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Abstract

Bayesian optimization is a methodology for global optimization of unknown and expensive
objectives. It combines a surrogate Bayesian regression model with an acquisition function
to decide where to evaluate the objective. Typical regression models are given by Gaussian
processes with stationary covariance functions. However, these functions are unable to ex-
press prior input-dependent information, including possible locations of the optimum. The
ubiquity of stationary models has led to the common practice of exploiting prior information
via informative mean functions. In this paper, we highlight that these models can perform
poorly, especially in high dimensions. We propose novel informative covariance functions
for optimization, leveraging nonstationarity to encode preferences for certain regions of the
search space and adaptively promote local exploration during optimization. We demonstrate
that the proposed functions can increase the sample efficiency of Bayesian optimization in
high dimensions, even under weak prior information.

1 Introduction

Bayesian optimization (BO) is a methodology for global function optimization that has become popular since
the work of Jones et al. (1998). Other influential works date back to Kushner (1962) and Močkus (1975).
BO has been applied to a broad range of problems (see e.g. Shahriari et al., 2016), including chemical
design (Gómez-Bombarelli et al., 2018), neural architecture search (White et al., 2021) and simulation-based
inference (Gutmann et al., 2016; Cranmer et al., 2020).

As a Bayesian approach, the idea is to place a prior over the objective function, typically a Gaussian process
(GP) prior characterized by a mean and covariance function. The prior, combined with an observation model
and past function evaluations (observations), allows the computation of a posterior predictive distribution.
The next acquisition is determined by the posterior predictive and a utility function, treating the optimization
as a decision problem.

Standard BO is generally effective in relatively low-dimensional problems. However, as dimensionality in-
creases, statistical and computational problems become more noticeable. In particular, the curse of dimen-
sionality manifests itself while learning the probabilistic surrogate of the objective function and during the
acquisition process. Indeed, as training data become sparser, the estimation of an accurate surrogate becomes
more difficult and the reliance on extrapolation increases. In this context, previous work has relied on certain
structural assumptions (Binois & Wycoff, 2022), namely low effective dimensionality (Garnett et al., 2014;
Li et al., 2016; Wang et al., 2016; Letham et al., 2020; Moriconi et al., 2020; Raponi et al., 2020; Eriksson &
Jankowiak, 2021; Grosnit et al., 2021) and additivity (Kandasamy et al., 2015; Gardner et al., 2017; Mutný
& Krause, 2018; Rolland et al., 2018; Wang et al., 2018). Local methods based on space-partitioning schemes
and trust regions have also been proposed (Assael et al., 2014; McLeod et al., 2018; Eriksson et al., 2019;
Wang et al., 2020b; Diouane et al., 2021). Notably, these methods employ stationary covariance functions.

By construction, stationary covariance functions are translation invariant and thus unable to express
spatially-varying information. As shown in Figure 1, stationary models can lead to poor optimization of
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Figure 1: Overconfident models are unable to capture the ground truth, causing BO to yield suboptimal
results. The stationary model with an informative quadratic mean fits the trend too well, resulting in small
residuals. These small residuals lead to a smaller prior variance and a longer lengthscale that, in turn, decrease
epistemic uncertainty. Stationarity posits that these hyperparameters are constant, but this assumption does
not hold for functions with irregular bumps. The proposed informative priors, being nonstationary, allow for
the specification of spatially-varying properties.

relatively simple one-dimensional objectives, suggesting issues in higher-dimensional domains. A common
practice is to include input-dependent information via informative mean functions (see e.g. Snoek et al.,
2015; Acerbi, 2019; Järvenpää et al., 2021). However, as demonstrated in Figure 1, this practice does not
necessarily alleviate the limitations of stationary covariance functions. In contrast, nonstationarity allows
for the incorporation of input-dependent information directly in covariance functions. The crux lies in the
design of flexible and scalable informative GP priors.

In the remainder of this paper, after we introduce the background in Section 2, we lay the foundation for
our methodology by discussing the advantages of second-order nonstationary for optimization in Section 3.
focusing on spatially-varying prior variance, lengthscales and high-dimensional domains. This includes a
discussion of regret bounds for covariance functions with spatially-varying parameters, which we have not
previously found in the literature. We then make the following contributions:

• In Section 4, we design informative covariance functions that leverage nonstationarity to incorpo-
rate information about promising points. Our GP priors encode preferences for certain regions and
allow for multiscale exploration during optimization. To our knowledge, we are the first to consider
informative GP priors for optimization with spatially-varying prior variances and lengthscales, both
induced by a shaping function that captures information about promising points.

• In Section 5, we empirically demonstrate that the proposed methodology can increase the sample
efficiency of BO in high-dimensional domains, even under weak prior information. Additionally, we
show that it can complement existing methodologies, including GP models with informative mean
functions, trust-region optimization and belief-augmented acquisition functions.

Section 6 discusses related work and Section 7 concludes the paper.

2 Background
2.1 Bayesian Optimization

In global optimization, the goal is to find the global minimizer of an objective function f : X → Y ⊆ R,

x⋆ = arg min
x∈X

f(x), (1)

where the domain X ⊆ RD, for objectives of D variables, and f is a function whose expression and gradient
are typically unavailable. Evaluation is possible at any point xi ∈ X, yielding the observation yi = f(xi), but
its cost is high enough to justify the use of sample-efficient methodologies that aim to minimize the number
of evaluations by careful selection. In this context, Bayesian optimization (BO) emerges as a competitive
approach. The idea is to train a Bayesian regression model M that explains the evidence collected up to
step n, Dn = {(xi, yi)}i≤n, and provides a distribution over possible functions. Given this probabilistic
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Algorithm 1 Bayesian Optimization (BO)
Input: objective function f , acquisition function α, statistical model M, initial evidence Dn0

repeat
xn+1 = arg max α(x | Dn, M) ▷ Find best candidate
yn+1 = f(xn+1) ▷ Evaluate candidate
Dn+1 = Dn ∪ {(xn+1, yn+1)} ▷ Update evidence set

until stopping condition is met

surrogate, an acquisition function α assigns a utility to each candidate point, guiding the selection of the
next acquisition, i.e., the next point to evaluate. The procedure is outlined in Algorithm 1, where the stopping
condition may be based on a maximum evaluation budget and a tolerance. For more details on BO, see e.g.
Shahriari et al. (2016), Frazier (2018) and Greenhill et al. (2020).

2.2 Gaussian Process Regression

BO is traditionally paired with Gaussian process (GP) models. For a given GP prior f ∼ GP (mθ, Cθ) with
mean function mθ : X → Y, covariance function Cθ : X × X → R+, and an additive Gaussian observation
model y = f(x) + ϵ, ϵ ∼ N (0, σ2

y), the univariate posterior predictive distribution of the latent f at test
input x is Gaussian with mean mn and variance σ2

n,

mn(x) = mθ⋆(x) + cn(x)⊺[Cn + σ2
yI]−1(yn − mn), (2)

σ2
n(x) = Cn(x, x), (3)

Cn(xi, xj) = Cθ⋆(xi, xj) − cn(xi)⊺[Cn + σ2
yI]−1cn(xj), (4)

cn(x) = (Cθ⋆(x, x1), . . . , Cθ⋆(x, xn))⊺ , (5)

where the entries in the Gram matrix Cn are [Cn]ij = Cθ⋆(xi, xj), and the mean vector mn has en-
tries [mn]i = mθ⋆(xi), ∀(xi, yi) ∈ Dn. Hyperparameters θ⋆ can, e.g., be fixed a priori or learned via
empirical Bayes, by introducing a hyperprior p(θ) and maximizing the unnormalized posterior p(θ|Dn) ∝
p(yn|Xn, θ)p(θ), where the marginal likelihood is p(yn|Xn, θ) = N (yn; mn, Cn + σ2

yI), Xn = {xi}i≤n. For
a comprehensive introduction to GPs, see Rasmussen & Williams (2005).

2.3 Stationary Covariance Functions

Most popular covariance functions are translation invariant, depending only on the relative position of the
input points. These functions compute Cov(f(xi), f(xj)) based on a translation-invariant distance between
xi and xj . Valid covariance functions must be symmetric and positive definite. In this family, we find the
squared exponential or Gaussian covariance,

CG(xi, xj) = σ2
0 exp(−1/2 d2

M(xi, xj)), dM(xi, xj) =
√

(xi − xj)⊺Λ−1(xi − xj), (6)

where σ2
0 is the prior variance and dM is the Mahalanobis distance function with matrix Λ. For simplicity and

scalability, it is customary to constrain the matrix to be diagonal with entries [Λ]dd = λ2
d ∈ R+, d ∈ {1, ..., D},

known as (squared) lengthscales. In this case, the Mahalanobis distance turns into the weighted Euclidean
distance, which we denote by dWE. These lengthscales control the exponential decay of correlation. For
instance, a short lengthscale leads to sample paths, or realizations, that vary more rapidly.

The Gaussian covariance, being infinitely differentiable, may generate unrealistically smooth sample paths.
A more general class of functions is generated, or reproduced, by the Matérn covariance function which
controls the differentiability of the process via a smoothness parameter ν, recovering CG when ν → ∞. For
optimization purposes, good empirical results have been found with ν = 5/2 (Snoek et al., 2012), for which

CM(xi, xj) = σ2
0

(
1 +

√
5dM(xi, xj) + 5

3d2
M(xi, xj)

)
exp

(
−

√
5dM(xi, xj)

)
. (7)
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An attractive property of the Gaussian and mixtures thereof, such as Matérn, is their proven universality
(Micchelli et al., 2006). Asymptotically, these covariance functions, or kernels, are capable of approximat-
ing any continuous function on any compact subset of the domain. In practice, however, other covariance
functions may be preferable in the small sample regime, especially if the elicited prior includes relevant
information, or structure, that accelerates the learning process.

