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Editorial on the Research Topic
Rising stars in energy research: 2022

1 Introduction

As the demand for sustainable and efficient energy solutions continues to grow,
researchers worldwide are making significant strides in various domains of energy
research. Recognising the future leaders of Energy Research is fundamental to
safeguarding tomorrow’s driving force in innovation.

This Research Topic aims to provide a comprehensive overview of recent advancements
in energy-related studies across multiple disciplines. At present, 9 papers have been accepted
for this Research Topic, which will be delved into the realms of ocean energy and conversion,
power systems and controls, fuel cells and catalysts, solar energy and building energy
utilization, and high-temperature electrochemical cells. By highlighting the key findings and
innovations presented in a Research Topic of seven diverse articles, we aim to foster a deeper
understanding of the current state of energy research and its potential implications for a
sustainable future.
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2 Ocean energy and conversion

Diaz-Maya et al. explore the assessment of wave energy
converters in the Gulf of Mexico using a multi-criteria approach.
The study investigates the spatial distribution of wave power,
seasonal variability, and identifies the most viable technology for
harnessing wave energy in the region.

3 Power systems and controls

The articles in this section focus on controlling cascading
failures in power systems through a non-scheduled multi-stage
decision-making approach. By establishing a model that accounts
for the entire process of cascading failures, researchers
demonstrate the efficacy of their proposed method in
minimizing outage probabilities and enhancing system
reliability. Liu et al. propose a machine learning-based
algorithm for optimal power dispatch in microgrids,
showcasing improved energy management and cost savings.
Song et al. focus on adaptive control strategies for grid-
connected photovoltaic systems, aiming to optimize system
performance under varying conditions.

4 Fuel cells and catalysts

Herradon et al. present a novel approach to enhance the
performance of fuel cells by designing advanced catalyst materials
with improved activity and stability. García-Salaberri et al. explore
the integration of solar energy and building energy utilization
through the development of smart energy management systems,
enabling efficient energy consumption and reduced environmental
impact.

5 Solar energy and building energy
utilization

Manni et al. explore solar energy digitalization in high latitudes,
presenting a model chain that combines solar irradiation models,
Light Detection and Ranging (LiDAR) scanners, and high-detail 3D
building models. Their research highlights the potential of solar
mapping in urban areas and the accurate estimation of solar
irradiation on different surfaces, including roofs and façades.
Graniero et al. strive to harness the potential of machine learning
to advance the stability of perovskite solar cells. Through extensive
analysis of data from the Perovskite Database Project, their study
reveals the crucial role of data quality, the limitations of increasing
data quantity, and the necessity for universal stability metrics to
drive progress in this promising technology. Razo et al. introduce a
genetic algorithm-based approach for precise power now-casting
and digital twinning of small and medium-scale PV systems using
exclusively on-site measured data. Their algorithm achieves
exceptional accuracy in power predictions while providing
valuable insights into system configuration, enabling efficient
operation and effective management of PV assets in the
renewable energy market.

6 High-temperature electrochemical
cells

Cammarata et al. delve into the theoretical analysis of mixed
open-circuit potential for high-temperature electrochemical cell
electrodes. By employing analytical equations based on mixed
potential theory, researchers provide insights into the calculation
of theoretical open circuit voltage (OCV), particularly in the case of
co-oxidation and co-reduction reactions in solid oxide cells.

7 Conclusion

The nine articles presented in this Research Topic cover a wide
range of topics in energy research, demonstrating the diversity and
depth of ongoing studies in the field. From ocean energy assessment
to power system controls, fuel cell optimization, solar energy
utilization, and high-temperature electrochemical cells,
researchers are pushing the boundaries of knowledge and
innovation. These findings pave the way for sustainable energy
solutions and offer valuable insights for future research and
development.

As we continue to strive for a greener and more sustainable
future, it is imperative to recognize the collective efforts of
researchers worldwide who are working tirelessly to advance the
field of energy. We hope that this editorial provides a glimpse into
the exciting progress being made and inspires further exploration in
these crucial areas.
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Inertia Optimization Control and
Transient Stability Analysis of Wind
Power Grid-Connected System
Wenle Song1, Lei Wang1, Wei Zhao1, Xiangyu Zhang2 and Zhiwei Wang2*

1State Grid Cangzhou Power Supply Company, State Grid Hebei Electric Power Supply Co. Ltd., Cangzhou, China, 2State Key
Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University,
Baoding, China

The virtual inertia control effectively makes up for the insufficient inertia caused by the high
penetration wind power grid connection. However, it has an impact on the mechanical part
of the wind turbine and greatly increases the difficulty of the dynamic stability analysis of the
system, resulting in limited engineering practicability. Therefore, the state equation of the
wind power grid-connected system is established in this paper, and the influence of virtual
inertia control on wind turbine shafting oscillation is analyzed based on the small-signal
theory. Secondly, the nonlinear extended disturbance observer is designed as the
compensation signal of inertia control to improve its dynamic stability supportability.
Based on the integral manifold method, the shafting model of the wind turbine is
reduced, and the transient energy function of shafting is established, which provided
the basis for the design of the shafting stability controller. Finally, a grid-connected wind
power system with high permeability is installed, and the results demonstrate that under
the proposed control strategy, the swing stability of power angle is significantly improved,
and the wind turbine shafting oscillation is suppressed.

Keywords: wind turbine, virtual inertia, non-linear disturbance observer, transient stability, shafting oscillation
suppression

1 INTRODUCTION

The power support deficiency caused by the electrical decoupling of wind turbines and the system is
effectively solved with the introduction of virtual inertia control (Wang et al., 2015; Xiong et al., 2019;
Li et al., 2022a). However, access to a large number of controllable inertia changes the distribution of
inertia of the original system and causes an interaction with the power angle and damping
characteristics of the system, even resulting in pushing the shafting oscillation of the wind
turbine (Li et al., 2017; Dinkelbach et al., 2021; Mehbodniya et al., 2022). Therefore, the stability
characteristics of wind power grid-connected systems should be comprehensively analyzed to
optimize the virtual inertia control effect.

Wind turbines usually operate under maximum power point tracking (MPPT) control and cannot
respond to frequency changes. With the increase in grid penetration, the equivalent inertia of the
system decreases, threatening the system’s stable operation (Ma et al., 2017; Zeng et al., 2019; Li et al.,
2022b). After the virtual inertia control is applied, the rotor’s kinetic energy of the wind turbine is
used to provide power support to the system, which effectively improves the frequency modulation
characteristics of the system (Ghosh et al., 2016; Wilches-Bernal et al., 2016; Wang and Tomsovic,
2018; Wang et al., 2018). However, the rapid power response generated by the virtual inertia control
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changes the external characteristics of the wind turbine obviously,
making the dynamic stability analysis of the grid-connected wind
turbine system with virtual inertia more complicated (Luo et al.,
2017; Nguyen et al., 2018; Sun et al., 2019; Li et al., 2022c).

At present, a proportional-derivative controller is added to the
MPPT control of variable-speed wind turbines to simulate the
inertial frequency response of synchronous generators by
controlling the active commands (Duckwitz and Fischer, 2017;
Hu et al., 2017; Sun et al., 2022). However, the reference (Han
et al., 2019) based on the small-signal analysis of the grid-
connected system pointed out that the excessive virtual inertia
can reduce the damping ratio of the system, prolong the transient
response time, and then lead to the deterioration of the transient
stability. To optimize the virtual inertia control effect, researchers
have carried out extensive research. In the reference (Lao et al.,
2019), the overspeed control and inertia control are combined,
and the inertia is adaptively adjusted by constructing the
relationship between the frequency and the inertia, thereby the
frequency robustness of the system is improved. The principle of
the coordinated configuration of virtual inertia and damping
coefficient is given in references (Du et al., 2019; Zhang et al.,
2020), but the optimal response time and overshoot cannot be
accurately obtained.

According to the extended state observer theory, the system
state variables and disturbances are estimated without an accurate
model of the system, thereby the weakening of the control effect
caused by changing parameters and inaccurate models is reduced
(Imad et al., 2017). Using it in the wind turbine control link can
effectively improve its auto disturbance rejection characteristics
and optimize the corresponding control effect (Penne et al.,
2021). In addition, reference (Jia et al., 2020) demonstrates
that the virtual inertia control has the risk of reducing the
small-signal stability of the system. Under this control, with
the system disturbed, the output power of the wind turbine
varies widely, which has an impact on its flexible shaft and
even causes speed oscillation instability. Reference (Nguyen
et al., 2019; Liu et al., 2021) proved the impact of virtual
inertia control on the mechanical transmission chain of the
wind turbine, and the rotor speed feedforward compensation
is added in MPPT control to suppress the shafting oscillates, but
unreasonable control coefficient is negatively affecting the
dynamic stability of the system. The virtual inertia control
strategy still needs to be improved to ensure the safety of the
flexible shaft of the wind turbine and improve the dynamic

stability of the grid-connected system. The comprehensive
evaluation of the stable operation ability of the grid-connected
system is the key to improving the additional controller’s friendly
grid-connected function.

In this paper, by establishing the small-signal model of the wind
power grid-connected system, the influence of virtual inertia on the
damping characteristics of the system is analyzed, and the influence
of the inertia coefficient on the electromagnetic torque damping
characteristics of the wind turbine is studied combined with the two-
mass model of the wind turbine. To improve the active disturbance
rejection characteristic of inertia control, a nonlinear extended state
observer is introduced, and a parameter design scheme based on the
critical stability of shaft vibration is proposed by establishing the
transient energy function of the wind turbine shaft to improve the
dynamic stability of the system. Thereby the safe operation capability
of the wind power grid-connected system is comprehensively
improved. In section 2, a small disturbance analysis of the wind
turbine grid-connected system is conducted. In Section 3, an
extended disturbance observer and inertia parameter
configuration principles are designed. Experimental studies to
demonstrate the effectiveness of the proposed control scheme
based on a typical power system with high-penetration wind
power are presented in Section 4. Conclusions are presented in
Section 5.

2 SMALL SIGNAL ANALYSIS OF WIND
TURBINE GRID-CONNECTED SYSTEM

The variable speed wind turbine with virtual inertia control
absorbs or releases the rotational kinetic energy by changing
the wind turbine speed, adjusting the output power, and
responding to the change of system frequency. Take a
permanent magnet synchronous generator (PMSG) as an
example. Figure 1 shows the active power control structure
of the variable speed wind turbine, including MPPT control
and virtual inertia controller module. Under the per-unit
system, the active power control instruction of the wind
turbine is the sum of the MPPT control reference
instruction and the active power increment generated by
the inertia controller, which can be expressed as (Wang
et al., 2018)

Pew � kmω
2
w − kvp(ωs − ωn) (1)

FIGURE 1 | Diagram of active power control of the system with virtual inertia.
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where km is the MPPT coefficient of the wind turbine; kv is the
inertia control coefficient. ωw is the angular velocity of the wind
turbine; ωs and ωn are the angular velocity of the system
synchronous generator and the rated angular velocity of the
system, respectively. p is the differential operator.

The following two mass shafting models are established to
analyze the dynamic stability of wind turbine shafting (Gaidi
et al., 2017).

⎧⎪⎨⎪⎩
Hrpωr � Pr/ωr − Ksθ
Hwpωw � Ksθ − (kmω2

w − kvpωs)
pθ � ωr − ωw

(2)

where ωr is the angular velocity of the wind turbine; θ is the torque
angle of shafting; Hr and Hw are the inertia of the wind turbine and
generator, respectively;Ks is the stiffness coefficient shafting; Pr is the
mechanical power captured by the wind turbine.

Ignoring the damping coefficientDs of synchronous generator,
the equivalent second-order rotor motion equation of generator
can be expressed as

Hspωs � k1(ωn − ωs) + k2x − Pe (3)
where Hs is the equivalent inertial time constant of the system; Pe
is the electromagnetic power output by the synchronous
generator; x represents the output state variable of the

FIGURE 2 | Diagram of virtual inertia control based on extended disturbance observer.

FIGURE 3 | Diagram of the simulation system with the wind turbine.
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governor, dx/dt = ωn−ωs; k1 is the proportional coefficient; k2 is
the integral coefficient of the governor.

Considering the system power balance, substituting Eq. 1 into
Eq. 3, the equation can be expressed as follows

(Hs + kv
SB
)pωs � k1(ωn − ωs) + k2x − U2

n

rSB
+ kmω2

g

SB
(4)

where Un represents the terminal voltage of the load connection
point; r is the load equivalent resistance; SB is the system capacity
reference value.

Combining Eq. 2 and Eq. 4, the small-signal equation of the
wind turbine grid-connected system with virtual inertia control
can be expressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pΔωs

pΔx
pΔωr

pΔωw

pΔθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 0 a14 0
−1 0 0 0 0
0 0 a33 0 a35
a41 a42 0 a44 a45
0 0 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δωs

Δx
Δωr

Δωw

Δθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where HG =HS + kvSB; a11 = −k1SB/(HGSB); a12 = −k2/(HGSB); a14
= 2kmωw0/(HGSB); a33 = −Pr0/(Hrω

2
w0); a35 = −Ks/Hr; a41 =

−k1kvSB/(HwHG); a42 = −k2kv/(HwHG); a44 = 2kmωw0k/Hw; k =
kv/(HGSB)−1; a45 = Ks/Hw.

As the virtual inertia is introduced into the power system, the
variable inertia distribution significantly affects system damping.
Assuming the constant wind speed, the motion equation of the
synchronous generator should be expressed as

HGp
2Δδs + k1pΔδs − k2Δδs � 0 (6)

By solving the differential equation shown in Eq. 6, the real
part expression of the characteristic root of the system is
obtained as:

σ1,2 � − k1
2HG

� − k1
2(HS + kvSB) (7)

According to Eq. 7, the introduction of kv makes the
equivalent inertial time constant of the system HG increase,
but the damping ratio of the synchronous generator is reduced
and the characteristic roots gradually move towards the
imaginary axis. Therefore, an unreasonable inertia control

TABLE 1 | The parameters of the 2 MW PMSG.

Parameters Value Parameters Value

Rs/pu 0.011 Ls/pu 0.102
Rr/pu 0.01 Lr/pu 0.11
Lm/pu 3.36 Ks/pu 8.0
Jw/pu 0.5 Jr/pu 6.5

TABLE 2 | The parameters of synchronous generators.

Parameters Value Parameters Value

Xd/pu 1.8 X′d/pu 0.3
X″d/pu 0.25 Xq/pu 1.7
X′q/pu 0.55 X″q/pu 0.25
Td0/s 8.0 T′q0/s 0.4
T″d0/s 0.03 T″q0/s 0.05
Js1/pu 2.5 Js2/pu 10.5

FIGURE 4 | Figure shows the oscillation mode diagram of the wind turbine under the control of constant inertia, in which the (A) is the shafting oscillation mode of
the wind turbine, and the (B) is the oscillation mode between the internal regions of the system.
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coefficient can even have a negative damping effect on the power
angle oscillation of the synchronous generator. In addition, the
virtual inertia control of the wind turbine affects the system’s
dynamic characteristics and causes the stability of wind turbine
shafting. Therefore, the analysis of the influence of the inertia
response power of the wind turbine on shafting torsional
vibration is extremely important for the safe popularization of
control technology.

After the Laplace transformation of Eq. 5, ωw can be expressed
as follows

sΔωw � [a14(a41 − a42/s)
s − a11 + a12/s + a44]Δωw + a45Δθ (8)

The coefficient of Δωw in Eq. 8 is defined as a’44, and the
shafting state equation of the wind turbine with inertial control
can be sorted out as

⎡⎢⎢⎢⎢⎢⎣ sΔωr

sΔωw

sΔθ
⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ a33 0 a35

0 a′44 a45
1 −1 0

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣Δωr

Δωw

Δθ
⎤⎥⎥⎥⎥⎥⎦ (9)

The natural oscillation frequency of wind turbine
shafting is about 1–2 Hz; therefore, the equation a’44≈a44
is valid. Since the inertia of the wind turbine is much greater
than the inertia of the generator, i.e., Hw << Hr, as a state
variable with the characteristics of rapid change, ωw can be
approximated by an integral manifold to replace, thus
reducing the order of Eq. 9, to obtain the approximate
expression of the analytical solution of the shafting state
equation. Assume that the integral manifold of the state
variable ωw is given by

Δωw � h(Δωr,Δθ, ε) (10)
where ε is an infinitesimal quantity.

Let ε = Hw/(mHr), where m>>2, and the power series
expansion of Eq. 10 is given by

Δωw � h � h0 + εh1 + ε2h2 +/o(εn) (11)
Substituting Eq. 11 into Eq. 9 and the expression is obtained as

ε
zh

zΔωw
pΔωw + ε

zh

zΔθ pΔθ � 1
mHr

(S1h + S2Δθ) (12)
where,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΔθ
dt

� Δωr − h0 − εh1 − ε2h2 /

zh

zΔωw
� zh0
zΔωw

+ ε
zh1
zΔωw

+ ε2
zh2
zΔωw

+ /

zh

zΔθ � zh0
zΔθ + ε

zh1
zΔθ + ε2

zh2
zΔθ + /

The coefficients of ε0, ε1, and ε2 on both sides of Eq. 12 should
be equal, and then the function h can be obtained as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h0 � −S2

S1
Δθ � Ks

2kmωw0k
Δθ

h1 � − mHrKs

2k2mω
2
w0k

2 Δωr + mHrK
2
s

4k3mω
3
w0k

3 Δθ
(13)

Substituting Eq. 13 into Eq. 11, the state variable Δωw can be
approximated as

Δωw ≈ KAΔθ +KBΔωr (14)
where KA � Ks

2kmωw0
+ HwK2

s
4k3mω

3
w0k

3; KB � − HwKs
2k2mω

2
w0k

2.
After reducing the order of the system’s state equation

combined with Eq. 14, the characteristic equation can be
expressed as

λ2 + (KA − a33)λ − KAa33 − (1 −KB)a35 � 0 (15)
Therefore, the real part of the characteristic root

corresponding to the shafting oscillation mode is given by

σ1,2 � −1
4
( Ks

kmωw0
+ HwK2

s

2k3mω
3
w0k3

) − P0

4Hrω2
r0

(16)

According to Eq. 16, the inertia control coefficient kv affects
the shafting oscillation mode of the wind turbine. As the control
coefficient kv increases, k also increases, σ1,2 approaches the
virtual axis of the state plane, and the dynamic stability of
wind turbine shafting decreases. Therefore, a new virtual

TABLE 3 | Variations of the shafting oscillation mode.

Case Eigenvalues Oscillation Frequency/Hz Damping ratio/%

Case 1 −0.691 + j13.680 2.177 5.041
Case 2 −0.545 + j16.857 2.683 3.051
Case 3 −0.921 + j11.361 1.808 8.080

TABLE 4 | Variations of the region oscillation mode.

Case Eigenvalues Oscillation Frequency/Hz Damping ratio/%

Case 1 −0.313 + j5.881 0.936 5.310
Case 2 −0.341 + j5.036 0.802 6.760
Case 3 −0.962 + j4.925 0.784 19.170 FIGURE 5 | Root locus of oscillation mode with kv changing.
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inertia control method is needed to increase the equivalent inertia
of the system without causing the shaft oscillation instability of
the wind turbine.

3 VIRTUAL INERTIA OPTIMIZATION BASED
ON EXTENDED OBSERVER

Considering the slowly changing characteristics of wind speed,
the complexity of inertia control parameters is mainly affected by
the penetration rate of wind power in the system. If the estimated
inertia is set to Hs0, the first equation in Eq. 8 is given by

pΔωs � 1
Hs

ΔPe + ( 1
Hs

− 1
Hs0

)ΔPv + 1
Hs0

ΔPv (17)

where,

ΔPe � k2Δδs − k1Δωs + 2kmωw0

SB
Δωw

The frequency variation is significantly affected by the system
disturbance power and the controller inertia response. The
expanded disturbance observer can expand the unknown
disturbance affecting the controlled output of the system into
new state variables. By adjusting the control coefficient, the
output observation signal is gradually close to the original
system state variables to realize the observation of system state
variables and unknown disturbances.

For the first-order nonlinear uncertain system shown in
the above equation, the expansion state variable is
constructed as

a(t) � 1
Hs

ΔPe + ( 1
Hs

− 1
Hs0

)ΔPv (18)

Let the control input u = ΔPv and the input coefficient b = 1/
Hs0, the extended disturbance observer can be constructed as
follows

⎧⎪⎪⎨⎪⎪⎩
eω � Δω̂s − Δωs

pΔω̂s � â(t) + bu − β1eω
pâ(t) � −β2fal(eω, α, γ)

(19)

where β1 and β2 are the adjusting gains of the nonlinear
disturbance observer; α is a nonlinear factor, which generally
is 0.5. γ is the filter factor related to the sampling step size of the
system. fal(eω,α,γ) is a nonlinear function, which is expressed as

FIGURE 6 | Figure shows the dynamic response curve of the system under short-circuit fault, in which no control is applied to the wind turbine in case 1, the
traditional constant inertia control is applied to the wind turbine in case 2, and the optimal control proposed in this paper is applied to the wind turbine in case 3. In order to
highlight the contrast effect, the response curves under case 1 and 2 are drawn as (A), and the response curves under case 3 are drawn as (B).

FIGURE 7 | Dynamic responses of G7 after short circuit fault.
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fal(eω, α, γ) �
⎧⎪⎪⎨⎪⎪⎩

|eω|αsign(eω), |eω|> γ
eω
γ1−α

, |eω|≤ γ (20)

By adjusting the parameters of the expanded disturbance
observer, β1, β2, α, γ reasonably, the observed value can
approach the actual value quickly and ensure the observation
precision of the observer. According to Eq. 17 and Eq. 18, with
the disturbance observer, the unbalanced power of the system
caused by virtual inertia control can be expressed as

ΔPeso � −Hs0a(t) ≈ −Hs0â(t) (21)
In the process of dynamic regulation, it is necessary to set the

control parameters of the shafting stabilizer to avoid the threat of

shafting torsional vibration caused by additional power control of
the wind turbine. Let ωθ = ωr-ωw, simplify Eq. 2, then the
equivalent two-mass block shafting model of the wind turbine
can be expressed as

pωθ + Ks

Ht
θ � Pr0

ωrHr
+ kmω2

w

Hw
− kv
Hw

pωs (22)

where Ht = Hr×Hw/(Hr + Hw).
Taking the virtual inertia control into account, the power

balance equation of the single infinite power grid can be expressed
as follows

pωs � SB
HsSB + kv

(kmω2
w − U2

n

r
) (23)

The wind turbine is controlled by an additional shafting
stabilizer, and substituting the above equation is into Eq. 22,
after linearization, the expression is given by

pΔωθ + (c1 + kss)Δωg + c2Δωr + c3Δθ � 0 (24)
where, c1 = 2kmωw0[(kv/(Hs + kv/SB)−1]/Hw; c2 = P0/
(Hrωw0

2); c3 = Ks/Ht; kss is the control coefficient of
shafting stabilizer.

Since Δωr is in the opposite phase to Δωw, and Δωw = nΔωr,
the expression of Δωθ can be expressed as

Δωθ � {−(n + 1)Δωw/n
(n + 1)Δωr

(25)

where n is defined as the speed ratio between a low-speed and a
high-speed shaft.

FIGURE 8 | Figure shows the transient response curve of the wind turbine, in which (A) is the rotational speed curve of the wind turbine under the three simulation
test cases, and (B) is the output power curve of the wind turbine.

FIGURE 9 | Frequency responses of the system after the load increase.
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Substituting Eq. 25 into Eq. 24, the small-signal equation of
state about θ is given by

p2 − [ c2
1 + n

n(c1 − ks)
1 + n

]p + c3Δθ � 0 (26)

The Lyapunov energy function of the wind turbine shafting
system is constructed as

V(Δωθ) � 1
2
× (Δωθ)2 ≥ 0 (27)

The shaft stiffness of the vital connecting parts inside the wind
turbine is limited. Considering the most conservative case, when
the shaft system stiffness is close to 0, and the nonlinear system is
stable in the dynamic process, the first derivative of V(Δωθ)
satisfies the Eq. 28 according to the Lyapunov stability
criterion. Therefore, the control coefficient configuration
criterion of the stabilizer is shown in Eq. 29

dV(Δωθ)
dt

� [n(c1 − kss)
1 + n

− c2
1 + n

]Δω2
θ ≤ 0 (28)

kss ≥ 2kmωw0( kv
HGSB

− 1) − Pr0

nHrω2
r0

(29)

According to Eq. 29, the control coefficient kss is set
corresponding to the critical stability of the torsional vibration
mode of wind turbine shafting to limit the adverse effects brought
by inertia adjustment power and ensure reliable damping of
shafting oscillation of wind turbine.

By analyzing the influence of virtual inertia on system
shafting stability, a virtual inertia compensation control
strategy based on an extended disturbance observer is
proposed, as shown in Figure 2. As the system is
disturbed and the frequency fluctuates, the angular velocity
ωs and the expansion variable a(t) are collected and input to
the expanded disturbance observer. By setting its adjusting
parameters kss reasonably, the estimated value of the system
frequency and unbalanced power is rapidly approaching the
actual value, and the compensation value of the output power
of the inertia controller is calculated. Through Eq. 29, the
control parameters of the shafting stabilization stabilizer are
set, which are added with the power instruction of MPPT
control and sent to the wind turbine to dynamically adjust the
active power output of the wind turbine, change the power
distribution of the system, and improve the system frequency
supportability and shafting stability.

FIGURE 11 | (A) shows the change curve of the rotational speed of the wind turbine after a sudden load increase, and (B) shows the output power curve of the wind
turbine.

FIGURE 10 | (A) shows the output power curve of the synchronous machine G4 after a sudden load increase, and (B) shows the output power curve of the
synchronous machine G7.
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4 VERIFICATION AND ANALYSIS

4.1 System Structure
As shown in Figure 3, a 39-node New England system with the
wind turbine interconnected system is established to validate the
effectiveness of the proposed control strategy. The test system
contains ten synchronous generators with a rated capacity of
200 MW, and two PMSG-based wind farms with 400 turbines
with a rated capacity of 2MW, which are connected to the system
through the bus B3 and B22, respectively. Specific simulation
parameters are shown in Tables 1, 2.

The nonlinear factor α is set as 0.5, and the filtering factor γ =
1000 h. Since the convergence effect of the expanded observer is
affected by the gain coefficients β1 and β2, online debugging is
carried out according to the estimation accuracy requirements of
the observer, so that the estimated value of the output of the
observer can approach the actual value at a faster speed. As β1 =
30 and β2 = 120, the observer can get a better convergence effect
without causing a high-frequency flutter phenomenon.

4.2 The Modal Analysis
The simulation model of the system shown in Figure 3 is built
in the DIgSILENT/PowerFactory, and the modal analysis of
the system is conducted under the initial steady-state
conditions of the system. Without virtual inertia control,
the characteristic roots of the shafting oscillation mode of
DFIG and the low-frequency oscillation mode of the
synchronous generator in the region are −0.691 + j13.680
and −0.313 + j5.881, respectively. The corresponding phasor
diagram and bar diagram of the participating factors is shown
in Figure 4, respectively.

According to the oscillation mode diagram, the shafting
oscillation of the wind turbine is mainly affected by the torque
angle of shafting and the angular velocity of the generator. The
participation factors of the internal oscillation modes in the grid-
connected system are rotor angles and angular velocities of the
two synchronizers, which are consistent with the theoretical
analysis results.

To verify the effect of the optimized inertia control scheme
designed in this paper, the control coefficient kv of constant
virtual inertia is set to 30, and the shafting oscillation
information of wind turbines and the information on the
system static stability are calculated. As shown in Table 3,
under constant inertia control, the oscillation frequency of
wind turbine shafting increases greatly, which threatens the
safe operation of the vital connecting parts. Compared with it,
the optimized inertia control scheme designed in this paper
can improve the damping ratio of the shafting oscillation
mode of the wind turbine and the low-frequency oscillation
mode of the system, and the oscillation frequency is also
reduced Table 4. Therefore, the optimized inertia control
can effectively improve the static stability of the grid-
connected system based on ensuring the operating life of
the wind turbine.

Regulating the control coefficient of inertia kv increases
from 0 to 30, the characteristic root track corresponding to

each oscillation mode of the system is shown in Figure 5.
Where λ1 represents the region low-frequency oscillation
mode, λ2 represents the local low-frequency oscillation
mode, and λ3 represents the shafting oscillation mode of the
wind turbine. As kv increases from 0 to 15, λ1 and λ2 move
away from the imaginary axis. If kv continues to increase, the
low-frequency oscillation in the region of the grid-connected
system intensifies, and the overall stability decreases. The
larger kv is, the greater the active power output fluctuation
of the wind turbine is, and the lower the oscillation stability of
its shafting is, which is consistent with the theoretical analysis
in Section 2.

4.3 Dynamic Response Under Short Circuit
Fault
In the following experimental tests, three control schemes are
compared to verify the influence of virtual inertia control on the
dynamic stability of the system. A three-phase short-circuit fault
lasting 0.1 s is set at bus B16, and the wind speed is kept constant
at 9 m/s during the fault process.

The dynamic response comparison curve of system power
angle δG4, frequency f, and active power output of synchronous
generator PG4 are shown in Figure 6. It can be seen from
Figure 6A that the traditional constant inertia control
effectively increases the inertial time constant of the system, so
the amplitude of the first swing of the power angle decreases after
the fault. Although the fluctuation amplitude of the system
frequency and power has decreased, the lower damping ratio
makes the oscillation time longer, and the transient stability of the
system still has a large room for improvement.

As can be seen from Figure 6B, after the optimized control
strategy designed in this paper, is adopted, the time of the first
pendulum oscillation of the system power angle is reduced by
59%, the maximum peak-to-peak value of the frequency
fluctuation is reduced by 0.75 Hz, and the active power output
of the synchronous generator G4 is reduced by 64 MW. It can be
seen from Figure 7 that the amplitude of the first swing of the
power angle is decreased by 52%, and the recovery time is
shortened with the damping characteristics significantly
improved.

Under the short-circuit fault, the response curves of the
electromagnetic power of PMSG Pw and generator rotor speed
ωw are shown in Figure 8. The active power of the wind turbine is
significantly adjusted by the constant inertia control during the
system short-circuit fault, so the electromagnetic power and
speed of the wind turbine fluctuate greatly, which is not
conducive to the dynamic stability of the wind turbine
shafting. Under the optimized inertia control strategy, the
wind turbines optimize the active output and dynamic
compensation system of the power deficiency by estimating
system unbalanced power. Therefore, the recovery time of the
wind turbine speed is shortened by 3.5 s, and the fluctuation
amplitude of the speed is reduced by 6%. Meanwhile, the system
dynamic stability is improved, and the shaft stability of wind
turbines is assured.
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4.4 Dynamic Response After the Load Event
To verify the frequency regulation performance of the designed
inertia optimization control strategy, the initial conditions of the
simulation system are changed, the load at B16 is set to suddenly
increase by 1200 MW at 2 s, and the dynamic response of the
system is obtained as shown in Figures 9–11.

It can be seen from Figure 9 that, compared with no
additional control, the frequency drop amplitude under
constant inertia control is reduced by 28%, but the
frequency recovery time is longer. The optimized inertia
control can speed up the transient process of the system
and improve the dynamic stability of the system while
assisting the frequency adjustment of the system. As shown
in Figures 10, 11, after the optimized inertia control proposed
in this paper is applied, the rotor speed fluctuation amplitude
of the wind turbine is reduced by 4%, and its output power
changes more smoothly, which significantly improves the
stability of the wind turbine and effectively shares the
frequency modulation of the synchronous generator pressure.

5 CONCLUSION

In this paper, the influence of inertia control on the system and
wind turbine shafting dynamic stability is analyzed by
establishing the state equation of the grid-connected system of
the wind turbine, and the optimal control strategy of inertia is
designed. The conclusions are as follows:

1) The virtual inertia control of variable-speed wind turbines
can effectively improve the system inertia weakening caused by
wind turbine grid connection, but the increase of the system
equivalent inertia time constant will lead to a decrease in the
system damping ratio and slow power oscillation attenuation.
The integral manifold method is used to reduce the order of the
small-signal model of the wind turbine shafting. With the
increase of the differential control coefficient kv, the vibration
modal characteristic root of the wind turbine shafting is close to
the imaginary axis. Under virtual inertia control, wind turbines

have an extensive range of power regulations and frequent
rotational speed changes impact the mechanical life of wind
turbine shafting.

2) Virtual inertial control based on a nonlinear disturbance
observer is designed to optimize the virtual inertia control
strategy, compensate for the support power output by the
wind turbine, and reduce the virtual inertia based on ensuring
the frequency modulation effect by estimating the
unbalanced power generated by the system in the
disturbance process. Thereby the system damping
characteristics are improved, and the grid-friendly function
of additional inertia control is improved. By establishing the
critical stability transient energy function of the wind turbine
shafting, the setting range of the kss control coefficient of the
shafting stabilizer is given, to ensure the stability of the wind
turbine oscillation.
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A Non-Scheduled Multi-Stage
Decision-Making Approach to Control
Cascading Failures
Yumeng Liu1*, Tao Wang2 and Jiayi Guo1

1Department of Electrical Engineering, North China Electric Power University-Baoding, Baoding, China, 2Department of
Mathematics and Physics, North China Electric Power University-Baoding, Baoding, China

The control research on cascading failures is critical to ensure the reliability of power
supply. A path-driven multi-stage corrective control model for the whole process of
cascading failures is established to eliminate the risk of cascading failure. For the
cascading failure process caused by overloading, the selection criterion for subsequent
outage is defined according to the mechanism of propagation of cascading failures. The
path-driven constraints and power relaxation constraints are extracted based on the
selection criterion for a subsequent outage. A model coupled with non-scheduled multi-
stage decision-making is designed by considering the flexibility of control action
implementation to optimize the sum of control cost and load-shedding risk for
elimination of cascading failures. The verification results show that the proposed
method can reduce the probability of outages of tripped branches and successfully
eliminate cascading failure.

Keywords: cascading failure, path-driven, multi-stage decision-making, control, power system

1 INTRODUCTION

Due to human factors and external environmental factors such as natural disasters, large-scale blackouts
remain difficult to avoid formodern power systems, as evinced by themany large-scale blackouts that have
occurred around the world in recent years (Hines et al., 2009; Xue and Xiao, 2013). Most blackouts are
found to be caused by cascading failures (Wong et al., 2007; Zeng et al., 2015; Nagpal et al., 2018).
Specifically, local disturbances such as generator and transmission line outages can result in a series of
successive outages through network connections, resulting in great economic losses and negative social
influence. Therefore, it has important significance to quickly and accurately predict the cascading failure
process and establish a targeted framework of defense for the predicted cascading failure.

According to the different modeling ideas, there are mainly two types of control approaches for
cascading failure. The first type of control method is from the perspective of macroscopic system
theory (Lin et al., 2018; Kornbluth et al., 2021). The control methods based on macroscopic system
theory focusing on load optimization (Tu et al., 2013) and network structure reinforcement (Liu
et al., 2019) are taken as preventative actions to release system operating stress and avoid blackouts.
Those methods are applied to provide a reference for power system planning and design; however, it
is difficult to realize cascading failure control in practical operation of the power system. Therefore,
the research on cascading failure control in power systems is mainly based on reductionism, which
consists of initial disturbances and control considering cascading effects.

Security constrained optimal power flow (Capitanescu et al., 2011) is a deterministic model for
initial disturbances, including prevention (Azzolin et al., 2018) and correction (Bi et al., 2018),
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according to the timing of the implementation of control actions.
The deterministic method lacks risk awareness, and overly
conservative control schemes can increase control costs. Risk
is a comprehensive measure of probability and results in
uncertain events, including risk identification, risk assessment,
and risk control. Among them, the risk identification and
assessment of cascading failures have been widely discussed,
and considerable results have been achieved. In addition,
mathematical programming, reinforcement learning methods,
and deep learning approaches (Li et al., 2022) are used to
solve the above model. However, the risk control of cascading
failures is still confined to the preventive control of cascading
failures or the corrective control of a given cascading failure stage,
especially for the initial outage. Zhai et al. (2019) compared two
corrective control models of cascading failures: non-recurring
corrective control and that of two consecutive cascading failure
stages. The simulation results show that the two consecutive
stages perform better than non-recurring corrective control.
However, corrective actions are taken only at two consecutive
stages, which reduces the flexibility around control timing.
Subsequently, Gan et al. (2020) proposed a multi-stage
corrective control model to study the predicted cascading
failure. The mechanism of propagation of the cascading failure
process caused by overload is not considered in the control
model, that is, the influence of a control action on the branch
outage probability and the constraints between outage probability
of the tripped branches and in-service branches. Although the
resulting control schemes can reduce the outage probability of a
tripped branch, the outage probability of an in-service branch
may increase significantly, even exceeding the outage probability
of the tripped branch. Therefore, it is important to explore how to
correct a given cascading failure process under the constraints of
the cascading failure propagation mechanism. In this report, an
optimal control considering the constraints of the cascading
failure mechanism of propagation, the so-called path-driven
multi-stage corrective control (path-driven MSCC), is
presented to protect power systems against cascading failure.

This report is organized as follows. Section 2 presents an
analysis of the interaction between the MSCC and the cascading
effect. Extraction of path-driven constraints and power relaxation
constraints is based on the mechanism of propagation of
cascading failures in Section 3. And Section 4 discusses the
effects of the above two constraints on the control scheme
obtained by the path-driven MSCC. Section 5 concludes the
report.

2 INTERACTION BETWEEN CASCADING
FAILURE PROCESS AND MSCC

For cascading failures caused by overload, when a branch is
randomly selected as the initial disturbance, the outage
probability of in-service branches can be calculated by (1),
given by Zima and Andersson (2005). The selection criterion
for a subsequent outage (Wei et al., 2018) is adopted, i.e., choosing
the branch with largest pi,k among all branches as the tripped
branch at the (k+1)th stage:

pi,k �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, Fi,k ≤Frated
i

1

Fmax
i − Frated

i

(Fi,k − Frated
i ), Frated

i <Fi,k ≤Fmax
i

1, Fi,k >Fmax
i .

(1)

In actual operation, the change of active power injections, demand
response, and topology optimization can be used to correct power
flow on the branches. The outage probability of in-service branches
and their maximum values are also changed, as given by (1). Thus,
the control action can affect the outage probability of tripped
branches and even change the branches that tripped during the
cascading failure process. Similarly, the network topology determined
by tripped branches also affects the distribution of nodal power
injections on the branches. The interaction between the cascading
failure process and theMSCC continues until there are no overloaded
lines in the power system.

3 PATH-DRIVEN MSCC MODEL

In this section, the path-driven MSCC for the whole cascading
failure process is proposed, in which path-driven constraints and
power relaxation constraints are taken into consideration at each
cascading stage.

3.1 Objective Function
The goal of MSCC is to minimize the load-shedding risk caused
by cascading failures with the lowest control cost, and the
objective function f is calculated as follows:

minf � ∑vcon
k�1

⎛⎝∏k
m�1

πm
⎞⎠⎛⎝∑

g

αgPGDg,k +∑
n

βnLDn,k
⎞⎠, (2)

where vcon denotes the total number of cascading stages with
corrective control actions; because the proposed multi-stage
control is designed to eliminate cascading failures, vcon is an
unknown variable and less than the total number of cascading
stages l without corrective control. πk is the maximum of an
overloaded branch probability at the (k-1)th cascading stage,
i.e., πk � max(pi,k−1). Therefore, the multiplication of πk over
stages is the probability of cascading failure. PGDg,k and LDn,k are
the power generation adjustment at unit g and load shedding at
node n at the kth cascading stage. αg and βn are the cost
coefficients of PGDg,k and LDn,k, respectively.

3.2 Path-Driven Constraints
In this report, the research object is the predicted cascading
failure process, so the same subsequent outage selection criteria
should be used in both the cascading failure prediction and the
cascading failure control processes; therefore, the outage
probability of the tripped branch must satisfy path-driven
constraints in the MSCC model of cascading failure, given by

pi,k ≥pe,k ∀e ∈ Ek, (3)
where Ek is the set of in-service branches. The physical meaning
of Eq. 3 is that the outage probability of predicted outage branch i
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at the kth stage is greater than that of other in-service branches in
power systems. Eq. 3 ensures that corrective control actions can
only affect the probability of an outage on a tripped branch
without changing the tripped branch subject to the subsequent
outage selection criteria described above.

3.3 Power Relaxation Constraints
To balance cost and load-shedding risk in corrective control, the
corresponding power relaxation coefficients γ1 and γ2 are set for
predicted tripped branches and other in-service branches. As the
control relaxation coefficient decreases, the upper capacity of the
power flow allowed on branches is gradually reduced in the
corrective control model. At each cascading stage, the power
relaxation constraints are expressed as

{
∣∣∣∣Fi,k

∣∣∣∣≤ γ1Frated
i k � 1, 2,/, vcon − 1∣∣∣∣Fi,k

∣∣∣∣≤Frated
i k � vcon,

(4)

{
∣∣∣∣Fe,k

∣∣∣∣≤ γ2Frated
e k � 1, 2,/, vcon − 1∣∣∣∣Fe,k

∣∣∣∣≤Frated
e k � vcon,

(5)

where Fi,k and Fe,k are the active power flows on predicted tripped
branches and other in-service branches, respectively. Eqs 4–5
represent power flow on branches being allowed to exceed its
threshold in the former (vcon-1) stages; meanwhile, there may be
differences in the degree of power relaxation for predicted tripped
branches and other in-service lines.

3.4 Power Flow Constraints
At each cascading stage, the proposed model is subject to the
following power flow constraints:

Pn,k � ∑
Fr(i)

Fi,k − ∑
T(i)

Fi,k, (6)

PGmin
g ≤PGg,k ≤PGmin

g , (7)
0≤PGDg,k ≤PGDmax

g , (8)

0≤ LDn,k , 0≤ ∑k
m�1

LDn,m ≤PDmax
n , (9)

where PGg,k, PGmin
g , and PGmax

g are power generated by unit g and
its minimum and maximum capacities, respectively. PGDmax

g and
PDmax

n are the maximum allowable power generation adjustment
of unit g and maximum allowable load shedding of node n,
respectively. Eq. 6 is the power balance equation. Eqs 7–8 limit
power outputs of the generators and their power output
adjustment, respectively. Eq. 9 is the load-shedding limit.

Eqs 2–9 imply that, due to the uncertainty of vcon, the path-
driven MSCC model is a non-scheduled multi-stage decision-
making optimization for the whole process of cascading failure. It
is worth noting that control action implementation is not
confined to one or more given cascading failure stages. So,
there is a choice to take control actions at each cascade stage.

3.5 Solving the Path-Driven MSCC Model
The proposed model is a non-linear programming problem
which is difficult to be solved directly. Therefore, we draw on
the idea of the two-layer decomposition optimization scheme

proposed by Liu et al. (2015), and the genetic algorithm (Shi et al.,
2021) is used to solve it. The upper-level model optimizes the
outage probability of predicted tripped branch for each cascading
stage, and the obtained values are imported into the lower-level
model. Output adjustment of unit and load shedding are
optimized in the lower-level model.

