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Abstract 78 

Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the 79 

surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by 80 

environmental stressors and consequently involved in the development and progression of ageing and 81 

age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the 82 

phenotype, which cumulates comorbidities and eventually results in a non-rescuable, very high-83 

cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular 84 

pathways and pathophysiological alteration are involved in the disruption of microvascular 85 

homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position 86 

paper explores the presence and the detrimental contribution of microvascular inflammation across the 87 

whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare 88 

landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by 89 

recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic 90 

derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very 91 

early or disease-specific molecular targets to provide an effective therapeutic strategy against the 92 

otherwise unstoppable rising prevalence of age-related diseases. 93 

 94 

  95 
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1. Introduction: microcirculation in cardiovascular disease  96 

Microcirculation is the network of terminal vessels of the systemic circulation comprising 97 

arterioles, capillaries and venules less than 100 μm in diameter [1-3]. This network delivers oxygen and 98 

other nutrients to tissues while removing carbon dioxide, cellular waste products and toxins [1]. 99 

Importantly, microcirculation also regulates fluid homeostasis, temperature control and inflammatory 100 

response [1]. 101 

Contemporary evidence suggests that microcirculatory impairment may occur in adulthood and 102 

further deteriorate across the lifespan. Ageing progressively decreases blood flow and vessel density, 103 

ultimately reducing arterial compliance [1]. Beyond ageing, microcirculatory dysfunction (MD) 104 

characterises a multitude of conditions, including diabetes mellitus (DM), hypercholesterolemia, 105 

hypertension, peripheral arterial disease, chronic renal failure, menopause, obesity and chronic 106 

inflammatory autoimmune disorders [4-8]. Multiple mechanisms may contribute to microcirculatory 107 

impairment, including oxidative stress, enhanced leukocyte adhesion, activation of immune cells (both 108 

innate and adaptive[9]), endothelial dysfunction, vasoconstriction, attenuated angiogenesis, increased 109 

endothelial permeability, microcirculatory plugging and remodeling, lymphatic dysfunction as well as 110 

impaired autoregulation [5,10-16]. 111 

MD may develop in multiple tissue beds as an underlying systemic process preceding clinical 112 

symptoms long before their onset [17,18]. In this context, MD may reflect an early marker of vascular 113 

disease and predispose to the development of atherosclerosis [5]. Accordingly, several minimally or 114 

noninvasive techniques have been developed to provide useful MD biomarkers in different vascular 115 

beds (summarized in Table 1) [19]. However, although circulating biomarkers, including increased 116 

triglycerides, C-reactive protein (CRP), cystatin C, homocysteine, nitric oxide (NO), uric acid, 117 

interleukin (IL)-6, N-terminal pro-b-type natriuretic peptide, cardiac troponin, thrombomodulin, 118 

renalase, neuregulin-1, von Willebrand Factor, serotonin and asymmetric dimethylarginine, are 119 

increased in patients with MD, their clinical use for this purpose is not yet validated [18,20-22]. 120 
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MD is causally associated with the entire spectrum of ageing and age-related diseases, mainly 121 

through pro-inflammatory mechanisms (Figure 1) [23] and may be the substrate for the further 122 

development of numerous cardiovascular (CV) diseases, such as coronary artery disease and heart 123 

failure with preserved ejection fraction (HFpEF). MD is also found in extra-cardiac tissues (i.e., brain, 124 

retina, and lungs) and clinically manifests as dementia, depression, anxiety, vision loss or pulmonary 125 

hypertension [14]. In the same context, MD has been implicated in rheumatic (e.g., skin MD) and 126 

oncologic diseases [24-32]. With respect to its prognostic value, MD is associated with an increased 127 

risk of short- and long-term adverse CV outcomes [33,34]. Both peripheral and coronary MD has been 128 

associated with adverse CV events and mortality [35-44]. Furthermore, MD has been linked with 129 

progression to kidney failure [18]. Notably, cerebral small vessel disease features are strongly 130 

associated with stroke, dementia- especially Alzheimer’s disease (AD) and vascular dementias, 131 

depression and all-cause mortality [45]. Uterine and placental MD predispose to the onset of 132 

preeclampsia [46,47] and to early post-natal microvascular rarefaction and development of MD in 133 

offspring [48,49]. Finally, testicular MD and penile skin MD are linked to endocrine disturbances and 134 

the future development of hypertension and CV diseases [50,51]. Colletively, an integrative approach 135 

to understanding MD is needed to implement effective early diagnosis and treatment strategies.  136 

 137 

2. The link between inflammation and early microvascular ageing 138 

The microvasculature is pervasive, and its impairment influences every tissue in the human body 139 

[52]. Consequently, vascular age is a reliable marker of biological age [53]. Microvascular ageing 140 

reflects a point at which MD becomes persistent and further deteriorates over time. The onset of MD 141 

marks a crucial point in the natural history of ageing.  142 

 We need to address lifestyle and environmental stressors to look at the earliest perpetrators of 143 

microvascular damage. In addition to the genetic predisposition, each individual is constantly exposed 144 

to various noxious stimuli that can induce MD. A sedentary lifestyle can increase vascular nicotinamide 145 

adenine dinucleotide phosphate (NADPH)-derived reactive oxygen species (ROS) production that 146 
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affect the endothelial function [54]; similarly, exaggerated exercise training induces mitochondrial 147 

dysfunction leading to MD [55]. Unhealthy dietary and eating patterns [56], as well as nutrient overload 148 

[57], cause an imbalance in the oxygen supply/demand ratio, activating hypoxia-inducible factor 1α 149 

(HIF-1α)  and promoting impaired angiogenesis [58]. Additional environment determinants, including 150 

environment pollutants, temperature, seasonal changes, circadian rhythm and infections have 151 

demonstrated significant role in regulating microvascular inflammation and CV diseases [59-68] 152 

The final effector through which all these stressors promote microvascular ageing [69-71] is the 153 

immune-inflammatory response [60]. Ultimately, they create a low-grade pro-oxidant pro-154 

inflammatory environment [72] that leads to MD [73,74]. Inflammation disrupts microvascular function 155 

by increasing ROS generation, reducing NO bioavailability, and leading to vascular wall 156 

hyperpermeability and glycocalyx remodeling [75]. In the long term, this promotes the hyperactivation 157 

of compensatory pathways such as endothelial and vascular smooth muscle cells (VSMCs) 158 

proliferation, pathological angiogenesis [76-78]and, ultimately, permanent vessel wall remodeling.  The 159 

lymphatic vasculature also plays a role in this detrimental interplay. While it generally regulates dietary 160 

lipid absorption and cholesterol efflux [79], it becomes dysfunctional when exposed to stressors, further 161 

compromising local homeostasis. Lymphatic dysfunction results in reduced immune cell clearance, 162 

increased insulin resistance [80] and reduced lymphangiogenic potential [79]. These maladaptive 163 

changes, which are common in ageing and age-related diseases, ultimately prolong the inflammatory 164 

response and microvascular remodelling [81]. The consequence of all these processes is that if the MD 165 

is not rapidly targeted and reversed, its alterations become permanent, characterised by epigenetic cues 166 

that are not easily targeted by current therapies [82] and predispose to more significant harm when a 167 

subsequent exposition to risk factors [83] occurs, even several years ahead. This marks the point when 168 

vascular age diverges from chronological age, and ageing diverges from his physiological trajectory.  169 

An aged vasculature is characterised by a low-grade inflammatory state which originates directly 170 

from the vessel and the surrounding environment (i.e. perivascular adipose tissue (PVAT) [84], neural 171 

terminations [85], abnormal shear stress [86]), even after the removal of the stimuli. In this condition, 172 

the vessel is not only the target of the damage exerted by the CV risk factors [87] but also becomes the 173 
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perpetrator by first-hand promoting the low-grade inflammatory response which characterizes chronic 174 

time-dependent disease [72]. This, in turn, further dampen microvascular homeostatic control 175 

mechanisms and aggravate MD [71]. This vicious cycle is characterised by a profound cross-talk 176 

between non-immune and immune cells, which is often present in the context of CV disease, for 177 

instance, in macrovascular atherosclerotic remodeling [88] and cardiac fibrosis [89]. However, a clear 178 

understanding of this dialogue between distinct cell types is still an unmet need, especially in MD 179 

setting. 180 

This model accurately reflects cardiometabolic disease. First, environmental stressors significantly 181 

influence the natural history of obesity, type 2 diabetes, arterial hypertension, and HFpEF [60]. Second, 182 

they all present an early MD [38,90-92] and are characterised by accelerated microvascular ageing [58]. 183 