2.4 Acquisition Functions

While many rules to determine promising candidate solutions have been proposed (see e.g. Wilson et al.,
2018; Neiswanger et al., 2022), those with an analytical expression remain the most popular. Such acquisition
functions can be evaluated without Monte Carlo or quadrature approximations. Given a Bayesian model,
myopic acquisition functions α suggest one acquisition at a time, depending only on the univariate posterior
predictive distribution with mean mn and variance vn, i.e., α(x | Dn, M) = α(x | mn, vn). In this context,
a popular choice is the Lower Confidence Bound (LCB) criterion (Srinivas et al., 2010),1

LCB(x) = mn(x) − βnσn(x), (8)

where the factor βn is related to a confidence level, balancing exploitation and exploration. Another popular
alternative is the Expected Improvement (EI), which has been found to be more effective than LCB when
properties of the objective function, e.g. norm bounds, are unknown (Snoek et al., 2012; Chowdhury &
Gopalan, 2017; Merrill et al., 2021). This acquisition function is defined as

EI(x) = Ep(f(x)|x,Dn)[I(x)] = σn(x)τ(z(x)), (9)
τ(z(x)) = z(x)FN (z(x)) + N (z(x); 0, 1), z(x) = (f(xbest) − mn(x))/σn(x), (10)

where I(x) = max(0, f(xbest)−f(x)) is the improvement over the incumbent f(xbest) and FN is the standard
Normal cumulative distribution function (CDF). For noisy functions, f(xbest) is replaced by the minimum
posterior predictive mean, m−

n = minx mn(x).

2.5 Regret

In the context of optimization, there are several useful metrics to measure performance. The instantaneous
regret is the loss incurred at step n, rn = f(xn) − f(x⋆), where xn is the acquisition and x⋆ is the global
minimizer of f . The simple regret is the minimum instantaneous regret incurred up to step n, sn = mint≤n rt,
or, equivalently, the regret incurred by the incumbent solution. The cumulative regret is defined as the sum
of instantaneous regret over N steps, RN =

∑
n≤N rn. If the cumulative regret grows at a sublinear rate,

then the average regret goes to zero, limN→∞RN /N = 0, which is also known as no regret. This property
implies that simple regret goes to zero, ensuring that the global optimum is asymptotically found. For more
details on regret bounds, see e.g. Vakili et al. (2021) and Gupta et al. (2022).

3 Benefits of Second-Order Nonstationarity for Optimization

We now turn our attention to GP priors with spatially-varying properties, namely prior variance and length-
scale, which provide the foundations for the informative covariance functions in Section 4. While an analysis
in terms of cumulative regret is customary, we focus on the instantaneous regret because we are interested
in the relatively small sample regime, for which the asymptotics are not relevant. Furthermore, by demon-
strating that the instantaneous regrets rn are smaller (or larger), it follows that the cumulative regret RN

is also smaller (or larger).

Spatially-varying prior variance The prior variance σ2
0 quantifies the (epistemic) uncertainty of the

surrogate model of f before observing data. Relatedly, posterior predictive variances σ2
n(x), defined in

Equation 3, determine the mutual information between observations yN and the objective function f ,
MIN (yN ; f) = 1

2
∑N

n=1 log
(
1 + σ−2

y σ2
n−1(xn)

)
, see e.g. (Srinivas et al., 2010, Lemma 5.3). Then, for sta-

tionary covariance functions, any point xn where cn−1(xn) ≈ 0 provides equal information about f because
1The LCB needs to be minimized and thus corresponds to a negative acquisition function α.
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Uninformative Mean Informative Mean
Ground Truth
Mean
CI (Stationary)
CI (Nonstationary)

Figure 2: Narrower credible intervals (CI) can be obtained with a spatially-varying prior variance. Typically,
GP priors in BO are uninformative, characterized by constant prior mean functions and stationary covariance
functions that posit a constant prior variance. Then, for popular acquisition functions, all candidates are
considered equally good a priori. Conversely, spatially-varying prior variances can encode preferences. In this
example, points near the center are more informative a priori.

Constant Lengthscale Spatially-varying Lengthscale

Figure 3: Given the same evaluation budget (N = 20), a model with spatially-varying lengthscales can better
approximate the function than one with a constant lengthscale. While the latter must set a shorter global
lengthscale, a multiscale approach can locally assign shorter lengthscales.

the predictive variance is approximately constant, σ2
n−1(xn) ≈ σ2

0 . Conversely, surrogate models of f with
a spatially-varying prior variance are spatially informative, even in the absence of neighboring observations,
in which case σ2

n−1(xn) ≈ σ2
0(xn).

In terms of optimization, a spatially-varying prior variance can express a priori preferences for certain
regions, as illustrated in Figure 2. Notably, compared to the stationary case, better optimization performance
can be achieved: For popular acquisition functions, the worst-case instantaneous regret is proportional to
the predictive standard deviation (Lemma A.1), provided that the interval |f(x) − mn(x)| ≤ βnσn(x)
holds for some factor βn. Then, recall that the predictive variance is upper bounded by the prior variance,
σ2

n(x) ≤ σ2
0(x). While the latter is constant for stationary covariance functions, covariance functions with

spatially-varying prior variances allow for narrower intervals and, in turn, tighter regret bounds. As a caveat,
standard regret analysis assumes that 1) intervals include the objective function and 2) global optima of
acquisition functions can be found, but in practice these assumptions do not necessarily hold.

Spatially-varying lengthscale In terms of sample efficiency, stationary covariance functions are ill-suited
for approximating objectives with spatially-varying properties. Intuitively, a function that varies rapidly
in one region may be characterized by short lengthscales, but is, otherwise, more efficiently described by
longer lengthscales. In order to capture the finest details of such a function, a stationary covariance would
require the shortest possible lengthscale, resulting in additional observations to approximate the function and
ultimately find the optimum. In contrast, a multiscale approach only requires more neighboring observations
where the local lengthscales are shorter (Figure 3).

In more detail, let the objective be a realization from a locally stationary process, f(x)=
∑

m≤M 1x∈Xm
fm(x)

with disjoint Xm ⊆ X, m = {1, . . . , M}, M ∈ N+. Each component is a member of a class of functions
forming the Hilbert space HCm

(Xm) with reproducing stationary kernel Cm and bounded norm ∥f∥HCm
≤

Bm. If f is to be estimated with a stationary covariance function C, then it must reproduce the space
HC(X) ⊇

⋃
m≤M HCm(Xm) with x ∈ X =

⋃
m≤M Xm and norm bound B ≥

√∑
m B2

m, by (Aronszajn,
1950, Theorem §6). This corresponds to a search in the space of more complex functions, for which more
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observations are required because the global lengthscale must be set as the shortest from {Cm}m≤M . Indeed,
for shorter lengthscales, λ′ ≤ λ, we have larger posterior predictive variances, σ2

n,λ′(x) ≥ σ2
n,λ(x), which lead

to greater information gains MIn,λ′ ≥ MIn,λ, and larger norms, ∥f∥HC
λ′

≥ ∥f∥HCλ
, by (Bull, 2011, Lemma

4), contributing to a larger βn,λ′ ≥ βn,λ because βn = supf∈HC ,MIn
∥f∥HC

+σy

√
2(MIn + 1 − log δ), δ ∈ (0, 1],

by (Chowdhury & Gopalan, 2017, Theorem 2). Then, by Lemma A.1, wider intervals |f(x) − mn(x)| ≤
βnσn(x) lead to larger regret bounds, and hence worse performance.

The argument above provides additional justification for spatially-varying prior variances, in which case
each Cm is characterized by different but constant σ2

0,m. Then, the stationary covariance function must set
σ2

0 = maxm σ2
0,m, leading again to wider intervals, and hence worse performance by Lemma A.1. Finally, as

M grows, it becomes more challenging to estimate and maintain M local models. Nonstationary approaches
that do not rely on space partitions can avoid these computational and statistical problems. Notably, in
the limit, each subset is a singleton, Xm = {xm}, ∀xm ∈ X, and the restriction f |Xm is reproduced by
Cm(xi, xj) = δimδjm with norm ∥f∥HCm

= |f(xm)|. For an uninformative prior mean, m0(x) = 0, the
narrowest interval, before observing data, |f(xm) − m0(xm)| ≤ β0,mσ0,m, is obtained with a spatially-
varying β0(x) = |f(x)| and constant σ0 = 1, or, equivalently, with β0 = 1 and spatially-varying prior
standard deviation σ0(x) = |f(x)|. Thus, the optimal prior variance depends on the shape of the objective
function, as previously suggested by Figure 2.

High-dimensional domains In high-dimensional Euclidean spaces, most of the volume is on the boundary,
and for stationary GPs, epistemic uncertainty, measured by the posterior predictive variance, increases with
the distance to the training data, tilting the acquisition step toward blind exploration of the boundary,
typically faces of a hypercube (Binois & Wycoff, 2022). This problem is known as the boundary issue (Swersky,
2017; Oh et al., 2018).

Moreover, uninformative priors provide no practical finite-time convergence guarantees. Begin by recalling
that the motivation behind BO is the optimization of expensive functions, which puts a practical constraint
on the size of the evaluation budget. However, unless the total budget N increases exponentially, the space
cannot be covered in such a way that a global contraction of the posterior predictive variance is ensured, see
e.g. (Kanagawa et al., 2018, Section 5.2) and (Wüthrich et al., 2021, Appendix C). Indeed, in the relatively
small sample regime, there is at least one point xn whose predictive variance is approximately equal to the
(constant) prior variance, σ2

n−1(xn) ≈ σ2
0 . This is explained by the absence of neighboring observations,

in which case the training data provides a negligible reduction of uncertainty because cn−1(xn) ≈ 0. As a
result, the worst-case instantaneous regret, being proportional to the predictive standard deviation (Lemma
A.1), remains approximately constant for fixed βn, or alternatively is nondecreasing for nondecreasing βn

(Chowdhury & Gopalan, 2017, Theorem 2), and thus there is no guarantee of improvement.

These problems can be alleviated by more informative GP priors. In particular, spatially-varying prior
variances allow the surrogate to remain spatially informative, even in the absence of neighboring observations,
and spatially-varying lengthscales can encourage greedier strategies, in an attempt to improve upon the
incumbent solution when given small budgets.