4 EXAMPLE ANALYSIS

4.1 Validation of Path-Driven MSCC Model
The IEEE 39 Bus System is employed to validate the proposed
method and analyze the corresponding results. The IEEE 39 Bus
System consists of 10 units, 39 buses, and 46 branches. In
addition, the system load in normal operation is 6,254.2 MW,
and the total installed capacity is 7367 MW. The transmission
capacity of branch is set to 95% of its original value, and the
transmission capacity of branch 17–18 is modified to 300 MW.
The active adjustment of the unit is 15% of the unit capacity; αg
and βn are set to 1 $/MW and 100 $/MW, respectively (Carreras
et al., 2001). Power relaxation coefficients γ1 and γ2 are both set to
1.4. The tripping of branch 1–2 is selected as the initial
disturbance, and subsequently, the power flow on branch 2–3
with its rated capacity of 475 MW increases from 450.81 to
757.62 MW. The cascading effect continues to propagate until
the grid is decoupled, and the cascading failure process is denoted
as Ia = {1–2, 2–3, 17–18, 15–16, 1, 1, 1, 1}. Figure 1A presents the
connection states of IEEE 39 Bus Systems after suffering the
cascading failure process Ia. In Figure 1, the blue balls are the unit
nodes, while black ones are the load nodes and red branches
characterize overloaded branches. It is worth noting that the IEEE
39 node system not only is decoupled into two islands but also
contains an overloaded branch in each island.

The proposed model is applied to devise the control schemes
for the cascading failure process Ia. With corrective control, the
cascading failure process is truncated from Ia to Ib = {1–2, 2–3,
17–18, 1, 0.48, 0.31}, and the connection states of IEEE 39 Bus
Systems after suffering the cascading failure process Ib are shown
in Figure 1B. As can be seen from Figure 1B, with corrective
control, there are no multiple islands and overloaded branches in
IEEE 39 Bus Systems, indicating that path-driven MSCC can
successfully eliminate cascading failures in three cascading stages.

4.2 Effect of Vcon
Due to the uncertainty of vcon, the proposed path-driven MSCC
model is a non-scheduled multi-stage decision-making
optimization facing the whole cascading failure process. In
other words, the optimal control approach is designed to
correct the cascading effect within the first l cascading stages.
This non-scheduled model is compared with the scheduled model
(i.e., vcon is restricted to a certain value), and the results are
summarized in Table 1.

If vcon is restricted to 1, after implementing the corrective action,
the power flow on branch is less than its threshold and the cascading
process caused by overloaded branches ends. The MSCC will be
transformed to non-recurring corrective control, and path-driven
MSCC is superior to non-recurring corrective control in terms of
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load-shedding risk and objective function. For the scheduled MSCC
model, when vcon = 3, the values of the above two indicators are the
lowest at 11,412.95 and 106.05, respectively. With the scheduled
constraints, theMSCCmodel needs to be solved repeatedly according
to the value of vcon, and the solution time gradually increases as vcon
increases. Then, the optimization results with different vcon values are
compared, and the optimal solution is obtained. The non-scheduled
MSCCmodel proposed in this report can be solved once to obtain the
optimal solution.

4.3 Effect of Path-Driven Constraint
If the path-driven constraint is not considered in path-drivenMSCC,
i.e., the constraint (Eq. 3) is removed, the model is denoted as Model
2. Table 2 shows the branch outage probability ranking with the
control scheme obtained by Model 2. The data listed in bold are the
predicted tripped branches and their outage probability. Notably, the

initial disturbance is the selected outage, so there is no ranking of
branch outage probability at the first cascading stage.

After control action is implemented at the third cascading stage,
the outage probability of predicted tripped branch 15–16 is 0.01. In
contrast, the branch with maximum outage probability is branch
4–14, and its outage probability is significantly greater than that of
predicted tripped branch 15–16. From the defined criterion for
candidate outage, branch 4–14 is chosen to serve as the tripped
branch at the next cascading stage, so the cascading failure process
will deviate from the original predicted cascading process.

Furthermore, under the corrective control obtained by using
Model 2, the cascading failure process considering the selection
criterion for subsequent outage is Ic = {1–2, 2–3, 17–18, 4–14,
6–11, 1, 0.49, 0.46, 0.21, 1}. It can be seen from Ic that although the
control scheme obtained by Model 2 can reduce the outage
probability of a tripped branch, there are still overloaded

FIGURE 1 | IEEE 39BusSystems. (A)Connection statesof IEEE39BusSystemswithout control. (B)Connection states of IEEE39BusSystemswith path-drivenMSCC.

TABLE 1 | Effect of vcon on the performance of the scheduled MSCC model.

vcon Cascading failure process Load-shedding risk Objective function

1 {1–2,1} 448.54 45,760.86
2 {1–2,2–3,1,0.43} 115.43 12,310.87
3 {1–2,2–3,17–18,1,0.48,0.31} 106.05 11,412.95
4 {1–2,2–3,17–18,15–16,1,0.47,0.26,0.01} 109.47 11,749.17

TABLE 2 | Branch outage probability ranking with the control actions obtained by Model 2.

Ranking k = 1 k = 2 k = 3 k = 4

Branch Outage probability Branch Outage probability Branch Outage probability Branch Outage probability

1 1–2 1 2–3 0.49 17–18 0.46 4–14 0.21
2 1–2 1 6–11 0.14 — — 6–11 0.03
3 1–2 1 — — — — 15–16 0.01

The data listed in bold are the predicted tripped branches and its outage probability.
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branches in the network even after four cascading stages, that is,
Model 2 cannot eliminate cascading failure processes.

4.4 Effects of Power Relaxation Constraints
In this part, the power relaxation coefficient is modified to 1,
denoted as Model 3. Model 3 is solved and compared with the
results of Model 1, as summarized in Table 3.

As can be seen from Table 3, compared with Model 3, Model 1
provides better performance in terms of load shedding, risk of
load shedding, and objective function. This is because the control
scheme obtained by Model 3 needs to shed more load to satisfy
the constraint whereby the power flow on a branch cannot exceed
the pre-set threshold for in-service branches other than on the
branch predicted to trip. As the transmission capacity of branch is
further reduced, it may appear that Model 1 can provide an
effective control scheme, while Model 3 fails to obtain a corrective
control scheme. This is because in extreme operating conditions,
when the control action is implemented to eliminate the power
flow overload of one branch, it may inevitably cause the power
flow overload of other branches. Therefore, the power relaxation
constraints can not only help to obtain an available control
scheme in extreme conditions but also reduce the control cost.

5 CONCLUSION

A path-driven multi-stage corrective control method
considering the uncertainty of vcon is proposed to eliminate

the cascading failure process. According to the mechanism of
propagation of cascading failures, path-driven constraints and
power relaxation constraints are extracted. Adjustments of
nodal power injections including unit output adjustment and
load shedding are considered corrective controls, and the
proposed model is optimized by minimizing the sum of the
expected control cost and load-shedding risk. The results
verified that the path-driven MSCC method can correct the
cascading failure process in an effective and cooperative
manner. The effects of the uncertainty of vcon, path-driven
constraints, and power relaxation constraints on the
applicability and effectiveness of control scheme are
discussed. When path-driven constraints are not
considered, the obtained control scheme may fail due to
change of cascading failure paths. When power relaxation
constraints or the uncertainty of vcon is not considered, the
resulting solutions are too conservative.
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Assessing wave energy
converters in the gulf of Mexico
using a multi-criteria approach
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The wave power in the Gulf of Mexico was analyzed, using 42 years

(1979–2020) of simulated data, with ERA-5 winds to force the WAVEWATCH

III wave model. The model was successfully validated with three NDBC buoys,

42,055, 42,001 and 42,002. Comparison of significant wave heights obtained

from the Jason-2, Cryosat-2, and Saral satellites showed good mean

correlation coefficients and root mean squares. The spatial distribution of

wave power was studied, as well as its seasonal variability. The region

studied has moderate availability of wave power with marked seasonality. A

multi-criteria MCA approach, including both sea state and wave energy

converters (WECs), was then applied. Nine virtual sites were selected for the

study and the AAHPA device gave best results in 7 virtual sites and the Wavestar

device in the remaining two. The technology of these two devices, a system of

oscillating buoys, is the most viable technology for the Gulf of Mexico.

KEYWORDS

wave power, wave energy converters, wavewatch III, gulf of Mexico, multi-criteria
approach

Introduction

The availability of energy is an important factor in the development of any country’s

economy and in the welfare of its people. However, the unsustainable use of energy

resources impacts the environment, human health, and economic progress (Pérez-

Denicia et al., 2017). In 2020 in Mexico, most energy was generated from oil 59.8%,

followed by natural gas at 23.2%, renewable energy 10.5%, coal 3.6%, and nuclear 2.0%. Of

the renewable sources geothermic energy, solar and wind accounted for 3.4%,

hydroelectric 1.3% and biomass 5.7% (SENER, 2020). As the demand for electricity in

Mexico continues to grow, our commitment to try to decrease the amount of energy

produced from fossil fuels is becoming vital, and therefore all the available clean energy

resources must be considered. Marine energy from waves, currents, tides, thermal

gradient and salinity gradient must be assessed. Among these, wave energy has

greatest potential (Soerensen and Weinstein, 2008), partly because it is more

predictable than other renewables, such as wind or solar (Kamranzad and

Hadadpour, 2020).

Global assessments of the annual mean wave power estimate maximum values in the

Gulf of Mexico (GoM) to be 5–10 kW/m (Cornett, 2008; Mørk et al., 2010; Gunn and
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Stock-Williams, 2012; Rusu and Rusu, 2021). In water depths of

over 40 m, Guillou and Chapalain (Guillou and Chapalain, 2020)

found an annual mean power of less than 8 kW/m in the GoM,

which coincides with that of Appendini et al. (Appendini et al.,

2015). Off the Mexican coast in the GoM, Félix et al. (Felix et al.,

2018) found that the multi annual wave energy potential

excluding storms, is 18.0 MW, with 24.2 MW, including

storms (Hs = 4 m). More specifically, Hernández-Fontes et al.

(Hernández-Fontes et al., 2019) stated that the wave power

availability for a wave power threshold of over 5 kW/m is

available 60–70% of the time off the states of Quintana Roo

and Tamaulipas. It should be pointed out that numerical results

of Hernández-Fontes et al. (Hernández-Fontes et al., 2019) were

not validated with wave measurements.

The GoM has significant urban and industrial development, and

thus a substantial base of electricity consumers, as well as almost

1900 oil platforms that require an electricity supply (Bureau of Safety

and Environmental Enforcement, 2020). However, the GoM is not

considered to offer steady wave power for energy harnessing, due to

hurricane risk and the variability of the potential resource (annual

index exceeding 1.0) (Cornett, 2008; Guillou and Chapalain, 2020).

Guiberteau et al. (Guiberteau et al., 2015), however, suggested that the

Power Buoy and Pelamis wave energy converters (WECs), are

capable of adapting to the variability and to capture wave energy

to provide some electricity to the oil platforms in the GoM. Haces-

Fernández et al. (Haces-Fernandez et al., 2018) also suggests that the

combination of Pelamis and wind power is a good option.

In the present quest for sustainable energy resources, the

adaptation of WEC technologies for low-medium wave power

regions has become a topic of research. If these regions cannot

supply electricity to large centers of consumption, then perhaps

the wave energy harvested can meet local needs. This study

explores various WEC technologies for harnessing wave energy

in the GoM, at sites associated with oil exploration and

exploitation. A multi-criteria analysis was used to select the

most viable WEC technology. The WAVEWATCH III wave

model (WW3) was used, validated with National Buoy Date

Center (NDBC) data and satellite altimetry data. The results

obtained for 1979–2020 (42 years) allowed us to study

interannual variations in wave parameters in the deep waters

of the GoM. A numerical characterization of the wave power was

carried out, and site selection and WECs were evaluated.

Materials and methods Section of this paper describes the

implementation and methodology of the model. In Results and

discussion Section the model validation, the wave power analysis

and the analysis of the different WECs using the multi-criteria

approach (MCA, also known as MCA factor) are shown.

Materials and methods

This section is divided into three stages: the implementation

and validation of the WW3 model for 1979–2020 is described, a

brief description of the wave power in the GoM is given and,

finally, the analysis of WECs at various sites is presented, using

the MCA.

Study area

The GoM is a semi-enclosed sea (Figure 1) with moderate

waves, reaching significant wave heights of about 1 m (Ojeda

et al., 2017). The extreme waves generated in the GoM are

primarily due to frontal systems, tropical cyclones and winds

with southern and southeastern components known as

“Suradas”. The cold fronts in the area can lead to abrupt

temperature changes (up to 20°C in 24 h) and rainfall of

200 mmday−1 with strong winds and thus large waves (Pérez

et al., 2014). The cold front season usually lasts from October to

April, with the most intense period being between December and

March (Appendini et al., 2014). Meteorological data from 1981 to

2010 (CONAGUA, 2019) shows that on average there are 44 cold

fronts per season. The North Atlantic tropical cyclone season is

from June 1 to November 30, with most tropical cyclones directly

affecting the Mexican coast in September (Rosengaus et al.,

2014). Hurricane winds vary in severity and direction (Young

and Burchell, 1996). The “Suradas” are associated with high-

pressure systems that can occur at any time of the year, mostly

affecting Veracruz, Campeche, Yucatán and Quintana Roo.

These anticyclonic systems provide warm, stable conditions

although, but the speed of the dry winds can reach over

60 kmh−1 (CENAPRED, 2019).

Numerical model

The analysis undertaken here relies on hindcast data from the

WW3 version 6.07 [WAVEWATCH III Development Group

(WW3DG, 2019)], a third-generation wave model forced with

reanalysis winds from 1979 to 2020. This model solves the

random phase spectral action density balance equation for

wavenumber-direction spectra (Massel, 1996). The output

wave parameters of the model are the significant wave height,

peak period and peak directions recorded with a time resolution

of one hour.

Model set up

The WW3 model for the GoM is built on a structured mesh

with a resolution of 0.1875°. The wave spectrum was discretized

in 24 uniformly distributed directions and 29 frequencies

distributed in a logarithmic mesh covering the interval of

0.06623–0.9551 Hz, with a frequency increase factor set at 1.1.

Bathymetric and obstacle grids have a resolution of 15 arc-

seconds from the GEBCO database [GEBCO Compilation
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Group (GEBCO, 2021)]. Coastline and island data are from the

high-resolution GSHHS model database (Wessel and Smith,

1996). The wind forcing is from ERA5 (Copernicus Climate

Change Service (C3S), 2017) from the European Center for Mid-

Range Climate Forecasting (ECMWF). This dataset, covering the

period from1979 to 2020, has temporal and spatial resolutions of

one hour and 0.28°, respectively. The source term package ST4 by

Ardhuin et al. (Ardhuin et al., 2010) was used to improve the

duplication of wave parameters (Kalourazi et al., 2021). The time

steps for the global, spatial, intra-spectral propagation and the

source term integration are 1800 s, 900 s, 1350 s and 15 s.

Validation

Validation of the WW3 model was carried out by comparing

the model predictions against altimetry (Jason-2, Cryosat-2 and

Saral satellites) and buoy data from the NOAA Deep Sea National

Buoy Date Center (NDBC) (Figure 2). The satellite data are from

the Sea State project (Piollé et al., 2020) of the IFREMER-Climate

Change Initiative (CCI). The WW3 results were interpolated

linearly over spatial and temporal scales based on the positions

of satellite trajectory observations for the periods: 01/01/2009–31/

12/2017, Jason-2, 01/01/2011–31/12/2017, Cryosat-2, and 01/01/

2014–31/12/2018, Saral. The altimeter data is the “along track” type,

implying that when there are no altimeter data, there is no data

from the model in some time periods. In the case of NDBC buoys,

validation was performed according to hourly data for the

significant wave height (Hs) and dominant period (Tp) over the

10-year period 2008–2017. To analyse deviations of simulated wave

variables from satellite data and buoy observations, the following

statistical metrics were used: mean bias, root mean square error

(RMSE) and Pierson correlation coefficient (CC). They are defined

as follows:

Bias � �s − �o, (1)

RMSE �

���������������
∑N

i�1(si − oi)2/N

√√
, (2)

CC � ∑N

i�1(si − �s)( oi − �o)/σsσo, (3)

where N is the number of available observations, the overbar

indicates a mean value, si indicates the simulated variable and oi
the observed variable, and σs and σo are, in respective order, the

standard deviation of the simulated and observed variables.

Wave energy resource assessment

Following model validation, a total of 42 years from 1979 to

2020 was simulated. The wave power density (P) in kW/m for

deep water conditions is given by:

P � ρg2

32π
TeH

2
s (4)

where ρ is the density of seawater (kg
m3), g is the gravity

acceleration (ms2), Te is the wave energy period (s), Hs is the

significant wave height (m) and Te � 0.86 Tp (Guillou, 2020),

with Tp being the dominant wave period (s).

FIGURE 1
Study area, showing US offshore oil platforms (yellow dots) and oil exploitation areas in the GoM (Comisión Nacional de Hidrocarburos, CNH) in
both shallow and deep water (orange and red respectively), and virtual sites (blue dots).
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Characteristics of the selected WECs
Seven different WECs were selected for this work: Pelamis,

OE Buoy, Oceantec, Langlee, Wavestar, Oyster and AAHPA.

These WECs operate using different principles. Table 1 presents

the main characteristics of these WECs: power rating, operating

principle and power matrix resolution. The manufacturers of the

WECs specify these performance characteristics in terms of a

power matrix. This gives a representation of the WEC response

in terms of average power output, using the two sea state

parameters (Hs and Te or Tp). The power captured by the

WEC is the product of the power matrix of the device and

the number of sea state hours represented by the sea state matrix

of Hs and Te or Tp. The usefulness/applicability of the WECs

evaluated depends on them being able to operate at their rated

power for as long as possible in the GoM. Because the average

wave regime in the GoM is lower than the regime these WECs

were designed for, the part of the power matrix with highest

powers of each device is not exploited. Thus, the device with most

potential is the AAHPA prototype, an oscillating buoy

specifically designed for the wave conditions in South Texas.

Pelamis device

The Pelamis is a WEC consisting of a series of semi-

submerged cylindrical sections, connected by hinged joints. It

resists the wave-induced movement of the joints by means of

hydraulic rams that pump oil at high pressure from motors

running electric generators (Carcas, 2003). In 2008, 3 Pelamis

devices were tested in Agucadoura (Portugal). In

2009–2010 another trial was carried out in the

United Kingdom with a second generation device and another

FIGURE 2
Satellite trajectories from 1st to 10th of January 2015 and NDBC buoy positions.

TABLE 1 Main characteristics of the WECs selected.

Device Rated power (kW) Classification Matrix resolution References

Pelamis 750 Attenuator 0.5 m × 0.5 s Carcas, (2003)

OE buoy 2880 Oscillating water column 0.5 m × 1.0 s Babarit et al. (2012)

Oceantec 500 Attenuator 0.5 m × 1.0 s Patel et al. (2020)

Langlee 1665 Oscillating water surge converter 0.5 m × 1.0 s Babarit et al. (2012)

Wavestar 600 Point absorber 0.5 m × 1.0 s (Marquis et al., 2012; Ambühl et al., 2016; Heo and Koo, 2021)

Oyster 290 Terminator 0.5 m × 1.0 s Silva et al. (2013)

AAHPA 178 Point absorber 1.0 m × 1.0 s Aderinto and Li, (2020)
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was installed in 2012 by Scottish Power. In 2014, the company

went into receivership and the intellectual property was

transferred to the Scottish government body: Wave Energy

Scotland (EMEC, 2022).

OE buoy device

The OE Buoy is an oscillating water column device,

developed by Ocean Energy Ltd., Ireland. It has a semi-

submerged open chamber below the sea surface with an air

pocket held above the water column. The airflow is converted

into electrical energy as the column is oscillated by incoming

waves that pass the air through a two-way turbine (Babarit et al.,

2012). In its early stages, a 1:50 scale model of the device was

tested in Ireland, and later, a 1:15 scale model was successfully

tested in France, followed by ocean trials. In 2011, a 28-tonne 1:

4 scale model was installed in Galway Bay, Ireland, providing

energy production data (Lavelle and Kofoed, 2011; Ocean Energy

Ireland, 2017).

Oceantec device

TheWECOceantec is an attenuator device. It extracts energy

from the waves in a gyroscopic device, using the relative inertial

motion caused by the waves. This motion powers an electrical

generator through a series of transformation stages. The

gyroscopic device is housed within a structure, or hull, that

stays aligned with the wave front, giving a pitch movement.

The structure containing the absorber element and the other

elements is vessel-shaped and can be scaled in size, to suit the

wave conditions at a given site. The mooring system consists of

four lines that allow theWEC to cope with the incident wave and

maximizes the absorption of directional wave energy (Patel et al.,

2020). Tests were carried out in 2008, off the north coast of Spain

(Salcedo et al., 2009).

Langlee device

This oscillating wave surge converter extracts kinetic energy

from the orbital motion of water particles excited by waves,

through a series of hinged flaps located just below the water

surface. It has a series of pairs of flaps that are placed

symmetrically opposite each other, mounted on a semi-

submerged, floating steel frame. At suitable wavelengths, the

symmetry helps to minimize the forces acting on the structure

and moorings, while the flaps must complement each other to

extract the maximum amount of energy (Babarit et al., 2012). The

device was developed by Langlee Wave Power, based in Norway.

In 2012 they conducted scale model tests at the Plataforma

Oceánica de Canarias (PLOCAN) facility (Langlee Wave

Power AS, 2013).

Wavestar device

The Wavestar device is a point absorber. It is essentially a

group of floats that rise and fall with the movement of the waves.

A hydraulic system transfers this movement, converting it into

the rotational motion of an electric generator. The Wavestar can

be installed on shore, inland, or in shallow waters, or it can be

adapted for deep waters, and can work in combination with at

least one wind turbine (Marquis et al., 2012). In extreme events

that threaten the system, the bridge is raised to a safe height, as

are the arms (Drew et al., 2009; Aderinto and Li, 2019). The

Wavestar system was developed in Denmark in 2000 and in

2004 a 1:40 scale model was tested in the wave tank at Aalborg

University to verify the performance of the concept and

document the energy data obtained. In 2005, a 1:10 scale

model was constructed for ocean testing at Nissum Bredning,

a coastal lagoon in Denmark where the swell size is

approximately 1:10, compared to the North Sea. The device

was successfully installed in 2006, accumulating

15,000 operational hours and withstanding over 15 storms

with no damage to the system (WaveStar, 2019). In 2010, a 1:

2 scale model was installed at a depth of 6 m. There were two

versions of this 110 kW-capacity device, with different numbers

of floats. The power matrix used in this research corresponds to

the 20-float version with a nominal power of 600 kW.

OYSTER device

The Oyster is a device of oscillating fins fixed to the bottom.

The floating hinged flipper moves back and forth with the

movement of the waves, and the two hydraulic pistons pump

water at high pressure to a shore-based hydroelectric station that

drives an electricity-producing generator (Silva et al., 2013). The

Oyster device was developed in Scotland from 2005 by the

Aquamarine Power company. The first full-scale device was

tested in Orkney, Scotland, and the first Oyster was installed

with the help of the European Marine Energy Centre (EMEC) in

2009 (Cameron et al., 2010).

AAHPA device

The AAHPA device was designed for the wave conditions in

South Texas (GoM). It consists of a cylindrical buoy that

oscillates vertically through a fixed, solid frame during its

interaction with the waves. The cylinder is hollow, with an

inlet and an outlet that have one-way valves near to the

submerged base of the device. The valves open at a certain

critical wave period and close when the wave period falls to

less than this. This allows resonance at two different wave

frequencies. It does not have a specific mechanism for

converting mechanical wave energy into electrical energy, and

it is known as a self-adjusting WEC because it changes its inertia

by ballasting and deballasting with seawater. As yet, this device is

only a conceptual design; no tests have been performed yet.

The devices selected were designed for areas of high energy,

so it is not possible to harness their full rated power. However, by

studying sites with less energy important information can be

gleaned for future technological development. For example, the

design loads of the WEC is reduced and its probabilities of

survival are increased. In addition, installation, commissioning
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and maintenance are simpler, safer and less costly than at higher

power sites. In areas with low power, the annual variation of sea

wave energy is generally lower, while the tidal range is low (as in

the GoM), facilitating the installation, operation and

maintenance of these WECs (Foteinis, 2022).

Multi-criteria approach

The multi-criteria approach (MCA) index was introduced by

(Kamranzad and Hadadpour, 2020) and later modified by

(Kamranzad et al., 2021). It is used to compare energy extraction

using different WECs at specific sites. The calculation of the index

involves different variables: the exploitable energy at the site (Ee), the

accessibility, the availability, the energy production of the WECs

(Eo), calculated from the sea state matrix of each site and the power

matrix of the WECs, the monthly variability index (MVEo) and the

99th percentile of Hs (H99
s ). However, it does not take into account

factors such as the levelized cost of energy, lifetime of devices,

installation and operation costs, distance to energy consumption

centres, and other important factors. Therefore, this method is

mainly used to compare the type of technology that might be

suitable at a given site, it is a decision-making tool to compare

the suitability of WECs/sites. Although the choice is limited by the

above factors, the MCA index can be used to rank the performance

of WECs, not only in terms of their energy output, but also their

stability. Nine sites, close to oil platforms in the GoM, were selected

(Figure 1).

The total and exploitable wave energy per unit area (Et and

Ee, respectively) are given by:

Et � Pmean t (5)
Ee � Pmean te (6)

where t is the total hours per year (8760 h), te is the theoretical

exploitable time, that is the total hours corresponding to

P> 2 kW/m (Zheng et al., 2013), and Pmean is the mean wave

power.

Accessibility refers to the percentage of time that marine

conditions are favorable for the operation and maintenance of

WEC activities offshore. The wave height threshold taken into

account is that of Lavidas et al. (Lavidas et al., 2018), ranging

from 1.5 to 4 m with increments of 0.5 m. Availability is

calculated according to the percentage of time that the wave

resource is favorable to WEC operations. As a result of Lavidas

et al. (Lavidas et al., 2018), we are considering WECs suitable for

high and low resources in terms of a wave height cut-in (Hcut−in)
and cut-off (Hcut−off ) of 0.5 and 4 m respectively. The analysis of

extreme events is based on the 99th and 95th percentiles of Hs.

The performance of each WEC at the different sites is

assessed in relation to energy production (Eo).

Eo � ∑nT

i�1 ∑nH

j�1 pijPij (7)

where, nT and nH represent n bin of Tp or Te and HS,

respectively, pij represents the percentage of occurrences in

each sea state is determined by Hs and the energy period Te,

and Pij is the rated power matrix supplied by each WEC

manufacturer.

Energy production of a WEC at a given site is estimated from

Eq. 7, which uses the power matrix of a device with the sea state

matrix. The values of Table 3 were estimated by multiplying the

expected energy production of each interval of the power matrix

by the expected number of hours/year of occurrence of that

interval. For this purpose, the wave climate data were represented

using a sea state matrix with the same resolution (i.e. same size of

height and period intervals) as the power matrix of each WEC, to

show the different wave conditions at each of the sites. The

annual energy production was then calculated by summing the

records for each year, and finally, the average annual production

was estimated by taking the 42-years average of the dataset.

Energy production was calculated on a monthly and an annual

basis. The general characteristics of the WECs selected are

described in Table 1 and the power matrices of the WECs

were obtained from the references consulted. It is important

to note that the power matrix used for the AAHPA device is

approximate, derived from the results of the work of (Aderinto

and Li, 2020).

The variability of the wave resource follows the monthly

variability index (MV) provided by (Cornett, 2008).

MV � PM1 − PM12

�P
(8)

where PM1 and PM12 are the mean power of the waves for the

most and the least energetic month respectively, and �P is the

mean wave power.

Combination of all the above factors constitutes the multi-

criteria factor for the selection of a wave energy harvesting site

(Kamranzad et al., 2021),

MCA � ⎛⎜⎜⎝ Ee
max(Ee ) × accessibility(Hs < 1.5) × availability × Eo

max(Eo) ×
min(Hspercentile99)

Hspercentile99

MVEo

⎞⎟⎟⎠
(9)

where annual values of Hs < 1.5 are considered for accessibility. A

higher MCA value indicates a better match for a location/WEC

combination, allowing a classification of the WEC performance,

according to its energy production and stability.

Results and discussion

Validation

The results obtained from the WW3 model were successfully

validated in terms of 10 years daily means of HS and Tp from the

buoy 42,055 (Figure 3 and Table 2). The highest waves and

periods occur in winter, coinciding with the passage of cold
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fronts (CF). In summer, periods of calm can be disrupted by

tropical cyclones (Figure 4). The WW3 model tends to

underestimate the maximum significant height of the buoys,

measured in extreme events (Figure 5), probably due to the

underestimation of the ERA5 maximum winds. Overall, both the

modelled and in situ data from the NDBC buoys in the GoM

show good correlation coefficients (> 0.9 for HS and ≥ 0.7 for Tp)

and root mean square errors (< 0.3 m and < 1.3 s). To simplify,

the results for buoy 42,002 are not presented. The statistical

metrics obtained are comparable to those found in other works

using the WW3 model (e.g. (Sangalugeme et al., 2018; Sun et al.,

2020)). However, the variation in the correlation coefficients for

Tp reflects the failure of the model to represent local extreme

events and long period swells accurately. For both NDBC buoy

and altimetry in the GoM, the values in Table 2 indicate good

agreement between the model data and the in-situ observations.

Figure 6 shows the comparison of the time series of Hs from

the Jason-2 satellite with the WW3 model, which are in good

agreement. The significant height of the satellite is in positive

correlation with the modelled significant height (Figure 7).

Referring to the data in Table 2 the negative bias implies that

the model tends to underestimate the satellite data. For Hs, CC is

greater than 0.9 and RMSE is roughly 0.3 m.

Wave power spatial distribution and wave
climate characteristics

In this section the results of the theoretical wave power in the

GoM, that is, the spatial distribution of the mean wave power, the

percentiles of the wave power and the seasonality of the mean

wave power are described.

In general, mean wave power in the GoM is low. It is seen in

Figure 8 that the highest mean wave power is off the west coast of

the GoM (>5 kW/m). Data from the virtual buoys, shown in

Figure 1, shows that in deep water the mean wave power is about

2–5 kW/m, while closer to the coast, the mean wave power is less

than 2 kW/m.

Figure 9 depicts the 25th, 50th, 75th and 99th percentiles of wave

power for the 42-years interval. The maximum values for all

percentiles are in the northwest of the GoM, at approximately the

same position as the wave power mean maximums. The latter

coincides with the results of Haces-Fernández et al. (Haces-

Fernandez et al., 2018) and Félix et al. (Felix et al., 2018) who

identified the west of the GoM as promising for the harnessing of

wave energy for electricity. Nevertheless, with the exception of the

99th percentile, maximum values are found on the coast of Veracruz.

The 50th percentile, the median, does not exceed 3 kW/m in the

entire GoM. For the 75th percentile, the same distribution occurs

with maximum values in the west of the GoM. However, maximum

values can reach 6 kW/m. Regarding the 99th percentile, the

observed values are between 10 and 55 kW/m, with a maximum

of 55 kW/m in the southwest of the GoM.

FIGURE 3
Comparison between simulated and observed wave parameters from NDBC buoy 42,055 for 2008–2017.

TABLE 2 Validation metrics based on NDBC buoys and satellite data.

Buoy Variable Bias RMSE CC

42,055 Hs (m) 0.02 0.22 0.95

Tp (s) 0.38 0.9 0.84

42,001 Hs (m) 0.02 0.21 0.95

Tp (s) 0.61 1.25 0.70

42,002 Hs (m) 0.04 0.21 0.95

Tp (s) 0.54 1 0.81

Jason-2 Hs (m) −0.26 0.33 0.92

Cryosat-2 — −0.2 0.29 0.93

Saral — −0.24 0.31 0.93
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The mean wave power for each season of the year was also

calculated, based on the 42-year period (Figure 10). The season

with the highest wave power is winter, with an average of 6 kW/m

and maximum values in excess of 8 kW/m. In autumn and

spring, the mean wave power is 4 kW/m with maximum

values of 5.5 kW/m. The least energetic season is the summer

FIGURE 4
Time series of modelled and measured (buoys 42,055 and 42,001) significant wave heights and peak periods.

FIGURE 5
Comparison of the modelled significant wave heights and measured time series for selected extreme events: (A) Hurricane Ingrid (September
2013); (B) Hurricane Dolly (July 2008); (C) Cold front, January 2017; and (D) Cold front, October 2017.

Frontiers in Energy Research frontiersin.org08

Diaz-Maya et al. 10.3389/fenrg.2022.929625

303130

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.929625


with a mean of 2 kW/m and minimum values of up to 0.5 kW/m.

The findings reported here agree with those of Félix et al. (Felix

et al., 2018) and the global trend (Cornett, 2008; Gunn and Stock-

Williams, 2012).

MCA factor

The results of the MCA factor, shown in this section

encompass essential aspects for estimating long-term energy

potential for possible WEC devices and sites. The MCA factor

includes aspects such as total and exploitable wave energy at the

site, accessibility, availability, annual energy production, monthly

variability, as well as extreme values. The results shown are for

9 sites in the GoM, selected for their proximity to oil activity

(Figure 1) where electricity generated from wave energy would

make a considerable contribution to the carbon footprint. Nearby

locations to these platforms areas were used to aid identification:

New Orleans (New), Lafayette (Laf), Corpus Christi (Cor),

Matamoros (Mat), La Pesca (Pes), Tampico (Tam), Veracruz

(Ver), Ciudad del Carmen (Car) and Campeche (Cam).

The annual exploitable energy (Ee) considers the average

power and the number of hours that the power is over 2 kW/m

(Lavidas et al., 2018). The Ee varies between 11.9 (Lafayette) and

30.5 MWh/m (Matamoros) (Figure 11A), although La Pesca,

Corpus Christi and Campeche also have high Ee values. The

ratio of exploitable energy to total energy (Ee
Et
) is 40–67%, with

Matamoros having the highest value and Lafayette the lowest

(Figure 11B). The values seen in the GoM are high compared to

those for the Caspian Sea, Persian Gulf and Gulf of Oman

(Kamranzad and Hadadpour, 2020) where the highest value

was 19%. However, another study in the

Indian Ocean(Amrutha and Sanil Kumar, 2022) found sites

with values of up to 99.7%. Therefore, the GoM is

considered to have a moderate ratio of exploitable to total

energy (Ee
Et
).

FIGURE 6
Time series of modelled and measured significant wave heights from the Jason-2 satellite.

FIGURE 7
Scatter plots of the significant wave heights of modelled and satellite data: (A) Jason-2; (B) Cryosat-2.
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Another factor considered in the MCA is accessibility,

defined as the percentage of time in which it is possible to

operate a device at a given site, or perform maintenance

operations. This parameter is determined according to Hs

thresholds. Figure 11C shows accessibility values on an annual

scale in the categories defined. For the 9 sites considered, theHs

is less than 2 m 94% of the time. Values ofHs < 1.5m at the 9 sites

vary between 72.5 and 88.8% of the time and are used to calculate

the MCA factor. TheWECs would be accessible most of the time,

except during extreme events.

Figure 11D shows the availability values, indicating the

percentage of time when the wave resource favors the

operation of the WEC devices. Availability is greater than

74% at all sites. The highest and lowest values are at La Pesca

FIGURE 8
Spatial distribution of mean wave power.

FIGURE 9
Wave power (kW/m) percentile maps: (A) 25th; (B) 50th; (C) 75th; and (D) 99th. Note the scale in the colour bands is different.
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and Lafayette, respectively. The values for these sites are high

compared to the annual availability value reported of 55.21% in

the Gulf of Oman (Kamranzad and Hadadpour, 2020) and

various sites in the Indian Ocean (Amrutha and Sanil Kumar,

2022), which range from 50% to about 97%. The H99 percentile

value is also considered in the MCA factor. For the sites studied,

this is 2.74 m for Corpus Christi and 3.15 m for Campeche. The

range of values is narrow (Figure 11E).

Table 3 shows the annual energy production (Eo), a

parameter that allows the local conditions at the study sites

for the WECs to be evaluated. The Eo values for the various

WECs are between 83 (OE Buoy) and 1733 MWh (Wavestar).

For all WECs, except the OE Buoy, the Matamoros site has the

highest Eo values.

In addition to the annual energy production (Eo), the

variability of energy at the site must be considered. The

variability indexes calculated for each device and the 9 sites

are shown in Figure 12. The AAHPA device has the lowest

monthly MVIEo variability at all the sites. The MVIEo intervals

are between 2.2 (OE Buoy at the Ciudad del Carmen site) and

0.55 (OE Buoy at the Lafayette site). The more northerly sites

(New, Laf, Cof, Mat, Pes) have lowerMVIEo values than those in

the south.

The MCA factor was calculated for all sites (Figure 13),

allowing comparison of the performance of the WECs at each

study site. For 7 sites, the AAHPA is the most suitable WEC,

followed by the Wavestar at the other two sites. Corpus Christi

site and the sites in Tamaulipas have the highest values of the

MCA factor.

TheWavestarWEC is described as a point absorber (Marquis

et al., 2012; Ambühl et al., 2016; Heo and Koo, 2021), oscillating

body system or wave activated system (Chen et al., 2018; Curto

et al., 2021), or attenuator (Amrutha and Sanil Kumar, 2022). It is

essentially a group of floats whose operation does not depend on

the direction of the waves, ascending and descending with the

upward and downward motion of the waves. This device is small

in size, compared to the wavelength, with smaller horizontal

dimensions than the vertical. It can float on the sea surface or

below the water, relying on the pressure differential (Drew et al.,

2009; Aderinto and Li, 2019; Farrok et al., 2020). It is promising

as a WEC prototype, capable of changing the inertia of the

oscillating body using seawater as ballast and de-ballasting to

FIGURE 10
Seasonal mean wave power maps: (A) spring; (B) summer; (C) autumn; and (D) winter.
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achieve resonance with two different wave frequencies (Aderinto

and Li, 2020).

In areas with a high wave climate, the movements of WECs

are limited in storms, to ensure their survival (Stuhlmeier and Xu,

2018); they do not generate electricity. However, in low-energy

areas, such as GoM, storm survival is not a major issue (Lavidas,

2019). However, existing types of WECs would only fully

function during relatively infrequent high-energy storms and

waves (Foteinis et al., 2017), since low-energy waves could not

drive them. The reason for this is that the power matrix of the

European WECs cannot be used to capacity with the average sea

state of the GoM. The range of significant heights and energy

periods obtained for the sea state matrix was 0< Hs <3.5 m, 0<
Tp <9. In the WECs evaluated in this research, approximately

60–80% of the power matrices cannot be used, as the nominal

power and peak powers are in higher ranges than GoM sea state

matrices. The storm fronts that affect the GoM for half of the

year, can be used to harvest energy (cold fronts and tropical

cyclones), through semi-submerged devices, such as oscillating

buoys.

The power matrices of the converters evaluated in this

research: Pelamis, OE Buoy, Oceantec, Langlee,

WaveStar, Oyster and AAHPA, are added as a Supplementary

Material.

FIGURE 11
(A) Annual Exploitable energy; (B) percentage of the ratio of exploitable energy to total energy; (C) annual accessibility; (D) annual availability;
and (E) 99th percentile values of Hs for different locations in 9 sites in the GoM.

TABLE 3 Annual energy production at each site in the GoM.

New Orleans Lafayette Corpus
Christi

Matamoros La Pesca Tampico Veracruz Ciudad
del Carmen

Campeche

Eo (MWh) Pelamis 117 156 177 213 188 191 150 144 191

OEBuoy 83 98 103 125 116 131 116 120 131

Oceantec 324 451 545 638 551 490 333 300 500

Langlee 230 310 370 419 368 319 216 225 362

Wavestar 1029 1322 1609 1733 1594 1414 1108 1040 1526

Oyster 146 204 245 284 242 218 157 145 229

AAHPA 193 243 284 303 275 240 180 179 277
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Conclusion

From analysis of wave power in the GoM, using simulated

data from the WW3 numerical model with ERA-5 wind-

forcing, good mean correlation coefficients and root mean

squares were found when compared to the significant heights

obtained from the Jason-2, Cryosat-2, and Saral satellites.

While the WW3 model tends to underestimate storms, such

as atmospheric frontal systems and hurricanes, the mean

wave power was found to be 4 kW/m (variation coefficient

2), indicating unstable wave conditions. The month with the

highest mean wave power was January (5.5 kW/m) and the

lowest was July (2.5 kW/m). Winter was the most

energetic season in the GoM, and summer the least. The

monthly and seasonal variability in wave power was

moderate.

FIGURE 12
Monthly variability of Eo of different WECs for the 9 sites.

FIGURE 13
Multi-Criteria-Approach factor of different WECs for the 9 sites.
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Using the multi-criteria approach, AAHPA and Wavestar

technology were found to be the most viable WEC devices at

most of the GoM sites evaluated in this study. The functioning of

these two WECs work uses an oscillating buoy. For the offshore

sites assessed, Corpus Christi, Matamoros, La Pesca, and

Tampico had the highest MCA values. A farm of submerged,

wave activated devices would seem to be the most feasible

alternative. These could provide electricity for nearby oil rigs,

e.g., lighting, communications and impressed current cathodic

protection to prevent underwater corrosion. Other possible end-

uses could be the supply of electricity to power the electric motors

used by fleets of fishing vessels, either via supply stations or by

electricity repositories. For nearshore sites, oscillating buoys are

probably suitable, offering similar services. In addition to these

end-uses of the electricity generated by wave power, water

desalination plants in the area could also benefit from more

sustainably produced energy.

The provision of electricity from the harnessing of wave

power to isolated and socially marginalized communities around

the 9 sites assessed would also be a possible goal. As of now, there

are no wave powered energy generating plants in the GoM, as

indeed is the case in the rest of the world.

If we are to meet the commitments made in the various

internationally signed treaties to produce more energy from

sustainable, clean sources, and to reduce our dependency on

fossil fuels, every potential avenue must be evaluated. We believe

that there is a future for marine energy, particularly wave

powered electricity generation in the GoM. Nevertheless,

substantial wave-to-wire simulations and economic

assessments are still required to improve the attractiveness of

such projects. Investigation into capital and operational

expenditures, as well as levelized cost of energy studies are

vital to assure commercial success.

