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Highlights

Walrasian Pricing in Multi-unit Auctions

Simina Brânzei, Aris Filos-Ratsikas, Peter Bro Miltersen, Yulong Zeng

• We consider multi-unit auctions with budgets and design a best possible
envy-free and prior-free mechanism.

• The mechanism obtains revenue and welfare that are close to optimal,
within small constant factors; for welfare, the quality of approximation
converges to 1 as the market becomes fully competitive.
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Abstract

Multi-unit auctions are a paradigmatic model, where a seller brings multiple
units of a good, while several buyers bring monetary endowments. It is well
known that Walrasian equilibria do not always exist in this model, however
compelling relaxations such as Walrasian envy-free pricing do.

We design a best possible envy-free and prior-free mechanism for multi-
unit auctions with budgets. When the market is even mildly competitive,
the approximation ratios of this mechanism are small constants for both the
revenue and welfare objectives, and in fact for welfare the approximation
converges to 1 as the market becomes fully competitive. We also give an im-
possibility theorem, showing that truthfulness requires discarding resources
and is thus incompatible with (Pareto) efficiency.

Keywords: multi-unit auctions, mechanism design, revenue, social welfare,
approximation

1. Introduction

In a multi-unit auction, a seller brings multiple units of a good (e.g.
chairs) and several buyers with budgets are interested in acquiring the goods.
Multi-unit auctions have been studied in a large body of literature due to
the importance of the model, which already illustrates complex phenomena
[1, 2, 3, 4, 5]. Central requirements from a good auction mechanism are
usually computational efficiency, revenue maximization for the seller, and
simplicity of use for the participants, the latter of which is captured through
the notion of truthfulness. Fairness is an important property often missing
from auction design, and in fact for the purpose of maximizing revenue it is
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useful to impose higher payments to very interested buyers. However, there
are studies showing that customers are unhappy with such discriminatory
prices (see, e.g., [6]), which led to a body of literature focused on achieving
fair pricing [7, 8, 9, 10, 11].

The competitive (aka market or Walrasian) [12] equilibrium models the
allocation of resources in an exchange economy at the steady state, where
supply equals demand. When the goods are divisible, the Walrasian equilib-
rium exists under mild assumptions on the utilities and is considered very
fair, as the prices are the same for everyone and each agent can freely acquire
their favorite bundle at those prices. Unfortunately, when the goods are in-
divisible, the competitive equilibrium does not necessarily exist (except for
small classes of valuations see, e.g., [13, 14]) and the induced mechanism –
the Walrasian mechanism [15, 16] – is generally manipulable.

A solution for recovering the attractive fairness properties of the Wal-
rasian equilibrium in the multi-unit auction model is to relax the clearing
requirement of the market equilibrium, by allowing the seller to not sell all
of the units. This solution is known as (Walrasian) envy-free pricing [7],
and it ensures that all the participants of the market face the same prices1,
and each one purchases their favorite bundle of goods. An envy-free pricing
trivially exists by pricing the goods infinitely high, so the challenge is finding
one with good guarantees, such as high revenue for the seller or high welfare
for the participants.

We would like to obtain envy-free pricing mechanisms that work well with
strategic participants, who may alter their inputs to the mechanism to get
better outcomes. To this end, we design a best possible truthful and envy-
free mechanism for multi-unit auctions with budgets, which achieves high
revenue and welfare in competitive environments.

Our work can be viewed as part of a general research agenda of simplicity
in mechanism design [17], which proposed item pricing [18, 10] as a way of
designing simpler auctions while at the same time avoiding the ill effects of
discriminatory pricing [8, 6]. Item pricing is used in practice all over the
world to sell goods in supermarkets or online platforms, and thus there is a
strong motivation to understand it theoretically.

1The term envy-free pricing has also been used when the pricing is per-bundle, not
per-item. We adopt the original definition of [7] which applies to unit-pricing, due to its
attractive fairness properties [8].
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1.1. Our Results

We briefly describe the setting and our main result next.

Multi-unit auction with budgets. Consider the setting where a seller tries to
sell m identical units of a good to n buyers. Each buyer i has a value vi per
unit and a budget Bi. We refer to this auction as a linear multi-unit auction,
because the value of an agent for x units of the good is vi · x.

Walrasian (envy-free) pricing. The seller sets a price p for each unit. The
utility of buyer is quasilinear up to the budget constraint, i.e., the utility of
buyer i for purchasing x units at price p is ui = vi ·x− p ·x, if p ·x ≤ Bi, and
ui = −∞ otherwise. Given price p per unit, each buyer purchases a bundle of
goods that maximizes their utility among the bundles they can afford at that
price. This method of pricing is known as Walrasian or envy-free pricing.

Dominant strategy truthfulness. The seller needs to elicit information from
the buyers about their valuations in order to set the price. However, the
buyers may misreport their valuations to obtain better allocations for less
money, thus compromising the seller’s revenue. Our goal is to design dom-
inant strategy truthful mechanisms, where the buyers have no incentives to
lie about their valuations. The truthful mechanisms are in the prior-free
setting, i.e. do not require any prior distribution assumptions.

Market share. We evaluate the efficiency of mechanisms using the notion of
market share, which captures the maximum buying power of any individual
buyer in the market; see Section 3.2 for the formal definition.

Main Theorem (informal) For linear multi-unit auctions with known bud-
gets:

• There exists no (Walrasian) envy-free mechanism that is both truthful
and non-wasteful.

• There exists a truthful (Walrasian) envy-free mechanism, which attains
a fraction of at least min

{
1
2
, 1− s∗

}
of the optimal revenue and at least

1 − s∗ of the optimal welfare on any market, where 0 < s∗ < 1 is the
market share. This mechanism is best possible for both the revenue
and welfare objectives when the market is mildly competitive (i.e. with
market share s∗ ≤ 1/2), and its approximation for welfare converges to
1 as the market becomes fully competitive.
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In the statement above, best possible means that there is no other truthful
envy-free auction mechanism with a better approximation ratio. Our bench-
marks are with respect to the optimal outcomes (for revenue and welfare)
that can be obtained at an envy-free price. A mechanism is non-wasteful if
it allocates as many units to the buyers as possible at a given price.

The impossibility theorem implies in particular that truthfulness is in-
compatible with Pareto efficiency, as wasteful mechanisms cannot be Pareto
efficient. Our positive results are for known budgets, similarly to [1]. In the
economics literature budgets are viewed as hard information (quantitative),
as opposed to the valuations, which represent soft information and are more
difficult to verify (see, e.g., [19]).

Finally, we also analyze the performance of our mechanism on monotone
auctions, where the approximation ratio is further improved.

1.2. Related Work

The multi-unit setting has been studied in a large body of literature
on auctions [1, 2, 3, 4, 5], where the focus has been on designing truthful
auctions with good approximations to some desired objective, such as the
social welfare or the revenue.

Very relevant to ours is the work of Dobzinski, Lavi, and Nisan [1], in
which the authors study multi-unit auctions with budgets, however with no
restriction to envy-free pricing or even item-pricing. The work in [1] designs
a truthful auction mechanism (that uses discriminatory pricing) for known
budgets, that achieves near-optimal revenue guarantees when the influence
of each buyer in the auction is bounded, using a notion of buyer dominance,
which is conceptually close to the market share notion that we employ. Their
mechanism is based on the concept of clinching auctions from Ausubel [20].

Attempts at good prior-free truthful mechanisms for multi-unit auctions
are seemingly impaired by their general impossibility result which states that
truthfulness and efficiency are essentially incompatible when the budgets are
private. Our general impossibility result is very similar in nature, but is not
implied by the results in [1] for the following two reasons: (a) our impossibil-
ity holds for known budgets and (b) our notion of efficiency is weaker, as it is
naturally defined with respect to envy-free allocations only. This also means
that our impossibility theorem is not implied by their uniqueness result, even
for two buyers. Multi-unit auctions with budgets have also been considered
in [2, 4, 21], and without budgets [22, 3, 5]; all of the aforementioned papers
do not consider the envy-freeness constraint.
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Follow-up work to [1] by Bhattacharya, Conitzer, Munagala, and Xia [21]
shows that in the presence of one infinitely indivisible good, it is possible to
employ the adaptive clinching auction to achieve truthfulness in the case of
private budget as well, when over-reporting the budgets is not possible.

Another relevant work is that of Abrams [23], which studies linear multi-
unit auctions with private budgets, with the objective of approximating the
maximum revenue without any distributional assumptions. The main result
in [23] is a randomized mechanism that uses two different prices and achieves
a constant approximation for that objective, under a notion of market domi-
nance quite similar to ours. That notion, coined bidder dominance (different
from the buyer dominance of [1] mentioned above) measures the fraction of
the total revenue that a single buyer can be responsible for, as opposed to
the fraction of units that a buyer can aquire, which is what the market share
notion that we employ captures. In fact, the bidder dominance notion of [23]
coincides with the budget share notion used in [24], where its relation to the
market share is also briefly discussed. Crucially, the results of [23] do not
employ item-pricing and do not have the envy-freeness constraint, both of
which are central in our investigations. Additionally, our setting only con-
cerns deterministic mechanisms. For those reasons, our results and those of
[23] and the other aforementioned works are incomparable.

