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Patterns of item nonresponse behaviour to 
survey questionnaires are systematic and 
associated with genetic loci

Gianmarco Mignogna    1,2,3,4,19, Caitlin E. Carey1,4,5,19, Robbee Wedow    4,6,7,8,9,19 , 
Nikolas Baya1,4, Mattia Cordioli    2, Nicola Pirastu    10,11, Rino Bellocco3,12, 
Kathryn Fiuza Malerbi13, Michel G. Nivard    14,15,16, Benjamin M. Neale    1,4,5,17,18, 
Raymond K. Walters    1,4,20 & Andrea Ganna    1,2,17,20

Response to survey questionnaires is vital for social and behavioural 
research, and most analyses assume full and accurate response by 
participants. However, nonresponse is common and impedes proper 
interpretation and generalizability of results. We examined item 
nonresponse behaviour across 109 questionnaire items in the UK Biobank 
(N = 360,628). Phenotypic factor scores for two participant-selected 
nonresponse answers, ‘Prefer not to answer’ (PNA) and ‘I don’t know’ (IDK), 
each predicted participant nonresponse in follow-up surveys (incremental 
pseudo-R2 = 0.056), even when controlling for education and self-reported 
health (incremental pseudo-R2 = 0.046). After performing genome-wide 
association studies of our factors, PNA and IDK were highly genetically 
correlated with one another (rg = 0.73 (s.e. = 0.03)) and with education 
(rg,PNA = −0.51 (s.e. = 0.03); rg,IDK = −0.38 (s.e. = 0.02)), health (rg,PNA = 0.51 
(s.e. = 0.03); rg,IDK = 0.49 (s.e. = 0.02)) and income (rg,PNA = –0.57 (s.e. = 0.04); 
rg,IDK = −0.46 (s.e. = 0.02)), with additional unique genetic associations 
observed for both PNA and IDK (P < 5 × 10−8). We discuss how these 
associations may bias studies of traits correlated with item nonresponse 
and demonstrate how this bias may substantially aect genome-wide 
association studies. While the UK Biobank data are deidentied, we 
further protected participant privacy by avoiding exploring non-response 
behaviour to single questions, assuring that no information can be used to 
associate results with any particular respondents.

Ethics, participant privacy and interpretation of behavioural genetics 
research are primary concerns for this research team and this study 
takes particular precautions in these areas. We urge readers to carefully 
read Box 1, our Ethical Approval statement in Methods and our Fre-
quently Asked Questions document in the Supplementary Information.

Item nonresponse occurs when no substantive answer is recorded 
for a study participant on a given questionnaire item, such as when the 

participant does not provide an answer or responds ‘I do not know’1. 
Nonresponse is interesting both as a behavioural choice by a survey 
participant and as a statistical concern due to missing data. Much social 
and behavioural research relies on surveys, and data analysis of survey 
data usually assumes full and accurate response by survey participants, 
or at least that any nonresponse is independent of the outcomes that 
a researcher is interested in. In reality, nonresponse is common and 
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be either missing completely at random (MCAR), missing randomly 
conditional on the remaining observed data (missing at random or 
MAR) or missing dependent on the unobserved data (missing not at ran-
dom or MNAR)6,8. Thus, if there are unobserved individual phenotypic 
differences influencing the likelihood of item nonresponse, then the 
resulting missingness is considered MNAR. Nonrandom missingness is 
of particular concern because common statistical methods such as full 
information maximum likelihood estimation or multiple imputation 
are only sufficient to address MAR data. MNAR requires more direct 
modelling that includes assumptions about the type of missingness9–11.

In recent years, these concerns about the consequences of vol-
untary participation in research cohorts have seen renewed interest 
for large-scale biorepositories such as the UK Biobank (UKB). Several 
researchers have raised concerns that biobank cohorts may not be 
representative of the population12–15. For instance epidemiological com-
parisons with UK Biobank show strong evidence of sampling bias16–18, 
and correlation of this selection with geography has the potential to 
increase effects of population stratification19,20. Recent research has 

the independence assumption often unjustified, impeding proper 
interpretation and generalizability of results.

Understanding the causes of nonresponse and nonparticipation 
has long been a concern for survey-based research2. As an observable 
behaviour, nonresponse represents a complex interplay between 
survey design for questionnaires and a respondent’s cognitive pro-
cesses, that is, in understanding a question and choosing a response1,3. 
Nonresponse at the item level may be thought of as an intermediate 
behaviour on the spectrum between providing complete data and com-
plete nonparticipation—that is, unit nonresponse4—and nonresponse 
is predictive of future study dropout5. Further, nonresponse is unlikely 
to be captured by a single construct since individuals may differ in their 
likelihood to select different nonresponse choices in a questionnaire, 
for example ‘I don’t know’, I’m not sure’ or ‘I don’t want to answer’, both 
overall and when responding to questions in certain categories6.

One primary motivation to understand this nonresponse behav-
iour is that it not only reduces the effective sample size of scientific 
studies but can also introduce bias7. As a general framework, data may 

B 1

Ethical considerations
We acknowledge that a dark history of pseudoscientiic 
discrimination and genetic essentialism underlies the study of 
behavioural outcomes in genetics. Along with this history comes 
a responsibility for genetics researchers to carefully consider and 
develop robust ethical protocols when conducting their research, 
especially in the area of behavioural genetics and sociogenomics. 
However, we also recognize the extraordinary beneits of using 
genetics as a powerfully emergent tool to better understand 
behaviour and its relation to health.

This paper is one such attempt to uniquely evaluate a source 
of bias that is present in nearly all questionnaire-based research: 
item nonresponse. We believe the analyses and conclusions of our 
study not only underscore the importance of how item nonresponse 
relates to dierent domains of health and health behaviour, but also 
push researchers to be highly sceptical that selection biases can be 
tackled without considering the speciic genetic and behavioural 
sources of selection of the speciic data and system under study.  
In short, because so much research into the genetics of human health 
and wellbeing is based on surveys, it is important to understand  
how nonresponse could be impacting the generalizability of  
genetics results.

Participant consent is critical for the ethical conduct of research. 
Nonresponse, including at the item level, in some instances 
will relect a participant exercising their (entirely justiied) right 
to voluntarily not participate in some aspect of a study. This is 
especially true in the case of item nonresponse in the form of 
actively responding ‘Prefer not to answer’. As a result, it requires 
careful ethical consideration to evaluate how to study nonresponse 
without breaching the participant’s consent as relected in both the 
item-level nonresponse and the study-level informed consent and 
participation. There can be ethical harms to ignoring the source of 
missing data in research. Consideration of missingness is necessary 
to identify the ways in which a study or a particular analysis may not 
be representative of the population, otherwise researchers risk the 
myriad impacts of uncritically producing biased or ungeneralizable 
results. Reifying incorrect results risks group harm from incorrect 
conclusions that may reinforce misperceptions of disadvantaged 
groups. Decades of social science research on mechanisms 

of missing data and their inluence on research results relect 
recognition of the imperative to wrestle with this challenge.

In line with the new guidance on ethical standards announced by 
Nature Human Behaviour (https://www.nature.com/articles/s41562-
022-01443-2; https://www.nature.com/articles/s41562-022-01472-x), 
we have carefully planned and implemented our ethical approach by: 
(1) seeking speciic approval from the datasets we use to conduct this 
study; (2) following closely the requirements and evaluations of our 
Institutional Review Boards (IRBs); and (3) creating and documenting 
our approach in our Box 1, in our Frequently Asked Questions 
(FAQ) document and in our methods. Most importantly, because a 
participant’s right to voluntarily not take part in a study is a critical 
component of ethical research, we avoid exploring nonresponse 
behaviour to single questions and thus assure that no information 
can be used to associate results with any particular respondent. We 
make one exception, in an analysis of responding ‘I don’t know’ to 
the question ‘During your childhood, how many times did you suer 
painful sunburn?’, where we empirically check that our analysis is 
meeting the stated goal of avoiding revealing item-speciic factors. 
We intentionally rely on the IDK response (that is, item nonresponse 
that does not imply a desire to avoid participation in the item) and 
use an item that is less socially sensitive to minimize ethical concerns 
while doing this check.

The factors generated for our analyses can be thought of as 
relecting a general behavioural tendency for someone to choose 
not to respond to one or more survey items; they are not relective 
of nonresponse to any single, speciic item. Methods for correcting 
non-response bias (including Heckman correction) may implicitly 
estimate associations of missingness with expected values of the 
target phenotype, but these interim statistical quantities are neither 
designed to draw conclusions about any individual nor are they the 
scientiic goal. For this reason, we do not report eect sizes for the 
stage 1 model in Heckman correction to similarly avoid inference 
from missingness of individual items (in this case, luid intelligence 
(FI)) outside of necessary calculation of intermediate quantities.

We stress that these ethical considerations apply not only  
within this study, but also in future applications and extensions of  
this work.
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demonstrated that the collider bias induced by nonrandom participa-
tion can substantially bias associations with genetic variants, creating 
spurious associations for variants associated with sampling probabili-
ties and reducing generalizability of results outside the studied popu-
lation12–14,16,18,21–23. These concerns have prompted several suggestions 
for analytic methods to reduce selection bias in genetic studies of large 
biobanks13,14,18,24,25, but no consensus solution has emerged thus far.

To understand these concerns about selection bias in genome-wide 
association studies (GWAS), it is instructive to diagram the potential 
links between nonresponse, genetics and target outcomes that could 
induce biased associations (Fig. 1 and ref. 22). Broadly, since analyses 
of observed data such as the UKB implicitly condition on nonresponse, 
associations may be biased if this conditioning induces collider bias 
on the joint distribution of genetic data, covariates and phenotypes. 
In particular, consider the case of a phenotype that is positively asso-
ciated with nonresponse or other selection, either directly (that is, 
θ > 0) or through some mediator. Single nucleotide polymorphisms 
(SNPs) that increase this phenotype (that is, α > 0) will then also be 
associated with the nonresponse and the observed correlation of 
the SNP with the phenotype will probably be reduced due to restric-
tion of range. Conversely, SNPs that increase nonresponse without 
being mediated by the phenotype (that is, α = 0, β > 0) will become 
negatively associated with the phenotype among observed samples 
since increased nonresponse will favour lower expected values of 
the nonresponse-associated phenotype. By extension, when a pair of 
traits have this same pattern of confounding (that is, through β), GWAS 
of the observed data could yield spurious genetic correlation even if 
the genetic associations on the two traits (for example, through α) are 
orthogonal. Similar concerns arise for paths mediated through other 
variables (for example, through δ, γ), depending on their relationship 
with the phenotype of interest (that is, η).

This potential for confounding by genetic associations with miss-
ingness is not just theoretical given that non-response behaviour is 
clearly correlated with many heritable traits. Higher rates of item 
nonresponse are associated with lower educational attainment and 
poorer health status26–28. Increased item nonresponse has also been 
observed for individuals with more depressive symptoms29 and lower 
self-confidence, among other psychological and personality traits30. 
These individual differences in item nonresponse rates can however 
be sensitive to the content of the questionnaire items26,31 and the char-
acteristics of the study population28,32. Still, similar patterns are often 
observed for unit nonresponse and study attrition; for example, par-
ticipants with lower educational levels are more likely to drop out of 
a study33. Similarly, those with heavy alcohol habits, higher levels of 
mental distress and those who abstain from unhealthy behaviours tend 
to be underrepresented in studies due to their higher attrition rates34–36.

Recent work has begun to shed light on the genetics of study par-
ticipation and nonresponse. A longitudinal study in the UK estimated 
heritability of 18–32% for continued participation after baseline37. Poly-
genic score analyses have also associated unit nonresponse with edu-
cational attainment, schizophrenia, personality and smoking, among 
other heritable phenotypes36,37. In the UKB, substantial genetic associa-
tions have been observed for participation in follow-up surveys38 and 
for sex differences in participation at baseline39. A recent GWAS using 
first-degree relatives also found significant genetic variants associated 
with likelihood of participating in the UKB at baseline, with substantial 
genetic correlations observed with educational attainment and body 
mass index. There remains hope that identifying these genetic com-
ponents of nonresponse behaviour may assist with modelling MNAR 
mechanisms in genotyped samples to reduce selection bias40.

The current study extends this work on nonresponse in bioreposi-
tories to evaluate item response bias in the UKB, providing insight on 
its additional contribution to nonrandom sampling beyond study-level 
influences on selection and participation at baseline and unit-level 
nonresponse at follow-up. We first explore the phenotypic structure 

of the nonresponse options provided by the UK Biobank in the initial 
cohort assessment, and we estimate latent factors for a person’s general 
propensity to respond to questionnaires with ‘Prefer not to answer’ 
(PNA) or ‘I don’t know’ (IDK). We then perform GWAS of these two fac-
tors, identifying significantly associated loci and modelling genetic 
correlations with other heritable traits. We validate these genetic 
findings through out-of-sample polygenic prediction of non-response 
behaviour, and we demonstrate that by modelling the missingness 
mechanism using auxiliary variables in Heckman correction we can 
reduce bias from nonresponse that does not depend directly on the 
missing value. Throughout this investigation, we avoid any analysis 
that would violate any participant’s stated desire to avoid answering a 
question (Box 1). We anticipate that these findings will provide insight 
into genetic variants associated with cognitive processes involved in 
item nonresponse and also provide a basis for evaluating the impact of 
non-response bias on GWAS of other traits and disorders.

Results
Distribution of item nonresponse across questions
To investigate item non-response behaviour, we considered two distinct 
answer choices from the UK Biobank touchscreen questionnaire: ‘Prefer 
not to answer’ and ