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ABSTRACT: The kinetics of the conversion of thiophenols into
sulfenyl chlorides using N-chlorosuccinimide (NCS) in dichloro-
methane have been investigated by in situ 1H NMR and stopped-
flow UV−vis spectroscopy. The study reveals that a slow direct
chlorination of the thiophenol by NCS initiates a more rapid but
indirect process involving in situ generation of a disulfide and then
its cleavage by transient Cl2. The latter is released from NCS by
HCl and the switch in dominant pathway results in sigmoidal
kinetics for the thiophenol consumption. The overall reaction rate
can be attenuated by using an alkene to scavenge the sulfenyl
chloride before it reacts with the thiophenol. The presence of water
in the dichloromethane induces two distinct kinetic regimes,
dependent on whether the water is below or above a critical
concentration. The value of this critical concentration is dependent on the amount of HCl in the system. As the exogenous water is
increased to the critical concentration, there is a proportionate acceleration of the HCl-mediated release of Cl2 from the NCS. At
water concentrations above this, there is a progressive reduction in the rate of Cl2 release due to {H2O + nHCl} undergoing a change
in speciation or physical phase. Alcohols, e.g., i-PrOH, efficiently catalyze the conversion of thiophenols into sulfenyl chlorides, with
further oxidation retarded by trace amounts of disulfide, indicative of analogous HCl-catalyzed slow-release of Cl2. High reactant
concentrations can lead to sufficient exothermicity to trigger an abrupt and vigorous release of gaseous HCl. Potential methods to
mitigate against developing these hazardous conditions are also discussed.
KEYWORDS: chlorination, thiol, organosulfur, N-chlorosuccinimide, monitoring, UV−vis, NMR, safety

1. INTRODUCTION
Sulfenyl chlorides, Scheme 1, are versatile precursors to
numerous organosulfur compounds1 and are usually prepared
by the chlorination of a thiol or the corresponding disulfide.2

Careful control of the stoichiometry is required when using
gaseous Cl2

3 or liquid SO2Cl2
4 to avoid generation of disulfides

or over-chlorination side products. In the presence of
nucleophilic solvents or hydroxyl-additives (e.g., H2O, AcOH,
MeOH), the chlorination leads to sulfinyl and/or sulfonyl
chlorides5 via organosulfur trichloride intermediates.5f

In 1951, Emde patented the use of N-chlorosuccinimide
(NCS) as a convenient and safe reagent for thiol chlorination.6

NCS is a stable and commercially available solid, much less
corrosive and toxic than Cl2, and easily added to reactions in
known stoichiometry.7 Moreover, the thiol chlorination co-
product (i.e., succinimide, NHS) is readily removed8 and
relatively non-acidic, facilitating the isolation of pure sulfenyl
chlorides containing acid-sensitive functional groups.9 All of
these features have led to NCS,10 and related N-chloro species,
being adopted as the reagents of choice for the conversion of
thiols into sulfenyl chlorides, both as end-products11 and as
intermediates in “one-pot” processes.12−14

Despite the central role of thiol chlorination in organosulfur
chemistry, numerous aspects of the mechanism remain
speculative,1−3,12,13 with three general scenarios (I, II, III,
Scheme 1) proposed to date. Mechanism I involves a simple
nucleophilic substitution at the chlorine atom of the reagent
(Cl−Y) by the thiol. Mechanisms II and III involve a disulfide
intermediate. This can be formed by direct oxidative thiol−thiol
coupling (II) or by condensation of the remaining thiol with the
nascent sulfenyl chloride (III). Both of the latter mechanisms are
consistent with the reported detection of disulfides in
incomplete thiol chlorination reactions or as a minor impurities
in the product.
Herein, we describe a mechanistic study of the chlorination of

thiophenols by NCS in dichloromethane. Using in situ NMR
and stopped-flow UV−vis spectroscopy to analyze the kinetics,
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we have identified the overarching reaction network, including
an acid-catalyzed release of Cl2 from NCS. The parameters that
control the rate of Cl2 release, and how these then change the
overall behavior of the process are also elucidated. To the best of
our knowledge, this represents the first detailed kinetic study of
the reaction of an organosulfur compound with NCS in organic
(non-aqueous) media.15

