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Ball-rolling dung beetles are known to integrate multiple cues in order
to facilitate their straight-line orientation behaviour. Recent work has
suggested that orientation cues are integrated according to a vector sum,
that is, compass cues are represented by vectors and summed to give a com-
bined orientation estimate. Further, cue weight (vector magnitude) appears
to be set according to cue reliability. This is consistent with the popular
Bayesian view of cue integration: cues are integrated to reduce or minimize
an agent’s uncertainty about the external world. Integration of orientation
cues is believed to occur at the input to the insect central complex. Here,
we demonstrate that a model of the head direction circuit of the central com-
plex, including plasticity in input synapses, can act as a substrate for cue
integration as vector summation. Further, we show that cue influence is
not necessarily driven by cue reliability. Finally, we present a dung beetle
behavioural experiment which, in combination with simulation, strongly
suggests that these beetles do not weight cues according to reliability.
We suggest an alternative strategy whereby cues are weighted according
to relative contrast, which can also explain previous results.
1. Introduction
Cue integration is the process of combining multiple redundant sources of
information to form a single estimate of a property of the world [1]. A wide-
spread assumption in the cue integration literature is that brains integrate
cues for the purpose of maximizing certainty about the estimate [2], from
which it follows that cues should be weighted according to their reliability
[1,3]. Integration of angular cues (e.g. for orientation) has previously been
formalized as a vector sum [4]—if different directional cues are represented
as vectors with magnitudes reflecting their weighting, the integration is given
by their sum.

Recent models of insect navigation have suggested that vector computation
plays a major role in their behavioural capabilities [5,6] and more specifically
that they perform reliability-weighted vector-based cue integration [7–9]. This
idea has been bolstered by direct evidence that the insect central complex has
the necessary circuit properties to support vector computations by representing
vectors as sinusoid curves (vector phasor representation) in activity across a
neural array [10]. The central complex (CX) is a collection of midline neuropils
which is highly conserved across insect species [11], of which the key com-
ponents are the protocerebral bridge (PB), ellipsoid body (EB), fan-shaped
body and a pair of noduli [12,13]. The function and structure of the CX has
so far been mapped in most detail in Drosophila. The head direction of the
insect with respect to external cues is tracked by the activity of a set of EB neur-
ons known as E-PGs [13,14], also colloquially referred to as ‘compass neurons’.
E-PGs receive input from structures known as the bulbs which sit laterally to
the CX [13,15–17] and the bulbs house a class of neurons known as ring neurons
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(named for their ring-like arborizations in the EB [12]). A
subset of ring neurons, the R neurons, are directionally
tuned, responding to the position of a cue around the
animal [18]. Each R neuron connects to all E-PGs [13,19]
and these connections are plastic, enabling flexible remap-
ping of the outside world onto the compass neurons
[16,20,21]. Ring neurons also cluster into different types
which seem to encode the position of different orientation
cues [15,17]. Where known, the functional role of different
CX structures appears to be preserved in other insects.
Given that R neurons are directionally tuned, we propose
that their population activity profile could be roughly sinu-
soidal in shape, with the consequence that the E-PG’s
activity could be a pointwise sum of sinusoids, representing
a vector sum of different cue modalities. The encoding of
different cue modalities as well as the ability to create flexible
relationships between available cues make the R-to-E-PG
interface an ideal substrate for flexible multimodal cue
integration [9,13,19].

Multimodal cue integration has recently been discovered
in the ball-rolling dung beetle Kheper lamarcki (MacLeay,
1821) [22]. These beetles have long been known to have a
variety of orientation cues at their disposal [23] which
enable them to maintain a straight path of arbitrary direc-
tion when rolling a ball away from the dung pile.
However, it was previously thought that these beetles fol-
lowed a cue hierarchy [24], i.e. a single cue would
dominate at any time, depending on circumstances such as
availability, evolutionary history, etc. A collection of new
studies are showing that these beetles can in fact use mul-
tiple cues simultaneously [9,22,25,26]. The most recent
study which examined the cue integration of K. lamarcki
suggested that these beetles followed a vector summation
strategy for the integration of (the directional information
provided by) a visual sun cue and a mechanosensory
wind cue [9]. Both visual and mechanosensory cues are
known to reach the ring neurons in flies [17], with visual
input also being confirmed in dung beetles [27]. Kheper
lamarcki has also been shown to be able to synchronize infor-
mation from different compass cues [22]. Plasticity between
the ring neurons and E-PGs could enable such synchroniza-
tion [16,17,19,20]. Angular velocity appears to be the signal
that regulates plasticity between the ring neurons and E-PG
neurons [21] (also modelled by [28]). It is therefore striking
to note that K. lamarcki perform a stereotyped ‘orientation
dance’ before beginning ball-rolling behaviour [29] which
takes the form of a rotation on top of the ball, and ignore
orientation cues not present during the dance [30]. Thus,
dung beetle behaviour aligns well with known and
plausible functionality of the insect head direction circuit
in the CX.