The GoM, in common with many other places in the world,

has not been considered suitable for wave energy harvesting as it

does not have high energy potential. Existing EuropeanWECs do

not work efficiently with the low energy waves of the GoM, and

would have to be adapted, elevating costs and thus becoming less

attractive to potential investors. However, this study shows that

for areas with prevailing wave periods of 5–8 s, floating buoy

systems are viable, technically and economically in the near

future.
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Proton-conducting ceramics for
water electrolysis and hydrogen
production at elevated pressure
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Golden, CO, United States, 2Pacific Northwest National Laboratory, Richland, WA, United States,
3Metallurgical and Materials Engineering Department, Colorado Center for Advanced Ceramics,
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Pressurized operation is advantageous for many electrolysis and

electrosynthesis technologies. The effects of pressure have been

studied extensively in conventional oxygen-ion conducting solid-oxide

electrochemical cells. In constrast, very few studies have examined

pressurized operation in proton-conducting electroceramics. Protonic

ceramics offer high proton conductivity at intermediate temperatures

(∼400–600°C) that are well-matched to many important thermochemical

synthesis processes. Pressurized operation can bring significant additional

benefits and/or provide access to synthetic pathways otherwise unavailable

or thermodynamically disfavorable under ambient conditions and in

higher- or lower-temperature electrochemical devices. Here we examine

pressurized steam electrolysis in protonic-ceramic unit-cell stacks based

on a BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) electrolyte, a Ni–BZCYYb4411

composite negatrode (fuel electrode) and a BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY)

positrode (air-steam electrode). The cells are packaged within unit-cell

stacks, including metallic interconnects, current collectors, sealing glasses

and gaskets sealed by mechanical compression. The assembly is packaged

within a stainless steel vessel for performance characterization at elevated

pressure. Protonic-ceramic electrolyzer performance is analyzed at 550°C

and pressures up to 12 bara. Increasing the operating pressure from

2.1 to 12.6 bara enables a 40% overall decrease in the over-potential

required to drive electrolysis at 500 mA cm−2, with a 33% decrease in

the cell ohmic resistance and a 60% decrease in the cell polarization

resistance. Faradaic efficiency is also found to increase with operating

pressure. These performance improvements are attributed to faster

electrode kinetics, improved gas transport, and beneficial changes to

the defect equilibria in the protonic-ceramic electrolyte, which more

than compensate for the slight increase in Nernst potential brought by

pressurized operation. Electrochemical impedance spectroscopy (EIS)

coupled with distribution of relaxation time (DRT) analysis provides greater

insight into the fundamental processes altered by pressurized operation.
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Introduction

Protonic ceramics represent an emergent class of materials
that have potential utility in a number of intermediate-
temperature electrochemical applications, including the
production of “green” hydrogen. As shown in Figure 1,
renewable-derived electricity can be used to drive steam
electrolysis to form H2 and O2 products in a protonic ceramic
electrolysis cell (PCEC). Typically operating in the 400–600°C
temperature range, H2Ovapor carried by an air stream is fed into
a gas channel adjacent to the air-steam electrode, or “positrode”.
These gases diffuse through the porous positrode to the
electrode-electrolyte interface, where H2O is electrochemically
split to form protons (OH•O) and molecular oxygen (O2).
While the O2 is swept out from the positrode, the OH•O
transports across the protonic-ceramic electrolyte to the fuel
electrode or “negatrode”, where it recombines to form H2. The
molecular hydrogen diffuses through the porous negatrode
into the adjacent fuel chamber and then exits the cell. Such
devices have the potential to produce pure, dry, pressurized,
carbon-free hydrogen from water and renewable electricity
feedstocks.

Protonic ceramics boast a low activation energy for proton
transport (Kreuer, 1996; Kreuer et al., 2004; Duan et al., 2015).
This enables high proton conductivity at operating temperatures
that may be 200–300°C lower than more-mature oxygen-
ion conducting (O2−) solid-oxide electrolysis cells (SOECs).
These lower temperatures reduce thermally driven degradation
processes, such as nickel agglomeration and coarsening,
chromium poisoning, and creep of metallic stack components.
Further, while the electrochemically produced H2 is diluted
with water vapor in solid-oxide cells, necessitating downstream

FIGURE 1
Illustration of proton-conducting ceramic electrolysis cell.
Adapted from Le et al. (Le et al., 2022), with permission.

separation processes, PCECs provide a pure, dry hydrogen
product stream. The 400–600°C operating temperatures is
sufficiently high to promote facile chemical kinetics and
thermal integration with high-value waste-heat sources, as
well as significantly higher thermodynamic efficiency than low-
temperature electrolysis technologies. Additionally, PCECs offer
operational flexibility as they can potentially run effectively and
efficiently across a range of steam concentrations. With these
advantages, PCECs offer opportunities for large-scale hydrogen
production.

Despite these benefits, reports of high-performance, high-
efficiency PCECs are limited, and reports of pressurized
operation are rarer still. Perhaps most significantly, PCECs
can suffer from low Faradaic efficiency, usually attributed to
electronic leakage across the electrolyte (Gan et al., 2012; Li
and Licht, 2014; Gan et al., 2015; Li et al., 2015; Lei et al., 2017;
Li et al., 2018; Zvonareva et al., 2022). Protonic ceramics are
mixed proton, oxygen-ion and electron-hole conductors in
which each charge carrier’s transference number is determined
by the specifics of the electrolyte composition, operating
conditions and polarization current density (Zhu et al., 2018a;
Zhu et al., 2018b). During electrolysis, water and oxygen
compete for absorption onto surface sites and into the oxygen
vacancies present in the protonic ceramic membrane lattice.
When H2O is incorporated to the membrane, the hydration
reaction produces the desired charge defect and protons are
transferred through the membrane (reaction 1). In parallel,
molecular oxygen incorporation into a lattice vacancy generates
electron holes via the membrane parasitic oxidation (reaction 2):

H2O(g) +OX
O +V
••
O ⇋ 2OH•O (1)

1
2
O2(g) +V

••
O ⇋ 2 h• +OX

O (2)

This reaction is associated with the observed p-
type electronic leakage effect, thereby causing the lower
Faradaic efficiencies commonly reported. High performance
and stability have been observed with the chemically
stable BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) perovskite
(Choi et al., 2019). Compared to earlier BaZr1−xYxO3−δ based
materials, the BCZYYb compositional family leads to reduced
electronic leakage and can enable Faradaic efficiencies exceeding
95% (Duan et al., 2019).

Most electrolysis reports analyze ambient-pressure
operation, with hydrogen compression and storage subsequently
executed in further downstream processes. Direct high-
pressure electrolysis has the potential to bring cost reduction
and plant simplification by reducing or avoiding the need
of subsequent hydrogen compression (Onda et al., 2004;
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Marangio et al., 2009). High-pressure operation can also in-
part address the challenge posed by the electronic leakage issue
in PCEC devices. As shown in Eq. 3 (Duan et al., 2020), the
concentration of electron holes [h•] is dependent upon oxygen
and steam partial pressures. While high-pressure operation
increases the oxygen partial pressure, this effect is more than
offset by the higher order tied to the H2O partial pressure.
This leads to the potential for higher Faradaic efficiency with
increasing pressure by decreasing the electron hole concentration
in the electrolyte. Electrode activity can also be enhanced at
higher pressures, enabling higher currents at lower driving
voltages, and thus higher H2 production rates and a lower overall
energy demand per mole of H2 produced.

[h•] = Kox ⋅ [OH•o] ⋅P
− 1

2
H2O
⋅P

1
4
O2

(3)

A variety of theoretical and experimental studies on
pressurized operation in conventional oxygen-ion conducting
solid oxide cells provide insight for pressurized PCECs. Henke
et al. (Henke et al., 2011) applied a two-dimensional elementary
kinetic model to study the influence of pressure on the
thermodynamics, reaction kinetics, porous electrode diffusion,
channel transport and efficiency to predict the performance
of a single solid oxide-fuel cell (SOFC) in the pressure range
of 1–20 bar. The results revealed higher power density and
efficiency upon pressurization with the strongest increase in the
range between 1 and 5 bar.

According to Henke et al. (Henke et al., 2012) the positive
effect of pressurized operation in SOFCs is tied to three primary
reasons:

• Increase in open-circuit voltage (OCV) associated with a
small Nerst potential pressure dependence.
• Improvement in reactant adsorption rates at both electrodes.

Increasing gas-phase partial pressures boost adsorption
rates and electrode surface coverage, thereby improving
surface reaction kinetics, significantly reducing activation
overpotentials.
• Change in diffusion mechanism and an increase in

starting (inlet) reactant concentrations. At low pressures,
the molecular mean free path is much larger than the
pore dimensions. Molecule-pore surface interactions are
predominant, as governed by the Knudsen diffusion
mechanism, where the gas density gradient and pressure
govern transport. At higher pressures the controlling
mechanism is ordinary diffusion; molecule-molecule
collisions prevail leading to a higher net transport of
molecules from the high to the low concentration region
compared to the Knudsen diffusion regime. Concentration
overpotentials can therefore be significantly reduced by
increasing pressure.

All three effects show a logarithmic behavior, with effects
being more pronounced at pressures up to 5 bar and leveling
off at higher pressures. Pressure effects become less powerful
above 5 bar as reactant surface coverage leans toward saturation
at higher pressures. These theoretically predicted trends have
been experimentally confirmed in later experimental studies by
the same author (Henke et al., 2012).

Solid-oxide electrolysis cells can achieve near 100% energy
efficiency through careful balancing of the exothermic cell
losses with the endothermic water-splitting reaction. SOEC
internal resistances lead to overvoltages and energy loss in
the form of Joule heating. The SOEC operating voltage can
be set so that this Joule heating is equal to the thermal-
energy demand of the electrolysis reaction. This operating point
is known as the thermoneutral voltage, and corresponds to
100% electrolysis efficiency (Henke et al., 2014; Yang et al.,
2021).

Increasing pressure leads to a modest boost in the theoretical
Nernst potential required for electrolysis:

Erev =
1
n F
×(Δg0 +RT

K

∑
k=1

νk ln pk) (4)

where n is the number of electrons, F is the Faraday constant
(96500 C/mol), Δ g0 is the standard Gibbs energy, R is the ideal
gas constant, νk is the stoichiometric coefficient, and pk is the
partial pressure of each compound.

This increase brings a greater demand on the electric power
required to drive the water-electrolysis reaction. Inmost oxygen-
ion conducting cells, ohmic overvoltages are generally not
influenced by pressure, as these are tied to the electrical and
ionic resistances associated to the cell and stack components
(e.g. electrolytes, electrodes, interconnects), and most oxygen-
ion conducting electrolytes operate fully within the extrinsic
electrolytic domain (i.e., pure ionic transport). In contrast,
activation and concentration overvoltages are significantly
reduced with increasing pressure. With the logarithmic
pressure dependence shown in Eq. 4, the most-pronounced
effects are found near ambient pressure for both SOFCs and
SOECs.

Electrolysis at low current densities incurs relatively modest
activation and concentration overvoltages. This enables high
efficiency, but also means larger device sizes are needed to meet
H2 production targets. Because the activation and concentration
overvoltages at low current density are small to begin with, the
improvements brought by pressurized operation can be obscured
by the increase in Nernst potential, leading to modest, or even
negative performance-pressure dependencies at lower current
density.

In contrast, overvoltages are more pronounced at higher
current densities. In this case, the increase in power
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requirements necessitated by the boost in Nernst potential due
to pressurization is small in comparison to power required
to overcome these higher overpotentials (Ni et al., 2007;
Henke et al., 2014). Thus, the kinetic and mass-transport
performance improvements brought by high-pressure operation
are more impactful at these high-current-density conditions,
as they can substantially decrease these large overvoltages.
These phenomena have been theoretically and experimentally
confirmed on anode-supported SOECs at 800°C (Ni et al.,
2007; Henke et al., 2014; Bernadet et al., 2015; Sun et al.,
2015).

Experimental performance analysis on a 16 cm2 fuel-
electrode-supported planar solid-oxide cell showed that
pressurization brought stronger performance improvements in
fuel-cell mode than in electrolysis mode. In this work, Jensen
et al. (Jensen et al., 2010) found pressurization to have minimal
influence on electrolyzer performance. Internal resistance
decreased around 20% as operating pressure increased from
1 to 10 bar. O’Brien et al. (O’Brien, 2012) found a similar
trend in a 10-cell planar SOEC stack operating at 800°C.
The slope of the polarization curves in electrolysis mode
decreased with increasing pressure, indicating lower area-
specific resistance (ASR) as the pressure was increased from
1 to 17 bar (O’Brien, 2012). Kato et al. (Momma et al., 2013)
found steam diffusion to be limiting in an anode-supported
SOEC at operating pressures between 0.1 and 3 bar, with
performance compromises most pronounced at lower pressures.
Electrochemical impedance measurements have also confirmed
that the individual processes expected to be dependent on gas
partial pressures were all enhanced by increasing the operation
pressure from 1 to 3 bar (Sun et al., 2015).

In contrast to conventional oxygen-ion conducting cells,
there are few studies on the effect of pressurization on
protonic-ceramic cells. Vøllestad et al. (Vøllestad et al., 2019)
demonstrated the positive effect of higher steam and total
pressure on tubular PCECs based on barium-zirconate.
Increasing pressure from 1.5 to 4 bar at 600°C brought a ∼10%
increase in the current density for a driving voltage of ∼1.9 V.
In addition, they observed a decrease in the operating voltage
of 30–50 mV and lower polarization resistance (Rp) as assessed
by electrochemical impedance spectroscopy (EIS). Malerød-
Fjeld et al, (2017) showed the viability of using a BaZrO3-based
proton-conducting electrolyte deposited as a dense film on
a porous Ni–composite electrode as a protonic membrane
reformer. The device achieved 99% conversion in steam methane
reforming. Simultaneously, it produced high-purity hydrogen
compressed electrochemically up to 50 bar.

In this paper, we expand on these limited high-pressure
operation studies to further explore the electrochemical behavior
of protonic-ceramic cells at elevated pressures. Fabrication
and performance characterization protocols are subsequently
described.

Experimental methods

Membrane electrode assembly
fabrication

Materials compositions and stoichiometries for proton-
conducting cells continue to be fine-tuned so that better
electrochemical performance can be achieved during operation.
Recently, low ohmic resistance and degradation rates have been
observed using a highly conductive and chemically stable multi-
doped perovskite BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411) as
an electrolyte (Choi et al., 2015; Le et al., 2021). In this study
we work with a composite of Ni–BCZYYb4411 as the fuel
electrode (negatrode), BCZYYb4411 as the electrolyte and
BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY) as the air-steam electrode
(positrode).

The negatrode and electrolyte layers of the membrane-
electrode assemblies (MEA) used in this study are synthesized
using the solid-state reactive sintering (SSRS) method. The
SSRS method uses compacts comprised of multiphase oxide
and carbonate precursors to form the negatrode and electrolyte
layers, rather than starting from single-phase compacts. This
approach combines phase formation, densification, and grain
growth into a single high-temperature sintering step, simplifying
the fabrication process (Nikodemski et al., 2013). SSRS provides
a lower-cost alternative to cell fabrication in comparison
to conventional methods (Duan et al., 2015; Dubois et al., 
2017).

We use stoichiometric ratios of BaCO3, CeO2, ZrO2, Y2O3
and Yb2O3 to form the electrolyte phase of the composite
negatrode (Alfa Aesar 14341, 11328, 230693, 111328, and
11191, respectively). We then add NiO and potato starch as
pore former (Alfa Aesar 45094 and 11961, respectively) in
the proportion 60 wt% NiO: 40 wt% BCZYYb +20 wt% starch
based on percentage of oxides. The mixture of precursors is
ball milled in isopropanol for 72 h and then dried in a low-
temperature furnace. Finally, we dry ball mill these powders for
24 h to form a homogeneous powder. Once formed, 20 g of this
negatrode powder iswellmixedwith 2 g of binder (10%polyvinyl
alcohol 20,000 M.W. dissolved in water) and dry pressed
in a 57-mm-diameter stainless steel die with a compression
pressure of 34 MPa for 10 s to form the negatrode support
pellet.

The BCZYYb electrolyte is spray-coated onto this
negatrode support. To form the electrolyte slurry, we first mix
stoichiometric ratios of BaCO3, CeO2, ZrO2, Y2O3 and Yb2O3,
plus 1.0 wt% NiO following the same method as for the fuel
electrode precursor powder. We mix the electrolyte powder with
a homogeneous mixture of binder, plasticizer and dispersant
(Heraeus V-006, Alfa Aesar PEG 400 B21992, and Alfa Aesar
PVP 40000 J62417, respectively) to synthesize the electrolyte
suspension. The mass fraction of the electrolyte solution is
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13 wt% electrolyte precursor powder +1 wt% PEG +1 wt%
PVP +2.5 wt% binder +2.5 wt% alpha terpineol (Alfa Aesar
16,285) + 80 wt% isopropanol. The suspension is suspended
in a sonicator for 1.5 h before spraying.

This electrolyte slurry is spray-deposited onto the negatrode
support using a low-cost commercial airbrush (Master S68);
12 ml of the electrolyte solution produces a 20 μm-thick
electrolyte layer across the 57-mm-diameter negatrode disc. The
distance between the air brush and the support during spray
coating is held at approximately 20 cm. After spray-coating,
the electrolyte-negatrode assemblies are then co-sintered in an
atmospheric furnace (Deltech) at temperatures between 1450
and 1550°C for 15 h. The firing process includes an intermediate
5 h dwell at 450 °C to burn out the binder; heating and cooling
ramps are held at 3°C min−1.

Following the high-temperature sintering, we apply the
BCFZY air-steam positrode atop the electrolyte. The BCFZY
material is prepared following the sol-gel method previously
described by Duan et al, (2015). BCFZY powder is mixed with
20 wt% BCZYYb4411 in order to improve the adherence and
increase the electrochemically active region. This composite
material is transformed into an ink by mixing with binder
(Heraeus V006-A) and dispersant (Solsperse 28,000) to form a
paste, adjusted to the desired viscosity. This paste is then brush-
painted onto the sintered electrolyte.

Finally, the full cell (negatrode-electrolyte assembly +
brush-painted BCFZY positrode) is sintered at 900°C for 5 h.
This positrode sintering temperature is sufficient to promote
adherence between the air-steam electrode and the electrolyte
while maintaining a nanoscale positrode structure with high
surface area for maximum electrochemical activity. The result
is an approximately 1 mm-thick, 39 mm-diameter membrane-
electrode assembly with an active area of approximately
5 cm2.

Stack design and fabrication

The unit-cell stack design and fabrication are similar to
that described in Le et al. (Le et al., 2021). Figure 2A shows
a schematic drawing of the unit-cell stack, along with a
photograph of its assembly. The protonic-ceramic membrane-
electrode assembly is first bonded to a composite ceramic frame.
Glass sealing powder (Mo-Sci 1745p) is mixed with distilled
water to create a viscous paste that is carefully applied on both
sides of the cell circumference in contact with the frame internal
edges.The applied glass sealing is later cured at 750°C for 2 hours
at a heating rate of 1 °C/min to form a smooth, crack-free seal.
The non-conductive ceramic frame helps to prevent electrical
shorting within the stack.

The MEA-frame assembly is then packaged between 4-
mm-thick ferritic steel endplates (Crofer 22H, ThyssenKrupp).

Thin sheet-steel interconnects are also placed between the MEA
and the endplates. These interconnects have nano-scale cobalt
and ceria coatings, as provided by the manufacturer (Sandvik
SANERGY 441), to facilitate formation of the electrically
conductive (Mn,Cr)3O4 scale (Le et al., 2021). The interconnects
are pretreated through 30 h of continuous exposure to an air
+10% H2O environment at 900°C, an adaptation of the work by
Goebel et al, (2018) and Talic et al, (2018). These 0.4-mm-thick
interconnects are bonded to the thick end plates using silver
paste.

Two 1-mm-thick chemically exfoliated vermiculated gaskets
(Thermiculite 870, Flexitallic) provide sealing between the
ceramic frame and the interconnects. These gaskets require
compression for hermeticity. Metallic-mesh current collectors
coated in silver paste are used to connect the cell electrodes
with the interconnects. Current and voltage are drawn from the
outside of the endplates, which are electrically insulated from the
compression system and test stand using two alumina support
plates (not shown).

The unit-cell stack assembly is placed within a compression
system that promotes sealing of reactive gases from the
surrounding environment as shown in Figure 2B. The
compression force is transferred to the endplates through an
Inconel rod secured within bulk compression plates that are
pre-stressed to 4 MPa using a set of eight stainless-steel springs,
nuts, and bolts (Hastelloy C276). Initial sealing is validated by
gas analysis. This design enables the compression force to be
transferred through the endplates and the ceramic frame instead
of the comparatively delicate MEA.

The loaded electrochemical stack is assembled within a
stainless-steel pressure vessel (Parr Series 4674) (Figure 2C).
The pressure vessel includes ports for plumbing the reactant
and product flows. The pressure vessel also includes four
thermal wells in which resistive heaters are placed to achieve
target operating temperatures. It is noteworthy that compression
springs are located outside of the vessel hot zone to minimize
creep and maintain compression.

High-pressure mass flow controllers (Alicat MCQ series)
regulate the flow rates of reactants fed to the negatrode and
positrode. Additionally, an inert sweep gas flows through
the pressure-vessel chamber into which the stack assembly is
placed. A high-pressure isocratic pump (Teledyne, LS Class)
accurately controls the water flow rate that is evaporated and
carried with air to the positrode. Back-pressure regulators
with feedback control (Equilibar ZF Zero Flow and QBS
series) minimize pressure differentials between fuel, air
and sweep gas to below 10 kPa. A data acquisition and
control system (National Instruments) is used to operate the
mass flow controllers and the electronic pressure regulator,
while a PID unit powers the resistive heaters and controls
the stack operating temperature (Parr 4838 Temperature
Controller).
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FIGURE 2
Designs and photographs of (A). unit-cell PCEC stack assembly; (B) stack-compression assembly; and (C) pressure vessel.

Stack electrochemical performance
characterization

Electrolyzer performance is measured through polarization
curves, electrochemical impedance spectroscopy, and galvanic
operation at different pressures (Gamry, Reference 5000). Stack
exhaust flow rates are continuously measured (DryCal Defender
530 Plus, Mesa Labs) and compared with inlet flow rates to
confirm sealing, quantify hydrogen production, and calculate
Faradaic efficiency.

The system is heated to 550°C at 1°C min−1 with no gas flow
at ambient pressure. Once the target temperature is reached, we
start flowing 100 sccm of a H2-N2 mixture to the negatrode
and 200 sccm of air +3% steam on the positrode. We also flow
200 sccm of argon as sweep gas. We gradually increase the H2
concentration from 5 to 80% to reduce the NiO in the two-
phase negatrode to metallic nickel; this process takes 3–4 h.
Cell reduction is considered complete when the open-circuit
voltage (OCV) is stable at around 1–1.1 V and EIS response is
invariant with time. Then we set the standard gas compositions
for experimental measurement: fuel side = 100 sccm (75%
H2 - 25% N2), air side = 200 sccm of air (10–30% steam). The
temperature is kept constant at 550°C. Operating pressure spans
from 1 to 12 bar in 1-bar steps.

Results and discussion

Pressure effect on cell performance in
electrolysis mode

The experiments in this work were conducted at a constant
temperature of 550°C and fixed gas conditions of 75% H2 +
25% N2 fed to the negatrode and air +10%–30% H2O fed to the
positrode. Higher water-vapor concentrations have been shown
to improve electrolyzer electrochemical performance, but have
also been tied to increased degradation rates (Le et al., 2022).

The expected boost in open-circuit voltage (OCV) with high
pressure is evident in Figure 3A, consistent with the Nernst
equation (Eq. 4). This higher OCV can increase electrolysis
power demand. However the improved kinetic and mass
transport characteristics brought by pressurized operation more
than offset the OCV increase, as evidenced in the polarization
curves shown in Figure 3B. Focusing on the 1.6 V operating
potential, current density increases from 375 to 600 mA cm−2 as
pressure rises from2.1 to 12.6 bar, a 60% increase in performance
(Figure 3C). However, at lower pressures (e.g., compare 2.1 bar
vs 5.7 bar), the effect of pressure is far more modest.

As noted earlier, electrochemical performance studies at
pressure from conventional oxygen-ion conducting solid-oxide
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FIGURE 3
Protonic-ceramic electrolyzer performance from 2.1 to 12.1 bara: (A) open-circuit voltage and driving voltage at 275 mA cm−2 over 7.5 h; (B)
polarization behavior; (C) current density at 1.6 V driving voltage; and (D) electrochemical impedance spectra.

electrolyzers show similar trends. For example, at lower current
densities (< 50 mA cm−2), and/or lower pressures, performance
gains from pressurized operation often prove inadequate
in offsetting the OCV increases, although improvements
in pressurized cell performance at higher current density
can lower overall electrical demand (Jensen et al., 2010;
Momma et al., 2013; Bernadet et al., 2015; Sun et al., 2015).

Electrochemical impedance spectra in Figure 3D are
consistent with the polarization behavior in Figure 3B. Ohmic
and polarization resistance both decrease with increasing
pressure, e.g. by as much as 33% and 60% respectively when the
pressure increases from 2.1 to 12.6 bara. This result is in contrast
to what is seen in SOECs, where polarization resistance decreases
with pressure but ohmic resistance stays almost constant (Jensen
et al., 2010; Momma et al., 2013). This notable PCEC ohmic
pressure response is attributed to themixed-conduction behavior
of the protonic ceramic electrolyte, specifically the dependence
of the proton and hole conductivities on gas composition and
concentration. As noted by Henke et al. (Henke et al., 2014),
ohmic heating at higher current densities can also bring modest
temperature increases to the electrolysis cell that can additionally
contribute to the observed drop in ohmic resistance.

As presented by Le et al. (Le et al., 2022), electrochemical
impedance spectra acquired from PCECs can be fitted to
an equivalent-circuit model (ECM) in which each element
can be generally associated to characteristic phenomena
taking place in the cell. We found that a four-component

ECM LR0(RQ)1(RQ)2(RQ)3 effectively captures the impedance
responses from our cells. The typical processes associated to
each of these elements are consistent with previous studies
(Jensen et al., 2007; Lu et al., 2019; Wang et al., 2020):

1) L represents the inductance resistance;
2) R0 represents the ohmic loss commonly associated with

charge transport through the electrolyte;
3) R1Q1 represents charge transfer associated with a

characteristic pseudo-capacitance of ∼ 10–4–10–3 (F cm2);
4) R2Q2 represents surface diffusion associated with a typical

pseudo-capacitance of 10–3–10–2 (F cm2);
5) R3Q3 represents dissociative adsorption/dissociation of the

gaseous species and/or mass transport processes within the
electrode. The pseudo-capacitance of both phenomena is
typically observed at 10–1–101 (F cm2).

Figure 4 quantify the influence of pressure on the elementary
resistances. ASR2 is associated with surface diffusion within the
BCFZY electrode and appears to be themost pressure-dependent
process. The charge transfer process (ASR1) seems to be reduced
as pressure increases up to 6 bar. After 6 bar the pressure effect
on ASR1 is negligible. Finally the surface adsorption-desorption
process (ASR3) is weakly affected by the operating pressure,
specially after 5 bar.

Equivalent circuit modeling (ECM) of EIS is a valuable
characterization tool to resolve transport and reaction pathways
by their characteristic frequency dependencies. However,
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FIGURE 4
Effect of operating pressure on area-specific resistance.

electrode physical processes like charge transfer and transport
often overlap in the frequency domain. This can challenge
the traditional ECM interpretation of EIS data. Recently,
distribution of relaxation time (DRT) analysis has risen to
prominence as an important tool to further identify and separate
distinct relaxations in an impedance response that may be
associated with specific electrochemical processes. DRT can
also assist in identification of the most appropriate equivalent-
circuit model(s) for a system under study (Dierickx et al., 2020;
Huang et al., 2021). That said, interpretation of the characteristic
DRT response of protonic ceramic devices is at an early stage
compared to other electrochemical systems; the authors know of
no reports presenting the impact of operating pressure on DRT
response from a protonic ceramic cell.

We utilize a robust DRT fitting package recently developed
by Huang et al, (2021), which employs a hierarchical Bayesian
model, to fit and analyze our impedance spectra across the range
of pressures. The package applies Bayesian inference to eliminate
manual tuning and automatically identify corrupted data points,
enabling robust fitting of noisy impedance data.

Figure 5 shows the obtained cell DRT response at pressures
ranging between 1 and 9 bara. EIS measurements were taken
under OCV conditions at the featured pressures. At 1 bara, we
can observe major DRT peaks at three time constants: 10–4, 10–2

and 10–1 s, broadly consistent with the three RQ circuit elements
present in our ECM. While some additional minor peaks may
be present in the DRT, the level of noise present in spectra
obtained at elevated pressure makes resolution of these peaks
very challenging; thus, we focus our analysis on the impact of
operating pressure on these three primary peaks.

The DRT peak at 10–1 s is quickly eliminated when
pressure is increased from 2 to 4 bara. The peaks at 10–2

and 10–4 s decrease with increasing pressure, especially the

FIGURE 5
Effect of pressure on distribution of relaxation times in
protonic-ceramic electrolyzer at open-circuit voltage.

peak at τ = 10–2 s. Gas diffusion is expected to be the most
pressure-dependent process, typically manifesting at the lowest
frequencies (Sumi et al., 2021). This suggests that the peak at
10–1 s is likely tied to this physical process as proposed by Le
et al. (Le et al., 2022). The peak at 10–2 s seems more likely to
be associated with the electrode surface diffussion which also
improves at higher pressures; the resistance tied to this process
decreases. Triple conductors oxides such as BCFZY are known
to have large chemical capacitances which can push the time
constants for electrode surface processes to longer timescales as
observed in Figure 5.

It is noteworthy that pressure does not bring a significant
shift in the magnitudes of the time constants, τ = RC. Peak
resistances decrease with pressure, while τ remains nearly
constant. Therefore, we can conclude that higher operating
pressures boost the capacitance C. This would be consistent with
greater surface coverage of charged adsorbates, an increase in the
accessible electrochemically active surface area, and/or greater
concentration of charge carriers in the near-surface region of the
electrode, all of which could reasonably be induced by higher-
pressure operation.

Galvanic performance at elevated
pressure

Figure 6 further reveals the encouraging gains in electrolysis
performance that can be achieved with increasing pressure. In
this series of experiments, the operating pressure is increased
in 1-bar steps from 2.1 to 12.6 bara. Operating conditions are
held for 20 min at each condition. Operating temperature is held
constant at 550°C, while reactant gas composition is fixed at 75%
H2 + 25% N2 fed to the negatrode and 90% air +10% H2O fed to
the positrode.
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FIGURE 6
Impact of pressure on electrolysis driving voltage and power at a
current density of 500 mA cm−2.

Over the course of the 6-h test, cell current density is
alternated between 0 and 500 mA cm−2. The driving voltage
needed to maintain the 500 mA cm−2 current density decreases
from 1.5 to 1.35 V as pressure increases from 2.1 to 12.6 bara. We
also note that the electrochemical performance of the cell shown
in Figure 6 exceeds that of the cell shown in Figure 3. This is
reflective of our challenges with process control and cell-to-cell
repeatability in our academic laboratory setting.

Overall, pressurization reduces the power needed to drive
electrolysis by 30% at 500 mA cm−2. These gains are consistent
with, or greater than, those generally observed in previous studies
using solid oxide electrolysis cells, and as previously noted, the
benefits of pressurized electrolysis can be evenmore pronounced
at higher current densities (Ni et al., 2007; Henke et al., 2014;
Sun et al., 2015).

Pressure effect on faradaic efficiency

Electronic leakage compromises the efficiency of protonic-
ceramic electrolyzers for producing pure, dry, green H2, and
presents one of the largest technical challenges facing the
technology.

Pressurized operation can increase proton concentration
in the membrane and suppress electronic charge carriers
to boost Faradaic efficiency. High steam concentrations at
the positrode promote OH•O incorporation (Duan et al., 2020)
through Reaction 1. Figure 7 shows Faradaic efficiency results
at varying steam-feed concentrations and steam utilizations.
Several trends are evident. First, Faradaic efficiency is quite
modest (50–60%) at 1 bara operating pressure over all current
densities and steam-feed concentrations tested. Further, Faradaic
efficiency decreases with increasing current density. This is
consistent with a number of experimental studies involving

FIGURE 7
Illustration of pressure effect on Faradaic Efficiency at 50% (top)
and 20% (bottom) steam utilization.

larger-area PCECs. Vøllestad et al, (2019) suggests that when
the cell resistance is high (over 2 ohm cm2), the high electrode
overpotentials increasingly favor the direct electronic pathway
short-circuiting the electrolyte as opposed to the ionic pathway
involving electrochemical reaction, charge transfer, and ionic
conduction, leading to lower Faradaic efficiency with increasing
current density. Higher current densities also increase the local
oxygen concentration at the positrode. This promotes hole
formation through reaction 2, increasing electronic conduction
through the protonic-ceramic electrolyte, reducing Faradaic
efficiency.

However, many button-cell and theoretical modeling studies
show the opposite trend, where the internal short of electronic
conduction is overwhelmed by the flux of driven protons at
higher current densities, yielding higher efficiencies at higher
loads (Zhu et al., 2022). Zhu et al, (2022) shows that Faradaic
efficiency decreases drastically near open-circuit conditions,
and can become negative at the lowest current densities. They
found that at open circuit, the cell behaves as a concentration
cell, driving protons from the negatrode to the positrode,
resulting in a reverse proton flux. As the imposed current
density increases the desired proton flux from the positrode
to the negatrode eventually surpasses the reverse proton flux,
increasing Faradaic efficiency. This model also suggests that
unmeasured variations in operating conditions, such as local
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temperature increases with high current density or local reactant
depletion/product accumulation effects can be the reason of
the diminished Faradaic efficiencies observed in some of
the published experimental work on larger-area PCECs. This
remains an active area of investigation in the protonic-ceramic
community.

Figure 7 further shows that increases in operating pressure
are found to boost Faradaic efficiency at current densities below
500 mA cm−2, reaching nearly 100% at 5 bara and 300 mA cm−2.
Still, FE remains modest at lower pressures, particularly at the
15% steam feed condition and 50% utilization, where hole
generation by Reaction 2 may be pronounced. The higher
steam feed concentration of 30% and lower steam utilization
shown in Figure 7B enables higher Faradaic efficiency. While
yet-higher steam feeds could be even more beneficial, such
conditions have proven to be deleterious to the air-steam
electrode (Le et al., 2022). This motivates the development of
more-advanced, stable PCEC electrode materials.

Similar to our findings, Vøllestad et al, (2019) reported the
positive effect of higher steam and total pressures on the
polarization behavior and Faradaic efficiency of a BZCY-based
tubular electrolysis cell. They observed a 30–50 mV decrease in
the operating voltage when the steam pressure was increased
from 1.5 to 4 bar, reflecting the increased proton conductivity in
the electrolyte as lower ohmic resistance was also observed from
EIS. By increasing the steampartial pressure, or the total pressure
at a given steam concentration, the water oxidation equilibrium
shifts towards lower electron-hole concentration, higher proton
concentration, and higher ionic transport to provide higher
Faradaic efficiencies (Vøllestad et al., 2019).

In summary, our results show that pressurized electrolysis
in protonic ceramic cells favors higher Faradaic efficiencies by
decreasing the total resistance of the cell as well as the electron-
hole concentration in the electrolyte. Electrode activity and mass
transport are also enhanced at higher pressures, enabling higher
current densities at lower driving voltages. These effects more
than compensate for the slight increase in Nernst potential
(and the corresponding OCV increase) and therefore enable
significantly higher total electric-to-hydrogen energy efficiencies
under pressurized operation.

Conclusion

This work summarizes our observations on pressurized
operation of planar protonic-ceramic electrolyzers. High-
temperature, high-pressure operation brings novel design
challenges. Sealing of reactive gases is more challenging at
high pressures; adequate sealing is central to achieving high
Faradaic efficiency. Further, pressurized operation can magnify
small differences in operating pressure between the anode and
cathode chambers that can lead to fracture of fairly delicate
electroceramic membrane-electrode assemblies. This paper

presents our approaches to meeting these challenges, and
the benefits brought by pressurized electrolysis with protonic
ceramics.

As pressure increased from 2.1 to 12.6 bar, we observed:

• The expected boost in OCV consistent with the Nernst
equation.
• Ohmic and polarization resistances decreased by 33% and

60%, respectively, enabling higher current densities at lower
driving voltages.
• A 60% performance increase confirmed at higher current

densities; the improved kinetic and mass transport
characteristics brought by pressurized operation more than
offset the OCV increase.
• Faradaic efficiency increased, reaching 100% at 5 bar and

15% steam concentration.

These results confirm that pressurized electrolysis enhances
electrode activity, improves the kinetic and mass-transport
behavior, and lowers the power required forH2Oelectrolysis.The
higher Faradaic efficiencies suggest that pressurized operation
decreases the electron-hole concentration in the electrolyte and
can serve as a solution to mitigate deleterious electronic leakage
in protonic ceramic devices.
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On the optimal cathode catalyst
layer for polymer electrolyte
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A high advancement has been achieved in the design of proton exchange

membrane fuel cells (PEMFCs) since the development of thin-film catalyst

layers (CLs). However, the progress has slowed down in the last decade

due to the difficulty in reducing Pt loading, especially at the cathode side,

while preserving high stack performance. This situation poses a barrier

to the widespread commercialization of fuel cell vehicles, where high

performance and durability are needed at a reduced cost. Exploring the

technology limits is necessary to adopt successful strategies that can allow

the development of improved PEMFCs for the automotive industry. In this

work, a numerical model of an optimized cathode CL is presented, which

combines a multiscale formulation of mass and charge transport at the

nanoscale (∼10 nm) and at the layer scale (∼1 μm). The effect of exterior

oxygen and ohmic transport resistances are incorporated through mixed

boundary conditions. The optimized CL features a vertically aligned geometry

of equally spaced ionomer pillars, which are covered by a thin nanoporous

electron-conductive shell. The interior surface of cylindrical nanopores is

catalyzed with a Pt skin (atomic thickness), so that triple phase points are

provided by liquid water. The results show the need to develop thin CLs

with bimodal pore size distributions and functionalized microstructures to

maximize the utilization of water-filled nanopores in which oxygen transport

is facilitated compared with ionomer thin films. Proton transport across

the CL must be assisted by low-tortuosity ionomer regions, which provide

highways for proton transport. Large secondary pores are beneficial to

facilitate oxygen distribution and water removal. Ultimate targets set by the

U.S. Department of Energy and other governments can be achieved by an

optimization of the CL microstructure with a high electrochemical surface

area, a reduction of the oxygen transport resistance from the channel to the

CL, and an increase of the catalyst activity (or maintaining a similar activity with
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Pt alloys). Carbon-free supports (e.g., polymer or metal) are preferred to avoid

corrosion and enlarge durability.

KEYWORDS

catalyst layer, Pt loading, transport, optimization, performance, durability, proton exchange

membrane fuel cell, fuel cell vehicle

1 Introduction

The development of thin-film catalyst layers (CLs) at Los
Alamos National Laboratory (LANL) at the beginning of the
90s (thickness, δcl ≈ 50–100 μm) was a breakthrough in proton
exchange membrane fuel cells (PEMFCs). The replacement of
microstructures that worked with liquid electrolytes based on
Pt black catalyst and polytetrafluoroethylene (PTFE) binder
by microstructures based on Pt/C catalyst and ionomer
(Nafion) dramatically increased catalyst utilization, decreasing
Pt loading from LPt = 4 mgPt cm−2 to LPt = 0.4 mgPt cm−2

(Wilson and Gottesfeld, 1992). However, Pt loadings around
LPt = 0.4 mgPt cm−2 are still the commercial standard, since
a further reduction of the Pt loading has been difficult since
then due to performance and durability issues (Kongkanand
and Mathias, 2016; Nguyen et al., 2021; Tellez-Cruz et al., 2021).
Losses are more important at the cathode due to the sluggish
kinetics of the oxygen reduction reaction (ORR) and lower
diffusivity of oxygen compared with the fast kinetics of the
hydrogen oxidation reaction (HOR) and high diffusivity of
hydrogen (Garcia-Salaberri, 2022). Concern about this situation
has increased in the last decade as PEMFCs are reaching
their commercialization stage, especially in the automotive
sector, where they compete with other technologies (internal
combustion engine and Li-ion battery) (Atanassov et al., 2021).
Recent targets set by the U.S. Department of Energy (DOE)
for fuel cell vehicles to make PEFC technology competitive
have been hardly met (Wang et al., 2020a). The Toyota Mirai
presented in 2018 showed limited durability of 3,000 h in a real-
world driving test and failed largely in a DOE accelerated stress
test (AST) protocol. The performance decreased significantly
after 5,000 cycles with a cathode CL thickness reduction from
approximately 10 μm–3 μm (Borup et al., 2018). Recently, an
assessment performed by a team of experts concluded that the
median 2017 automotive cost of a PEMFC system is around
75$ kW−1 with a stack durability and power density of 4,000 h
and 2.5 kWL−1, whilst the DOE ultimate targets are 30$ kW−1,
8,000 h and 3 kWL−1, respectively. The ultimate performance
target is expected to be met by 2035 and the ultimate cost
and durability targets by 2050 (Whiston et al., 2019). Despite
the ongoing progress, other numbers are also still away of
targets established for 2025 by the U.S. and other regions,
such as the European Union (Yunzhe et al., 2020)) (the status
reported during 2015-2020 is indicated in brackets (DOE, 2015;

Wang et al., 2020a)): 1) total Pt group metal (PGM) content
lower than 0.1 g kW−1 (0.16 g kW−1); 2) rated power density of
1 W cm−2 (0.81 W cm−2); 3) minimum electrical resistance of
1000 Ω cm2(1635 Ω cm2).

A key issue for decreasing Pt loading (mainly at the
cathode) is caused by local mass transport resistance introduced
by thin ionomer films surrounding Pt nanoparticles (Weber
and Kusoglu, 2014; Sánchez-Ramos et al., 2021, 2022). The local
oxygen transport resistance (per unit of geometric area) is
inversely proportional to the roughness factor, the ratio between
the electrochemically active surface area and the cell geometric
area, r f = APt A

−1
geo. The detrimental effect of reducing rf is a

limitation of heterogeneous reactive systems, since the average
oxygen flux at the surface of Pt nanoparticles, NPt

O2
, increases

by a factor r−1f with respect to the oxygen flux per unit of
geometric area, Ngeo

O2
. In other words, NPt

O2
= r−1f Ngeo

O2
according

to the species mass conservation equation (Greszler et al., 2012).
For a vanishing Pt loading (LPt→ 0), the oxygen flux at a lonely
catalytic site would become infinitely high, NPt

O2
→∞, thereby

leading to strong mass transport losses to maintain a prescribed
current density (Iavg > 0). Consequently, the cell performance
will inevitably drop to the stable point provided by a null current
density (Iavg→ 0 when rf → 0) regardless of the feed flow
rate and the catalyst activity. A similar barrier would arise for
other transported species, protons and electrons, even though
the performance limitation is less severe than in the case of
oxygen because charge transport resistances are lower, especially
in the case of electrons. The performance loss at small rf can
be mitigated in three ways: 1) increasing the electrochemically
active surface area per unit catalystmass, ECSA, to increaseAPt at
a given Pt loading, LPt, 2) reducing any mass transport resistance
in the path of oxygen from the channel (say, stack inlet) toward
each catalyst site, and 3) increasing the catalyst mass activity,
so that each Pt nanoparticle can potentially generate a higher
current at a given overpotential (provided that other losses do not
limit performance). If the design is not restricted to Pt, the fourth
4) available option is to use Pt alloys or PGM-free catalysts with
an activity comparable to that of Pt (Sánchez-Ramos et al., 2022;
Liu et al., 2019b,a).