2. RESULTS AND DISCUSSION
2.1. Preliminary Studies. The chlorination of 4-fluoro-

thiophenol (1) under typical reaction conditions (i.e., reagent
concentrations 0.030−0.3M) proved ideal for in situmonitoring
by 1H and 19F NMR spectroscopy. Reactions were conducted at
27 °C in CH2Cl2, using 1,3,5-trifluorobenzene as an internal
standard, and analysis of the temporal concentration profiles at a
series of initial thiol (1) concentrations proved informative,
Figure 1. With thiol 1 as the limiting reagent, the corresponding
disulfide 2 was found to accumulate then deplete prior to the
sulfenyl chloride 3 being generated (Figure 1A). A series of para-
and meta-substituted thiophenols were explored under analo-
gous conditions, and while they showed similar kinetic profiles
to 1, there was no clear correlation between electronic effects
and their reactivity, see the Supporting Information Section
S2.4. These initial observations rule out a simple nucleophilic
substitution mechanism (I, Scheme 1) between the thiol and the
NCS but do not identify the provenance, or role, of disulfide 2.
Reactions where the thiol (1) was in excess over the

chlorinating agent were more revealing, especially at high initial
concentrations. For example, reaction of 1 (198 mM) with NCS
(97 mM) resulted in an accumulation then depletion of the
sulfenyl chloride ([3]max ≈ 3 mM) concurrent with formation of
the disulfide 2 as the major product, Figure 1B.
2.2. Identification of HCl-Catalysis. Clear sigmoidal

profiles for the consumption of NCS and 1 were observed
under all conditions explored, see the Supporting Information

Section S2. This behavior, see e.g., Figure 1A, is characteristic of
the generation of a more reactive system as the thiol (1) and
NCS are consumed.16 No intermediate succinimide or organo-
sulfur derivatives, other than NHS, disulfide 2, and sulfenyl
chloride 3 were detected. Aromatic electrophilic chlorinations
are reported to be accelerated by sulfides and by HCl,17 and we,
thus, evaluated the effect of disulfide 2 and HCl on the
chlorination of 1 by NCS. Reaction profiles for the consumption
of 1 andNCS in the presence and absence of exogenous disulfide
2 were identical. Conversely, exogenous HCl reduced the
induction period of the sigmoidal profile and increased the
maximum rate. The higher the initial HCl concentration, the
greater these effects became, see the Supporting Information
Section S2.2.2. Analysis of the evolution of the net 1H NMR
signal arising from {HCl + nH2O} Figure 1A,B; gray lines,
indicated that there is a rise and then fall in the HCl
concentration that mirrors that of the disulfide 2. The kinetics
of the reaction of the sulfenyl chloride 3 with thiol 1 were
analyzed by stopped-flow UV−vis spectrophotometry, monitor-
ing the consumption of 3 (λ = 390 nm) under pseudo first order
conditions, and found to be rapid (kSH ≈ 5.0 M−1 s−1) relative to
the thiol chlorination process, 1 + NCS.
The observations outlined above suggested that the

progressive accumulation of HCl, generated by rapid reaction
of the thiol substrate (1) with the sulfenyl chloride (3), causes a
progressive increase in the rate of consumption of 1.16 If correct,
then efficient trapping of sulfenyl chloride 3 should attenuate the
autoacceleration. Stopped-flow UV experiments identified
cyclohexene 4 as a suitably efficient scavenger of the sulfenyl
chloride 3 (kene/kSH ≥ 20). Chlorination of thiol 1 in the
presence of alkene 4 proceeded with substantial reduction in the
rate of consumption of 1 and co-generated the β-chlorothioether
5, Figure 1C. The inhibition of the autoacceleration was more
sustained at higher alkene concentrations. The impact of HCl
was further manifested in the second stage of the overall
reaction, i.e., the chlorination of the disulfide to generate the
sulfenyl chloride (2 → 3). There was no reaction between NCS
and independently synthesized disulfide 2 until addition of
HCl,18 upon which sulfenyl chloride 3 and NHS were cleanly
generated, see the Supporting Information Section S3.1.
2.3. Mechanism of the HCl-Catalyzed Chlorination

