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Abstract  

Background: Identification of patients at high risk of surgical-site infection may allow clinicians to target interventions and monitoring 
to minimize associated morbidity. The aim of this systematic review was to identify and evaluate prognostic tools for the prediction of 
surgical-site infection in gastrointestinal surgery.  

Methods: This systematic review sought to identify original studies describing the development and validation of prognostic models 
for 30-day SSI after gastrointestinal surgery (PROSPERO: CRD42022311019). MEDLINE, Embase, Global Health, and IEEE Xplore were 
searched from 1 January 2000 to 24 February 2022. Studies were excluded if prognostic models included postoperative parameters 
or were procedure specific. A narrative synthesis was performed, with sample-size sufficiency, discriminative ability (area under 
the receiver operating characteristic curve), and prognostic accuracy compared.  

Results: Of 2249 records reviewed, 23 eligible prognostic models were identified. A total of 13 (57 per cent) reported no internal 
validation and only 4 (17 per cent) had undergone external validation. Most identified operative contamination (57 per cent, 13 of 
23) and duration (52 per cent, 12 of 23) as important predictors; however, there remained substantial heterogeneity in other 
predictors identified (range 2–28). All models demonstrated a high risk of bias due to the analytic approach, with overall low 
applicability to an undifferentiated gastrointestinal surgical population. Model discrimination was reported in most studies (83 per 
cent, 19 of 23); however, calibration (22 per cent, 5 of 23) and prognostic accuracy (17 per cent, 4 of 23) were infrequently assessed. 
Of externally validated models (of which there were four), none displayed ‘good’ discrimination (area under the receiver operating 
characteristic curve  greater than or equal to 0.7).  

Conclusion: The risk of surgical-site infection after gastrointestinal surgery is insufficiently described by existing risk-prediction tools, 
which are not suitable for routine use. Novel risk-stratification tools are required to target perioperative interventions and mitigate 
modifiable risk factors. 

Introduction 
Surgical-site infection (SSI) represents the most common 
complication after gastrointestinal surgery, affecting as many as 
one in nine patients in high-income countries and one in three 
patients in low- and middle-income countries1. Reducing the 
incidence and severity of SSI remains a high-priority issue for 
patients, surgical teams, and healthcare systems2,3, due to the 
substantial contribution of SSI towards postoperative morbidity 
and mortality1,4, quality of life5, and healthcare costs6. 

The capability to accurately predict patients who are at high 
risk of SSI has several potential advantages. At an individual 
level, this would allow individualized preoperative assessment 
of the risk of SSI and prioritization of evidence-based 
interventions could lead to iatrogenic harm (for example 
antibiotic prophylaxis) or are resource intensive (for example 

increased postoperative monitoring) towards patients at 

highest risk7. However, there are also wider benefits, including 

improving the efficiency of clinical trials on SSI by facilitating 

the selection of patients most likely to benefit from the trial 

intervention8 and allowing risk adjustment to facilitate 

the fair comparison of SSI rates across different sites and 

populations9. 
However, while clinical risk-prediction tools have increasingly 

been developed across all areas of medicine, frequently these 

fail to align with methodological recommendations10. They 

often lack validation outside the original cohorts, meaning their 

clinical utility remains uncertain11. Efforts to develop predictive 

tools for SSI have been ongoing for decades12,13, yet none has 

been widely adopted to predict individual risk for patients 

undergoing gastrointestinal surgery7. Furthermore, to the best of 
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the authors’ knowledge, no previous systematic reviews have 
been conducted to determine what models have been developed 
and if these are suitable for wider adoption. Therefore, the aim 
of this systematic review was to identify and assess the quality 
of existing prognostic tools for the prediction of SSI within 
gastrointestinal surgery populations. 

Methods 
A systematic review was performed according to a predefined 
protocol (registered on PROSPERO: CRD42022311019) and 
reported according to the PRISMA guidelines14. 

