including the edge caching state, user
caching state, and user-requested FoV set, while the outputs
are the service routes each associated user executes.

The critic networks are also designed based on the MLP
network. They are deployed to approximate the action-value
function with all of the current states and actions as inputs. So
they are developed by the main structures of the actor networks
plugging the layers for action evaluation.

2) Target Network update: The target networks can im-
prove the stability and convergence of replay training. The
target actor-critic networks have the same structure and ini-
tialization as the current networks. While training the net-
work parameters, target networks estimate the future actions
a′e,s(t+1) as well as Q values Q′(s′e,s(t+1),a′e,s(t+1)) based
on the states of the next time slot. For the s-th edge server, the
parameters θ′

s and ϕ′
s of the target actor and critic networks

are softly updated every Tu time slots with the weight ζ, i.e.,

θ′
s = ζθ′

s + (1− ζ)θs, ϕ′
s = ζϕ′

s + (1− ζ)ϕs. (9)

3) Experience pool: The point of the experience pool de-
sign is to eliminate the correlation of experiences. because the
back-and-forth actions in reinforcement learning are usually
strongly correlated. If there is no experience replay, the algo-
rithm will conduct the gradient descent in the same direction
for a continuous period. The direct calculation of the gradient
under the same step may not converge. To avoid this problem,
the interactions between the agents and the environment are
defined as tuples {s(t),a(t), r(t), s′(t + 1)} are stored in an
experience buffer B, where each item is the set of values of
all edge servers such as s(t) = {se,s(t),∀s}. During each
training step, the experience replay method randomly samples
Bz experiences from a memory pool. Then the MSE (Mean
Squared Error) loss gradient is minimized and presented as

ℓCs
(ϕs) = E[

∥∥Cs (se,s,ae,s;ϕs)− ŷs∥2] , (10)

where

ŷs = rs + γC′s
(
s′e,s,a

′
es;ϕ

′
s

)
(11)

is the discounted long-term Q value, and C′s is the target critic
network of the s-th edge server. Since the goal of actor nets
is to maximize the reward, the loss function is defined as the
predicted Q value given by,

ℓAs(θs) = Cs (se,s,As (se,s;θs) ,ϕs) . (12)

where As (se,s;θs) denotes the output action of the actor
network. Next, the parameters of the actor and critic networks,
represented by θts and ϕts, respectively, are updated using
Stochastic Gradient Descent (SGD) optimization with learning
rates ηA and ηC for the actor and critic networks, respectively.
The updates are given by:

θt+1
s ← θts − ηA∇θ ℓ̃As

(
θts

)
, (13)

ϕt+1
s ← ϕts − ηC∇ϕℓ̃Cs

(
ϕts

)
. (14)
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Fig. 3. Neural network structure of actor and critic networks deployed on each edge server.

V. EDGE-FEDERATED MULTI-AGENT LEARNING

In this section, the federated average process is presented.
Then, the convergence of the algorithm is analyzed and proved.

A. Federated average updating policy

Multi-agent reinforcement needs a large amount of users’
data to train the neural network, such as users’ locations and
orientations. But because of the users’ ever-increasing privacy
awareness, [47], it is challenging to encourage users to share
their private data to the central cloud. Therefore, to enhance
the system privacy and accelerate the training speed of each
edge server, we use federated learning to improve our model
further. During federated learning, for every Nu learning steps,
all edge servers share their actor-network parameters to the
central cloud during the IEP. Then the central cloud averages
these parameters and transmits its results back to the edge
servers at the end of IEP. Finally, all edge servers update their
parameters, where the process is similar to [45].

Each edge server updates the parameters based on the
weight ω and mixes the parameters of the others, which can
be expressed as

θt+1 = θt · Ω, (15)

where θt = [θt1,θ
t
2, . . .θ

t
S ] denotes the parameter vector of all

edge actor networks at the t-th learning step, and Ω denotes
the federated updating matrix

Ω =


ω 1−ω

S−1 · · · 1−ω
S−1

1−ω
S−1 ω · · · 1−ω

S−1
...

...
. . .

...
1−ω
S−1

1−ω
S−1 · · · ω

 . (16)

Instead of sharing input states, only the parameters of the
lightweight actor network are transmitted, which improves the
communication efficiency of the system, and the cost of this
communication is negligible compared to the cost in the edge

computing and caching system. The whole process of the
federated multi-agent reinforcement learning is presented in
Algorithm 1 in detail.