Pathway. The chlorinolysis of disulfide 2 is the final and key
stage in the overall chlorination of thiol 1 and analysis of this step
in isolation provided further insights into the roles of HCl as
catalyst. Initial experiments demonstrated that disulfide 2 was
unreactive to NCS, or to HCl, alone, but in combination led to
production of sulfenyl chloride 3, see the Supporting
Information Section S3.1. Moreover, HCl and NCS cleanly
generated NHS as the only 1H NMR-detectable product, and
addition of either thiol 1 or disulfide 2 to the pre-reacted
combination of HCl and NCS immediately and quantitatively
generated the sulfenyl chloride 3. The material balance and
reactivity are indicative of molecular chlorine as the “1H NMR
silent” co-product from HCl + NCS,19 a conclusion further
supported by the growth of a UV−vis absorption band at λ = 330
nm, characteristic of molecular chlorine,20 Figure 1D, right.
Monitoring the evolution of Cl2 (λ = 330 nm) from HCl under
pseudo-first order conditions allowed estimation of the
bimolecular rate constant (kCl2 = 0.027 M−1 s−1; when [H2O]
≈ 2 mM) for its slow-release from HCl and NCS in DCM, see
the Supporting Information Section S5.3.21a

Further 1H NMR-spectroscopic analysis of reactions of HCl
with NCS indicated that the temporal evolution of HCl, NCS,

Scheme 1. Chlorination of Thiols and Possible Reaction
Mechanisms
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and NHS were independent of the presence or absence of
disulfide 2 even at high concentrations, Figure 1D, left. This
strongly suggests that the chlorination of disulfide 2 by NCS
involves free Cl2 (Scheme 2, path A),

22 rather than a bifurcation
via a reactive intermediate such as an NCS·HCl adduct (Scheme
2, path B).23,24

Moreover, addition of cyclohexene (4) into these reactions
delivered trans-1,2-dichlorocyclohexane as the major product,
without consumption of disulfide 2. Mass balance analysis
indicated that other products, including allylic chlorides, are also
formed. The selectivity for trans-1,2-dichlorocyclohexane was
constant throughout the reaction ( f Cl2 ≈ 0.7; see Supporting
Information Section S3.2.3)25 and consistent with the selectivity
reported for reaction of 4 with Cl2 in trichlorotrifluoroethane
under comparable conditions ( f Cl2(lit.) = 0.75; [Cyclohexene]0
≈ 80−300mM; 25 °C).26 Theminimal overall reaction network

elucidated to account for the chlorination of thiols mediated by
NCS comprises five steps (I−V) and is outlined in Figure 1E.27
The NCS initiates the reaction by slow formation of sulfenyl
chloride 3 (Figure 1E, step I). The sulfenyl chloride 3 then reacts
with thiol 1, step II, to generate HCl and disulfide 2. The HCl-

Figure 1. (A) NCS-mediated chlorination of 4-fluorothiophenol 1 (limiting reagent) and reaction profile analyzed by in situ 1H NMR spectroscopy;
(B) NCS-mediated chlorination of 4-fluorothiophenol 1 (excess) and reaction profile analyzed by in situ 1H NMR spectroscopy�NB product 2 and
NHS overlay; (C) effect of cyclohexene (4) on the rate of consumption of 4-fluorothiophenol 1; (D) left: temporal concentration profiles indicating
the independence of the rate of HCl-induced conversion of NCS to NHS on disulfide 2 concentration, as analyzed by in situ 1H NMR spectroscopy.
Right: UV monitoring of the growth of Cl2 in the absence of disulfide 2 under pseudo first-order conditions; (E) minimal reaction network for the
conversion of thiols into sulfenyl chlorides mediated by NCS, and bimolecular rate constants measured independently under pseudo-first order
conditions at 27 °C by stopped-flow UV−vis spectrophotometry (for details see Supporting Information, Section S5).