Search strategy and information sources 
The search strategy was developed to identify prognostic models 
that predict the occurrence of SSI after gastrointestinal surgery 
(Appendix S1). A comprehensive search of MEDLINE, Embase, 
Global Health, and IEEE Xplore was performed on 24 February 
2022. This search was supplemented through hand searching 
citation and reference lists from relevant articles. The searches 
were limited to publications in the English language due to 
practical restraints and restricted to the year 2000 onwards to 
ensure relevance to current surgical practice (unless the model 
was subsequently validated). 

Studies were eligible for inclusion if they developed or 
externally validated a model that sought to predict risk of SSI 
after gastrointestinal surgery in adults using preoperative and/ 
or operative characteristics. Models that included patients 
undergoing non-gastrointestinal surgical procedures were 
eligible if these also included gastrointestinal surgical 
procedures. Furthermore, models that were developed before 
2000 but externally validated afterwards were eligible. However, 
the exclusion criteria were: development or validation 
performed for non-adult patients (less than 18 years) where 
development and performance were not separate for adults and 
children; inclusion of postoperative (including administrative 
data) or context-specific parameters (time interval or individual 
sites) in the risk model, or the predictors included were not 
reported; primary outcome was not SSI (that is a composite 
outcome of postoperative infections or complications); and 
procedure-specific risk models (for example appendicectomy). 

Study selection and data extraction 
After the removal of duplicate publications, titles and abstracts were 
screened, and full texts of relevant publications uploaded onto the 
Covidence online systematic review tool15 for review against these 
eligibility criteria. Data fields of interest were extracted from 
eligible papers, related to study characteristics (year of publication, 
setting, sample size, inclusion criteria, and techniques for model 
development), SSI (definition used, number of cases, and method 
and time frame of follow-up), and the risk model itself (validation 
status, modelling techniques, clinical parameters included, and 
any metrics reported regarding prognostic accuracy and model 
performance). Data extracted were stored on a research electronic 
data capture (‘REDCap’) server16. Study screening and data 
extraction were completed independently by two among the 
reviewers (K.A.M., J.S., S.L., T.G., and A.R.), with any disagreements 
resolved through a consensus-based approach. 

Quality assessment and data synthesis 
Quality assessment of eligible studies was performed using 
‘Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis’ (TRIPOD) reporting 

guidelines17 and the ‘Prediction model Risk Of Bias ASsessment 
Tool’ (PROBAST)18. 

A narrative (descriptive) synthesis of results was performed. 
The data extracted were summarized using frequencies and 
percentages for dichotomous variables and using medians and 
interquartile ranges for continuous variables. SSI event rates 
with 95 per cent confidence intervals were also calculated, 
where possible. No meta-analysis was planned or performed. 
Furthermore, the minimum sample size required for developing 
a multivariable prediction model was calculated for the 
observed SSI rate and number of candidate predictors evaluated 
(if reported), and compared with the development-cohort 
sample size19. This was performed irrespective of whether 
logistic regression or other modelling techniques were applied. 

Model performance was compared using the area under the 
receiver operating characteristic (ROC) curve (AUC) and 
summarized using the geometric mean and range. Prognostic 
accuracy summary statistics (sensitivity, specificity, positive 
predictive value, and negative predictive value) were reported. 
An AUC of less than 0.6 was considered to indicate ‘poor’ model 
discrimination, an AUC of 0.6 to less than 0.7 was considered to 
indicate ‘moderate’ model discrimination, an AUC of 0.7 to less 
than 0.8 was considered to indicate ‘good’ model discrimination, 
and an AUC of greater than or equal to 0.8 was considered to 
indicate ‘excellent’ model discrimination20. Models should also 
be ‘well calibrated’ in be able to accurately predict the outcome 
of interest across the spectrum of risk—for example, resource 
wastage or even iatrogenic harm may occur if there is 
overestimation for patients at low risk and underestimation of 
patients at high risk. Reporting calibration intercept 
(calibration-in-the-large) and slope (an intercept of 0 and slope 
of 1 indicating ‘perfect’ calibration) was considered an 
appropriate method to assess calibration, in line with current 
best practice21. However, assessment of calibration through a 
Brier score or Hosmer–Lemeshow test was also extracted. All 
statistical analyses were performed using RStudio version 4.1.1 
(R Foundation for Statistical Computing, Vienna, Austria), with 
packages including tidyverse, finalfit, pmsampsize22, and predictr23. 