Third, these conditions are tightly connected [52]. Fourth, all of them are characterised by a persistent 184 

systemic low-grade inflammation which further deteriorates the cardiometabolic homeostasis and that 185 

it has in the microvascular bed one of its primary perpetrators [72,84,93].  186 

Inflammageing [72,94] and immunometabolism [95] are thus fundamental integrated approaches 187 

to explore the connections and the cross-talks between environment, metabolic disease, vascular health, 188 

and CV risk. Although this conceptual framework is generally related to cardiometabolic disease, it 189 

might be easily translated to other chronic and time-dependent conditions such as neurodegenerative 190 

pathologies, autoimmune diseases, and cancer. As indirect evidence, epigenetic pan-deactivators of 191 

vascular inflammation as the inhibitors of bromodomain and extraterminal domain (BET) proteins [96] 192 

have recently been proposed for all these disease settings [97-103]. Similarly, anti-inflammatory drugs 193 

are attracting substantial attention in the context of CV diseases [104]. But the link between 194 

inflammation and microvascular ageing is multidirectional. As environmental stressors link 195 

inflammation with microvascular ageing, inflammation also becomes the link between aged vasculature 196 

and systemic metabolic diseases, which further promotes microvascular inflammation. The onset of this 197 

vicious cycle is at the base of age-related diseases. It is clear that only by an accurate understanding of 198 

the pathophysiologic and molecular mechanisms underpinning this connection we will be able to 199 
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develop therapeutic strategies to challenge the steadily increasing prevalence of chronic diseases 200 

[105,106] (Figure 2).  201 

 202 

Statement: Environmental stressors predispose to unhealthy ageing and age-related disease by 203 

promoting MD. If MD is not prevented or rapidly treated, the microvascular environment in turn 204 

becomes the perpetrator of microvascular inflammation through detrimental cross-talk between non-205 

immune and immune elements, leading to the low-grade inflammatory response that characterises 206 

unhealthy ageing and age-related disease. 207 

 208 

3. Microvascular inflammation across the age-related diseases continuum 209 

3.1. Physiological ageing 210 

Physiological ageing is a natural phenomenon driven by a variety of complex, and yet loosely 211 

understood mechanisms that strongly interact with each other. In addition to these, initial emergence of 212 

genomic instability, which includes dysregulated DNA damage repair pathways and telomere 213 

shortening, other key mechanisms are involved. These include the stimulation of senescence and 214 

impairment of autophagy at a cellular level and the consequential development of oxidative stress and 215 

microvascular inflammation at the tissue level. Ultimately, these mechanisms contribute to the ageing-216 

related phenotype characterized by endothelial, vascular and consecutively tissue dysfunction (Figure 217 

3A) [107,108]. Notably, these mechanisms are often bidirectional, ultimately establishing a vicious 218 

cycle. 219 

3.1.1. Senescence 220 

Cellular senescence is a stress-induced, durable, cell cycle arrest of previously replication-221 

competent cells and is considered a central hallmark of ageing [109]. Senescence contributes to ageing 222 

process through multiple mechanisms, among which the propagation of inflammation prevails. 223 

Pertinent to this, it has been shown that senescent cells secrete a plethora of potent pro-inflammatory 224 
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factors termed the senescent-associated secretory phenotype (SASP), which drive an intense 225 

inflammatory response [110,111]. SASP also contributes to the spread of inflammation and oxidative 226 

stress from senescent to healthy non-senescent cells via paracrine fashion, which leads to a pro-227 

inflammatory and pro-oxidant phenotype at a microvascular level [107]. Consistent with its 228 

inflammatory potential, several in vitro and preclinical data have documented the role of senescence in 229 

promoting oxidative stress and endothelial dysfunction [112,113]. In healthy ageing humans, markers 230 

of endothelial senescence have been correlated with significantly impaired endothelial function [114].   231 

3.1.2. Autophagy  232 

Autophagy is a highly selective clearance pathway that degrades several defective cellular 233 

components through lysosomal activation. Therefore it is tightly associated with the maintenance of 234 

cellular and tissue homeostasis and, in the long term, longevity [115]. Altered autophagy has been 235 

proposed as a prominent feature of physiological ageing, with increasing evidence suggesting an 236 

impaired autophagic activity across ageing in different organisms [116]. In humans, it has been 237 

demonstrated that the expression of autophagy-related genes (i.e. ATG5, BECN1) and the proteolytic 238 

function of lysosomes decline with age [117]. Consequently, compromised autophagy leads to cellular 239 

and vascular dysfunction and enhanced inflammation, as evidenced by the promotion of oxidative-240 

induced senescence, the production of endothelial reactive oxygen species (ROS) and the development 241 

of endothelial dysfunction in both aged mice and human subjects [117-119]. In addition, autophagy has 242 

been recognized as a significant inhibitor of inflammasome which is a potent mediator of microvascular 243 

inflammation [120].  244 

3.1.3. Oxidative stress  245 

Oxidative stress is a consequence of the imbalance between the production and detoxification of 246 

reactive oxygen and nitrogen species (RONS) [121]. Ageing process is associated with reduced activity 247 

of the antioxidant transcription factor nuclear factor erythroid  2-related factor 2 (Nrf2) [122]. Hence, 248 

accumulation of oxidative damage by RONS produced by NADPH oxidases and mitochondria is 249 

considered one of the core pathophysiologic pathways driving physiological ageing and age-associated 250 
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diseases [123]. Particularly in the context of ageing and age-related diseases, mitochondrial dysfunction 251 

and mitochondria-derived ROS are key drivers of the inflammatory response leading to pathogenetic 252 

processes [124,125]. The oxidative environment further stresses mitochondrial pathways, leading to the 253 

detrimental escape of mitochondrial DNA from organelles and cells [126,127]. Mitochondrial-free 254 

mitochondrial DNA and the pro-oxidant environment, in turn, transduce a pro-inflammatory signal 255 

within and between cells, leading to the activation of multiple signaling pathways: NOD-like receptor 256 

family pyrin domain containing 3 (NLRP3) inflammasome activation, DNA-sensing enzyme cyclic 257 

GMP-AMP synthase stimulator of interferon genes (cGAS-STING) and toll-like receptor (TLR). It also 258 

leads to induction of senescence and SASP production with consequent nuclear factor kappa-B (NF-259 

κB) activation, as well as hyperactivation of the pro-oxidant mediator p66Shc [82,125], consumption 260 

of NAD+ and consequent mammalian silent information regulator 1 (Sirt1) dysregulation [52,128]. 261 

Furthermore, oxidative stress exerts a detrimental effect on endothelial function by quenching the 262 

bioavailable, endothelium-derived NO and reducing both NO availability and endothelial NO synthase 263 

(eNOS) expression. Therefore, oxidative stress is strongly linked to the development of endothelial and 264 

microvascular dysfunction with ageing in humans [129,130].  265 

3.1.4. Inflammation 266 

The inflammageing state, a sterile, subclinical, low-grade inflammation increasing with age and 267 

promoting the development of age-associated diseases, has been well recognized in the elderly [72]. 268 

Indeed, in older adults are frequently reported persistently elevated circulating levels of SASP factors, 269 

including IL-1β, IL-6 and tumour necrosis factor (TNF)-α [131-133]. In elderly, inflammageing is 270 

largely considered an aftermath of immunosenescence, a significant immune system dysregulation 271 

observed with ageing, which substantially propagates the inflammatory milieu and consists in overall 272 

aberrant activation of innate and adaptive immune response [134]. In this context, microvascular 273 

inflammation can be exacerbated by an age-associated inappropriate activation of TLRs and the NLRP3 274 

inflammasome complex, both representing crucial activators of the innate immune inflammatory 275 

response which leads to increased expression of NF-κB and the production of several proinflammatory 276 

mediators [135-137]. Activation of the ROS-sensitive, proinflammatory effector NF-κB holds a central 277 
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role in the ageing-associated inflammatory response. Endothelial cells (ECs) from older humans 278 

actively express NF-kB, which is directly implicated in endothelial dysfunction [132,138] as well as in 279 

exacerbating inflammageing and oxidative stress, thus corroborating an intricate relationship between 280 

senescence, oxidative stress and inflammation across ageing and extending the vicious cycle [139-141]. 281 