The effects of strategizing in markets and market-based auction mecha-
nisms have been studied extensively over the past years [25, 26, 27, 28, 29].
For more general envy-free auctions, besides the multi-unit case, there has
been some work on truthful mechanisms in the literature of envy-free auc-
tions [7, 30] for pair envy-freeness, a different notion which dictates that no
buyer would want to swap its allocation with that of any other buyer [31].
There is a body of literature that considers envy-free pricing as a purely
optimization problem (with no regard to incentives) and provides approxi-
mation algorithms and hardness results for maximizing revenue and welfare
in different auction settings [8, 32]. Incentives in auctions with budgets have
also been considered [33, 34, 35] from the perspective of the Price of Anarchy
[36] for the objective of the liquid welfare [4], a notion of the social welfare
that incorporates the budgets into its definition, coined the “liquid price of
Anarchy” in [33]. Again, these works study more general auction formats
that multi-unit auctions, and without the envy-freeness constraint.

As mentioned above, the good approximations achieved by our truthful
mechanism are in the prior-free setting [37], i.e. we do not require any as-
sumptions on prior distributions from which the input valuations are drawn.
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Good prior-free approximations are usually difficult to achieve and a large
part of the literature is concerned with auctions under distributional assump-
tions, under the umbrella of Bayesian mechanism design [38, 39, 40, 41, 42,
37, 43].

Following the conference version of our paper [44], there have been follow-
up works in multi-unit markets and envy-free pricing; we mention the most
closely related ones. Flammini, Mauro, and Tonelli [45] consider a framework
for capturing the setting of fair discriminatory pricing in multi-unit markets
where the agents are related via an underlying graph and each agent is only
aware of the prices of the neighboring agents. In the extreme case where the
graph is complete, each agent must pay the same price per unit, while in
the case where the graph has no edges, each agent can be charged a different
price per unit. Flammini, Mauro, Tonelli, and Vinci [46] considered the envy-
free pricing via an underlying graph and obtained bounds on the revenue for
topologies inspired by social networks, such as where the nodes have a power
law degree distribution.

Viqueira, Greenwald, and Naroditskiy [47] considered a relaxation of
envy-free pricing where only the winners are envy-free and there is a reserve
price p so that all the unallocated items cost at least p. Anshelevich and
Sekar [48] formulate two general techniques, called price doubling and item
halving, for combinatorial markets with item pricing. By applying these
methods, they obtain, e.g., mechanisms with good approximations for the
revenue objective when the buyers have XOS valuations. Colini-Baldeschi,
Leonardi, and Zhang [49] considered envy-free pricing mechanisms in match-
ing markets where there are m items and n buyers with budgets and each
buyer is interested in a subset of the items on sale. While computing an
envy-free pricing allocation that maximizes revenue is computationally hard
in this setting, the paper shows that in natural special cases such as where
each buyer has a budget that is greater than her single-value valuation, it is
possible to obtain a 1/4 approximation to the optimal revenue.

1.3. Roadmap to the paper

The details of the model, utilities, demand and pricing are in Section 2.
The main mechanism we design is in Section 3, while impossibility results
are in Section 4. Finally, we give improved results for monotone auctions in
Section 5 and a discussion in Section 6.
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2. Preliminaries

Auction model. Consider a linear multi-unit auction with budgets, where a
seller brings m indivisible units of a good for sale to a set [n] = {1, . . . , n}
of buyers. Each buyer i has a valuation vi > 0 and a budget Bi > 0. The
valuation vi indicates the value of the buyer for one unit of the good. In our
setting the valuations vi are elicited by the mechanism, whereas the budgets
Bi are known information.2 Let v = (v1, v2, . . . , vn) be the valuation profile.

An allocation is an assignment of units to the buyers and is denoted by a
vector x = (x1, . . . , xn) ∈ Zn, such that xi ≥ 0 is the number of units received
by buyer i. We are interested in feasible allocations, for which:

∑n
i=1 xi ≤ m.

The seller sets a price p per unit, such that the price of purchasing ℓ
units is p · ℓ for each buyer. The interests of the buyers at a given price are
captured by the demand function.

Discrete domain. We assume the input parameters and the possible prices
are drawn from a grid D of rational numbers. That is, D = {ϵ · j | j ∈ N},
for sufficiently small ϵ. In particular, ϵ will be such that D contains the
valuations, all the numbers Bi/k for each i ∈ [n], and each k ∈ [m]. This
suffices for all of our results to hold, but in general, since the discrete domain
is meant to be a good approximation of the space R+ of positive real numbers,
we would like ϵ to be quite small, to be useful for real-world applications.
A concrete example of such a domain would be D = {0, 0.01, 0.02, 0.03, . . .},
which should suffice for most such applications.

We later show in Section 3, where the main mechanism is defined, that
this comes at no expense in the runtime of the mechanism as well as explain
why a discrete domain is needed in the first place.

Definition 1 (Demand). The demand of buyer i at a price p is a set con-
sisting of all the possible bundle sizes (i.e. number of units) that the buyer
would like to purchase at this price:

2While the assumption of known budgets is necessary for the positive results to hold,
obviously all the lower bounds and impossibility results become stronger under this as-
sumption.
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Di(p) =


min{⌊Bi

p
⌋,m}, if p < vi

0, . . . ,min{⌊Bi

p
⌋,m}, if p = vi

0, otherwise.

If a buyer is indifferent between buying and not buying at a price, then its
demand is a set of all the possible bundles that it can afford, based on its
budget constraint.

Definition 2 (Utility). The utility of buyer i given a price p and an allo-
cation x is

ui(p, xi) =

{
vi · xi − p · xi, if p · xi ≤ Bi

−∞, otherwise .

(Walrasian) Envy-free Pricing. An allocation and price (x, p) represent
a (Walrasian) envy-free pricing if each buyer is allocated a number of units
in its demand set at price p, i.e. xi ∈ Di(p) for all i ∈ N . A price p is an
envy-free price if there exists an allocation x such that (x, p) is an envy-free
pricing. While an envy-free pricing always exists (e.g. set p = ∞), it is not
always possible to sell all the units in an envy-free way. We illustrate this
through an example.

Example 1 (Non-existence of envy-free clearing prices). Consider an
auction with buyers N = {1, 2}, m = 3 units, valuations v1 = v2 = 1.1, and
budgets B1 = B2 = 1. At each price p > 0.5, no more than 2 units can be sold
in total because of budget constraints. At p ≤ 0.5, both buyers are interested
and demand at least 2 units each, but there are only 3 units in total.

Objectives. We are interested in maximizing the social welfare and rev-
enue obtained at an envy-free pricing. The social welfare at an envy-free
pricing (x, p) is the sum of valuations of the buyers for the goods allocated:
SW(x, p) =

∑n
i=1 vi · xi. The revenue is the total payment received by the

seller: REV(x, p) =
∑n

i=1 xi · p.

Mechanisms. The goal of the seller is to obtain money in exchange for the
goods; however, it can only do that if the buyers are interested in purchasing
them. The challenge for the seller is to obtain accurate information about the
preferences of the buyers, which would allow optimizing the pricing. Since
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the inputs (valuations) of the buyers are private, we will aim to design auction
mechanisms that incentivize the buyers to reveal their true preferences [50].

An auction mechanism is a function M : Dn → D × Zn
+ that maps the

valuations reported by the buyers to a price p ∈ D and an allocation x ∈ Zn
+

of non-negative quantities of units. Truthful mechanisms incentivize buyers
to reveal their true inputs and for this reason are often desirable, as the
buyers have a simple strategy when participating in the mechanism.

Definition 3 (Truthful Mechanism). A mechanism M is truthful if for
every buyer i ∈ [n] with valuation vi, each fixed bid vector v−i of the other
bidders, and each alternative bid si ∈ D of bidder i, we have:

ui(M(v)) ≥ ui(M(si, v−i)) .

Requiring truthfulness from a mechanism can lead to worse welfare or rev-
enue, so our goal will be to design mechanisms that achieve welfare and
revenue close to that attained in the pure optimization problem, of finding a
welfare- or revenue-optimal envy-free pricing without incentive constraints.

The next definitions and lemmas will be used extensively in the paper.

Hungry, Semi-hungry, and Essentially Hungry Buyers. Buyer i is

• hungry at price p if vi > p, and

• semi-hungry at price p if vi = p.

