
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Speech Audio Corrector - using speech from non-target speakers
for one-off correction of mispronunciations in grapheme-input
text-to-speech
Citation for published version:
Fong, J, Lyth, D, Henter, GE, Tang, H & King, S 2022, Speech Audio Corrector - using speech from non-
target speakers for one-off correction of mispronunciations in grapheme-input text-to-speech. in H Ko & JHL
Hansen (eds), Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH. vol. 2022-September, Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, International Speech Communication
Association, pp. 1213-1217, 23rd Annual Conference of the International Speech Communication
Association, INTERSPEECH 2022, Incheon, Korea, Republic of, 18/09/22.
https://doi.org/10.21437/Interspeech.2022-10138

Digital Object Identifier (DOI):
10.21437/Interspeech.2022-10138

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Jul. 2023

https://doi.org/10.21437/Interspeech.2022-10138
https://doi.org/10.21437/Interspeech.2022-10138
https://www.research.ed.ac.uk/en/publications/cda025ee-e293-40f3-afb1-decd816d9847


Speech Audio Corrector: using speech from non-target speakers for
one-off correction of mispronunciations in grapheme-input text-to-speech

Jason Fong1, Daniel Lyth1, Gustav Eje Henter2, Hao Tang1, Simon King1

1The Centre for Speech Technology Research, University of Edinburgh, UK
2Division of Speech, Music and Hearing, KTH Royal Institute of Technology, Sweden

{jason.fong, d.s.lyth, hao.tang, simon.king}@ed.ac.uk, ghe@kth.se

Abstract
Correct pronunciation is essential for text-to-speech (TTS) sys-
tems in production. Most production systems rely on pronounc-
ing dictionaries to perform grapheme-to-phoneme conversion.
Unlike end-to-end TTS, this enables pronunciation correction
by manually altering the phoneme sequence, but the necessary
dictionaries are labour-intensive to create and only exist in a
few high-resourced languages. This work demonstrates that ac-
curate TTS pronunciation control can be achieved without a
dictionary. Moreover, we show that such control can be per-
formed without requiring any model retraining or fine-tuning,
merely by supplying a single correctly-pronounced reading of
a word in a different voice and accent at synthesis time. Ex-
perimental results show that our proposed system successfully
enables one-off correction of mispronunciations in grapheme-
based TTS with maintained synthesis quality. This opens the
door to production-level TTS in languages and applications
where pronunciation dictionaries are unavailable.
Index Terms: speech synthesis, pronunciation control

1. Introduction
The application of neural sequence-to-sequence modelling
to text-to-speech (TTS) has enabled an end-to-end training
paradigm. End-to-end TTS directly maps graphemes to speech
acoustics without the need for auxiliary features such as
phonemes or stress markers [1, 2, 3]. Subsequently end-to-end
TTS is a straightforward way to build TTS voices, and has the
potential to scale to all of the world’s languages.

However, one major downside of end-to-end TTS is its ten-
dency to make pronunciation errors. This limits its real world
applicability. Such errors occur because natural languages typ-
ically do not exhibit one-to-one mappings between graphemes
and speech sounds [4, 5, 6], which makes the implicit pronunci-
ation prediction task inside end-to-end TTS models error-prone
[7, 8, 9]. Consequently, production-quality TTS systems are
not trained in an end-to-end manner. Instead, they use a com-
plex linguistic front-end to process graphemes into features that
map to audio in a more consistent manner. The most crucial of
these are phonemes, which are generated either by dictionary
lookup or a grapheme-to-phoneme prediction model. However
such front-end resources require significant linguistic and engi-
neering expertise to develop.

Subsequently, in order to realise the full potential of end-to-
end TTS, its tendency to make pronunciation errors must first be
solved. One possible solution is to increase the variety of word
pronunciations encountered during training. However, due to
the Zipfian distribution of words in natural language, typical
TTS corpora have limited word type coverage in comparison
to pronunciation dictionaries (e.g., 14,750 words in LJ Speech

vs 135,000 in CMUdict [8]). Therefore end-to-end TTS mod-
els learn implicit pronunciation models that are highly unpre-
dictable when compared to the explicit pronunciation resources
of fully fledged TTS pipelines [8]. Although one could theo-
retically improve end-to-end TTS’s pronunciations by retrain-
ing on vast amounts of text-audio data, this would complicate
model deployment and inflate data collection costs to an in-
surmountable level. Furthermore, and perhaps more crucially,
this data-centric approach would not guarantee any practical im-
provement as it does not solve the unpredictability intrinsic to
the mapping between graphemes and speech sounds. As such,
simply training with more data is not a viable solution for TTS
voice builders.