B. Objective value of convergence analysis

In this section, we study the convergence of federated
learning, demonstrating that it has better performance in terms
of convergence speed and stability.

The objective value of convergence proof is defined as the
average loss of all edge servers’ actor networks, which is
denoted as,

L(θ) = 1

S

S∑
s=1

ℓAs

(
θs

)
, (17)

where ℓAs

(
θs

)
:= Cs

(
se,s,As

(
se,s;θs

)
;ϕs

)
is the loss

function of the actor network As of the s-th edge server and
θs denotes the updated parameters of the actor network by
federated average.

The global optimality or stability of training may not be
satisfied simultaneously because our proposed algorithm is
online, and the environment is dynamic. As a result, we
analyze the learning convergence of all edge actor networks
using the gradients’ 2-norm average, which is expressed as,

1

ST

T0+T∑
t=T0+1

S∑
s=1

∥∥∥∇ℓAs

(
θ
t

s

)∥∥∥2 , (18)

where T is the time length after T0-th learning time slot. In
addition, we define the training sets of the s-th edge server
from time slot T0 + 1 to T0 + T as,

{Ts}T0 := {Ts (T0 + 1) , . . . , Ts (T0 + T )} , (19)

where Ts(t) = {se,s,ae,s, r, s′e,s} represents the interaction
records used to train the actor and critic networks of the s-th
edge server at t-th time slot, and r means the average reward.
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C. Assumptions

For the convergence analysis, we need to make some
assumptions firstly [48], [49].

• Existence of Optimal Loss: Because of the given envi-
ronment state sets, we assume that the optimal network
parameters, θ∗

s , and the corresponding actor loss, ℓ∗As
,

of each edge server, exist. Because the action space is
small and the loss depends on the system reward, this
assumption seems obvious.

• Fine-Fitness of Critic Networks: Since the function
of each critic network is to predict the Q value, and
because of the great learning ability of neural networks,
we assume that after the T0-th step, for interaction records
{Ts}T0 , critic networks can converge and predict the Q
values precisely, which means that the critic networks’
parameters ϕs keep the consistent values of ϕT

∗
0
s and

the loss ℓAs
(θs) := Cs (se,s,As (se,s;θs) ;ϕ∗

s) can be
assumed as a determined function with fixed ϕ∗

s .
• Conditional L-Smoothness for Given Environment

States: For the given interaction records {Ts}T0 , the
Lipschitz constant of a model designed by MLP can
be estimated [50]. In addition, the activation functions
used in the above-designed network, such as ReLU and
Softmax, are also Lipschitz continuous and differentiable.
Therefore, we can assume that the Lipschitz constant of
each actor net as LTs which is related to its inputs {Ts}T0

from T0 + 1-th to T0 + T -th time slot. The conditional
L-smoothness of each actor network’s loss function can
be expressed as∥∥∇ℓAs

(θs)−∇ℓAs

(
θ′
s

)∥∥ ≤ LTs

∥∥θs − θ′
s

∥∥ . (20)

• Unbiased Bounded SGD: In each step, each edge server
samples a mini-batch with size Bz from the experience
memory. Consider using a stochastic gradient descent
(SGD)-based optimizer for backpropagation; the variance
of the unbiased stochastic gradient G̃s is bounded by

E

[∥∥∥G̃s −Gs

∥∥∥2] ≤ v ∥Gs∥2 +
δ2Ts

Bz
, (21)

where Gs = E[G̃s] = ∇ℓAs
is the average stochastic

gradient for given training input states {Ts}T0 and δ2Ts
is

the related variance constant. In addition, v is a positive
constant inversely proportional to the mini-batch size.

D. Proof of convergence

Learning convergence can be accomplished under the afore-
mentioned assumptions and the outcomes are summarized in
the following theorem, which is similar to [51].

Theorem 1. For the proposed federated algorithm with the
update period Nu, the learning rates ε of all edge servers
should satisfy[

2vNuL
2
max

1−φ2 +
N2

uL
2
max

1−φ

(
2φ2

1+φ + 2φ
1−φ + Nu−1

Nu

)]
ε2

+Lmax(v + 1)ε− 1 ≤ 0,
(22)

where φ = Nuω−1
Nu−1 denotes the second maximum eigenvalue

of the updating matrix Ω and Lmax = maxs LTs
. In addition,

the average squared gradient norm after T0-th step is bounded
by

E

[
1

ST

T0+T∑
t=T0+1

S∑
s=1

∥∥∥∇ℓAs

(
θ
t

s

)∥∥∥2]

≤
2
∑S
s=1

[
ℓAs

(
θ
T0

s

)
− ℓ∗As

]
εST

+
ε

SBz

S∑
s=1

LTs
δ2Ts

+

ε2δ2maxL
2
max

Bz

(
1 + φ2

1− φ2
Nu − 1

)
.