Results 
Search results 
In total, 2249 unique records were identified from the literature 
search, of which 188 (8.4 per cent) full texts were assessed for 
eligibility (Fig. 1). From 26 papers included, there were 23 unique 
risk models identified that sought to predict the risk of SSI within 
30 days after gastrointestinal surgery (Table 1). Of these original 
models, 8 (35 per cent) had score development reported 
only12,13,25–27,33,37,44, 15 (65 per cent) had undergone internal 
validation24,28–31,34–36,38–43, and 4 (17 per cent) had been externally 
validated12,13,24,36 (Table 1). The National Nosocomial Infections 
Surveillance (NNIS) scoring system was most frequently 
externally validated (67 per cent, 12 of 18), typically being used as 
a benchmark to compare a novel model. 

Characteristics of included studies 
The models were typically based on single-centre studies (44 per 
cent, 10 of 23), with no models developed using prospective 
national or international data. Furthermore, of the nine studies 
based on national or international data, 56 per cent (five of nine) 
were based on the same US-based registry (National Surgical 
Quality Improvement Program (‘NSQIP’)). Overall, almost all 
models (83 per cent, 19 of 23) were developed using data from 
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high-income countries, with the remainder from 
upper-middle-income countries (Brazil, China). There was also 
no patient–public involvement identified across included models. 

Furthermore, there were important differences in the 
underlying populations included, with most involving patients 
either undergoing colorectal (48 per cent, 11 of 23) or general 
surgical (30 per cent, 7 of 23) procedures, with the others also 
including some or all other surgical specialties (22 per cent, 5 of 
23). Furthermore, whereas most models included all procedures 
irrespective of operative urgency, a minority included only 
elective (17 per cent, 4 of 23) or emergency (13 per cent, 3 of 23) 
procedures. 

Within the included studies, SSI was typically defined according 
to the Centers for Disease Control and Prevention (CDC) criteria (57 
per cent, 13 of 23), with the rest providing no clear definition (26 
per cent, 6 of 23) or alternative definitions based on administrative 
codes or other clinical signs (17per cent, 4 of 23) (Table 1). However, 
even among studies using the CDC criteria, only a minority used 
the full definition (46 per cent, 6 of 13), with the rest including a 
combination of superficial, deep, or organ-space SSI. 

Overall, there was a wide variation in the SSI rates reported 
between studies (1.0 per cent13 to 25.6 per cent33), with the 
highest rates observed in colorectal populations and the lowest 
rates observed in multi-specialty populations (Fig. 2). However, 

there was no clear pattern in the SSI rate observed according to 
the definition used. 

Variable selection 
Predictive factors were predominantly identified via logistic 
regression (74 per cent, 17 of 23) (Table 1), with a minority 
involving novel machine-learning-based approaches (17 per 
cent, 4 of 23). However, there were substantial methodological 
concerns with most variable selection approaches used, with a 
majority conducting selection based on: stepwise approaches 
(52 per cent, 12 of 23), univariable significance (9 per cent, 2 of 
23), or expert opinion alone (13 per cent, 3 of 23). Where 
reported, only 42.9 per cent (9 of 21) of derivation cohorts 
achieved the minimum sample size required to develop a 
predictive model based on the SSI rate reported and the number 
of candidate predictors being explored (Fig. S1). 