An alternative and more feasible solution may instead be a
model-centric approach where one trains end-to-end TTS with
a source of pronunciation information that is simpler to obtain
than phonemes. In this work, we pursue this approach and di-
rectly use speech during training and at synthesis time to both
model and control pronunciations. We introduce Speech Audio
Corrector (SAC), a novel grapheme-input TTS model which,
unlike prior end-to-end models, can utilise a correction query,
consisting of just speech, to accurately make one-off corrections
of word mispronunciations at synthesis time without requiring
any model retraining or fine-tuning.

Due to the added complexity of modelling speech from
scratch, SAC uses word aligned speech codes instead of speech
waveforms or acoustics to represent pronunciations. Speech
codes are discretised acoustic representations extracted from
self-supervised learning models trained on large amounts of
speech data. Speech codes are a good input representation for
speech synthesis as they have been shown to correlate well with
phonemes [10, 11, 12] and yet desirably are relatively free of
speaker information [13]. Furthermore, speech codes are sim-
ple to obtain as self-supervised learning models can be trained
on abundant found speech data such as audiobooks or podcasts.

The main contributions of this paper are as follows: We
demonstrate that SAC can correct a word’s pronunciation using
speech obtained from a non-target speaker regardless of their
accent, and find that matching the speech correction’s accent
to the target voice is preferred to using a mismatching accent.
We also find that adding SAC’s corrective functionality does not
heavily impact standard grapheme-input TTS pronunciations.

2. Related work
2.1. Generation from self-supervised acoustic representa-
tions

Self-supervised learning (SSL) representations of speech from
models such as HuBERT [12], wav2vec2.0 [11], and VQ-
VAE [10] have been used for a wide variety of downstream

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 1213 10.21437/Interspeech.2022-10138



tasks such as speech recognition [12, 11, 14], speech coding
[15, 16], voice conversion [10, 16], natural language generation
[17, 18, 13], and speech-to-speech translation [19, 20]. How-
ever, SSL acoustic representations have not been used to im-
prove the core functionality of neural TTS. While SSL repre-
sentations have been used in TTS as intermediate features, their
use has been motivated by reducing reliance on engineered fea-
tures [21], improving duration modelling [22], and increasing
prosodic variation [23, 24]. The current work, to the best of our
knowledge, is the first to employ the phonetic information con-
tained in discrete speech codes for correcting pronunciation in
grapheme-input TTS.

2.2. TTS pronunciation control via speech recordings

Unit selection is a long-standing TTS paradigm in which words
are pronounced by selecting from a database and then concate-
nating a sequence of recorded speech fragments (‘units’) whose
labels match those of the text to be spoken [25]. Importantly, the
labels are used only as an index into the database and therefore
do not necessarily need to represent fine acoustic detail or even
prosody: these come ‘for free’ by choosing units from an ap-
propriate context. However, concatenating units on the output
side results in join artefacts that are unresolvable using signal
processing. Worse, the database must comprise speech from a
single speaker. Incorporating, or adding at a later stage, non-
target speaker data is infeasible.

In contrast, our proposed model SAC predicts mel-
spectrograms from linguistic and speech features. These are
concatenated on the input side, and thus SAC synthesises
speech with fewer join artefacts. SAC is designed to enable pro-
nunciation control using speech codes from non-target speakers
without affecting the identity of the target synthesised voice.

2.3. Multi-modal input for TTS pronunciation control

The pronunciation control aspect of this work is similar to that
of the representation mixing paradigm in which graphemes and
phonemes are interleaved during training in order to enable syn-
thesis mainly from grapheme input with the option of pronun-
ciation control using phonemes at synthesis time. Both RNNs
[26] and CNNs [27] have been used for this.

In SAC, a transformer encoder uses self-attention and word
positional information to substitute masked out graphemes with
speech codes. SAC’s architecture was inspired by the text en-
coder of PnG BERT [28] which uses self-attention to incor-
porate phoneme and grapheme sequences yielding synthesised
speech with more natural prosody.