Finally, mammalian sirtuins represent another significant ageing-associated mechanism implicated in 282 

microvascular inflammation. They are a family of nicotinamide adenine dinucleotide-dependent 283 

deacetylases involved in several processes that regulate metabolic homeostasis and modulate the 284 

benefits of calorie restriction and exercise. They control mitochondrial function, cell survival, 285 

attenuation of inflammatory responses and circadian rhythm. Because of their contribution to many 286 

protective pathways and their central involvement in longevity mechanisms, they have attracted 287 

increasing attention as potential therapeutic targets [142]. In particular, Sirt1, a deacetylase implicated 288 

in many critical physiological responses to altered energy metabolism and stress, has multiple anti-289 

inflammatory, anti-oxidant and anti-ageing properties [143-145]. Reduced expression of Sirt1 has been 290 

observed in ECs and VSMCs obtained from older adults, associated with a senescent phenotype and 291 

the development of endothelial dysfunction [125,146,147]. Furthermore, data has shown that 292 

persistently reduced levels of Sirt1 lead to upregulation of NF-κB and NLRP3 inflammasome, hence 293 

significantly amplifying the inflammatory response [145,148].  294 

 295 

Statement:  In physiological ageing, stimulation of senescence, impairment of autophagy, and 296 

increased oxidative stress lead to microvascular inflammation at the tissue level. This culminates in the 297 

ageing-related phenotype characterized by MD and increased susceptibility to the onset of age-related 298 

diseases. 299 

 300 

3.2. Obesity 301 

Obesity, given its high and steadily increasing prevalence [105], probably represents the closest 302 

human model to exploring the contribution of environmental stressors to microvascular inflammation 303 

and accelerated ageing. Its relevance in the global landscape is sadly acknowledged: obesity ranks first 304 
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in terms of mortality related to metabolic diseases, with no trend towards reduction [149]. The impact 305 

of obesity on MD starts very early: in patients with obesity, the slope of the media-to-lumen (M/L) ratio 306 

plotted against age diverges from the healthy controls before the age of 20, being five times steeper 307 

(Figure 3B) [125,150]. The increased nutrient supply ultimately overburdens the metabolic pathways, 308 

promoting hypoxia with consequent HIF-1α activation [151]. The resultant pro-oxidant and pro-309 

inflammatory environment promotes the local low-grade inflammatory response, which eventually 310 

turns systemic and characterises the generalized MD observed in obesity [91].  311 

Although multiple pathways contribute to its clinical phenotype, obesity is characterised by a 312 

prominent role of the PVAT. PVAT is a key member of the microvascular unit [91], with a brown-like 313 

and anti-contractile phenotype in the healthy [152], which loses its thermogenic capacity and turns pro-314 

contractile in the condition of diseases such as obesity [153]. The deep cross-talk between PVAT and 315 

the small vessels is directly responsible for both the inflammatory damage and response characterising 316 

obesity [154]. PVAT phenotype shift leads to increased secretion of several adipokines and cytokines, 317 

including chemerin, leptin, IL-6 and TNF-α [155]. While experimental studies in mice have reported 318 

how leptin leads to MD by first targeting the hypothalamic microvasculature [156], ex-vivo observations 319 

in humans have demonstrated how PVAT dysfunction, promoted by macrophage activation [157], 320 

results in an increase in PVAT-derived cytokines secretion [84,93]. This fuels the vessel-specific 321 

inflammatory response [93], induces endothelial dysfunction and further imbalance the homeostatic 322 

response from the vasculature by increasing the expression of endothelin-1 (ET-1) and its receptor A 323 

(ETA). The altered ETA/NO ratio upregulates c-Jun N-terminal kinase (JNK) signaling, increasing 324 

NAPDH-derived and mitochondria-derived ROS [84]. The bidirectional cross-talk further aggravates 325 

PVAT dysfunction, as the endothelium also secretes inflammatory cytokines and angiogenetic factors. 326 

Indeed, to match the increased nutrient flow, PVAT develops a pro-angiogenetic phenotype trying to 327 

compensate with an adequate oxygen supply. However, this neoangiogenetic process [76] ultimately 328 

proves detrimental and further promotes an overt dysfunctional phenotype for both the PVAT and the 329 

ECs. Recently, an elegant exploration in vivo has shown that, in high-fat diet mice, the ECs-specific 330 

deletion of argonaute 1 (AGO1), a pivotal contributor to the ECs response to hypoxia, arrests impaired 331 
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angiogenesis and reverts the PVAT to a browning phenotype, rescuing the MD and the whole-body 332 

metabolic homeostasis [158].  333 

Finally, the overload of the metabolic processes leads to mitochondrial dysfunction in obesity, 334 

which in turn promotes microvascular inflammatory response by increasing mitochondria-derived ROS 335 

levels [125] and activating NLRP3 [159] and cGAS-STING pathways [160]. Evidence supports sirtuins 336 

[125] (main elements in nutrient balance/imbalance signaling [161])  as crucial regulators of this 337 

process. In ECs, lower levels of Sirt1 induce MD and are associated with an increase of pro-338 

inflammatory and pro-ageing factors p66shc [82] and Arginase II [150], an increase in mitochondria-339 

derived ROS, and a downregulation of several genes involved in the mitochondria electron transport 340 

chain.   341 

The documented MD confirms this experimental evidence in patients with obesity. An increased 342 

vascular remodeling in visceral fat arteries [125], an impairment in finger microcirculation detected by 343 

dynamic nailfold microcapillaroscopy [162], a thin sublingual microvasculature glycocalyx assessed by 344 

sidestream darkfield imaging [163], an increased retinal arteriolar narrowing [164] and a decreased 345 

retinal microvasculature response to flicker light [165] all characterise the microvascular damage found 346 

in patients with obesity. Remarkably, bariatric surgery, the gold standard treatment for treating severe 347 

obesity, showed a remarkable effect in terms of MD rescuing in patients with severe obesity, as shown 348 

by an improvement in skin microcirculation [166] and in subcutaneous arteries reactivity, which appears 349 

even more robust when including PVAT [167]. 350 

 351 

Statement: Obesity-related microvascular inflammation is characterised by accelerated ageing 352 

starting from adolescence/early adulthood, defined by a derangement in the PVAT phenotype, an 353 

hyperactivation of inflammatory pathways (mainly TNF-α and IL-6), an impaired angiogenesis and a 354 

early mitochondrial dysfunction.  355 

 356 

3.3. Diabetes 357 
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It is well recognized that low-grade inflammation plays an essential role in the pathogenesis of DM, 358 

as well as in the development of diabetic microvascular complications. Studies have demonstrated that 359 

inflammatory mediators, such as CRP, TNF-α, IL-6 and IL-18, have elevated expression in DM 360 

[168,169]. Hyperglycemia acutely increases circulating cytokine levels through an oxidative 361 

mechanism among subjects both with features of insulin resistance and with clinically overt DM 362 

[170,171]. In subjects with type 2 DM, a correlation was observed between high-sensitive CRP and IL-363 

6 with HbA1c independent of the presence of coronary heart disease [172,173]. Furthermore, serum 364 

levels of TNF-α were associated with the level of insulin resistance and with HbA1c in diabetic subjects 365 

[174].  366 

Diabetic hyperglycemia increases oxidative stress by excessive intracellular ROS generation, which 367 

in turn leads to activation of the NF-κB pathway resulting in the production of major pro-inflammatory 368 

cytokines. Hyperglycemia-induced oxidative stress increases the formation of advanced glycation end 369 

products (AGEs), which results in increased insulin resistance. Moreover, receptors for advanced 370 

glycation end products (RAGE) are involved directly in inflammatory cell recruitment [175,176]. 371 

Insulin resistance is associated with endothelial dysfunction. In particular, the endothelial balance 372 

between NO-mediated vasodilator actions and ET-1-mediated vasoconstrictor effects of insulin are 373 

regulated via phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 374 

pathways, respectively. In states of insulin resistance, dysregulation of PI3K-dependent signaling may 375 

cause an imbalance between the NO production and secretion of ET-1 [177]. Thus, insulin resistance 376 

induces vasoconstriction and VSMCs proliferation and plays a significant role in the occurrence of 377 

endothelial dysfunction [178]. Indeed, markers of insulin resistance are associated with abnormal 378 

arterial elastic properties and impaired coronary microvascular function not only in dysglycaemic 379 

subjects but also in first-degree relatives of diabetic subjects before the development of impaired 380 

glucose tolerance or DM [179]. 381 

Furthermore, oxidative stress is characterized by the production of peroxynitrite that down-382 

regulates NO bioavailability and leads to vasoconstriction. Also, the accumulation of ROS promotes 383 

the apoptosis of ECs and augment the expression of intercellular adhesion molecule-1 (ICAM-1), 384 
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vascular cell adhesion molecule-1 (VCAM-1), and E-selectin resulting in microvascular inflammation 385 

and hypercoagulability [180]. Chronic inflammation inhibits the production of endothelial eNOS and 386 

promotes the expression of ICAM-1, VCAM-1 and ET-1, further damaging endothelial integrity [181]. 387 

Acute and long-term hyperglycaemia have a detrimental effect on endothelial glycocalyx integrity 388 