Given an allocation x and a price p, buyer i is essentially hungry if it is
either semi-hungry with xi = min{⌊Bi/p⌋,m}, or hungry. That is, buyer i is
essentially hungry if its value per unit is at least as high as the price per unit
and buyer i also receives the largest non-empty bundle in its demand set.

Candidate Prices. Consider the following set:

P =
{
vi | ∀i ∈ [n]

}
∪
{
Bi

k
| ∀i ∈ [n], ∀k ∈ [m]

}
. (1)

We call P the set of candidate prices; these prices are either equal to some
valuation or have the property that one of the buyers could exhaust its budget
by purchasing all the units it can afford. We will later show that for both
revenue and welfare, w.l.o.g. the optimal solution uses a price from P .
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2.1. Useful Lemmas

In this section we show several lemmas that will be used throughout.

Lemma 1. If p is an envy-free price, then any price p′ > p is also envy-free.
On the other hand, if p is not an envy-free price, then any price p′ < p is not
envy-free either.

Proof. This follows from the fact that for every buyer i, the number of de-
manded units is non-increasing in the price. If at price p there are enough
units to satisfy all demands, then the same holds at any price p′ > p. Sim-
ilarly, if at some price p there are not enough units to satisfy all demands,
this is also the case for any price p′ < p. □

Before we state the next lemma, we define some terminology. We will say
that a price if welfare-optimal (respectively revenue-optimal) if the maximum
possible social welfare (respectively revenue) at any envy-free price can be
attained at this price, i.e., there is an allocation x such that (x, p) is an envy-
free pricing that achieves the maximum social welfare (respectively revenue)
among all possible envy-free pricings.

Lemma 2. There always exists a welfare-optimal and a revenue-optimal envy-
free price in P. This holds even when we consider prices from the continuous
domain, rather than the domain D.

Proof. Let q be any envy-free price; we will argue that there is an envy-free
price p ≥ q in P such that the same allocation of items to the same buyers
is possible at both q and p. That will imply that if q is a welfare-optimal
envy-free price, then so is p, since the social welfare at q is the same as the
social welfare at p. Similarly, if q is a revenue-optimal envy-free price, then
it must be the case that q ∈ P , as otherwise the seller could sell exactly the
same amount of items at a higher price, thus obtaining more revenue.

Let p be the smallest element in P that is at least as large as q, i.e.,
p = min{P | p ≥ q}. Obviously, if q ∈ P we are done, so assume that q /∈ P ,
which clearly implies that p ̸= q and that for any p′ ∈ (q, p), p′ ̸= P . This
implies that there are no semi-hungry buyers at q, as vi ∈ P for all i, and
hence vi ̸= q for all i. In other words, the set of buyers that can possibly
receive items at prices p and q (since their valuations are not smaller than
the price) are the same. It remains to argue that each of these buyers can
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actually receive the same number of items in p and in q. Consider any such
buyer i and let kq and kp be the maximum number of items that it can
receive at prices q and p respectively. Since p > q, by the fact that the
number of demanded units is non-increasing in the price, it must be the case
that kp ≤ kq. Assume that kp ̸= kq. Then buyer i can afford kq items at price
q, which implies that q ≤ Bi/kq. By the assumption that q ̸= P , it holds
that q < Bi/kq. At the same time, the buyer but cannot afford kq items
at price kp, which implies that p > Bi/kq. That means that in (q, p), there
exists a price p′ = Bi/kq that is in P , contradicting the fact that p is chosen
to be the smallest element of P that is at least as large as q. This implies
that kq = kp and concludes the proof.

For the second part of the statement of the theorem, we remark that the
arguments above did not use anywhere that q ∈ D, which means that they
also hold when the price q comes from the continuous domain R. □

Remark 1. We remark that while our domain is indeed the discrete domain
D, the second part of the statement in Lemma 2 establishes that the guar-
antees of our mechanism also hold when compared against the best possible
social welfare and revenue attained at any envy-free price, even if that comes
from the continuous domain, thus making them stronger. This is because by
definition, the set P is contained in D.

We conclude the section with a simple lemma that explains how to find a
revenue- or welfare-maximizing allocation at a given price in polynomial time.

Lemma 3. For a linear multi-unit market, given an envy-free price p, a
revenue- or welfare-maximizing allocation at p can be found in polynomial
time in n and log(m).

Proof. First, given the valuation functions of the hungry buyers, we can
compute their demands at price p. Note these demands are singletons and so
the allocation for these buyers is uniquely determined. For the non-hungry
buyers (if any), we assign the remaining units (if any) in a greedy fashion:
Fix an arbitrary order of buyers and assign them units according to that
order, until all of them exhaust their budgets or we run out of units. All
these operations can be done in polynomial time. □
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3. A best possible envy-free and truthful mechanism

In this section, we present our main contribution, an envy-free and truth-
ful mechanism, which is best-possible among all truthful mechanisms and
achieves small constant approximations to the optimal welfare and revenue.

The approximation guarantees are with respect to the market-share s∗,
which intuitively captures the maximum purchasing power of any individual
buyer in the auction. The formal definition is postponed to the corresponding
subsection.

Theorem 1. There exists a truthful (Walrasian) envy-free mechanism, which
attains a fraction of at least

• min
{

1
2
, 1− s∗

}
of the optimal revenue, and

• 1− s∗ of the optimal welfare

on any market. This mechanism is best possible for both the revenue and
welfare objectives when the market is even mildly competitive (i.e. with mar-
ket share s∗ ≤ 50%), and its approximation for welfare converges to 1 as the
auction becomes fully competitive.

Consider the following mechanism, which we refer to as All-or-Nothing.
We first describe the mechanism at a high level and then provide the pseu-
docode in Algorithm 1.

All-or-Nothing Mechanism: Given as input the valuations of the buyers,
let p be the minimum envy-free price. The price can be found using binary
search on the set P rather than the whole of D, and hence in time polynomial
in log |P | ≤ log(2nm); we explain how in Lemma 4. Let x the allocation
obtained as follows:

• For every hungry buyer i, set xi to its demand.

• For every buyer i with vi < p, set xi = 0.

• For every semi-hungry buyer i, set xi = ⌊Bi/p⌋ if possible, otherwise
set xi = 0, taking the semi-hungry buyers in lexicographic order.

In other words, the mechanism always outputs the minimum envy-free price
but if there are semi-hungry buyers at that price, they get either all the units
they can afford at this price or 0, even if there are still available units, after
satisfying the demands of the hungry buyers.
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Input: Valuations v = (v1, v2, . . . vn) provided by the buyers and known
budgets B = (B1, . . . , Bn).

Output: Price p ∈ D and allocation x such that (x, p) is an envy-free pricing.
1: Initialize xi = 0 for all i ∈ [n].
2: Let H(p) and SH(p) be the sets of hungry and semi-hungry buyers at

price p respectively.
3: Compute the minimum envy-free price pmin ∈ D ▷ This can be done

using binary search on P, see Lemma 4.
4: for i ∈ H(pmin) do
5: Set xi = Di(pmin). ▷ Allocate the buyer its demand.
6: end for
7: for i ∈ SH(pmin) in lexicographic order do
8: if

∑
j∈[n] xj + ⌊Bi/p⌋ ≤ m then ▷ If it is possible to allocate the

maximum element in the buyer’s demand.
9: xi = ⌊Bi/p⌋. ▷ Allocate that many items to the buyer (All).

10: else
11: Set xi = 0. ▷ Allocate 0 items to the buyer (Nothing).
12: end if
13: end for
14: for i ∈ [n] such that vi < p do
15: Set xi = 0. ▷ Allocate 0 items to buyers that are not hungry or

semi-hungry.
16: end for

Algorithm 1: All-or-Nothing

To see why a discrete domain is needed, consider the next example, which
shows that on a continuous domain the minimum envy-free price might not
exist.

Example 2. (The minimum envy-free price is not guaranteed to
exist when the price domain is R).

Suppose the price domain is R. Consider an auction with n = 2 buyers,
m = 2 units, valuations v1 = v2 = 3, and budgets B1 = B2 = 2. Then:

• At each price p ≤ 1, there is overdemand since each buyer is hungry
and demands at least 2 units, while there are only 2 units in total.

• At each price p ∈ (1, 2], each buyer demands at most one unit due to
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budget constraints, and so all the prices in the range (1, 2] are envy-free.
This is an open set, and so there is no minimum envy-free price.

However, by making the price domain discrete (e.g. with 0.1 increments
starting from zero), the minimum envy-free price is 1.01. At this price each
buyer purchases 1 unit.

Theorem 4 establishes the approximation guaranteed of All-or-Nothing for
the discrete domain D. Recall from Remark 1 however that Lemma 2 implies
that the same guarantees hold even if we compare against the optimal social
welfare and revenue possible on the continuous domain.