Our own previous work has investigated the viability of
grapheme-phoneme representation mixing in low-resource sce-
narios [27]. We found that robust pronunciation control is lost
when using a small pronunciation dictionary (i.e., one that only
covers a small percentage of the word types seen during train-
ing). That is, there is a cost-benefit trade-off associated with
representation mixing: Is the cost of phonemically transcribing
more word types worth the pronunciation control gained? In
contrast, SAC avoids this trade-off because speech codes are
available for all word types seen during training (i.e., there is an
implicit word type-to-speech code ‘dictionary’ with 100% cov-
erage). This allows SAC to learn a robust back-off model for
controlling pronunciation with no cost-benefit trade-off.

3. Speech Audio Corrector (SAC)
At the core of SAC (Figure 1) is Transformer TTS [3], which
is trained end-to-end to predict mel-spectrograms from linguis-
tic input – normally graphemes or phonemes. SAC adds the
use of speech codes, to enable a multi-modal correction query
to control a word’s pronunciation at synthesis time. A multi-
modal correction query comprises the grapheme sequence of the
text to be synthesised, plus a sequence of speech codes for the
word(s) whose pronunciation we wish to control, those words
being masked out in the grapheme sequence. This reduces to
regular grapheme-input TTS when no speech codes are present.
Additionally, auxiliary features are summed to the correction
query to improve correction robustness at synthesis time. To-
ken and word positional information is added to help the model
align masked out graphemes to their speech codes and modality
information is added to indicate to the model where grapheme
and speech codes sequences are within the correction query.

To form a correction query, a sequence of graphemes are
processed by the Correction Query Builder (CQB) module
which masks out the words that we wish to correct and retrieves
their corresponding speech codes. CQB outputs a sequence
of graphemes with mask tokens concatenated to a sequence
of speech codes, forming x1:N where N is the total number
of timesteps of the correction query. The two sequences are
each wrapped with start-of-sequence ⟨sos⟩ and end-of-sequence
⟨eos⟩ symbols. Each of the symbols in x1:N is looked up in a
shared embedding table, to obtain e1:N.

To the embedded correction query e1:N, we sum modal-
ity, token position, and word position features. Word alignment
features help SAC align the masked-out graphemes with the
corresponding speech codes. We embed token and word po-
sitions forming positional embeddings tpe1:N and wpe1:N.
Additionally the word position embeddings are passed through
a learned linear projection DENSE to help distinguish them from
the token positions. Modality embeddings mode1:N are also
employed to help the model differentiate where the grapheme
and speech code sequences are located. Finally, learned weights
α, β, and γ are applied to the auxiliary embeddings before sum-
ming them to x1:N. These allow the model to choose which
features to prioritise. SAC’s inputs are summarised in Equation
1. Once the inputs are formed and summed, the architecture and
loss to be optimised during training are identical to Transformer
TTS.

e1:N+α ·tpe1:N+β ·DENSE(wpe1:N)+γ ·mode1:N (1)

4. Experimental setup
In this section, we detail our choices regarding data, model
training, model selection, and evaluation in order to test the fol-
lowing hypotheses:

H1: speech codes obtained from the speech of a non-target
speaker can be used to make one-off pronunciation cor-
rections

H2: speech codes from a non-target speaker with an accent
matching that of the target speaker will provide more
accurate pronunciation corrections than for a differing
accent

4.1. Data

To train SAC, we use text and speech from chapters 4 to 50 of
the LJ Speech [29] corpus. We use chapter 3 of LJ Speech for

1214



<eos><sos> "you"

^ $

h o w a r e y o u

Graphemes

Correction Query

Builder h o w a r e

Correction Query

Transformer

Encoder

Mel-Spectrogram

y oM
Word Mask

Transformer

Decoder

Graphemes Speech Codes

Modality Information

Token Positions

1 0 2 0 3 4 4

Word Positions

3

M

HuBERT 0 1 2 3 4 5 6 7 8 9 N

Transformer TTS

"you"

Figure 1: Architectural overview of Speech Audio Corrector (SAC) performing synthesis time one-off pronunciation correction of
grapheme-input TTS using a recorded exemplar encoded as speech codes.

our development set. LJ Speech contains 24 hours of speech
from a single female US speaker. We use the standard nor-
malised text transcription of LJ Speech.