(23)

Proof: The proof is given in Appendix. ■

E. Complexity and scalability analysis

The complexity of this algorithm can include the total local
complexity, the federated communication complexity, and the
federated aggregation complexity, analyzed as follows:

• Total local complexity: Since each agent indepen-
dently learns its policy within its assigned environ-
ment, the local training complexity for each agent in-
cludes the current learning process, and the target net-
work update represented as O

(
NeT |ae,s||se,s|+ NeT

Tu

)
.

Therefore, the total local complexity for all agents is
O
(
SNeT |ae,s||se,s|+ SNeT

Tu

)
.

• Federated communication complexity: During the fed-
erated learning process, agents communicate and share
their local models with a cloud server. The complexity
of this process depends on the memory pool size Bz ,
the number of agents S, and the federated learning
period Nu. Thus, the communication complexity can be
represented as O

(
SBzNeT
Nu

)
.

• Federated aggregation complexity: The cloud server
aggregates the local models received from the agents and
updates the global model. The complexity of this process
is directly related to the number of agents and can be
represented as O

(
SNeT
Nu

)
.

Therefore, the total complexity of the proposed algorithm
is O

(
SNeT |ae,s||se,s|+ SNeT

Tu
+ SBzNeT

Nu
+ SNeT

Nu

)
.

Regarding the scalability of the algorithm, the multi-agent
federated reinforcement approach inherently benefits from its
decentralized nature. As the number of agents increases, the
learning process can be efficiently distributed across multiple
agents, each handling a smaller, more manageable portion
of the overall problem. Furthermore, the communication and
global model update complexities are linear with respect to
the number of agents, which implies that this algorithm scales
reasonably well with the increasing number of agents.

VI. PERFORMANCE EVALUATION

In the simulation, we assume that the locations of VR users
follow the Poisson cluster process (PCP) [52] with S clusters
because user density is highly linked in hot-spot areas in large-
scale networks, so PCP is more realistic than other uniform
distributions in a user-centric correlated environment.

In the communication system, PLk,c = p0,k,c · PL0,k,c+
p1,k,c · PL1,k,c, where p0,k,c, p1,k,c are the probability of
LoS and NLoS which can be closely approximated by
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TABLE III
MAIN PARAMETER SETTINGS FOR SIMULATIONS.

Notations Value

Number of edge servers S 3
Number of users assigned to each edge server |Ks| 5

Number of files F 16
Number of modules of each VR video M 64

Number of equirectangular FoVs of each module N 64
Number of steps each time slot Ns 8

Number of episodes Ne 200
Number of time slots if each episode T 500

Number of antennas of each edge server MS 64
Noise power spectral density N0 −174dBm/Hz

Transmit power of cloud server and edge server Pk,c, Ps 24dBm, 20dBm
Path loss exponent α 4

Bandwidth of cloud server and edge server Bkc, Bks 106Hz, 1.5 ∗ 106Hz
Carrier frequency f 5GHz

Batch size Bz 128
Number of episodes Ne 500
Number of time slots T 200

Federated learning period Nu 8
Target network update period Tu 8
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Fig. 4. Critic Loss of each agent.

p0,k,c = 1
1+a exp(−b(ψk,c−a)) , p1,k,c = 1 − p0,k,c, and ψk,c =

tan−1
(
hk,c/

√
x2k,c + y2k,c

)
is the angle between the edge

cloud link and the horizontal plane [53]. xk,c, yk,c are the
device’s horizontal and vertical coordinates in the coordinate
system, and hk,c is the height difference between the device
and the cloud center. a and b are parameters related to the

environment. PLξ,k,c =
(

4πf
c

)2

· d2k,c · vξ with ξ = {0, 1},

where d2k,c =
√
x2k,c + y2k,c + h2k,c is the distance between

the cloud center and the k-th user device. f is the carrier
frequency and c is the speed of light. vξ represents the
excessive path loss of LoS and NLoS cases. The values of the
main parameters are presented in Table III. Additionally, the
size of 2/3D FoV is defined as 8 and 16. Unless otherwise
specified, CPU frequency of edge server and user device
gs = 4GHz, gk = 2GHz [44]. In the learning algorithm,
we use TensorFlow 2.0 to construct the MLP networks and
use ReLU and Softmax as the activation function in the dense
layers. The structure of the actor network and critic network is
presented in figure 3. The reshape layers are used to reshape
the input so that they can be concatenated together later.
The softmax function is used in the actor network to output
probabilities for each action, allowing the agent to select an
action from the set of possible actions. In addition, all input
data are pre-normalized between [−1, 1] before being input.