As mentioned above, computing the minimum envy-free price on D can be
done via binary search. However, it can be computed much faster by observ-
ing that the minimum envy-free price (even when considered on the contin-
uous domain) is close to a point in the set of candidate prices P from (1).
Thus it suffices to perform binary search on P instead, and then check the
neighboring points.

In more detail, the algorithm first performs binary search on P to find
the smallest envy-free price pPmin ∈ P . Then, it first checks the point of the
domain D that lies directly to the left of pPmin ∈ P ; if it is not envy-free, then
pPmin ∈ P is the minimum envy-free price on D. Otherwise, the minimum
envy-free price in D is obviously in the interval (q, pPmin), where q is the point
that lies directly to the left of pPmin in P (not in D). The proof of Lemma 4
establishes that the point q+ ϵ that lies directly to the right of q in D would
then be the minimum envy-free price. Since |P| = (n + m!), binary search
on P has runtime O(log(n) +m log(m)).

Lemma 4. There is an algorithm that computes the minimum envy-free
price on D and has runtime O(log(n) +m log(m)).

Proof. The algorithm works as follows:

• Compute via binary search a price pPmin ∈ P such that pPmin is the
smallest envy-free price in P .

1. If pPmin − ϵ is not envy-free, then output pPmin.

2. Else, compute q = maxp∈P{p < pPmin} and output q + ϵ.
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Next we show that the algorithm correctly computes the minimum envy-
free price pmin in D. Assume by contradiction this is not the case. This is
equivalent to pmin ̸∈ P and (pmin − ϵ) ̸∈ P .

Define p− = pmin − ϵ. By definition, p− is not envy-free, thus the total
demand is

D(p−) =
∑
i∈[n]

Di(p
−) > m .

At the same time, since pmin is envy-free, we have

D(pmin) =
∑
i∈[n]

Di(pmin) ≤ m.

The demand reduction from p− to pmin can only happen for two reasons:

(a) there exist buyers that are hungry at p− but become semi-hungry at pmin

(vi = pmin) or not interested (vi < pmin), or

(b) some buyers at p− can no longer buy the same number of units at some
price in (p−, pmin].

Case (a) implies that for at least one buyer i, it holds that vi ∈ (p−, pmin),
which is not possible since there is no point in P in the interval (p−, pmin].

Similarly, in case (b) this implies that for some buyer i and some number
of units k, it holds that Bi/k ∈ (p−, pmin], which is not possible for the same
reason. This completes the proof. □

Now we move on to the guarantees of All-or-Nothing. We first show the
truthfulness of the mechanism, and then prove its approximation guarantees.

3.1. Truthfulness of the All-or-Nothing Mechanism.

The following theorem establishes the truthfulness of All-or-Nothing.

Theorem 2. The All-or-Nothing mechanism is truthful.

Proof. First, we will prove the following statement. If p is any envy-free
price and p′ is an envy-free price such that p ≤ p′ then the utility of any
essentially hungry buyer i at price p is at least as large as its utility at price
p′. The case when p′ = p is trivial, since the price (and the allocation) do not
change. Consider the case when p < p′. Since p is an envy-free price, buyer
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i receives the maximum number of items in its demand. For a higher price
p′, its demand will be at most as large as its demand at price p and hence
its utility at p′ will be at most as large as its utility at p.

Assume now for contradiction that Mechanism All-or-Nothing is not
truthful and let i be a deviating buyer who benefits by misreporting its
valuation vi as v′i at some valuation profile v = (v1, . . . , vn), for which the
minimum envy-free price is p. Let p′ be the new minimum envy free price
and let x and x′ be the corresponding allocations at p and p′ respectively,
according to All-or-Nothing. Let v′ = (v′i, v−i) be the valuation profile
after the deviation.

We start by arguing that the deviating buyer i is essentially hungry.
First, assume for contradiction that i is neither hungry nor semi-hungry,
which means that vi < p. Clearly, if p′ ≥ p, then buyer i does not receive
any units at p′ and there is no incentive for manipulation; thus we must have
that p′ < p. This implies that every buyer j such that xj > 0 at price p is
hungry at price p′ and hence x′

j ≥ xj. Since the demand of all players does
not decrease at p′, this implies that p′ is also an envy-free price on instance
v, contradicting minimality of p.

Next, assume buyer i is semi-hungry but not essentially hungry, which
means that vi = p and xi = 0, by the allocation of the mechanism. Again,
in order for the buyer to benefit, we have p′ < p and x′

i > 0, which implies
that x′

i = ⌊Bi/p
′ ⌋, i.e. buyer i receives the largest element in its demand set

at price p′. But then, since p′ < p and p′ is an envy-free price, buyer i could
receive ⌊Bi/p⌋ units at price p without violating the envy-freeness of p, in
contradiction with each buyer i being essentially hungry at p.

From the previous two paragraphs, the deviating buyer must be essen-
tially hungry. This means that xi > 0 and vi ≥ p. By the discussion in the
first paragraph of the proof, we have p′ < p. Since xi > 0, the buyer does
not benefit from reporting v′i such that v′i < p′. Thus it suffices to consider
the case when v′i ≥ p′. We have two subcases:

• v′i > p: Buyer i is essentially hungry at price p according to vi and
hungry at price p′ according to v′i. The reports of the other buyers are
fixed and Bi is known; similarly to above, price p′ is an envy-free price
on instance v, contradicting the minimality of p.

• v′i = p′: Intuitively, an essentially hungry buyer at price p is misreport-
ing its valuation as being lower trying to achieve an envy-free price p′
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equal to the reported valuation. Since v′i = p′, Mechanism All-or-
Nothing gives the buyer either as many units as it can afford at this
price or zero units. In the first case, since p′ is envy-free and Bi is
known, buyer i at price p′ receives the largest element in its demand
set and since the valuations of all other buyers are fixed, p′ is also an
envy-free price on input v, contradicting the minimality of p. In the
second case, the buyer does not receive any units and hence it does not
benefit from misreporting.

Thus there are no improving deviations, which concludes the proof. □

3.2. Performance of the All-or-Nothing Mechanism.

Next, we show that the mechanism has a good performance for both the
social welfare and the revenue objectives. We measure the performance of a
truthful mechanism by the standard notion of approximation ratio, i.e.

ratio(M) = sup
v∈Dn

maxx,p OBJ (v)

OBJ (M(v))
,

where OBJ ∈ {SW ,REV} is either the social welfare or the revenue objec-
tive. Obviously, a mechanism that outputs a pair that maximizes the objec-
tives has approximation ratio 1. The goal is to construct truthful mechanisms
with approximation ratio as close to 1 as possible.

We remark here that for the approximation ratios, we only need to con-
sider valuation profiles that are not “trivial”. A trivial profile is an input
profile for which at any envy-free price, none of the buyers that are hungry
or semi-hungry can afford to buy a single unit of the good, and thus no items
are allocated in total. On trivial profiles, both the optimal price and alloca-
tion and the price and allocation output by Mechanism All-or-Nothing
obtain zero social welfare or zero revenue.

Market Share A well-known notion for measuring the competitiveness of
a market is the market share, understood as the percentage of the market
accounted for by a specific entity (see, e.g., [51], Chapter 2).

In our model, the maximum purchasing power (i.e. number of units) of
any buyer in the auction occurs at the minimum envy-free price, pmin. By the
definition of the demand, there are many ways of allocating the semi-hungry
buyers, so when measuring the purchasing power of an individual buyer we
consider the maximum number of units that buyer can receive, taken over
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the set of all feasible maximal allocations at pmin. Let this set be X . Then
the market share of buyer i can be defined as:

si = max
x∈X

(
xi∑n
k=1 xk

)
.

Then, the market share is defined as s∗ = maxni=1 si. Roughly speaking, a
market share s∗ ≤ 1/2 means that a buyer can never purchase more than half
of the resources. We first state the approximation ratio of the mechanism
with respect to the revenue objective.

Theorem 3. The All-or-Nothing mechanism approximates the optimal
revenue within a factor of 2 whenever the market share, s∗, is at most 50%.

Proof. Let OPT be the optimal revenue, attained at some price p∗ and al-
location z, and REV(AON) the revenue attained by the All-or-Nothing
mechanism. By definition, mechanism All-or-Nothing outputs the min-
imum envy-free price pmin, together with an allocation x. For ease of ex-
position, let αi = Bi/pmin and α∗

i = Bi/p
∗, ∀i ∈ [n]. There are two cases,

depending on whether the optimal envy-free price, p∗, is equal to the mini-
mum envy-free price, pmin:

Case 1 : p∗ > pmin. Denote by L the set of buyers with valuations at least p∗

that can afford at least one unit at the optimal price. The set of buyers that
get allocated at pmin represent a superset of L. Moreover, the optimal revenue
is bounded by the revenue attained at the (possibly infeasible) allocation
where all the buyers in L get the maximum number of units in their demand.
These observations give the next inequalities:

REV(AON) ≥
∑
i∈L

⌊αi⌋ · pmin and OPT ≤
∑
i∈L

⌊α∗
i ⌋ · p∗.