In order to obtain word aligned speech codes from the
recorded speech, we first extract 50Hz layer-6 representations
using HUBERT-BASE-LS9601 from 16 kHz speech. We use
layer-6 representations as they have been found to correlate
well with phone identities [12]. Next we discretise these rep-
resentations into speech codes using a 100 clusters k-means
model2 which was trained on HUBERT-BASE-LS960 repre-
sentations extracted from librispeech 960h [30]. The authors of
[13] demonstrate that the use of 100 clusters provides an appro-
priate trade-off between phonetic quality (measured by WER)
and speaker-agnosticism (measured by speaker probing accu-
racy). In this work, we choose to not remove duplicate speech
codes from the resulting sequences. De-duplicating speech code
sequences has been a common choice in recent generative spo-
ken language modelling work [17, 18] as doing so reduces com-
putational load and increases modelling performance. However,
we found that de-duplication makes attention-based duration
modelling difficult resulting in unreliable pronunciation con-
trol when synthesising speech codes obtained from non-target
speakers. Finally, we align speech codes at the word-level us-
ing Montreal Forced Aligner [31]. From this, we derive a dic-
tionary comprising one-to-many mappings between word types
and corresponding speech code sequences.

To test H1 and H2 we utilise the multi-speaker, multi-accent
VCTK corpus [32]. We obtain word aligned speech codes from
VCTK in an identical fashion to LJ Speech, with each word type
typically being spoken by multiple speakers across a variety of
accents.

4.2. Model

We trained 2 models: a baseline Transformer TTS model (here-
after: TTS), and our proposed model (SAC). We use the Trans-
former TTS implementation in fairseq [33], and implement
SAC on top of this. Subsequently the core model architecture
is identical between TTS and SAC and follows that of Trans-
former TTS [3]: The transformer encoder and decoder both
have 6 layers each with 4 attention heads, and a hidden size
of 512 between all layers. The embeddings of the correction
query, modality information, token position, and word posi-
tion features are each 512 dimensions. Both TTS and SAC are
trained without an attention guide loss [2] since there is no strict

1https://dl.fbaipublicfiles.com/hubert/
hubert_base_ls960.pt

2https://dl.fbaipublicfiles.com/textless_nlp/
gslm/hubert/km100/km.bin

monotonic alignment between the correction query and output
acoustics when speech codes are included within the query.

Both models are trained in an identical manner, with iden-
tical hyper-parameters such as learning rate and batch size.
Both models use graphemes rather than phonemes to reflect a
low-resource scenario. The training data for SAC comprises
randomly-constructed correction queries. For each word in each
input grapheme sequence, we mask it out then provide the cor-
responding speech codes, with a 50% probability. In prelim-
inary training runs we searched over hyper-parameters to find
a SAC model that minimised Mel-Cepstrum Distortion (MCD)
calculated over the LJ Speech development set when all words
are represented by their respective speech codes rather than
graphemes. Listening test stimuli were generated from epoch
1000 of TTS and SAC which minimised SAC’s development
set MCD.

Finally, we use a pretrained HiFi-GAN vocoder [34] to syn-
thesise waveforms from the mel-spectrograms predicted from
both TTS and SAC.

4.3. Pronunciation correction evaluation

4.3.1. Listening test design

To evaluate SAC’s pronunciation correction capability we ran
an AB listening test in which listeners were presented with pairs
of samples (each synthesised under a different condition), and
asked to choose which pronunciation is preferred; a ‘no prefer-
ence’ option was also available. In order to answer H1 and H2

we synthesised samples under the following four conditions:

TTSG: Transformer TTS using grapheme inputs
SACG: SAC using grapheme inputs

SACUS: SAC using US female speech code inputs
SACScot: SAC using Scottish female speech code inputs

From these we created all 6 possible pairings of conditions,
to be presented to listeners. Each synthesised sample consisted
of a target word placed within the carrier sentence ‘How is ...
pronounced?’. For each condition we used the same set of 78
target words to synthesise samples. Each of the target words
were manually identified as: not in LJ-train, mispronounced by
SACG, and spoken by at least one US and one Scottish female
non-target speaker. For SACUS and SACScot the target word is
represented by speech codes extracted from a randomly-chosen
VCTK speaker of that accent. For SACUS, the speaker was cho-
sen from amongst the 18 available US female speakers in VCTK
(with each speaker on average contributing 4.3 words), and for
SACScot from amongst the 13 available Scottish female speak-
ers (on average contributing 6 words each). All samples used

1215



Table 1: Count matrix obtained from subjective listening tests
taken by native US participants. The i,j-th count is the num-
ber of times condition i is preferred over condition j. Ties are
accounted for by assigning half a win to each item.