In this paper, we extend the model of the insect head
direction circuit from [31,32] by including the R neurons
and their plastic connections onto E-PG neurons [15–17,20].
We show that if plasticity is gated by angular velocity, the
connections form coherently and allow the circuit to perform
cue integration by vector summation. We then explore
whether and how the relative reliability of cues determines
their influence on behaviour, in simulations of and exper-
iments on dung beetles. Together, these results strongly
suggest that dung beetles do not weight cues according to
actual reliability. We propose that they instead use cue
contrast as a proxy estimate for reliability.
2. Material and methods
(a) Conceptual framework
In figure 1 we provide clarification of how several otherwise
ambiguous terms will be used in this paper.

(b) Circular cue integration as a vector sum
Consider two von Mises random variables C and H. For samples
ci and hi, their integration is given by [4]:

li ¼ hi þ atan2 sin(ci � hi),
kH
kC

� �
þ cos(ci � hi)

� �
, ð2:1Þ

with the joint reliability given by

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2H þ k2C þ 2kHkCcos(ci � hi)

q
, ð2:2Þ

κH, κC could be arbitrary positive weights, but for ‘optimal’ inte-
gration are set as the concentrations (reliabilities) of the von
Mises distributions which describe C and H. Note, however,
this ‘optimality’ is based on approximation to the classic maxi-
mum-likelihood model [1] for specific weight combinations and
conflicts (see appendix of [4]).

This model for integration is equivalent to polar vector
addition. Given two cue vectors �c ¼ (ci; kC) and �h ¼ (hi; kH), the
integration is simply �l ¼ �cþ �h ¼ (li; kL), where li gives the angle
and κL the joint reliability. Our aim in the following is to construct
a neural circuit that results in equivalent integration. More specifi-
cally, it should produce an output corresponding to the angle, li,
which can be used to guide steering behaviour; we do not require
the magnitude κL in our neural model to match that of the pure
vector model.

(c) Computer modelling
(i) Ring model overview
Here we provide a textual overview of our model; the included
neurons and how they interact. For implementation details,
please refer to our electronic supplementary material or code-
base. We use fruit fly nomenclature throughout, but non-fly
homologues [33] are given for each neuron class.

Our model is a hybrid of the biologically constrained models
of the head direction circuits of the fruit fly Drosophila melanoga-
ster and the desert locust Schistocerca gregaria presented in a
previous comparative study [31]; similar to another presented
in the context of a model of ant orientation [32]. Specifically,
this means we use the ‘locust’ 8-fold columnar structure (consist-
ent with the description of the PB of K. lamarcki [34]) but the ‘fly’
uniform inhibition [31,35] between compass cells. While it is
known that intra compass cell inhibition in beetles more closely
reflects the locust anatomy [36], we use a hybrid structure to
motivate general plausibility across insect species. The differ-
ences in connectivity do not create any functional differences in
the circuit which are relevant to the cue integration problem
[31]. We extend previous models [31,32] by including the R neur-
ons and their plastic all-to-all connections onto the E-PGs. Our R
neuron representation is based on descriptions given by [15–
17,20]. Our neurons use the same basic firing rate encoding as [5].

R (TL) neurons. R neurons function as the cue inputs and are
split into two groups, one for each cue: R1 and R2 (note that these
are just indices, we are not explicitly modelling specific classes of
ring neuron). Each R neuron has a receptive field centred on its
preferred direction. The distribution of receptive fields results
in a sinusoidal activity pattern across each R neuron group; the
phase of the sinusoid encodes the angle to the cue and the ampli-
tude gives its weight. In the following work we use eight
neurons per group to represent the cardinal and ordinal direc-
tions (this also makes visualizing the R→ E-PG mappings



Figure 1. Concepts in cue integration. Reliability describes the variance of a cue estimate over time, reflecting external cue variation, but also noise or limitations in
the sensory processing system. Contrast of a cue with the background influences its detection (and hence reliability) but is an instantaneous property. Weight, in this
paper, strictly refers to the amplitude of the sinusoid that represents each directional cue at input to the integration circuit. Synaptic strength describes the strength
of the connections between neurons. Synaptic strength is modified during learning and (as we will show) can be affected differently by cue weight and cue
reliability. Cue influence describes the combined effect of weight and the synaptic strengths on final behavioural output.

Figure 2. Model illustration. (a) High-level view of information flow through the network (also see the electronic supplementary material, figure S1). (b) The
multimodal compass circuit which is the focus of this paper. Each R neuron population (blue, red) encodes a different cue modality as a sinusoidal bump (indicated
by shading). R neurons provide input to E-PGs (purple) via plastic all-to-all connections which are formed in combination with angular velocity from P-EN neurons
(green). (c) Illustrative microcircuits describing how the different neuron populations interact throughout the model. PB, protocerebral bridge.
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easier—see below). As the exact number of R neurons per
modality is still uncertain [13,37] we also provide a supplemen-
tary exploration of R neuron population size and how this
affects the proposed function. In brief, we found that there is
no significant difference in network function where R neuron
groups are of equal size; however, where group sizes differed,
the larger group received more influence in the resulting
integration (see the electronic supplementary material).