[182-184]. The glycocalyx is a gel-like layer composed of sulfated proteoglycans and glycoproteins 389 

that prevents the direct contact of circulating inflammatory cells to the luminal surface of the 390 

endothelium [185]. Intriguingly, HbA1c is associated with the impaired perfused boundary region, a 391 

marker of the microvascular glycocalyx thickness, while intensified glycaemic control ameliorates 392 

glycocalyx integrity in diabetic subjects at the 1-year follow-up [186]. The impaired glycocalyx is an 393 

independent predictor of adverse outcomes in subjects without established CV disease [43]. 394 

Besides hyperglycemia, high free fatty acid levels (FFA) may stimulate ROS production via protein 395 

kinase C (PKC)-dependent activation of NADPH oxidase in both VSMCs and ECs. This finding may 396 

explain the excessive acceleration of atherosclerosis and microcirculation damage in diabetic subjects 397 

[187]. In addition, hyperglycemia and lipotoxicity lead to hyperactivation of NLRP3 inflammasome, 398 

which mediates caspase-1 activation and the secretion of pro-inflammatory cytokines IL-1β and IL-18. 399 

Thus, NLRP3 inflammasome activation in DM leads to chronic inflammation and increased vascular 400 

permeability [188]. 401 

The most common microvascular complication of DM is diabetic retinopathy. Ocular 402 

microcirculatory damage on the grounds of hyperglycemia causes capillary occlusion leading to retinal 403 

ischemia and neovascularization [189]. Interestingly, experimental data show that microcirculatory 404 

changes, including adherence of neutrophils and leukostasis, in non-ocular tissues of diabetic mice 405 

appear to be related and reflect retinal microvascular lesions in the context of diabetic retinopathy [190]. 406 

Underlying retinal microvascular dysfunction seems to precede the clinical manifestation of DM-407 

associated CV disease [191]. New advances in retinal vessel analysis provide useful diagnostic tools to 408 

improve the prediction and risk stratification of CV disease [192]. However, there is also evidence of 409 

non-retinal MD in diabetes: diabetic subjects have impaired dermal microvascular hyperemia response 410 

to local skin heating [193], reduced glycocalyx thickness (Figure 3C) [194]. Similarly, digital pulse 411 
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amplitude tonometry (PAT) is impaired in type 2 diabetes and influenced by glucose level fluctuations 412 

[195].   413 

Finally, it should be mentioned that several of the novel antidiabetic agents, namely dipeptidyl 414 

peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-415 

glucose cotransporter-2 inhibitors (SGLT-2i), have potential anti-inflammatory properties and improve 416 

endothelial function and presumably microcirculation [194,196-200], and this might be - at least 417 

partially - responsible of the significant benefit observed in terms of reduction of CV risk [201].  418 

 419 

Statement: Hyperglycaemia and FFA-derived ROS produce a substantial increase in oxidative 420 

stress, directly affecting microvascular inflammation and promoting an AGE/RAGE and lipotoxic 421 

environment, which determines peripheral insulin resistance, further worsening the low-grade 422 

inflammatory response. 423 

 424 

3.4. Arterial hypertension  425 

Arterial hypertension is characterised by diffuse microvascular damage (Figure 3D, 426 

Supplementary Figure 1) [202-206]. Hypertension and inflammation have a bidirectional 427 

physiological and pathophysiological background [207,208]. Several human studies have evaluated the 428 

relationship between inflammation and essential hypertension. In a meta-analysis (n=21,458 patients), 429 

higher levels of circulating CRP, high-sensitivity CRP (hs-CRP), and IL-6, but not IL-1β, were 430 

associated with the risk of developing hypertension [209]. Studies have also reported correlative links 431 

between arterial stiffness and inflammatory markers in essential hypertension [210].  432 

A hallmark of inflammation is the release of inflammatory cytokines such as IL-6, IL-17A, 433 

interferon-γ (IFN-γ), and TNF-α by T CD4+ cells, and more specifically by subsets of T helper (Th) 434 

cells, Th1 and Th17[9,207,208]. Involvement of IL-6 has been shown in mice, where Il6 knock-out 435 

mice showed reduced hypertension severity in response to angiotensin II (AngII) infusion [211]. 436 

Further, in human renal proximal tubular cells, IL-6 increased angiotensinogen expression [212]. IL-437 
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17A affects renal sodium handling [213] and inhibits eNOS, causing impaired vasodilatation and 438 

increased peripheral vascular resistance [214]. Long-term effects of IL-17A include the promotion of 439 

vascular fibrosis, leading to arterial stiffening [214]. In addition, in mice lacking IL-17A, the number 440 

of T cells and macrophages in blood vessels was reduced, illustrating the effect many of these cytokines 441 

have in attracting more immune cells, further amplifying the immune response [207]. They induce 442 

oxidative stress [215] through enhanced NADPH oxidase subunit expression. Increased oxidative stress 443 

affects sodium retention by decreasing the glomerular filtration rate [216]. This, as many of the classical 444 

pathophysiological factors in hypertension (ET-1, aldosterone, and AngII), activates the NLRP3 445 

inflammasome through NF-κB. NLPR3 activation leads to increased levels of proinflammatory 446 

cytokines IL-1β and IL-18, activating immune and vascular cells as T cells (mainly CD4+), monocytes, 447 

ECs and VSMCs [217].  448 

The contribution of innate and adaptive immune cells to the development of MD leading to 449 

hypertension is substantial [218]. Regarding immune cells, in animal models of genetic hypertension, 450 

vascular ageing is associated with increased PVAT infiltration of macrophages, neutrophils and natural 451 

killer cells (NKs), which promote NADPH oxidase 4-driven microvascular remodeling [9,219,220]. 452 

Macrophages, as a major source of ROS, are considered important in this process, although the precise 453 

mechanisms by which they are involved remain unclear [9]. Similarly, NKs are found to increase before 454 

the development of hypertension in spontaneously hypertensive rats [219]. Neutrophils from the plasma 455 

of untreated patients with essential hypertension generate neutrophil extracellular traps that lead to 456 

collagen production and consequent microvascular remodelling [221]. In adaptive immunity, T cells 457 

are considered to play a predominant role. Following antigen recognition, CD4+ T cells are activated 458 

and differentiate into T effectors (Th1, Th2 and Th17) or T regulatory cells (Treg), the balance of which 459 

influences the inflammatory response [9]. In experimental models of hypertension, as well as in 460 

hypertensive patients, the inflammatory response generated by the ratio of T helper lymphocytes (Th) 461 

1/17 (Th1/Th17) is not adequately balanced by the pool of regulatory T lymphocytes (Treg), thus 462 

contributing to structural damage of the microcirculation [9]. Recently, it was discovered that the T cell 463 

mir214 partially recapitulates and transduces the fibrotic effects of the immune system to the 464 

microvasculature, leading to vascular fibrosis, vascular stiffening and remodelling. In particular, 465 



18 
 

 

cytokines released from PVAT mediate these effects [220]. It is thus clear that the immune system is 466 

one of the leading mechanisms supporting the cross-talk between vascular inflammation and 467 

hypertension. However, it should be noted that most of the evidence comes from in vivo studies, as 468 

further investigations in patients are needed [9]. 469 

However, over the last years, evidence has been accumulated showing that this dialogue also 470 

involves the sympathetic nervous system [222,223]: (i) an increase in sympathetic activity elicits T-471 

lymphocytes activation and vascular inflammation [224]; (ii) significant correlations have been found 472 

between circulating plasma norepinephrine, and IL-6 produced by T-lymphocytes as well as TNF-α 473 

produced by macrophages and monocytes [225]; (iii) chronic sympathetic activation in patients with a 474 

peculiar form of high blood pressure desensitizes lymphocyte β2-adrenoceptors and thereby alters 475 

immune function [225]. On the other hand, inflammation and T-lymphocytes activation, which are both 476 

triggered by oxidative stress [226], may favour sympathetic activation, as already shown in other 477 

diseases characterized by an adrenergic overdrive, including essential hypertension [222]. In any case, 478 

pro-inflammatory substances and mediators may trigger signals to the central nervous system activating 479 

the sympathetic neural component [222]. 480 

 481 

Statement: arterial hypertension is characterised by increased sodium retention and higher 482 

levels of ET-1, aldosterone and AngII, which disrupt the microvascular environment by promoting 483 

NAPDH-derived endothelial dysfunction and IL-6, IL-17 and TNF-α-driven inflammatory responses. 484 

The innate and adaptive immune systems play a central role. In particular, a balance between effectors 485 