Scheme 2. Pathways Considered for the Chlorination of
Disulfides with the NCS/HCl System
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catalyzes the release of Cl2, step III, which rapidly converts thiol
1 to sulfenyl chloride 3 and additional HCl, step IV, thus
inducing the observed rate acceleration. Upon complete
consumption of thiol 1, the accumulated HCl reacts with NCS
to slowly release Cl2, which cleaves disulfide 2 to re-generate the
sulfenyl chloride 3 as the final product, step V. Additives that can
outcompete the thiol 1 in their reaction with sulfenyl chloride 3,
e.g., cyclohexene (4) where kene/kSH ≥ 20, step VI, result in
inhibition of Cl2-release and as a consequence the rate of
consumption of the thiol.
2.4. Dichotomous Effects of Water. The presence of

water in the dichloromethane solvent was found to induce two
distinct effects on the rate of chlorination of thiol 1 by NCS.28

The kinetics were explored in detail by 1H NMR-spectroscopy
under standardized conditions ([1]0 = 45 mM, [NCS]0 = 65
mM) with varying quantities of water. Numerical method
simulations, using the network depicted in Figure 1E, see the
Supporting Information Section S7, indicated that at concen-
trations of up to about 35 mM, the water accelerates the rate of
release of chlorine (kCl2) from the NCS (Figure 2A, left), with a
first-order dependence on [H2O]0. The analysis yields d[NHS]/
dt = kCl2 [HCl][NCS], where kCl2 ≈ 5[H2O]0 + 0.02 M−1 s−1.
This is in reasonable agreement with the rates of Cl2-release
from HCl and NCS independently determined by UV−vis
under both nominally anhydrous conditions21a and with
exogenous water (see, Supporting Information Section S5.3).

Analogous acceleration (kCl2) was observed for the chlorinolysis
of disulfide 2 by NCS + HCl (Figure 2A, right). The first order
dependence on water concentration and the characteristic
changes in speciation and behavior of acidic mixtures at various
water concentrations (Figure 2B), suggest catalysis via
[H3O+Cl−].

21b In both the chlorination of 1 and of 2, the
accelerating effect of water was lost at concentrations above
about 35 mM, with further increases in water concentration
leading to attenuated rates, Figure 2A. There were no changes
evident in the chemical shift or line-shape of any of the 1HNMR
signals of 1, 2, 3, NCS, or NHS between the two rate regimes of
Cl2-release. Indeed, the only signal that changes during reaction
is the N−H of the NHS.
1H NMR spectra recorded in situ during the chlorination of

thiol 1 under the standard conditions contained a broad singlet
arising from the time-averaged protons in the combination
{H2O + nHCl}. For reactions where the water concentration
was≤ 35 mM, the chemical shift of the singlet was δΗ ∼ 1.5 ppm
at the start of the reaction, i.e., when n = 0. The shift decreased as
the disulfide 2 formed (Δδ ≈ - 0.2 ppm) and then increased as 2
was consumed to give the final sulfenyl chloride 3 (see
Supporting Information Section S2.2.5). The integral of the
singlet also changed, as HCl accumulated and then depleted, and
this change mirrored the concentration profile of disulfide 2, see
Figure 1A. However, in situ 1H NMR spectroscopic analysis of
the chlorination reactions when the water concentration was
≥40 mM were distinctly different. As the reactions progressed
and the HCl accumulated, a new species appeared at low field
(δΗ = 7.2−8.2 ppm). After this point, the evolution of the
integral of the {H2O + nHCl} singlet at δΗ ∼ 1.5 ppm no longer
correlated with the concentration of disulfide 2, see the
Supporting Information Section S2.2.5.
The transition between the two distinct regimes in the rate of

chlorine release occurred substantially below the limiting
solubility of water in solutions of the internal standard in
dichloromethane ([H2O]max≈ 90−110mM). Significant insight
was provided by 1H NMR spectroscopic analysis of intensity of
the {H2O + nHCl} singlet in reference samples containing four
different initial HCl concentrations (15−105 mM), Figure 2B.
The HCl was generated in situ from thiol 1 and sulfenyl chloride
3 (Figure 2B) and then small aliquots of water added, with 1H
NMR spectra recorded after each addition. The resulting plots
exhibited two distinct regimes. In the first, there is a simple linear
relationship between integral of the singlet at high field (δΗ =
1.0−1.5 ppm) and the added water corresponding to [{H2O +
nHCl}] = [HCl]0 + [H2O]added. In the second regime, the
integral and chemical shift of the high field singlet became
independent of added water, and a set of a broad and
overlapping peaks appeared at lower fields (δΗ = 7.8−8.2
ppm). The higher the initial concentration of HCl, the lower the
total water concentration required to transition from one regime
to the other.We tentatively interpret these phenomena as arising
from changes in the speciation of {H2O + nHCl} and its partial
microscopic separation from the bulk medium. Irrespective of
the origin, the effect is detrimental to the rate of the chlorination.
Thus, paradoxically, while both HCl and water can be effective
catalysts for chlorination in dichloromethane solution, they
prove detrimental to each other when combined above a critical
concentration.
2.5. Role of HCl in Oxychlorination. It has been recently

reported that alcohol additives induce NCS-mediated sulfide
oxychlorination to afford sulfonyl halides, a process nominally
proceeding via the corresponding sulfenyl chloride.13a The HCl-