A large effort has been devoted to improving performance
at low Pt loading, including the increase of the ECSA,
the development of more active catalysts with reduced Pt
content, and the decrease of mass transport resistances in
the membrane electrode assembly (MEA), flow field and
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stack (Goshtasbi et al., 2019; Park et al., 2019; Chen et al., 2020;
Cochet et al., 2020). Here, we shall focus mainly on the latter
approach, since the other options can be incorporated into
a previously optimized design in terms of mass transport.
Reducing the oxygen transport resistance in a PEMFC
can be addressed by: 1) a reduction of the internal mass
transport resistance of the CL microstructure, 2) a reduction
of the mass transport resistance of the backing layer (gas
diffusion layer, GDL, and microporous layer, MPL) and at
the GDL/channel/rib interface, 3) a decrease of the along-
the channel and stack flow distributor resistance caused by
difficulties in liquid water removal (especially at high current
densities above 2–3 A cm−2), or a combination thereof (see, e.g.
(Yi et al., 2012; Choi et al., 2014; García-Salaberri P. et al., 2017;
Azarafza et al., 2019; Deng et al., 2021; Zhang et al., 2021;
Zapardiel and García-Salaberri, 2022), among others). The
ohmic loss in the proton exchange membrane (PEM) and CLs
is less relevant at low Pt loading in state-of-the-art designs.
Figure 1A shows the peak power density per unit mass of Pt
achieved with some CL designs presented in the last years.
To facilitate the presentation, two groups are distinguished: 1)
conventional CLs (CONV and C-ENG in Figure 1) based on
the original thin-film CL design without and with engineered
or modified nanoporous supports (pore radius, Rp ≲ 10 nm),
and 2) innovative CLs (VA, NSTFC and I-ENG in Figure 1),
which includes alternative CL designs aimed at reducing mass
and ohmic transport losses across the CL thickness, at local Pt
sites, or at both locations. Advances achieved in both groups are
discussed below.

In terms of conventional CLs, two main approaches
have been used to enhance performance at low Pt
loading: 1) reduction of bulk transport losses considering
alternative production techniques (e.g., catalyst deposition
by electrospraying or freeze drying (Folgado et al., 2018;
Talukdar et al., 2019)), and 2) the modification of nanoporous
supports to optimize triple phase points at catalyst sites
(CONV-ENG) (Yarlagadda et al., 2018; Ramaswamy et al., 2020;
Kobayashi et al., 2021). The second strategy is more
fundamental. Provided that a continuous electron pathway
exists across a CL, there are two options to form triple phase
points (allowing a simultaneous access of oxygen, protons and
electrons): 1) active catalyst in contact with liquid water, and
2) active catalyst in contact with hydrated ionomer. Compared
with transport in an ionomer film, oxygen diffusion in liquid
water is easier while proton conduction in liquid water is
more difficult (Zenyuk and Litster, 2014; Muzaffar et al., 2018).
Since oxygen transport is typically the limiting process at low
Pt loading, transport in liquid water at triple phase points is
preferred Yarlagadda et al. (2018). In addition, catalyst sites in
contact with liquid water do not suffer from a reduction of the
electrochemical activity due to adsorption of sulfonate groups
at hydrophilic Pt surfaces (Takeshita et al., 2020). The General

Motors Company exploited this approach by engineering
accessible nanopores already present in high surface area
carbon (HSAC) supports, such as Ketjenblack, in contrast
to low surface area carbon (LSCA) supports (e.g., Vulcan)
(Yarlagadda et al., 2018). Van der Waals adsorption, capillary
condensation and water generation ensured the presence of
liquidwater in nanopores. As a result, efficient oxygen andproton
transport around catalyst sites was possible, while providing
good proton transport at the layer scale through ionomer
films (Zenyuk and Litster, 2014). The achieved Pt mass-specific
performance was remarkably high (the largest reported so far
to the authors’ knowledge), PPt ≈ 20 Wmg−1Pt (Iavg = 2 A cm−2

at Vcell ≈ 0.65 V and LPt = 0.06 mgPt cm−2), similar to that
reached in the ToyotaMirai with LPt = 0.3 mgPt cm−2 (five times
higher). Generally speaking, for a given nanoporous support
and CL preparation route, a fraction of Pt nanoparticles is
deposited inside nanopores, while the remaining stays on the
outer surface covered by ionomer. Consequently, there is an
optimum ionomer-to-carbon ratio, I/Copt, which maximizes
the peak power density due to a proper balance between mass
transport and ohmic losses. When most of the catalyst is inside
nanopores, a higher I/C is desirable to facilitate proton transport
along the outer surface if ionomer does not block the access to
the interior of nanopores (Kobayashi et al., 2021).

In terms of innovative CLs, Toyota Motor Corporation
developed vertically aligned (VA) microstructures based on the
idealized design proposed by Middelman (Middelman, 2002;
Murata et al., 2014). This idealized microstructure is composed
of a structured array of electron-conductive pillars catalyzedwith
Pt and covered with a co-axial ionomer film for proton transport.
This design provides the best theoretical solution to minimize
bulk transport losses provided that water flooding is not an
issue and the ionomer film is able to conduct protons efficiently
with a negligible local mass transport resistance. However, this
is not usually the case in practice, where the ionomer mass
transport resistance significantly reduces the performance at
low Pt loading, leading to a non-optimal ECSA utilization
(Spingler et al., 2017; Schuler et al., 2019). Two worth noting
designs have been proposed to overcome this issue: 1) ionomer-
free nanostructured thin film catalyst (NSTFC) developed byThe
3M Company (Debe et al., 2006; Debe, 2011; Debe et al., 2011;
Debe, 2012; Ostroverkh et al., 2019), and 2) designs based on a
combination of ionomer nanofibers (proton transport highways)
and a conventional microstructure with reduced ionomer
content (ION-ENG) examined byU.S. National Laboratories and
Toyota Motor Corporation (Zhang and Pintauro, 2011; Borup
and Weber, 2019; Sun et al., 2019; Yoshino et al., 2020). Ultra-
thin NSTFC electrodes (δcl < 1 μm) are solely composed of
polymer whiskers catalyzed by a Pt monolayer, so that the
Pt skin is used to conduct electrons and (generated) liquid
water to conduct protons. Despite its simplicity, the main
drawback of this design is caused by flooding of the cathode
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FIGURE 1
(A) Peak power per Pt miligram, Pmax, achieved with different cathode CL designs: CONV, conventional CLs with solid (Vulcan) and nanoporous
(e.g., KetjenBlack) carbon supports prepared by different techniques (e.g., airbrush or electrospraying) (Orfanidi et al., 2017; Garsany et al., 2018;
Conde et al., 2019; Talukdar et al., 2019; Cui et al., 2021); CONV-ENG, conventional CLs with engineered or modified nanoporous supports
(Yarlagadda et al., 2018; Ramaswamy et al., 2020); VA, CLs with vertically aligned supports covered by ionomer (i.e., based on Middelman’s ideal
microstructure) (Murata et al., 2014; Xia et al., 2015; Meng et al., 2022); NSTFC, ionomer-free nanostructured thin film catalysts Debe (2012);
Debe et al. (2011); Debe (2011); Debe et al. (2006); Ostroverkh et al. (2019); ION-ENG, CLs with engineered or modified ionomer distributions
(e.g., a combination of ionomer nanofibers and conventional microstructures with reduced ionomer content) (Zhang and Pintauro, 2011; Borup
and Weber, 2019; Sun et al., 2019; Yoshino et al., 2020). The 2020 DOE target, P ≈ 10 W mg−1Pt , is indicated by a red dashed line. Baseline
operating conditions: air/H2, temperature, T = 70− 80°C, relative humidity, RH = 1, cathode back pressure, pc = 150 kPa(abs). (B) Normalized
ECSA with respect to BOL as a function of the number of cycles in ASTs for different catalyst supports: Carbon, CLs supported on conventional
carbon nanoparticles ((Babu et al., 2021) and other references included herein); G-Gr-C@PTFE, CLs supported on either graphitized carbon,
graphene or PTFE-doped carbon nanoparticles (Wang et al., 2019; Babu et al., 2021; Pushkareva et al., 2021); VACNT, CLs based on vertically
aligned carbon nanotubes covered by ionomer (Murata et al., 2014; Meng et al., 2022); Polymer, CLs based on polymer whiskers without (e.g.,
NSTFC (Debe et al., 2006; Debe, 2011; Debe et al., 2011; Debe, 2012; Ostroverkh et al., 2019)) and with (Xia et al., 2015) ionomer films; Metal
oxide, conventional CLs supported on metal oxide nanoparticles (e.g., titanium dioxide (TiO2) powder) (Esfahani et al., 2018; Esfahani and
Easton, 2020; Chen et al., 2021).

CL at low operating temperature, which can be ascribed to
the hydrophilicity of the Pt skin and CL thinness (Debe, 2012;
Zenyuk et al., 2016a). Moreover, oxygen diffusion and proton
conduction across hundreds of nanometers of liquid water in
NSTFC electrodes is a sub-optimal solution to increase the peak
power density compared with the lower lengths that can be
achieved in CON-ENG designs. ION-ENG electrodes are an
interesting option toward the development of bi-functionalized
microstructures that can combine facilitated domains for oxygen
and proton transport. Currently, the main practical difficulty lies
in producing composite microstructures with a good transition
between ionomer nanofibers and ionomer thin films. The
performance achieved with this variant is still below the 2020
DOE target, even though it has been shown to be a viable route
to increase performance at reduced RH due to enhanced water
uptake (Yoshino et al., 2020).

The ECSA reduction normalized with respect to the value
at the beginning of life (BOL) achieved in ASTs with different
catalyst supports is shown in Figure 1B. Although the high
activity of Pt/C catalysts is desirable, carbon supports can
suffer from limited durability mainly due to: 1) agglomeration
of Pt nanoparticles (RPt ∼ 2 nm) caused by electrochemical

Ostwald ripening and/or migration-coalescence, and 2)
an overlap between the operating voltage and the carbon
corrosion potential, especially at cell voltages above Vcell ≈ 1 V
(Babu et al., 2021; Zhao et al., 2021). Catalyst agglomeration
leads to a direct reduction of the ECSA, since larger Pt
nanoparticles feature a lower specific surface area, ECSA∝ R−1Pt .
An effective strategy to mitigate catalyst agglomeration is
the use of stable catalyst skins, which behave as one being
rather than as multiple independent entities (Debe et al., 2006;
Mardle and Du, 2022). Carbon corrosion leads to a loss
of support material due to carbon oxidation, which causes
electrode thinning, porosity reduction, pore size increase
(reduction of nanopore volume fraction) and ECSA reduction
(Borup et al., 2020). The combined effect of material loss and
nanopore clogging can be particularly problematic for HSAC
supports that store a large part of their ECSA inside nanopores.
Recent work has shown that the durability of carbon-based
supports can be somewhat extended using graphitized carbon
or graphene, as well as carbon supports doped with tailored
amounts of PTFE, because of their higher oxidation resistance
(Wang et al., 2019; Babu et al., 2021; Pushkareva et al., 2021).
Vertically aligned carbon nanotubes (VACNTs) also seem
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FIGURE 2
Schematic of a bi-functionalized bimodal cathode CL microstructure with targeted domains for proton and gas species transport, and a primary
(R ≲ 10 nm)/secondary (R ≳ 10 nm) pore size distribution. ORR and electron transport take place in a nanoporous shell covering ionomer pillars,
which is made of a highly electron-conductive material catalyzed with Pt. Liquid water can be transported both through ionomer pillars and
released to secondary pores. The characteristic spacing between pillars is L.

to be an insufficient solution to solve the problem of
carbon corrosion (Murata et al., 2014; Meng et al., 2022), even
though improvement has been achieved with double-walled
(DWCNTs) and multi-walled (MWCNTs) carbon nanotubes
(Chen et al., 2007; MoghadamEsfahani et al., 2020). Carbon-
free electrodes have shown significantly longer durability than
carbon-based supports due to oxidation suppression (Antolini
and Gonzalez, 2009; Lv and Mu, 2014). Among carbon-free
supports, metal oxide supports are a robust option because of
their high electrical conductivity and corrosion resistance. In
particular, titanium dioxide (TiO2) supports are very active
with Pt and have provided an extraordinarily high corrosion
resistance above DOE targets (Esfahani et al., 2018; Esfahani and
Easton, 2020; Chen et al., 2021). Nevertheless, the widespread
adoption of supports based on Ti requires an economic
analysis. Polymeric and ceramic supports can be a cost-effective
alternative but in general suffer from the problemof low electrical
conductivity, being necessary a modification of the raw material
(Xia et al., 2015). The issue of low electrical conductivity can be
avoided if the support is not used for electron conduction, as in
the case of NSTFC electrodes (Debe, 2012).

In this work, as shown in Figure 2, the performance of
an idealized cathode CL which features a VA geometry with a
bimodal pore size distribution is examined. The microstructure
is fully bi-functionalized, so there is no interaction between the
ionomer space devoted to proton transport and the secondary

space devoted to oxygen transport.TheORR takes place inwater-
filled primary nanopores grooved in an electron-conductive shell
in contact with both domains, and catalyzed with an atomic Pt
skin to maximize the ECSA. This microstructure provides an
idealized version of the situation found in engineered HSAC
supports (CONV-ENG) in which the solid volume fraction
has been minimized with the aim of providing a continuous
path for electron transport without a significant electrical loss
Wilson and Gottesfeld (1992). The design further considers that
all nanopores (i.e., Pt sites) are accessible and removes entirely
any ionomer transport resistance at the entrance of nanopores.
The proposed microstructure is to be optimized geometrically.
The organization of the paper is as follows. In Section 2,
the assumptions and the multiscale approach considered to
model the idealized cathode CL and exterior mass and ohmic
transport resistances are presented. A special focus is devoted in
Subsection 2.1 to the assumptions made on water management,
which has not been explicitly modeled here. The formulations of
the macroscopic model at the layer scale and the microscopic
model at the nanopore scale are presented in Sections 3 and
4, respectively. The case studies are described in Section 5,
which considers an analysis of the optimized geometry of the
idealized cathode CL, the effect of exterior transport resistances,
and the effect of catalyst activity. The results are discussed in
Section 6, where technological frontiers are analyzed. Finally, the
conclusions are presented in Section 7.

Frontiers in Energy Research 05 frontiersin.org

555655

https://doi.org/10.3389/fenrg.2022.1058913
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


García-Salaberri et al. 10.3389/fenrg.2022.1058913

2 Numerical model

2.1 Assumptions

The main simplifying assumptions adopted in the model
formulation are as follows:

1) Steady state operation, isothermal conditions and ideal
gases.

2) Full gas humidification (RHin
a = RHin

c = 1) and temperature
operation at T ≈ 80°C.

3) The PEM is perfectly impermeable to gas species and
convection is negligible in the CL.

4) Adsorption kinetics at catalyst sites for the examined voltage
close to peak power density (Vcell = 0.5 V) is infinitely fast
(Sánchez-Ramos et al., 2021).

5) The oxygen concentration drop from the channel to
the CL/MPL interface and the voltage drop in other
components different from the cathode CL are quantified
by an overall mass transport resistance, Rchcl

O2
, and an overall

area-specific ohmic resistance, ASRpem, respectively. Both
resistances do not vary with current density.

6) Ohmic and thermal contact resistances are negligible.
7) The CL microstructure is macroscopically homogeneous,

being composed of evenly spaced ionomer pillars covered by
a nanoporous electron-conductive shell.The interior surface
of nanopores is catalyzed with an atomic Pt skin, and the
solid fraction of the shell is composed of a highly conductive
material, such as graphite (σe ∼ 104 S cm−1), graphene
(σe ∼ 105 S cm−1) or a metal (e.g., Ti, σe ∼ 104 S cm−1).
The secondary pore space between ionomer pillars
shows a uniform pore size distribution (rather than a
heterogeneous pore size distribution as in conventional
CLs (Sakai et al., 2009)).

8) Degradation is negligible and the stiffness of the CL is
infinitely high (Jomori et al., 2012).

9) The CL temperature is high enough to avoid flooding due
to electrochemical generation and net water transport from
anode to cathode. The secondary pore space is partially
saturated with a prescribed average saturation savg, which
is used to correct the bulk effective diffusivity. Two-phase
flow of water saturation andwater vapor is notmodeled (see
below).

10) Primary nanopores grooved in the electron-conductive shell
are filled with liquid water from the ORR due to Van
der Waals adsorption, capillary condensation and Knudsen
effect.

The last two assumptions deserve further attention. Unlike
porous media with pore sizes larger than 1 μm, two-phase
transport in a CL is affected by two nanoscale aspects: 1)
reduction of the vapor pressure of water by Van der Waals
adsorption and Kelvin effect, and 2) reduction of the diffusivity
coefficient of gas species by Knudsen effect.

According to the Kelvin equation, the actual saturation
pressure of water in a nanometric concave meniscus, psat

H2O
, is

reduced exponentially comparedwith the value of a flat interface,
psat,flat
H2O

, according to

ln(
psat
H2O

psat,flat
H2O

) = −
2σVm,H2O

ReffRoT
(1)

where Ro is the universal gas constant, σ ≈ 0.072 Nm−1 is the
surface tension of the water-air fluid pair, Vm,H2O =MH2O/ρH2O
is the molar volume of water, Reff = R/cos θ is the (effective)
meniscus radius, and θ is the contact angle. Water shows a
hydrophilic or mixed-wettability character with conventional
materials employed in CLs (θ ≤ 90°). The contact angle is lower
for metals, such as Pt, stainless steel and TiO2 (θPt ≈ 40°,
θss ≈ 65°, θTiO2

≈ 72°), and higher for carbon (θc ≈ 80◦) (Park
and Aluru, 2009; Martinez-Urrutia et al., 2018; Liu et al., 2021).
Hydrophobic contact angles can be achieved with graphene
(θgr ≈ 95◦ − 100◦) (Taherian et al., 2013).

The reduction of the diffusivity coefficient of species i due
to Knudsen effect (i.e., the frequent collision of gas molecules
with pore walls) depends on the pore radius, R, according to the
expression

f knud =
Di

Dmol
i

= (1+
Dmol
i

Dknud
i

)
−1

(2)

where Dmol
i is the molecular diffusivity coefficient, Di is the

apparent diffusivity coefficient, which can be approximated by
the Bosanquet formula, and Dknud

i is the Knudsen diffusivity,
given by the kinetic theory of gases

1
Di
= 1
Dmol
i

+ 1
Dknud
i

; Dknud
i =

R
3
√8RoT

πMi
(3)

with Mi the molecular mass of species i.
Four key characteristic times can be distinguished related

with two-phase transport in the pore space of a CL: 1)
capillary action estimated according to the Young–Laplace
equation, tc, 2) phase change of water from the Hertz-Knudsen
equation (Jiao and Li, 2011; Attari Moghaddam et al., 2017), tpc,
3) viscous transport of liquid water from the Navier-Stokes
equations, tv, and 4) diffusion of water vapor from Fick’s
law, tH2O,d. For a pore radius R ∼ 50 nm and a characteristic
velocity vc ∼ (Iavg/2F) (MH2O/ρH2O) ∼ 10–6 s at Iavg ≈ 1 A cm−2,
the estimated times in increasing order are.

tc =
ρvcR

2

σ
∼ 10−17 s (4a)

tpc =
1

alv√
RoT

2πMH2O

∼ 10−12 s (4b)
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FIGURE 3
(A) Variation of the normalized saturation pressure, p̃satH2O = pH2O/p

sat
H2O

, with the pore radius, R, for three different contact angles,
θ = 30° (≈ Pt),60°,80° (≈ C), corresponding to T = 60°C. (B) Variation of the removal water vapor flux at the CL/MPL interface, NoutH2O, with the CL
temperature, T, for three different pore radii, R = 2,10,50 nm, corresponding to θ = 80°. The water flux due to ORR generation and crossover
from anode to cathode (β = 0.2) is also included for comparison (dashed line). Other parameters: savg = 0.6, ɛ = 0.4, keff(savg) = 0.3 W m−1K−1,
Q̇ = 3 kW−2.

FIGURE 4
Schematic of tailored structures to mitigate cathode flooding in primary nanopores of the idealized bi-functional cathode CL examined in this
work: (A) straight cylindrical nanopore with a PTFE coating added on the exterior surface of the nanoporous shell, and (B) tapered nanopore
with increased Laplace pressure to enhance transport of liquid water from a hydrophobic PTFE coating toward hydrated ionomer (connected to
the anode side through the PEM).

tv =
R2

ν
∼ 10−9 s (4c)

tH2O,d =
R2

Deff
H2O

∼ 10−10 s (4d)

where alv is the liquid-water specific surface area, which
is in the order of alv ∼ R−1 ∼ 2× 107 m−1 for R = 50 nm,
and ρ ≈ 103 kgm−3 and ν ≈ 10–6 m2s−1 are the density and
the kinematic viscosity of liquid water, respectively. The
effective diffusivity of water vapor, Deff

H2O
, for a conventional

CL can be approximated as, Deff
H2O
= Dmol

H2O
f knud f obs, with

f obs = ε2 (1− savg)2.5 (ɛ ≈ 0.4, savg ≈ 0.4) and Dmol
H2O
(T) = 2.98×

10−5(T/333)1.5 (T = 80°C) (Sánchez-Ramos et al., 2021; Garcia-
Salaberri, 2022).

The liquid-phase pressure drop needed to drive the flow
of liquid water across a CL can be estimated from Darcy’s
law. Considering a CL permeability, K ∼ 10–15 − 10–16 m2, and
a thickness, δcl ∼ 5 μm (Zhao et al., 2018), we yield

Δpl ∼
μvcδcl

K
∼1− 10 Pa≪ pc∼

σ
Reff

∼104 Pa (5)

According to this result, the effect of the liquid water flow
on the liquid pressure distribution established by capillarity is
virtually negligible, which agrees with the numerical results of
Liu et al. (2013) and previous experimental pc-s curves reported
for CLs without and with cracks Kusoglu et al. (2012).
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FIGURE 5
(A) REA of the examined bi-functionalized bimodal CL composed of cylindrical ionomer pillars surrounded by a nanoporous shell catalyzed with
an atomic Pt skin. (B) Close-up view of the nanoscale geometry between an ionomer pillar and the secondary pore space. (C)
Macro-homogenized representation of the CL at the layer scale with composition-dependent effective transport properties and volumetric
current density determined from the microscopic model at the nanoscale.
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Putting all together, the above estimations suggest that water
transport in vapor and liquid forms take place on a time scale
significantly slower than phase change phenomena and (virtually
instantaneous) capillary action (i.e., tv, tH2O,d ≫ tpc ≫ tc). Water
transport is also expected to be slower compared with water
desorption/sorption from/to ionomer, since ionomer and liquid-
water specific surface areas are of a similar order of magnitude
in conventional CLs (alv∼ ai∼ R−1). This scenario is comparable
to that reported for GDLs, where evaporation/condensation of
water is controlled by transport rather than interfacial kinetics
(Gebel et al., 2011; Fumagalli et al., 2015; Zenyuk et al., 2016b).
As shown in Figure 3A, the bimodal pore size distribution
of CLs offers a good balance to simultaneously provide
a high liquid-gas interfacial area in water-filled primary
pores due to Van der Waals adsorption and capillary
condensation (R ∼ 2–10 nm), and an enhanced water vapor
removal rate through secondary pores due to reduced
Knudsen effect (R ≳ 50 nm) (Zientara et al., 2013; Li et al., 2019;
Huang et al., 2021). Neglecting phase-change resistances, the
water vapor removal rate under partially-saturated conditions
driven by a temperature gradient across a CL is given by (Kim
and Mench, 2009)

Nout
H2O
= 1
Ro

d(Deff
H2O

psat
H2O
/T)

dT
dT
dz

(6)

where psat
H2O
(T) is the saturation pressure of water (Sánchez-

Ramos et al., 2021). This expression shows that although CLs are
almost isotherms (temperature variation, ΔT ≲ 10–3 − 10–2 K),
the temperature gradient created by generated heat is similar
to that found in GDLs and cannot be neglected. In a first
approximation, neglecting the water vapor flux across the PEM,
the temperature gradient at the CL/MPL interface increases with
current density

dT
dz

∼
ΔTcl

δcl
∼ Q̇
keff (savg)

; Q̇∼1
2
(
hlv
2F
−Vcell) Iavg (7)

where Q̇ is the heat flux removed through the cathode
compartment due to electrochemical reaction at a current
density Iavg, which can be reasonably assumed to be half of
the total generated heat flux, hlv ≈ 242 kJ mol−1 is the latent
heat of vaporization/condensation of water, Vcell is the operating
cell voltage and F is Faraday’s constant (Thomas et al., 2014;
Straubhaar et al., 2015).

Figure 3B shows the water vapor removal rate as a function
of CL temperature for various pore radii, corresponding to
an output current density Iavg ≈ 1 A cm−2 and a net water
transport coefficient across the PEM from anode to cathode,
β = 0.2 (savg ≈ 0.6). For a small pore radius, R ≈ 2 nm, the
water removal flux in vapor form is not sufficient to transport
the generation + crossover water flux in the temperature range
T = 40–90°C. The same situation is found at temperatures
below T ≲ 60°C for R ≈ 10 nm. Consequently, excess water is

removed to the cathode MPL in liquid phase, condensed in
the pore space, sorbed into the ionomer and/or pushed to the
anode by a pressure difference (if a pressure difference between
compartments exists). In contrast, when the pore radius is
increased to tens of nanometers, R ≳ 50 nm, removal in vapor
form is possible in the full temperature range. As a result, liquid
water is desorbed from the ionomer to the pore space, liquid
water is evaporated and/or liquid water enters the cathode CL
by a pressure difference. This result highlights the importance
of maintaining the CL at as high a temperature as possible
within operational constraints. For a given current density (i.e.,
heat flux, Q̇), liquid water saturation in the cathode CL can be
decreased in three (main) ways: 1) reducing the water crossover
flux from anode to cathode (e.g., using a hydrophobic cathode
CL and/or a thin PEM), 2) enhancing water removal in vapor
form with a lower effective thermal conductivity under partially
saturated conditions and/or increasing the CL temperature
(regardless of the cell temperature), and 3) facilitating water
removal in liquid form, so that water that cannot be vaporized
or sorbed into the ionomer can be easily evacuated in liquid
form (Avcioglu et al., 2016; Chi et al., 2018; Folgado et al., 2018;
Steinbach et al., 2018; Wang et al., 2019; Lin et al., 2021). The
second option is challenged by the dependency of the effective
thermal conductivity on water saturation, so a proper design
of the layers adjacent to the cathode CL (e.g., the cathode
MPL)may be necessary. Solutions to improvewatermanagement
by a modification of the cathode CL microstructure can be
achieved through a tailored addition of PTFE to decrease
hydrophilicity from the interior to the exterior of nanopores (see
Figure 4). The generated Laplace pressure difference between
cathode and anode can be used to push water toward the
ionomer, water menisci pinned at PTFE edges to enhance
evaporation (a similar approach to that used in PTFEmembranes
in separation processes (Lu et al., 2017; Wang et al., 2020b)),
and the external hydrophobic surface outside nanopores to
facilitate the transport of liquid water to the cathode MPL.
A tapered geometry with a narrow tip at the PTFE surface
could also be incorporated to increase the Laplace pressure
difference and enhance water transport to ionomer (i.e., anode
side)—a rather similar mechanism to that used by some varieties
of cactus for water harvesting Malik et al. (2016). Given the
variety of possibilities to improve water management, two-
phase transport modeling was omitted here. The scope of
this work is restricted to examining the technological limits
of cathode CLs with optimal transport routes and extracting
good design practices for improved performance. No flooding
in the cathode CL is assumed due to cell operation at high
temperature (T = 80°C) and/or the incorporation of other
strategies for water management. The cathode CL is partially
saturated with a representative saturation, savg ≈ 0.4, including
an interfacial resistance caused by water films at the entrance of
nanopores.
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2.2 Multiscale approach

A multiscale across-the-membrane model is considered
to describe oxygen, proton and electron transport in the
idealized bi-functional cathode CL (Mu et al., 2022). As shown
in Figure 5, the representative elementary area (REA) in the
CL is composed of a square region of length L and thickness
δcl with a central ionomer pillar of radius Ri. The average
half-size of the secondary pore space surrounding an ionomer
pillar is Rv. The ionomer pillar is covered by a nanoporous
electron-conductive shell (see close-up view in Figures 5A,B).
The microscopic representative elementary volume (REV) inside
a shell is composed of a straight nanopore of radius Rp and
length Lp ≪ Ri (negligible curvature), which is catalyzed with a
Pt skin of thickness δPt.The nanoporosity of the shell is ɛp with an
average spacing between pores lp (hexagonal packing). The effect
of themulticomponentmicrostructure and the nanoscale current
generation rate are plugged into a volume-average formulation
across the CL thickness by means of: 1) effective transport
properties (effective diffusivity, and effective electrical and ionic
conductivities), and 2) a volume-specific reaction rate (see the
macro-homogeneous domain in Figure 5C). The information
extracted before and during a simulation from the macroscopic
REA and the microscopic REV is as follows:

1) Before a simulation, the bulk effective transport properties
in the CL are expressed in terms of primary geometrical
parameters. In the idealized geometry, the normalized dry
effective molecular diffusivity, Deff,dry

O2,mol D
−1
O2

, is equal to the
porosity of the secondary pore space, ɛ, to account for
the reduction of the transport area with respect to the cell
geometric area. The Knudsen effect, as presented before in
Section 2.1, is introduced as a modification to Deff,dry

O2,mol D
−1
O2

.
Similarly, the normalized effective ionic conductivity, σeff

p σ−1p ,
is given by the ionomer volume fraction, ɛi. The normalized
effective electrical conductivity, σeff

e σ−1e , ismodeled according
to the expression for a conductive matrix embedded
in a hexagonal array of non-conductive cylinders (i.e.,
nanopores). A hexagonal packing of nanopores provides
an optimal solution to maximize the effective electrical
conductivity at a given nanoporosity (Perrins et al., 1979;
Tomadakis and Sotirchos, 1993). The oxygen diffusivity and
the ionic conductivity in liquid water inside nanopores are
DO2,w and σp,w, respectively. These values are corrected by
the nanoporosity of the shell, ɛp, to obtain the corresponding
effective values, Deff

O2,p
and σeff

p,p. The decrease of the oxygen
concentration caused by oxygen dissolution in liquid water
is taken into account through Henry’s constant, kH,O2,w,
while the effect of the local curvature of the flux from
the secondary pore space to each nanopore of radius Rp is
modeled through the entry transport resistance derived by
Newman (Newman, 1966).

2) During a simulation, oxygen and proton transport are
solved in a single pore using a 1D along-the-pore model
that includes a surface reaction term. The current density
generated in a single pore per unit of platinized area, Ip,
is determined, and then converted into a local volumetric
current density, jc(y), through the roughness factor, rf . The
inlet boundary conditions for oxygen and protons in the
microscopic model are provided by the local solution of
the macroscopic model at each spatial coordinate across
the thickness, y-coordinate. The local electronic potential,
ϕe(y), used to evaluate the local overpotential, ηc(y), is also
provided by the macroscopic model.

The oxygen diffusive resistance from the channel to the CL
and the ohmic resistance of the PEM and its interfaces are
incorporated through integral mixed boundary conditions into
the 1D cathode CL model. Further details of the implementation
can be found in (Sánchez-Ramos et al., 2021). The formulations
of the macroscopic and microscopic models are presented in the
next two sections.

3 Macroscopic model (layer scale)

The macroscopic conservation equations of oxygen, protons
and electrons across the CL thickness (y-coordinate) are given by

d
dy
(−Deff

O2

dCO2

dy
) = −

jc
4F

(8a)

d
dy
(−σeff

p

dϕp
dy
) = −jc (8b)

d
dy
(σeff

e
dϕe
dy
) = −jc (8c)

where Deff
O2

, σeff
p and σeff

e are the effective oxygen diffusivity,
ionic conductivity and electronic conductivity in the bulk CL,
respectively, and jc is the volumetric current density (the negative
sign accounts for consumption, i.e., jc > 0).

3.1 Boundary conditions

Equations (8a)–(8c) are supplemented with the following
boundary conditions at the CL/MPL (y = δcl) and CL/PEM
(y = 0) interfaces (see Figure 5).

CO2
⇒ CL/MPL: CO2

= Cin
O2,cl
; CL/PEM:

dCO2

dy
= 0 (9a)

ϕp⇒ CL/MPL:
dϕp
dy
= 0; CL/PEM: ϕp = −Δϕp (9b)
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ϕe⇒ CL/MPL: ϕe = Vcell; CL/PEM:
dϕe
dy
= 0 (9c)

where Vcell is the operating cell voltage, Cin
O2

is the inlet
oxygen concentration at the MPL/CL interface, and Δϕp is the
ionic potential drop across the PEM (and its interfaces). The last
two quantities are related with the output current density, Iavg,
through the following expressions.

Cin
O2,cl
= Cin

O2,ch
−Rchcl

O2

Iavg

4F
(10a)

Δϕp = ASRpemI
avg (10b)

where Rchcl
O2

is the oxygen transport resistance from the
channel to the MPL/CL interface, ASRpem is the area-specific
ionic resistance of the PEM, and Cin

O2,ch
is the channel oxygen

concentration. The output current density is given by

Iavg = ∫
δcl

0
jc (y) dy (11)

According to the ideal gas law, the oxygen concentration in
the air feed channel depends on the inlet cathode pressure, ping,c,
and relative humidity, RHc, as

Cin
O2,ch
=

pinO2

RoT
; pinO2
= 0.21(ping,c −RHcp

sat
H2O
) (12)

3.2 Constitutive equations of the porous
medium

Considering the representative geometry shown in Figure 5,
the porosity of the secondary pore space, ɛ, the ionomer volume
fraction, ɛi, the volume fraction of electron-conductive solid and
Pt, ɛc+Pt, and the porosity of the primary pore space, ɛprim, are
equal to.

ε(R̃i,
Lp
L
) = 1− π(R̃i +

Lp
L
)

2

(13a)

εi (R̃i) = πR̃
2
i (13b)

εc+Pt(R̃i,
Lp
L
,εp) = π[(R̃i +

Lp
L
)

2

− R̃2
i ](1− εp) (13c)

εprim(R̃i,
Lp
L
,εp) = π[(R̃i +

Lp
L
)

2

− R̃2
i ]εp (13d)

where the ionomer radius ratio is equal to R̃i = Ri/L. It can be
verified that ɛ+ ɛi + ɛc+Pt + ɛprim = 1.

The characteristic half-size of the secondary pore space, Rv,
and the spacing between nanopores in the electron-conductive
shell, lp, are given by.

Rv

L
(R̃i,

Lp
L
) = √1− π(R̃i +

Lp
L
)

2

(14a)

lp
Rp
(εp) = √

2π
εp
(hexagonal packing) (14b)

Ideally, all nanopores are accessible and lined with active Pt.
Hence, the roughness factor, rf , and the catalyst specific surface
area, aPt, are equal to.

r f =
2πNpRpLp

L2 =
LPt

δPtρPt
(15a)

aPtRp(R̃i,
Lp
L
,εp) = r f

Rp

δcl
= 2πεp[(R̃i +

Lp
L
)

2

− R̃2
i ] (15b)

where Np is the number of pores in a conductive shell. For a
prescribed nanoporosity, Np is given by

εp =
NpπR

2
pLp

π[(Ri + Lp)
2 −R2

i ]δcl
⇒ Np =

εpδcl [(Ri + Lp)
2 −R2

i ]

R2
pLp

(16)

The CL thickness, δcl, is determined by the Pt loading, LPt,
i.e.,

LPt =
r f

ECSA
= r fδPtρPt⇒

δcl
Rp
(R̃i,

Lp
L
,εp)

=
LPt

2πεpδPtρPt[(R̃i +
Lp
L
)

2

− R̃2
i ]

(17)

Here, ρPt = 21,450 kg m−3 is the density of Pt. Note that the
ECSA = LPt(δPtρPt)

−1 is directly related to the thinness of the
Pt skin. For a Pt atomic layer, δPt ≈ 0.2 nm, we yield ECSA ≈
230 m2 g−1Pt (Xie et al., 2014). The roughness factor is fixed for a
given Pt loading and thickness of Pt skin.

3.3 Effective transport properties

The expressions of the bulk effective transport properties at
the layer scale are presented below.

3.3.1 Effective oxygen diffusivity
The effective oxygen diffusivity is decomposed into a dry

component due to the obstruction of the dry CL microstructure
and the Knudsen effect, f(ɛ,Rv), and the relative effective
diffusivity due to the relative blockage of water saturation, g(savg)
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(Sánchez-Ramos et al., 2021; García-Salaberri et al., 2015b,a;
García-Salaberri, 2021)

Deff
O2

Dmol
O2

=
Deff,dry

O2

Dmol
O2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

f(ε,Rv)

Deff
O2

Deff,dry
O2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
g(savg)

(18)

where Dmol
O2
(pg,c,T) is the molecular diffusivity of oxygen in air

(Ye and Van Nguyen, 2007)

Dmol
O2
= 2.65× 10−5( T

333
)

1.5
(10

5

pg,c
) [m2 s−1] (19)

with T expressed in K and pg,c in Pa.
For a tortuosity factor τ ≈ 1, the normalized dry effective

diffusivity is equal to

f (ε,Rv) = ε(1+
Dmol

O2

Dknud
O2

)
−1

(20)

where Dknud
O2

is the Knudsen diffusivity given by Eq. 3 with
R = Rv and i = O2.

According to the data collected in Sánchez-
Ramos et al. (2021), g(savg) in conventional CLs can be modeled
as a power law of the form

g (savg) = (1− savg)2.5 (21)

This expression was considered a reasonable first approximation
to evaluate g(savg) in this work.

3.3.2 Effective proton conductivity
Proton conduction through hydrated ionomer pillars also

features a tortuosity factor τ ≈ 1. Hence, we have that

σeff
p

σp
= εi (22)

where σp is the bulk proton conductivity in ionomer. The value
of σp in finite-sized ionomer domains depends on the size
of the conductive medium and the confined morphology of
protogenic groups (thin film vs. nanofiber). 2D thin ionomer
films in conventional CLs show a lower conductivity than bulk
PEMs (2-10 times lower) due to the more difficult percolation
of protons through finite thickness domains (Siroma et al., 2009;
Paul et al., 2014; Gostick and Weber, 2015; Chen et al., 2019),
increasing with the film thickness–the bulk value of PEMs
is reached when the film thickness is significantly larger
than the size of protogenic nanodomains (around 10 nm)
(Gomaa et al., 2022). However, ionomer nanofibers show an
opposite behavior, reaching a higher ionic conductivity for
small fiber diameters compared with bulk PEMs (up to 10
times higher) and a similar ionic conductivity to that of
PEMs for significantly high fiber diameters (Pan et al., 2008;
Sun et al., 2019). This opposite behavior can be explained by

the preferential alignment of protogenic nanodomains along
nanofibers, which act as highways for proton conduction
(Pan et al., 2008). Thin films and nanofibers reach a value
comparable to that of bulk PEMs for thicknesses and diameters
around 50–100 nm, which is similar to the mean diameter of
ionomer pillars considered here. Therefore, the bulk proton
conductivity at fully humidified conditions was assumed equal
to that of Nafion PEMs as a first approximation (Kusoglu and
Weber, 2017)

σp ≈ 10 Sm−1 (23)

3.3.3 Effective electrical conductivity
The effective electrical conductivity in the electron-

conductive shell with a hexagonal packing of nanopores, σeff
e,sh,

is modeled by the low-order analytical solution of Perrins et al.
(Perrins et al., 1979)

σeff
e,sh

σe
= 1−

2εp

1+ εp −
0.075422 ε6p

1− 1.060283 ε12p
− 0.000076 ε12p

(24)

where σe is the bulk electrical conductivity of the electron-
conductive material. Here, the electrical conductivity of graphite
was taken as a representative value, σe∼ 106 S m−1. A material
with a high stiffness would also be necessary to provide
mechanical integrity to the proposed core-shell microstructure
for its fabrication.

At the layer scale, σeff
e,sh is corrected by the volume fraction of

the conductive shell, ɛsh, to account for the reduced area available
for transport

σeff
e = εshσ

eff
e,sh; εsh =

εc+Pt
1− εp

(25)

4 Microscopic model (nanopore
scale)

Oxygen and proton transport along a nanopore (local x-
coordinate) is governed by a reaction-diffusion equation with
a surface reactive term. Mass and charge balances in a pore
segment of length dx and radius Rp yield.

πR2
p

d
dx
(−Deff

O2,p

dCO2,p

dx
)dx = −2πRpdx

Ip (x)
4F

(26a)

πR2
p

d
dx
(−σeff

p,p

dϕp,p
dx
)dx = −2πRpdxIp (x) (26b)
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The resulting differential conservation equations for the
nanoscale oxygen concentration, CO2,p, and the ionic potential,
ϕp,p, are

d
dx
(−Deff

O2,p

dCO2,p

dx
) = − 2

Rp

Ip (x)
4F

(27a)

d
dx
(−σeff

p,p

dϕp,p
dx
) = − 2

Rp
Ip (x) (27b)

where Ip(x) is the current density generated in a single
nanopore per unit of active surface area (i.e., internal
nanopore surface). Ip(x) is described by Tafel kinetics (Sánchez-
Monreal et al., 2018)

Ip (x) = io,c(
CO2,p

Cref
O2

)
γ

exp[−
αcF
RoT

ηc (x)] (28)

Here, io,c ≈ 0.5 AmPt
−2 is the exchange current density,

γ = 0.7 the reaction order, αc = 0.5 the symmetry coefficient,
Cref

O2
≈ 40 molm−3 the reference oxygen concentration,

and ηc the cathode overpotential. io,c was set somewhat
higher than the mean value reported in (Sánchez-
Ramos et al., 2021) (0.5 AmPt

−2 vs. 0.3 AmPt
−2 at T = 80°C)

due to improved catalyst activity in ultra-thin Pt skins not
covered by ionomer (δPt ≲ 1 nm) (Debe, 2012; Xie et al., 2014;
Yarlagadda et al., 2018). The cathode overpotential (ηc ≤ 0) is
defined as

ηc (x,y) = ϕe (y) −ϕp,p (x) −Er (29)

where ϕe(y) is the local electronic potential across the thickness
(provided by the layer-scale model) and Er ≈ 1.2 V is the
reversible cell voltage (Sánchez-Ramos et al., 2021).

The effective oxygen diffusivity, Deff
O2,p

, and the effective ionic
conductivity, σeff

p,p, in a water-filled nanopore are equal to

Deff
O2,p
= εpDO2,w; σeff

p,p = εpσp,w (30)

where DO2,w and σp,w are the diffusivity coefficient of oxygen
and the proton conductivity in liquid water, respectively. DO2,w
can be extracted from values measured in bulk water (Han
and Bartels, 1996; Muzaffar et al., 2018), while σp,w has been
determined experimentally and numerically for pH values
commonly found in operating PEMFCs (see (Zenyuk and
Litster, 2014; Liu and Zenyuk, 2018) and references therein)

DO2,w ≈ 5× 10
−9 m2 s−1; σp,w ≈ 10

−1 Sm−1 (31)

Comparatively, DO2,w is between one to three orders of
magnitude higher than the oxygen diffusivity in ionomer
films and PEMs (Kusoglu and Weber, 2017; Sánchez-
Ramos et al., 2021), while σp,w is one order of magnitude lower
than the proton conductivity through thin films in conventional
CLs (Sabarirajan et al., 2020). This favorable situation was

previously exploited in NSTFC electrodes with a relatively good
performance (Debe et al., 2011; Debe, 2012).