4 Informative Covariance Functions

For the construction of our informative covariance functions, we start with a set of anchors {x
(l)
0 }, i.e.,

a set of promising candidate solutions. This prior belief can be interpreted as a point-mass distribution
over promising points. A more conservative prior p(x⋆) is obtained by adding an uninformative slab that
ensures the optimal solution is included in its support, and forming a kernel density estimate by associating
a non-negative weight wl, distance function dl and kernel kl with each anchor x

(l)
0 ,

p(x⋆) ∝ ϕ(x⋆), ϕ(x⋆) = 1 + 1
L

∑
l≤L

(wl − 1) kl

(
dl(x⋆, x

(l)
0 )

)
. (11)

Distance functions and kernels characterize the neighborhood of anchors. Larger weights correspond to the
belief that better candidates can be found in a given neighborhood. Next, we introduce spatially-varying
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Figure 4: For a Gaussian kσ and weighted Euclidean distance dσ = dWE, decreasing the ratio rσ increases
the prior variance around the anchor x0 = 0. Stationarity is recovered when rσ = 1. The lengthscale λσ in
dWE controls the rate at which the prior variance decreases to the stationary baseline.

prior variances by rescaling the stationary covariance function CS(xi, xj),

CI(xi, xj) = σ2
0(xi, xj)CS(xi, xj), σ2

0(xi, xj) = σ2
p

√
ϕ(xi)

√
ϕ(xj), (12)

where σp is a scaling constant and CS(x, x) = 1. The modulating σ2
0(xi, xj) is symmetric and separable

in xi and xj , and hence a valid covariance function (Genton, 2001). The informative covariance CI(xi, xj),
being the product of two covariance functions, is also a valid covariance function.

The prior covariance function σ2
0(xi, xj) is a generalization of the constant prior (co)variance σ2

0 . By recalling
that covariance functions compute Cov(f(xi), f(xj)), the intuition is as follows: For two points xi and xj

that are close to anchors, i.e., large ϕ(xi) and ϕ(xj), this prior posits that their values, f(xi) and f(xj), are
highly correlated because both should be close to the minimal value and hence similarly small. Then, if the
probability for a point, e.g. xj , to be a good candidate decreases, the covariance becomes smaller because
f(xj), being less constrained, can take on a greater range of values.

In Section 5, we focus on the special case of a single anchor, for which we obtain

σ2
0(xi, xj) = σ2

p

√
1+

(
1
rσ

− 1
)

kσ (dσ(xi, x0))

√
1+

(
1
rσ

− 1
)

kσ (dσ(xj , x0)), (13)

where kσ ≜ k1, dσ ≜ d1 and rσ ≜ 1/w1 ∈ (0, 1]. We find this parametrization more convenient because
inverse weights are bounded. The ratio rσ controls the degree of stationarity, with rσ = 1 resulting in a
stationary covariance and rσ → 0 in increased nonstationary effects, as demonstrated in Figure 4.

Next, we introduce spatially-varying lengthscales via input warping. In input warping (Snoek et al., 2014;
Risser, 2016), the stationary covariance function CS is computed in a transformed space, i.e., after applying
a (possibly nonlinear) warping function hλ to x. Endowed with such a transformation, the informative
covariance function CI(xi, xj), in Equation 12, is given by

CI(xi, xj) = σ2
0(xi, xj)CS (hλ(xi), hλ(xj)) . (14)

Recall that inputs in σ2
0(xi, xj) are already being compared to anchors in the shaping function ϕ (Equa-

tion 11). Now, notice that an anisotropic stationary covariance function, equipped with the Mahalanobis
distance dM, is equivalent to an isotropic covariance function, equipped with the standard Euclidean distance
and linear transformation hλ(x) = Λ− 1

2 x. Then, since the warping function can be any real vector-valued
function, we propose a nonlinear transformation that shrinks the lengthscales λd around anchors, thereby
expanding their neighborhoods. In particular, for a single anchor, we have

hλ(x) = u
− 1

2
λ (x)Λ− 1

2 x, uλ(x) = 1 + (rλ − 1)kλ(dλ(x, x0)), (15)

with ratio rλ ∈ (0, 1].2 Note that the matrix Λ is diagonal with squared lengthscales λ2
d and the neighborhood

of x0 is characterized by the kernel kλ and distance dλ. The shortest lengthscale is √
rλλd.

2The general case with multiple anchors can be given by the kernel mixture uλ(x) = 1+1/L
∑

l≤L
(1/wl −1)kl(dl(x, x

(l)
0 )),

an expression similar to that of the shaping function ϕ in Equation 11. The inverse weights 1/wl ∈ (0, 1] set shorter lengthscales.
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5 Experiments

5.1 Setting

Informative covariance functions The shaping function ϕ should capture the existing knowledge about
the objective, possibly by being elicited from experts or learned on problems that are known to be similar.
This function, based on kernel mixtures, can express arbitrary beliefs, but its optimality crucially depends
on its alignment with the shape of the objective function, as discussed in more detail in Section 3. For
black-box optimization, in which little is known in advance, a default kernel and distance function may be
used, and their hyperparameters learned by empirical Bayes. To avoid overfitting and reduce computational
complexity, regularizing hyperpriors and hyperparameter tying are effective techniques that may also be
used. In particular, the parameters and functions that control the spatially-varying prior (co)variance and
lengthscales can be tied by setting the ratio r0 ≜ rσ = rλ, kernel k0 ≜ kσ = kλ and distance d0 ≜ dσ = dλ.
In our experiments, we specify a Gaussian k0, equipped with a weighted Euclidean distance d0 = dWE and
a shared lengthscale vector, which also parametrizes Λ. Dirac delta hyperpriors for anchors have also been
adopted, but note that none of these choices are strictly required. More implementation details can be found
in Appendix B, and we refer to Appendix F for the settings of r0, where we perform a sensitivity analysis.

An overview of the main methods using the proposed covariance functions (I) is included in Appendix D.
These methods are I+X0 and I+XA, where +X0 denotes a fixed anchor x0 (placed at the center of the
search space) and +XA denotes an adaptive anchor (placed at the incumbent solution). More methods can
be developed by incorporating complementary methodologies. In this paper, we test I+XA+TR (trust-region
optimization, Appendix D.1), I+XA+QM (informative mean functions, Appendix D.2), I+XA+SAAS (sparsity-
inducing hyperpriors, Appendix H) and I+XA+GKEI (belief-augmented acquisition functions, Appendix I).

Baselines Previous work has assumed that optimal solutions are generally closer to the center of the search
space rather than its boundary. As dimensionality increases, BO with a stationary covariance (S) may allocate
a large portion of the budget toward blind exploration of the boundary, which by assumption does not contain
the optimum, resulting in worse performance. To mitigate boundary overexploration, two approaches have
been proposed: quadratic mean functions (+QM) (Snoek et al., 2015) and cylindrical covariance functions (C)
(Oh et al., 2018). In particular, the latter are nonstationary covariance functions that aim to expand the
innermost region, and have been shown to outperform stationary additive models on several high-dimensional
additive objectives, without having to infer their structure. Further details can be found in Appendix C.
Additionally, the use of trust regions (+TR), despite not specifically intended to address the boundary issue,
has become a popular acquisition strategy for high-dimensional BO. This strategy can promote exploitation
by constraining acquisitions to an adaptive region centered at the incumbent solution.

In our experiments, we refrain from direct comparisons with existing BO packages due to the diverse training
and acquisition routines. Instead, we reimplemented the BO baselines to study the effect of different GP
priors on optimization performance under controlled conditions. We also investigate the interplay between
GP priors and trust regions. Our implementation of +TR follows TuRBO-1 (Eriksson et al., 2019). The GP
models are global, trained on all observations, and the trust region is given by a box whose side lengths are
doubled/halved after consecutive successes/failures. The hyperparameter values of +TR are identical to those
of TuRBO-1, except for the failure tolerance, which is originally given by the number of dimensions. On a
100-dimensional problem, this means that the trust region is only shrunk after 100 consecutive failures, half
of our evaluation budget. To increase exploitation, this tolerance is set to 10. Other baselines, such as the
popular CMA-ES (Hansen, 2016), are described and shown in Appendix D.

Performance metric We report the normalized improvement over initial conditions (Hoffman et al., 2011),

NIn = f
(n0)
best − f(x(n0+n)

best )
f

(n0)
best − f(x⋆)

, n = {0, . . . , N} , (16)

where n0 = 16 is the number of initial observations, f
(n0)
best is the lowest initial value, x

(n0+n)
best is the incumbent

solution, x⋆ is the global minimizer and N = 200 is the number of acquisitions.3

3Experiments with a larger evaluation budget can be found in Appendix J.
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Figure 5: Performance on test functions with 20, 50 and 100 dimensions. Additional results are shown in
Appendix D (methods and test functions) and Appendix J (larger evaluation budget). Solid curves and
shaded regions represent the mean and standard deviation of the normalized improvement, computed over
10 trials with different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations:
Stationary (S), Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and
Adaptive (+XA) anchors; acquisitions within Trust Region (+TR).

Unlike simple regret, this performance metric is invariant to initial conditions and to the range of f , always
starting from 0 and only attaining the maximum value of 1 if a global optimum is found (zero simple regret).
Additionally, our analysis does not hinge on the final best values because these can be deceiving. For instance,
a method that rapidly achieves a good, though suboptimal, solution should not be considered inferior to
another method that requires more evaluations, only to attain a marginally better value. The former is
more sample efficient, which is a desirable feature when functions are expensive to evaluate. Some results
are summarized by reporting the mean NI over N acquisitions (or, equivalently, the normalized area under
the NI curve), with 0 indicating worst and 1 optimal performance. Respective optimization trajectories are
shown in Appendix D.

5.2 Results on Test Functions
We first focus on objectives whose landscapes are well-defined and can be easily controlled, allowing us
to examine whether more informative priors translate into higher sample efficiency. Our test functions are
roughly bowl-shaped, making the quadratic mean prior an appropriate choice for these problems. Test
functions, such as Branin and Rosenbrock, have been previously used to test C (Oh et al., 2018). However,
the Branin function is known for having multiple global optima, some of which are located close to the
boundary. To overcome this, we design the QBranin function, which is obtained by adding a quadratic term,
resulting in a bowl-shaped function with a single global optimum. The Styblinsky-Tang function, while
multimodal, has a unique global optimum. A more detailed characterization of these test functions, as well
as additional benchmarks (Levy and shifted objectives), can be found in Appendix B.3.
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Table 1: Mean normalized improvement (over 200 acquisitions) on shifted (S35 and S50) Rosenbrock func-
tions (mean ± standard deviation). Values > 0.5 suggest superlinear improvement rates. Additional methods,
test functions and optimization trajectories can be found in Appendix D. Abbreviations: Stationary (S),
Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and Adaptive (+XA)
anchors; acquisitions within Trust Region (+TR).