To demonstrate the advantages of the proposed algorithm
over other learning algorithms, we present a set of baseline
simulations, including the following algorithms: 1) Localized
Double Deep Q Learning (DDQN) algorithm [42]. This al-
gorithm employs two neural networks at each edge server
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Fig. 5. Delay and energy consumption versus different λ for ε = 0.001, cache
size Cu,k = 16, Ce,s = 32, CPU frequency gk = 2GHz, gs = 4GHz.
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Fig. 6. Delay and energy consumption versus learning rate for CPU frequency
gk = 2GHz, gs = 4GHz, cache size Cu,k = 16, Ce,s = 32.

without cooperation, with one network selecting the action
and the other estimating its value. 2) The centralized Deep
Q Learning (DQN) algorithm [43]. This algorithm uses deep
neural networks based on Q learning at the cloud server to
approximate the Q-value function. 3) The centralized DDQN
algorithm, which is also deployed at the cloud server. 4)
Greedy local computing (GLC) [19]. This algorithm allows
users to cache 2D FoVs as much as possible and compute
them locally to project them to 3D FoVs. When the cache
or computing capacity is full, the remaining 3D FoVs are
downloaded from the central cloud. 5) Greedy edge computing
(GEC). This algorithm enables the edge servers to cache 2D
FoVs as much as possible by order of user indices and project
them to 3D FoVs, which are then transmitted to users, i.e.,
using service route 2. When the cache or computing capacity is
full, the remaining 3D FoVs are downloaded from the central
cloud. 6) Concave-Convex Procedure (CCCP). This algorithm
used in [34] can convert the non-convex optimization problem
into a sequence of simpler convex optimization problems by
replacing the non-convex objective function of only one time
slot with a series of convex surrogate functions. The result is
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Fig. 7. Delay and energy consumption versus different β for ε = 0.001, cache
size Cu,k = 16, Ce,s = 32, CPU frequency gk = 2GHz, gs = 4GHz.

100 200 300 400 500

40

50

60

70

To
ta

l d
el

ay
 (m

s)

Proposed algorithm
Localized DDQN
Centralized DDQN
Centralized DQN

100 200 300 400 500
Episodes

5

10

15

To
ta

l E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Fig. 8. Delay and energy consumption versus episodes for learning rate ε =
0.001, CPU frequency gk = 2GHz, gs = 4GHz, cache size Cu,k = 16,
Ce,s = 32.

the average of many simulations.
Figure 4 shows the loss function of the critic network of

each agent. It can be observed that as the number of time
slots increases, the loss decreases dramatically and converges
smoothly finally. To investigate the effect of penalty parame-
ters on system performance, we set λ1 = λ2 = λ3 = λ4 = λ
and vary the value of λ to obtain simulation results, as
shown in Fig. 5. The total delay and energy consumption
are the sum of delay and energy consumption across all
users and edge servers at one time slot when the algorithm
converges. They decrease as λ increases, which is in line
with expectations. When λ is small, it is more likely to have
large constraint violations, leading to infeasible solutions and
high total delay and energy consumption. A larger value of λ
improves performance. In particular, the algorithm converges
after λ > 500. Thus, we set λ = 500 for subsequent
simulations. Additionally, the experimental results demonstrate
that the proposed algorithm outperforms the baseline methods
in terms of both total delay and energy consumption. The
performance of localized DDQN is better than centralized
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Fig. 9. Delay and energy consumption versus cache size of edge server Ce,s

for cache size of user device Cu,k = 1/2Ce,s, learning rate ε = 0.001,
CPU frequency gk = 2GHz, gs = 4GHz.

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

To
ta

l d
el

ay
 (m

s)

500 1000 1500 2000 2500 3000 3500 4000
CPU frequency

0

2

4

6

To
ta

l E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Proposed algorithm
Localized DDQN
Centralized DDQN
Centralized DQN
CCCP
GEC
GLC

Fig. 10. Delay and energy consumption versus CPU frequency of edge server
gs for CPU frequency of user device gk = 1/2gs, learning rate ε = 0.001,
cache size Cu,k = 16, Ce,s = 32.