P-EN (CL2) neurons. P-ENs function as self-motion inputs
and are a source of local excitation for the E-PG neurons. The
P-ENs are spread across the 16 columns of the PB, dividing
into two sub-populations of eight, which represent the same
directional signal (bump) twice over [31,38]; from our obser-
vations, this bump appears to emerge owing to input from the
E-PGs and Δ7s. The different sub-populations drive the E-PG
bump in different directions via a single-column synaptic shift.
The difference in activity between the two sub-populations is
thought to encode idiothetic angular velocity, though it is not
currently known if this is proprioception-based or motor effer-
ence [21,38]. Total P-EN activity is described as relatively
constant across all 16 neurons [38]. We found that the relative
constancy of the overall activity was critical in ensuring that
the E-PGs are not saturated or starved when the network experi-
ences different angular velocities.
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E-PG (CL1a) neurons. E-PGs receive cue azimuth information
from the R neurons, self-motion information and local excitation
from the P-ENs, and recurrent excitation from the P-EGs. The
E-PGs are typically described as dividing into 16 wedges
which form a single bump of activity [14]. For ease of develop-
ment and presentation we instead use eight neurons, however,
the number should not significantly affect the accuracy of the
angle stored.

In order to account for the results of [14] (E-PG bump reten-
tion in darkness and E-PG visual capture) as well as our own
proposed learning routine (where E-PGs are driven primarily
by angular velocity input), input to the E-PGs is context depen-
dent. If learning is taking place, then R neuron input to the
E-PGs is reduced. This can be thought of as an inhibition of R
neurons (or enhancement of P-EN neurons) which occurs when
the agent/animal is attempting to learn about the cues (see
Discussion).

Δ7(TB1) neurons. Δ7s only receive input from the E-PGs.
They: (i) invert the bump from the E-PGs and feed this back
into the PB, and (ii) inhibit other Δ7s. Both features appear to
aid the stability of the bump in the E-PGs and as a result, the
rest of the circuit.

P-EG (CL1b) neurons. Finally, the P-EGs provide a simple
recurrent loop with the E-PGs, moderated by the Δ7s. Together
with the P-ENs, the P-EGs maintain activity in the E-PGs in
the absence of external input.

(ii) R-to-E-PG connections
Our model is initialised using a default R-to-E-PG connection
pattern (figure 4b; electronic supplementary material); once the
model is initialised, R-to-E-PG connections are all set to an
equal value and learned from scratch. In our model, plasticity
between R and E-PG neurons is only enabled during specific
learning events. R→E-PG connections are learned using the fol-
lowing anti-Hebbian update rule:

Dwi,j ¼ �h � (rRl,j � uRl ) � (rE�PGi � uE), ð2:3Þ

where wi,j is the synaptic strength from from Rl,j onto E-PGi, θE =
0.9 is the threshold for E-PG activity, and η = 0.1 is the learning
rate. uRl is an adaptive threshold on R neuron activity with
uRl ¼ 0:7 �max(�rRl ) (a fraction of the maximum R neuron acti-
vation for group l ). Note that if the sinusoidal shape of the R
neuron population code can be assumed, then this adaptive
threshold could equivalently be a fraction of total activity. Con-
nections are then normalized such that the total synaptic
strength onto each E-PG sums to 1. Hebbian learning requires a
rapid compensatory mechanism in order to function correctly,
and the post-synaptic normalization we are using (keeping
total input constant) is one of a few potential regulatory
mechanisms (see [39]).

(iii) Behavioural simulations
To provide additional insight into behavioural results, we also
constructed a basic behavioural simulation. Conceptually, an
agent is placed in the centre of a circular arena and tasked
with walking to the edge (in an arbitrary direction with respect
to external cues). At the start of each walk (or ‘roll’) the agent
performs a learning rotation (or dance). On the first roll of an
experiment, the dance will establish R→ E-PG mappings from
a blank mapping (all Rs connect to all E-PGs equally). Sub-
sequent dances will update the existing map. Note that, while
cue noise is included, self-motion noise is excluded during the
dance. We assume that, over a short rotation, the agent’s per-
ceived motion is correct. Simulation configuration information
is given alongside the relevant results. For full details of our
simulation environment, please see our electronic supplementary
material or codebase.
(d) Animal behaviour
(i) Beetle collection and husbandry
Using dung-baited pitfall traps, the diurnal, ball-rolling beetle K.
lamarcki was collected at the game farm ‘Stonehenge’ in Vryburg,
South Africa (24.32° E, 26.39° S) in November 2021, February 2022,
and November 2022. Behavioural experiments were conducted in
Lund, Sweden fromDecember 2021 toMay 2022, andduringDecem-
ber 2022. All beetles were stored in opaque, plastic bins filled with
sand of a consistency similar to their natural soil, and fed with
horse dung 2–4 times per week. Prior to each experiment, beetles
were removed from the sand filled bins and placed in a separate
box containing fresh dung for them to construct into balls. Beetles
that began to roll their balls of dung were used for experimentation.