S35Rosenbrock S50Rosenbrock

Method 50D 100D 50D 100D
S 0.503 ± 0.078 0.283 ± 0.052 0.690 ± 0.054 0.411 ± 0.048
S+QM 0.507 ± 0.086 0.218 ± 0.083 0.548 ± 0.193 0.104 ± 0.157
S+TR 0.677 ± 0.030 0.486 ± 0.030 0.752 ± 0.020 0.535 ± 0.061
C 0.744 ± 0.077 0.487 ± 0.067 0.700 ± 0.118 0.377 ± 0.142
I+X0 0.803 ± 0.031 0.644 ± 0.026 0.831 ± 0.038 0.729 ± 0.027
I+XA 0.803 ± 0.016 0.659 ± 0.023 0.857 ± 0.030 0.726 ± 0.039
I+XA+TR 0.800 ± 0.038 0.693 ± 0.016 0.844 ± 0.027 0.720 ± 0.031

Fixed anchor The proposed covariance functions are initially tested with a fixed anchor placed at the center
(I+X0). Figure 5 shows the performance curves on two objectives (top and middle) where the optimal solution
is relatively close to this anchor. These results indicate that second-order nonstationary approaches, such as
C and I+X0, can significantly outperform stationary methods, S and S+QM, particularly in higher-dimensional
domains. While an informative mean (S+QM) is not necessarily better than an uninformative constant mean
(S), prior information introduced via the covariance function leads to a consistent improvement over S. The
reason may be that, in certain dimensions, S+QM has relatively large quadratic weights that hinder exploration
away from the center, and in other dimensions, very small weights are unable to alleviate the boundary issue.
Compared to S, S+QM and C, the proposed I+X0 not only performs better on average but is also more reliable.

In Appendix E, an ablation study provides empirical evidence that incorporating both spatially-varying prior
variances and lengthscales is important for tackling higher-dimensional problems. In particular, we there
observe that the shorter lengthscales near anchors promote local exploration, which is especially effective
when anchors are relatively close to optima. Meanwhile, spatially-varying prior variances can mitigate the
boundary issue in high-dimensional domains, thereby improving sample efficiency. Next, we discuss the use
of an adaptive anchor and the performance on the Styblinsky-Tang function.

Adaptive anchor The assumption that optimal solutions are close to the center is strong. As optima
deviate from the center, the performance of C decreases markedly, eventually becoming comparable to that
of S (Table 1). Despite the lower apparent vulnerability of I+X0 to anchor misspecifications, this motivates
the use of informative covariance functions with an adaptive anchor (I+XA). For simplicity, we opt for a
greedy strategy where the anchor is given by the incumbent solution. For noise-free objectives, this is the
point in the evidence set with the lowest observed value.

In addition to QBranin and Rosenbrock, Figure 5 includes the performance on the Styblinski-Tang function,
whose optimal solution is relatively distant from the center. Notably, the center is a local maximum, being
surrounded by exponentially many local modes. As the assumption that the global minimum is close to
the center is no longer valid, we observe that the relative performance of C and I+X0, compared to S and
S+QM, deteriorates. In particular, C becomes the worst-performing method and I+X0 is worse than S in the
20-dimensional problem. Conversely, I+XA is consistently among the best-performing methods across all tests
shown in the figure, and often outperforms the fixed-anchor variant (I+X0).

Trust region The use of an adaptive greedily-chosen anchor is partly motivated by trust-region opti-
mization, wherein regions are centered at the incumbent solution. However, the proposed methodology is
complementary to trust regions because it extends a stationary covariance function with spatially-varying
parameters that are possibly aligned with prior beliefs about the objective. While S+TR can lead to signifi-
cant improvements over S, overexploration of boundaries in a trust region can still occur because the model
is stationary. The method I+XA+TR shows that the combination of informative covariance functions with
trust-region optimization can improve sample efficiency.
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Figure 6: Map layout of the rover trajectory problem (left) and respective optimization results (right).
Additional results and a more detailed analysis can be found in Appendix G. Solid curves and shaded regions
represent the mean and standard deviation of the normalized improvement, computed over 10 trials with
different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations: Stationary (S),
Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and Adaptive (+XA)
anchors; acquisitions within Trust Region (+TR).
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Figure 7: Bayesian optimization of 100 parameters of a neural network trained and tested on MNIST.
Solid curves and shaded regions represent the mean and standard deviation of the normalized improvement,
computed over 10 trials with different initial conditions. Solid vertical lines indicate the interquartile range.
Abbreviations: Stationary (S), Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM);
Origin (+X0), Good (+XGood) and Adaptive (+XA) anchors; acquisitions within Trust Region (+TR).

5.3 Applications

Rover trajectory planning Recent studies have used the rover trajectory (RoverT) problem to showcase
BO (Wang et al., 2018; Eriksson et al., 2019; Eriksson & Jankowiak, 2021). The goal is to optimize a trajectory
such that the rover satisfies the target endpoints, xstart and xend, while avoiding collisions with objects, as
depicted in Figure 6 (left). The trajectory is given by a B-spline that is fitted to 30 2-dimensional points,
resulting in a 60-dimensional optimization problem. A more detailed description and analysis is provided in
Appendix G. As we show in Figure 6 (right), I+X0 and I+XA, which use an informative covariance, are the
best-performing methods. We also observe that the performance of S+TR and I+XA+TR is significantly worse
than that of S and I+XA, respectively. The reason may be that points in a trust region do not significantly
improve upon the incumbent solution. For optimal performance, the endpoints must match the two targets
because deviation incurs a significant loss. However, this may not be feasible when using a small box centered
at a suboptimal solution, e.g. xbest = 0. Consecutive failures decrease the size of trust regions, potentially
resulting in even slower progress.

11



Neural network optimization In this application, we optimize a neural network layer, as proposed by Oh
et al. (2018). In particular, we perform BO of 100 parameters of a two-layer fully-connected network trained
and tested on the MNIST dataset (LeCun, 1998). The architecture is 784 W1,b1−−−−→ Nhidden

W2,b2−−−−→ 10, with
weights W, biases b, Nhidden = 10 and ReLU activations. The model is trained for 10 epochs with a batch
size of 512 and evaluated on the test set using the negative log-likelihood loss. The weights W2 are found by
BO using the test loss, while the remaining parameters are learned on the training set with Adam (Kingma
& Ba, 2014). As pointed by Oh et al. (2018), the goal is not to find solutions that generalize well, but rather
to evaluate the ability of BO to find solutions that perform well on the test set by minimizing the respective
loss. The landscape is multimodal, and points at the boundary can yield relatively good solutions.

Results are shown in Figure 7. While S+QM appears to perform slightly better than I+X0 and I+XA, models with
an informative covariance function do not preclude the use of an informative mean function. For instance,
we observe that I+XA+QM can improve upon I+XA toward the end, achieving similar average performance
to that of S+QM. Relatedly, in Appendix D, we show that I+XA+QM outperforms both S+QM and I+XA on
Styblinsky-Tang, demonstrating that informative mean and covariance functions are complementary. The
best-performing method is I+XGood, which assumes strong prior information by using a fixed anchor placed at
a solution found by S+QM. This highlights the value of high-quality information and that it can be incorporated
into informative GP priors, without modifying the acquisition process.

5.4 Limitations

Despite the overall superior performance shown by methods with informative covariance functions, there is
room for improvement that is left for future work. For instance, as dimensionality increases, the weighted
Euclidean distance cannot differentiate points that are far only in a few dimensions. This can lead to dif-
ficulties in addressing the boundary issue in hypercubes. Potential remedies for this problem may include
different parametrizations and distances based on the max-norm. Moreover, there is no mechanism in place
that prevents greedily-chosen anchors from being close to the boundary. Since I+XA relies on empirical priors,
it can be used without access to reliable prior information. However, as shown in Section 5.3 and Appendix D,
methods that include reliable information can significantly outperform I+XA.

In Section 4, we provide formulas for covariance functions with multiple anchor points to demonstrate that
the proposed methodology can in theory capture knowledge about the objective that goes beyond a single
anchor. In our experiments, we focus on methods with a single anchor for several reasons. First, we wanted
to show that higher sample efficiency is possible with simple design choices. Furthermore, baselines such as
S+QM, S+TR and C implicitly assume the existence of a single anchor. By restricting ourselves to this case, the
comparisons are fair, and we can assess the robustness of the different methods to anchor misspecification.

Additionally, in sequential myopic BO, which is the setup considered in this paper, it suffices to focus on a
region that includes an optimum. The correct identification of such a region may be difficult in multimodal
objectives, but as we have shown, the anchor can be dynamically adjusted. One option, without having to
specify simultaneous anchors, is to maintain posterior beliefs about promising points and sample them at
each step. If the anchors are not known, a similar strategy to that proposed by Eriksson et al. (2019) to
maintain multiple trust regions is also a possibility. Other options include setting the anchors after performing
cluster analysis and learning them by empirical Bayes. In this context, a different set of baselines would also
be more appropriate, including methods with multiple trust regions and quadratic mean functions with
multiple centers. Moreover, model selection can be used to automatically determine the number and location
of anchors (see e.g. Appendix H). A careful treatment of informative covariance functions with multiple
anchors requires substantial analysis and testing, and we believe this is best left for future work.