DDQN because there are S edge servers that train the data
from the associated users together. In contrast, in centralized
DDQN, the training networks are only deployed at the cloud
server, which trains all data from all users. As a result, the lo-
calized approach offers higher training efficiency. Furthermore,
our results show that the performance of Centralized DDQN
is better than DQN. This is because the DDQN employs a
target network to stabilize the learning process and prevent
oscillations in the Q-value estimates. The DQN suffers from
oscillations, which can affect the accuracy of the learning
process and lead to lower performance.

Figure 6 shows the total delay and energy consumption
versus learning rate. It can be observed that as the learning rate
increases, the total delay and energy consumption decrease.
It demonstrates that a larger learning rate can help it escape
local minima and converge to a better solution more quickly in
this algorithm. Figure 7 represents the total delay and energy
consumption versus different β, where τmax, ρmax denote the
maximum value of delay and energy consumption. β = 0
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means we only consider the delay, whereas β = 103τmax
means we only consider the energy consumption. It shows
higher energy consumption weight can lead to lower en-
ergy consumption, as higher weight leads to learning with
more energy consumption-biased learning targets. When the
weight is large enough, the delay does not change since
the optimization is full energy consumption-biased. To make
τmax+βρmax = 1, we set β = 1−τmax

ρmax
used in the following

simulations. Figure 8 compares the total delay and energy
consumption versus episodes of different learning algorithms.
As the training episodes increase, all learning algorithms can
reduce the total delay and energy consumption and finally
converge smoothly. It proves the convergence of our strategy.

Figure 9 presents a comparison of the total delay and energy
consumption of different algorithms with different cache sizes.
The results demonstrate that larger cache sizes can lead to
lower delay and energy consumption. This is because edge
servers and users can cache more FoVs in advance. Therefore,
users can obtain more 3D FoVs directly by caching 3D FoVs
without any cost, and more 2D FoVs can also be cached
rather than downloaded from the cloud server. It can reduce
communication and computing delays and require less energy
for VR delivery. In addition, the performance of the traditional
strategies CCCP, GEC, and GLC algorithms are compared to
other reinforcement learning algorithms, and they are found
to be inferior. Specifically, the delay of the GEC algorithm
is less than that of the GLC algorithm, but GEC has higher
energy consumption. This can be attributed to the fact that the
edge server has a higher CPU frequency than the user device,
resulting in higher energy consumption for GEC but less delay.

The figure presented in Figure 10 compares the total delay
and energy consumption of different CPU frequencies. The
results show that a higher CPU frequency leads to lower
delay but higher energy consumption. This is because devices
can project 2D FoV to 3D FoV more quickly with a higher
CPU frequency, resulting in lower delay but higher energy
consumption.

VII. CONCLUSION

In this paper, we propose a 3C strategy to help mobile users
to project 2D FoV to 3D FoV when watching VR videos. We
develop a three-layer communication architecture with massive
MIMO, where the UAV base stations act as edge servers. Then,
we formulate our problem as an MDP problem due to step-
wise user movements and user’s watching pattern, the next
requests depend on previous ones. To solve it, we develop a
federated multi-agent reinforcement learning algorithm to min-
imize the discounted long-term delay and energy consumption,
where all edge servers act as learning agents. Multi-input and
output actor and critic networks are deployed at each edge
server. Hence, edge servers can choose optimal service routes
for each FoV according to the user’s location, orientation,
and content preferences. For federated learning, we analyze
the federated average process and mathematically prove its
convergence by proving the average squared gradient norm is
bounded. The simulation results demonstrate that the proposed
algorithm can converge smoothly and significantly reduce the
delay and energy consumption compared with the baselines.

APPENDIX

The proof of the theorem 1 is described as follows.

Firstly, the difference in average losses is denoted by
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Because of the L-smoothness gradient assumption [51], we
have,
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Since we have assumed the unbiased bounded SGD, the
expected value of
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For the expected value of the second term of the right part
of inequality (25), since we have assumed the conditional L-
Smoothness for given environment states, we can obtain
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According to the eq. (81) of Appendix D of [51] and the eq.
(136) of Appendix D.2.4 of [48], we can obtain the average
bound for the last term of the inequality (27) as,

1
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Next, by taking the average on both sides of (24) and
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combining (25)-(28), we can have
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Where Γ denotes the left part of the inequality (22),
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Therefore, if the learning rate ε is set properly to make Γ ≤
0, the terms related with

∥∥Gt
s

∥∥2 can be eliminated and the
conclusion (23) can be obtained.