(ii) Behavioural experiments
Experimental set-up. All experiments were conducted in an indoor
set-up consisting of two metal arches which were crossed to form
the skeleton of a hemisphere (r = 1.5 m). Each arch was lined with
141 LEDs (520 nm, DotStar; Adafruit Industries, New York, USA)
where individual LEDs served as ersatz sun cues with an intensity
of 2 × 1011 photons cm−2 s−1 (QE65000; Ocean Optics) as measured
fromthecentre of the set-upat aheight of about 7 cm(corresponding
to the approximate height of a beetle when on top of its dung ball).
Under the arches, in the centre of the set-up, there was a circular,
sand-painted arena (radius = 0.3 m); the perimeter of the arena
was marked in five degree increments (from 0–355°) and 0° was
aligned with magnetic north. Finally, a wind generator was posi-
tioned 1.3 m from the centre of the arena and aligned with one
arm of the hemisphere. The generator consisted of three fans
(PFR0912XHEE, 4.50 A; Delta Electronics Inc., Taipei City, Taiwan)
distributed evenly over 1.0 m, and was configured to create an air
current with a speed of 2.5 m s−1 when measured from the centre
of the arena. The elevation of the ersatz sun and the wind speed
were controlled using custom-built software in conjunction with
a Raspberry Pi 4 Model B. All experiments were filmed using a
Sony camera (FDRAX53 Handycam) mounted on a tripod above
the arena. The set-up was constructed inside a 3 × 3 m tent
constructed from blackout cloth (figure 3a).

Experimental procedure. A beetle was placed with its ball in the
centre of the circular arena and allowed to roll the ball to the per-
imeter where its exit angle was noted. The beetle was placed back
in the centre and the procedure was repeated to obtain 10 exits in
the presence of either an isolated sun or wind cue, or both cues in
alignment. When a beetle started with a single cue in isolation, the
unseen cue would be added for the subsequent 10 rolls (i.e. if the
beetle starts with a sun cue, we add a wind cue). When a beetle
started with both cues, we removed one of the cues (figure 3b for
schematic overview). In total, each beetle rolled its ball 20 times.
This experimental procedure was carried out at solar elevations of
45° and 75°, with a wind speed of 2.5 m s−1 (based on [9]). The initial
condition was presented in a pseudo-randomized order.

Statistical analysis. To assess the orientation precision of an
individual beetle, the mean vector length (r-value) was calcu-
lated from 10 exit bearings. To test for significant differences
between populations of r-values, paired Wilcoxon (Wilcoxon
signed-rank) tests were used. Statistical analyses were performed
using Oriana 3.21 (Kovach Computing Services, Anglesey, UK)
and RStudio 4.1.0. [40]. All p-values presented are unadjusted.
3. Results
(a) The network approximates the angular component

of a vector sum
A previous study [9] suggested that the insect head direction
circuit could act as a substrate for vector summation, making



(d )(c)(a) (b)

Figure 4. Integrated angular outputs for varying degrees of cue conflict. The pure vector sum [4] is compared against three instances of the ring model with
different R→ E-PG mappings (adjacency matrices shown in the top row). (a) Vector sum (equation (2.1)). (b) Default mapping which implements a pointwise
sum-of-sinusoids. (c) The result of Hebbian plasticity alone (equation (2.3)). (d ) The result of Hebbian plasticity combined with rotation; the agent rotates through
360° during learning.

behavioural set-up experimental flow

or

or

45º

75º

2.5 m s–1

Figure 3. Experimental set-up and experimental flow.
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it a likely location for compass cue integration. It is clear that
our model circuit can encode the angular component of a
vector sum to produce an integrated estimate from two direc-
tional cues as the amount of conflict between the directions
they indicate, and their relative weight, is varied (compare
figure 4a, b, and d ). Setting a default diagonal connection pat-
tern closely approximates the pure vector sum and our
learning rule (equation (2.3)), in combination with a dance
rotation, produces a similar diagonal pattern (with arbitrary
offset) which generates qualitatively similar output. Learning
without experiencing any rotation does not generate a diag-
onal connection pattern and clearly does not approximate
the vector sum (figure 4c); rotation is required to form
useful connections (see [21]).
(b) Weight and reliability may independently affect cue
influence

(i) Information about cue-state is stored in the R→ E-PG
mappings

It is clear from figure 4 that cue state during the learning rou-
tine has an effect on the mappings which are learned, which
will ultimately affect behaviour. To investigate this further,
we examined four different learning scenarios: cues separa-
ted, one cue useful, effect of weight, and effect of reliability
(recall our definitions, figure 1).