Figure 2. (A) Effect of exogenous water on the rate of Cl2-release, kCl2,
in the chlorination of thiophenol 1 (left) and its disulfide 2 (right) by
NCS; (B) 1H NMR analysis of the titration of in situ generated HCl
solutions in DCM with water (x-axis; left) and the effects on the high-
field 1H NMR signal integral (y-axis, left) and chemical shift (right) of
the time-averaged {H2O + nHCl} signals.
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catalyzed pathway for thiol chlorinolysis, vide supra, provides an
alternative perspective to the mechanism of the oxychlorination,
however, to the best of our knowledge, the possibility that HCl
plays a key role in this has not been previously discussed.
In situ 1H NMR spectroscopic analysis of the kinetics of NCS-

mediated oxychlorination of thiol 1 (Figure 3A) and sulfenyl

chloride 3 (Figure 3B) in DCM in the presence of i-PrOH
proved insightful. Thiol 1 was converted into sulfenyl chloride 3
(≥94%) within ∼90 s, Figure 3A, without any detectable loss of
iso-propanol within this initial period. The rate of thiol
chlorination is similar in magnitude to that observed in the
low water concentration regime (Figure 2A), indicating that
alcohols are also effective co-catalysts for Cl2 release.

29 A
significant induction period (∼800 s) followed the initially fast
accumulation of 3, with the sulfenyl to sulfonyl oxidation (3 →
6) then taking place, with concomitant conversion of i-PrOH to
i-PrCl.30 The induction period was chronologically linked
(Figure 3A) with the consumption of the last traces of the
disulfide intermediate (2) from the initial thiol chlorination (1
→ 2 → 3). Analysis of the kinetics of sulfenyl to sulfonyl
oxidation (3 → 6) conducted independently, confirmed that the

presence of disulfide 2 (23 mM) attenuates the rate (Figure 3B,
bright pink vs purple datapoints).
Sulfenyl chloride 3 does not react with NCS or with i-PrOH

independently, see the Supporting Information Section S4, and
the overall oxidation rate (3 → 6; Figure 3B) depends, in a
complex manner, on all three components:[3], [NCS], and [i-
PrOH]. This dependency rules out a mechanism involving the
slow generation of reactive chlorination reagent(s) from NCS
and i-PrOH prior to substrate (3) commitment. The reactions
also display sigmoidal profiles. Addition of exogenous HCl
enhanced the rate of this process, whereas exogenous sulfonyl
chloride (6) did not lead to any changes (see Supporting
Information, Section S4.2.1). This is, thus, consistent with a slow
NCS-mediated process evolving into a faster phase of HCl-
catalyzed Cl2-release.
Taking all the above observations into account, we suggest an

alternative mechanism to those previously proposed for thiol
oxychlorination by NCS13a and related species.15c In this
mechanism, Scheme 3, there are two phases of HCl-catalyzed

acceleration: 1 → 2 and 3 → 6.31 Disulfide (2) acts as an
attenuator between the two phases, leading to two kinetically
distinct reaction sequences, Figure 3A.

3. CONCLUSIONS
Using in situ 1H NMR and UV−vis spectroscopic reaction
monitoring in combination with numerical methods analysis of
the kinetics, we have investigated the networks of reaction
sequences that underpin the chlorination and oxychlorination of
thiophenols by NCS in dichloromethane. The reactions have
been investigated in the presence and in the absence of
hydroxylic additives (H2O and i-PrOH). A key overall finding is
that several slow processes lead to the generation ofHCl, and the
HCl accelerates the release of Cl2 from NCS. It is the Cl2 that is
the dominant chlorinating reagent throughout the reaction
network, Scheme 3, effecting oxidation of thiols (1) and
disulfides (2), and eventually oxidation of sulfenyl chlorides (3)
to the corresponding sulfonyl chlorides (6) when water or
alcohols are present. The processes are co-catalyzed by alcohols
and, within physical limits of homogeneity, by water, Figure 2A.
There are two key outcomes from the investigation:
(i) NCS-mediated (oxy)chlorinations proceed primarily via

in situ generated Cl2, which undergoes rapid and

Figure 3. (A) Reaction profile for the NCS/i-PrOH-mediated
oxychlorination of thiol 1, analyzed by in situ 1H NMR spectroscopy;
(B) effect of reaction conditions and additives on the evolution of 6 in
oxychlorination of 3; analyzed by in situ 1H NMR spectroscopy.