REFERENCES

[1] M. Chen, W. Saad, C. Yin, and M. Debbah, “Data correlation-aware
resource management in wireless virtual reality (VR): An echo state
transfer learning approach,” IEEE Transactions on Communications,
vol. 67, no. 6, pp. 4267–4280, 2019.

[2] “Virtual Reality Market Size & Share Report, 2022-2030,” https://www.
grandviewresearch.com/industry-analysis/virtual-reality-vr-market,
2020, accessed February 13, 2023.

[3] S. Park, A. Bhattacharya, Z. Yang, S. R. Das, and D. Samaras, “Mosaic:
Advancing user quality of experience in 360-degree video streaming
with machine learning,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 1000–1015, 2021.

[4] H. Liu, Z. Chen, and L. Qian, “The three primary colors of mobile
systems,” IEEE Communications Magazine, vol. 54, no. 9, pp. 15–21,
2016.

[5] Y. Xiao, L. Xiao, K. Wan, H. Yang, Y. Zhang, Y. Wu, and Y. Zhang, “Re-
inforcement Learning Based Energy-Efficient Collaborative Inference
for Mobile Edge Computing,” IEEE Transactions on Communications,
2022.

[6] Y. Sun, L. Zhang, Z. Chen, and S. Roy, “Communications-caching-
computing tradeoff analysis for bidirectional data computation in mobile
edge networks,” in Proc. of the IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November-16
December 2020.

[7] Z. Liu, H. Song, and D. Pan, “Distributed video content caching
policy with deep learning approaches for D2D communication,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 644–
15 655, 2020.

[8] Y. Zhang and R. Codinhoto, “Developing a visually impaired older peo-
ple Virtual Reality (VR) simulator to apply VR in the aged living design
workflow,” in Proc. of the 24th International Conference Information
Visualisation (IV), Melbourne, Australia, 07-11 September 2020.

[9] F. Guim, T. Metsch, H. Moustafa, T. Verrall, D. Carrera, N. Cadenelli,
J. Chen, D. Doria, C. Ghadie, and R. G. Prats, “Autonomous lifecycle
management for resource-efficient workload orchestration for green
edge computing,” IEEE Transactions on Green Communications and
Networking, vol. 6, no. 1, pp. 571–582, 2021.

[10] P. Zhou, S. Gong, Z. Xu, L. Chen, Y. Xie, C. Jiang, and X. Ding, “Trust-
worthy and context-aware distributed online learning with autoscaling
for content caching in collaborative mobile edge computing,” IEEE
Transactions on Cognitive Communications and Networking, vol. 7,
no. 4, pp. 1032–1047, 2021.

[11] Y. Dai, D. Xu, K. Zhang, S. Maharjan, and Y. Zhang, “Deep rein-
forcement learning and permissioned blockchain for content caching
in vehicular edge computing and networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 4, pp. 4312–4324, 2020.

[12] Y. Yang, Z. Liu, Z. Liu, K. Y. Chan, X. Guan et al., “Joint optimization
of edge computing resource pricing and wireless caching for blockchain-
driven networks,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 6, pp. 6661–6670, 2022.

[13] J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Collaborative
edge computing and caching with deep reinforcement learning decision
agents,” IEEE Access, vol. 8, pp. 120 604–120 612, 2020.

[14] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 7, no. 1,
pp. 247–257, 2019.

[15] K. Zhang, J. Cao, H. Liu, S. Maharjan, and Y. Zhang, “Deep reinforce-
ment learning for social-aware edge computing and caching in urban
informatics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5467–5477, 2019.

[16] A. Ndikumana, N. H. Tran, K. T. Kim, C. S. Hong et al., “Deep learning
based caching for self-driving cars in multi-access edge computing,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 5,
pp. 2862–2877, 2020.

[17] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2020.

[18] H. Zhu, Y. Li, Z. Chen, and L. Song, “Mobile edge resource optimiza-
tion for multiplayer interactive virtual reality game,” in Proc. of the
IEEE Wireless Communications and Networking Conference (WCNC),
Nanjing, China, 29 March-01 April 2021.