At each y-coordinate, the surface current density drawn from
one nanopore is equal to

Iavgp (y) =
1
Lp
∫
Lp

0
Ip (x) dx (32)

The relationship between the nanoscale surface current density,
Iavgp , and the local volumetric current density at the layer scale,
jc(y), is given by the active specific surface area (see Eq. 15b)

jc (y) = I
avg
p (y)aPt (33)

4.1 Boundary conditions

The boundary conditions at the nanopore inlet (x = Lp) and
at the nanopore/ionomer interface (x = 0) are rather similar to
those used at the layer scale due to the analogy between the
arrangement of a nanopore inside the idealized bi-functional CL
and a CL in a MEA

CO2,p⇒ Inlet: CO2
= Cin

O2,p
(y) −Deff

O2,p

dCO2,p

dx
Rin

O2,p
;

Ionomer:
dCO2,p

dy
= 0 (34a)

ϕp,p ⇒ Inlet:
dϕp,p
dy
= 0; Ionomer: ϕp,p = ϕp (y) + σ

eff
p,p

dϕp,p
dx

Rin
p,p

(34b)

where the dissolved oxygen concentration in liquid water at
the nanopore inlet is given by Henry’s law (Blunier et al., 2013)
(rather than a Langmuir adsorptionmodel as found for ionomers
(Shen et al., 2017; Cheng et al., 2022))

Cin
O2,p
(y) = kH,O2,wCO2

(y) ; RoT
kH,O2,w
= 7.79× 104 exp(5.7− 1700

T
)

(35)

The entry resistances at the nanopore edges, Rin
O2,p

and Rin
p,p, can

be expressed as Newman (1966)

Rin
O2
=

πRp

4DO2,w
; Rin

p =
πRp

4σp,w
, (36)

leading to robin boundary conditions.

5 Case studies

The three case studies examined are schematized in
Figure 6A: 1) baseline case devoted to the geometrical
optimization of the CL microstructure (see optimization flow
chart in Figure 6B) considering state-of-the-art channel-
CL oxygen transport and area-specific ohmic resistances,
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FIGURE 6
(A) Diagram of the case studies examined. The analysis of the baseline case with the geometrical optimization of the bi-functionalized cathode
CL microstructure is presented in Section 6.1, the effect of the external oxygen and proton transport resistances, RchclO2 and ASRpem, is presented
in Section 6.2, and the effect of the catalyst activity, io,c, is presented in Section 6.3. (B) Flow chart of the optimization process to determine the
optimal bi-functionalized cathode CL. Fixed and derived variables are indicated by boxes with black border and variables that were examined
parametrically are indicated by boxes with red border. Constrained variables are marked with an asterisk.

Rchcl
O2
= 1 s cm−1 and ASRpem = 0.02 cm2 S−1, respectively

(see, e.g. (Owejan et al., 2013, 2014; Ureña et al., 2021;
Gomaa et al., 2022)); 2) an analysis of the exterior mass and
proton transport resistances, Rchcl

O2
and ASRpem, where the

baseline values are reduced to Rchcl
O2
= 0.5− 0.1 s cm−1 and

ASRpem = 0.01–0.002 cm2 S−1 (x0.5 and x0.1); 3) an analysis
of the catalyst activity, i.e., the exchange current density, io,c,
where the baseline value io,c = 0.5 Am−2Pt is increased up to
io,c = 1− 5 AmPt

−2 (x2 and x10).
The parameters that were kept constant and examined

parametrically for the geometrical optimization (presented in
Section 6.1) are listed in Table 1. The nanopore radius was
fixed to Rp = 2.5 nm to ensure the presence of water in
tiny nanopores and the average saturation in the secondary
pore space was fixed to savg = 0.4, as previously discussed in
Section 2.1. The cell voltage was set to Vcell = 0.5 V, close to
maximum power density (see footnote in Table 1 for other
operating conditions). The Pt loading was varied in the range
LPt = 0.001–0.4 mgPt cm−2, which includes the loading needed
to meet the ultimate target of a total PGM content below

0.1 mgPtcm−2 (LPt∼ 10–2 mgPt cm−2). For a given Pt loading, the
CL microstructure is defined by five primary variables: ɛp, δPt,
Lp, L and R̃i. The nanoporosity of the shell was kept as high
as possible, ɛp = 0.9, below the percolation threshold given by
εmax
p = 1− π/(2√3) ≈ 0.906, the thickness of the Pt skin was set

to δPt = 0.2 nm to maximize the ECSA and the nanopore length
was fixed to Lp = 10 nm to minimize the transport length in
nanopores, while providing certain mechanical integrity. The
ionomer radius ratio was varied between R̃i = 0.1− 0.4 and the
spacing between pillars between L = Lmin − 5000 nm, where
Lmin is the minimum spacing allowed to ensure a minimum
half-size and porosity of the secondary pore space (see below).
The remaining variables (ɛ, ɛi, ɛc+Pt, Rv, rf , aPt and δcl) can be
derived from the constitutive equations of the porous medium
presented in Section 3.2.The volume fractions (ɛ,ɛi,ɛc+Pt) can be
determined fromEqs. (13a)–(13c), the half-size of the secondary
pore space (Rv) from Eq. 14a, the roughness factor and the
specific surface area (rf ,aPt) from Eqs. (15a)–(15b), and the CL
thickness from Eq. 17. In addition, three geometrical constraints
were imposed on the above variables: (1-2) ɛ ≥ 0.15 and Rv ≥ 0
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TABLE 1 Model parameters. The baseline case corresponds to Rchcl
O2

= 1 s cm−1, ASRpem = 0.02 cm2 S−1 and io,c = 0.5 AmPt
−2. The constrained variables are

indicatedwith an asterisk and the operating conditions are included in the footnote.

Parameter Symbol Value

Channel-CL O2 transport resistance Rchcl
O2

0.1, 0.5, 1 (baseline) s cm−1

Area-specific ohmic resistance (∼ PEM) ASRpem 0.002, 0.01, 0.02 (baseline) cm2 S−1

Exchange current density io,c 0.5 (baseline),1,5Am−2Pt
Pt skin thickness (∼ atomic layer) δPt 0.2 nm
Nanopore radius Rp 2.5 nm
Nanopore length Lp 10 nm
Shell nanoporosity ɛp 0.9
Average water saturation savg 0.4
Pt loading LPt 0.001–0.3 mgPt cm−2

Pillar spacing L Lmin − 5000 nm
Ionomer radius ratio R̃i 0.1–0.4
Porosity of secondary pore space* ɛ ≥0.15
Half-size of secondary pore space* Rv ≥0
CL thickness* δcl ≥1.5 μm

Pg,c = 1.5 bar; pg,a = 1 bar; T = 80°C; RHa = RHc = 1; Cin
O2,ch
≈ 7.4 molm−3; Vcell = 0.5 V.

to avoid an exceedingly low bulk oxygen effective diffusivity,
and 3) δcl ≥ 1.5 μm to ensure a minimum mechanical integrity
of the porous layer and avoid edge effects, such as capillary
condensation at sharp angles (Mashio et al., 2014). The lower
threshold used here for the thickness is similar to that considered
in previous works with conventional CLs (Sun et al., 2020). The
lowest pillar spacing imposed by constraints 1− 2, Lmin

ε and Lmin
Rv

,
can be determined from Eq. 13a, Eq. 14a, leading to

Lmin
ε =

Lp

√1− εmin

π
− R̃i

(37a)

Lmin
Rv
=

Lp
1− R̃i

(37b)

Therefore, the smallest pillar spacing allowed is equal to
Lmin =max{Lmin

ε ,L
min
Rv
}.

6 Discussion of results

6.1 Baseline case (geometrical
optimization)

The calculation of the optimal pillar spacing and
ionomer radius ratio, L and R̃, was accomplished using
physical considerations rather than a purely mathematical
approach. Eqs. (27a)–(27b) are governed by two dimensionless
parameters, which arise from the ratios of the characteristic times
of oxygen and proton transport and the characteristic reaction
time at both the nanoscale (Ωp

O2
, Ωp

p) and the layer scale (Ωcl
O2

,
Ωcl

p ) (Sánchez-Ramos et al., 2022). An alternative interpretation
can be considered as the ratios of the diffusion/conduction

penetration depths and the characteristic length at a certain scale
(Perry et al., 1998; Kulikovsky, 2010). For a roughness factor
in the range rf ∼ 1–100 and a representative average current
density needed for high performance, Iavg∼ 2 A cm−2, we yield
the following estimations.

Ωp
O2
=
td,p
tr,p
=

Lp
lO2,p

∼
LpR

p
O2
Iavg

Cin
O2,p

RpFr f
∼10−1 (r f∼102)

− 1(r f∼1) ∝ r−1f (limiting at low LPt) (38a)

Ωcl
O2
=
td,cl
tr
=

δcl
lO2,cl

∼
Rcl

O2
Iavg

Cin
O2,cl

F
∼10−2 − 10−1

r f − independent (38b)

Ωp
p =

td,p
tr,p

tp,p
td,p
=

Lp
lp,p

∼
ASRp

pLpI
avg

ErRpr f
∼10−4 (r f∼102) − 10−2 (r f∼1) ∝ r−1f (38c)

Ωcl
p =

td,cl
tr

tp,cl
td,cl
=

δcl
lp,cl

∼
ASRcl

p I
avg

Er
∼10−3 − 10−2 r f − independent (38d)

where the oxygen transport resistances at the layer scale
and the nanoscale (under passive non-reactive conditions)
are equal to Rcl

O2
= δcl/D

eff
O2

and Rp
O2
= Lp/D

eff
O2,p

, respectively,
and the proton transport resistances at the layer scale and
the nanoscale are equal to ASRcl

p = δcl/σ
eff
p and ASRp

p = Lp/σeff
p,p,

respectively. (Note that the apparent bulk diffusive resistance
under reactive conditions is proportional to that under passive
conditions (see, e.g. (Schuler et al., 2019)), so the optimization
problem at the layer scale can be reduced to minimizing Rcl

O2

if other losses are not significant). The characteristic oxygen
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concentration drops were estimated as Cin
O2,p

∼kH,O2,wC
in
O2,ch

and
Cin

O2,cl
∼Cin

O2,ch
, and the characteristic ionic potential drop as Er .

The dimensionless transport coefficients at the nanoscale depend
on rf because of the re-normalization between the cell current
density and the current density per unit of active area, i.e., Iavg =
r fI

avg
p .
The most limiting transport process is oxygen transport

at the nanoscale mainly due to the larger oxygen resistance
at the nanoscale (compared with that of the bulk CL) and
the dissolution of oxygen in liquid water to reach triple phase
points unlike proton conduction. Ohmic losses at the layer
scale can be lower or comparable to those found in water-
filled nanopores depending on the value of the normalized
ionic conductivity across the CL (σeff

p σ−1p = εi in our case and
dependent on bottlenecks created by thin films in conventional
CLs (Sabarirajan et al., 2020)). For rf ≈ 1, regardless of Iavg, we
yield

Ωp
O2

Ωcl
O2

∼
Lp
Rp
× 1
kH,O2,w
×
Rp

O2

Rcl
O2

∼ (1− 10) × 10× (1− 10)∼10− 103 (39a)

Ωp
p

Ωcl
p
∼
Lp
Rp
×

ASRp
p

ASRcl
p
∼ (1− 10) × (10−1 − 1)∼10−1 − 10 (39b)

The maximum power density is achieved when all the
dimensionless times (or penetration depths), Ωi, are minimized
(maximized), so that oxygen and proton transport are fast
enough to maintain the reaction rate at the targeted current
density, Iavg, with a low cathode overpotential. According to
Eqs. (38a)–(38d), this condition is achieved when transport
resistances, Ri, are minimized at all scales. The other option is
to increase the oxygen concentration at the CL/MPL interface,
something that can be done through a reduction of the exterior
mass transport resistance to the cathode CL, Rchcl

O2
. Increasing

Henry’s constant of oxygen in liquid water is difficult, even
though it is worth noting that the oxygen diffusivity in liquid
water can be slightly increased using oxygen diffusion-enhancing
compounds (usually used in medicine for the treatment of
diseases, such as hypoxia and ischemia) (Stennett et al., 2006).

Figure 7A shows the variation of the bulk oxygen transport
resistance, Rcl

O2
, as a function of L for various Pt loadings

(R̃i = 0.3). For a given Pt loading, there is a critical L for which
Rcl

O2
is minimized due to a trade-off between the increasing

secondary pore size (lower Rcl
O2

) and the increasing thickness
(higher Rcl

O2
) with L (see Eq.14a and (17)). The optimal spacing

is approximately reached when δcl is minimum, δcl = Πδmin
cl ;

Π = 1.2 was taken here. The nearly minimum thickness also
minimizes the bulk proton transport resistance, Rcl

p . Hence, the
optimal design spacing, Ldes(R̃i), can be determined from the

condition

Πδmin
cl =

LPtRp

2πεpδPtρPt[(R̃
des
i +

Lp
Ldes
)

2

− (R̃des
i )

2]

; Π = 1.2

(40a)

And the solid volume fraction, ɛc+Pt, can then be calculated from

εdesc+Pt = π[(R̃
des
i +

Lp
Ldes
)

2

− (R̃des
i )

2](1− εp) (40b)

As shown in Figure 7B, Ldes increases with decreasing Pt
loading, given that a smaller amount of Pt can be allocated
in the same thickness but with larger secondary pores (where
most of the pore space is present). This method of reducing
LPt is theoretically optimal (compared with the addition
of bare carbon to maintain a constant thickness), since it
decreases Rcl

O2
(lower Knudsen effect). The design spacing

increases from around Rv ≈ 40 nm at LPt = 0.3 mgPt cm
−2

(typical value found in CLs with the same loading (Wilson
and Gottesfeld, 1992)) to Rv∼ 1000 nm for exceedingly small Pt
loadings, LPt→ 10–3 mgPt cm−2. As a result,Rcl

O2
is reduced by an

order of magnitude from ∼10−2 s cm−1 (similar to the resistance
in water-filled nanopores, Rp

O2
) down to ∼10−3 s cm−1) when

the Pt loading is varied in the range LPt = 0.3–10−3 mgPt cm−2.
Rcl

O2
and Rp

O2
are around 2-3 orders of magnitude lower than

the channel-CL and local oxygen resistances, Rchcl
O2

and Rion
O2,p

,
in conventional PEFCs with non-optimized CLs (Sánchez-
Ramos et al., 2021). The volume fraction of electron-conductive
material + Pt of the shell is small, growing from εdesc+Pt∼10−3 at
LPt = 0.005 mgPt cm−2 up to εdesc+Pt ≈ 0.06 at LPt ≈ 0.3 mgPt cm−2.
The increase of εdesc+Pt with LPt goes hand in hand with the increase
of Ldes since the thickness of the shell is fixed to Lp ≪ Ldes. The
above results suggest that there is room to improve performance
by optimizing CLs together with a reduction of oxygen transport
resistance in passive porous layers of the MEA, flow field and
stack flow distributor.

The optimal R̃i, which arises from a trade-off between
ionomer and void volume fractions (ɛi vs. ɛ), is to be determined
fromnumerical simulations. Figure 8A shows the power density,
P, computed for the baseline case as a function of the
ionomer volume fraction, ɛi = 0.05–0.8, and various Pt loadings,
LPt = 0.005–0.3 mgPt cm−2. P slightly varies with ɛi except for
exceedingly small ionomer volume fractions when the area
available for proton transport is strongly reduced, i.e., σeff

p is
significantly decreased. A similar effect to that found in thin
ionomer films. In a little more detail, it can be seen that the
optimal ionomer volume fraction shifts to higher values as LPt
is increased. This is explained by the larger secondary pore
sizes reached with decreasing LPt, so the optimal design point
is reached at a lower secondary porosity, ɛ. Nevertheless, the
variations above ɛi ≥ 0.2 are almost negligible, so the design
point was fixed to R̃i = 0.3 (ɛi ≈ 0.3) for subsequent analyses.
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FIGURE 7
(A) Variation of the bulk O2 transport resistance of the bi-functionalized bimodal cathode CL, Rcl

O2
, with the pillar spacing, L, corresponding to

various Pt loadings, LPt = 0.005,0.01,0.025,0.05,0.075,0.1,0.2,0.3mgPt cm
−2, and R̃i = 0.25. The figure also includes the O2 transport resistance

in optimized water-filled nanopores, Rp
O2
= Lp/D

eff
O2,p
≈ 0.02 s cm−1, the channel-CL O2 transport resistance of state-of-the-art PEMFCs

(Owejan et al., 2013, 2014; Sun et al., 2020), RchclO2 ∼1 s cm
−1, and the local O2 transport resistance reported for non-optimized conventional CLs

with ionomer thin films covering Pt nanoparticles at rf ≈ 1 (Sánchez-Ramos et al., 2021), RionO2,p∼4.7 s cm−1 ≫ Rp
O2

(water). The design spacing is
selected for δcl = Πδmincl (Π = 1.2), close to the optimal point of minimum bulk and local transport resistances. (B) Variation of the design spacing,

Ldes, and the design volume fraction of electron-conductive material + Pt, ɛc+Pt, Pt loading, LPt, corresponding to R̃i = 0.1,0.2,0.3,0.4. The
Knudsen limit for which species diffusion is not significantly reduced is around 1000 nm.

FIGURE 8
(A) Variation of the geometric power density, P, with the ionomer volume fraction, ɛi, at the design point of minimum transport resistance
corresponding to several Pt loadings, LPt = 0.005 − 0.3 mgPt cm

−2. The power density is reduced when ɛi is small because of the drop of σeffp
(bottleneck effect caused by too thin ionomer pillars). The computed optimal ionomer volume fractions are highlighted by big solid dots. (B)
Variation of the Pt mass-specific power density and geometric power density (Vcell = 0.5 V), PPt and P, respectively, with the roughness factor, rf,
at the optimal CL design point. The corresponding Pt loading is shown on the top axis, LPt = rfδPtρPt; δPt = 0.2 nm. The DOE power density target
at rated power (1 W cm−2 @ 0.76 V, T = 80°C) has been extrapolated to the examined voltage (1.5 W cm−2 @ 0.5 V) (DOE, 2015).

Figure 8B shows the variation of the Pt-specific and
geometric power densities, PPt and P, with the roughness
factor, rf , at the optimal design point (R̃i = 0.3). The Pt loading
corresponding to rf in the optimized CL is indicated on the
top axis (ECSA ≈ 200 m2 g−1Pt ). The Pt-specific power density
increases abruptly with decreasing LPt because of the steep P–rf
relationship prevailing at low Pt loading. Although the limit
p = 0 at LPt = 0 is inevitable (no reaction, no operation), the
current density sharply increases when rf > 0 if there are no huge

transport resistances and/or the ECSA is too small. The increase
of P with rf flattens for high roughness factors (rf ≳ 100) due
to the effect of mass and ohmic resistances of the cathode CL
and exterior components. Note that the limiting current density
would be mainly controlled by Rchcl

O2
if interior mass transport

resistances in the CL are negligible and the roughness factor
is extremely high (rf → ∞). Maximizing the performance in
the range LPt ≈ 0.01–0.1 mgPt cm

−2 to meet the ultimate DOE
targets may require an integral optimization of oxygen transport
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FIGURE 9
Variation of the geometric power density (Vcell = 0.5 V), P, with the roughness factor, rf, at the optimal design point, corresponding to: (A) three
area-specific ohmic resistances, ASRpem = 0.02 (baseline case), 0.01, 0.002 cm2 S−1, and (B) three channel-CL oxygen transport resistances,

RchclO2 = 1 (baseline case),0.5,0.1 s cm−1. See caption to Figure 8 for further details.

resistances (see Section 6.2 below). In terms of the cathode
CL, increasing the fraction of water-based triple phase points
provides a viable route to reach Pt-specific power densities
between PPt ≈ 10− 40 kW g−1Pt and surpass the DOE target of
10 kW g−1Pt , as recently demonstrated by The General Motors
Company (Yarlagadda et al., 2018).

6.2 Effect of external transport
resistances

The effect of the exterior ohmic and mass transport
resistances, ASRpem and Rchcl

O2
, on the geometrical power density

at the optimal design point is examined in Figures 9A,B,
respectively. Improvement of P at low LPt by a direct
reduction of ohmic losses is not feasible, since thin PEMs
currently used in PEMFCs (e.g., reinforced Nafion) with small
thickness (δpem ∼ 10–30 μm) and high ionic conductivity
(σpem ≈ 10–20 S m−1 at RH = 1) have already been highly
optimized and represent a rather small fraction of voltage losses,
ΔVohm ≈ 0.02 V(Iavg ≈ 2 A cm−2) ≪ Er ≈ 1.2 V. Moreover,
thin PEMs can suffer from insufficient durability (e.g., ultra-
thin GORE-SELECT PEMs (Kienitz et al., 2011)). As shown in
Figure 9B, the power density is not significantly increased even
when ASRpem is decreased by an order of magnitude down to
0.002 cm2 S−1, which is comparable to the resistance of an ultra-
thin PEM 1 μm thick without significant interfacial resistances.
Nevertheless, a reduction of the PEM thickness can be useful
to enhance water back diffusion to the anode and improve
performance at low RH (Zhu et al., 2006; Steinbach et al., 2010).
For instance, a thin reinforced PEM (δpem ≈ 10 μm) was

incorporated in the Toyota Mirai in 2015, presumably to help
alleviating cathode flooding at middle-to-high current density
and making operation possible without external humidification
(Yoshida and Kojima, 2015; Borup et al., 2018). By way of
contrast, the impact of the channel-CL oxygen transport
resistance is significantly larger, being crucial to reduce it to
enhance performance at low LPt. A comparison of the external
transport resistances against the layer-scale and nanoscale
transport resistances in the CL leads to

Γchcl
O2,p
=
Rchcl

O2

Rp
O2

∼ 10− 102 sm−1

1− 102 sm−1
∼10−2 (r f∼1) − 102 (r f∼102) (41a)

Γchcl
O2,cl
=
Rchcl

O2

Rcl
O2

∼10− 102 sm−1

10−1 − 1 sm−1
∼102 − 103 (41b)

Γpem
p,p =

ASRpem

ASRp
p

∼10−7 − 10−6 m2 S−1

10−7 − 10−5 m2 S−1
∼10−1 − 1 (41c)

Γpem
p,cl =

ASRpem

ASRcl
p

∼10−7 − 10−6 m2 S−1

10−7 − 10−6 m2 S−1
∼1 (41d)

From the above calculations, it turns out that the exterior
and nanoscale oxygen transport resistances,Rchcl

O2
andRp

O2
, are the

most important ones.The bulk oxygen transport resistance of the
CL, Rcl

O2
, can be more easily optimized to make its contribution

negligible provided that there are no flooding-related issues
(see Figure 7) (Conde et al., 2019; Talukdar et al., 2019). The
contribution of Rchcl

O2
dominates the performance of the

optimized CL when rf ≳ 10 (Rp
O2

cannot be neglected at
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rf ∼ 1–10). The effect of ohmic losses in the CL is comparable
to that of ASRpem and can be neglected to optimize the
performance at low LPt under normal conditions, as commented
before.

Power densities above 1.5 W cm−2 are predicted with air feed
at low Pt loading with a ten-fold reduction of the external oxygen
resistance from Rchcl

O2
≈ 1 s cm−1 to Rchcl

O2
≈ 0.1 s cm−1. Decreasing

Rchcl
O2

by one order of magnitude may require a highly optimized
design of the cathode MEA/flow field/stack architecture. An
example is the highly engineered 3D porous cathode flow field
and thinGDLs (δgdl ≈ 150 μm) incorporated in the ToyotaMirai
to boost the performance of previously developed designs up to
3–4 A cm−2 (LPt ≈ 0.3 mgPt cm−2) (Yoshida and Kojima, 2015).
Water management at the cathode was also probably helped
by the thin PEM and reduced humidification. The optimized
component-architecture-operation design of the Toyota Mirai
provides a good basis for subsequent reductions of the Pt loading
via CL optimization. However, the fabrication of flow fields
and stacks with complex 3D geometries using conventional
methods is not desirable for large production. Work is still
needed to develop alternative strategies for decreasing Rchcl

O2
at

high current density using standard procedures, e.g., porous
flow fields, flow fields with narrower channels and/or GDL-
MPLs with tailored thickness and wettability (Jiao et al., 2021),
or advanced manufacturing techniques, such as multiscale
3D printing of metal powders (e.g., Ti, stainless steel and
Ni (Yi et al., 2012; Choi et al., 2014; Ercelik et al., 2022)) and
alternative raw material powders (3D printing can also help
in reducing electrical contact resistances and inhomogeneous
assembly compression (García-Salaberri et al., 2011, 2018,
2019; García-Salaberri P. A. et al., 2017; Hack et al., 2020)). In
particular, decreasing the thickness of GDLs and flow fields
by integrating them into a single component can enable the
production of more compact stacks, reducing weight and
increasing volumetric current density, as recently demonstrated
by Korean researchers (Park et al., 2019). Another option
to improve cathode performance would be to use a more
efficient compressor to increase the cathode pressure, while
avoiding a reduction of the system efficiency (Sery and Leduc, 
2022).

6.3 Effect of catalyst activity (exchange
current density)

The last option to improve performance within DOE targets
is catalyst modification by: 1) increasing the mass activity with
the same amount of precious metals, and 2) maintaining the
mass activity with a reduced amount of precious metals (or a
combination of both). According to Tafel equation, for a given
roughness factor and overpotential, a catalyst with a higher
exchange current density can potentially increase the current

density in the same proportion (if transport losses are small)

Iavg = r fI
avg
p ;

Iavgp,2

Iavgp,1

=
io,c,2
io,c,1

CO2
, ηc ≈ cte. (42)

Figure 10 shows the variation of P with rf for three different
exchange current densities, io,c = 0.5,1,5 Am−2Pt , corresponding
to high and low external oxygen transport resistances, 1)
Rchcl

O2
= 1 s cm−1 and 2) Rchcl

O2
= 0.01 s cm−1. According to Eq. 42,

increasing io,c is useful to boost performance at middle-to-
high current density when oxygen transport to the cathode CL
is facilitated. In this case, the combination of a high average
oxygen concentration and a high exchange current density
can significantly raise the power density to around 2 W cm−2

at low LPt. The performance improvement in practice will
largely depend on the increase of io,c that can be achieved and
the ability to keep Rchcl

O2
small at high water production rates

(special attention is to be devoted to efficient water removal in
vapor form with increasing heat generation). In contrast, when
oxygen transport to the CL is hindered, the beneficial effect
of increasing io,c is strongly reduced since operation at high
performance is no longer possible due to oxygen starvation.
As shown in Figure 11A, the limiting current density remains
the same regardless of the exchange current density for Rchcl

O2
=

1 s cm−1, while no limiting current density is present in the
voltage range examined for Rchcl

O2
= 0.01 s cm−1. The average

oxygen concentration in the cathode CL, Cavg
O2,cl

, closely follows
the linear relationship given by Rchcl

O2
due to the reduced effect

of other transport resistances in the optimized CL design (see
Figure 11B).

As a final remark, it is relevant to examine the limit to
which LPt might be reduced to ensure a certain minimum
performance.The frontier is largely controlled by rf . As shown in
Figure 10B, the power density with a highly optimized PEMFC
(i.e., CL based on water-filled triple phase points, ×0.1Rchcl

O2
,

× 10io,c with respect to the state of the art and negligible losses
at the anode) dramatically drops when rf ≲ 10, being impossible
to meet DOE targets when rf ≲ 1 (similar electrochemical and
geometrical areas). The positive effect of increasing io,c and Cavg

O2,cl
is dramatically reduced when rf ≲ 1 because Iavgp becomes too
small even if all transport resistances areminimized. Considering
the Tafel equation again, the maximum possible current density
at a given overpotential is equal to

Iavg∼Iavgp ∼io,c(
Cin

O2,p

Cref
O2

)
γ

exp[−
αcF
RoT

ηc] (43)

where Cin
O2,p

∼kH,O2,wC
in
O2,ch

is the oxygen concentration at the
entrance of nanopores. For ηc ≈ − (0.5–0.4) V (Vcell ≈ 0.5 V),
we yield Iavg∼Iavgp ∼10−2 A cm−2 at rf ∼ 1. Interestingly, the region
where operation at high performance is hardly complicated
is adjacent to the ultimate DOE target corresponding to
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FIGURE 10
Variation of the geometric power density (Vcell = 0.5 V), P, with the roughness factor, rf, at the optimized design point for three exchange current
densities, io,c=0.5,1,5 A m−2Pt , corresponding to: (A) state-of-the-art channel-CL oxygen transport resistance, RchclO2 = 1 s cm

−1, and (B) optimized

channel-CL oxygen transport resistance, RchclO2 = 0.1 s cm
−1. See caption to Figure 8 for further details.

FIGURE 11
(A) Polarization curve, Vcell − Iavg, and (B) variation of the average oxygen concentration in the CL, C

avg
O2,cl

, with the average current density, Iavg,

at rf ∼ 100 (LPt = 0.05 mgPt cm
−2). The results for three exchange current densities, io,c=0.5,1,5 A m−2Pt , corresponding to both high and low

channel-CL oxygen resistances, RchclO2 = 1 s cm
−1 and RchclO2 = 0.1 s cm

−1, are included.

the idealized high ECSA cathode CL examined here (weak
LPt–rf relationship). This result highlights the importance of
maximizing the ECSA and facilitating oxygen transport toward
the cathode CL, while keeping rf ≳ 10 using highly active Pt-
alloys with a reduced Pt content if needed.

7 Conclusion

The performance and durability of proton exchange fuel
cells (PEFCs) is largely linked to an optimal design of the

cathode catalyst layer (CL), especially if a reduction of the
Pt loading (LPt∼ 10–2 mgPt cm−2) is desired to meet industrial
requirements in terms of design and cost (e.g., ultimate targets
set by the U.S. Department of Energy to make PEFC technology
competitive). Based on the analysis conducted in this work, good
practices to enhance the performance and enlarge the durability
of the cathode CL at low Pt loading are as follows:

1) To increase the electrochemical surface area, ECSA, as
much as possible to decrease the Pt loading needed to
achieve a specified roughness factor, rf . Reaching high
performance (say, beyond P ≈ 1.5 W cm−2) at low Pt loading
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with rf ≲ 10 can be difficult due to the sluggishness of
the oxygen reduction reaction (ORR). An increase of the
catalyst active area up to ECSA∼100 m2 g−1Pt (e.g., through
a combination of small Pt nanoparticles or atomic skins
and highly accessible nanoporous structures) can allow
a reduction of the Pt loading down to 0.05 mgPt cm−2

(rf ∼ 100) and 0.005 mgPt cm−2 (rf ∼ 10). The decrease of rf
at low Pt loading can additionally be alleviated using active
Pt-alloys (e.g., PtCo) if a further increase in ECSA is not
feasible.

2) To increase the percentage of triple phase points based on
water-filled nanopores with no entry mass transport losses
caused by (thin) ionomer films. Modification of nanoporous
supports with short transport lengths (∼10 nm) can be
a viable route to increase the Pt-specific power density
above PPt∼10 kW g−1Pt . Optimized CLs with bi-functionalized
microstructures (i.e., with a (precise) separation of mass
and proton transport domains) and bimodal pore size
distributions (i.e., with tailored primary nanopores to
promote water adsorption and capillary condensation, and
secondary pores to facilitate water removal) is crucial. If a
high degree of bi-functionalization of the CL is not possible,
the development of ionomers with tailored mass and ionic
transport resistances can be useful. Novel ionomers can
reduce entry mass transport resistances at the nanoscale,
while allowing good proton conduction at the layer scale.

3) To reduce the oxygen transport resistance from the channel
to the CL (i.e., from the stack inlet(s) to the CL), Rchcl

O2
,

especially at high current density. Optimization of the
oxygen transport resistance in other components, such
as the stack flow distributor, flow field, gas diffusion
layer and microporous layer, can be necessary to
reach power densities above P = 1.5 W cm−2 at low
Pt loading. Although solving the problem of the local
oxygen transport resistance of ionomer in conventional
cathode CLs is mandatory (Rion

O2,p
≈ 0.4− 4 s cm−1 at

rf ≈ 10–1), the performance can be limited by exterior
oxygen transport resistances once Rion

O2,p
is significantly

decreased or even removed using bi-functionalized bimodal
microstructures (RO2,p ≈ 0.02 s cm−1). A ten-fold decrease
of the exterior oxygen transport resistance from Rchcl

O2
≈

1 s cm−1 (conventional value) down to Rchcl
O2
≈ 0.1 s cm−1

(highly optimized cathode flow distributor) can allow power
densities around P ≈ 2 W cm−2 at LPt ≈ 0.05 mgPt cm

−2.
Ohmic losses play a secondary role to enhance performance
at lowPt loading, but thinmembranes can be used to promote
back diffusion and improve water management.

4) Increasing the catalyst mass activity (exchange current
density, io,c) can allow an improvement of the power density
if other transport losses do not limit the cell performance.
Increasing io,c (×10) in combination with a reduction of
Rchcl

O2
(×0.1) and CL optimization can raise the power density

up to P ≈ 2–3 W cm−2 at low Pt loading, even though this
will require an optimized water management strategy to
keep Rchcl

O2
small. Increasing io,c without reducing Rchcl

O2
can

significantly limit the performance gain.
5) Durability during dynamic operation can be increased if

corrosion of the carbon support is avoided at the cathode.
Polymer and metallic (e.g., TiO2) supports show a longer
durability than carbon-based supports (e.g., carbon black,
graphite or carbon nanotubes). However, an economic
analysis is needed to quantify if a change of the support to
more expensive materials (e.g., TiO2) is cost-effective.

Although commercialization of PEMFCs is underway for
some applications, such as heavy-duty vehicles, trains, electric
bicycles, etc., several aspects warrant future work to be addressed
by a combination of experimental and numerical work. Research
is expected to continue toward increasing performance and
durability at lowPt loading,mainly for two reasons: 1) to examine
the technology limits that could provide a more affordable and
extended use in general purpose applications, and 2) to leverage
the development of cheap, durable, high-performance PEMFCs
for light-duty vehicles that can make the technology more
competitive in the automotive sector. As exemplified in thiswork,
research topics to be analyzed inmore detail include: 1) reduction
of Pt loading via optimization of the multiscale microstructure
of CLs, 2) water management with a focus on CL design and
interaction with other layers, 3) reduction of oxygen transport
resistance in MEAs and stacks, 4) increasing durability of
carbon-based supports through a reduction of carbon corrosion,
and 5) simplification of balance of plant. An effort is to be
made toward integrated, multidisciplinary work, since most
of these topics are coupled with each other. This probably
explains why most significant recent developments in PEMFC
technology were accomplished by companies, while research
in the field seems to be a scattered combination of chemical,
electrical, electrochemical and mechanical engineering, among
other disciplines. Modeling is an essential transversal tool for
understanding and optimization.
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Nomenclature

APt Active Pt surface area/m2

Ageo ell geometric surface area/m2

ASR area-specific ohmic resistance/m2 S−1

a active specific surface area/m−1

alv liquid-vapor specific surface area/m−1

CO_{2} oxygen concentration/mol m−3

DO_{2} oxygen diffusivity in air/m2 s−1

Er reversible cell voltage/V

ECSA electrochemical surface area/m2 kg−1

F Faraday’s constant/C mol−1

f normalized diffusivity/–

g relative diffusivity/–

h specific enthalpy/J mol−1

I surface current density/A m−2

I/C ionomer-to-carbon weight ratio/–

io,c exchange current density of oxygen reduction reaction/Am−2Pt

j volumetric current density/A m−3

K permeability/m2

k thermal conductivity/W m−1 K−1

kH dimensionless Henry’s constant/–

L pillar spacing/m

LPt Pt loading/kgPt m−2

lp nanopore spacing/m

Mi molecular mass of species i/kg mol−1

NO_{2} oxygen molar flux/mol m−2 s−1

Np number of nanopores per ionomer pillar/–

P (geometric) power density/W m−2

PPt Pt-specific power density/Wkg−1Pt

p pressure/Pa

p̃ normalized pressure/–

Q̇ heat flux/W m−2

R radius/m

RO_{2} oxygen transport resistance/s m−1

RPt radius of Pt nanoparticle/m

R nanopore radius/m

Rv secondary pore radius/m

Ro universal gas constant/J mol−1 K−1

R̃i ionomer radius ratio/–

RH relative humidity/–

rf roughness factor/–

s water saturation/–

T temperature/K

t time/s

Vm molar volume/m3 mol−1

Vcell cell voltage/V

vc characteristic velocity/m s−1

x local coordinate through the nanoporous shell/m

y through-plane coordinate across the CL thickness/m

Greek letters

αc transfer coefficient of oxygen reduction reaction/–

β dimensionless net transport coefficient of water from anode to
cathode/–

Γ dimensionless ratio of transport resistances/–

γ reaction order of oxygen reduction reaction/–

δ thickness/m

ɛ porosity or volume fraction/–

ηc cathode overpotential/V

θ contact angle/–

ν kinematic viscosity/m2 s−1

Π dimensionless factor related to the optimal design point/–

ρ density/kg m−3

σ conductivity/S m−1 or surface tension/N m−1

τ tortuosity factor/–

ϕ potential/V

Ω dimensionless ratio of characteristic times or penetration depths/–

Subscripts and superscripts

avg average

c cathode or capillary

ch channel

chcl channel-CL

cl catalyst layer

c+ Pt electron-conductive material + Pt

d diffusion

des design

dry dry conditions

e electric

eff effective

flat flat surface

g gas
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geo geometric

i ionomer

in inlet

knud Knudsen

l liquid

max maximum

min minimum

mol molecular

obs obstruction

ohm ohmic

opt optimum

p primary nanopore or proton

pc phase change

pem polymer electrolyte membrane

prim primary

sat saturation

sh shell

v viscous

w water

wet wet conditions
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Solar mapping can contribute to exploiting more efficiently the solar energy

potential in cities. Solar maps and 3D solar cadasters consist of visualization

tools for solar irradiation analysis on urban surfaces (i.e., orography, roofs, and

façades). Recent advancements in solar decomposition and transposition

modeling and Light Detection and Ranging (LiDAR) scanning enable high

levels of detail in 3D solar cadasters, in which the façade domain is

considered beside the roof. In this study, a model chain to estimate solar

irradiation impinging on surfaces with different orientations at high latitudes is

developed and validated against experimental data. The case study is the Zero

Emission Building Laboratory in Trondheim (Norway). The main stages of the

workflow concern (1) data acquisition, (2) geometry detection, (3) solar radiation

modeling, (4) data quality check, and (5) experimental validation. Data are

recorded from seven pyranometers installed on the façades (4), roof (2), and

pergola (1) and used to validate the Radiance-based numerical model over the

period between June 21st and September 21st. This study investigates to which

extent high-resolution data sources for both solar radiation and geometry are

suitable to estimate global tilted irradiation at high latitudes. In general, the

Radiance-based model is found to overestimate solar irradiation. Nonetheless,

the hourly solar irradiation modeled for the two pyranometers installed on the

roof has been experimentally validated in accordance with ASHRAE Guideline

14. When monthly outcomes are considered for validation, the east and the

south pyranometers are validated as well. The achieved results build the ground

for the further development of the 3D solar cadaster of Trondheim.
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solar mapping, 3D solar cadaster, global tilted irradiation, solar radiationmodel, LiDAR
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1 Introduction

Solar mapping represents a commonly used visualization

technique to support urban planners, authorities, and architects

in addressing onsite energy generation while enhancing daylight

and sunlight accessibility in buildings (Good et al., 2014;

Lobaccaro et al., 2017). The solar potential of urban surfaces

(i.e., orography, roofs, and façades) permits providing inputs to

the predesign of solar installations in order to develop optimal

exploitation of solar energy through generalized planning

recommendations, guidelines, and best practices. The efficacy

of these models varies considerably due to the following

modeling strategy: the accuracy depends on the spatial

information available and generated (e.g., satellite data and

data from a Light Detection and Ranging (LiDAR) scanner)

and the associated level of detail (LoD) of three-dimensional

(3D)models (Behar et al., 2015). A popular modeling assumption

is that building façades are vertical and that 3D building models

can be extruded from 2D roof planes (i.e., 2.5D building models).

Current developments in these research fields aim to create more

precise information layers to estimate solar system integration

not only on roofs (Brito et al., 2012; Desthieux et al., 2018), which

are mostly devoid of building infrastructure (e.g., chimneys,

elevator lift engines, technical installations, terraces, and

balconies) that are common constraints for optimal solar

system installation, but also on the non-negligible vertical

surfaces (i.e., façades) (Carneiro et al., 2010). In fact, the total

surface of the building’s envelope is usually strongly reduced by

the shading of architectural elements and obstructions and by the

presence of glazed surfaces, which can only be partially replaced

with PV systems. In Lobaccaro et al. (2019), a reduction factor,

which is related to architectural and geometrical building

features, is applied to account for transparent surfaces and

obstructions, reducing the solar energy potential of roofs and

façades. Although limited to the roof spatial domain, an

advanced approach for detecting buildings’ superstructures,

which is based on deep learning for the semantic 3D city

model, is proposed by Krapf et al. (2022). Estimating solar

irradiation on façades including transparent surfaces and

obstructions is therefore challenging, and it represents a

significant limitation when it comes to high latitude locations

where the façades are characterized by a solar potential similar to

the roofs in the intermediate seasons (Manni et al., 2018).

In a reliable solar map, an accurate solar radiation model is

coupled to a 3D urban geometry with a high LoD. Numerous

solar radiation models have been implemented to enable

assessing solar energy accessibility at multiple scales, ranging

from building components to neighborhoods and cities

(Peronato et al., 2018; Boccalatte et al., 2022; De Luca et al.,

2022). The solar potential of buildings is analyzed by considering

dynamic shadowing, solar inter-building reflections, and other

related complex urban phenomena (e.g., high surface

temperature and air flow) (Jakica, 2018; Manni et al., 2020).

Moreover, high-resolution solar data can be exploited to evaluate

instantaneous events, e.g., cloud and albedo enhancement effects

(Gueymard, 2017). Advanced solar radiation models allow to

identify the most irradiated building surfaces for solar system

installations or to evaluate the integration of solar systems in a

heritage-constrained environment. Nonetheless, the application

of such accurate numerical models to solar mapping at the city

scale is still challenging due to the significant computational time.

Several studies have presented procedures to evaluate the

solar energy potential in urban areas based on different

techniques that have been developed in the last few decades

together with the advancement of digital technologies and

innovative approaches, methods, and tools. In Brito et al.

(2012), the LiDAR technique was coupled to the Solar

Analyst tool to estimate the photovoltaic (PV) potential of

the Lisbon urban region. Thebault et al. (2022) proposed a

multicriteria approach based on a geographic information

system (GIS) to evaluate the suitability of a building to be

equipped with PV systems. Similarly, a statistical model based

on 2D-GIS and multiple linear regression has been developed

by Nouvel et al. (2015) to predict heat demand and energy

saving potential of building stock at several scales within the

city of Rotterdam.