TTSG SACG SACUS SACScot Combined

TTSG - 604.5 263 346 1213.5
SACG 565.5 - 215 315.5 1096
SACUS 907 955 - 674.5 2536.5
SACScot 824 854.5 495.5 - 2174

in the listening test can be found on our samples page3. Each
stimulus within the listening test comprised a pair of samples,
each generated under a different condition. 6 condition pairs
× 78 stimuli = 468 stimuli. Since this is too many for a sin-
gle listener to judge, we split them into 6 subtests using a Latin
square4. Each such subtest took a listener approximately 15
minutes to complete. This design ensures that each subtest con-
tains all 6 condition pair and all 78 target words. To mitigate or-
dering effects, we randomised each subtest’s stimuli order and
each within-stimulus condition order, differently per listener.

We used Prolific5 to recruit 90 listeners for our listening
test, all of whom were native English speakers and US citizens:
this is to test H2, where we expect to generate more accurate US
English pronunciations when using speech codes from a US-
accented non-target speaker than a different accents. Each of
the 6 subtests was implemented with Qualtrics6 and was taken
by 15 listeners.

4.3.2. Bradley-Terry statistical analysis

We used Bradley-Terry model [35] parameter estimation to ob-
tain scores representing the relative listener preference for each
condition. Bradley-Terry requires a matrix of pairwise compar-
ison counts Ci,j where the i, j-th count is the number of times
condition i is preferred over condition j. When the ‘no prefer-
ence’ option was chosen by listeners each condition is awarded
half a ‘win’. We used the choix7 python package to estimate
Bradley-Terry parameters from Ci,j by maximum likelihood
using the Iterative Luce Spectral Ranking algorithm.

5. Results
5.1. H1: speech codes enable one-off pronunciation correc-
tion

In Figure 2 we observe considerably higher scores for SACUS

and SACScot than for TTSG and SACG. The ‘Combined’ column
in the counts matrix presented in Table 1 shows that both SACUS

and SACScot are preferred approximately twice as much over
the grapheme-input conditions. So, we can conclude that one-
off pronunciation correction using speech codes is successful,
supporting H1. We also observe that TTSG is slightly preferred
over SACG. Expert listening (by the first author) revealed that
TTSG pronounces 7 of the target words correctly, while all 78
target words are by design mispronounced by SACG.

3https://jonojace.github.io/
IS22-speech-audio-corrector

4https://cs.uwaterloo.ca/˜dmasson/tools/
latin_square

5https://www.prolific.co/
6https://www.qualtrics.com/
7https://pypi.org/project/choix/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Condition Score

Conditions:
TTS-g
SAC-g
SAC-us
SAC-scot

Figure 2: A visualisation of the Bradley-Terry model parameters
estimated by maximum likelihood via the Iterative Luce Spectral
Ranking algorithm. These parameter estimates can be regarded
as the score or strength of each condition (higher is better) and
are calculated from the pairwise comparison count matrix in
Table 1. Precise score values are -0.63 for SACG, -0.51 for
TTSG, 0.39 for SACScot and 0.75 for SACUS.

5.2. H2: US speech codes lead to more preferred pronunci-
ations than Scottish ones

We find that SACUS is preferred over SACScot by our US listen-
ers, supporting H2. To further investigate this result we iden-
tified the target words generated from SACUS and SACScot that
were heavily preferred, observing that both conditions can pro-
nounce words more correctly than the other condition. Despite
this bilateral effect however, SACScot was more likely to incor-
rectly pronounce words, mispronouncing 19 of the words (24%)
versus SACUS mispronouncing 12 words (15%). This may be
due to Scottish speech codes being from a different data dis-
tribution than the US speech codes encountered during train-
ing. Nevertheless we believe that Scottish speech codes worked
reasonably well, exhibiting pronunciation performance superior
to grapheme input, and do not noticeably affect the identity of
the synthesised voice. Furthermore we identified several words
where SACScot’s pronunciation is correct but SACUS’s rendition
was preferred by listeners simply because SACScot pronuncia-
tions are Scottish. For example SACUS pronounces ‘derby’ as
/"dÇ:.bi/ but SACScot pronounces it as /"dA:.bi/ which would be
judged as incorrect by most native US speakers. Other such
target words include ‘mobile’, ‘bother’, and ‘comedy’.