(Th1, Th17) and regulators (Treg) T cells orchestrates microvascular inflammation and consequent 486 

microvascular remodelling. 487 

 488 

3.5. Neurodegenerative diseases  489 

The cerebral vasculature is unique in its anatomy and physiology. It constructs a highly 490 

specialized blood-brain barrier (BBB) that controls the admission of solvents and ions into the brain 491 

and clearance into the blood metabolic end products or endogenous neurotoxin produced by the brain 492 
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[227,228].  The BBB, therefore, play a critical role in maintaining brain homeostasis. It comprises 493 

endothelial cells, basement membrane, pericytes and VSMCs, astrocytes, microglia and neurons 494 

[229,230]. Vascular ECs are known to secrete vasoactive substances implicated in regulating cerebral 495 

flow, intravascular blood coagulation, and preserving the integrity of the BBB. Their atheroprotective 496 

role and homeostasis are controlled by releasing vasoactive factors, especially NO. This leads to cGMP-497 

mediated cerebral vessel relaxation and proper blood supply to the brain tissue and autophagy [231]. 498 

Pericytes (PCs) directly encircle endothelial cells and VSMCs and are considered vascular mural cells. 499 

ECs and PCs have direct contact through gap junctions and contribute to blood vessel formation and 500 

BBB function maintenance by regulating immune cells’ entry (CD4+ and CD8+ T cells, peripheral 501 

macrophages and neutrophils) to the central nervous system [232-234].   502 

Similar to the peripheral circulation, impairment in NO production, inflammation and enhanced 503 

ROS production [235,236] are vital in promoting ECs dysfunction manifested by increased expression 504 

of leukocyte adhesion molecules such as ICAM-1, VCAM-1 and E-selectin. These molecules promote 505 

higher immune-endothelial cell interaction and accumulation of inflammatory cells in the vascular and 506 

perivascular niches. The higher expression of ICAM-1 and VCAM-1 is observed in cerebral endothelial 507 

cells in animal models of cerebral hypoperfusion, while their inhibition protects against cognitive 508 

impairment [237,238]. Furthermore, soluble adhesion molecules like sE-selectin, sP-selectin, sICAM-509 

1 and sVCAM-1, considered endothelial dysfunction markers, are elevated in patients with small vessel 510 

brain diseases [239]. 511 

The chemotactic process is strictly controlled by numerous chemokines secreted by the vascular 512 

cells [240], pericytes [233], microglia [241], and astrocytes [242] in a concentration-directed gradient. 513 

Recent studies have implicated the importance of CCL2, CCL3, CCL5 and CXCL8 in many vascular 514 

and neurogenerative diseases, including cognitive impairment, stroke and neuroinflammation [243]. 515 

Microcerebrovascular endothelial cell activation and BBB leakage promote the migration and 516 

accumulation of proinflammatory macrophages [244] and T cells [245,246] in perivascular space 517 

(Supplementary Figure 2). The role of various immune cells in the pathogenesis of endothelial 518 

dysfunction and vascular inflammation in CV diseases has been well established [220,247]. Activated 519 
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immune cells release diverse pro-inflammatory mediators, which propagate microvascular 520 

inflammation and may provoke microhemorrhages, further escalating the inflammatory process. Co-521 

involvement of IL-1, IL-6 and TNF-, in microvascular brain injury and inflammation has been widely 522 

reported [248,249]. IL-1 is considered the main proinflammatory cytokine that increases the astrocytic 523 

production of CCL2, CCL20 and CXCl2 [250]. In addition, IL-1 impairs microvascular ECs by 524 

disturbing tight and adherent junctional proteins and increasing adhesion molecules expression, 525 

prompting vascular leakage and the parenchymal infiltration of leukocytes. In contrast, anti-IL-1 526 

treatment blunts cerebrovascular inflammation and improve outcome in a mouse model of acute 527 

ischaemic stroke [251]. IL-6 is a pleiotropic inflammatory cytokine produced by infliltrating leukocytes, 528 

ECs, activated microglia and astrocytes. Its expression affects many neuroinflammatory and 529 

neurodegenerative conditions [252-254]. IL-6 mediates the elevation of superoxide production and 530 

endothelial impairment by affecting NO-cGMP signalling pathway [255]. In addition, it may enhance 531 

CRP released by brain cells [256]. Similarly to IL-6, TNF- affects proper endothelial function by 532 

decreasing eNOS levels by destabilising its mRNA expression. Furthermore, TNF- activates NF-B, 533 

a major regulatory transcription factor, playing a pivotal role in regulating various inflammation-related 534 

genes, including key inflammatory cytokines (along with IL-1 and IL-6), chemokines and adhesion 535 

molecules.  536 

Cognitive impairment is a hallmark of numerous CV diseases [257]. In hypertension, white 537 

matter hyperintensities (WMH) are a critical imaging biomarker linked to this process (Figure 3E). 538 

Indeed, neurovascular inflammation is involved in the aetiology of WMH [258]. Similarly, cerebral 539 

small vessel disease has been identified as a key hallmark of a broad range of neurodegenerative 540 

conditions. Human neuroimaging and genetic studies show that it is characterised by microvascular 541 

endothelial dysfunction impacting cell-cell interactions and leading to brain damage [259]. One broadly 542 

studied model of cerebral small vessel disease caused by NOTCH3 mutations, CADASIL (Cerebral 543 

autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) [260], is 544 

characterised by accelerated cognitive decline and dementia, recurrent stroke without vascular risk 545 
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factors, and mood disturbances. This hereditary disorder provides a unique opportunity to understand 546 

some of the molecular mechanisms of small vessel disease [261].   547 

Elevation of proinflammatory mediators such as IL-1β, IL-6, TNFα and CRP has been linked 548 

with cognitive impairment in humans [262,263]. Furthermore, proinflammatory cytokines secreted by 549 

immune and vascular cells have direct neurotoxic and apoptotic properties [264], which could 550 

perpetuate local neuroinflammation and neurodegradation. Interestingly, neuroinflammatory changes 551 

found in the brains of COVID-19 patients were accompanied by the presence of macrophages and T 552 

cells in the perivascular space [265], suggesting higher microvascular inflammation caused by a 553 

cytokine storm which might affect the proper BBB function [266]. Furthermore, cerebral microvascular 554 

inflammation enhances the prevalence of cognitive impairment even in mild symptomatic COVID-19 555 

subjects [267]. Similarly, experimental and epidemiological studies indicate a relationship between 556 

cognitive decline and CV diseases [228,268-270], associated with chronic low-grade inflammation and 557 

dysregulation of the immune system [271,272]. In particular AngII is at the crossroad, acting as 558 

cardiovascular and immune systems modulator, initiating inflammation by indirect promotion of 559 

vascular permeability and the recruitment of peripheral macrophages and CD4+ and CD8+ T cells 560 

[273,274]. In turn, augmented permeabilty leads to further inflammation and secondary damage to the 561 

BBB, with the entry of plasma proteins and neurotoxic substances [275]. 562 

The most prevalent form of dementia, AD, is marked by a steady decline in cognitive function 563 

and neurodegeneration. The vascular hypothesis suggests that cerebral microvascular alterations are 564 

central to the pathogenesis of AD, providing a link with CV disease [276]. Possible mechanisms include 565 

neurovascular coupling imbalances and BBB disruption [276].  Impaired removal of beta-amyloid may 566 

be a consequence of these neurovascular changes: vascular changes may precede the development of 567 

tau pathology [277]. A two-hit hypothesis has been developed in which classical risk factors leading to 568 

the development of microvascular dysfunction facilitate AD-specific pathology. This is linked with the 569 

development of a vicious cycle between microvascular damage and beta-amyloid aggregates that 570 

contribute to AD development. Brain imaging supports these observations, as well as chronic cerebral 571 

hypoperfusion, microvascular dysfunction, and perivascular space enlargement - hallmarks of small 572 
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vessel disease - precede cognitive decline and changes in conventional biomarkers [276]. These 573 

mechanisms of small vessel disease are shared between vascular dementia and AD: assessment of 574 

retinal microvasculature has shown apparent microvascular dysfunction and remodelling in 575 

neurodegenerative diseases [278,279]. 576 

 577 

Statement: In neurodegenerative disease, MD favours the increased BBB dysfunction and 578 

leakage paired with higher NF-κB activation and consequent microvascular levels of IL-1β, IL-6, TNF-579 

α, which promotes the onset of a vicious cycle leading to progressive cognitive impairment and 580 

increased predisposition to tau pathology. 581 

 582 

3.6. Autoimmune rheumatic diseases 583 

 Autoimmune rheumatic diseases (ARD) are distinct heterogeneous disorders with common 584 

immune responses against self-antigens arising from genetic predisposition, dysregulation of the 585 

immune system and environmental factors. Among them, chronic inflammatory rheumatic conditions, 586 

mainly represented by rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and 587 

spondyloarthritis (ankylosing spondylitis (AS) and psoriatic arthritis (PA)) are those further 588 

characterized by increased and premature CV morbidity and mortality [280]. Atheromatosis is a chronic 589 

inflammatory process in which the immune system, blood and vascular cells, and several hormonal 590 

systems are primarily involved in the structural and functional damage of the small vessels [281]. 591 