With the development of remote sensing technology and the

increase of the available computational capacity, many new

methods and technologies were proposed to enable the

automatic collection of 3D information about buildings and

other target objects (e.g., urban infrastructures and terrain

morphology) (Bonczak and Kontokosta, 2019). Geometrical

models characterized by a high LoD can be generated through

an unmanned aerial vehicle (UAV) and terrestrial laser scanning

(TLS) for data collection. The LiDAR technology integrates a

laser scanner, the Global Positioning System (GPS), and inertial

navigation systems (INS) to produce point clouds for buildings

(Zhou and Gong, 2018; Yastikli and Cetin, 2021). The point

clouds can provide high-resolution and accurate geometry

information for the whole building, including windows,

balconies, and other façade architectural elements. Laser

scanning can bring 3D point clouds with very high density

(with ca. < 1 cm point distance) that are usually post-

processed to reduce noise and outliers applying probabilistic

approaches such as the one proposed by Min and Meng (2019).

The point clouds can significantly contribute to the

reconstruction of high-LoD 3D models at multiple scales.

Several studies investigate methods to build the 3D model

from LiDAR’s outputs, proposing reliable automatic or semi-

automatic workflows, even if limited to LoD1 and LoD2 3D

models (Sajadian and Arefi, 2014; Yastikli and Cetin, 2017;

Jayaraj and Anandakumar, 2018). In fact, automatic

reconstruction methods for models with LoD3 or LoD4,

including windows and other façade semantic information, are

still in the preliminary development phase (Wen et al., 2019; Cao

and Scaioni, 2021).
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2 Motivation and goals

Within this framework, the present study aims at

investigating the application of advanced solar mapping

techniques to high latitude locations. The research core

concerns both 3D geometry construction workflows and

approaches to solar radiation modeling, with a specific focus

on input solar datasets. In fact, the study allows one to determine

whether satellite-based solar irradiance data and the LiDAR scan

technique are suitable to estimate the global tilted irradiation

(GTI) for different orientations of solar sensors

(i.e., pyranometers) at high latitudes. The results from the

numerical model will be validated against measurement data

from the Zero Emission Building (ZEB) Laboratory (Nocente

et al., 2021) in Trondheim, Norway, presented in section 3.2.

The motivation of this work states the fact that solar maps

that have been implemented for low latitudes (e.g., southern

Europe and continental Europe) need to be further developed

before being efficiently exploited at high latitudes. For instance,

the proper spatial domain of solar maps which is usually limited

to rooftop surfaces must be extended to façade surfaces as well. In

that regard, the sun geometry in the Nordics (i.e., low sun

elevation angles) is favorable for such vertical surfaces, which

have higher solar potential than roofs (Manni et al., 2018). To

model the solar energy potential of building façades in an

articulated urban environment, it is necessary to accurately

simulate inter-building optical interactions (i.e., mutual

reflections and complex shading phenomena) by increasing

the LoD of the 3D model and defining the optical properties

of the materials applied to urban surfaces.

The novelty of the hereby presented study is grounded

around the exploitation of a LoD3 3D model as a geometry

base layer for solar irradiation mapping and the validation of the

numerical model for multiple orientations at high latitudes. The

vertical scanning of the building envelope enables a more precise

construction of both the footprint and the façade’s morphology.

On the other hand, the extensive monitoring apparatus of solar

irradiation that is installed in the ZEB Laboratory permits to

perform an experimental validation of the numerical model for

the main orientations of the building surfaces. A similar

availability of observation data is not present in similar

studies carried out for high latitude locations.

The present study is structured as follows: the Introduction

(Section 1) outlines a theoretical framework for solar mapping

techniques; the Motivation and goals section identifies the

reasons for conducting such a study (Section 2); the

Methodology section (Section 3) defines the research

workflow, the tools for solar analysis and their settings, the

information about the case study, the solar data sources, the

quality check scheme, the geometry definition process, and the

statistical indicators and validation criteria; the Results and

Discussion section (Section 4) provides an overview of the

capability of the numerical model to simulate the GTI for

various orientations, followed by the validation test and the

limitations of the study. The article concludes by considering

future developments and summarizing themost relevant findings

and the implications for future advancements in the

implementation of solar maps at high latitudes (Section 5).

3 Methodology

3.1 Workflow

The workflow (Figure 1) proposed and followed in this study

is built around five main stages, which are 1) data acquisition, 2)

geometry detection, 3) solar radiation modeling, 4) data quality

check, and 5) experimental validation (Figure 1). The first stage

(stage 1) concerns the acquisition of data about urban geometry,

solar irradiation, and weather variables from different online

databases, e.g., the Trondheim municipality’s database, solar

radiation service from the Copernicus Atmosphere

Monitoring Service (CAMS), and climate.onebuilding.org

database1. The user-defined inputs of this stage are the case

study’s location and the time interval to investigate. The 3D

model of Trondheim contains information about both buildings

and terrain. Rhinoceros and Grasshopper tools are used,

respectively, to edit the geometry model and select the spatial

domain for the solar analysis. A circular area of radius 100 m

with the center located in the ZEB Laboratory is selected.

Regarding the solar irradiance and weather variables, a Python

script is implemented to retrieve such data from the respective

databases and combine them into a new EnergyPlus weather file

(.epw). In particular, the new .epw file combines solar irradiation

values, e.g., direct normal irradiation (DNI), diffuse horizontal

irradiation (DHI), and Global Horizontal Irradiation (GHI),

from CAMS solar radiation, with the weather variables, e.g.,

dew point temperature, relative humidity, and cloud cover, from

the typical meteorological year (TMY) of Trondheim. The TMY

of Trondheim is defined according to the measurements taken at

the weather station in Voll (Trondheim) over the

2007–2021 period. The solar irradiation values from CAMS

solar radiation are preferred to the values from the TMY since

they are based on satellite observations performed during the

specific time interval and for the exact location of the case study.

The geometry detection stage (stage 2) moves from the

LiDAR scanning campaign of the ZEB Laboratory. Point

cloud data are generated as output of the scanning activity,

and it is regarded as the reference to detect and reconstruct

the geometry of the building and its components (e.g., windows,

doors, pergola, and the pattern of building-integrated PV (BIPV)

panels). The 3Dmodel is then re-meshed to provide more refined

1 climate.onebuilding.org
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bases for the simulation sensors’ grid. Sensors’ position is also

determined according to the location of the pyranometers, whose

measurements are used in the experimental validation of the

numerical model.

The urban geometry, the 3D model of the ZEB Laboratory,

the sensors’ grid, and the morphed .epw file are among the inputs

of the numerical model for solar analyses (stage 3). In addition to

these, the optical properties of each surface and the Radiance

parameters (e.g., ambient accuracy (aa), ambient bounces (ab),

ambient division (ad), and ambient resolution (ar)) must be

defined. The output from the solar irradiation modeling consists

of a time series of simulated GTI values for each sensor

(i.e., pyranometer).

In stage 4, the solar irradiation data from measurements in

the ZEB Laboratory are classified according to the quality check

scheme described in section 3.5. A quality flag is associated with

each datapoint and then used to filter the observed GTI quantities

to exclude the erroneous measurements from the validation

process.

Finally, the simulated GTI was validated against observations

(stage 5). The two datasets are visually compared in scatter plots;

one graph is created for each pyranometer. Moreover, three

statistical indicators, namely, the normalized mean bias error

(NMBE), the coefficient of variation of the root mean square

error CV(RMSE), and the coefficient of determination (R2), are

calculated to evaluate the model’s accuracy.

3.2 Case study

The ZEB Laboratory2 is used as a case study for this research.

Located in Trondheim, Norway (63.41 N, 10.4 E), the ZEB

Laboratory is a four-story high office building (Nocente et al.,

2021), designed and realized as a pilot building to facilitate the

diffusion of innovative components, solutions, and energy

strategies in the building industry. The load-bearing structure

consists of glued laminated timber (gluelam) columns, cross-

laminated timber (CLT) floors, some stiffening inner walls, and

FIGURE 1
Overview of the workflow followed in this study. The main domains (e.g., solar irradiation domain, geometry domain, monitoring domain, and
validation domain) are highlighted with different colors, while in the left corner, the four block typologies (e.g., stage, user-defined input, activity/
process, and output/input) are reported.

2 www.zeblab.no
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traditional insulated wooden framework in the outer walls. The

whole building is constructed according to the ZEB-COM

ambition (Lobaccaro et al., 2018), which means that the local

production of renewable energy must compensate, in terms of

equivalent CO2, the materials, the construction process, and the

operation for 60 years, which is the programmed life of the

building. To achieve this ambition, most of the building

envelope is covered in BIPV, PV being the main source of

renewable energy. A total of 701 mono-Si BIPV panels are

installed for a rated power of 184 kWp. According to

simulations, the system can deliver over 150 MWh/y of

renewable energy, partly used on the spot, while the rest is

delivered to the grid.

The presence of such an extensive installation, together with

the advanced monitoring and control system, allows the building

to produce a high quantity of data, making the ZEB Laboratory a

valuable source for studying BIPV operation in a Nordic climate

and over a long period of time (i.e., the life of the PV installation).

To have a reference for the outdoor weather and the available

solar radiation, the laboratory is equipped with many outdoor

sensors. A weather station is installed on the roof, continuously

registering the main meteorological parameters. Another

weather station is installed on the ground toward the south.

Themeasurement of the available solar resources is performed by

second-class pyranometers. One pyranometer registers the

radiation on the horizontal plane, while five others evaluate

the radiation on the planes of each façade and the roof. As

shown in Figure 2, a pergola is mounted outside of the building,

and it is entirely constituted by PV panels in a chessboard

distribution of opaque and semi-transparent modules. Both

surfaces of the pergola, the external and the internal ones, are

equipped with pyranometers. The panels of the whole building

(i.e., BIPV and the pergola’s PV) are connected in strings, and the

solar power production can be monitored and registered at

any time.

3.3 Tools and settings

Solar analyses are performed within the Grasshopper

environment. The Honeybee (HB) environmental plugin is

exploited to connect Grasshopper to the Radiance-based engine,

coupling the features of such a daylighting and solar simulation tool

to the parametric modeling principles implemented in Grasshopper.

The “HB annual irradiance” component enables computing

broadband solar irradiance considering multiple and mutual

inter-building reflections. Input parameters are the weather data,

the geometry and optical properties of the model’s surfaces, the grid

of sensors, and the Radiance parameters. The weather data are

retrieved for the Trondheim location (see section 3.4 for the weather

input data).

When it comes to geometry modeling, the 3D model of the

ZEB Laboratory is implemented starting from the data provided

by the LiDAR scanner. The geometry configuration of the

surrounding area is provided by the 3D model from the

municipality of Trondheim3. All the materials applied to the

urban surfaces are considered opaque and clustered into four

groups; each group is characterized by a unique combination of

reflection and specularity coefficients. A reflection coefficient of

0.10 and a specularity coefficient of 0.6 are associated with the

BIPV and installed on the pergola (see section 3.2) and the glazed

surfaces. The charred timber coating covering the other part of

the building’s façade is defined as completely diffusive, with a

reflection coefficient of 0.25. The same reflection coefficient is

defined for the building surrounding the ZEB Laboratory.

Finally, the ground is fully diffusive, and it is characterized by

a reflection coefficient of 0.10.

The grid of sensors is applied to the geometry moving from the

triangular and quadrangularmeshes composing the 3Dmodel of the

ZEB Laboratory. The centers and the normal vectors of the meshes

are considered inputs for the locations and directions

(i.e., orientations) of the sensors. The density of the resulting

virtual sensors’ point cloud is averagely equal to two points per

square meter, but higher density values are observed in complex

building areas (i.e., windows and frames). Once the solar analysis is

performed, only the points of the grid that are near to the location of

the pyranometers are considered for the validation.

Radiance parameters are determined according to the best

practices identified in the literature to achieve a high quality of

outcomes. An overview of the selected Radiance parameters is

reported in Table 1.

The outputs are average and peak global irradiation and the

cumulative radiation in the year. These data are processed with

the “HB annual results to data” and “LB deconstruct data”

components to extract hourly amounts of global irradiance,

which will be later validated against experimental data.

FIGURE 2
ZEB Laboratory: southern and western façade (© Photo: M.
Herzog).

3 www.trondheim.kommune.no

Frontiers in Energy Research frontiersin.org05

Manni et al. 10.3389/fenrg.2022.1082092

828382

http://www.trondheim.kommune.no
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1082092


3.4 Solar data sources

Weather datasets used in this work refer to Trondheim,

Norway (lat. 63°25′49.76″N). The climate of Trondheim is

classified as continental subarctic climate (Dfc) in the Köppen

Geiger classification (Figure 3), and it is moderately continental,

with cold winters and mild summers (Beck et al., 2018). The

analyses are carried out for the period between June 21st and

September 21st. The datasets are characterized by a time

resolution of 1 hour. This period of the year was selected to

validate the model’s outputs in summer conditions, during days

characterized by clear or overcast sky conditions.

The EnergyPlus weather file of Trondheim, created considering

monitored values over the years between 2007 and 2021, was

retrieved from the repository of free climate data for building

performance simulation (<u>climate.onebuilding.org)</u>. Then,
the irradiation parameters (GHI, DNI, and DHI) are replaced with

values retrieved from the CAMS. The CAMS solar radiation service

combines output from the CAMS global forecast system on aerosol

and ozone with detailed cloud information directly from

geostationary satellites. The CAMS solar radiation service

provides, among others, historical values (from 2004 to present)

of GHI, DHI, andDNI (both overcast and clear sky conditions) with

a time resolution of 1 min. Such irradiance parameters are retrieved

for the time interval investigated in this study and resampled hourly.

The GTI is measured by sensors that are either integrated in

the building envelope of the ZEB Laboratory or installed on a

mast on the roof at a short distance from the surfaces and with

accurately measured angles. Installed sensors are second-class

pyranometers. The orientation is described in Figure 4 and

Table 2. The tilt is reported in degrees from the horizontal

surface. Quantities of GTI are recorded with 1-min time

resolution and then resampled to calculate average hourly values.

3.5 Quality check scheme for monitored
data

The outcomes from the numerical analyses are

experimentally validated against quantities measured in the

ZEB Laboratory. In order to ensure a good data quality, the

quality control scheme described in Lorenz et al. (2022) is

applied. Lorenz et al. (2022) implemented a quality control

scheme for sensors with different orientations. Their

measurement stations consist of a pyranometer for measuring

GHI and three silicon cells oriented east, south, and west with tilt

angles of 25 for measuring GTI. Such a configuration is similar to

the sensors’ layout in the ZEB Laboratory, except that there are

pyranometers instead of silicon cells and different orientations

are considered (see Table 2). Therefore, only the quality checks

for irradiation measurements are considered. Temperature

monitoring can in fact be neglected when using pyranometers

instead of silicon cells.

Different quality tests are performed for each variable in

order to associate a quality flag (QF) to each measure. QFs are

later used to filter erroneous measurements. The executed tests

consist of the comparison to range limits and the evaluation of

sensor consistency. The thresholds identified by Lorenz et al.

(2022) are specifically adjusted for our location and sensors, that

is, high latitude location and vertically mounted sensors.

A single QF is associated with each value measured; a high

number corresponds to a low quality. QFs range between 0 (the

test is passed) and 3 (the measurement is most likely erroneous).

A value of 1 (QF = 1) indicates that the test cannot be performed,

while a value of 2 (QF = 2) stands for a measurement that is likely

to be erroneous. The range and consistency limits for all

measurement variables are reported in Table 3.

For GHI upper limits, the upper envelope function

proposed by Espinar et al. (2011) is applied to determine

rare (QF = 2) and extreme (QF = 3) values. The function to

define QF = 3 for GTI in the range limit test is adapted from the

one proposed for GHI by using angle of incidence instead of

solar zenith angle as an input parameter. In regards to

consistency check, the GTI is compared to the modeled GTI

(GTImod): monitored hourly values that differ from the

modeled quantity by more than 200 W/m2 are classified as

QF = 3. The modeled GTI for each pyranometer is calculated

from the measured GHI which is considered as input in the

model chain described in the following lines. The

Engerer2 model (Bright and Engerer, 2019) is applied to

decompose the measured GHI into direct and diffuse

fractions, and then, the Perez model (Perez et al., 1990) is

exploited to transpose them according to the surface azimuth

and tilt angle. The model chain applied in the consistency test

differs from the one that is validated in this study (e.g., based

on HB), although the output parameters are the same.

Consistency quality flags for GHI values are determined by

the QFs of GTI data. A detailed description of how the range

and the consistency limits are determined can be found in

Lorenz et al. (2022).

TABLE 1 Radiance parameters defined in this study.

ab ad as c dc dp dr ds dt lr lw ss st

6 25,000 4,096 1 0.75 512 3 0.05 0.15 8 4e-07 1.0 0.15

ab, number of ambient bounces; ad, number of ambient divisions; as, number of ambient super-samples; c, sampling; dc, direct certainty; dp, direct pretest density; dr, direct relays; ds,

source substructuring; dt, direct thresholding; lr, limit reflection; lw, limit weight; ss, specular sampling; st, specular threshold.
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3.6 Geometry detection

Existing fully automatic methods for geometry detection cannot

fit the requirements in terms of LoD that are necessary for the 3D

model to be implemented in this study, e.g., the depth of windows, the

layout of solar panels, material patterns, architecture element

detection/recognition, and reconstruction. Hence, the high-LoD 3D

model of the ZEB Laboratory is detected and reconstructed based on

point cloud data, with the support of a vertical survey of façades

conducted with LiDAR laser scanning techniques. The reconstruction

of the high-LoD 3D building model and the further geometry

detection need the support of accurate geometry information. To

obtain the related geometry and geographic information, the high-

density 3D scan data were collected by the Trimble SX10 3D scanning

device on June 17, 2022. A total of six scan stations are set up to

position the scanning device (Figure 5).

The set point spacing is 2–3 mm, while the average

distance between the station points and the building is

around 15 m. The multi-station scan data are registered by

using Trimble Business Center (TBC) software to generate the

3D point cloud information describing the geometry

configuration of the ZEB Laboratory. Following this, the

point cloud data are converted into the high-LoD 3D

model of the building case study in the SketchUp

environment. At the same time, the geometry information

for façade elements, e.g., windows, doors, and photovoltaic

panels, is also identified.

3.7 Measuring uncertainty and validation
criteria

The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) Guideline 14 is (ASHRAE,

2002) considered here as the reference source in the

determination of the uncertainty associated with the

numerical model (Ruiz and Bandera, 2017). The

recommended uncertainty indices are the NMBE, the

CV(RMSE), and R2.

The NMBE is expressed as a percentage and consists of a

normalization of the mean bias error (MBE) index, which is, in

turn, the average of the errors in a sample space. Normalizing the

MBE enables comparing different outcomes. The general

formula to calculate the NMBE is (Eq. 1).

NMBE � 1
�o

∑n
i�1 oi − si( )
n − 1

· 100%, (1)

where �o is themean of the observed values, oi is the ith observed value,

si is the ith simulated value, and n is the number of measured data

points. Positive valuesmean that the numerical model tends to under-

predict the measured parameter. On the contrary, negative values

indicate an overestimation of the measured parameter. However, the

NMBE is also subject to cancellation errors; consequently, the use of

this index alone is not recommended.

The CV(RMSE) measures the variability of the errors

between observed and simulated values, and it is determined

according to (Eq. 2).

CV RMSE( ) � 1
�o

�����������∑n
i�1 oi − si( )2
n − 1

√
· 100% (2)

It is not subject to cancellation errors; thus, the ASHRAE

Guidelines couple it with the NMBE index to verify the models’

accuracy.

The R2 index provides information on how close the simulated

values are to the regression line of the observed values. It ranges from

0 to 1, where the former indicates a complete mismatch between

observed and simulated values and the latter means a perfect match

between them. It is calculated as follows:

R2 � n∑n
i�1oisi −∑n

i�1oi∑n
i�1si������������������

n∑n
i�1o

2
i − ∑n

i�1oi( )2( )√
n∑n

i�1s
2
i − ∑n

i�1si( )2( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
2

. (3)

When it comes to the calibration of the numerical model, the

criteria provided by the ASHRAEGuideline 14 are adopted (Table 4).

The document presents different thresholds depending on the time

resolution of the outcomes, ranging from hourly to monthly

quantities. On the one hand, the NMBE index should be within

FIGURE 3
Köppen climate classification. Modified from “Köppen
climate types of Norway” by Adam Peterson.
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the interval from -5% to 5% for monthly outcomes and within the

interval from -10% to 10% for hourly outcomes. On the other hand,

an upper limit of 15 is associated with the CV(RMSE) when monthly

analyses are performed. This upper limit is doubled (up to 30) if

hourly analyses are carried out. Finally, although the R2 is not a

prescriptive value for calibrated models, the ASHRAE Handbook

recommends that the value be higher than 0.75 for calibrated models.

4 Results and discussion

4.1 Geometry detection

The output point cloud data of the ZEB Laboratory and the

corresponding high-LoD 3D model are shown in Figure 6 and

Figure 7. Data points collected by the scanner during the

campaign are later post-processed by filtering noise and

elements from the background and surrounding environment.

In total, around 18,600,000 data points are used to build the 3D

model.

In general, the LoD3 is preferred to the lower levels (e.g.,

LoD1 and LoD2) because it allows including all architectural

features on the façades (e.g., balconies, frames, doors,

windows, and other façade details). In the case of the ZEB

Laboratory, the PV pergola and other façades’ elements (e.g.,

windows and frames) are modeled in high detail. Such

elements influence the solar irradiation collected by the

south pyranometer and the pyranometer installed on the

pergola. In addition to this, the implementation of a

LoD3 model in the ZEB Laboratory lays the groundwork

for advanced solar energy analyses, where the details of

architectural elements are relevant to have more accurate

TABLE 3 Upper a) and lower limits b), acceptable max step amount c), and consistency check d) for the measurement of GHI and GTI (Lorenz et al., 2022).

GHI GTI

(a) QFrange � 2: 1.2 I0 cos(SZA) + 50W/m2 QFrange � 3: 0.9 I0 cos (AOI)1.2 + 300W/m2

QFrange � 3: min
1.2 I0
, 1.5 I0 cos SZA( )1.2 + 100W/m2{

(b)
QFrange � 3:

0.01 I0 cos SZA( ) for SZA< 75°
0 for SZA> 75°{

(c) 1, 000W/m2

(d) - QFrange � 3: |GTI − GTImod |> 200W/m2

TABLE 2 Orientation of the pyranometers installed in the ZEB Laboratory.

East South West North Roof Pergola Horizontal

Surface tilt 90 90 90 90 40 60 0

Surface azimuth 90 180 240 0 180 180 -

FIGURE 4
Location of the pyranometer in the ZEB Laboratory.
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results and for the development of high-LoD solar cadaster.

The latter can be coupled to other numerical models to

perform energy analyses, visual and thermal comfort

assessments, and PV energy simulations.

4.2 Solar analysis

The outcomes from solar analyses performed through the HB

plugin and Radiance simulation engine are reported in this

section. The solar irradiation impinging on the seven sensors

extracted from the grid and representative of the seven

pyranometers installed in the ZEB Laboratory is reported in

Table 5 and Figure 8.

The three pyranometers facing south with different tilt angles

together with the horizontal pyranometer are the most irradiated

throughout the year. The pyranometers integrated in the roof, the

pergola, and the south façade collect up to 934.57 kWh/m2 per year,

836.70 kWh/m2 per year, and 659.53 kWh/m2 per year, respectively.

The solar irradiation impinging on the one horizontally mounted

achieves 745.33 kWh/m2 per year. Conversely, the pyranometer

facing the north is the least irradiated (261.82 kWh/m2 per year).

Although the west façade is partially shaded by the nearby building,

it is still reached and receives almost the same amount of irradiance

TABLE 4 Validation criteria provided by the ASHRAE Guideline 14.

Data type Index ASHRAE Guideline 14

Calibration criteria

Monthly criteria NMBE ±5%

CV(RMSE) 15%

Hourly criteria NMBE ±10%

CV(RMSE) 30%

Model recommendation

R2 >0.75

FIGURE 5
From the top: (A) scanning operations, (B) view of the point cloud during the scanning operations, and (C) positions of scanning stations around
the ZEB Laboratory.
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as the east façade, which is mostly unobstructed (around 500 kWh/

m2 per year). This is mostly due to the fact that the west façade is not

perfectly facing west, that is, the azimuth angle is 240. The

irradiation patterns of the west and east façades (Figure 8)

highlight this aspect.

4.3 Data quality check

The quality check of the solar irradiation data recorded by the

pyranometers integrated in the ZEB Laboratory between June

21st and September 21st is performed by assigning a quality flag

FIGURE 6
Different levels of detail associated with the 3D model of the ZEB Laboratory. The LoD3 is the one achieved in this study.

FIGURE 7
Changes in the geometry model from the point cloud data to the high-LoD 3Dmodel of the ZEB Laboratory and to the solar potential analysis.

TABLE 5 Hourly mean ad yearly global irradiation over the year for each pyranometer.

Pyranometer Hourly mean global irradiation [W/m2] Yearly global irradiation [kW/m2]

East 57.94 507.52

South 75.29 659.53

West 56.79 497.47

North 29.89 261.82

Roof 106.69 934.57

Pergola 95.52 836.70

Horizontal 85.08 745.33
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to each observation. An overview of these quality flags is

presented in Figure 9. The visual inspection of the diagrams

suggests that a low level of reliability (QF = 3) is mostly associated

either with low solar irradiation amounts or with those values

that have been measured during particularly overcast sky

conditions.

Following this, the datapoints that are suitable to be used

in the validation process (QF = 0) are filtered out for each

pyranometer. The applied quality check scheme allowed

excluding more than 10,000 data points including, among

the others, values measured during the night. The resulting

datasets differ for the number of values; the dataset affected

the most by this reduction is the one from the north-facing

pyranometer, which is reduced to around one-tenth (from

2,208 to 212 data points). Among the others, the horizontally

mounted pyranometer is the sensor collecting the most

reliable data since it shows the highest amount of data with

QF = 0 (1,018 data points). This is probably due to the fact that

the sensor is exposed to direct sunlight for most of the time

during the investigated period, and solar irradiation is usually

measured with high accuracy by the pyranometer in this

condition. A complete overview of the filtered data for each

pyranometer is provided in Figure 9.

4.4 Experimental validation

The solar irradiation outcomes from the numerical model

are reported against the experimental observations in the

scatter plots in Figure 10. It is worth highlighting that only

the values satisfying the requirements of the quality check

scheme are included in these graphs. Hence, the length of the

datasets changes depending on the considered pyranometer

(Table 6).

The visual comparison of the observed and calculated values

shows that the numerical model can calculate in a more accurate

way the solar irradiation impinging on the horizontal pyranometer

and on the roof surface compared to the others. However, the

general tendency of the numerical model to overestimate the solar

irradiation amounts is clear, as shown by the significant presence of

data points above the red line.

The experimental validation is performed according to the

ASHRAE Guideline 14 (section 3.7). The statistical indicators

and their respective thresholds are considered on both an hourly

and monthly basis. When it comes to the hourly solar irradiation

amounts, the statistical indicators, e.g., NMBE, CV(RMSE), and R2,

are estimated for the seven pyranometers (Table 7). The NMBE

values are always lower than the threshold identified by the

ASHRAE Guideline 14 (i.e., NMBE < ±10%). The negative

NMBE values indicate that the numerical model tends to

FIGURE 8
Hourly distribution of solar irradiation over the year for each
pyranometer.
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overestimate the solar irradiation quantities, confirming the

deductions from the graphs’ observations. The R2 amounts

always fit ASHRAE’s requirements (i.e., R2 > 0.75). However, it

is just a recommendation and not a calibration criterion. On the

contrary, only the CV(RMSE) values calculated for the roof and

horizontal pyranometers are acceptable (i.e., CV(RMSE) < ±30%);

therefore, these are the only hourly outcomes from the numerical

model that can be validated.

The east, south, west, and pergola sensors showed CV(RMSE)

values that are slightly above the upper limit (30%). In this regard,

the exploitation of groundmeasurements of DNI and DHI as model

input in place of the solar radiation data from satellite observation

can enhance the result’s accuracy. Finally, the sensor installed in the

north façade is the one characterized by the lowest level of accuracy

probably because it is the sensor that receives the least radiation, and

themain irradiation contribution is usually from the diffuse fraction.

When the statistical indicators are calculated for data

aggregated on a monthly basis, the simulated amounts for the

east- and south-oriented pyranometers, in addition to the roof

and horizontal pyranometers, are labeled as validated (Table 7).

In fact, both the NMBE and the CV(RMSE) indicators of these

two sensors are within the thresholds from the ASHRAE

Guideline 14 (i.e., NMBE < ±5% and CV(RMSE) < ±15%).

In this case, the sensor that is farthest to be validated is the

one installed on the pergola. In fact, the pergola is located

near the ground; therefore, it is the one mostly affected by

human activities happening around the buildings, e.g., the

presence of vehicles, and by the optical properties of the

ground, e.g., changes in ground reflectivity due to weather

conditions.

4.5 Limitations of the study

The main limitations of this study are presented and

discussed in the following section. First, data on solar

radiation from satellite observations may contain an incorrect

estimation of direct and diffuse fractions and systematic errors

within the evaluation of the GTI. Ground measurements of solar

radiation are more reliable and can overcome this issue.

However, satellite observations are available for every location

FIGURE 9
Overview of the quality flags associated with the datapoints.

TABLE 6 Datapoints after the application of the quality check scheme.

Pyranometer Quality-checked datapoints

East 467

South 806

West 712

North 212

Roof 939

Pergola 888

Horizontal 1,018
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FIGURE 10
Scatter plots with solar irradiation outcomes from the numerical model against the experimental observations.
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within the spatial domain of CAMS solar radiation, providing

up-to-date information. This aspect, together with the possibility

of retrieving direct and diffuse solar irradiation data that are not

calculated by decomposition models, makes CAMS solar

radiation one of the most used and most accepted sources of

solar radiation data inputs in solar mapping.

Concerning the 3Dmodel, the optical properties of thematerials

applied to the urban surfaces are not experimentally determined but

retrieved from the literature. This might lead to an incorrect

assessment of mutual reflections between the building case study

and either the surrounding buildings or the ground surface.

Nonetheless, none of the sensors except the ones installed on the

pergola and the one facing east have nearby surfaces that can reflect

solar radiation toward them, that is, these sensors are installed far

from the ground and other buildings.

Finally, the experimental validation is carried out only in

summer conditions and for a limited time interval

(i.e., 3 months). However, this is the period of the year when

the solar irradiation is maximum at high latitudes; hence, it is the

one determining the most the solar energy potential of a building.

However, further validation studies are planned to be performed

to validate the numerical model during intermediate seasons

(i.e., spring and fall) when the solar energy potential of façades is

significant at high latitudes.

5 Conclusion and future outlooks

Aworkflow integrating the geometry definition of high-LoD 3D

models and the mapping of the solar irradiation is proposed for

application at high latitudes. The 3D model of the building case

study is reconstructed with the help of laser scanning techniques.

The outcomes from the solar radiation model are experimentally

validated against data collected from seven pyranometers installed in

the ZEB Laboratory in Trondheim. A quality check scheme is

applied to reduce the influence of potentially erroneous

observations on the statistical indicators.

The findings of this study can be summarized in the following

points:

1) The applied quality check scheme allowed excluding more

than 10,000 data points that would have decreased the

reliability of the experimental validation process.

2) The Radiance-based numerical model tends to overestimate

the solar irradiation quantities for all the sensors compared to

real measured data recorded with pyranometers.

3) The hourly solar irradiation outcomes of the roof and the

horizontal pyranometers are experimentally validated in

accordance with the ASHRAE Guideline 14.

4) The monthly solar irradiation outcomes of the east, the south,

the roof, and the horizontal pyranometers are validated in

accordance with the ASHRAE Guideline 14.

Such results represent a first and significant step toward the

implementation of a solar cadaster in Trondheim that will help to

enhance the predesign of solar systems and estimation of their solar

potential and the social acceptability of solar energy and promote the

involvement of stakeholders through the visualization of energy

production data and accurate performance predictions. The solar

irradiation collected by the façades, which is neglected in the existing

2D solar maps, is experimentally validated against data collected by

vertically mounted pyranometers with multiple orientations.

Including building façade in solar cadaster is challenging since it

requires to accurately model inter-building effects (e.g., mutual

shading and reflections). Also, high-detail 3D models like the one

implemented in this study are necessary to trace the path covered by

sunrays within the investigated spatial domain.

The future developments of this work will be focused on

1) Performing the experimental validation of the numerical

model over a longer period, e.g., 1 year.

2) Experimentally validate the south, east, west, and north

sensors and the one installed on the pergola by

considering ground measurements of direct and diffuse

irradiation and integrating decomposition and

transposition modeling into the workflow.

3) Enhance the numerical model to perform 1-min solar

analyses that enable simulating instantaneous phenomena,

e.g., cloud enhancement events.

TABLE 7 Statistical indicators estimated for the observed and calculated hourly solar irradiation amounts for each pyranometer.

East South West North Roof Pergola Horizontal

Hourly NMBE [%] −0.78 −5.73 −5.38 −7.95 −2.65 −9.42 −4.06

CV(RMSE) [%] 33.14 33.35 34.09 51.68 27.98 34.89 25.76

R2 [0–1] 0.81 0.85 0.87 0.64 0.85 0.83 0.82

Monthly NMBE [%] 0.13 −5.17 −5.20 −6.37 −1.81 −9.50 −4.14

CV(RMSE) [%] 3.00 6.16 7.47 10.11 3.99 11.49 5.53

R2 [0–1] 0.98 0.89 0.88 0.96 0.93 0.59 0.81
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4) Implement the algorithm to fully automatically detect

building geometry and materials applied to surfaces.
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Glossary

3D three dimensional

aa ambient accuracy

ab ambient bounces

ad ambient division

ar ambient resolution

ASHRAE American Society of Heating, Refrigerating and

Air-Conditioning Engineers

BIPV building-integrated photovoltaic

CAMS Copernicus Atmosphere Monitoring Service

CLT cross laminated timber

CV(RMSE) coefficient of variation of the root mean

square error

Dfc continental subarctic climate

DHI diffuse horizontal irradiation

DNI direct normal irradiation

GHI Global Horizontal Irradiation

GIS geographic information system

GPS Global Positioning System

GTI global tilted irradiation

HB Honeybee

INS inertial navigation system

LiDAR Light Detection and Ranging

LoD level of detail

MBE mean bias error

NMBE normalized mean bias error

PV photovoltaic

QF quality flag

R2 coefficient of determination

TBC Trimble Business Center

TLS terrestrial laser scanning

TMY typical meteorological year

UAV unmanned aerial vehicle

ZEB zero emission building.
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Perovskite solar cells are the most dynamic emerging photovoltaic technology
and attracts the attention of thousands of researchers worldwide. Recently, many
of them are targeting device stability issues–the key challenge for this
technology–which has resulted in the accumulation of a significant amount of
data. The best example is the “Perovskite Database Project,” which also includes
stability-relatedmetrics. From this database, we use data on 1,800 perovskite solar
cells where device stability is reported and use Random Forest to identify and
study the most important factors for cell stability. By applying the concept of
learning curves, we find that the potential for improving the models’ performance
by adding more data of the same quality is limited. However, a significant
improvement can be made by increasing data quality by reporting more
complete information on the performed experiments. Furthermore, we study
an in-house database with data on more than 1,000 solar cells, where the entire
aging curve for each cell is available as opposed to stability metrics based on a
single number. We show that the interpretation of aging experiments can strongly
depend on the chosen stability metric, unnaturally favoring some cells over others.
Therefore, choosing universal stability metrics is a critical question for future
databases targeting this promising technology.

KEYWORDS

perovskite solar cell, stability, machine learning, figures of merit, learning curves,
database, feature importance analysis, halide perovskite

1 Introduction

New photovoltaic technologies are urgently needed to accelerate the adoption of
affordable renewable energy sources and combat climate change. Perovskite solar cells
(PSCs) represent a prime candidate technology, which has become the most dynamic
research area in photovoltaics. Researchers have obtained power conversion efficiency (PCE)
values of over 25% in a single junction device (Green et al., 2022) and over 32.5% in tandems
with silicon (‘Best Research-Cell Efficiency Chart’ n.d.) thanks to perovskite compositional
engineering, deposition techniques optimization, and device architecture adjustments.
Despite this highly competitive efficiency compared to silicon and the low
manufacturing costs, there are still barriers to the commercialization of halide
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perovskites. Operational stability is the most prominent and,
therefore, the focus of the data analysis in this work.

Currently, the lifetime of perovskite solar devices remains well
below the target value of 25–30 years (i.e., more than 200,000 h);
Figure 1 shows the average lifetime of perovskite solar devices
published in scientific papers over the period 2013 to February
2020 (i.e., the period considered in the Perovskite Database project,
see below), clearly showing the need to improve the operational
stability of these devices. The factors that have contributed so far to
improvements in PSCs stability from hours to months are, for
example, perovskite compositional engineering (Chi and
Banerjee, 2021; Mazumdar, Zhao, and Zhang, 2021), the
introduction of passivation (Chen et al., 2019) and blocking
(Brinkmann, Gahlmann, and Riedl, 2020) layers, optimization of
transport (Foo et al., 2017; Xinxing Yin et al., 2020; Dipta and Uddin,
2021) and contact (Nath et al., 2022) layers, and device
encapsulation (Lu et al., 2021).

With thousands of researchers worldwide dedicating their
efforts to studying PSCs, an individual researcher has no chance
of keeping track of all these results. Combining the device data
produced during the experiments in shared databases offers
significant benefits. The abundance of data allows the application
of statistical techniques, most notably machine learning (ML), to
empower data-driven research activities and for gaining new
insights that would be otherwise impossible to obtain by
analyzing data from individual studies only. Several authors have
already pointed at ML as one important tool in overcoming
challenges (Myung et al., 2022) in perovskite research, for
example, screening of suitable candidate materials for
photovoltaic applications (Chen et al., 2022), or to use data
extracted from scientific publications to characterize the
performance of PSCs (Liu et al., 2022). Thus far, few authors
have attempted to use shared data to examine the stability of
perovskite solar cells (Beyza Yılmaz and Ramazan Yıldırım,
2021). Even fewer authors used shared experimental data:
Tiihonen et al. (2018) studied a set of 261 aging tests to assess
the quality of published stability data, finding several issues in how
the authors reported the results of their studies at the time; Çağla
Odabaşı and Ramazan Yıldırım (2020) applied ML to a data

collection of 404 aging tests data to derive the effects of
perovskite composition and transport layers on the PSCs
stability, concluding that the analysis of data collected from the
literature can be beneficial to better understand the overall state of
the literature and for gaining insights about high stability devices.

Collecting the data from publications represents a tremendous
effort which explains the lack of studies in this direction. Notably,
the “Perovskite Database Project” was recently released (Jacobsson
et al., 2022) (www.perovskitedatabase.com). This publicly open
database contains manually extracted data from more than
15,000 publications with keywords “perovskite solar” from the
Web of Science until February 2020. It holds information about
more than 42,400 devices, 1,834 of which contain measured T80

(i.e., the time it takes for a device to lose 20% of its initial efficiency).
The Perovskite Database is not only a much larger dataset than any
other previously put together, but it also attempts to collect the most
detailed information: the authors collected more than
400 parameters in the database, which include information about
the cells’ design, the functional layers of the device stack, the details
of device synthesis and key metrics about efficiency, stability, and
outdoor performance.

Even though this dataset is the largest so far, the quality of
stability-related data is a concern. Some aspects of particular
relevance are the number of missing values due to incomplete
reporting in the source publications, the low statistical relevance
of data entries which report only the best-performing devices and an
incomplete set of experimental results, and the need to stick to
standardized guidelines for the aging conditions to improve
comparability. This work is a first attempt at applying ML to the
stability data in the Perovskite Database to identify relevant factors
affecting device stability. However, the performance of the models
turns out to be unsatisfactory. To understand if this low
performance is due to the small database size or data quality
issues introduced above, we perform computational experiments
using the concept of learning curves. This tool allows us to
extrapolate the performance of the ML models to more extensive
databases that we expect will be available in the future. We want to
show how data quality, specifically regarding the number of missing
values, impacts the performance of ML models used to study
perovskite stability. We further use the concept of learning
curves to estimate how much the performance of an ML model
would increase by collecting more data, as a function of data quality.

Importantly, even with a much larger dataset, there is another
potentially critical issue with tabular data where a single number
represents device stability. Aging experiments typically record the
evolution of power conversion efficiency (PCE) or other device
parameters under different stress conditions. Unlike PCE, a highly
standardized figure of merit (FOM) of device performance, there is
no generally accepted figure of device stability that would reduce the
time series from aging experiments to a single number in a tabular
database. T80 is one of the most common stability metrics, working
sufficiently well for solar technologies that show uniform
degradation curves. T80 is reported in the Perovskite Database
and was used in this work as the target variable for ML
modeling. To study the adequacy of this metric, we use an in-
house dataset that includes complete time series from more than
1,000 aging experiments, which were recorded in a custom-built
setup (Köbler et al., 2022) in the years 2019–2022. We show that

FIGURE 1
Lifetime T80 in hours of every perovskite solar device published
between 2013 and February 2020 (for which T80 was reported in the
Perovskite Database). The vast majority of devices reported, 1,790 out
of 1,834, have a short lifetime of at most 2,000 h.
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there are diverse aging behaviors resulting in a variety of time-series
shapes. We computed different FOMs used in the PSCs literature
(Khenkin et al., 2020; Almora et al., 2021) to all these curves,
showing that they poorly correlate with each other, given the
variety of degradation behaviors. This lack of correlation shows
the urgent need to define a “fair” FOM for device stability. This fair
FOM would then empower data-driven research activities on the
stability of PSCs, providing a meaningful, universal, accurate, and
precise stability measure. The definition of this fair FOM of stability
and the production of more complete data regarding aging
experiments can significantly accelerate the development of
commercially viable perovskite solar devices through ML methods.

2 Data and methods

2.1 Data

We used two large datasets in the analyses presented in this
work. The first one is the Perovskite Database, based on the data
extracted from the literature. It contains information on a wide
variety of device architectures and aging conditions. The other
dataset originates from in-house aging experiments and contains
fewer details but provides full aging curves. The latter is only used to
discuss the issue of selecting a FOM to characterize device stability.

2.1.1 The Perovskite Database
The Perovskite Database Project contains data manually

collected from more than 15,000 papers about perovskite solar
cells. The manual scraping of the publications resulted in
collecting information about more than 42,400 perovskite solar
devices.

The data categories, or features, contained in the Perovskite
Database include reference data about the source publication,
properties of the cell (e.g., area, architecture), data for every
functional layer in the device stack, about the synthesis of the
cell, and key metrics (e.g., stability, JV metrics, outdoor
performance). The database’s total number of features (i.e., the
number of columns) is 409.