6. Conclusion
In this work, we introduced and demonstrated a novel
grapheme-input TTS model ‘Speech Audio Corrector’ (SAC)
that can use speech to make one-off pronunciation corrections.
In our experiments, we find that speech from both US and Scot-
tish non-target speakers can correct a SAC system trained on a
single target US speaker. We also find that matching the speech
accent to the target speaker improves pronunciation correction
robustness. SAC’s ability to utilise such a simple source of
pronunciation information makes it a cost effective paradigm
for production use cases, and especially so for low-resource
TTS. Furthermore, SAC has the potential to be extended to
controlling or correcting non-segmental characteristics such as
prosody, also without model retraining or fine-tuning. In future
work we wish to make SAC robust to accent, investigate its po-
tential for multilingual code-switching, remove its reliance on
high-resource ASR which we currently use to find word align-
ments, and integrate a detection-to-correction pipeline in order
to handle mispronunciations in a fully automated manner.

Acknowledgements: This work was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

1216



7. References
[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,

Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
tts synthesis by conditioning wavenet on mel spectrogram pre-
dictions,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4779–
4783.

[2] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently train-
able text-to-speech system based on deep convolutional networks
with guided attention,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 4784–4788.

[3] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthe-
sis with transformer network,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6706–
6713.

[4] X. Marjou, “OTEANN: Estimating the transparency of or-
thographies with an artificial neural network,” arXiv preprint
arXiv:1912.13321, 2019.

[5] R. Pereira, “Linguistic Map of Orthographic depth,”
https://linguisticmaps.tumblr.com/post/187856489343/
orthographic-depth-languages-have-different-levels, 2019.

[6] A. Perquin, E. Cooper, and J. Yamagishi, “An investigation of
the relation between grapheme embeddings and pronunciation for
tacotron-based systems,” arXiv preprint arXiv:2010.10694, 2020.

[7] J. Fong, J. Taylor, K. Richmond, and S. King, “A comparison be-
tween letters and phones as input to sequence-to-sequence models
for speech synthesis,” in 10th ISCA Speech Synthesis Workshop,
2019.

[8] J. Taylor and K. Richmond, “Analysis of pronunciation learning
in end-to-end speech synthesis,” in 20th Annual Conference of the
International Speech Communication Association: Crossroads of
Speech and Language. International Speech Communication As-
sociation, 2019, pp. 2070–2074.

[9] Y. Yasuda, X. Wang, and J. Yamagishi, “Investigation of learn-
ing abilities on linguistic features in sequence-to-sequence text-
to-speech synthesis,” Computer Speech & Language, vol. 67, p.
101183, 2021.

[10] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” arXiv preprint arXiv:1711.00937, 2017.

[11] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” arXiv preprint arXiv:2006.11477, 2020.

[12] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdi-
nov, and A. Mohamed, “HuBERT: Self-Supervised Speech Repre-
sentation Learning by Masked Prediction of Hidden Units,” arXiv
preprint arXiv:2106.07447, 2021.

[13] E. Kharitonov, J. Copet, K. Lakhotia, T. A. Nguyen, P. Tomasello,
A. Lee, A. Elkahky, W.-N. Hsu, A. Mohamed, E. Dupoux et al.,
“textless-lib: a Library for Textless Spoken Language Process-
ing,” arXiv preprint arXiv:2202.07359, 2022.

[14] S.-w. Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakhotia,
Y. Y. Lin, A. T. Liu, J. Shi, X. Chang, G.-T. Lin et al., “SU-
PERB: Speech processing Universal PERformance Benchmark,”
arXiv preprint arXiv:2105.01051, 2021.