[19] T. Dang and M. Peng, “Joint radio communication, caching, and
computing design for mobile virtual reality delivery in fog radio access
networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 7, pp. 1594–1607, 2019.

[20] X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, and Y. Zhao,
“Communication-constrained mobile edge computing systems for wire-
less virtual reality: Scheduling and tradeoff,” IEEE Access, vol. 6, pp.
16 665–16 677, 2018.

[21] Y. He, C. Liang, F. R. Yu, and Z. Han, “Trust-based social networks with
computing, caching and communications: A deep reinforcement learning
approach,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 1, pp. 66–79, Jan. 2018.

[22] Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu,
Y. Guo, B. Sadoun, and R. Y. Kwok, “Joint computing and caching in
5g-envisioned internet of vehicles: A deep reinforcement learning-based
traffic control system,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 8, pp. 5201–5212, 2020.

[23] H. Feng, S. Guo, L. Yang, and Y. Yang, “Collaborative data caching and
computation offloading for multi-service mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9408–9422,
2021.

[24] Z. Chen, Z. Zhou, and C. Chen, “Code caching-assisted computation
offloading and resource allocation for multi-user mobile edge comput-
ing,” IEEE Transactions on Network and Service Management, vol. 18,
no. 4, pp. 4517–4530, 2021.

[25] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge comput-
ing systems,” IEEE Transactions on Wireless Communications, vol. 19,
no. 7, pp. 4947–4963, 2020.



14

[26] G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, “Joint service
caching, computation offloading and resource allocation in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 20, no. 8, pp. 5288–5300, 2021.

[27] L. Li and H. Zhang, “Delay optimization strategy for service cache and
task offloading in three-tier architecture mobile edge computing system,”
IEEE Access, vol. 8, pp. 170 211–170 224, 2020.

[28] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Transactions on Mobile
Computing, vol. 19, no. 6, pp. 1359–1374, 2019.

[29] L. N. Huynh, Q.-V. Pham, T. D. Nguyen, M. D. Hossain, Y.-R. Shin, and
E.-N. Huh, “Joint computational offloading and data-content caching in
NOMA-MEC networks,” IEEE Access, vol. 9, pp. 12 943–12 954, 2021.

[30] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint multi-user
computation offloading and data caching for hybrid mobile cloud/edge
computing,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 018–11 030, 2019.

[31] L. Xu, Z. Yang, H. Wu, Y. Zhang, Y. Wang, L. Wang, and Z. Han,
“Socially driven joint optimization of communication, caching, and
computing resources in vehicular networks,” IEEE Transactions on
Wireless Communications, vol. 21, no. 1, pp. 461–476, 2021.

[32] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Bandwidth gain from mobile
edge computing and caching in wireless multicast systems,” IEEE
Transactions on Wireless Communications, vol. 19, no. 6, pp. 3992–
4007, 2020.

[33] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan, B. Vucetic,
and Y. Li, “Communication-and-computing latency minimization for
UAV-enabled virtual reality delivery systems,” IEEE Transactions on
Communications, vol. 69, no. 3, pp. 1723–1735, 2020.

[34] L. Zhang, Y. Sun, Z. Chen, and S. Roy, “Communications-caching-
computing resource allocation for bidirectional data computation in
mobile edge networks,” IEEE Transactions on Communications, vol. 69,
no. 3, pp. 1496–1509, 2020.

[35] Q. Li, D. Wang, and H. Lu, “A Cooperative Caching and Computing-
Offloading Method for 3C Trade-Off in VR Video Services,” IEEE
Access, vol. 9, pp. 124 010–124 022, 2021.

[36] Y. Li, Z. Chen, and M. Tao, “Coded caching with device computing
in mobile edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 20, no. 12, pp. 7932–7946, 2021.

[37] K. Wang, W. Chen, J. Li, Y. Yang, and L. Hanzo, “Joint task offloading
and caching for massive MIMO-aided multi-tier computing networks,”
IEEE Transactions on Communications, vol. 70, no. 3, pp. 1820–1833,
2022.

[38] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles: a joint
computation offloading and caching solution,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4, pp. 2212–2225, 2020.

[39] S. Nath and J. Wu, “Deep reinforcement learning for dynamic compu-
tation offloading and resource allocation in cache-assisted mobile edge
computing systems,” Intelligent and Converged Networks, vol. 1, no. 2,
pp. 181–198, 2020.