Scheme 3. HCl-Catalyzed Thiophenol Oxychlorination with
N-Chlorosuccinimide (NCS)a,b

aROH = H2O, i-PrOH. bSimplified sequence without the various
initiation steps that lead to HCl-generation.
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exothermic reaction with the substrates and intermediates
(1, 2, 3). The chlorine generation from NCS is catalyzed
by HCl, and under some conditions, this can result in
(oxy)chlorinations accelerating dangerously. This exper-
imentally determined mechanistic evidence explains prior
reports that ArSH/NCS chlorinations can “bump”13a or
evolve with high exothermicity.12e,14a,15b,19 For reactions
involving high substrate concentrations, or conducted at
scale, the slow addition of the substrate to N-
chlorosuccinimide and/or use of lower temperatures
may be a useful precaution to avoid “run-away” processes.
In these cases, use of continuous-flow technologies may
provide a safer alternative to batch reactors when the
process is required to be run at scale.15c Moreover, a
switch from a slow regime into accelerated release of Cl2
could also be an important mechanism in other NCS-
mediated processes that involve intermediacy or co-
production of HCl.

(ii) The relative reactivities of the thiol (1), disulfide (2), and
sulfenyl chloride (3), to the dominant chlorinating agent,
i.e., Cl2, to each other, and to other species such as
cyclohexene (4) have been elucidated. The results inform
the most time-effective procedures for preparing organo-
sulfur species from thiols via their corresponding sulfenyl
chlorides. Single-step multicomponent protocols are
suitable for sulfenyl chloride scavengers that are either
less reactive than the thiol (ksubstrate ≤ kSH) or highly
reactive but also produce an equimolar quantity of HCl.13

Conversely, highly efficient sulfenyl chloride scavengers
(ksubstrate > kSH) that do not co-generate HCl (e.g.,
alkenes) are best employed in two-step protocols where
the scavenger is added after sulfenyl chloride generation is
complete.12

Overall, the detailed insights into the mechanisms and
kinetics of NCS-mediated (oxy)chlorination of thiols, disulfides,
and sulfenyl chlorides in dichloromethane will inform the design
of experimental conditions to optimize rates and selectivity and
aid in safer application and scale-up of these processes.

4. SAFETY CONSIDERATIONS
Caution! Chlorination of thiols with N-chlorosuccinimide can
lead to explosion when using reactive thiols and/or run under
concentrated conditions in closed systems without temperature
control. This is due to the exothermicity of the process and the
decreased solubility of HCl in dichloromethane at raised
temperatures. The use of low reagent concentrations, efficient
cooling, and slow addition protocols are all recommended under
batch conditions when possible. Alternatively, the use of
continuous flow technologies can also be considered as a
method to reduce the risk of developing hazardous conditions.
The mechanistic studies reported herein reveal that the

catalytic action of the in situ released HCl accelerates the
consumption of the starting thiophenol 1. This is linked to the
exothermic behavior exhibited under concentrated conditions
(see Supporting Information, Section S8). Video recordings of
reactions under these conditions (limiting reagent ≥0.2 M)
showed that the higher the initial reagent concentrations, the
faster the temperature rise. Reaction of 1 (0.3M) with NCS (0.2
M) in CH2Cl2 (b.p. = 40 °C) in a loosely sealed round bottom
flask resulted in the solution temperature increasing from 19 to
35 °C in 35 s, at which point there was an abrupt and vigorous
evolution of gaseous HCl that resulted in the stopper being very

forcefully ejected from the flask. These experiments were
conducted to illustrate the potential for this process to become
hazardous; they were risk assessed in advance, run under
carefully controlled conditions, with full and appropriate
personal protection equipment.
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