6 Related Work

Second-order nonstationarity Covariance functions with spatially-varying lengthscales were initially ex-
plored by Gibbs (1998) and Paciorek & Schervish (2006), and augmented with spatially-varying prior (and
noise) variance by Heinonen et al. (2016) for GP regression. These models are derived from basis function
expansions or process convolution (Risser, 2016), wherein the covariance function is obtained via integral
transform of a base stochastic process with a kernel function, which may also depend on auxiliary mixing
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variables (e.g. Wang et al., 2020a). In contrast, we introduce spatially-varying lengthscales via input warping,
resulting in a simpler expression that does not require extra factors to ensure positive definiteness. Addi-
tionally, these other models place GP priors on the spatially-varying parameters and infer the respective
latent functions by MCMC, being computationally expensive for high-dimensional parameter spaces. In-
stead, we use pointwise specifications of nonstationary effects, governed by semiparametric functions whose
shape and parameters can be elicited from an expert or learned by empirical Bayes. Importantly, while these
works focus on the estimation of the covariance function for regression purposes, we leverage second-order
nonstationarity to incorporate information about promising points for optimization.

In the context of optimization, input warping was first studied by Snoek et al. (2014), focusing on monotonic
input deformations via CDFs, specifically the Beta distribution. The motivation follows from a regression
perspective, as the resulting GP is capable of approximating more realistic objective functions. More recently,
Oh et al. (2018) proposed cylindrical covariance functions for optimization, outperforming the method by
Snoek et al. (2014). In this case, after applying the cylindrical transformation, the radius is warped by the
Kumaraswamy distribution, further expanding the innermost region of the search space, which is assumed
to contain the optimal solution. A different methodology was explored by Martinez-Cantin (2015), who
used linear combinations of local and global stationary covariance functions with input-dependent weights to
induce spatially-varying lengthscales (piecewise constant). While the motivation is that the local assignment
of shorter lengthscales promotes local exploration, the local component is not guaranteed to learn shorter
lengthscales because both are initialized with the same hyperpriors. None of these works provide a regret
analysis or consider spatially-varying prior (co)variances in their models.

High-dimensional Bayesian optimization To tackle the challenges presented by high-dimensional spaces,
previous research has relied on certain structural assumptions (Binois & Wycoff, 2022), namely low effective
dimensionality (e.g. Letham et al., 2020; Eriksson & Jankowiak, 2021) and additivity (e.g. Kandasamy et al.,
2015; Gardner et al., 2017; Rolland et al., 2018). Space-partitioning schemes and trust regions have also been
proposed (e.g. McLeod et al., 2018; Eriksson et al., 2019; Wang et al., 2020b; Diouane et al., 2021). Notably,
these methods employ stationary covariance functions. Our work complements these by introducing more
informative priors (see e.g. Appendices D and H). Cylindrical covariance functions (Oh et al., 2018) can also
be augmented with spatially-varying (co)variances and anchors can be defined in the transformed space.

Priors over the optimum There have been limited attempts to incorporate beliefs about optimal solu-
tions into BO. Souza et al. (2021) combined predefined prior distributions with the tree-structured Parzen
estimator approach by Bergstra et al. (2011), which estimates the input given the output, as opposed to the
standard GP approach of modeling the output given the input. By design, the former is restricted to the Ex-
pected Improvement acquisition function. Ramachandran et al. (2020) explored input warping via predefined
CDFs that encode prior beliefs. More recently, Hvarfner et al. (2022) proposed belief-augmented acquisition
functions. As we show in Appendix I, these functions and informative GP priors are complementary.

7 Conclusion
This work proposes informative covariance functions for Bayesian optimization, leveraging nonstationarity to
incorporate input-dependent information. Our methodology relies on priors with spatially-varying parameters
to express a priori preferences for certain regions and to promote multiscale exploration. These priors can
more efficiently describe a wider class of objective functions and result in improved worst-case performance.

Our experiments showed that the proposed covariance functions can significantly increase sample efficiency,
even under weak prior information, challenging the prevalent use of stationary models for optimization. Ad-
ditionally, we showed that our work complements existing methodologies, including models with informative
mean functions, trust-region optimization and belief-augmented acquisition functions. Despite our focus on
continuous search spaces, we believe that this work can be extended to other types, such as discrete and
mixed spaces, by adopting appropriate priors. Our methodology can also accommodate multiple anchors
and be combined with other methods, relying for instance on additivity and low effective dimensionality.
We recognize that priors over the possible locations of the optimum can be defined in transformed, possi-
bly lower-dimensional spaces, but these details are left for future research. Overall, we see this work as a
contribution toward the wider adoption of scalable nonstationary and informative models for optimization.
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A Instantaneous Regret Bounds

Lemma A.1. Assume the interval |f(x) − mn(x)| ≤ βnσn(x) holds, ∀x ∈ X and that global optima of
acquisition functions can be found. Then, for popular acquisition functions, namely LCB and EI, and any
covariance function, possibly nonstationary, the worst-case instantaneous regret depends on the width of the
interval, being proportional to the posterior predictive standard deviation, rn+1 ∝ σn(xn+1), where xn+1 is
the acquisition at step n + 1.

Proof. Let x⋆ be the minimizer of f(x). Then, based on (Srinivas et al., 2010, Lemma 5.2), we have the
following instantaneous regret bound for LCB,

rn+1 = f(xn+1) − f(x⋆) (17)
≤ f(xn+1) − mn(x⋆) + βnσn(x⋆) (18)
= f(xn+1) − LCB(x⋆) (19)
≤ f(xn+1) − LCB(xn+1) (20)
= f(xn+1) − mn(xn+1) + βnσn(xn+1) (21)
≤ 2βnσn(xn+1). (22)

Regarding EI, we know BnIn(x) ≤ EI(x) ≤ In(x) + (βn + 1)σn(x), by (Wang & de Freitas, 2014, Lemma 9),
with Bn = τ(−βn)/τ(βn) ≤ 1, and τ(z) = zFN (z) + N (z; 0, 1), because τ is nondecreasing, τ ′(z) = FN (z) ∈
[0, 1]. Also, recall that the improvement is given by In(x) = max(0, m−

n − f(x)) with m−
n = minx mn(x).

Now, we derive a simpler, tighter upper bound on EI,

EI(x) = σn(x)τ(z(x)) (23)
≤ σn(x)τ(0) (24)

= 1√
2π

σn(x) < σn(x), (25)

where the first inequality follows from z(x) = (m−
n − mn(x))/σn(x) ≤ 0 and nondecreasing τ . Let x−

n =
arg minx mn(x). Then, the instantaneous regret bound can be written as

rn+1 = f(xn+1) − f(x⋆) (26)
= (f(xn+1) − m−

n ) + (m−
n − f(x⋆)) (27)

≤ (f(xn+1) − m−
n ) + In(x⋆) (28)

≤ (f(xn+1) − m−
n ) + 1

Bn
EI(x⋆) (29)

≤ (f(xn+1) − m−
n ) + 1

Bn
EI(xn+1) (30)

≤ (f(xn+1) − m−
n ) + 1

Bn
σn(xn+1) (31)

≤ (mn(xn+1) − m−
n ) +

(
βn + 1

Bn

)
σn(xn+1) (32)

≤
(

Dn(xn+1) + βn + 1
Bn

)
σn(xn+1) (33)

≤
(

D+
n + βn + 1

Bn

)
σn(xn+1), (34)

where, in Equation 32, the difference is bounded as |mn(xn+1) − m−
n | ≤ Dn(xn+1)σn(xn+1), with

Dn(xn+1) =
√

2 log(σn(xn+1)/σn(x−
n )), by (Wang & de Freitas, 2014, Lemma 10). From the same lemma,

we also know that σn(x−
n ) can be lower bounded by a positive value, and that there is a positive constant

upper bounding σn(xn+1) by construction. Thus, for any covariance function, possibly nonstationary, there
exists a positive constant D+

n such that D+
n ≥ Dn(xn+1), which yields the result.
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B Implementation Details

B.1 Gaussian Processes

We used GPyTorch (Gardner et al., 2018) to implement all GP models in Python, including the proposed
informative (I) covariance functions, cylindrical (C) covariance functions (Oh et al., 2018) and axis-aligned
quadratic mean (+QM) (Snoek et al., 2015). Unlike the version provided by GPyTorch, our implementation of
C follows the original training and prediction routines, which account for the special treatment of the origin,
as discussed in more detail in Appendix C.

In order to ensure fair comparisons, all models are optimized by L-BFGS-B (Zhu et al., 1997) with a maximum
of 1000 iterations per new acquisition and other options set to default values. In addition, the stationary
components CS are Matérn (ν = 5/2), equipped with the weighted Euclidean distance (lengthscales λd).
Positivity constraints are handled internally by GPyTorch using the softplus transform, except for C-specific
hyperparameters, which use the log transform (Appendix C). General hyperparameters are given uninfor-
mative priors with bounds from (Oh et al., 2018). These include the prior variance σ2

0 ∼ U(e−12, e20) and
lengthscales λd ∼ U(e−12, 2

√
D), d ∈ {1 . . . D}, where the upper bound corresponds to the maximum Eu-

clidean distance in the centered hypercube X = [−1, 1]D. Table 2 summarizes the default settings of I. For
noise-free objectives, the noise hyperparameter is set to a fixed value σ2

y = 10−3.

By default, models are characterized by an uninformative prior mean function with a uniformly-distributed
constant b ∼ U(ymin, ymax), where the bounds correspond to the minimum and maximum observed values.
Variants +QM use an axis-aligned quadratic mean function m(x) = b +

∑
d ad([x]d − [c0]d)2, as suggested by

Snoek et al. (2015) and Swersky (2017, Section 4.4). The quadratic weights are independent, distributed as
ad ∼ HS+(2). The half-Horseshoe is a spike-and-slab hyperprior with a spike at 0 and a slab on the positive
real line, only allowing convex quadratic functions. Quadratic mean functions with adaptive, greedily-chosen
centers c0 = xbest were tested, but no significant or consistent improvement compared to the default center
c0 = 0 was observed. Hence, results using the former (+QM+XA) are only shown in Appendix D.

Table 2: Default settings of informative covariance functions.

Quantity Setting
Stationary corr. CS Matérn (ν = 5/2, σ2

0 = 1)
Prior variance σ2

p U(e−12, e20)
Lengthscales λd U(e−12, 2

√
D)

Distances dσ, dλ Tied d0
Distance d0 Weighted Euclidean dWE (shared λd)
Kernels kσ, kλ Tied k0
Kernel k0 Gaussian
Ratios rσ, rλ Tied r0
Ratio r0 Kumar(3.164, 1000),

Sensitivity analysis (Appendix F)

B.2 Acquisition

Prior to acquiring new data, an initial evidence set is formed. The set Dn0 includes the origin and 15
other pseudo-uniformly distributed points, drawn according to a scrambled Sobol sequence (Owen, 1998;
Joe & Kuo, 2008). This set provides the initial conditions from which initial models are estimated and their
performance measured. For noise-free objectives, the incumbent solution is the point with the lowest observed
value x

(n0+n)
best = arg minx∈Dn0+n

f(x), n0 = 16, n = {0, . . . , N}, N = 200.