[15] E. Dunbar, R. Algayres, J. Karadayi, M. Bernard, J. Benjumea,
X.-N. Cao, L. Miskic, C. Dugrain, L. Ondel, A. W. Black et al.,
“The zero resource speech challenge 2019: TTS without T,” arXiv
preprint arXiv:1904.11469, 2019.

[16] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W.-N.
Hsu, A. Mohamed, and E. Dupoux, “Speech resynthesis from dis-
crete disentangled self-supervised representations,” arXiv preprint
arXiv:2104.00355, 2021.

[17] K. Lakhotia, E. Kharitonov, W.-N. Hsu, Y. Adi, A. Polyak,
B. Bolte, T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed
et al., “On generative spoken language modeling from raw au-
dio,” Transactions of the Association for Computational Linguis-
tics, vol. 9, pp. 1336–1354, 2021.

[18] E. Kharitonov, A. Lee, A. Polyak, Y. Adi, J. Copet, K. Lakhotia,
T.-A. Nguyen, M. Rivière, A. Mohamed, E. Dupoux et al., “Text-
free prosody-aware generative spoken language modeling,” arXiv
preprint arXiv:2109.03264, 2021.

[19] A. Lee, P.-J. Chen, C. Wang, J. Gu, X. Ma, A. Polyak, Y. Adi,
Q. He, Y. Tang, J. Pino et al., “Direct speech-to-speech translation
with discrete units,” arXiv preprint arXiv:2107.05604, 2021.

[20] A. Lee, H. Gong, P.-A. Duquenne, H. Schwenk, P.-J. Chen,
C. Wang, S. Popuri, J. Pino, J. Gu, and W.-N. Hsu, “Text-
less Speech-to-Speech Translation on Real Data,” arXiv preprint
arXiv:2112.08352, 2021.

[21] T. Hayashi and S. Watanabe, “Discretalk: Text-to-speech as a
machine translation problem,” arXiv preprint arXiv:2005.05525,
2020.

[22] Y. Yasuda, X. Wang, and J. Yamagishd, “End-to-end text-to-
speech using latent duration based on vq-vae,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 5694–5698.

[23] G. E. Henter, J. Lorenzo-Trueba, X. Wang, and J. Yamagishi,
“Deep encoder-decoder models for unsupervised learning of con-
trollable speech synthesis,” arXiv preprint arXiv:1807.11470,
2018.

[24] G. Sun, Y. Zhang, R. J. Weiss, Y. Cao, H. Zen, A. Rosenberg,
B. Ramabhadran, and Y. Wu, “Generating diverse and natural
text-to-speech samples using a quantized fine-grained vae and au-
toregressive prosody prior,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 6699–6703.

[25] A. J. Hunt and A. W. Black, “Unit selection in a concatenative
speech synthesis system using a large speech database,” in 1996
IEEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, vol. 1. IEEE, 1996, pp.
373–376.

[26] K. Kastner, J. F. Santos, Y. Bengio, and A. Courville, “Repre-
sentation mixing for TTS synthesis,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 5906–5910.

[27] J. Fong, J. Taylor, and S. King, “Testing the Limits of Represen-
tation Mixing for Pronunciation Correction in End-to-End Speech
Synthesis.” in INTERSPEECH, 2020, pp. 4019–4023.

[28] Y. Jia, H. Zen, J. Shen, Y. Zhang, and Y. Wu, “PnG BERT: Aug-
mented BERT on Phonemes and Graphemes for Neural TTS,”
arXiv preprint arXiv:2103.15060, 2021.

[29] K. Ito and L. Johnson, “The LJ Speech Dataset,” https://keithito.
com/LJ-Speech-Dataset/, 2017.

[30] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[31] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi.” in Interspeech, vol. 2017, 2017, pp.
498–502.

[32] C. Veaux, J. Yamagishi, K. MacDonald et al., “CSTR VCTK
corpus: English multi-speaker corpus for CSTR voice cloning
toolkit,” University of Edinburgh. The Centre for Speech Tech-
nology Research (CSTR), 2017.

[33] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” arXiv preprint arXiv:1904.01038, 2019.

[34] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative adversar-
ial networks for efficient and high fidelity speech synthesis,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp.
17 022–17 033, 2020.

[35] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete
block designs: I. The method of paired comparisons,” Biometrika,
vol. 39, no. 3/4, pp. 324–345, 1952.

1217