There was substantial heterogeneity in the number and 
examples of predictors identified across models (median 7, 
range 2–28). However, commonly identified predictors involved 
operative and patient-specific factors, with most models 
highlighting the importance of operative contamination (57 per 
cent, 13 of 23) and duration (52 per cent, 12 of 23) (Fig. 3 and  
Table S1). Overall, three models were solely formed of predictors 
available before operation, whereas the majority of models also 

Records identified from
database searching

n = 2947

Records screened based on
title and abstract

n = 2249

Full-text articles assessed
n = 188

Eligible articles
n = 26

No external
validation

n = 12

External validation
of current score

n = 0

External validation
of previous score(s)

n = 8

Derivation of new score
n = 20

External validation of
previous score(s)

n = 6

Duplicated records n = 705

Records excluded n = 2061

Full-text articles excluded n = 162
Ineligible study type n = 7
Non-English language n = 3
Ineligible population n = 13
Outcome not specific to SSI n = 39
No SSI risk score n = 44
Score specific to a procedure n = 36
Score includes postoperative variables n = 20

Additional records identified
from hand searching

n = 7

Fig. 1 PRISMA flow diagram 

SSI, surgical-site infection.  
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included predictors requiring intraoperative information (87 per 
cent, 20 of 23). 

Quality assessment of included studies 
Adherence to the TRIPOD reporting guidelines was mixed, with 
consistently poor reporting for methods of blinding to outcome 

or predictors, how missing data were handled, and reporting 
of model results and evaluation (Fig. S2). All models 
demonstrated a high risk of bias, principally due to the analytic 
approach and outcome definition, and none displayed high 
applicability to an undifferentiated gastrointestinal surgical 
population (Fig. S3). 

Table 1 Characteristics of included studies describing an original risk score 

Score Country Study design Study  
population 

SSI outcome 
definition 

SSI rate Model approach 
(variable selection) 

Validation  

SENIC (1985)24 USA Retrospective, 
national 

Pansurgical CDC (superficial, 
deep) 

Unreported 
(total = 117  
850) 

Logistic regression 
(forward 
selection) 

Internal (subgroup) 
and external25,26 

NNIS (1986)12 USA Retrospective, 
national 

Pansurgical CDC (full) 2.8% (n =  
2376/84  
691) 

Expert opinion 
(previous model) 

External25–32  

Updated NNIS 
(2001)13 

USA Retrospective, 
national 

General surgery Undefined 1.0% (n = 449/ 
42 815) 

Expert opinion 
(previous model) 

External65 

Smith et al. (2004)33 USA Retrospective, 
single centre 

Elective 
colorectal 

CDC (superficial, 
deep) 

25.6% (n = 45/ 
176) 

Logistic regression 
(forward 
selection) 

None 

de Oliveira et al. 
(2006)27 

Brazil Prospective, 
regional 

General surgery Other (‘purulent 
secretion’) 

24.5% (n =  
149/608) 

Logistic regression 
(backward 
selection) 

None 

Neumayer et al. 
(2007)28 

USA Retrospective, 
national 
(NSQIP) 

General surgery CDC (superficial, 
deep) 

4.3% (n =  
7035/163  
624) 

Logistic regression 
(forward 
selection) 

Internal (subgroup) 

de Campos-Lobato 
et al. (2009)34 

USA Retrospective, 
national 
(NSQIP) 

Colorectal CDC (organ 
space) 

3.3% (n = 728/ 
21 894) 

Linear regression 
(literature) 

Internal (subgroup) 

Alavi et al. (2010)35 USA Retrospective, 
national 
(NSQIP) 

Colorectal CDC (full) 23.5% (n =  
1682/7149) 

Logistic regression 
(backward 
selection) 

Internal (subgroup) 

Morales et al. 
(2011)25 

Canada Prospective, 
single centre 

Emergency 
general surgery 

CDC (deep, organ 
space) 

13.8% (n = 85/ 
614) 

Logistic regression 
(forward 
selection) 

None 

RSSIC (2012)29 USA Prospective, 
single centre 

Elective general 
surgery 

CDC (full) 24.3% (n =  
122/503) 

Logistic regression 
(univariable 
threshold) 

Internal (bootstrap) 