The default acquisition function is the Expected Improvement (EI), which is implemented in BoTorch (Ba-
landat et al., 2020). Maximization is performed on the CPU via gradient-based optimization with multiple
restarts. The 20 initial points for the optimization are selected from 20010 candidates, including 10 points
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that are chosen heuristically and 20000 points that are randomly generated. The former are obtained by
small Gaussian perturbations of the incumbent solution, and the latter are drawn from a scrambled Sobol
sequence. The main difference between this procedure and the one implemented by Oh et al. (2018) is the
use of L-BFGS-B via BoTorch, as opposed to Adam (Kingma & Ba, 2014).

B.3 Test Functions

Test functions are set up in a way similar to that used by Oh et al. (2018), with their domains adjusted to
the centered hypercube X = [−1, 1]D by applying a linear transformation to the inputs. Additionally, original
objectives are shifted and scaled to satisfy f(x⋆) = 0 and f(0) = 100. Since the resulting functions are non-
negative, models are then estimated on log-transformed data, after adding a very small offset. In general,
this leads to improved performance because the distribution of function values becomes more Gaussian-like.
Performance metrics are however computed without the log transform.

QBranin The Branin function is originally evaluated on [−5, 10] × [0, 15], and has several global optima.
This function is modified by adding a quadratic component (last term), transforming it into a bowl-shaped
function with only one global optimum,

f(x) =
(

[x]2 − 5.1
4π2 [x]21 + 5

π
[x]1 − 6

)2
+ 10

(
1 − 1

8π

)
cos([x]21) + 10 + 5[x]21. (35)

Higher-dimensional versions are obtained by additive repetition.

Shifted QBranin The shifted variants SQBranin and SSQBranin are derived from QBranin by shifting the
inputs in the original space by 2 and 3, respectively. Additional experiments with these variants are included
in Appendix D. Figure 8 provides a 2D illustration of these functions in the transformed space [−1, 1]2.

Rosenbrock This function is originally evaluated on the hypercube [−5, 10]D and is given by

f(x) =
D−1∑
d=1

[
100([x]d+1 − [x]2d)2 + ([x]d − 1)2]

. (36)

Similar to QBranin, the global optimum is close to the origin in the transformed space, x⋆ = −0.2 × 1.
However, as shown in Figure 9, the Rosenbrock is characterized by narrow banana-shaped valleys, making
global optimization more challenging.

Shifted Rosenbrock S35Rosenbrock, S50Rosenbrock, and S65Rosenbrock are three variants of the Rosen-
brock function, designed to test the robustness of methods that assume good values near the origin. These
functions are obtained by shifting the inputs so that the global minima in the transformed space are at
x⋆ = 0.35 × 1, x⋆ = 0.50 × 1, and x⋆ = 0.65 × 1. Figure 9 provides a 2D illustration of these functions.

Levy The original domain is [−10, 10]D and the function is defined as

f(x) = sin2(πw1) +
D−1∑
d=1

(wd − 1)2 [
1 + 10 sin2(πwd + 1)

]
+ (wi − 1)2 [

1 + sin2(2πwi)
]

, (37)

wd = 1 + [x]d − 1
4 , i ∈ {1, . . . , D}. (38)

As shown in Figure 10 (left), the Levy function is characterized by strong sinusoidal components. The global
optimum is again close to the origin, specifically at x⋆ = 0.1 × 1 in the transformed space.

Styblinski-Tang The original domain is [−5, 5]D and the function is given by

f(x) = 1
2

D∑
d=1

(
[x]4d − 16[x]2d + 5[x]d

)
. (39)

Joint optimization of the Styblinski-Tang function is difficult because it has exponentially many local modes
2D − 1. In contrast to QBranin, Rosenbrock and Levy, the global optimum is relatively far from the origin,
x⋆ ≈ −0.58 × 1 in the transformed space. Figure 10 (right) provides an illustration of this multimodal
function.
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Figure 8: A 2D slice of QBranin and shifted variants. These test functions are unimodal and bowl-shaped.
The purpose of SQBranin and SSQBranin is to test the robustness of methods that assume good values near
the origin.
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Figure 9: A 2D slice of Rosenbrock and three shifted variants (S35, S50 and S65).
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Figure 10: A 2D slice of Levy and Styblinski-Tang.
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C Cylindrical Covariance Functions

Cylindrical covariance functions (Oh et al., 2018) aim to address the boundary issue that arises in high-
dimensional Bayesian optimization. The cylindrical transformation T (x) represents a point x ∈ X in terms
of its radius r and angular components a,

(r, a) = T (x) =
{

(∥x∥2, x/∥x∥2), if ∥x∥2 ̸= 0
(0, aarbitrary), if ∥x∥2 = 0

. (40)

where aarbitrary is a random unit vector. Geometrically, this transformation maps balls of radius R onto the
surface of a cylinder of height R. A spherical shell of width δr centered at a point x corresponds to a region
in the Euclidean space whose volume increases exponentially with the radius r. As a result, algorithms that
aim at equally covering each volume element in the Euclidean space spend exponentially more time at the
boundary of the search space. In contrast, Oh et al. (2018) proposed to spend an equal amount of resources
on each volume element in the transformed space. Intuitively, the transformation leads to a search in the
Euclidean space that “expands the region near the center while contracting the regions near the boundary”
(Oh et al., 2018, Section 3.2). The assumption is that optimal values are more likely to be found near the
origin, so it is beneficial to encourage exploration in this region.

Remarkably, this transformation poses a challenge when comparing any non-origin point to the origin, since
the latter is represented by an infinite set of points with radius 0. Oh et al. (2018) proposed using the point
in the set that is closest to the point under comparison x, setting aarbitrary = x/∥x∥2. However, this solution
has significant computational implications, requiring custom inference routines. If the origin is included in
the training set, the Gram matrix must be recomputed for each test point. This issue is mitigated by block
matrix inversion, where the block containing all non-origin points can be precomputed and reused.

Cylindrical covariance functions Ccyl are defined by the product of a 1-dimensional Matérn (ν = 5/2),
measuring similarity of radii, and a function Ca that compares angular components,

Ca(a1, a2) =
3∑

p=0
cp(a⊺

1a2)p, (41)

where cp is a normalized non-negative weight, given a log-Normal prior log(cp) ∼ N (0, 22). To further en-
courage the expansion of the innermost region, Oh et al. (2018) used input warping on the radius com-
ponent. This involves transforming the radius according to the Kumaraswamy cumulative distribution,
FKuma(r) = 1 − (1 − rα)β , with α ∈ [0.5, 1] and β ∈ [1, 2]. Both α and β are given a spike-and-slab
hyperprior on the log scale, with spike at log(1). Figure 11 shows possible warpings, including the identity
transform obtained with α = 1 and β = 1.
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Figure 11: Input warping on the radius. Concave transformations expand regions of small radii.
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D Additional Results

D.1 Main Methods

S Bayesian Optimization (BO) with an uninformative Gaussian process (GP) prior, characterized by a
constant mean and a stationary Matérn covariance function.

S+QM S with an axis-aligned quadratic mean function (Snoek et al., 2015; Swersky, 2017).

S+TR S with acquisitions within an adaptive trust region, i.e., a box centered at the incumbent solution that
is shrunk/expanded based on consecutive failures/successes (Eriksson et al., 2019). For noise-free objectives,
the incumbent solution is the point with the lowest observed value, as described in Appendix B.2.

C BO with a GP characterized by a constant mean and a cylindrical covariance function (Oh et al., 2018).

I+X0 (Proposed) BO with a GP featuring a constant mean and an informative covariance function. A
single, fixed anchor is placed at the center (origin) of the search space.

I+XA (Proposed) I+X0 with an adaptive greedily-chosen anchor, given by the incumbent solution. This
is the same point as that used in S+TR.

I+XA+TR (Proposed) I+XA with a trust region, using the same adaptation scheme as S+TR.

D.2 Additional Methods

S+QM+XA Quadratic mean function with a greedily-chosen center, given by the incumbent solution. In
most tests, including the shifted objectives in Figures 12 and 14, S+QM+XA was outperformed by S+QM.

GS+XA Informative covariance functions are based on a search model for the optimum, which is given by
a mixture distribution (Equation 11). For a single anchor, Gaussian kernel and weighted Euclidean distance,
the equivalent distribution is a mixture of a uniform and a Gaussian distribution with diagonal covariance
matrix. In GS+XA, the mean is set to the incumbent solution and the variance is estimated from the data.
The standard deviation is the median absolute deviation (MAD) of the best 5% training points (rounded,
with a minimum of 2), assuming that the coordinates are independently and identically distributed. The
Gaussian mixing weight is set to 0.9. Other combinations involving a smaller mixing weight (0.5), a larger
training set (10%) and a scale correction of the MAD estimate were also tested, but overall performed no
better than GS+XA. In turn, GS+XA typically performed worse than S or C, as shown in Figures 12, 13 and 14.

CMA-ES Covariance Matrix Adaptation Evolution Strategy (Hansen, 2016) is a popular global optimization
algorithm and is related to GS+XA, in that it samples from a Gaussian whose mean and covariance matrix
are adaptive. In terms of implementation, we use pycma (Hansen et al., 2019) with a population size of 10.
In general, CMA-ES was outperformed by S, as shown in Figures 12 and 14. On Styblinski-Tang (Figure 13),
however, it performed well, but no better than I+XA or I+XA+QM.

I+XA+QM (Proposed) The uninformative constant mean in I+XA is replaced by the quadratic mean from
S+QM. In tests where S+QM performed comparatively well, e.g. Styblinski-Tang (Figure 13), the combination
I+XA+QM proved to be effective.