Cues separated. One very good reason to have all-to-all
plastic connections between the Rs and E-PGs is that it poten-
tially allows an agent to learn about the spatial relationship of
physically separated cues [17,30]. Orientation cues may be azi-
muthally distant without being ‘in conflict’. We found that our
model was able to encode cue offsets in the R→ E-PG maps
(figure 5a). The mapping for the second cue is offset from
that of the first, meaning that the peak in each R group will
be mapped to the same E-PG neuron. This ‘mental’ alignment
indicates that the circuit could account for the modality trans-
fer results seen by [22] (see behavioural simulations in
the electronic supplementary material).

One cue useful. Here, we wanted to see what would
happen in the case that one cue was given significant
weight (wblue = 0.5), but provided no directional information.
A usable (diagonal) mapping is learned for the useful cue
(red—figure 5b) but not for the other (blue). Note that never-
theless the synaptic strengths have a similar range. This
indicates that a cue could provide significant input to the



(d )

(c)

(a)

(b)

Figure 5. A selection of mappings learned for different cue configurations. (a) Each cue is equally weighted but they are physically separated by 179°. (b) Each cue
is equally weighted, however the blue cue rotates with the agent (does not provide directional information). (c) In this case both cues are aligned, however the blue
cue is one-quarter the weight of the red. (d ) Cues are aligned and of equal weight but have different additive noise distributions (both von Mises). The red cue has
concentration κred = 2 and the blue has κblue = 0.5; i.e. the cues have different reliabilities.
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integration, even if it does not provide useful orientation
information at the time it is learned.

Effect of weight. Here we see that cue weight at the time of
learning is encoded in the mapping; greater weight leads to
greater synaptic strength. In the extreme, a cue which was
not present during the dance should have no influence on be-
haviour, as seen in the dung beetles [30].

Effect of reliability. In all previous experiments, cues have
been noiseless (perfectly reliable). This is useful for exploration
but may not reflect reality. Variation in the relationship
between perceived cue motion and angular velocity should
degrade the diagonal pattern of the mapping; this is evident
from figure 4c and figure 5b. To explore the effect of this vari-
ation, we added von Mises noise to both cues with zero mean
and concentrations kred = 2 and kblue = 0.5. These concentrations
were chosen so that the effect of noise would be clearly visible.
For higher concentration, the effect of noise on the mapping is
minimal. For lower concentrations, it is clear that noise cor-
rupts the mapping but does not appear to have a significant
effect on the strength of the connections. Despite being noisy,
it appears that the blue cue may have significant influence.
(ii) Cue influence is primarily governed by weight
The mapping results above indicated that both weight and
reliability may affect synaptic strength and that the resulting
influence on behaviour may not be easy to predict. We there-
fore simulated a series of cue conflict experiments to
investigate the effects of weight and reliability on behavioural
output. In each scenario (figure 6a,c), each agent (n = 100)
exits the arena four times. Note that the agent will update
its R→ E-PG mappings each time it is placed in the arena



(c)(a) (b)

Figure 6. Effect of weight and reliability on cue influence in behavioural simulation of cue conflict. The population mean vector (black) falls closer to the theoretical
vector sum where magnitudes are determined by cue weight (green) than where magnitudes are determined by reliability (magenta). Dashed rings indicate the
threshold for significance using a Rayleigh test ( p < 0.05).
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centre (§2c(iii)). During the first three rolls the cues are
aligned, and on the fourth they are set in conflict. Figure 6
shows the change in bearing between rolls three and four
for each agent (as a black dot). Each change is indicative of
cue influence for that agent and the population mean gives
the average effect (as in the conflict experiment from [9]).
The simulated population mean is compared to means pre-
dicted by pure vector summation where vector magnitudes
are set based on cue reliability (figure 6, magenta vectors),
or the arbitrary weight (sinusoidal amplitude) given to the
cue (green vectors).

It is clear that the simulated behaviour more closely
aligns with the results given by the vector sum where mag-
nitudes are set according to cue weight; that is, sinusoidal
amplitude primarily governs cue influence in the circuit.
Reliability can affect influence on an individual level and
we generally found these simulations to be quite variable
(hence the large number of agents, also see the electronic
supplementary material); however, this effect does not
appear consistent enough to have a population-level effect.
This strongly suggests that, if the R→ E-PG interface does
provide a substrate for cue integration as we propose, the
amplitude of the R neuron response should change in
response to some property of the cue in order to change
cue influence (figure 1)

Previous studies in dung beetles have suggested that
cue influence is governed by reliability, however, our
simulated results indicate that this is not an emergent
property of the head direction circuit combined with plas-
ticity in R neuron connections. Rather, cue weight needs to
be set explicitly, meaning it could be decoupled from
reliability altogether.
(c) Cue reliability does not determine cue weight in
dung beetles

If dung beetles do weight orientation cues according to
reliability then, according to the modelling provided by [9],
beetle orientation precision with two cues should always
be at least as good as orientation precision with the
most reliable cue in isolation. We tested this prediction
behaviourally using the same species, and used the neural
model to perform a simulated version of the experiment to
provide further insight.