Microangiopathy has been used as an important subclinical CV risk indicator, and ARD patients 592 

[282,283] have an increased prevalence of CV diseases which cannot be fully explained by the classical 593 

CV risk factors [284].  594 

In ARD, a combination of elements is able to contribute specifically to MD and microvascular 595 

inflammation: (i) genetic predisposition due to the polymorphism in MTHFR, TNF, IL6 loci and the 596 

HLA-DRB1 status [285]; (ii) activation of IL-1β, IL-6, IL-17 and TNF-α pathways [285]; (iii) enhanced 597 

https://www.sciencedirect.com/topics/immunology-and-microbiology/genetic-predisposition
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ECs activation with the expression of ICAM-1, VCAM-1, E-selectin [286]; (iv) the increase in 598 

NAPDH-derived ROS production, leading to eNOS uncoupling and formation of 3-nitrotyrosine.  599 

RA is the most prevalent autoimmune inflammatory rheumatic disease [287], characterized by 600 

a 50% excess in CV mortality compared to the general population [288]. RA has been associated with 601 

diffuse microvascular injury (Figure 3G) [24] documented by decreased myocardial perfusion 602 

(Supplementary Figure 3) [289], altered retinal arteriolar diameters [290,291], and dermal capillary 603 

density assessed with nailfold capillaroscopy [292], as well as impaired coronary microcirculation 604 

evaluated by coronary flow reserve (CFR) [293] and impaired endothelial glycocalyx integrity [294] 605 

even in the absence of overt CV disease. This is paired with an attenuated microvascular response to 606 

different stimuli, assessed with venous occlusion plethysmography [295,296], and an increased 607 

hyperaemic vasodilatory response [297] in RA patients compared to healthy controls. Pronounced 608 

impairment of microcirculatory blood flow responses assessed by laser speckle contrast imaging (LSCI) 609 

and decreased coronary microvascular perfusion has also been found in RA individuals free from CV 610 

disease [298] (Supplementary Figure 4). 611 

In SLE, prevalent in about 0.1% of the general population, apart from the widespread 612 

inflammation and tissue damage in the affected organs, the blood vessels, especially the brain and 613 

kidneys, could also be severely impaired. Since vascular involvement, presenting as noninflammatory 614 

necrotic vasculopathy, thrombotic microangiopathy, and lupus vasculitis, is considered the leading 615 

cause of death in patients with SLE, interest has been focused on identifying the presence and role of 616 

early, subclinical microcirculation alterations, potentially anticipated before the establishment of CV 617 

events [25]. In addition to the classical subclinical structural changes (cortical atrophy and white matter 618 

hyperintensities), identified mostly by conventional MRI in patients with SLE regardless of the presence 619 

of neuropsychiatric manifestations, functional changes such as a blunted increase in cerebral 620 

oxygenation during exercise assessed with near infra-red spectroscopy [299] and hypoperfusion lesions 621 

with single-photon emission tomography (SPECT) in comparison to controls [300] are present. They 622 

often precede the permanent changes identified by conventional imaging [301] and are also found in 623 

sites different from the classical one targeted by lupus vasculopathy (e.g.,  SLE nephritis): the fundus 624 

[26,302,303], the skin, with capillaroscopic alterations concerning density, dimensions, morphology 625 
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and haemorrhages, and the myocardium, presenting coronary microvascular dysfunction [304-306]. 626 

Functional microcirculation studies with digital PAT [307,308], Portable Oxygen Transmitter [309] and 627 

LSCI [310,311] document reduced peripheral perfusion and impaired microvascular reactivity in SLE 628 

patients (Supplementary Figure 4). 629 

Subclinical microvascular alterations in psoriatic disease, inflammatory bowel disease, 630 

vasculitis and AS have also been studied [312-314]. Psoriatic patients and patients with inflammatory 631 

bowel disease present coronary microcirculatory dysfunction, as assessed by CFR, reduced endothelial 632 

glycocalyx thickness and microvascular perfusion impairment leading to impaired cardiac function 633 

(Supplementary Figure 4) [27,28,315-318].    634 

Remarkably, biological anti-inflammatory therapies and statins in autoimmune diseases 635 

improve endothelial glycocalyx and function, as well as coronary and peripheral microcirculation and 636 

thus, have beneficial effects on CV function [28,317,319,320], providing indirect evidence of the 637 

beneficial impact of targeting microvascular inflammation. Nonetheless, the precise role of MD and 638 

microvascular inflammation, in terms of risk prediction and therapeutic target, needs to be addressed 639 

appropriately by rigorous prospective studies. 640 

 641 

Statement: ARD are a heterogeneous group of diseases characterised by MD and microvascular 642 

inflammation, driven by the combination of genetic predisposition and innate immunity hyperactivation 643 

via IL-1β, IL-6, IL-17 and TNF-α pathways. The beneficial effects of anti-inflammatory drugs in terms 644 

of CV risk reduction provide indirect evidence of the centrality of microvascular inflammation in ARD. 645 

 646 

3.7. Oncologic disease 647 

As previously mentioned, systemic and local inflammation have a major role in the development 648 

and maintenance of microvascular structural alterations [9]. Oncologic diseases may cause or be 649 

associated with systemic inflammation, possibly contributing to the development of hypertension and 650 

CV diseases, thus reducing overall survival in these patients [321]. However, due to many clinical 651 
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reasons, including relatively short follow-up periods, few data are available about microvascular 652 

alterations in cancer patients per se.  653 

Cancer primarily shares with CV disease several pathophysiological mechanisms and similar risk 654 

factors. In this respect, chronic inflammation is a crucial feature in the pathogenesis and progression of 655 

both CV disease and cancer. It may be directly involved in the induction of some cancer types (e.g. H-656 

pylori and stomach cancer) or indirectly promote local carcinogenesis and its progression by releasing 657 

inflammatory mediators and recruiting immune cells within the tumor microenvironment [29]. Other 658 

mechanisms such as oxidative stress, cytokines, hormones (e.g. leptin), growth and metabolic factors 659 

have also been proposed to connect both diseases. However, a clear pathogenetic understanding is still 660 

lacking: although T cells appear to be involved, which specific subtype and by which mechanism they 661 

induce MD requires further investigation. [29]. The concomitant presence of CV risk factors or 662 

conditions such as physical inactivity, smoking, obesity, and diabetes may further induce inflammation 663 

worsening the prognosis of cancer and cancer survivor patients [30]. Cancer cells secrete VEGF to 664 

stimulate tumor vascularization, which increases vascular permeability and may contribute to 665 

microcirculation structural remodeling and perivascular fibrosis [31,32]. 666 

Particularly relevant is that several cancer treatments present CV toxicity and may cause MD, 667 

microvascular inflammation, hypertension and thus, an increase in CV events [321,322]. While 668 

anthracyclines have been mostly related to specific cardiotoxicity [323], VEGF and other tyrosine 669 

kinase inhibitors are the most frequently associated anti-cancer drugs with a dose-dependent increase 670 

in blood pressure both in hypertensive patients and in normotensive subjects [322,324,325]. These drugs 671 

enormously improve the prognosis for several solid tumors [326], targeting specific pro-angiogenic 672 

VEGF signaling involved in the neovascularization of tumors in vivo [327]. A consequent increase in 673 

blood pressure has been suggested as a pharmacodynamic biomarker and predictor of therapeutic 674 

efficacy [328,329]. However, this was not confirmed by other studies [330], and, what is more, poorly 675 

controlled hypertension leads to an increase in CV events, causing the discontinuation of anticancer 676 

therapy and thus hindering its clinical benefit. 677 

The mechanism underlying vascular toxicity and hypertension induced by VEGF inhibitors is 678 

still debated. VEGF-A, the most important isoform of VEGF, may promote the proliferation, 679 
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differentiation, and migration of endothelial cells by interacting with the VEGF-A receptor, as well as 680 

NO production [331]. Accordingly, VEGF inhibition is associated with reduced NO bioavailability 681 

because of the inhibition of eNOS and concomitant increase in vascular ROS [324,332], resulting in 682 

MD [31]. Activation of the ET-1 system with increased concentrations of ET-1, nephrotoxicity and 683 

impaired natriuresis induces hypertension along with the inhibition of other growth factors, including 684 

platelet-derived or fibroblast growth factor, c-Kit and FMS-like tyrosine kinase 3 [333]. Recently, a 685 

novel molecular mechanism involving the interplay between endothelial microparticles, the endothelin 686 

system and endothelial cell pro-inflammatory and redox signaling have been described; such 687 

interactions could be important in CV toxicity and hypertension associated with  VEGF inhibitors [334]. 688 