I+XA+F (Proposed) I+XA uses empirical priors, optimizing the hyperparameters via marginal likelihood.
However, if additional information about the objective is available, better performance can be achieved.
For instance, in cases where the center is already a good solution, e.g. Levy (Figure 13) and Rosenbrock
(Figure 14), it can be difficult to improve upon initial conditions. In such cases, we can commit to a more
exploitative search around XA. Based on this intuition, the focused method I+XA+F uses relatively short fixed
lengthscales λ0 = 0.1

√
D to compute distances d0, and a fixed r0 = 0.1. The remaining hyperparameters

are still learned from data. As future work, several priors can be used in tandem. A portfolio can then be
managed using strategies similar to those proposed by Hoffman et al. (2011) and McLeod et al. (2018).

I+XA+F+TR (Proposed) In order to further encourage the search around XA, I+XA+F can also be com-
bined with trust regions, achieving better performance in certain cases, e.g. Levy (Figure 13) and Rosenbrock
(Figure 14).
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D.3 Results
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Figure 12: Performance on QBranin and variants, ranging from 20 to 100 dimensions. Solid curves and
shaded regions represent the mean and standard deviation of the normalized improvement, computed over
10 trials with different initial conditions. Solid vertical lines indicate the interquartile range.
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Figure 13: Performance on Levy and Styblinski-Tang, ranging from 20 to 100 dimensions. Solid curves and
shaded regions represent the mean and standard deviation of the normalized improvement, computed over
10 trials with different initial conditions. Solid vertical lines indicate the interquartile range.
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Figure 14: Performance on Rosenbrock objectives with 20, 50 and 100 dimensions. Solid curves and shaded
regions represent the mean and standard deviation of the normalized improvement, computed over 10 trials
with different initial conditions. Solid vertical lines indicate the interquartile range.
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E Ablation Study

In this section, we investigate the contribution of spatially-varying prior variances (V) and lengthscales
(L) toward more efficient high-dimensional optimization. For this purpose, we test these spatially-varying
properties individually, referring to them as I(V) and I(L).

Overall, the combination of spatially-varying prior variances and lengthscales is most effective in higher-
dimensional spaces (50 and 100), where I+X0 and I+XA generally outperform their I(V) and I(L) counter-
parts. In comparison to S, I(V) and I(L) prove to be effective on their own, but I(L) seems to account for
most of the performance increase on Rosenbrock (Figure 15), where anchors are relatively close to the opti-
mum. The shorter lengthscales around anchors promote local exploration, even after having acquired data
in their neighborhood. Interestingly, when the anchor is misspecified (Styblinski-Tang), the performance of
I(L)+X0 is better than that of I+X0 and similar to that of S in 20 dimensions. However, despite anchor mis-
specification, we observe the usefulness of spatially-varying prior variances as the dimensionality increases
to 100, likely because these mitigate the boundary issue. For adaptive anchors, it is less clear whether the
performance of I+XA on Styblinski-Tang is mostly due to spatially-varying prior variances or lengthscales.
Both seem to be important because I+XA consistently outperforms I(V)+XA and I(L)+XA.
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Figure 15: Ablation study. Solid curves and shaded regions represent the mean and standard deviation of the
normalized improvement, computed over 10 trials with different initial conditions. Solid vertical lines indicate
the interquartile range. Abbreviations: Stationary (S), Cylindrical (C) and Informative (I) covariances;
Quadratic Mean (+QM); Origin (+X0) and Adaptive, greedily-chosen (+XA) anchors; spatially-varying prior
Variances (V) and Lengthscales (L).
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F Sensitivity Analysis

The informative covariance functions used in our experiments introduce a ratio r0 ∈ (0, 1], which leads to an
uninformative stationary GP prior as it approaches 1. In terms of optimization, this hyperparameter balances
global and local exploration under the informative search model (Equation 11) by adjusting the magnitude
of spatially-varying prior (co)variances via rσ (Equation 13) and lengthscales through rλ (Equation 15). For
example, compared to the stationary case, a ratio of r0 = 0.1 indicates that the prior variance is up to 10×
larger and the squared lengthscales are 10× shorter in the neighborhood of anchor x0.

By default, the ratio r0 is learned by empirical Bayes and its prior is an informative Kumaraswamy density
function with a peak at 0.1, given by Kumar(3.164, 1000) and referred to as K3.4 The Kumaraswamy distri-
bution is related to the beta distribution and is similarly parametrized by two positive shape parameters, a
and b, with probability density function

pKumar(r; a, b) = abra−1(1 − ra)b−1, r ∈ (0, 1). (42)

Notably, both Beta(·; α, β) and Kumar(·; a, b) are special cases of the generalized (p, γ, δ)-beta distribution
(Jones, 2009, Equation 2.1), given by (1, α, β) and (a, 1, b), respectively. However, the latter is more tractable
because the beta function in the denominator simplifies as B(1, b) = b−1. For a list of similarities and other
advantages over the beta distribution, see (Jones, 2009, Section 7).

In the remainder of this section, we examine the performance of I+XA under different priors for the hyper-
parameter r0. We tested uniform (U) and Dirac delta (D) priors, as well as several Kumaraswamy priors,
with parameters chosen to yield densities that become increasingly narrower, while maintaining a peak
at 0.1. In particular, we tested Kumar(1.467, 10) denoted by K1, Kumar(2.253, 100) denoted by K2 and
Kumar(3.164, 1000) denoted by K3. Among these, K1 is the broadest prior, as shown in Figure 16. The use of
priors that favor smaller values of r0 is motivated by the belief that the informative search model is useful.
In this case, strategies that promote local exploration under this search model are more likely to improve
upon initial conditions than those using an uninformative, uniform search model (stationary GP prior).

Figure 17 shows the performance of I+XA variants on QBranin, Rosenbrock and Styblinski-Tang. We begin by
observing that, on QBranin, I+XA is relatively robust to the choice of prior over r0 because the performance
of all variants is similar and significantly better than that of S, S+QM and C. However, the differences become
more noticeable on Rosenbrock and Styblinski-Tang. The uniform prior leads to the worst-performing variant,
but I+XA+U can still outperform the other baselines on Rosenbrock. Conversely, narrower priors, such as K2
and K3, which promote exploration under the informative search model, lead to the best-performing methods.
Interestingly, I+XA with a delta prior (I+XA+D) can outperform other variants on Rosenbrock. This result
suggests that learning all parameters via marginal likelihood may not be the best approach. Alternative
training objectives that also consider optimization performance may provide better results, but this study is
left for future work.
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Figure 16: Probability density functions of the priors over r0.
4The suffix +K3 is omitted in other sections because it is the default prior over r0. As discussed in Appendix D, the only

exception is I+XA+F that uses r0 = 0.1, corresponding to the Dirac delta (D) prior that is tested in this section.

28



0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t
QBranin,20D

S
S+QM
C
I+XA+U (Proposed)
I+XA+K1 (Proposed)
I+XA+K2 (Proposed)
I+XA+K3 (Proposed)
I+XA+D (Proposed)

0 20 40 60 80 100 120 140 160 180 200

QBranin,50D

0 20 40 60 80 100 120 140 160 180 200

QBranin,100D

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Rosenbrock,20D

0 20 40 60 80 100 120 140 160 180 200

Rosenbrock,50D

0 20 40 60 80 100 120 140 160 180 200

Rosenbrock,100D
S
S+QM
C
I+XA+U (Proposed)
I+XA+K1 (Proposed)
I+XA+K2 (Proposed)
I+XA+K3 (Proposed)
I+XA+D (Proposed)

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Styblinski-Tang,20D

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,50D

0 20 40 60 80 100 120 140 160 180 200

Styblinski-Tang,100D
S
S+QM
C
I+XA+U (Proposed)
I+XA+K1 (Proposed)
I+XA+K2 (Proposed)
I+XA+K3 (Proposed)
I+XA+D (Proposed)

Figure 17: Performance of I+XA under different priors over r0. Solid curves and shaded regions represent the
mean and standard deviation of the normalized improvement, computed over 10 trials with different initial
conditions. Solid vertical lines indicate the interquartile range. Abbreviations: Stationary (S), Cylindrical (C)
and Informative (I) covariances; Quadratic Mean (+QM); Adaptive, greedily-chosen (+XA) anchors; Uniform
(+U), Kumaraswamy (+K) and Dirac delta (+D) priors.
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G Rover Trajectory Planning

In this section, we examine the rover trajectory problem proposed by Wang et al. (2018), which has also
been adopted by more recent studies (Eriksson et al., 2019; Eriksson & Jankowiak, 2021). In brief, the goal
is to optimize a 2D trajectory such that the rover starts as close as possible to xstart and stops near xend,
while avoiding collisions with objects. The trajectory is given by a B-spline that is fitted to 30 2-dimensional
points, resulting in a 60D optimization problem. The original reward function is defined as

f(x) = c(x) + γ (∥[x]1,2 − xstart∥1 + ∥[x]59,60 − xend∥1) + b, x ∈ [0, 1]60, (43)

where γ = 10, b = 5 and c(x) is a nonpositive function that penalizes collisions. For minimization, we turn
the reward into a loss function. In particular, we take the negative reward and apply a +b shift, yielding a
non-negative objective to be minimized. Models are again estimated on log-transformed data. The domain
is also adjusted to the centered hypercube X = [−1, 1]D by applying a linear transformation to the inputs.

Figure 18 shows the original map layout with two overlaid trajectories found by S and I+XA (left), as
well as the corresponding performance curves (right). In this problem, we immediately observe that the
trajectories do not pass through the 2D points. This outcome is due to oversmoothed splines, which explains
the performance of S. Intuitively, given the map layout, we would expect points near the boundary to yield
penalized trajectories, but this is only true if the trajectories pass through the specified points. Instead,
points near the boundary have a significant effect on the oversmoothed trajectories. The overexploration of
boundaries that is characteristic of S in higher-dimensional problems confers an advantage in this situation.
However, we observe that I+XA is eventually able to find trajectories of similar cost.