This dataset represents the most extensive collection of
published experimental data about perovskite solar devices.
Out of more than 42,400 devices reported in the database,
only 1,834 include measured T80 values. In principle, we could
use the PCE at the end of the stability experiments and the length
of such experiments to extrapolate the value of T80 for instances
in which it has not been reported. We refrain from doing this
because, as we show in this work using the in-house dataset, the
wide variety of aging behaviors would make such extrapolation
highly uncertain.

Note that, in this study, we selected a subset of 67 out of the
409 features in the database based on expert knowledge about the
factors most likely to affect the stability of the devices.

2.1.2 In-house dataset
The in-house dataset (collected in the Department “Active

Materials and Interfaces for Stable Perovskite Solar Cells” at
Helmholtz-Zentrum Berlin) contains time-series data of aging
experiments performed on over 1,000 perovskite solar cells of

various types in the years 2019–2022. This dataset is the largest
of this type used in a publication. Cells were aged in a custom-built
high-throughput aging system (Köbler et al., 2022) under
continuous illumination of a metal-halide lamp. Special
electronics are employed to MPP-track every solar cell
individually. Experiments are performed under nitrogen
atmosphere at room temperature or at elevated temperatures
according to ISOS-L1I or ISOS-L2I (Khenkin et al., 2020). The
time exposure of experiments ranges between 150 and 2,060 h. The
exact experimental conditions are less relevant to our goals since we
want to compare how different FOMs for stability correlate with
each other for the same curve when computed automatically.
Figure 2 shows an example of aging curves.

2.2 Methods

In the following subsections, we briefly describe how we
prepared the data for analysis and the methods and concepts
used to perform the analysis. More detailed information could be
found in the Supplementary Material. The overall structure of the
experiments is depicted schematically in Figure 3.

Since the data in the Perovskite Database Project was collected
by manually extracting information from scientific publications and
manually writing the information to the database, some errors can
be present. For example, there might be spelling errors in the names
of chemical compounds and manufacturing techniques, or
numerical values might be incorrect. We have not attempted to
identify potential input errors in the numerical values of the features
(i.e., we did not perform outlier detection or additional checks for
numerical features), but we attempted to correct spelling and text
formatting errors.

We have prepared the data in the Perovskite Database encoding
every column of the dataset in numerical format, splitting columns
that contained multiple simple features (e.g., device stack containing
several layers), converting categorical values into dummy binary

FIGURE 2
Example of time series data from the in-house aging experiments
dataset. Each curve represents the aging of a different PSC (PCE
evolution over time), showing the variety of behaviors in the aging of
PSCs.
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variables, and flagging missing values (NaNs) into additional
columns.

2.2.1 Feature importance through machine
learning modeling

Machine learning can be used with different goals in mind based
on what knowledge we try to extract from the data: patterns,

explanations, and predictors. Studies like (Odabasi and Yildirim,
2020) for PSC and (David et al., 2020) for organic PV try to find
explanations, that is, explain how a given variable, like lifetime, is
affected by properties of the devices. In the ML literature, the
properties are generally referred to as features. Feature
importance analysis refers to identifying a group of features with
a significant impact on the target variable, in our case, T80.

There are different ways to study feature importance. In this
work, we use the embedded method: we fit an ML model to the
dataset and use measures of feature importance embedded in the

FIGURE 3
Schematic representation of the experiments performed.

FIGURE 4
Schematic of the general behavior of learning curves for a given
ML model.

FIGURE 5
Three different definitions of T80 for an aging time series. The
reported T80 varies depending on the chosen definition. Adapted from
(Khenkin et al., 2020).
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model to study which factors affect stability the most. We explored
several models (see Supplementary Material and Supplementary
Figure S3) and selected two of them: Elastic Net (eNet), which is a
linear model, and Random Forest (RF), which is a non-linear model.
These represent the two broadest classes of ML models we can
consider: they assume a linear or a non-linear relationship between
the input features and the target variable, respectively.

Feature importance in eNet can be derived from the coefficients
of the fitted model: the larger the magnitude of the coefficient of a
feature, the higher the importance of that feature. For RF, a feature
importance measure can be obtained during the training process by
looking at the decrease in impurity in the trees that form the forest.
Details about this can be found in (James et al., 2013).

When performing a feature importance analysis, it is necessary to
consider how well themodel can capture the patterns in the data, i.e., the
goodness of fit. This is done by analyzing the model’s coefficient of
determination, also called R2-score. The closer this coefficient is to 1, the
better the goodness of fit of the model (the Supplementary Material
contains themathematical definition of the coefficient of determination).

Repeating the computation of the R2 score and feature
importance value for multiple possible realizations of train and
test set returns probability distributions instead of single values. We
perform 1,000 draws of the train and test sets, keeping 75% of the

data in the train set. We have considered both the whole dataset and
two relevant subsets of the data: aging in the dark most of the time
results in much longer lifetimes compared to photo-stability
experiments; we, therefore, split the dataset into “Dark testing”
and “Light testing” (refer to aging tests in the dark and under
illumination). We also removed features related to the performance
of the PSCs, like the initial PCE. While there is a statistical
correlation between device efficiency and stability, it might
reflect, for example, that simultaneous progress was made in
these two critical aspects of the technology. In this work, we
focused on the analysis of the impact of the device structure and
parameters of ageing experiments.

2.2.2 Learning curves
Fundamental quantities in ML analysis are train and test errors.

The train error measures the discrepancy between the values
estimated by the ML model and the actual values of the target
variable for the data in the train set, while the test error measures the
same type of discrepancy but for the data in the test dataset. Since the
train set is used to optimize the parameters of the models while the
test set contains unseen data, the test error gives a reasonable
estimation of the actual performance of the ML model.
Additional details can be found in the Supplementary Material.

Following the definition in (Cortes et al., 1993), by learning
curves, we mean the expected values of the test and training error as
a function of the size of the training set; the expected value is taken
over all the possible ways of choosing a training set of a given size.

Figure 4 schematically shows typical learning curves for a given
model on a given dataset. If the model is sufficiently flexible (i.e., can
learn a large number of functions) and the train set is relatively small,
the training error will be very low, even zero: the model can perfectly fit
the train set. In this case, the test error will be very high since it is highly
likely that the model perfectly fitting the train set has learned not to
model the data-generating process but the random noise present in the
train set. As the size of the train set increases, the training error grows:
the model learns more about the data-generating process from the
available data, while the random noise is disregarded; at the same time,
the test error decreases since the model becomes better at modeling the
data and not the noise. In the limit of infinite train set size, training and
test error converge to a common valueE∞, called limiting performance.

From theoretical arguments (Seung, Sompolinsky, and Tishby,
1992), the learning curves can be modeled as power-law decays to
the asymptotic error E∞. We can extract the parameters of these
power laws and use them to extrapolate the values of train and test
errors for larger train set sizes.

We use learning curves to estimate the performance of our ML
model in the hypothetical case in which a larger train set size
becomes available. The learning curves (and the limiting
performance) depend on the quality of the data. To simulate
different data quality levels, we perform the learning curves
experiments in three different settings:

• using the complete dataset in its original form;
• removing noisy features from the dataset;
• removing noisy data points from the dataset.

We start removing features or data points with the most missing
values, therefore containing more noise, and iteratively less noisy

FIGURE 6
Train and test score for Elastic Net on the three dataset splits.
Both quantities for the three splits are very low.

FIGURE 7
Train and test score for Random Forest. The train score is good,
while the test score shows high variability, being acceptable most of
the time but falling to negative values sometimes.
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ones, one at a time for the features, or allowing only a certain amount
of missing values per data point in the third setting.

We perform the learning curves experiments for the complete
dataset and data quality levels. We compute the learning curves for
every dataset at ten different, increasing values of the training set
size. To obtain the interpolation points, we average the results of a
20-fold cross-validation (sampling each train set 20 times) for each
train set size. We then extract the parameters of the underlying
power law function and extrapolate up to a train set size of
10,000 data points. The last step compares the estimated error

values on such a hypothetical dataset with the extrapolated value
obtained using the complete dataset.

In all learning curves experiments, we use Gradient Boosting as
model, which performs similarly to Random Forest in modeling the
dataset but has resulted in more stability during the training process;
that is, the power law approximation is more accurate.

2.2.3 Figures of merit for stability
Figures of merit for perovskite stability are numerical values used to

quantify the stability of the perovskite solar cells. Several different FOMs
exist in the field. The most commonly used is T80, which represents the
time it takes for the cell to lose 20% of its initial PCE. T80 has been
successfully used with silicon-based photovoltaic technology since the
aging behavior of such devices is relatively simple (in many cases, close
to linear), and the aging behavior is well captured by T80. This is not
necessarily the case for emerging PV technologies. For example, for
organic photovoltaics typical shape has a fast initial decay (“burn-in”)
followed by a linear decrease in efficiency, and an adapted metric called
“stabilized T80”is more common (Roesch et al., 2015).

In contrast, PSCs show a variety of aging behaviors. This variety
is reflected in the lack of a universally accepted FOM for their
stability. For example, T80 alone has at least three different
definitions based on the type of aging behavior and authors’
preferences (Khenkin et al., 2020), as illustrated in Figure 5.

Since all the FOMs are used to quantify the same concept, e.g.,
stability, ideally, we want all of them to, at least qualitatively, agree: if
a given device is more stable than another according to one FOM, it

FIGURE 8
Feature importance for the Random Forest model. The different colors identify the possible dataset splits. We show the 20 most important features
when modeling the complete dataset.

FIGURE 9
Learning curves as derived for the complete dataset.
Extrapolation to size 10,000 of the train set.
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should also be more stable according to other FOMs. In order to
confirm whether different FOMs for perovskite stability agree, we
have used our in-house dataset of time-series data produced during
aging experiments. We have defined different FOMs:

• T80: The time it takes for the PCE to drop 20% from the value
at the beginning of the experiment.

• T’
80: The time it takes for the PCE to drop 20% from the back-

extrapolated value at the beginning of the experiment; back-
extrapolation performed with a linear function, starting after
the burn-in point.

• TS80: The time it takes for the PCE to drop 20% from the value
at the burn-in point

• % PCE after X hours: Fraction of the initial PCE measured
after X hours.

• Degradation rate: Slope of the linear interpolation of the data
after the burn-in.

We then applied these FOMs to the in-house time-series data to
get a list of stability measures for every examined cell. Finally, we
have examined the pairs of FOMs and computed the Pearson
correlation coefficient between them to check how well they
agree in quantifying the stability of the cells.

3 Results and discussion

3.1 Feature importance

As previously described, each experiment randomly samples
75% of the data points in the given dataset to train the model. The
sampling is repeated 1,000 times, and for each run, we obtain the
feature importance values alongside train and test scores.

Figure 6 shows the train and test scores of the eNet model, while
Figure 7 shows the performance of the RF model. As stated above,
we have considered the whole dataset and two relevant subsets of the
data: “Dark testing” and “Light testing” considering, respectively,
aging tests in the dark and under illumination. The scores in Figures
6, 7 are represented by the R2-scores. A score of 1 indicates perfect
agreement between estimated and actual values; a value of
0 corresponds to the performance of a random guessing model,
and negative values reflect even worse performance than this.

The performances of the two models are very different: looking
at train and test scores for the eNet, we see that the model cannot
describe this dataset. A score close to zero indicates that we cannot
do better than random guessing, which indicates the model’s
complete inability to capture patterns in the data (we non-
etheless show the results in the Supplementary Figures S7–S9).
On the other hand, RF performs better than eNet and can better
describe the data. The test score is much lower than the train score,
indicating poor generalization capabilities. Still, the performance is
acceptable for such a complicated task, at least with the available
data and all the data quality issues we discussed. The significant
difference in performance between eNet and RF lets us conclude that
a non-linear model, such as RF and Gradient Boosting, can
satisfactorily model the dataset. A linear model, even an
advanced one like eNet, cannot capture the patterns in the data
that relate the device properties to its stability.

Figure 8 shows the 20most important features that the RFmodel
identified for the complete dataset while also showing the
importance of such features for the other two dataset splits. RF
model captured many features known to influence the thermal,
moisture, or photo-stability of perovskite solar cells. Themagnitudes
of stresses (temperature, relative humidity) applied are predictably
among the top influencing factors. And so is the perovskite
composition, particularly the presence of MA or FA organic

FIGURE 10
(A) Relative change in the extrapolated test RMSE when removing noisy features (the abscissa indicates the number of raw features removed from
the 67 initial features; each raw featuremight correspond tomultiple encoded features). The baseline is taken as the extrapolated RMSE computed on the
complete dataset. The grey bars indicate how many encoded features are left in the dataset after removing the noisy ones. (B) Percent change in the
extrapolated test RMSE when removing noisy data points. The baseline is taken as the extrapolated RMSE computed on the complete dataset. The
grey bars indicate how many data points are left in the dataset after removing the noisy ones.
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species as a monovalent cation or iodine as anion will generally
result in less resilient perovskite materials. Multiple transport
materials investigated as options for electron or hole transport
layers significantly influence the device stability, and RF
predictions agree on this point too. See an extended list of
features and their impacts on stability in Supplementary Figures
S4–S6.

Some predictions are less straightforward to verify, such as the
significance of solvents, quenching, and annealing procedures.
Though they influence perovskite crystallization and, therefore,
device stability, it is hard to tell at the moment whether their
role is as defining for the final device stability as predicted by the
RF results. While it is interesting to investigate these factors’
importance on the PSC stability experimentally, we believe we
need to improve our data-driven predictions to provide confident
guidance for the experimental research.

Splitting the dataset into light and dark testing conditions
while removing performance-related features shows that
different features are selected as the most important. This is in
accordance with different degradation mechanisms present with
and without illumination. Given the low performance of the
models, the numbers come with high uncertainty. However, we
believe it is a good starting point for demonstrating the potential

of ML methods to dramatically accelerate the learning process
with a reduced number of (extremely time-consuming!) aging
experiments.

3.2 Data quality and dataset size: Learning
curves experiments

As previously mentioned, we ran the learning curves
experiments in three different settings. In the first setting, we
use the database in its original form to check how good the power
law approximation for the learning process is. As shown in
Figure 9, the approximation seems appropriate, hence we
extrapolate the learning curves to a dataset size of 10,000 data
points to simulate the performance we could obtain when more
data is added to the database. The second and third settings
simulate an increase in data quality in two different ways:
dropping noisy features and dropping noisy data points. By
noisy, we mean features and data points with the highest
number of missing values. If we consider the tabular
representation of data that is usually adopted when applying
machine learning to this type of data, in the first case, we are
dropping columns, while in the second, we are dropping rows.

FIGURE 11
Scatter plot of T80 against four other stability figures of merit. Above every plot, the corresponding Pearson correlation coefficient is shown.
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3.2.1 Whole dataset
Figure 9 shows the interpolation points for computing the

learning curves and the extrapolation to a larger train set size
when modeling the complete dataset. The limiting performance
represents the average between train and test errors at each train set
size. This experiment shows that the performance we can obtain
from a much larger dataset than the one used in this study
(10,000 points compared to the current 1,800) is not much better
in terms of the test error. The performance looks already saturated
and adding more data with the same quality and statistical
properties is not expected to improve the model’s performance.

3.2.2 Removing noisy features
In this second experiment, we simulate higher-quality datasets

by iteratively removing noisy features from the training set
according to the number of missing values they contain. We
remove the feature with the most missing values and then the
less noisy ones, one at a time. We define the baseline
performance of the ML model as the value of the test error
extrapolated to 10,000 when using the complete train set, with
no features removed. This baseline performance will also be used in
the following experiment, where we remove noisy data points.
Figure 10A shows the percentage change in extrapolated root
mean squared error (RMSE) for each dataset compared to the
baseline performance. It is clear from the figure that the
extrapolated performance does not significantly change when
removing noisy features. This might indicate that the benefit of
having fewer missing values is canceled out by having less
information about the devices, compared to when the parameters
are reported.

3.2.3 Removing noisy data points
The third experiment simulates higher-quality datasets by

iteratively removing noisy data points, i.e., data points with a
higher number of missing values (or devices with the least
reported information). We remove the noisiest data points
and then remove points with a lower noise level. Figure 10B
shows the percentage change in extrapolated RMSE for
each dataset compared to the baseline performance. The bars
in the figure represent the number of data points left after
removing the noisy ones, while the horizontal axis shows the
maximum number of missing data values allowed for each
dataset.

In contrast with the previous experiment, we observed
pronounced improvement in the test score with higher quality
data. However, we have to treat these results carefully. Removing
data points lowers the statistical significance of the results and might
also make the learning task easier, improving performance.
Nevertheless, the trend is evident even for a reasonably sized
dataset, around 1,000 data points, that are still larger than all
similar datasets used in the literature.

Better conclusions can be drawn by comparing what happens
when we remove features or data points: the first scenario
corresponds to considering fewer properties of a device for an
ML task, and the second corresponds to having only entries with
a given quality in terms of the number of missing values. The
difference in the evolution of the expected performance suggests
how the features are relevant, and we need to collect them if we want
to significantly improve the performance of machine learning
models used for applications similar to the one explored in this
study.

FIGURE 12
Scatter plot and correlation of the PCE normalized with the PCE at time 0, after 100 h, and the PCE at 250, 500, and 1,000 h.
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3.3 Figures of merit

Machine learning techniques are optimized to predict a target
variable; in our case, the lifetime is defined as T80. In this last
section, we want to discuss how representative this metric is for
describing perovskite solar cell stability. In the context of projects
involving “Big Data,” the large number of aging curves available
demands the programmatic extraction of stability metrics, which
requires exact definitions, contrary to manually extracting FOMs
from the aging curves. We have programmatically extracted different
stability FOMs for PSCs, defined above, and compared them pairwise to
assess their agreement. For this, we used the in-house data set with
complete time series for aging experiments available. Figure 11 shows
how T80 correlates to four other FOMs; the actual value of the Pearson
correlation coefficient is shown on the upper edge of every sub-figure.

Figure 12 focuses only on examining the normalized PCE after a
given time has passed during the experiment. We have compared the
PCE value after 100 h of aging against those after 250, 500, and 1,000 h
following the suggestion that it might be possible to reasonably
extrapolate shorter aging experiments (Almora et al., 2021).

From Figures 11, 12, it is clear how even FOMs with very similar
definitions can result in very different values for PSCs aging curves.
More importantly, they do not always agree regardingwhich devices are
more stable. This is due to the wide variety of PSCs’ aging behaviors,
whichmakes identifying a universal FOM for stability a non-trivial task.
An agreement on the FOM to use that best describes what we mean by
stability of PSCs will surely help in improving the performance of ML
models. The low correlation between FOMs shows that the single
number fed toML algorithmsmight not represent the task we are trying
to solve. This increases the difficulty of the task, which is already high
due to other quality issues and the relatively small size of the available
datasets compared to the number of parameters to consider.

4 Conclusion

Machine learning methods have a great potential to accelerate the
development of more stable perovskite devices, potentially avoiding the
extremely time-consuming aging experiments. Using the perovskite
database project that summarizes available literature, we have
demonstrated the possibility of applying ML for PSC stability data,
although only non-linear methods (such as random forest) show
promising results. Even in this case, however, data quality remains a
significant challenge. Learning curves experiments indicate that just
increasing the amount of data (i.e., collecting more aging experiments)
has a limited positive effect on boosting the confidence of ML forecast.
Instead, we show that it is critical to improve the data quality by
reporting as complete information on the device manufacturing and
aging conditions as possible. More accurate data leads to higher
statistical relevance of the results, better ability of the ML algorithms
to capture patterns in the data, and increased prediction performance.

Another, perhaps more significant, challenge is defining the FOMs
for stability used as target variables for the ML analysis. With in-house
data, we show that the variety of behaviors observed in the aging curves of
perovskite devices leads to the dependence of the results on the choice of
the metric. A single number (e.g., T80) cannot capture the complexity of
such curves and, therefore, is unlikely to be an optimal choice. Sharing the
complete aging curves would be vital to solving this problem. These

shared data would facilitate the discussion on universal FOMs that
describe stability for perovskite solar devices in a meaningful and
precise way.

We encourage perovskite researchers to report more complete
data regarding the experiments and full aging curves since we believe
this can significantly accelerate the development of commercially
viable perovskite solar devices through machine learning.
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Theoretical analysis of mixed
open-circuit potential for high
temperature electrochemical cells
electrodes

A. Cammarata1,2 and L. Mastropasqua2*
1Department of Energy, Politecnico di Milano, Milan, Italy, 2National Fuel Cell Research Center, University
of California, Irvine, Irvine, CA, United States

The Nernst equilibrium potential calculates the theoretical OCV, which estimates
the best performance achievable by an electrochemical cell. Whenmultiple semi-
reactions (or multiple ionic species) are active in one of the electrodes, the
calculation of the theoretical OCV is not straightforward, since different Nernst
potentials are associated to each semi-reaction. In this paper, analytical equations
for calculation of the theoretical OCV are developed, using the mixed potential
theory. The case of H2 and CO co-oxidation (or H2O and CO2 co-reduction) in
solid oxide cells is used as a reference case, but similar conclusions can be drawn
for other equivalent cases. OCV data from literature are used to calibrate and
validate the model. The relative reaction rate of H2 and CO semi-reactions is
estimated within the calibration process, and the result is in line with assumptions
and suggestions given by other authors. The validation procedure shows
predicted OCV values in line with experimental literature data, except for
mixtures with relatively large CH4 concentration (e.g., 8%), for which the OCV
is significantly underestimated. This is expected when thermochemical reactions,
in parallel to electrochemical reactions occur, since the additional H2 produced by
internal steam methane reforming is not accounted within the local mixed
potential model. A fuel cell polarization model is developed based on the
results from the calibration procedure, and it is used to predict the polarization
behavior of an SOFC fed with a H2-H2O-CO-CO2 fuel mixture. It is found that
either H2 or CO may be reduced rather than oxidized via an equivalent
electrochemical water-gas-shift reaction.

KEYWORDS

mixed open circuit potential, electrochemical cells, solid oxide fuel cells (SOFC),
electrode potential, co-oxidation, co-electrolysis

1 Introduction

Solid Oxide Fuel Cell (SOFC) and Solid Oxide Electrolyzer Cell (SOEC) are innovative
technologies used for energy conversion purposes. SOFCs are used to efficiently produce
electricity using a fuel such as hydrogen (H2). The high operating temperature of SOFCs
(500°C–1,000°C) allows them to operate using a variety of fuels, such as carbon monoxide
(CO), methane (CH4), methanol (CH3OH), and ammonia (NH3) (Donazzi et al., 2016;
Kishimoto et al., 2020; Fan et al., 2022; Sang et al., 2022). Conversely, SOECs are used to
produce fuels like H2 and CO, starting from water (H2O), carbon dioxide (CO2), and an
electricity supply. In the framework of energy transition, SOFCs may be used for the design
of efficient and fuel-flexible energy systems (Ishak et al., 2012; Campanari et al., 2016;
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Mastropasqua et al., 2020; Duong et al., 2022), while SOECs could be
a key technology for the synthesis of e-fuels, since CO and H2 are
precursors for the production of high-value hydrocarbons via the
Fischer-Tropsch process (Wang et al., 2017). Therefore, it is
necessary to develop SOFC and SOEC models able to predict the
performance in presence of different chemical species, interacting
with each other through chemical and electrochemical reactions.

The open circuit voltage (OCV) of an electrochemical cell is the
voltage established in the electrical circuit at zero current, and it is
closely related to its thermodynamic and kinetic performance. The
meaning of the OCVmeasured for an electrochemical cell is twofold.
In fuel cell mode, the OCV represents the maximum producible
electric power per unit current. Conversely, the OCV represents the
minimum electric power required per unit current to perform the
electrolysis reaction at a certain temperature, pressure, and
composition. When a finite current is flowing through an
electrochemical cell, the cell voltage is different from the OCV
due to electrochemical losses (i.e., overpotentials or polarization
losses). For fuel cell operation the cell voltage is lower compared to
the OCV, while the opposite is true for electrolyzers. This concept
forms the basis for the development of numerical models, which
require the precise theoretical estimation of the OCV. For the above
reasons, it is important to correctly estimate the OCV of
electrochemical cells. When multiple electrochemical reactions
(or multiple ionic species) are active at one electrode, the
estimation of the OCV is not a simple task due to the formation
of the so-called mixed potential. Therefore, the primary goal of this
paper is to develop a model suitable for the estimation of the mixed
OCV of electrochemical cells, analyzing the case of H2 and CO half-
reactions in solid oxide cells as an example.

Considering the half-reactions in a conventional SOFC, (Eq. 1)
and (Eq. 2) are the only active electrochemical reactions at the fuel
and air electrode respectively, and reaction (Eq. 3) is the global
reaction. The Nernst potential (Eq. 4) is generally used to calculate
the theoretical OCV, where pi is the partial pressure of species i in
the gas phase. Note that in this analysis, we do not account for mass
transport or gas mixture composition variation along the thickness
of the porous fuel electrode. Therefore, one might use the bulk gas
composition for the calculation of the Nernst potential.

H2 + O2− ↔ H2O + 2e− (1)
1
2
O2 + 2e− ↔ O2− (2)

H2 + 1
2
O2 ↔ H2O (3)

EH2 � E°
H2

+ RT

2F
ln

pH2p
0.5
O2

pH2O
( ) (4)

The Nernst equation is strictly valid when all steps required for
reaction (Eq. 3) to occur are in equilibrium or in partial equilibrium
(Kee et al., 2005). Therefore, the presence of chemical reactions like
water-gas-shift (WGS) and steam methane reforming (SMR),
expressed by reactions (Eq. 5) and (Eq. 6) respectively, could
invalidate Eq. 4 since the elementary steps of reaction (Eq. 1)
might not be in equilibrium. As an example, the hydrogen
adsorption reaction is expected to be non-equilibrated if SMR is
active, since the rate of hydrogen desorption from the electrode is
larger than the rate of its adsorption. Therefore, the Gibbs free
energy variation of the hydrogen adsorption reaction is different

from zero, invalidating the demonstration shown in ref. (Kee et al.,
2005). Following the demonstrations shown in the reference, it can
also be inferred that the larger the reaction rate of the global
oxidation reaction (Eq. 3) compared to that of the chemical
reactions, the better is the accuracy of the Nernst equation.

Eq. 4 is expected to be particularly accurate when a mixture of
H2 and H2O is used at the fuel electrode, since chemical equilibrium
is guaranteed at open circuit. However, the Nernst equation has been
extensively used to model non-equilibrium cell operation; for
instance, when either WGS or SMR are active at the fuel
electrode (Campanari and Iora, 2005; Spallina et al., 2015;
Corigliano and Fragiacomo, 2020). In this case, it is implicitly
assumed that WGS and SMR are relatively slow reactions, they
do not prevent reactions (Eq. 1) and (Eq. 2) to reach partial
equilibrium, and they do not significantly alter the partial
pressures of gases within the porous electrode compared to the
ones in the bulk gas mixture.

CO +H2O ↔ H2 + CO2 (5)
CH4 +H2O ↔ CO + 3H2 (6)

Conversely, assuming that WGS and SMR are fast reactions,
some authors estimate the OCV by substituting the equilibrium
partial pressures in Eq. 4 (Stoots et al., 2009; Lee et al., 2015; Jin et al.,
2018; Vágner et al., 2019), calculated assuming that both WGS and
SMR go to equilibrium at local temperature and pressure, starting
from the bulk gas composition. Therefore, using the equilibrium
partial pressures allows to indirectly include species like CO and
CH4 in the estimation of the OCV.Moreover, the equilibriummodel
allows to easily estimate the OCV in presence of several
electrochemical semi-reactions occurring at one electrode. For
instance, if both half-reactions (Eq. 1) and (Eq. 7) are active at
the fuel electrode, a second Nernst voltage could be defined as in
Eq. 8.

CO + O2− ↔ CO2 + 2e− (7)

ECO � E°
CO + RT

2F
ln

pCOp0.5
O2

pCO2

( ) (8)

If the equilibrium partial pressures are used, EH2 and ECO are
equal (Spallina et al., 2015), and there is no ambiguity in the
estimation of the OCV. However, if the partial pressures in the
non-equilibrated bulk gas mixture are used, EH2 and ECO are
different, and the estimation of the OCV should account for the
mixed potential that is originated at the fuel electrode.

The first method to estimate the cell OCV in a non-equilibrated
mixture considering two active electrochemical semi-reactions at
one electrode was introduced by Fleming (Fleming, 1977). Fleming
defined an equivalent electric circuit representing the
electrochemical cell, with as many parallel branches as the
number of covered active sites (see Supplementary Appendix SB),
for both H2 and CO (however, Fleming assumed that O2 and CO are
electrochemically active at the fuel electrode). Assuming each
branch includes both a voltage generator with value equal to
either EH2 or ECO, and a resistance with a constant value for
each branch, the OCV can be computed by applying Norton’s
theorem to the equivalent electric circuit. The mixed OCV results
to be equal to the average of EH2 and ECO, weighted on the surface
coverage, as expressed in Eq. 9.

Frontiers in Energy Research frontiersin.org02

Cammarata and Mastropasqua 10.3389/fenrg.2023.1120343

107108107

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1120343


VOC � θH2EH2 + θCOECO (9)
However, Norton’s theorem is only applicable for linear electric

circuits, and the resistances in H2 and CO branches are not equal in
general. For instance, the activation overpotentials are generally
modeled using a Butler-Volmer relationship which is not linear and
it can lead to different activation overpotentials for H2 and CO
charge transfer processes (Petruzzi et al., 2003; Suwanwarangkul
et al., 2006; Andreassi et al., 2009; Iwai et al., 2011; Ni, 2012; Park
et al., 2012; Andersson et al., 2013a; Razbani et al., 2013; De Lorenzo
and Fragiacomo, 2015; Bao et al., 2016).

Other authors (Zhu and Kee, 2003; Aloui and Halouani, 2007;
Stempien et al., 2012; Andersson et al., 2013b; Stempien et al., 2013;
Baldinelli et al., 2015a) attempt to estimate the OCV by assuming a
fictitious electrochemical semi-reaction (Eq. 10) occurring at the fuel
electrode, which is a function of two parameters x and y. It can be
demonstrated that the OCV resulting from this assumption is the
average between EH2 or ECO, weighted on the parameters x and y, as
expressed by Eq. 11 (see Supplementary Appendix SA for
demonstration).

xH2 + yCO + x + y( )O−2 ↔ xH2O + yCO2 + 2 x + y( )e− (10)
VOC � xEH2 + yECO

x + y
(11)

The stoichiometric coefficients x and y can be assumed to be
equal to unity (Penchini et al., 2013), which corresponds to
calculating the arithmetic average of EH2 or ECO. More
frequently, x and y are replaced by the molar fractions of H2

and CO, respectively (Aloui and Halouani, 2007; Stempien et al.,
2012; Andersson et al., 2013b; Stempien et al., 2013; Baldinelli et al.,
2015a). However, since the elementary steps of the global H2 semi-
reaction (Eq. 2) are relatively fast, this semi-reaction is likely to be
close to partial equilibrium, even if the H2 concentration in the fuel is
relatively low (Kee et al., 2005). In other words, the OCV is likely to
be close to EH2 even if H2 molar fraction is low.

In Section 2, a simple model is developed to estimate the mixed
OCV,where two (ormore) electrochemical semi-reaction are considered
at one of the electrodes. The relative reaction rate of the semi-reactions,
which affects theOCV, is considered using Butler-Volmer equations and
exchange current densities. This approach is derived from the theory
available for corrosion processes, in which two semi-reactions occur in
presence of an electrolyte and an equipotential electrode, to calculate
parameters such as the corrosion potential, which is a mixed potential,
and the corrosion current (Bockris and Reddy, 2000). The case ofH2 and
CO co-oxidation in SOFC (or, equivalently, H2O and CO2 co-reduction
in SOEC) is considered as an example. In Section 3 the model is
calibrated and validated using experimental OCV data from the
literature, which allowed to retrieve information regarding the relative
reaction rate of H2 and CO semi-reactions. Finally, a simple polarization
model is developed in Section 4 using the results from the calibration
procedure. The model is used to calculate the polarization curve of an
SOFC fed with a H2-H2O-CO-CO2 mixture.

2 Mixed potential model

The approach followed hereafter is similar to that followed to
develop corrosion theory, due to analogies between a corrosion

process, and a fuel electrode at OCV where both reactions (Eq. 1)
and (Eq. 7) are active (Bockris and Reddy, 2000). During a corrosion
process, two semi-reactions occur in presence of an electrolyte
(water) and an equipotential electrode (the corroded metal), as
shown in Figure 1 (left).

In corrosion, a species is oxidized (e.g., a metal), and a species is
reduced (e.g., oxygen), and the process is driven by the different
equilibrium potential (i.e., equilibrium electric potential difference
between electrode and electrolyte) of the two semi-reactions at the
specific operating conditions. Similarly, for the electrochemical cell
at OCV shown in Figure 1 (right), it is expected that either H2 is
oxidized to H2O and CO2 is reduced to CO, or CO is oxidized to CO2

and H2O is reduced to H2. The process is driven by the different
equilibrium potentials of semi-reactions (Eq. 1) and (Eq. 7) at the
specific operating conditions, which can be identified as the
difference between EH2 and ECO, since the equilibrium potential
of reaction (Eq. 2) is equally accounted for in the calculation of EH2

and ECO. The overall process may be regarded as an electrochemical
WGS reaction. Note that it is expected that the electrochemicalWGS
is not only active at OCV, but also in a condition of mild cell
polarization.

The kinetics of the semi-reactions is modeled using Butler-
Volmer Eqs 12, 13. The parameters α and β are the charge transfer
coefficients, ne is the number of electrons involved in the charge
transfer process, i0 is the exchange current density, and η is the
activation overpotential. The reference area for both i and i0 is the
geometrical electrolyte surface.

iH2 � i0,H2 exp α
neH2

FηH2

RT
( ) − exp − 1 − α( ) n

e
H2
FηH2

RT
( )[ ] (12)

iCO � i0,CO exp β
neCOFηCO

RT
( ) − exp − 1 − β( ) neCOFηCO

RT
( )[ ] (13)

Similarly to a corrosion process, it is assumed that the current
produced by one of the two semi-reaction is completely absorbed by
the other semi-reaction, which for a complete cell is equivalent to
assuming a vanishing net current flowing in the external circuit, as
expressed by Eq. 14.

iH2 + iCO � 0 (14)
Finally, the activation overpotentials can be written as functions

of the OCV as in Eqs 15, 16.

ηH2
� EH2 − VOC (15)

ηCO � ECO − VOC (16)
Eqs 12–16 allow calculating VOC once the kinetic parameters in

the Butler-Volmer equations are known. Note that if Eq 14 is
satisfied, then iH2 and iCO have opposite signs, and the same is
true for ηH2

and ηCO, which stems from the functional form of
Butler-Volmer equations (i.e., i has the same sign of η). If ηH2

and
ηCO have opposite signs, it is easy to see from Eqs 15, 16 that the
value of VOC must be in the range defined by EH2 and ECO.

Using the procedure outline above, and introducing Tafel’s
approximation (i.e., activation overpotentials are low), it is
possible to find a simple analytical solution for VOC, as expressed
in Eq. 17, similar to Eq. 9 proposed by Fleming (Fleming, 1977).
Assuming that electric resistances in H2 and CO branches are
different and not equal, it is possible to derive Eq. 17 using
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Fleming’s approach (see Supplementary Appendix SB), which stems
from the electric circuit linearity requirement for the application of
the Norton’s theorem, and the actual linear relationship between
current and voltage provided by Tafel’s approximation. Therefore,
Eq. 9 provides a less accurate estimation of the OCV compared to
solving Eqs 12–16 by assuming Tafel’s approximation and same
kinetics of H2 and CO electrochemical reactions. By assuming that
neH2

is equal to neCO, the open circuit voltage results to be the average
between EH2 and ECO, weighted on exchange current densities. This
is a sound result, as it is expected that the measured voltage is close to
the Nernst voltage of the faster semi-reaction.

VOC � i0,H2n
e
H2
EH2 + i0,COneCOECO

i0,H2n
e
H2

+ i0,COneCO
(17)

Removing Tafel’s approximation, and assuming that α is equal
to β, and neH2

is equal to neCO, it is still possible to find an analytical
solution for the OCV, as shown in Eq. 18.

VOC � RT

Fne
ln

i0,H2 exp α
neFEH2
RT( ) + i0,CO exp α neFECO

RT( )
i0,H2 exp − 1 − α( ) neFEH2

RT( ) + i0,CO exp − 1 − α( ) neFECO
RT( )⎡⎢⎢⎣ ⎤⎥⎥⎦
(18)

The form of this equation is similar to that used to calculate the
electrode mixed potential in a corrosion process (Bockris and Reddy,
2000). Note that by collecting either i0,H2 or i0,CO, it can be seen that
VOC is only a function of the ratio of current densities, hence it is not
necessary to provide exact values for i0,H2 and i0,CO.

Eq. 18 is slightly modified assuming ne equal to 1 (i.e., single-
electron charge transfer process), and α equal to 0.5. Moreover,
assuming that i0,H2 and i0,CO are computed using relations (Eq. 19)
and (Eq. 20) (Razbani et al., 2013), the OCV can be calculated using
Eq. 21, which is used for the numerical calculations shown in the
next section.

i0,H2 � γH2

pH2

pref
( ) pH2O

pref
( ) exp −Eact

RT
( ) (19)

i0,CO � γCO
pCO

pref
( ) pCO2

pref
( ) exp −Eact

RT
( ) (20)

VOC � RT

F
ln

γH2
γCO

pH2pH2O

pCOpCO2
exp 0.5 FEH2

RT( ) + exp 0.5 FECO
RT( )

γH2
γCO

pH2pH2O

pCOpCO2
exp −0.5 FEH2

RT( ) + exp −0.5 FECO
RT( )⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (21)

Note that the functional form of i0,H2 and i0,CO is commonly
assumed to be the same, since the rate-determining step of H2 and
CO semi-reactions is similar (Suwanwarangkul et al., 2006;
Andreassi et al., 2009). However, the pre-exponential factor for
H2 exchange current density is usually assumed to be 2–3 times
larger than that of CO for Ni-YSZ cermet electrodes, following the
work of Matsuzaki and Yasuda (2000).

3 Model calibration and validation

Eq. 21 can be used to estimate the OCV, but the reverse process
can be useful to predict the ratio of pre-exponential factors of H2 and
CO exchange current densities, if OCV experimental data are
available. In order to calibrate and validate the model, literature
OCV data on H2-H2O-CO-CO2 mixtures are used to estimate the
ratio of pre-exponential factors, which is then compared with
literature estimations. In principle, one could calibrate more
parameters, like the difference between activation energies (here
assumed null), or the species activity exponents in Eqs 19, 20.
However, the scarce amount of reliable experimental data
prevents this.

Ideally, the mixture used to produce experimental OCV data
should not contain CH4, since the effective concentrations of H2,
H2O, CO, and CO2 may be modified by the onset of the SMR
reaction. Note that also the WGS reaction may modify the
effective species concentrations, however here it is assumed
that this effect is negligible. Moreover, the N2 concentration in
the mixture should be minimized since it could lead to an increase
in the OCV despite not directly appearing in the Nernst equation
(Cinti et al., 2016), which is an effect that cannot be captured by
Eq. 21. Finally, electrolytes having significant electronic
conduction (e.g., Ceria-based) cannot be accurately modelled,
because the estimation of the OCV would also depend on the
short-circuit electronic current. To the best of the author’s
knowledge, the literature does not provide experimental OCV
data that respect all the above experimental operating conditions.
However, the OCV data from Baldinelli et al. (2015b) are
produced under operating conditions close to those described
above, hence it is used as a reference for the model calibration and
validation. A Ni-YSZ|8YSZ|LSCF button cell was used to produce

FIGURE 1
Analogy between a corrosion process (left) and the fuel electrode in an electrochemical cell at OCV, exposed to a H2-H2O-CO-CO2mixture (right).
In both cases there is an equipotential electrode, either the corrodedmetal or the porous fuel electrode, an electrolyte, either water or a solid electrolyte,
and two competing electrochemical semi-reactions.
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experimental results, the oven temperature is 800°C, and the
cathode is exposed to air (21% O2 molar fraction is assumed).
Note that the adoption of a button cell configuration is preferred
for the validation purpose, since the mixture composition may
change if the fuel is blown through a channel, mainly due to WGS
reaction. The mixture compositions used for calculation are
shown in Table 1, and they are named as in reference
(Baldinelli et al., 2015b). The measured OCV values are
estimated from the figures shown in the reference.

The mixture F2 is used to calibrate the ratio of pre-
exponential factors appearing in Eq. 21, since it is free of N2,
and the CH4 concentration is very low. The result is 2.54, which is
in line with the range 2–3 suggested for a Ni-YSZ electrode
working in a similar temperature range (Stoots et al., 2009;
Razbani et al., 2013; Wang et al., 2017; Duong et al., 2022).
After calibration, Eq. 21 is used to predict the OCV values for the
mixtures in Table 1. The results are also compared to the OCV
calculated assuming that the mixtures reach chemical equilibrium
before giving rise to the cell potential, following the conventional

method discussed in the introduction section. The results of the
analysis are shown in Figure 2.

Figure 2 shows the experimental OCV data from (Baldinelli
et al., 2015b), EH2 and ECO calculated with Eqs 4, 8 respectively, the
OCV calculated assuming that the mixture is at equilibrium, and
VOC computed with Eq. 21, using the calibrated value for the ratio of
pre-exponential factors. In general, it is expected that the
experimental and estimated OCVs are located within the range
defined by EH2 and ECO. This is true for all the data analyzed, except
for the mixture F1, for which the experimental OCV falls below ECO.
The reason for that is unknown and must be associated to the
specific experimental setup of the reported test data. For all other
mixtures, either one or both models for OCV estimation are close to
the experimental value. For mixtures S4 and S5, which only contain
1% and 0% CH4, Eq. 21 predicts the OCV with very good accuracy.
For S4 the accuracy is significantly better compared to the
equilibrium OCV model. The equilibrium model gives a good
prediction also for F2, which is the mixture used for calibration.

The prediction accuracy of the mixed potential model seems to
decrease with increasing CH4 concentration. The model
underpredicts the OCV for Mix2, S2, and S3, which have 5%,
8%, and 10% CH4 concentration respectively. This is ascribed to
the onset of SMR, which increases the effective H2 and CO partial
pressures near the active sites, with a positive effect on both EH2 and
ECO. However, in the mixed potential model proposed, the mixture
composition near the active sites is assumed equal to that in the bulk
gas mixture for simplicity, and the effect of SMR is not accounted
for. Therefore, the inaccuracy is more evident for S2 and S3, which
contain a larger CH4 concentration compared to Mix2. For Mix1,
which contains 2% CH4, the mixed potential model overpredicts the
OCV, which suggests that the CH4 concentration is too low to
significantly increase the effective H2 and CO partial pressures. For
mixtures S2 and S3, which contain a significant amount of CH4, the
equilibrium model predicts the OCV more accurately compared to
the mixed potential model, which is expected.

Overall, the equilibrium model always provides a reasonable
estimation of the cell voltage, if mixture F1 is not considered. The
mixed potential model predicts the OCV with either equal or better
accuracy for themixtures containing a relatively lowCH4 concentration
in the range 0%–5% (S4, S5, F2, Mix1, Mix2), i.e., scenarios without
heterogeneous catalytic reactions in parallel to electrochemical
reactions. For the mixtures with higher CH4 concentration (S2, S3),

TABLE 1 Percentage molar composition of the mixtures used for model calibration and validation (Baldinelli et al., 2015b).