Then the revenue can be bounded as follows

REV(AON)

OPT
≥

∑
i∈L ⌊αi⌋ · pmin∑
i∈L ⌊α∗

i ⌋ · p∗

≥
∑

i∈L ⌊αi⌋ · pmin∑
i∈L α

∗
i · p∗

=

∑
i∈L ⌊αi⌋ · pmin∑

i∈L Bi

=

∑
i∈L ⌊αi⌋∑
i∈L αi

≥
∑

i∈L ⌊αi⌋∑
i∈L 2 ⌊αi⌋

=
1

2
,
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where we used that the auction is non-trivial, i.e. for any buyer i ∈ L,
⌊αi⌋ ≥ 1, and so αi ≤ ⌊αi⌋+ 1 ≤ 2 ⌊αi⌋.

Case 2 : p∗ = pmin. The hungry buyers at pmin, as well as the buyers with
valuations below pmin, receive identical allocations under All-or-Nothing
and the optimal allocation, z. However there are multiple ways of assigning
the semi-hungry buyers to achieve an optimal allocation. Recall that x is
the allocation computed by All-or-Nothing. Without loss of generality,
we can assume that z is an optimal allocation with the property that z is a
superset of x and the following condition holds:

- the number of buyers not allocated under x, but that are allocated under
z, is minimized.

This is because obviously z cannot allocate fewer items at the revenue-
optimal price, by virtue of being an optimal allocation, and since the revenue
only depends on how many items are allocated at the given price, not to which
particular buyers.

We argue that z allocates units to at most one buyer more compared to
x. Assume by contradiction that there are at least two semi-hungry buyers i
and j, such that 0 < zi < ⌊αi⌋ and 0 < zj < ⌊αj⌋. Then we can progressively
take units from buyer j and transfer them to buyer i, until either buyer i
receives z′i = ⌊αi⌋, or buyer j receives z′j = 0. Hence we can assume that the
set of semi-hungry buyers that receive non-zero, non-maximal allocations in
the optimal solution z is either empty or a singleton. If the set is empty,
then All-or-Nothing is optimal. Otherwise, let the singleton be ℓ; denote
by z̃ℓ the maximum number of units that ℓ can receive in any envy-free
allocation at pmin. Since the number of units allocated by any maximal
envy-free allocation at pmin is equal to

∑n
i=1 zi, but zℓ ≤ z̃ℓ, we get:

zℓ∑n
i=1 zi

≤ z̃ℓ∑n
i=1 zi

= s∗i .

Then we have:
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REV(AON)

OPT
=

OPT − zℓ · pmin

OPT
= 1− zℓ · pmin

OPT

≥ 1− z̃ℓ · pmin

OPT
= 1− z̃ℓ · pmin∑n

i=1 zi · pmin

= 1− z̃ℓ∑n
i=1 zi

= 1− s∗i

≥ 1− s∗

≥ 1

2
.

The last inequality holds since the market share s∗ is at most 1/2. Combining
the two cases, the bound follows. This completes the proof. □

Theorem 3 has the following corollary.

Corollary 1. The approximation ratio of the All-or-Nothing mechanism
is max{2, 1/(1− s∗)} on any market (i.e. with market share 0 < s∗ < 1).

Proof. From the proof of Theorem 3, since the arguments of Case 1 do not
use the market share s∗, it follows that the ratio of All-Or-Nothing for
the revenue objective can alternatively be stated as max{2, 1/(1− s∗)} and
therefore it degrades gracefully with the increase in the market share. □

The next theorem establishes the approximation ratio for the social welfare
objective.

Theorem 4. The approximation ratio of Mechanism All-or-Nothing with
respect to the social welfare is at most 1/(1 − s∗), where the market share
s∗ ∈ (0, 1). The approximation ratio goes to 1 as the market becomes fully
competitive.

Proof. The proof is similar to that of Theorem 3; in fact it is easier, because
of the fact that the minimum envy-free price pmin is a welfare-optimal price.
To see this, let y be the number of units that we can allocate to the buyers
at price pmin, and let Np be the set of buyers that receive at least one unit.
At any price p > pmin, since the demands are non-increasing in the price, we
can allocate at most y units, and the only agents that can receive at least on
unit are those in Np. Since the social welfare only depends on the valuations
and number of allocated units but not the price, the social welfare at pmin is
at least that at p.
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Let z be the social welfare-optimal allocation at pmin, and let x be the
allocation of the All-or-Nothing mechanism at this price. To obtain a bound
on the approximation ratio of the mechanism, it suffices to bound the social
welfare loss due to the semi-hungry buyers that could receive a non-zero
number of units but receive zero units, due to the way the mechanism works.
Again, we can assume without loss of generality that

- the number of buyers not allocated under x, but that are allocated under
z, is minimized,

Using a similar argument to that Case 2 of the proof of Theorem 3, we
establish that z allocates units to at most one buyer compared to x. If it
allocates the same number of units to all buyers, then All-or-Nothing is
optimal. Otherwise, similarly to before, let ℓ be that buyer; the welfare loss
for this buyer is at most zℓ · vℓ. Let ẑℓ be the maximum number of units that
ℓ can receive in any envy-free allocation at pmin. As before, we obtain that

zℓ∑n
i=1 zi

≤ z̃ℓ∑n
i=1 zi

= s∗i .

Then we have:

SW(AON)

OPT
=

OPT − zℓ · vℓ
OPT

≥ OPT − z̃ℓ · vℓ
OPT

= 1− z̃ℓ · vℓ∑n
i=1 zi · vi

≥ 1− z̃ℓ · vℓ∑n
i=1 zi · vℓ

= 1− z̃ℓ∑n
i=1 zi

= 1− s∗i

≥ 1− s∗,

where OPT is now the optimal welfare, and we used the fact that vℓ ≤ vi for
all buyers i that receive a non-zero number of units in z. □

Finally, All-or-Nothing is best-possible among all truthful mechanisms
for both objectives whenever the market share s∗ is at most 1/2.

Theorem 5. Let M be any truthful mechanism that always outputs an envy-
free pricing. Then the approximation ratio of M for the revenue and the
welfare objective is at least 2− 4

m+2
.
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Proof. Consider an auction with equal budgets, B, and valuation profile v.
Assume that buyer 1 has the highest valuation, v1, buyer 2 the second highest
valuation v2, with the property that v1 > v2 + ϵ, where ϵ is set later. Let
vi < v2 for all buyers i = 3, 4, . . . , n. Set B such that ⌊ B

v2
⌋ = m

2
+1 and ϵ such

that ⌊ B
v2+ϵ

⌋ = m
2
. Informally, the buyers can afford m

2
+ 1 units at prices v2

and v2+ ϵ. Note that on this profile, Mechanism All-or-Nothing outputs
price v2 and allocates m

2
+1 units to buyer 1. For a concrete example of such

an auction, take m = 12, v1 = 1.12, v2 = 1.11 (i.e. ϵ = 0.01) and B = 8 (the
example can be extended to any number of units with appropriate scaling of
the parameters).

Let M be any truthful mechanism, pM its price on this instance, and p∗

the optimal price (with respect to the objective in question). The high level
idea of the proof, for both objectives, is the following. We start from the
profile v above, where pmin = v2 is the minimum envy-free price, and argue
that if p∗ ̸= v2, then the bound follows. Otherwise, p∗ = v2, case in which
we construct a series of profiles v,v(1),v(2), . . . ,v(k) that only differ from the
previous profile in the sequence by the reported valuation v

(j)
2 of buyer 2.

We argue that in each such profile, either the mechanism allocates units to
buyer 1 only, case in which the bound is immediate, or buyer 2 is semi-hungry.
In the latter case, truthfulness and the constraints on the number of units
will imply that any truthful mechanism must allocate to buyer 2 zero items,
yielding again the required bound.

First, consider the social welfare objective. Observe that for the optimal
price p∗ on profile v, it holds that p∗ = v2. We have a few cases:

Case 1 : pM < v2. Then M is not an envy-free mechanism, since in this
case there would be over-demand for units.

Case 2 : pM > v2: Then M allocates units only to buyer 1, achieving a
social welfare of at most (m

2
+ 1)v2. The maximum social welfare is

m · v2, so the approximation ratio of M is at least m
(m/2)+1

= 2− 4
m+2

.