In order to align the problem formulation with our expectations, we modify the procedure that fits B-splines
to the collection of 2D points. In terms of implementation, the function call that performs interpolation,
scipy.interpolate.splprep (Virtanen et al., 2020), is extended with a smoothing factor s that is set
to 0, which forces the trajectories to pass through all points. An example is shown in Figure 19 (left).
Additionally, we clamp all trajectories into the admissible range and increase the cost for deviating from
the endpoints, γ = 50. The latter promotes unfolded trajectories away from the initial incumbent solution
x

(n0)
best = 0, as the relative cost of collisions is too steep otherwise. Performance curves for all rover tests are

shown in Figure 20. Notably, we observe that S is no longer among the best-performing methods because
the specification of points near the boundary correctly yields penalized trajectories.
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Figure 18: Original map layout with overlaid rover trajectories (left). Trajectories are given by a B-spline
that is fitted to the 30 2-dimensional points. Performance on the original rover trajectory problem (right).
Solid curves and shaded regions represent the mean and standard deviation of the normalized improvement,
computed over 10 trials with different initial conditions. Solid vertical lines indicate the interquartile range.
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Figure 19: Original map layout with an overlaid rover trajectory (left). In RoverT, trajectories must pass
through the specified collection of 2D points. The handcrafted trajectory demonstrates that it is not necessary
to specify 30 different points. However, the reward function does not penalize less efficient trajectories, which
leads to an infinite number of equally-good trajectories. As an additional test, we consider the same map
layout with a shifted endpoint xend (right).
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Figure 20: Performance on the rover trajectory problem. Solid curves and shaded regions represent the
mean and standard deviation of the normalized improvement, computed over 10 trials with different initial
conditions. Solid vertical lines indicate the interquartile range.

As shown in Figure 19 (left), an optimal trajectory does not require the specification of 30 different points.
However, the reward function does not take into account the distance traveled, which means that the rover
is free to roam the environment, provided that it starts at xstart and ends at xend without colliding with
other objects. For this reason, trajectories of similar cost can be significantly different and the choice of GP
priors becomes even more important.

The importance of GP priors is further demonstrated in Figure 21, which shows an example of the best
RoverT solutions found by BO. In particular, the stationary covariance in S (top-left) does not promote
exploration around any particular region. In this case, the best trajectories tend to cover the entire space,
while trying to avoid collisions. In constrast, the quadratic mean prior (top-middle) and the cylindrical
covariance function (top-right) promote exploration near the center. As quadratic weights can be nearly
zero, some points along the trajectory can also be near the boundary. In both cases, the prior dominates to
such an extent that the endpoints of the best trajectories are comparatively far from the target endpoints.
Notably, I+X0 (bottom-left) also encourages exploration around the center, but to a lesser degree than S+QM
and C, leading to better solutions. Finally, I+XA (bottom-middle) and I+XA+F (bottom-right) find the most
cost-effective and efficient trajectories because both promote exploration around the incumbent solution,
emphasizing the search for fine-tuned trajectories.
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Figure 21: Example of the best rover trajectories found by BO using different GP priors. Top row: baselines
S, S+QM and C. Bottom row: proposed methods I+X0, I+XA and I+XA+F.
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H Sparse Axis-Aligned Subspaces (SAAS) Hyperprior

The Sparse Axis-Aligned Subspaces (SAAS) hyperprior, introduced by Eriksson & Jankowiak (2021), assumes
that only a subset of dimensions affects the objective function. This sparsity-inducing hyperprior posits that
the inverse squared lengthscales are distributed according to a half-Cauchy, 1/λ2

d ∼ HC(τ), where τ is a
global shrinkage hyperparameter. At each step, multiple GP models are trained by empirical Bayes with
τ ∈ {1, 10−1, 10−2, 10−3}. The GP model with the highest leave-one-out cross-validation likelihood is then
used for acquisition.

We evaluated a modified version of S, which incorporates SAAS and follows the original training procedure
described above. As shown in Figures 22 and 23, S+SAAS generally performs worse than S, indicating that this
hyperprior may adversely affect performance when the low effective dimensionality assumption does not hold.
To further demonstrate the complementary nature of our proposed methodology, we tested I+XA+SAAS. This
combination proved to be beneficial on QBranin, Rosenbrock and Levy. Recall that, in I+XA, the lengthscales
also govern the nonstationary effects, and incorporating SAAS allows for longer lengthscales (c.f. Table 2). On
the Styblinski-Tang function, however, this hyperprior continued to negatively impact performance, renewing
the question of its suitability when the objective does not exhibit low effective dimensionality.
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Figure 22: Performance on test functions, ranging from 20 to 100 dimensions. Solid curves and shaded regions
represent the mean and standard deviation of the normalized improvement, computed over 10 trials with
different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations: Stationary (S),
Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and Adaptive (+XA)
anchors; acquisitions within Trust Region (+TR); Sparse Axis-Aligned Subspace (+SAAS) hyperprior.
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Figure 23: Performance on the Styblinski-Tang function with 20, 50 and 100 dimensions. Solid curves and
shaded regions represent the mean and standard deviation of the normalized improvement, computed over
10 trials with different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations:
Stationary (S), Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and
Adaptive (+XA) anchors; acquisitions within Trust Region (+TR); Sparse Axis-Aligned Subspace (+SAAS)
hyperprior.
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I Belief-Augmented Acquisition Functions

In order to incorporate beliefs about optimal solutions into BO, Hvarfner et al. (2022) proposed prior-
weighted acquisition functions, which are obtained by multiplying an acquisition function α with a prior
distribution over possible locations of the optimum. As optimization progresses, the influence of the fixed
prior π(x) decays according to απ,n(x) ≜ α(x | Dn, M)π(x)ζ/n, where the hyperparameter ζ controls the
decay. As more acquisitions are made, the prior approaches a uniform distribution, only tilting the acquisition
step initially, when the exponent ζ/n is not small. By default, Hvarfner et al. (2022) used Gaussian-Weighted
EI (GWEI) and ζ = N/10, where N is the evaluation budget. The default Gaussian prior is characterized by
a diagonal covariance matrix, with standard deviation set to 25% of the domain.

We evaluated two additional baselines, S+GWEIX0 and S+GWEIXA, which use Gaussian-Weighted EI with fixed
and adaptive locations. However, the results on high-dimensional test functions indicate that these baselines
perform poorly when compared to S, as shown in Figures 24 and 25. We found that poor performance was
also linked to machine precision because EI, whose values are already small, is multiplied by small factors,
resulting in an acquisition function that is difficult to optimize in high dimensions. In order to improve
performance, we removed the normalizing constant in the Gaussian prior, obtaining a Gaussian Kernel-
weighted EI (GKEI). The method I+XA+GKEI shows that combining informative covariance functions and
belief-augmented acquisition functions can be an effective strategy.
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Figure 24: Performance on test functions, ranging from 20 to 100 dimensions. Solid curves and shaded regions
represent the mean and standard deviation of the normalized improvement, computed over 10 trials with
different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations: Stationary
(S), Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and Adaptive
(+XA) anchors; acquisitions within Trust Region (+TR); Gaussian-Weighted Expected Improvement with
fixed (+GWEIX0) and adaptive (+GWEIXA) location; Gaussian Kernel-weighted Expected Improvement with
fixed (+GKEIX0) and adaptive (+GKEIXA) location.
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Figure 25: Performance on the Styblinski-Tang function with 20, 50 and 100 dimensions. Solid curves and
shaded regions represent the mean and standard deviation of the normalized improvement, computed over
10 trials with different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations:
Stationary (S), Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and
Adaptive (+XA) anchors; acquisitions within Trust Region (+TR); Gaussian-Weighted Expected Improvement
with fixed (+GWEIX0) and adaptive (+GWEIXA) location; Gaussian Kernel-weighted Expected Improvement
with fixed (+GKEIX0) and adaptive (+GKEIXA) location.
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J High-dimensional Experiments with Larger Evaluation Budgets

Thus far, we have considered a budget of 200 acquisitions. As highlighted in Sections 2.1 and 3, the rationale
is that BO is competitive when function evaluations are expensive, putting a practical constraint on the
size of the budget, even for high-dimensional problems.5 Additionally, we have favored an analysis in terms
of sample efficiency, demonstrating that the proposed methodology, which employs informative covariance
functions, offers methods that discover superior solutions with fewer function evaluations.

Despite the rationale above, we now increase the evaluation budget to 600 acquisitions. Figure 26 shows the
results for two test functions that we consider representative (see Appendix B.3). The Rosenbrock function
features a banana-shaped valley, with the global optimum relatively close to the center of the search space.
Conversely, the Styblinski-Tang is a multimodal function, whose optimal solution is relatively distant from
the center (local maximum). Once again, we observe that the proposed covariance functions can be combined
with other methods, including quadratic mean functions and trust regions, to achieve higher sample efficiency
and to discover superior solutions.

As a final note, while our methodology provides scalable methods in terms of dimensionality (e.g., I+X0,
I+XA), these still share some of the limitations of standard GPs. In particular, when dealing with large training
sets, standard GPs become impractical because they require O(n3) computation and O(n2) memory, where
n is the number of training points. To address this limitation, one option is to use sparse GPs with inducing
variables, as proposed by e.g. Titsias (2009) and Hensman et al. (2013). This allows for a significant reduction
in computational and memory requirements due to low-rank matrix approximations.

0 50 100 150 200 250 300 350 400 450 500 550 6000.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Im

pr
ov

em
en

t

Rosenbrock,100D

0 50 100 150 200 250 300 350 400 450 500 550 600

Styblinski-Tang,100D
S
S+QM
S+TR
C
I+X0 (Proposed)
I+XA (Proposed)
I+XA+QM (Proposed)
I+XA+TR (Proposed)

Figure 26: Performance on the 100-dimensional Rosenbrock and Styblinski-Tang functions. A value of 1
indicates that the global optimum has been found (zero simple regret). Solid curves and shaded regions
represent the mean and standard deviation of the normalized improvement, computed over 10 trials with
different initial conditions. Solid vertical lines indicate the interquartile range. Abbreviations: Stationary (S),
Cylindrical (C) and Informative (I) covariances; Quadratic Mean (+QM); Origin (+X0) and Adaptive (+XA)
anchors; acquisitions within Trust Region (+TR).

5Based on a similar reasoning, Eriksson & Jankowiak (2021) conducted 100-dimensional experiments with a maximum
budget of 100 acquisitions.
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