(i) Animal behaviour
Beetles were tested in four scenarios:

(i) sun→ sun and wind;
(ii) wind→ sun and wind;
(iii) sun and wind→ sun; and
(iv) sun and wind→wind.

In each scenario, we have an initial and a test condition.
The beetles rolled their balls 10 times under the initial con-
dition then 10 times under the test condition. The mean
vector length is computed for each individual in each scenario
for initial and test conditions and box plots are given in
figure 7a. Each scenario was presented with a solar elevation
of 45° or 75° (leading to eight scenarios overall). Note that
when the initial condition consists of a single cue, this initial
condition will replicate one of the single-cue conditions from
[9] (specifically, figure 7a(i), (ii), (v) and (vi)). The same is not
true when the single cue is presented in the test condition,
as we assume that the order of presentation matters (see simu-
lations below). Our key behavioural contribution is the
quantitative comparison of single- and multi-cue precision,
which was not discussed in [9] (and not explored in detail
in [22]).

At a 45° solar elevation, when adding a wind cue to a sun
cue, there was no significant difference in orientation pre-
cision between the two populations of r-values ( p = 0.11,
Wilcoxon signed-rank test; figure 7a(i), n = 20). By contrast,
when a sun cue was added to a wind cue, there was a signifi-
cant increase in the beetles’ orientation precision ( p < 0.001,
Wilcoxon signed-rank test; figure 7a(ii), n = 20). When the
beetles began with both a sun and wind cue and the wind
was removed, there was no significant change in the orien-
tation precision ( p = 0.27, Wilcoxon signed-rank test;
figure 7a(iii), n = 20). However, when the sun was removed,
there was a significant decline in orientation precision ( p <
0.05, Wilcoxon signed-rank test; figure 7a(iv), n = 30). In sum-
mary, at a 45° solar elevation, the orientation precision of the



(a)

(b)

(i)

(v) (vi) (vii) (viii)

(v) (vi) (vii) (viii)

(ii) (iii) (iv)

(i) (ii) (iii) (iv)

Figure 7. Changes in precision for single or multi-cue conditions. Bars give the median for each group, boxes give first and third interquartile range, and whiskers
give the maximum and minimum values. Outliers are marked as separate data points. (a) Dung beetle orientation precision at 45° (top row, magenta) and 75° solar
elevation (bottom row, cyan). (b) Simulated model precision using alternative weighting strategies. The top row (magenta) shows the expected outcome where cues
are weighted by reliability, the bottom row (cyan) shows the expected outcome where cues are weighted by contrast (weight is decoupled from reliability). Reliable
cue has concentration κ = 4, unreliable κ = 1.
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population of beetles increased when both sun and wind cues
were present compared to a wind cue alone. Orientation pre-
cision with a sun cue alone was not significantly different
from that with both cues present.

At a 75° solar elevation, when adding a wind cue to a sun
cue, there was a significant decline in orientation precision
( p < 0.01, Wilcoxon signed-rank test; figure 7a(v), n = 20).
Similarly, orientation precision was reduced when a sun cue
was added in combination with an existing wind cue ( p <
0.05, Wilcoxon signed-rank test; figure 7a(vi), n = 20). By
contrast, when removing the wind cue and leaving the
sun cue in place—or vice versa—a significant increase in
orientation precision was observed ( p < 0.01, Wilcoxon
signed-rank test; figure 7a(vii), a(viii), n = 20). In summary,
at a 75° solar elevation, the orientation precision of the popu-
lation of beetles decreased when both sun and wind cues were
present. Two cues reduced orientation precision compared
to one.

By comparing the sun-only conditions in figure 7 (a(i) and
a(v), initial), we can see that the orientation precision does not
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change across the different elevations. This indicates that the
reliability of the sun cue is not affected by this change in
elevation. This is largely consistent with the findings of [9];
while they reported a slight reduction in precision from
45° to 75°, performance does not degrade significantly until
elevations of 80° and above. Given that: (i) changing
the elevation does not appear to change the reliability
of the sun cue, (ii) changing the elevation from 45° to 75°
changes the influence of a sun cue [9], and (iii) orientation
precision decreases with multiple cues when the sun is at
high elevations, it would appear that reliability is not the
key component of cue influence for these beetles.

We suggest that the beetles use cue contrast in order to
determine cue weight. Loosely, we reason that the contrast
of a sun cue (intensity contrast between the solar and anti-
solar hemispheres) drops as elevation increases which
changes the relative weight compared to a wind cue with con-
stant speed. As the relative contrast of the sun cue drops, the
weight relationship changes but the reliabilities do not, mean-
ing that the wind will receive a higher relative weight than
the sun. As the wind is probably a less reliable cue (difficulty
in reliable detection and turbulence), this weight change
leads to a decrease in orientation performance. Note that
our ersatz sun stimulus is monochromatic and its intensity
is not varied over different elevations.
(ii) Simulated behaviour
Using our neural circuit, we simulated two weighting strat-
egies: weight-by-reliability and weight-by-contrast. Under
weight-by-reliability, relative weight (relative sinusoidal
amplitude) is given by the relative reliability of the cues:

w1 ¼ k1
k1 þ k2

w2 ¼ k2
k1 þ k2

ð3:1Þ

with κ1 = 4 and κ2 = 1 (w1 = 0.8, w2 = 0.2). Under weight-by-
contrast the relative weight of the cue is set arbitrarily as
the inverse of the relative reliability. We are not proposing
a specific relationship between the two, only that they are
not necessarily coupled.