Case 3 : pM = v2: Let x2 be the number of units allocated to buyer 2 at
price v2; note that since buyer 2 is semi-hungry at v2, any number of
units up to m

2
− 1 is a valid allocation. If x2 = 0, then M allocates

units only to buyer 1 at price v2 and for the same reason as in Case 2,
the ratio is greater than or equal to 2− 4

m+2
; so we can assume x2 ≥ 1.

Next, consider valuation profile v(1) where for each buyer i ̸= 2, we
have v

(1)
i = vi, while for buyer 2, v2 < v

(1)
2 < v2 + ϵ. By definition of
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B, the minimum envy-free price on v(1) is v
(1)
2 . Let p

(1)
M be the price

output by M on valuation profile v(1) and take a few subcases:

a) p
(1)
M > v

(1)
2 : Then using the same argument as in Case 2, the ap-

proximation is at least 2− 4
m+2

.

b) p
(1)
M < v

(1)
2 : This cannot happen because by definition of the bud-

gets, v
(1)
2 is the minimum envy-free price.

c) p
(1)
M = v

(1)
2 : Let x

(1)
2 be the number of units allocated to buyer 2 at

profile v(1); we claim that x
(1)
2 ≥ 2. Otherwise, if x

(1)
2 ≤ 1, then

on profile v(1) buyer 2 would have an incentive to report v2, which
would move the price to v2, giving buyer 2 at least as many units
(at a lower price), contradicting truthfulness.

Consider now a valuation profile v(2), where for each buyer i ̸= 2, it
holds that v

(2)
i = v

(1)
i = vi and for buyer 2 it holds that v

(1)
2 < v

(2)
2 <

v2 + ϵ. For the same reasons as in Cases a-c, the behavior of M must
be such that:

- the price output on input v(2) is v
(2)
2 (otherwise M only allocates

to buyer 1, and the bound is immediate), and

- the number of units x
(2)
2 allocated to buyer 2 is at least 3 (otherwise

truthfulness would be violated).

By iterating through all the profiles in the sequence constructed in this
manner, we arrive at a valuation profile v(k) (similarly constructed),

where the price is v
(k)
2 and buyer 2 receives at leastm/2 units. However,

buyer 1 is still hungry at price v
(k)
2 and should receive at least m

2
+ 1

units, which violates the unit supply constraint. This implies that in
the first profile, v, M must allocate 0 units to buyer 2 (by setting the
price to v2 or to something higher where buyer 2 does not want any
units). This implies that the approximation ratio is at least 2− 4

m+2
.

For the revenue objective, the argument is exactly the same, but we need
to establish that at any profile v or v(i), i = 1, . . . , k that we construct, the
optimal envy-free price is equal to the second highest reported valuation,
i.e. v2 or v

(i)
2 , i = 1, . . . , k respectively. To do that, choose v1 such that

v1 = v2 + δ, where δ > ϵ, but small enough such that ⌊ B
v2+δ

⌋ = ⌊ B
v2
⌋, i.e.
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any hungry buyer at price v2 + δ buys the same number of units as it would
buy at price v2. Furthermore, ϵ and δ can be chosen small enough such that
(m
2
+ 1)(v2 + δ) < m · v2, i.e. the revenue obtained by selling m

2
+ 1 units to

buyer 1 at price v2 + δ is smaller than the revenue obtained by selling m
2
+ 1

units to buyer 1 and m
2
− ϵ units to buyer 2 at price v2. This establishes the

optimal envy-free price is the same as before, for every profile in the sequence
and all arguments go through.

Given that we are working over a discrete domain, for the proof to go
through, it suffices to assume that there are m points of the domain between
v1 and v2, which is easily the case if the domain is not too sparse. Specifi-
cally, for the concrete example presented at the first paragraph of the proof,
assuming that the domain contains all the decimal floating point numbers
with up to two decimal places suffices. □

4. Impossibility Results

In this section, we state our impossibility results, which imply that truth-
fulness can only be guaranteed when there is some kind of wastefulness; a
similar observation was made in [2] for a different setting.

Theorem 6. There is no Pareto efficient, truthful mechanism that always
outputs an envy-free pricing, even when the budgets are known.

Proof. Assume by contradiction that a Pareto efficient and truthful mecha-
nism that always outputs an envy-free price exists. Consider the following
instance I1 with n = 2 and m = 3 (the instance can be adapted to work
for any number of buyers by adding many buyers with very small valuations
and many items by scaling the budgets appropriately): v1 = v2 = 3 and
B1 = B2 = 6. It is not hard to see that the only Pareto efficient envy-free
outcome is to set p = 3 and allocate 2 items to one buyer (wlog buyer 1) and 1
item to the other buyer. Indeed, any price p′ < p would not be envy-free and
any price p′ > p would sell 0 items, yielding a utility of 0 for both agents and
the auctioneer. At the same time, any allocation that does not allocate all
three items at price p = 3 is Pareto dominated by the above allocation, since
the utilities of buyers 1 and 2 would be 0, but the utility of the auctioneer
would be smaller.

Now consider a new instance I2 where v1 = 3, v2 = 2.5 (and it still holds
that B1 = B2 = 6). We claim that the only Pareto efficient envy-free outcome
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(x, q) is to set the price q = 2.5, allocate x1 = 2 items to buyer 1 and x2 = 1
item to buyer 2. At (x, 2.5), the utility of buyer 1 is u1(x, 2.5) = 6− 5 = 1,
the utility of buyer 2 is u2(x, 2.5) = 2.5 − 2.5 = 0 and the utility of the
auctioneer is ua(x, 2.5) = 2.5 · 3 = 7.5. The only other possible allocation
x′ at price 2.5 would be x′

1 = 2 (since buyer 1 is hungry at price 2.5) and
x′
2 = 0, which is Pareto dominated by (x, 2.5). Therefore, for another Pareto

efficient pair (x′, q′) to exist, it would have to hold that q′ ̸= 2.5.
Obviously, any choice q′ < 2.5 is not envy-free and therefore we only

need to consider the case when q′ > 2.5. At any such price q′, the utility of
buyer 1 is at most 1, since the buyer can purchase x′

1 ≤ 2 items at a price
strictly higher than 2.5, the utility of buyer 2 is 0 since the price is higher
than its valuation and hence it gets x′

2 = 0 items, and finally, the utility of
the auctioneer is at most 6, since it can only sell at most two items at a price
no higher than 3. This means that (x′, q′) is Pareto dominated by (x, 2.5).

The paragraphs above establishes that on Instance I1, buyer 2 receives
one item at price 3 and on instance I2, buyer 2 receives one item at price
2.5. But then, buyer 2 would have an incentive to misreport his valuation
on instance I1 as being v′2 = 2.5 and receive the same number of items at a
lower price, thus increasing its utility and contradicting truthfulness.

Since the proof only requires valuations and budgets to lie on points 2.5,
3 and 6, the theorem also holds for the discrete domain. □

The next theorem provides a stronger impossibility result. First, we provide
the necessary definitions. A buyer i on profile input v is called irrelevant
if at the minimum envy-free price p on v, the buyer can not buy even a
single unit. A mechanism is called in-range if it always outputs an envy-free
price in the interval [0, vj] where vj is the highest valuation among all buyers
that are not irrelevant. Finally, a mechanism is non-wasteful if at a given
price p, the mechanism allocates as many items as possible to the buyers.
Note that Pareto efficiency implies in-range and non-wastefulness, but not
the other way around. In a sense, while Pareto efficiency also determines the
price chosen by the mechanism, non-wastefulness only concerns the allocation
given a price, whereas in-range only restricts prices to a “reasonable” interval.

Theorem 7. There is no in-range, non-wasteful and truthful mechanism
that always outputs an envy-free pricing scheme, even when the budgets are
known.
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For the proof of the theorem, we will need the following lemma, which re-
stricts the price of any mechanism with the properties stated in Theorem 7
to be either the minimum envy-free price, or the next point on D.

Lemma 5. Let M be an in-range, non-wasteful and truthful mechanism.
Then on any valuation profile v which is not trivial, M must output a price
p ∈ {pmin, pmin + γ}, where pmin = min{p ∈ D : p is envy-free on v} and γ is
the distance between two consecutive elements of D.

Proof. Assume by contradiction that M does not always output a price p ∈
{pmin, pmin + γ}. Let v = (v1, . . . , vn) be any valuation profile that is not
trivial and let pv be the price outputted by M ; by assumption, it holds that
pv > pmin + γ. By the assumption that M is in-range, it holds that vj ≥ pv
for some relevant buyer j ∈ N . Define

J = {j : vj ≥ pv : j is allocated a non-zero number of units}

as the set of all relevant buyers with valuations at least as high as the envy-
free price chosen by M .