[40] Y. Han, L. Ai, R. Wang, J. Wu, D. Liu, and H. Ren, “Cache
Placement Optimization in Mobile Edge Computing Networks With
Unaware Environment-An Extended Multi-Armed Bandit Approach,”
IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp.
8119–8133, 2021.

[41] L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, and W. Xiao, “Creat:
Blockchain-assisted compression algorithm of federated learning for
content caching in edge computing,” IEEE Internet of Things Journal,
vol. 9, no. 16, pp. 14 151–14 161, 2022.

[42] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. of the AAAI conference on artificial
intelligence, Phoenix, Arizona, USA, February 12-17, 2016.

[43] H. Hasselt, “Double Q-learning,” Advances in neural information pro-
cessing systems, vol. 23, 2010.

[44] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff,” IEEE
Transactions on Communications, vol. 67, no. 11, pp. 7573–7586, 2019.

[45] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “Federated multiagent actor–
critic learning for age sensitive mobile-edge computing,” IEEE Internet
of Things Journal, vol. 9, no. 2, pp. 1053–1067, 2021.

[46] N. Garg, M. Sellathurai, V. Bhatia, and T. Ratnarajah, “Function
approximation based reinforcement learning for edge caching in massive
mimo networks,” IEEE Transactions on Communications, vol. 69, no. 4,
pp. 2304–2316, 2020.

[47] Y. Nie, J. Zhao, F. Gao, and F. R. Yu, “Semi-distributed resource
management in UAV-aided MEC systems: A multi-agent federated
reinforcement learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 70, no. 12, pp. 13 162–13 173, 2021.

[48] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” arXiv
preprint arXiv:1808.07576, 2018.

[49] Y. Mu, N. Garg, and T. Ratnarajah, “Federated learning in massive mimo
6g networks: convergence analysis and communication-efficient design,”
IEEE Transactions on Network Science and Engineering, vol. 9, no. 6,
pp. 4220–4234, 2022.

[50] R. Balan, M. Singh, and D. Zou, “Lipschitz properties for deep convo-
lutional networks,” Contemporary Mathematics, vol. 706, pp. 129–151,
2018.

[51] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” arXiv preprint arXiv:1910.14425, 2019.

[52] M. Mei, M. Yao, Q. Yang, M. Qin, K. S. Kwak, and R. R. Rao,
“Delay Analysis of Mobile Edge Computing Using Poisson Cluster
Process Modeling: A Stochastic Network Calculus Perspective,” IEEE
Transactions on Communications, vol. 70, no. 4, pp. 2532–2546, 2022.

[53] D. W. Matolak and R. Sun, “Unmanned aircraft systems: Air-ground
channel characterization for future applications,” IEEE Vehicular Tech-
nology Magazine, vol. 10, no. 2, pp. 79–85, 2015.

Zhikai Liu received a B.S. degree in communica-
tions engineering from Hohai University in 2014
and an M.S. degree in Electromagnetic Field and
Microwave Technology from South China Normal
University in 2021. He is currently pursuing a Ph.D.
degree at The University of Edinburgh. His research
interests include edge caching, distributed learning,
signal processing, and wireless communications.

Navneet Garg (Member, IEEE) received the B.Tech.
degree in electronics and communication engineer-
ing from the College of Science & Engineering,
Jhansi, India, in 2010, and the M.Tech. degree in dig-
ital communications from ABV-Indian Institute of
Information Technology and Management, Gwalior,
in 2012. He completed his Ph.D. degree in June
2018 from the Department of electrical engineering
at the Indian Institute of Technology Kanpur, India.
In July 2018-Jan 2019, he visited The University
of Edinburgh, UK. From February 2019-2020, he is

employed as a research associate at Heriot-Watt University, Edinburgh, UK.
Since February 2020, he has been working as a research associate at The
University of Edinburgh, UK. His main research interests include wireless
communications, signal processing, optimization, and machine learning.

Tharmalingam Ratnarajah (Senior Member,
IEEE) is currently a Professor in digital commu-
nications and signal processing with the Institute
for Digital Communications, The University of Ed-
inburgh, Edinburgh, U.K. He has authored or co-
authored more than 400 publications and holds four
U.S. patents. He has supervised 16 Ph.D. students
and 21 postdoctoral Research Fellows and raised
more than $11 million USD of research funding.
His research interests include signal processing and
information-theoretic aspects of beyond 5G wireless

networks, full-duplex radio, mmWave communications, random matrices
theory, interference alignment, statistical and array signal processing, and
quantum information theory.