In each case we simulate four scenarios, mimicking the
behavioural assay:

(i) single reliable cue→ add unreliable;
(ii) single unreliable cue→ add reliable;
(iii) both cues→ remove unreliable; and
(iv) both cues→ remove reliable.

The agents roll 10 times under the initial condition and 10
times under the test condition; note that the R→ E-PG
mapping is not cleared between the initial and test con-
ditions. This means that the order in which conditions are
presented will affect the outcome. The results are shown in
figure 7b; p-values indicate significance levels for a Wilcoxon
signed-rank test between the initial and test conditions.

Following our reasoning above, at mid-elevations, the
relative contrast and relative reliability of the two cues may
be similar (the beetle data should appear to be weighted by
reliability). At high elevations, the relative contrast of the
light cue will drop but the relative reliability will remain
unchanged, leading the unreliable wind cue to get more
weight than it should (the beetle data should appear to be
weighted by contrast).
Where cue weight is dictated by relative reliability
(figure 7b, top row), our model generally matches the pre-
diction that two cues should be better than one (median
increase in orientation precision). While the change in simu-
lated results is more extreme, we generally see the same
pattern as in the beetles at 45° elevation (figure 7a, top row).
Where we weight cues by (hypothetical) relative contrast,
figure 7b(v), b(vii), and b(viii) indicate that two cues would
be worse than one (decrease in median orientation precision).
Again, the simulated mean vector length distributions are
more extreme in their differences, however, the general pattern
matches the beetle data at 75° elevation (figure 7a, bottom
row). This reflects our broad expectation if cues are weighted
according to relative contrast, as opposed to relative reliability.
We propose that the beetles are weighting cues according to
contrast, which aligns with reliability at 45° elevation, how-
ever, as elevation rises, contrast and reliability diverge
leading to decreased multi-cue performance.

We note two anomalies in our simulated results. In
figure 7b(iii), removing a cue makes the agents more precise
where we would expect it to cause a decrease in performance.
It is not clear why this is the case, but the effect is consistent
across different random initialisations. Figure 7b(vi) presents
another anomaly, the simulation reports an increase in pre-
cision where the analogous experiment from the beetle data
(figure 7a(vi)) shows a decrease. Even when weighting cues
arbitrarily, we would still expect adding a reliable cue to
increase precision (in line with the simulation result). We
are not sure why the beetles experience a decrease in
orientation precision in this case. One possibility is that the
biological data itself is highly variable. If we compare
the ‘initial’ conditions in figure 7a(ii), a(vi) (where the beetles
experienced wind in isolation), it is clear that the beetles are
far more precise in the wind-only condition in figure 7a(vi),
despite the fact that these conditions should be identical.
4. Discussion
The insect head direction circuit, specifically the EB, has been
previously suggested to house a flexible multimodal compass
[13,21]. Here we have provided a functional model which
demonstrates that the EB can perform multimodal cue inte-
gration as vector summation. Importantly, the plasticity in
mapping different cues (R neuron activity) to the EB during
rotation establishes a common frame of reference for the vec-
tors. The plasticity can also influence the relative contribution
to the vector sum of the different cues. However, we show
that this does not lead to an emergent reliability-based
influence of the cues on the behaviour; some additional
mechanism would be needed to set the input weights. This
prompted an exploration into what determines cue weight
in our model species, the dung beetle K. lamarcki. Contrary
to previous studies [9,22,26], we found that these beetles do
not appear to weight cues according to their reliability. We
suggest relative cue contrast may provide an alternative
explanation of these results.

(a) Modelling landscape
Conceptually, none of the individual elements in the model
we present are new [8,13,17,21,41]. Nevertheless, we are the
first to provide a relatively complete implementation, and
in particular, to combine adaptive synaptic connections for
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R-neurons with multimodal cue integration. Most previous
models do not investigate multi-cue behaviour [8,20,28,42].
The closest work is provided by [43] (extended in [44])
which includes two populations of neurons with Gaussian
activation profiles which input to an integration layer
which itself forms a ring-attractor. Plasticity between the
input and integration (compass) neurons is not included.
This is noted as a strength of the model (conceptual simpli-
city), however, it does not reflect known phenomena in
fruit flies and dung beetles [16,20,22]. Such rigidity also
creates functional problems with spatially separated cues
which automatically form conflicts unless their relationship
is innately encoded.