Now, consider an instance v1 such that v1i = vi for all buyers i ∈ [n]\{j1}
and v1j1 = pmin + γ for some buyer j1 ∈ J , i.e. the instance obtained by v
when some buyer j1 ∈ J reports a valuation equal to pmin + γ. Let p1 be
the price outputted by M on input v1. Note that since on instance v1 buyer
j1’s valuation is still higher than pmin, it holds that pmin is still the minimum
envy-free price in O on the profile v1.

• Assume first that p1 = pmin. Then buyer j1 on input profile v would
have an incentive to misreport its valuation as v1j1 = pmin + γ; that
would lower the price and since Bj1 is fixed, the buyer would receive at
least as many units at a lower price (since it still appears to be hungry
at price pmin). This would contradict the truthfulness of M .

• Now consider the case when p1 = v1j1 = pmin + γ. Note that since
p1 > pmin, it holds that ⌊Bj1/p1⌋ ≤ ⌊Bj1/pmin⌋, i.e. buyer j1 can not
demand more units at price p1 compared to pmin. On profile v, it
would be possible to allocate ⌊Bj1/pmin⌋ units to buyer j1 at price pmin,
therefore on profile v1, it is possible to allocate ⌊Bj1/p1⌋ units to buyer
j1 at price p1 = pmin + γ. Buyer j1 is semi-hungry at p1 but since M is
non-wasteful, it must allocate at least ⌊Bi/p1⌋ ≥ ⌊Bi/pv⌋ units to buyer
j1 at a price p1 < pv, and buyer j1 increases its utility by misreporting.
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From the discussion above, it must hold that p1 > pmin+γ. For the valuation
profile v1 (which can be seen as the different instance where buyer 1 has
deviated from v1 to pmin + γ), update the set

J := {j | buyer j is allocated a non-zero number of units and vj ≥ p1} .

If J = ∅, then Mechanism M is not in-range and we have obtained a contra-
diction. Otherwise, there must exist some other buyer j2 ∈ J with valuation
higher than p1.

Now, consider such a buyer j2 ∈ J and the instance v2 such that v2i = v1i
for all buyers i ∈ N\{j2} and v2j2 = pmin + γ for buyer j2, i.e. the instance
obtained from v1 when some buyer j2 in J misreports its value being between
pmin+γ. Note that for the same reasons explained above, pmin is the minimum
envy-free price in O on profile v2 as well. Let p2 be the price outputted by
M on valuation profile v2. Using exactly the same arguments as we did
before, we can argue that by truthfulness, it holds that p2 /∈ {pmin, pmin + γ}
and therefore it must hold that p2 > pmin + γ, as every other choice is not
envy-free.

By iteratively considering sequences of valuations obtained in this man-
ner, we eventually obtain an instance vk−1 such that J = {jk}, i.e. there is
only one buyer with a valuation higher than the envy-free price pk−1 output
by M . Repeating the argument once more will result in a valuation profile
vk where the price pk is higher than the reported valuation vkjk = pmin + γ
of buyer jk and the set J will be empty, contradicting the fact that M is
in-range.

Overall, this implies thatM either violates truthfulness, non-wastefulness
or in-range, contradicting our assumption. □

We remark here that in the continuous domain, Lemma 5 can be strengthened
so that M can only output the minimum envy-free price, whenever it exists.

Using Lemma 5, we can now prove the theorem.

Proof. (of Theorem 7) Assume by contradiction that such an in-range, non-
wasteful and truthful mechanism M exists. We will consider three different
instances3 with n = 2 and m = 3, denoted (v1, v2) where v1 denotes the

3The instances can be extended to any number of buyers by simply adding buyers with
very low valuations and to many items by scaling the valuations and budgets appropriately.
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valuation of buyer 1 and v2 denotes the valuation of buyer 2, with budgets
B1 = B2 = 6 + 2γ.

First, consider the instance (2.5, 2.5) and note that since the instance is
not trivial and since the minimum envy-free price is 2.5, by Lemma 5, the
price chosen byM for this instance must be either 2.5 or 2.5+γ. Furthermore,
since M is in-range, the price can not be 2.5+γ, therefore the price chosen on
(2.5, 2.5) is 2.5. Since M is non-wasteful and each buyer can afford exactly
2 items at price 2.5 and there are 3 available items, one buyer (wlog buyer
1) gets allocated 2 items and the other buyer (wlog buyer 2) gets allocated
1 item at this price.

Now consider the instance (3, 2.5) and note that since it is not trivial and
since again, 2.5 is the minimum envy-free price, M must either output 2.5
or 2.5 + γ as the price. Assume first that M selects the price to be 2.5 + γ.
Since buyer 1 is hungry at this price and can afford to buy exactly 2 units,
its allocation on instance (3, 2.5) is 2 units at price 2.5 + γ. But then, on
instance (3, 2.5) buyer 1 would have an incentive to misreport its valuation
as being 2.5 since on the resulting instance, which is (2.5, 2.5), it still receives
2 items at a lower price, increasing its utility. Note that if it was buyer 2
that received 2 items on instance (2.5, 2.5), we could have made the same
argument using instance (2.5, 3) instead.

Finally, assume that on instance (3, 2.5), M outputs 2.5 as the price. By
non-wastefulness, buyer 2 receives exactly 1 unit at this price. But then,
consider the instance (3, 3), where, using the same arguments as in the case
of instance (2.5, 2.5), Mechanism M must output 3 as the price and allocate 2
units to one buyer and 1 unit to the other buyer. Crucially, both buyers have
utility 0 on instance (3, 3). But then, buyer 2 could misreport its valuation as
being 2.5, resulting in instance (3, 2.5) where it receives 1 unit at a price lower
than its actual valuation, benefiting from the misreport. This contradicts
truthfulness.

Assume by contradiction that such an in-range, non-wasteful and truthful
mechanism M exists. Consider the same instance I1 as the one used in the
proof of Theorem 6, with n = 2, m = 3 and v1 = v2 = 3 and B1 = B2 =
6+2γ. (Again the proof can be generalized to many agents and units similarly
to the proof of Theorem 6). By Lemma 5 and since I1 is not trivial, M must
either output p = 3 or p = 3 + γ and by the fact that it is in-range, it must
output p = 3. Since M is non-wasteful, it must allocate 2 units to one of the
buyers with valuation 3 (wlog buyer 1) and 1 unit to the other buyer.

Now consider an instance I2a where v′1 = 3 and v′2 = 2.5. Since 2.5 is
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now the minimum envy-free price and I2 is again not trivial, M must output
either p′ = 2.5 or p = 2.5 + γ. We will obtain a contradiction for each case.
Assume first that p′ = 2.5; since buyer 1 is hungry, it must hold that x′

1 = 2
and by non-wastefulness, it must hold that x′

1 = 1. In that case however,
for the same reason explained in the proof of Theorem 6, v′2 = 2.5 could be
a beneficial deviation of buyer 2 on instance I1, violating truthfulness. Now
we argue for the case when p′ = 2.5 + γ. Consider the instance I3 where
v̄1 = v̄2 = 2.5. Since M is in-range and I3 is not trivial, M must select price
p̄ = 2.5, since every other price is either not envy-free, or higher than all the
valuations. By non-wastefulness, one buyer must receive 2 units at p̄ and
the other agent must receive 1 unit (because each buyer can afford exactly 2
units and there are 3 units available). If buyer 1 receives 2 units, i.e. x̄1 = 2,
misreporting its valuation on instance I2a as 2.5 would give the buyer higher
utility, since it gets allocated the same number of items at a lower price. It
remains to deal with the case when on instance I3, buyer 1 is allocated 1
item and buyer 2 is allocated 2 items, i.e. x̄1 = 1 and x̄2 = 2.

Now consider the instance I2b where v̂1 = 2.5 and v̂2 = 3, i.e. instance
I2b is exactly the same as instance I2a with the indices of the two buyers
swapped. Again, since instance I2b is not trivial, by Lemma 5, M must
output a price p̂ ∈ {2.5, 2.5 + γ}. If p̂ = 2.5 + γ, then we consider again
Instance I3. Since on that instance p̄ = 2.5 and x̄2 = 2 by the assumption
above, buyer 2 has an incentive to misreport its valuation on instance I2b as
being 2.5, contradicting truthfulness. Therefore, it must hold that p̂ = 2.5
on instance I2b.

However, by non-wastefulness, buyer 1 receives one unit at price p̂ on
instance I2b, i.e. x̂1 = 1. We will consider the 2.5 as a potential deviation of
buyer 1 on instance I1 (where its true valuation is v1 = 3). The utility of the
buyer before misreporting is 0 (since the chosen price on instance I1 is p = 3)
whereas the utility after misreporting is 3 − 2.5 = 0.5, i.e. strictly positive.
Therefore, buyer 1 has a beneficial deviation on instance I1, violating the
truthfulness of M .