All these events would favour an increase in peripheral resistance, further increasing MD. 689 

Another consequence of antiangiogenic drugs leading to vascular resistance increase and 690 

elevated blood pressure is microvascular rarefaction. A reduction of capillary density during 691 

antiangiogenic treatment, reversible with cancer drug discontinuation [335], was observed in some 692 

[336-339] but not in other studies [340]. In one of these studies [338], the effect of antiangiogenic drugs 693 

on the structure of retinal arterioles and capillary density was investigated in 20 patients with cancer. 694 

No change in systolic or diastolic blood pressure values during treatment was observed [338]; however, 695 

during the study, antihypertensive treatment was optimized in most patients. Although no difference 696 

was observed in the retinal arteriole wall-to-lumen ratio [19], capillary density was reduced by 697 

antiangiogenic drugs after three or six months (Figure 3F) [338]. These findings might imply that an 698 

up-titration antihypertensive treatment is necessary for patients treated with tyrosine kinase inhibitors 699 

or a VEGF inhibitor. Indeed, under adequate blood pressure control, microvasculature seems preserved 700 

[338]. Since the efficacy of these drugs could be related to the extent of the antiangiogenic effect, the 701 

non-invasive evaluation of capillary density should be evaluated by further studies as a predictive 702 

parameter of drug efficacy. The better identification of the mechanisms underlying adverse cardiac and 703 

vascular effects of anti-cancer therapies may allow to develop novel vasculoprotective strategies. Only 704 

by doing so will patients achieve optimal cancer treatment at the minimum cost to cardiac and vascular 705 

health [323].   706 

 707 
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 Statement: In oncological disease, the pan-activation of inflammatory response concurs to 708 

induce MD and microvascular inflammation. Even more relevant is that anti-cancer drugs, particularly 709 

anti-VEGF, might cause detrimental derangement in microvascular function and inflammation, thus 710 

attenuating their medium/long-term beneficial effects in terms of survival. An adequate increase in 711 

treatment to achieve a stronger control of age-related disease (in particular, hypertension) is thus 712 

required. 713 

 714 

Conclusions 715 

Ageing and age-related diseases are all characterised by different degrees of MD, leading to high-CV 716 

morbidity and mortality. As microvascular inflammation is both the consequence of environmental 717 

stressors and the perpetrator of age-related damage, its centrality in CV risk is apparent. However, 718 

though damage pathways have been extensively studied over the last decades, a clear understanding of 719 

their involvement’s temporal and spatial sequence across the age-related disease spectrum is missing. 720 

In particular, although the interaction between immune and non-immune cells is receiving increasing 721 

attention, a precise definition of their cross-talk in the context of MD is lacking. Preventing their 722 

detrimental dialogue may be crucial to stopping the disease at a very early stage. This gap of knowledge 723 

substantially limits the translation in terms of clinical strategies. Targeting microvascular inflammation 724 

is still a difficult road to travel: as the microvascular damage leverage epigenetic remodeling [52], early 725 

or intensive treatment is required to revert it. However, even as some interventions have demonstrated 726 

a potential benefit in terms of rescuing MD (e.g., physical activity, weight loss [166,167], SGLT-2i 727 

[200]) and inflammation [104], translational studies addressing microvascular inflammation to identify 728 

either early common or disease-specific targets are required. At the same time, we need to clearly 729 

understand the strengths and limitations of each technique used to assess MD, as well as the ability to 730 

distinguish between microvascular and macrovascular. Efforts towards standardisation are needed to 731 

obtain interpretable results from studies.732 
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Table 1. Currently available methods for assessment of microcirculatory function in humans.  

Technique Tissue Method of assessment Advantages Limitations 
Peripheral arterial network 
Finger plethysmography Arteries of fingers Reactive hyperemia index in finger 

blood flow measured by using finger 
probes. 
 
 

-Safe and non-invasive 
-No need for specific training 
-Totally non-operator-dependent 
-Prognostic value for adverse CV events 

-More expensive 
-Environmental conditions and the autonomic nervous system 
may affect measurements 
 

Antebrachial 
plethysmography 

Brachial artery Quantification of forearm blood flow 
by means of plethysmography during 
infusion of vasoactive drugs in the 
brachial artery immediately after cuff 
deflation and again at 1 and 5 minutes 
of reperfusion. 
 

-Safe, noninvasive  
-It allows the simultaneous study of large conduit 
vessels and small arteries. 

-Inexpensive 
-Small errors in the measurement of arterial diameter will result 
in large errors in the calculation of flow 
-Room temperature may affect measurements 
-Measures the local arterial extensibility 

Transcutaneous oxygen 
tension 

Skin Quantity of oxygen molecules 
transferred to the skin 
microcirculation after heating 
skin>40°C. 
 

-Wide availability -Time-consuming 
-Does not assess all ischemic regions 

Flow mediated  
skin fluorescence 

Skin Assessment of microcirculation and 
metabolic regulation based on the   
measurements of NADH fluorescence 
intensity in epidermis. 
 

-Quick and simple 
-Good reproducibility 
-Flowmotion analysis  
-Correlated with endothelial biomarkers 

- Lack of robust evidence on the prognostic value 
 

Iontophoresis Subpapillary plexus, 
nutritional 
capillaries, nerve-axon 
reflex 

Delivery of vasodilators 
(acetylcholine/ SNP) subdermally and 
measurement of microcirculatory flow 
with laser Doppler fluxmetry or 
single-point probes. 
 

-Quick and simple 
-Small coefficients of variation 
-Correlated with other microvascular beds 
-Isolation of nerve-axon reflex 

-Cannot distinguish subpapillary plexus from 
nutritional capillaries in glabrous skin 
 

Skin pulp blood flow Nutritional capillaries 
and AV shunts 

Assessment of microcirculation of 
pulp skin of the toes with laser 
Doppler fluxmetry or heat and/or 
radioisotope washout methods. 
 

-Simple, can be performed on any area of skin quickly 
-Distinguishes nutritional capillaries and AV shunts in 
glabrous skin 

-Not correlated with other tissue beds 

Capillaroscopy Subpapillary plexus, 
nutritional capillaries 

Evaluation of morphology and blood 
flow by studying capillary changes 
with light microscopy or fluorescent 
dye dynamic capillaroscopy. 
 

-Distinguishes microvascular from the interstitial 
compartments, assesses transcapillary diffusion 
-Distinguishes subpapillary plexus from nutritional 
capillaries 

-Cost and availability of the equipment 
-Patients need to be placed in the sitting position 
-Qualitative evaluation is largely dependent on the operator 
experience 
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-Need for readily available software among different centers for 
quantitave evaluation of MD parameters 
 

Hand-held vital-
microscope device 

Sublingual 
microcirculation, 
microvascular beds of 
different types of 
mucosa and solid organ 
surfaces 

Video observation of the flowing 
RBCs of the microcirculation (3rd 
generation device -the newest 
technology- uses incident darkfield 
illumination for this purpose) and 
diffuse capacity. 

-Noninvasive monitoring of the microcirculation at the 
bedside 
-Alterations in sublingual microcirculation are highly 
sensitive and specific, predicting adverse outcomes 
3rd generation device 
-Computer-controlled image sensor 
-Better image quality 
-Evaluation of 30% more capillaries 
 

- Microcirculation can be visualized only if the epithelial layer 
of the area of interest is thin 
- Presence of artefacts due to movement 
- Variability with the use of different generations of HVM 

Micromyography Subcutaneous tissues Measurement of MLR or WLR of 
small subcutaneous vessels dissected 
from tissue biopsies by pressure or 
wire micromyography. 
 

-Gold-standard method  
-Precise and reliable 
-The most potent predictor of CV events in 
hypertensive patients 

-Locally invasive  

Laser speckle contrast 
imaging 

Skin and subcutaneous 
tissues,  
Retinal and choroidal 
microcirculation 

Mesurements of peripheral 
microcirculatory perfusion on a wide 
area of tissue 
LSCI coupled with vascular reactivity 
tests enables to assess endothelial 
function 
Complementary use of a fundus 
camera with a laser diode or a blue 
component argon laser for assessment 
of deep or superficial retinal flow, 
respectively. 
 

-Dynamic, real-time perfusion monitoring  
-Very good spatial and temporal resolution 
-Improved spatial and temporal reproducibility as com-
pared to conventional laser Doppler flowmetry 
-Excellent reproducibility 
-Safe, noninvasive 

-Cost and availability of the equipment 
-Lack of robust evidence on the prognostic value 
-Interference by movement artifacts  
-Limited interpatient comparability 
-Complexity of quantitative measurements 
 

Scanning laser Doppler 
flowmetry 

Retinal vascular 
district 

Quantification of the WLR of retinal 
arterioles using scanning laser 
Doppler flowmetry. 
 