(b) Hebbian learning facilitates vector summation
Hebbian learning is often suggested for the construction of
R→ E-PG mappings [16,17,19,20,28,41]). We show here that
such plasticity does not interfere with the vector summation
properties of the circuit provided the learning is structured
by being linked to periods of increased angular velocity
[21,28]. We also note that, in order to build the relationship
between perceived cue motion and angular velocity, cue
input cannot drive the compass during learning. We found
this to be true during model construction but it is also
fairly intuitive; if R input drives the E-PG signal and R→ E-
PG connections are updated in a Hebbian fashion, the
active R neurons will continually remap to the active E-PGs
(see the electronic supplementary material, continuous learn-
ing). Other models have assumed that R neurons do not
provide any input to the E-PGs during learning [28,42]. We
instead suggest that the balance of influence between the
self-motion and cue input in the E-PGs could be flexibly regu-
lated by angular velocity in the same manner as the plasticity
between R and E-PG neurons.

(c) Cue contrast as a proxy for reliability
Previous work in insect cue integration has suggested that
cue influence is determined according to reliability [7–
9,22,26]. Our conflict simulations (figure 6) indicate that cue
reliability, while affecting the formation of R-to-E-PG connec-
tions, does not have a significant effect on cue influence.
Further, our behavioural results and accompanying simu-
lations clearly indicate that cue weight is not determined by
reliability for the dung beetle K. lamarcki, contrary to previous
claims [9,22,26].

In previous dung beetle cue integration studies, it is not
always clear that cue reliability was manipulated. Reliability
estimation usually requires performing a large number of
trials with the same individual, which is often impractical
in insects. Khaldy et al. [26] manipulated the intensity of a
sun cue but did not provide evidence that this significantly
affected reliability of orientation. In [22] the assumption
that higher sun elevations are less reliable is justified by refer-
ence to [24] in which the difference between two exit angles is
taken to be a measure of orientation precision. In [9] the
orientation precision (estimated from multiple exits) of a
beetle under an ersatz sun did not appear to be reduced
until very high elevations (> 80°). In this paper, sun elevations
for which precision did not significantly differ nevertheless
had different effects on cue integration: beetles orient to
the sun for a 45° elevation but the wind for 75° elevation,
which suggests reliability is not determining cue weight.
On the other hand, changing elevation or intensity, as
done in these studies, would be expected to change the con-
trast of the sun cue. Indeed it is possible that the directional
cue provided from the sun actually comes from intensity gra-
dient it produces across the sky, which beetles are known to
use for orientation [45–47]. Cue contrast can contribute to
cue reliability by reducing detection error (figure 1), but
(unlike reliability) is directly available in the instant. A
neural circuit that has evolved to weight cues by contrast
would in most natural situations obtain a good proxy of
weighting by reliability.

(d) Future work
(i) R neuron representation
A recent connectonomic analysis observed that R neurons inhibit
all other R neurons in the same group (e.g. all R1 neurons inhibit
all other R1 neurons) [13]. These connections were not included
as the data was not available when the initial model was
constructed. We plan to investigate whether within-group inhi-
bition supports a sinusoidal activity profile which we assumed
for R neuron encoding of cue direction (consistent with [19]
and [8]) but which has not been directly shown. By analogy to
the EB [13] inhibition could encourage a sinusoidal shape for
different input profiles. A second possibility is that inhibition
could provide a mechanism for reliability-based weighting,
keeping the peak of an activity bump relatively stable, while
modulating the amplitude as a result of noise (see [8]). R
neuron groups also inhibit each other, which could implement
a hard-wired, yet flexible cue hierarchy (which sufficient weight-
ing could overcome); alternatively, this could partially implement
our R activity normalization scheme.

(ii) Questions in dung beetles
As solar elevation increases, dung beetle orientation precision
remains relatively stable then decreases rapidly at high
elevations [9]. This is what we might expect if the contrast
at lower elevations remains well above a detection threshold.
A contrast assay [47] could be used to check what solar to
anti-solar contrast corresponds to the minimum usable con-
trast threshold in K. lamarcki . It would then be useful to try
and determine how the beetles compute solar to anti-solar
contrast. There may also be a way to measure wind cue con-
trast by examining antennal displacement for different wind
speeds (and directions).

While our data suggest that dung beetles do not fully
weight cues by reliability, our modelling suggests that
reliability could have some effect on cue influence. It would
be useful to examine this explicitly in the animal, e.g. by
adding azimuthal variation to a sun cue.
5. Conclusion
Cue integration research (our own included [9]) tends to
assume Bayesian reasoning: a cue estimate includes infor-
mation about the variance of the estimate (reliability), which
is used to weight the cue [1,3]. However, the meaningfulness
of a Bayes-optimal result is questionable [48] and the use of
Bayesian modelling is disputed [49–53]. In this small, behav-
ioural/modelling example, the Bayesian assumption was
counterproductive; only by leaving reliability behind were
we able to make sense of our data. Future behavioural data
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may be better understood by first asking what quality of a
cue is actually changed by an experimental manipulation,
rather than assuming reliability is involved. This could
expose a host of efficient, elegant solutions to otherwise
computationally intensive problems.
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