By truthfulness, it must also hold that p̄ ≥ 2.5+γ, otherwise on instance
I2 buyer 1 would have an incentive to misreport its valuation as 2.5 + γ and
still receive 2 items at a lower price (since at any price p < 2.5 + γ buyer
1 on instance I3 is hungry). From the discussion above, it must hold that
p̄ = 2.5 + γ and by non-wastefulness and since buyer 1 can afford two items
at price 2.5 + γ, it must hold that x̄1 = 2. □
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5. Monotone Auctions

In the previous sections, we proved the approximation ratio guarantees of
Mechanism All-or-Nothing, as a function of the market share. In this
section, we will examine two special cases. The first case of common budgets
is as follows:

• The budgets are common when Bi = B for all buyers i ∈ N .

The second, more general, case is the class of monotone auctions:

• The budgets are monotone in the valuations when vi ≥ vj ⇔ Bi ≥ Bj.
We call such auctions monotone.

Note that the second case is more general than the first, where for the right-
hand side we have Bi = Bj for all i, j ∈ N .

We will prove that in these scenarios, Mechanism All-or-Nothing is
best possible among all truthful mechanisms, for both the welfare and the
revenue objective. For the welfare objective, the approximation ratio guar-
antee will be completely independent of the market share. For the revenue
objective, the dependence will be rather weak; we prove that the bound holds
in all auctions except monopsonies. A monopsony is an auction in which a
single buyer can afford to buy all the items at a very high price.

Definition 4. An auction is a monopsony, if the buyer with the highest
valuation v1 has enough budget B1 to buy all the units at a price equal to the
second highest valuation v2.

Note that when the market is not a monopsony, that implies that the
market share s∗ is less than 1.4

The proof of the following theorem follows along similar arguments as those
of the results in previous sections, namely Theorem 3, Theorem 4, and The-
orem 5. We provide a full proof for completeness.

Theorem 8. The approximation ratio of Mechanism All-or-Nothing for mono-
tone auctions is

4Note that instead of ruling out monopsonies, another approach would be to consider
a different benchmark, that does not include the case of an omnipotent buyer, like the
EFO(2) benchmark for revenue, see [37], Chapter 6.
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• at most 2 for the social welfare objective.

• at most 2 for the revenue objective when the auction is not a monop-
sony.

Furthermore, no truthful mechanism can achieve an approximation ratio
smaller than 2− 4

m+2
even in the case of common budgets.

Proof. First, note that the profile constructed in Theorem 5 is one where the
budgets are common and therefore the lower bound extends to both cases
mentioned above. Therefore, it suffices to prove the approximation ratio
of Mechanism All-or-Nothing for both objectives, when the auction is
monotone.

We start from the social welfare objective and consider an arbitrary profile
v. Without loss of generality, we can assume that v is not trivial (otherwise
the optimal allocation allocates 0 items in total) and note that the optimal
envy-free price is p∗ = pmin and let x be the corresponding optimal allo-
cation. Following the arguments in the proof of Theorem 3, we establish
that the according to x at most one additional semi-hungry buyer is allo-
cated a positive number of units, compared to the allocation of Mechanism
All-or-Nothing; let ℓ be that buyer and let xℓ be its optimal allocation.

The social welfare loss of Mechanism All-or-Nothing is xℓ · vℓ ≤ vℓ ·
⌊Bℓ/vℓ⌋, i.e. the contribution of the the semi-hungry buyer that receives 0
items by All-or-Nothing, in contrast to the optimal allocation. Since the
profile v is not trivial, there exists at least on other buyer j that receives
min{m, ⌊Bj/vℓ⌋} units in the optimal allocation x. If it receives m units,
then xℓ = 0 and the ratio on the profile is 1. Otherwise, the contribution to
the welfare (for both the optimal allocation and the allocation of All-or-
Nothing) from buyer j is vj · ⌊Bj/vℓ⌋} ≥ vj · ⌊Bℓ/vℓ⌋}, since vℓ ≤ vj ⇔
Bℓ ≤ Bj by the monotonicity of the auction. Then we have:

SW(AON)

OPT
≥ OPT − vℓ · ⌊Bℓ/vℓ⌋

OPT
= 1− vℓ · ⌊Bℓ/vℓ⌋

OPT

≥ 1− vℓ · ⌊Bℓ/vℓ⌋
(vℓ + vj) · ⌊Bℓ/vℓ⌋

= 1− vℓ
vj + vℓ

≥ 1

2
.

For the revenue objective, again let p∗ be the optimal envy-free price and
let x be the corresponding allocation. We consider two cases:
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• p∗ = pmin: The argument in this case is very similar to the one used
above for the social welfare objective. In particular, since p∗ = pmin =
vℓ, we now have that the loss in revenue from the semi-hungry buyer
ℓ for Mechanism All-or-Nothing is at most xℓ · vℓ ≤ vℓ · ⌊Bℓ/vℓ⌋
whereas the contribution from buyer j is vℓ · ⌊Bj/vℓ⌋}, which is at most
vℓ · ⌊Bℓ/vℓ⌋} by the monotonicity of the auction. Therefore, we have
that:

REV(AON)

OPT
≥ OPT − vℓ · ⌊Bℓ/vℓ⌋

OPT
= 1− vℓ · ⌊Bℓ/vℓ⌋

OPT

≥ 1− vℓ · ⌊Bℓ/vℓ⌋
2vℓ · ⌊Bℓ/vℓ⌋

= 1− vℓ
2vℓ

=
1

2
.

• p∗ > pmin. In that case, the argument is exactly the same as in Case 2
of the proof of Theorem 3, which holds when the market share is less
than 1, i.e. when the auction is not a monopsony.

□

To complete the picture, we prove in the following that if the auction is
a monopsony, the approximation ratio of any truthful mechanism is un-
bounded. This can be captured by the following theorem.

Theorem 9. If the auction is a monopsony, the approximation ratio of any
truthful mechanism for the revenue objective is at least B for any B > 1, even
if the budgets are public.

Proof. Consider the following monopsony. Let i1 = argmaxi vi, for i =
1, . . . , n be a single buyer with the highest valuation and denote vi1 = v1
for ease of notation. Similarly, let i2 ∈ argmaxi∈N\{i1} vi be one buyer with
the second largest valuation and let vi2 = v2. Furthermore, let v1 > vi for all
i ̸= i1 and Bi1 = p ·m, for some v2 < p ≤ v1 i.e. buyer i1 can afford to buy
all the units at some price p > v2. Additionally, let Bi2 ≥ v2, i.e. buyer i2
can afford to buy at least one unit at price v2.

5 Finally, for a given B > 1 let

5Note that setting Bi2 = Bi1 satisfies this constraint and creates an auction with
identical budgets, so the proof goes through for that case as well.
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v2 and p be such that B = p/v2. Note that the revenue-maximizing envy-free
price for the instance v is at least p and the maximum revenue is at least
p ·m.

Assume for contradiction that there exists a truthful mechanism M with
approximation ratio smaller than B and let p∗ be the envy-free price output
by M on v. Since p∗ is envy-free and Bi1 > v1 ·m and Bi2 ≥ v2, it can not
be the case that p∗ < v, otherwise there would be over-demand for the units.
Furthermore, by assumption it can not be the case that p∗ = v2 as otherwise
the ratio would be B and therefore it must hold that p∗ > v2.

Now let v′ be the instance where all buyers have the same valuation as
in v except for buyer i1 that has value v

′
1 such that v < v′1 < p∗; let p̃ be the

envy-free price that M outputs on input v′.

• If p̃ > v′1, then the ratio of M on the instance v′ is infinite, a contra-
diction.

• If p̃ ≤ v′1 and since p̃ is envy-free, it holds that v2 ≤ p̃ < p∗. In that case
however, on instance v, buyer i1 would have an incentive to misreport
its valuation as v′1 and reduce the price. The buyer still receives all the
units at a lower price and hence its utility increases as a result of the
deviation, contradicting the truthfulness of M .

This completes the proof of the theorem. □

6. Discussion

Our results show that it is possible to achieve good approximate truthful
mechanisms, under reasonable assumptions on the competitiveness of the
auctions which retain some of the attractive properties of the Walrasian
equilibrium solutions. The same agenda could be applied to more general
auctions, beyond the case of linear valuations or even beyond multi-unit
auctions.

Another interesting direction is to consider the case of private budgets;
for this case, it is not very difficult to see that a simple class of mechanisms
based on ordered statistics (i.e., mechanisms that select the agent with the
k-th smallest valuation and set the price to be that valuation) are truth-
ful, but their welfare or revenue guarantees might be rather poor. Whether
truthful mechanisms with good approximations for either objective exist for
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private budgets is an interesting open question. Interestingly, showing gen-
eral lower bounds for settings where the market share is bounded by e.g., 50%
seems to be challenging. It would also be interesting to obtain a complete
characterization of truthfulness in the case of private or known budgets.
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