COLA (2012)36 Switzerland Prospective, 
regional 

Colorectal CDC (full) 21.3% (n =  
114/534) 

Logistic regression 
(forward 
selection) 

Internal 
(cross-validation) 
and external37 

SSIRS (2013)30 USA Retrospective, 
national 
(NSQIP) 

Pansurgical CDC (full) 3.9% (n = 14  
227/363  
040) 

Logistic regression 
(forward 
selection) 

Internal (subgroup) 

Hedrick et al. 
(2013)38 

USA Retrospective, 
national 
(NSQIP) 

Elective 
colorectal 

CDC (superficial, 
deep) 

9.3% (n =  
1719/18  
403) 

Logistic regression 
(backward 
selection) 

Internal (bootstrap) 

SSISECC (2018)26 China Retrospective, 
single centre 

Elective 
colorectal 

Undefined 7.1% (n = 72/ 
1008) 

Logistic regression 
(univariable 
threshold) 

None 

Grant et al. (2019)37 Switzerland, 
France, UK 

Retrospective, 
international 

Colorectal CDC (full) Unreported 
(total = 46  
320) 

Logistic regression 
(forward 
selection) 

None 

PREVENTT (2019)39 USA Retrospective, 
regional 
(NSQIP) 

Colorectal Undefined 21.1% (n =  
366/1737) 

Logistic regression 
(backward 
selection) 

Internal (bootstrap) 

Kocbek et al. 
(2019)40 

Norway Retrospective, 
single centre 

Colorectal Other (ICD-10, 
NCSP codes) 

20.5% (n =  
233/1137) 

Machine learning 
(XGBoost) 

Internal 
(cross-validation) 

Wei et al. (2019)41 USA Prospective, 
single centre 

Emergency 
General 
surgery 

CDC (organ 
space) 

14.7% (n =  
172/1171) 

Logistic regression 
(Bayesian 
regularisation) 

Internal (subgroup) 

Angel García et al. 
(2020)42 

Spain Retrospective, 
regional 

Colorectal Undefined 7.3% (n = 463/ 
6325) 

Logistic regression 
(backward 
selection) 

Internal (bootstrap) 

AMRAMS (2020)31 China Retrospective, 
single centre 

Multiple (general 
surgery, 
gynaecology, 
orthopaedics, 
urology) 

Undefined 1.1% (n = 244/ 
21 611) 

Machine learning 
(LASSO) 

Internal (subgroup) 

Machine learning 
(CNN) 

Internal (subgroup) 

Boubekki et al. 
(2021)43 

Norway Retrospective, 
single centre 

Colorectal Other (ICD-10, 
NCSP codes) 

20.5% (n =  
233/1137) 

Machine learning 
(GBOOST) 

Internal 
(cross-validation) 

Fernandez-Moure 
et al. (2021)44 

USA Retrospective, 
single centre 

Emergency 
general surgery 

Other (ICD-9 
codes) 

13.3% (n =  
632/4738) 

Logistic regression 
(expert opinion) 

None 

CDC, Centers for Disease Control and Prevention; NSQIP, National Surgical Quality Improvement Program; NCSP, NOMESCO Classification of Surgical 
Procedures; LASSO, least absolute shrinkage and selection operator; CNN, convolutional neural network.  
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Model discrimination and prognostic accuracy 
Of the 23 unique models identified, discrimination was reported in 
61 per cent (14 of 23) for the derivation cohort, with the majority 
reporting ‘good’ or ‘excellent’ discrimination (79 per cent (11 of 
14), AUC geometric mean 0.831, AUC range 0.620–0.991) (Fig. 4a 
and Table S2). Of the 15 studies that subsequently conducted 
internal validation, 67 per cent (10 of 15) reported discrimination. 
There was a reduction in models reporting ‘good’ or ‘excellent’ 
discrimination when internal validation was performed (60 per 
cent (6 of 10), AUC geometric mean 0.735, AUC range 0.620–0.878). 