Mixture ID H2 H2O CO CO2 CH4 N2 Measured OCV [V]

S2 17.4 3.0 25.2 46.6 7.8 0.0 0.97

S3 19.4 3.0 38.8 29.1 9.7 0.0 1.00

S4 50.4 3.0 14.6 9.7 1.0 21.3 1.04

S5 11.6 3.0 13.6 11.6 0.0 60.2 0.97

F1 31.0 3.0 40.8 21.3 3.9 0.0 0.97

F2 42.6 3.0 20.4 33.0 1.0 0.0 0.97

Mix1 21.0 3.0 5.0 12.0 2.0 57.0 0.99

Mix2 31.0 3.0 35.0 26.0 5.0 0.0 0.99

FIGURE 2
Experimental OCV measured for different mixtures (Baldinelli
et al., 2015b), Nernst voltage for H2 and CO, and estimated OCV values
based on equilibrium and mixed potential models.
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the equilibrium model is more accurate, which is expected. These
preliminary results indicate that the model developed is suitable to
estimate the OCV of an electrochemical cell, or to retrieve data
regarding the relative velocity of competing semi-reactions occurring
on the same electrode. However, dedicated and detailed
experimentation is required to further validate the model developed,
following the guidelines outlined above.

4 Development of a polarization model

The calibration process shown in Section 3 is not only useful to
predict the OCV of an electrochemical cell, but it can also be used to
develop a polarization model. Referring to the example shown in
Section 3, the ratio between pre-exponential factors appearing in Eqs
19, 20 can be used to calculate γCO, if a value for γH2

is fixed.
Therefore, a polarization model may be developed, accounting for
both H2 and CO semi-reactions. The numerical model described in
this section has already been used by several authors to model the
polarization behavior of electrochemical cells (Petruzzi et al., 2003;
Suwanwarangkul et al., 2006; Andreassi et al., 2009; Iwai et al., 2011;
Ni, 2012; Park et al., 2012; Andersson et al., 2013a; Razbani et al.,
2013; De Lorenzo and Fragiacomo, 2015; Bao et al., 2016). However,
here the focus of the analysis is the region of mild polarization close
to the OCV. The model developed is used to predict the i-V relation
near the OCV in fuel cell mode, relative to mixture F2 (see Table 1),
assuming a uniform temperature equal to 800°C.

The voltage balance equations for both H2 and CO are represented
by Eqs 22, 23. Note that concentration losses are neglected in this model
for the sake of simplicity, whichmay be justified by the fact that only the
polarization behavior near the OCV is of interest for the purpose of this
paper, and concentration losses are usually relatively more important at
large values of current density. Moreover, an electrolyte supported

configuration is assumed, which is expected to make concentration
losses even less important.

Vcell � EH2 − ηO2
− ηohm−ηH2

(22)
Vcell � ECO − ηO2

− ηohm−ηCO (23)

Exchange current densities (Eq. 19) and (Eq. 20), and Butler-
Volmer Eqs 12, 13 are used for the polarization model developed.
A similar Butler-Volmer equation is used to model the reaction
rate of O2 semi-reaction. For all Butler-Volmer equations, a single-
electron charge transfer, with charge transfer coefficient equal to
0.5 is assumed. The kinetic parameters and the functional form of
H2 and O2 exchange current densities are the same as in reference
(Campanari and Iora, 2005). As already mentioned, γCO is
assumed equal to γH2

divided by 2.54, which stems from the
calibration procedure shown in Section 3. The ohmic
polarization is calculated with Eq. 24, and it only accounts for
the ionic resistance within the electrolyte, whose thickness and
conductivity are also assumed equal to the values shown in
reference (Campanari and Iora, 2005). This assumption may be
justified by the relatively large electrolyte thickness considered
(150 µm), which arguably allows to neglect other contributions to
the overall ohmic resistance.

ηohm � itotLely

σely
(24)

The total current density, itot is the sum of H2 and CO current
densities, as expressed in Eq. 25. The total current density is also
equal to the cathodic current density (i.e., oxygen net reduction).

itot � iH2 + iCO (25)
Figure 3 shows the polarization curve near the OCV predicted by

the model developed. Note that the contributions of both iH2 and iCO
to the overall current density is also shown.

The model predicted OCV is 0.97 V, which is the same value
calculated using Eq. 21. This can be explained by noticing that when the
overall current equals zero, Eqs 22, 23, 25 become equivalent to Eqs
14-16, respectively. Moreover, themodel predicts a negative CO current
density when the cell voltage is very close to the OCV, meaning that
reaction (Eq. 7) is reversed, and CO2 is reduced to CO. This is also
expected since either iH2 or iCO must be negative at OCV to satisfy
Eq. 25. This means that COmay be produced rather than consumed for
cell voltages slightly lower than the OCV, which is counterintuitive for
fuel cell operation, where reduced species are expected to always be
electrochemically oxidized. Therefore, the potential difference between
EH2 andECO drives an electrochemicalWGS reaction, which is directed
towards the establishment of chemical equilibrium in the gas mixture.
However, when the cell voltage is below a certain threshold (about 0.9 V
in this case), the CO oxidation reaction overcomes CO2 reduction,
positively contributing to the overall current density.

5 Conclusion

In this work, the mixed potential theory is applied to derive
analytical equations for the estimation of the OCV in a fuel cell or
electrolyzer, when two electrochemical semi-reactions are active on one
of the electrodes. The case of H2 andCO co-oxidation (orH2O andCO2

FIGURE 3
Polarization curve relative to mixture F2 at 800°C. Both H2 and
CO contributions to total current density are shown. The model
predicts a negative current density for CO semi-reaction at high
voltage, which means that CO is electrochemically produced
rather than consumed.
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co-reduction) is used as an example throughout the work. The equation
found is calibrated and validated using OCV data from literature. The
calibration process was used to estimate the ratio of pre-exponential
factors of H2 and CO current densities. The resulting value of 2.54 is in
line with values suggested and used by other authors for similar
operating conditions. Very good matching between experimental
and estimated OCV was obtained during model validation for
mixtures with low CH4 content (0%–5%). The prediction accuracy
was either comparable or better compared to using the equilibrium
mixture composition to estimate the OCV. For mixtures with relatively
large CH4 concentration (more than 8%), the mixed potential model
significantly underestimates the OCV, due to additional H2 produced
by SMR, which is not accounted for by the model developed.
Conversely, the equilibrium potential model predicts with reasonable
accuracy also the OCV generated by mixtures with relatively large CH4

concentration. The results from the calibration procedure are used to
develop a polarization model of an SOFC fed with a H2-H2O-CO-CO2

fuel mixture. It is found that a fuel such as CO or H2 may be
electrochemically produced rather than consumed when the cell
voltage is close to or equal to the OCV.
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Genetic algorithm optimization
for parametrization, digital
twinning, and now-casting of
unknown small- and
medium-scale PV systems based
only on on-site measured data
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1Fraunhofer ISE, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany, 2Department of
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Accurately predicting and balancing energy generation and consumption are
crucial for grid operators and asset managers in a market where renewable
energy is increasing. To speed up the process, these predictions should ideally
be performed based only on on-site measured data and data available within the
monitoring platforms, data which are scarce for small- and medium-scale PV
systems. In this study, we propose an algorithm that can now-cast the power
output of a photovoltaic (PV) system with high accuracy. Additionally, it offers
physical information related to the configuration of such a PV system. We adapted
a genetic algorithm-based optimization approach to parametrize a digital twin of
unknown PV systems, using only on-site measured PV power and irradiance in the
plane of array. We compared several training datasets under various sky
conditions. A mean deviation of −1.14 W/kWp and a mean absolute percentage
deviation of 1.81% were obtained when we analyzed the accuracy of the PV power
now-casting for the year 2020 of the 16 unknown PV systems used for this
analysis. This level of accuracy is significant for ensuring the efficient now-casting
and operation of PV assets.

KEYWORDS

machine learning, genetic algorithms, auto-calibrated algorithms, photovoltaic systems,
parameter estimation, digital twin, PV power forecasting, PV system modeling

1 Introduction

Photovoltaic (PV) system installed capacity has doubled globally in the past 3 years,
hitting a terawatt in April 2022, and is projected to reach 2.3 TW by 2025 (SolarPower
Europe, 2022). The surge in PV capacity is being driven by a variety of factors, including
favorable laws and growing public knowledge of solar energy’s advantages, which are causing
this remarkable increase. According to predictions by the International Energy Agency (IEA)
in 2022, PV electricity will generate an extra 180 TW-hours by 2030, making up 60% of all
renewable energy production (International Energy Agency, 2022). An additional important
factor contributing to the success of PV systems is their rapidly declining cost. The average
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global weighted levelized cost of electricity (LCOE) for the utility-
scale PV has dropped by 13% per year since 2010, reaching around
4.8 cents per kilowatt-hour in 2021 (IRENA, 2021). This trend is
expected to continue as technology improves and economies of scale
are reached, making solar energy an increasingly attractive and cost-
effective option for energy generation.

Simulating and forecasting the PV power output of a utility-
scale PV plant is very important for both plant managers and
electricity network operators. Indeed, an accurate PV yield study
is one of the most crucial elements for a successful bankability
and feasible study of a PV power plant (Müller et al, 2016).
Reliable irradiance data and an effective PV power simulation
tool are crucial for correctly forecasting the power output of a PV
system. Although the irradiance data should be approximated
with high accuracy and temporal resolution, the simulation tool
should mimic the behavior of a PV system under various weather
and operating conditions. These two elements can be used to
produce an accurate and reliable PV yield study (Müller et al,
2007). Achieving an accurate PV power simulation often requires
specific physical and technical data for the PV system or
subsystem being modeled, according to Müller et al (2007.
Yet, these data are not always available or may be incomplete
for certain PV systems or subsystems in a larger PV portfolio. As
a result, accurate power prediction for such systems may be
challenging. Moreover, irradiance data used for PV power
simulation can be derived from satellite observations or
measured on-site. However, inconsistencies between the on-
site and satellite-derived irradiance data can propagate
proportionally up to the simulated PV power output.
Furthermore, inaccuracies in the different models used within
the PV power modeling process can amplify these errors (Urraca
et al, 2018a).

As suggested in IEC 61850-7-420 (IEC, 2009), PV systems are
expected to have basic meteorological measurement devices for
ambient temperature and solar irradiation. Considering this, our
work focuses on developing an optimization algorithm that learns
the basic parameters of an unknown small- or medium-scale PV
system or subsystem. Thereby, an accurate PV power simulation is
implemented based on only the on-site measured PV power and on-
site measured meteorological data.

This work is a continuation of a previous publication (Guzman
Razo et al, 2020), in which we used a genetic algorithm (GA)
approach to parametrize and create a digital twin of an unknown
PV system based on the measured PV power and data provided by
SolarGIS s.r.o., including air temperature and satellite-derived
irradiation. Next, we created a digital twin and accurately
simulated the behavior of that specific PV power plant under
different outdoor conditions. This publication will be referred to
as Guzman1 in the following sections of this work.

GA optimization offers a deterministic and time-efficient
alternative for curve fitting. Additionally, GA optimization
characteristically offers an alternative (crossover and mutation) to
avoid solving for local minima. In contrast with Guzman1, in this
work, we created a digital twin of an unknown small- or medium-
scale PV system without exogenous information. In other words, the
current GA optimization approach is based on only the on-site
measured PV power and on-site measured meteorological data,
specifically, module temperature (Tmod) and irradiance in the

plane of array (G) data (considered to be the most accurate
source of irradiance data for PV power simulations (Urraca et al,
2018b)).

This work aims to

• Show an accurate method to create a digital twin of a PV
system based on the GA optimization;

• Learn and optimize basic parameters of an unknown PV
system or subsystem without the need for external data,
including the PV module temperature coefficient,
Heydenreich a, b, and c, DC-to-AC ratio, and nominal power;

• Evaluate the accuracy of the digital twin created with different
lengths of training data;

• Evaluate the now-cast precision of a digital twin trained with
either all-sky or clear-sky conditions;

• Propose potential accuracy improvement for the GA
optimization approach proposed in this study.

This article is structured as follows: We present a summary of
previous publications for PV simulation and forecasting using
exclusively monitoring data and metrics to evaluate the results
(Section 2). In Section 3, we show how we adapted the
methodology from Guzman1 and present a description of the
data to be used within this study. In Section 4, we offer a
discussion regarding the results of the GA optimization, namely,
digital twin parameters and the now-casting results using these
parameters. In addition, we validate the methodology proposed in
the current study and propose an example to improve the now-
casting accuracy considering additional weather information.
Finally, in Section 5, we present the main conclusion of this
work and future improvements.

2 Literature overview and evaluation
metrics

Short-term PV power forecasting is key for achieving a balance
between energy consumption and production in a grid with high PV
penetration, applications for storage management, and reliability of
the bidding markets. This work focuses on creating an accurate tool
that can be applied for PV parameter extraction and short-term PV
power forecasting.

In this section, we present methods suggested in the literature to
create a model of a PV system and the use of that model for short-
term forecasting with no additional data to those collected on-site by
the data acquisition systems. Moreover, in this section, we show the
accuracy metrics used to evaluate the method proposed in this
publication.

2.1 PV system modeling methods for short-
term power forecasting without external
inputs

At present, several machine-learning approaches have been
studied to develop models for PV power forecasting. These
models use on-site power-measured data in combination with
numerical weather prediction or satellite-derived data. These
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methods commonly minimize data used while increasing the overall
accuracy of the solution. However, these approaches rarely provide a
physical description of the PV system’s components and
configuration. In this study, we focus on methods without
exogenous data, in other words, methods that include exclusively
on-site PV power-measured data and on-site measured
weather data.

Mandal et al (2012) offered a solution with a mix of wavelet
transform (WT) and different machine learning techniques. A PV
system model is created by dividing the PV power time-series data
between the ill-mode and non-linear fluctuations (spikes in power).
After that, four components are extracted by downsampling and
then filtered using low-pass filters. Finally, the PV system model is
obtained after a wavelet reconstruction, including some upsampling
after feeding each one of the individual components from the TW
into different neural networks. A mean absolute percentage
deviation (MAPD) of 2.38% can be achieved for clear-sky periods
of PV power forecasting. This method has a horizon of 12 h, and its
performance decreases considerably when cloudy or rainy days are
forecasted (Mandal et al, 2012).

Almeida et al (2015) proposed an alternative model for PV
power output forecasting that includes on-site weather data. They
applied a random forest (RF) model to create a PV model and then
used numerical weather prediction data to forecast the PV power
output. The results suggested an MAPD of 9.5% between the
forecasted and the on-site measured data (Almeida et al, 2015).

This contribution proposed a data-driven approach based on the
use of artificial neural networks (ANNs) trained with measured PV
power to create day-ahead forecasts of PV power. Unlike other
methods, this solution does not require any weather data and offers
an MAPD of 6.64% for the best-case scenario.

The suggestions from González Ordiano et al (2017) on using
weather-free approaches based on machine learning techniques are
particularly relevant. This contribution proposed a data-driven
approach based on the use of ANNs trained with measured PV
power to create day-ahead forecasts of PV power. Unlike other
methods, this solution does not require any weather data and offers
an MAPD of 6.64%, for the best-case scenario (González Ordiano
et al, 2017).

In contrast to the various machine learning solutions, there are
only a few physics-based or hybrid methods in the literature that
provide a description of a specific PV system or subsystem’s
configuration.

The article by Ogliari et al (2017) presents a model for next-day
PV power forecasting based on the well-known single-diode model,
which can consider either three or five parameters. In addition, the
authors propose two other approaches, an ANNmodel and a hybrid
model combining both physical and ANN models, for next-day
forecasting. The ANN and hybrid models use historical weather data
for training, with two different training approaches. However, it is
important to note that the physical parameters required for the
single-diode model need to be determined from the PV module’s
datasheet or from previous experiments (Ogliari et al, 2017).

It is important to mention that the physical model used in
Ogliari et al can only describe the behavior of a PV module under
outdoor conditions without considering the losses from the rest of
the components of a PV system or subsystem, i.e., cabling losses and
inverter efficiency (DC-to-AC ratio). Ogliari et al reported achieving

mean absolute deviations (MADs) of 19.1 W and 20.2 W for the
three- and five-parameter physical models, respectively. In the case
of the hybrid method, the MAD is 12.46 W for the best case of the
first training approach and 12.5 W for the best case of the second
training approach.

2.1.1 Evaluation metrics
Similar to Guzman1, we used four values to evaluate the

accuracy of the digital twin created by the GA optimization
method offered here, i.e., root mean square deviation (RMSD),
MAPD, mean bias deviation (MBD), and MAD. Eqs. 1–4,
respectively, show how we calculate the values.

RMSD �
�������������
1
n
∑n

i�1 yi − xi( )2
√

, (1)

MAPD � 100
n
∑n

i�1
yi − xi

∣∣∣∣ ∣∣∣∣
yi

∣∣∣∣ ∣∣∣∣ , (2)

MBD � 1
n
∑n

i�1 xi − yi( ), (3)

MAD � 1
n
∑n

i�1 yi − xi

∣∣∣∣ ∣∣∣∣, (4)

where yi is the actual value, xi is the estimated value, and the
number of observations is n. Estimated values and actual values
exclude nighttime.

3 Methodology and data

In this work, we adapted some steps of a PV power simulation
tool developed in-house by Fraunhofer ISE and suggested by
Dirnberger et al (2015) and Müller et al (2016). We optimized
the parameters required by the PV system simulation tool using the
GA and created a digital twin of an unknown PV system or
subsystem.

Figure 1 shows the overall methodology used to parameterize an
unknown PV system or subsystem, with the GA optimization
process, the PV system simulation tool (and its main models),
the inputs (i.e., initial parameters, and on-site measured
meteorological and PV power), and the optimized parameters as
an output, which are later used as a digital twin. The green dotted
rectangle represents the GA optimization process, while the orange
dotted rectangle represents the PV system simulation process and its
corresponding steps.

3.1 PV system simulation

As shown in the orange rectangle in Figure 1, the adapted PV
system simulation tool can simulate AC PV power with only on-
site measured Tmod and G as inputs. Comparable to Guzman1, the
simulation tool proposed here neglects some PV power
performance losses, such as soiling, degradation, snow, and
inter-row shading. However, surrounding shading loss effects
(horizon line) can be included in the G on-site measurements, in
addition to specific objects projecting shadow to a particular part
of the PV system or subsystem. The PV system simulation model
proposed here comprises two main steps, DC PV power and AC
PV power:
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Using equations suggested by Heydenreich et al (2008)(Eqs. 5,
6), we simulated DC PV power (Heydenreich et al, 2008). First, the
DC PV power at a temperature of 25°C, or standard test conditions
(STCs) Eq. 5, was simulated, and later, we translated that simulated
DC PV power to the on-site measured temperature and irradiance
conditions Eq. 6.

η G, TSTC( ) � aG + b ln G + 1( ) + c
ln 2 G + e( )

G + 1
− 1( ), (5)

where TSTC is 25°C, and a, b, and c are constants defining the PV
module efficiency curve at a specified G.

η G, Tmod( ) � η G, TSTC( ) 1 + γ Tmod − TSTC( )( ), (6)
where γ represents the PV module temperature coefficient, Tmod

represents the PV module temperature measured on-site, and in
both equations, and η represents the PVmodule efficiency at specific
conditions.

To simulate AC PV power output, we used the inverter model
proposed by Schmidt and Sauer (1994), accounting for 1% of cabling
losses (Schmidt and Sauer, 1994).

3.2 Detection of clear-sky moments and GA
optimization

To define the best climatic conditions for the parameter extraction, in
theGAoptimization training phase, we created two different training sets:

• The first set includes all possible conditions measured on-site
i.e., overcast and clear-sky-like moments. This training dataset
will be referred to in this work as all-sky.

• The second set filters out the overcast moments and only
includes clear-sky-like moments. This training dataset will be
referred to in this work as clear-sky.

We detected and filtered clear-sky-like moments based on the
two-step process described in detail in Guzman1. First, based on the

on-site measured PV power data, a statistical clear-sky curve was
created following the method implemented and proposed by Stein
et al (2012) and Reno and Hansen (2016). Next, with the “detect_
clearsky” function from the PVLib library (Holmgren et al, 2020), we
detected clear-sky-like moments. Training datasets of both clear-sky
and all-sky moments comprised only on-site measured PV power
data and their correspondent on-site measured Tmod and G being
used in this study.

In general terms, we based our GA algorithm on the technique
proposed by Holland (1975). Although GA optimization is
considered a traditional optimization algorithm, it has been
rarely implemented in the solar industry. Moreover, inherently,
the GA optimization offers an accurate and time-efficient
deterministic approximation of the real parameters of unknown
PV systems and subsystems. Additionally, the GA performs
effectively for problems relating to dynamic environments where
an optimal answer can evolve over time. In these situations, the
solution space might be too big to thoroughly explore, and the ideal
answer can change as the situation changes (Mori and Kita, 2000).

The novelty of this work relies on the fact that we can extract the
main characteristics of an unknown PV system or subsystem by
implementing a similar GA optimization to the one proposed by
Holland (1975) within a stepwise process. In this work, we opted for
a stepwise optimization process to reduce the compensation
between parameters.

To extract the most accurate PV system parameters, we
minimized the MAD (see Eq. 4) between simulated AC PV
power and on-site measured AC PV power. The MAD of the
best member of the population and population mean MAD are
two key performance indexes to monitor throughout the GA
optimization. The optimization process is interrupted if neither
of the two performance indexes improves any more. A detailed
description of this process can be found in Guzman1.

In the GA optimization, to create the initial population of PV
system parameters to be evaluated and optimized, we began by
defining the initial parameters for this work as 1-kilowatt peak
(kWp) for nominal power, −0.43 %/°C for the power temperature
coefficient, and a ratio of 1 for the DC to AC power.

FIGURE 1
Interaction between inputs and outputs of the overall GA optimization methodology.
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Next, we normalized the on-site measured AC PV power by
the maximum measured value. By normalizing on-site
measured AC PV power, we compared it with the simulated
AC PV power of a 1-kWp installed capacity system. It is
important to mention that the measured G must be in the
same plane of array of the PV system or subsystem. After the
AC PV power is normalized, the subsequent steps are followed
to complete the optimization process for the assumed 1-kWp
PV system:

• With cross-validation optimization, we selected the best
set of a, b, and c parameters for (Eq. 5). The cross-
validation optimization process was based on a database
comprising 107 sets of three parameters, described in
Guzman1, including the results from Fraunhofer ISE
CalLab efficiency measurements of 107 PV modules at
different irradiance levels. We simulated DC PV power,
using each one of the 107 sets of parameters, and compared
it with the normalized AC power. We considered the lower
MAD as the optimum set of parameters for the simulated
PV system.

• We used GA optimization to learn the PV module
temperature coefficient by minimizing the MAD between
simulated DC PV power resulting from Eq. 6) and
normalized-measured AC PV power.

• To optimize the DC-to-AC ratio, we used GA optimization to
minimize the MAD between simulated AC PV power (based
only on the efficiency section of the Schmidt and Sauer model)
and normalized-measured AC PV power.

FIGURE 2
Two-day results of a digital twin from a system located in southwest Germany. In subfigure (A, B), the red dotted line shows the irradiance G
measured on-site, the orange dotted line shows the AC PV powermeasured on-site, and the solid green line shows the AC PV power forecasted by the
digital twin parametrized with a 30-days long data set considering all-sky conditions. Subfigures (C, D) show the deviation betweenthe AC PV power
measured on-site and the AC PV power forecasted. The left side of FIGURE 2 shows a clear-sky like day and the right side shows an overcast-like day.

FIGURE 3
Location of the 16 real on-site measured PV systems.
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• Finally, we used GA optimization to minimize the MAD
between simulated AC PV power and measured AC PV
power (non-normalized) to extract the PV system nominal
power.

The results obtained from applying the PV models with the
optimized parameters in this study accurately reflect the real
behavior of the tested PV system. As a result, by using these
optimized parameters, we can create a digital twin of the PV
system or subsystem and simulate its performance by changing
the irradiance and temperature conditions to current (now-cast) or
future (forecast) values.

Figure 2 shows two digital twins created from on-site
measurements of a system located in southwest Germany with a
training dataset of 30 days length (before the day to be tested), in
which all-sky conditions are considered. On the left-hand side,
subplot (a) shows a PV power simulation for a clear-sky-like day:
measured PV power, the measured G. Subplot (c) shows the
deviation between the simulated and measured PV power in W/
kWp. On the right-hand side, subplot (b) shows overcast-like day
results: simulated PV power, measured PV power, and measured G.
Subplot (d) shows the deviation between the simulated and
measured PV power in W/kWp. On-site data for the
optimization have been measured during the year 2020, and the
results presented in this example considered only daytime
measurements.

3.3 Data used in this publication

In this work, we used a database comprising 16 real on-site
measured PV systems installed in Germany, which are part of the
Fraunhofer ISE monitoring portfolio. The geographical location of
those systems can be observed in Figure 3.

The database used here, collected between 2018 and 2020,
consists of a time series of approximately 567,500 points of 5-
min resolution including three main features: measured PV power,
measured Tmod, and measured G. Table 1 shows the nominal power
and the G sensor installed at each location of the 16 PV systems. PV
systems from 36 kWp up to 1,202 kWp were considered in this
publication.

Additionally in Section 4.3.1, we used daily observations of snow
depth data from the Deutscher Wetterdienst (German Weather
Service) climate data center (CDC) (Kaspar et al, 2013) for the year
2020, for all 16 locations.

4 Results and discussion

In the first part of this section, our goal was to demonstrate the
impact of different lengths of training datasets on the
parametrization and now-casting performance of the digital twin.
We analyzed data from a PV system located in southwest Germany
(ID 5) to investigate this effect. The selection of PV system ID 5 was
arbitrary and was chosen out of the 16 real PV systems in our
database to randomize the process and prioritize our research on the
effect of different training dataset lengths on PV system
parametrization.

The reported design parameters from the PV system ID 5 are the
following:

• Temperature coefficient (%/°C): -0.43
• Heydenreich a: 0.001084
• Heydenreich b: -7.247061
• Heydenreich c: -156.5457
• DC-to-AC ratio: 1.04
• Nominal power (kWp): 553
• Year of construction: 2010

Next, we evaluated the rest of the PV systems within the
database using the best-performing length for training the digital
twin. Additionally, we investigated the potential for improving now-
casting accuracy by considering locally measured snow deposition
information. Finally, we discuss limitations and possible future
improvements at the end of this section.

4.1 Digital twin parametrization

To evaluate the effect of seasonality and the length of training
data on the parametrization of the digital twin and the accuracy of
now-casting, we randomly selected 1 day per week of the year 2020

TABLE 1 Nominal power and G sensor description for each of the 16 PV systems.

System Nominal power (kWp) Sensora System Nominal power (kWp) Sensora

ID 1 36 1 ID 9 555 2

ID 2 899 2 ID 10 1,000 2

ID 3 999 2 ID 11 497 1

ID 4 910 1 ID 12 1,202 1

ID 5 553 2 ID 13 293 1

ID 6 713 2 ID 14 829 1

ID 7 595 2 ID 15 1,012 1

ID 8 678 2 ID 16 1,045 1

a1 = Mencke and Tegtmeyer Si reference cell; 2 = Kipp and Zonen CMP11 pyranometer.
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(a total of 52 days). For each selected day, we used six different
training dataset lengths, including 30, 60, 90, 120, 150, and 182 days
prior to the selected day. We also identified clear-sky conditions
within all the training datasets and trained the GA using both all-sky
and clear-sky moments. Each combination of training dataset
length, selected day, and all/clear-sky moments resulted in a
different set of parameters (digital twin) for the PV system under
consideration.

Figure 4 shows plots of optimization results for nominal power
and the DC-to-AC ratio, considering 52 randomly chosen days and
different training set lengths: 30, 60, 90, 120, 150, and 182°days.
Optimization results for the temperature coefficient have been
reported constantly throughout the 52°days (−0.4%/°C) and,
therefore, are not shown in the figure. In general, while
considering all-sky moments, the DC-to-AC ratio (see subplot c))
remains more constant than while considering only clear-sky
moments. In contrast to that, optimization for nominal power
remains more stable while considering only clear-sky moments
(see subplot b)).

The results of a quantitative analysis are included in Table 2. The
analysis includes results from the GA optimization considering

clear-sky and all-sky conditions for all the different training
length datasets.

One of the advantages of parametrizing a PV system or
subsystem based on only on-site measured data (including G) is
the low variability of optimized parameters over time. As shown in
Table 2, a training length of a minimum of 120 days is a common
agreement between the best results, considering both clear-sky and
all-sky moments.

The parametrization results for nominal power shown in
Figure 4 are on the side of an underestimation. As mentioned
previously, using only clear-sky moments seems to be more
stable. As shown in Table 2, the best conditions for an
accurate nominal power parametrization are as follows: all-sky
conditions in combination with a 120-day training length. This
combination shows a mean value of 510.55 kWp with an MAPD
of only 7.93% and an MBD of only −42.45 kWp. In contrast to our
previous publication (Guzman Razo et al, 2020), these values have
reduced considerably from 10.69% and −84.24 kWp, respectively.
This is most likely due to the increase in accuracy of G which was
measured on-site instead of using satellite-based irradiance
information.

FIGURE 4
GAoptimization results for nominal power and theDC-to-AC ratio. A total of 52 days were chosen, of the year 2020 considering six different training
datasets for each day; all-sky and clear-sky conditions with 30, 60, 90, 120, 150, and 182°days of training datasets. The 30-day dataset is represented by
the solid blue line, 60-day dataset is represented by the orange dashed-line, 90-day dataset is represented by a green dotted line, 120-day dataset is
represented by the dotted–dashed red line, 150-day dataset is represented by the dotted–dashed blue line, 182-day dataset is represented by the
dotted–dashed brown line, and the reported parameter is represented by a horizontal red dashed-line. Figure 4 is divided into left-hand (A, C) and right-
hand (B, D) sections. The left-hand subplots (A, C) show optimized parameters for all-sky condition optimization, whereas the right-hand side subplots
(B, D) show optimized parameters considering only clear-sky conditions.
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Given that the reported nominal power value is 553 kWp, there
is still a deviation between it and the value extracted using the GA
model. One possible explanation for this deviation could be
attributed to a degradation rate, which according to Jordan et al
(2016), is expected to be between 0.8% and 0.9% per year since the
installation year (Jordan et al, 2016). For system ID5, which has been
installed for 10 years to the date of the experimental data, a
degradation rate of between 8% and 9% can be expected,
resulting in a nominal power between 508.76 kWp and
503.23 kWp. The value calculated using the proposed GA model
shows good agreement with the expected value. However, this
should not be taken lightly as additional power losses can exist
and require further investigation.

It seems that there is a trade-off between using all-sky
conditions and clear-sky moments for parametrization of the
AC-to-DC ratio; see Figure 4. Although all-sky conditions
provide more stable results in a particular period, clear-sky
moments tend to result in spreader results on the side of
overestimation. However, regardless of the condition used, a
training length of 182 days seems to be the most suitable for
accurate parametrization; see Table 2. The best-case scenario
shows a mean value of 1.06 with a 5.7% MAPD and an MBD of
0.02, which is an improvement from the MBD of −0.14 achieved
in Guzman1.

As mentioned previously, a constant parameter has been
estimated for the 52 test days for the power temperature
coefficient. Therefore, the parametrization results of the
Heydenreich et al model for PV system ID5, considering both
scenario clear-sky and all-sky moments, are the following:

• Heydenreich a: 0.004326
• Heydenreich b: -11.275966

• Heydenreich c: -182.272483

Although the optimal conditions for parametrizing the
presented model are defined based on clear-sky or all-sky
conditions and the length of the training dataset, the accuracy of
the now-casting must also be evaluated. For instance, if the nominal
power is close to the reported value, it would receive a higher score.
However, these values do not account for additional losses that are
commonly present in PV systems under outdoor conditions, such as
soiling and degradation.

Therefore, in the following subsection, we evaluated the
accuracy of now-casting using the parameters calculated with
different training dataset lengths.

TABLE 2 Parametrization results of the GA optimization for PV system ID5 including all-sky and clear-sky conditions.

Sky Training length (days) Parameter

Nominal power (Reported: 553 kWp) DC-to-AC ratio (Reported: 1.04)

Mean (kWp) MAPD (%) MBD (kWp) RMSD (kWp) Mean MAPD (%) MBD RMSD

All 30 497.71 10.70 −55.29 61.97 0.99 21.78 −0.05 0.32

60 504.94 9.94 −48.06 56.66 0.88 21.65 −0.16 0.36

90 502.84 9.07 −50.16 52.89 0.79 24.94 −0.25 0.41

120 510.55 7.93 −42.45 46.85 0.72 30.81 −0.32 0.51

150 507.50 8.23 −45.50 47.52 0.91 12.30 −0.13 0.16

182 501.22 9.36 −51.78 52.26 0.96 7.78 −0.08 0.08

Clear 30 503.71 8.91 −49.29 50.47 0.87 40.16 −0.17 0.47

60 504.64 8.75 −48.36 49.36 0.86 34.87 −0.18 0.43

90 504.44 8.78 −48.56 49.51 0.78 32.47 −0.26 0.39

120 508.02 8.13 −44.98 45.89 0.81 29.36 −0.23 0.49

150 504.83 8.71 −48.17 48.70 1.00 10.21 −0.04 0.15

182 502.17 8.71 −50.83 51.43 1.06 5.70 0.02 0.08

Bold values represent the best parametrization results for both different sky conditions and different lenght data set.

TABLE 3 Accuracy results of the digital twins created for 52 randomly chosen
days in the year 2020. A total of 12 different training datasets including all-sky
and clear-sky conditions with lengths of 30, 60, 90, 120, 150, and 182°days.

Error metric Training dataset length (days)

30 60 90 120 150 182

All-sky conditions

MBD (W/kWp) 3.91 4.14 4.03 2.09 3.12 3.27

MAPD (%) 1.13 1.17 1.29 1.05 0.96 0.91

RMSD (W/kWp) 11.83 12.10 11.90 11.96 11.44 11.04

Clear-sky conditions

MBD (W/kWp) 3.93 4.26 4.72 3.61 4.66 4.81

MAPD (%) 0.98 1.05 1.08 1.01 0.94 0.92

RMSD (W/kWp) 10.77 11.11 11.49 11.57 11.48 11.27

Bold values represent the best parametrization results for both different sky conditions and

different lenght data set.
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4.2 Digital twin now-casting

To select the optimal training length for the GA algorithm
presented here, in this section, we evaluate simulated PV power with
parameters from the digital twin considering only daytime values.
We randomly selected 52°days from the year 2020 of System ID
5 and generated a set of parameters for each of the 52°days in
combination with different training lengths (30°days, 60°days,
90°days, 120°days, 150°days, and 182°days). Finally, we compared
the simulated PV power with the on-site measured PV power.

To generalize and correlate the results offered here with any other
PV system or subsystem, we measured the deviation in W/kWp

installed. Table 3 shows the results of now-casting for all the
training datasets (30, 60, 90, 120, 150, and 182°days) and all the
conditions (all-sky and clear-sky).

We evaluated the now-casting results based on the MAPD
parameter. As shown in Table 3, the best combination of
conditions and training length is achieved with all-sky conditions
and a 182-day training dataset, resulting in an MAPD of 0.91%.

Figure 5 shows that the high variation in the
parameterization, particularly in the DC-to-AC ratio, is not
necessarily reflected in the now-casting results. The now-
casting deviation using all-sky conditions (subfigure (a)) is
consistently underestimated compared to the deviation using
only clear-sky conditions (subfigure (b)), particularly for short
training datasets (30–90°days). However, the absolute deviation
of the now-casting is similar for both all-sky and clear-sky
conditions, particularly for longer training data sets
(120–182°days).

Based on the results presented here, we considered that
182 days (or 6 months) based on all-sky conditions is the
minimum required length to train GA optimization. With
these condition-training lengths, it is possible to achieve an
MBD of 3.27 kWp and an MAPE of only 0.91%. Previous
publications, including Guzman1, reported an MAPE from 6%
to 10% for now-casting tests (Ding et al, 2011; Mandal et al, 2012;
Kaspar et al, 2013; Monteiro et al, 2013; Ibrahim et al, 2015;
Landelius et al, 2019; Guzman Razo et al, 2020).

FIGURE 5
Digital twin now-casting results based on GA optimization. A total of 52 days chosen in the year 2020. Six different training datasets for each day
were considered: All-sky and clear-sky conditions with 30, 60, and 90 days of training datasets. 95% confidence interval. The 30-day dataset is
represented by the solid blue line, the 60-day dataset is represented by the orange dashed line, the 90-day dataset is represented by a green dotted line,
the 120-day dataset is represented by the dotted–dashed red line, the 150-day dataset is represented by the dotted–dashed blue line, the 182-day
dataset is represented by the dotted–dashed brown line, and the reported parameter is represented by a horizontal red dashed line. Figure 5 is divided
into two vertical sections; on the left-hand side, we can see the results of the now-casting considering all-sky conditions (A, C), and the right-hand side,
shows the results from the now-casting considering only clear-sky conditions (B, D).
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4.3 Digital twin validation

According to the results presented in the previous
subsections, a training dataset length of 182°days is suggested
to achieve high accuracy for both the digital twin parametrization
and now-casting. To validate this suggestion, a 182-day training
dataset was selected for each of the 16 monitored PV systems for
the year 2020. Similar to the experiment described in the previous
subsections, a random day from each week of the year 2020 was
selected (52°days in total) to create a digital twin for each PV
system on each selected day.

Figure 6 shows the PV power now-casting results for all 16 real
PV systems. As observed, the mean deviation of all 16 real PV
systems, in W/kWp installed, indicates an under-casting, −1.14,
which is influenced by high-deviation peaks in winter,
particularly for System ID15. Additionally, the figure shows that
the MAD for all 16 real PV systems is merely 1.81%, indicating a
good benchmark for short-term PV power forecasting.

In general terms, the now-casting accuracy of all the digital twins
created throughout the year 2020 for all 16 real PV suggests that
their performance is time-independent, indicating that they can be
implemented at any time of the year. However, there are some
exceptions in winter which will be clarified in the following
subsection.

4.3.1 Additional losses’ information and further
improvement

In the interest of accurately parametrizing PV systems based
solely on on-site measured data, this publication aimed to achieve
its overall goal without relying on external data sources. However,
to explore the potential for improving accuracy, additional
information from local weather stations was utilized. Figure 6
shows higher deviations between the digital twin-simulated PV
power and the measured PV power for most of the 16 real PV
systems during the first 5°weeks and the last 5°weeks of the year
2020. Considering this, in this subsection, we took into account
the locally measured snow depth information from the CDC
Deutscher Wetterdienst for all 16 real PV systems’ locations
during the year 2020.

High peaks in the winter of subplot a) from Figure 7 show a good
agreement with the high-deviation peaks of the digital twin now-
casting presented in Figure 6. To get a correlation between the now-
casting high deviation in winter and the snow depth information, we
calculated a simple linear regression between snow deposition and
deviation in W/kWp of each one of the 16 real PV systems.

Next, we use that linear regression to correct the power
forecasted based on the snow information available by location.
In Figure 7, it can be observed that the high deviations in winter have
been reduced by approximately 75% for some specific cases (see

FIGURE 6
Deviation and absolute deviation of 52 days for now-casting for all the 16 real PV systems. In the upper section of the plot, subplots (A) and (B) show
the deviation in W/kWp installed between the power now-casting and the power measured on-site. In the lower section of the plot, subplots (C) and (D)
show the absolute deviation in percentage between the power now-casting and the power measured on-site. Subplots (A) and (C) show the distribution
of the deviation per day and themean value over all 16 PV systems. Subplots (B) and (D) show boxplots representing the distribution of the deviation
per PV system, and high deviations are considered outliers and therefore ignored (see System ID 15, week 4).
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System ID 15). In general, the now-casting mean deviation of all
16 PV systems is −3.22 W/kWp installed, underperforming
constantly more evident for some specific PV systems such as PV
system ID 6, ID7, and ID8. An absolute deviation of 1.02% can be
observed, improving the overall accuracy by 0.79% or 44% relative to
the previous calculation by only including snow deposition
information for all 16 locations.

The results presented in this work suggested that PV systems
with pyranometers as irradiance sensors presented lower deviation
than those with reference cells installed as irradiance sensors. As
suggested by Rivera and Reise, to further improve the now-casting
accuracy and to reduce deviations, corrections can be applied to the
values measured by reference cell sensors (Rivera Aguilar and Reise,
2020).

Moreover, additional loss factors that directly impact the power
production of a PV system, such as degradation, power clipping, and
soiling, could be possibly captured by some of the parameters of the
GA optimization, i.e., nominal power and the DC-to-AC ratio.

Further investigation is required to confirm these assumptions
and improve the model accordingly.

4.4 Limitations

We acknowledge that the GA optimization method presented here
has some limitations. In addition to the loss factors mentioned in the
aforementioned subsections (degradation, power clipping, and soiling),
it is also important to mention that some shading effects, such as inter-
row, can directly impact the optimization results. Furthermore,
measuring G in a different POA will lead to biased PV power
simulation, which ultimately will lead to incorrect parametrization.
Additional filters and flags have to be implemented within the database
to ensure that the on-site measured data are valid. Additionally, special
PV system configurations, such as single- and double-axis tracked
systems and bi-facial systems, require modifications to the PV power
simulation model and optimization logic.

FIGURE 7
Snow deposition information for all 16 real PV systems. Deviation and absolute deviation of 52 days for now-casting for all 16 real PV systems,
considering snow deposition. Subplot (A) shows the snow depth in centimeters (cm) for all the locations of the real PV systems. Subplots (B) and (C) show
the now-casting deviation (in W/kWp) after the snow information has been considered, and the correction has been performed for each of the 16 real PV
systems. Subplots (D) and (E) show the absolute deviation (in %) of now-casting for all 16 PV systems after the correction for snow deposition has
been implemented.
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5 Conclusion

Although solutions such as GA optimization have been available
over an extended period, this work proposes a novel and accurate
implementation method for extracting parameters of PV systems or
subsystems without prior technical information. The parameters
extracted describe the main characteristics of a PV system or
subsystem, which later can be translated to a digital twin. The
basic parameters of a PV system or subsystem digital twin are
defined based on only the on-site measured data in this work.

Based on the experiments presented here, the best
condition–training length combination for the GA optimization
is defined as all-sky conditions and 182 days long, with only on-site
measured data. With the method proposed in this work, a digital
twin is created to now-cast with an accuracy of only 0.91% MAPE
and 3.27 W/kWp MBE for PV power now-casting.

Furthermore, a validation process is presented, demonstrating
the potential of parameterizing a digital twin for each PV plant
within a portfolio. A season-independent digital twin is
parameterized, and each of the 16 real PV plants distributed in
Germany is now-casted with a mean deviation value of −1.14 W/
kWp and an MAD of only 1.81%. The model presented here can be
further improved to achieve an MAD of only 1.02%, if external
locally measured information is considered, i.e., snow precipitation.
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