-Easy repeatability and comfortable for patients 
-Good agreement with wire micromyography 

-Lack of robust evidence on the prognostic value 
-Suboptimal variability in real-life situations due to the indirect 
nature of the measurement 

Nears Infrared 
Spectroscopy 

Muscle and brain 
microcirculation  

Noninvasively assessment of (i) 
microvascular reactivity, (ii) skeletal 
muscle and brain oxygenation via 
continuous monitoring of functional 
changes in oxygenated hemoglobin 
dissociation. 

-Easy repeatability 
-Precise and reliable 
-Correlated with other microvascular beds 

-Lack of prospectives and large epidemiological studies 

Adaptive optics Retinal vascular 
district 

Direct measurement of WLR of retinal 
arterioles by an adaptive optics 
imaging system using a beam of light.  

-Better reproducibility than scanning laser Doppler 
flowmetry 
 

-Lack of robust evidence on the prognostic value 
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Retinal Vessel Diameter Retinal vascular 
district 

Direct measurement of arteriolar and 
venular vessels diameter from fundus 
photographs. 

-Safe and non-invasive 
-Low cost and quick  
-Applicable in large populations 
-Implicated in large epidemiological studies predicting 
CV events 
-correlated with macro- and other microvascular beds 
 

-Lack of normal values 
-Lack of studies investigating the changes after drug treatment 

Coronary arterial network 
Coronary angiography-
derived index of 
microcirculatory 
resistance 

Coronary arteries Physiological assessment of 
microvascular disease in coronary 
circulation from angiographic images. 

-May predict adverse CV outcome and extensive 
myocardial injury 
-Highly reproducible and excellent diagnostic 
accuracy, not affected by hemodynamic changes  
- Relatively independent of epicardial coronary disease 
 

-Invasive method 
-Limited in clinical practice due to required additional 
procedural time, cost and technical complexity (in  
non-STEMI patients) 

Coronary flow reserve Coronary arteries The ratio of the maximal or hyperemic 
flow down a coronary vessel to the 
resting flow. 

-Prognostic value for all-cause mortality and CV 
events 
-Quantitative and global physiological interrogation of 
the coronary circulation 
-Can be measured using non-invasive modalities, 
including echocardiography, PET and CMR 

-Invasive method using a Doppler-tipped coronary guidewire 
-Difficulty in obtaining a suitable Doppler signal 
-Suboptimal repeatability of measurements 
- Lack of a clear cut-off between normal and abnormal CFR  

Abbreviations: SNP, sodium nitroprusside; AV, arteriovenous; RBCs, red blood cells; HVM, hand-held vital microscope; MLR, media thickness to internal lumen ratio of subcutaneous small resistance arteries; WLR, 
wall-lumen ratio; CV, cardiovascular; STEMI, ST-elevation myocardial infarction; PET, positron emission tomography; CMR, cardiac magnetic resonance; CFR, coronary flow reserve; EndoPAT, non-invasive peripheral 
arterial tonometry. 
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Legends to the figures. 1 

Figure 1. Mechanisms linking microcirculatory dysfunction with multiple manifestations of cardiovascular 2 

disease.  Abbreviations: CAD: coronary artery disease; MINOCA: myocardial infarction with non-obstructive 3 

coronary arteries; INOCA:  ischemia with non-obstructive coronary arteries; HFpEF, heart failure with preserved 4 

ejection fraction. 5 

 6 

Figure 2. Graphical abstract. Microvascular inflammation links environmental stressors to microvascular 7 

ageing. Environmental stressors induce microvascular dysfunction, which in turn promotes microvascular 8 

inflammation. When microvascular inflammation causes permanent changes in vascular structure and function, 9 

microvascular age and biological age diverge. The vessel becomes the architect of microvascular inflammation, 10 

exposing the microcirculation to further damage from environmental stressors and thus promoting the onset of 11 

cardiometabolic disease, exponentially increasing the degree of microvascular inflammation and the individual 12 

cardiovascular risk. The major common and distinct molecular-, cell- and tissue-level mechanisms involved in 13 

microvascular inflammation are summarized. AGE: advanced glycation end products; AGO1: argonaute 1; BBB: 14 

blood-brain barrier; eNOS: endothelial nitric oxide synthase;  ET-1: endothelin-1; ETA: endothelin-1 receptor A; 15 

FFA: free fatty acids; ICAM: intercellular adhesion molecule-1;  IFN: interferon-γ; IL: interleukin; MTHFR: 16 

Methylene-tetrahydrofolate reductase; NADPH: nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear 17 

factor kappa-B; NLRP3: NOD-like receptor family pyrin domain containing 3; NO: nitric oxide; PVAT: perivascular 18 

adipose tissue; ROS: reactive oxygen species; SASP: senescent-associated secretory phenotype; TLR: toll-like 19 

receptors; TNF-α: tumor necrosis factor; VCAM-1: vascular cell adhesion molecule-1; VEGF: vascular epithelial 20 

growth factor.  21 

 22 

Figure 3. Microvascular inflammation and its impact on microvascular dysfunction across ageing and age-23 

related disease. (A) Relationship between age (x axis) and the inhibition by N-nitro-l-arginine methylester (L-24 

NAME) on maximal response to acetylcholine (y axis) in normotensive subjects (n=41). Adapted from [108]. (B) 25 

Increased Media-to-Lumen (M/L) ratio per year of age in healthy nonobese (white circle; n=42) and obese with no 26 
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other comorbidities (black triangle; n=47) subjects. Regression lines for each group are shown. The M/L ratio is 27 

expressed as a percentage (%). Age and M/L are tightly related in both groups (obese: r=0.487, p <0.01; nonobese: 28 

r=0.555, p=0.001). The slope is five-fold steeper in the obese group. Figure and captions adapted from [125]. (C) 29 

Association of tertiles (T1-T2-T3) of Matsuda index with perfused boundary region (PBR) measured in the 30 

microvessels ranged from 20 to 25 μm indicating an association between insulin resistance and damaged glycocalyx 31 

(F=4.8, p=0.03) in n=100 subjects with different degrees of insulin resistance (n=40 first-degree relatives of type-2 32 

diabetes patients, n=40 subjects with abnormal oral glucose tolerance test and 20 subjects with normal oral glucose 33 

tolerance test without parental history of diabetes). Adapted from [182]. (D) Comparison of the retinal arteriovenous 34 

ratio (AVR) in n=201 newly diagnosed individuals with hypertension of different phenotypes and normotension. 35 

Intergroup comparisons were made with analysis of variance ANOVA with Bonferroni correction after adjustment 36 

for age, sex, body mass index (BMI). Individuals with sustained hypertension (n=103), masked hypertension (MHT; 37 

n=28) and white coat hypertension (WCH; n=20) had significantly lower AVR than normotensive subjects 38 

(n=50;p<0.05). Adapted from [206].  (E) Observational, standardised coefficients concerning 242 brain imaging-39 

derived phenotypes genetically affected by SBP corresponding to their association with cognitive function or SBP at 40 

the imaging visit. Hypertension was used as a model associated with microvascular inflammation. Figure and caption 41 

adapted form [257]. (F) Altered capillaroscopy in oncologic disease. Basal capillary density in the dorsum of the 4th 42 

finger (Dpre_basal) in patients (n=20) with cancer and treated with either a tyrosine kinase inhibitor or a vascular 43 

epithelial growth factor inhibitor at the different time points (T0, T3, T6). *T3 vs T0 p=0.03 ; #T6 vs T0 p=0.02. 44 

Data are expressed as mean+standard deviation. Adapted from [338]. (G) Accumulative data of near-infrared-45 

spectroscopy cerebral responses during exercise in systemic lupus erythematosus (SLE; n=26) versus control (n=27) 46 

group. Oxygenated haemoglobin (O2Hb), deoxygenated haemoglobin (HHb) and total haemoglobin (tHb) levels were 47 

measured. Cerebral O2Hb continuously increased during exercise in the control group, whereas the SLE group 48 

exhibited a plateau in O2Hb after the first minute of exercise (p<0.01). During exercise, the SLE group exhibited 49 

significantly lower average-O2Hb (1.20±0.89 vs. 2.69±2.46, p=0.001),  and a lower peak-O2Hb) response (2.89±1.56 50 

vs. 5.83±4.59, p=0.004) compared with the control group. No differences were detected in the average HHb responses 51 

between groups.  Adapted from [299]. 52 
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