In comparison, of the four models that underwent external 
validation, the AUC remained greater than or equal to 0.7 for 

one model (the NNIS model) in 17 per cent (2 of 12) of cohorts 

(Fig. 4b and Table S2). However, there was no evidence to confirm 

this as statistically significant ‘good’ discrimination for SSI with 

an AUC greater than or equal to 0.7. 
However, only a minority of models assessed model calibration 

(22 per cent, 5 of 23) or prognostic accuracy (17 per cent, 4 of 23) 

during development or internal validation (Table S2). These 

were less frequently reported in external validation studies 
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(prognostic accuracy 6 per cent (1 of 23), calibration 11 per cent (2 
of 23)). Even when reported, calibration was insufficiently 
assessed, with only one model reporting the calibration 
intercept and slope in line with current best practice. 

Discussion 
This systematic review identified 23 original models developed for 
the prediction of SSI that were relevant to patients undergoing 
gastrointestinal surgery. Like many predictive models developed 
for other outcomes of interest10, significant concerns have been 
identified around methodological quality, evaluation, and 
clinical relevance to an undifferentiated gastrointestinal 
surgical population. Furthermore, even among the four (17 per 
cent) models that had undergone external validation12,13,24,36, 
none significantly exceeded the a priori threshold for ‘good’ 
discrimination (AUC greater than or equal to 0.7) and almost all 
did not report assessment of calibration or prognostic accuracy. 

Predicting patients at high risk of SSI would facilitate shared 
perioperative decision-making and allow targeting of resources 
to those most likely to benefit. Yet, despite over 30 years of 
research into the prediction of SSI, this remains a challenging 
task for several reasons45. SSI is inherently multifactorial, with 
numerous risk factors previously established46, encompassing 
an interplay of patient, operative, and hospital-based 
determinants. This leads to many candidate predictors, 
increasing the minimum sample size required, meaning 
development becomes limited to data from large-scale registries 
or prospective studies. A breadth of prognostic factors were 
identified in this systematic review—both in number and type 
across different models. While the most frequently identified 
prognostic factors likely represent those of greatest relevance 
for prediction of SSI, these should be interpreted with caution 
given the highlighted methodological concerns and 
heterogeneity in underlying populations. Future risk-prediction 
models may seek to prioritize investigation of these factors, 
although they will need to consider the potential for 
confounders, statistical error, and/or collinearity if not 
accounted for in the original models. Furthermore, these should 
use robust modelling approaches for variable selection 
(penalized regression or machine-learning approaches, rather 
than univariable selection or stepwise regression) or internal 
validation (bootstrapping or cross-validation, over random 
data-set splitting)18. While the CDC definition of SSI represents 
an established gold-standard definition, this is inherently 
subjective and requires in-person assessment47. Particularly 
with the adoption of enhanced recovery after surgery (‘ERAS’) 
programmes, SSI increasingly occurs after hospital discharge48. 
Therefore, studies conducted retrospectively that lack robust 
follow-up, or in areas of poor healthcare access, may 
underestimate the true event rate. These concerns were seen in 
many of the models identified, which may partly explain poor 
prediction in those externally validated. However, even with an 
established gold standard, there remained heterogeneity in the 
outcome of interest given that a significant minority of models 
used a non-CDC outcome or considered only specific subtypes of 
SSI. This limits the comparability between models and signals a 
lack of consensus on what aspect(s) of SSI should be the 
intended predictive target. Finally, the sample size and study 
design of included studies often did not meet required 
expectations. Only a minority of models were based on 
estimates of a minimum sample size, all of which were based on 
retrospective data (Fig. S1 and Table 1). As multicentre 

prospective studies may be expensive and/or complex to 
conduct, retrospective data should only be used when there are 
sufficient event rates, data quality, and modelling approaches to 
account for inherent biases18. 

Assessment of model performance was limited by the overall 
poor quality of reporting (particularly prognostic accuracy and 
model calibration), as well as the high risk of bias and scarce 
external validation. Overall, most models performed well with 
regard to derivation and internal validation, with the highest 
discrimination observed in models based on machine 
learning31,43. These are increasingly common in the literature49, 
with 30 per cent (3 of 10) of SSI models developed in the last 
5 years using machine-learning approaches. Although at an 
early stage within healthcare, these machine-learning-based 
models have theoretical benefits, including better handling of 
non-linearity and the incorporation of interaction terms, with 
the potential to improve predictive accuracy50. However, these 
can require significantly more data to achieve stability, are 
prone to overfitting, are less transparent for patients and 
clinicians, and often do not provide clinically significant 
enhancement to discrimination over well-conducted regression 
approaches51,52. 

While several models appear promising, confirmation 
using external validation is essential before these can be trusted 
or used in clinical practice11. Despite this, there continues to be 
difficulties with reproducibility across the broader prediction 
literature53. This is reflected here, with only one in six having 
undergone external validation. This may be due in part to the 
quantity, heterogeneity, and complexity of variables identified 
in models, posing practical challenges to validation and clinical 
usage if these data are not routinely recorded or available54,55. 
Even when this was performed, as expected there was a 
reduction in the observed discrimination compared with the 
derivation cohorts53. Of all models, the NNIS model remains the 
most validated model in the literature, likely in part due to its 
simplicity, being among the first published13, and its use in risk 
adjustment to allow inter-centre comparison of SSI rates7. 
While it did not demonstrate ‘good’ discrimination on external 
validation, it still displayed the highest discrimination reported. 
Nevertheless, particularly as the prognostic accuracy and 
calibration are unclear, the clinical utility remains low. 
Furthermore, it should be noted that almost all model 
derivation and validation has occurred in the context of 
high-income countries. It remains unclear whether any models 
can be generalized to low- and middle-income countries, which 
continue to experience the greatest burden of SSI1. Additional 
external validation or development of models relevant to these 
contexts are needed to ensure equitable benefit. 

This systematic review has several key strengths. It has 
comprehensively identified and evaluated predictive models 
previously developed for SSI after gastrointestinal surgery. Each 
model has been compared with current best practice regarding 
the reporting quality, risk of bias, minimum sample size, and 
practice of external validation—this allows a clear 
understanding of the suitability for the original purpose 
intended, as well as for prediction in undifferentiated 
populations of patients undergoing gastrointestinal surgery. 
This also provides a clear framework of standards for future 
models to meet. However, there are several important 
limitations to this study. First, the search was limited to 
English-language papers and databases, and so the systematic 
review may not encompass every possible model developed 
globally. Second, only models that were not procedure specific 
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were included. While these may share common prognostic factors 
relevant to broader populations, it was anticipated this would be 
limited due to procedure-specific variables and poor 
performance when transported to a broader population56. 

Prognostic models should be deliverable within the clinical 
context, have a clear target population with utility within the 
clinical decision process, and be demonstrated to be acceptable 
to patients and clinicians. Across the wider predictive-model 
literature, there is a gulf between the number of models 
developed and those adopted into routine practice57. No models 
have been recommended for individual risk assessment of SSI 
within guidelines or routinely adopted on a large-scale 
basis7,58,59. Indeed, there is limited evidence to support the use 
of any in undifferentiated gastrointestinal surgical patients (and 
even within the original subgroups of interest). Therefore, 
ongoing work to address this gap in prognostic models validated 
for a global gastrointestinal surgical population is underway by 
the National Institute for Health and Care Research (‘NIHR’) 
Global Health Research Unit on Global Surgery. There are 
numerous evidence-based interventions already available 
before, during, and after surgery that modify the risk of SSI and 
minimize associated harm7,58,59. Yet, without an adequate 
understanding of how to stratify patients according to their risk, 
shared decision-making and the appropriate allocation of 
targeted enhanced monitoring and perioperative interventions 
for SSI remain challenging32. Further, comprehensive external 
validation of existing models or novel, validated prognostic tools 
are needed to better differentiate risk of SSI across a global 
population of gastrointestinal surgery patients. 
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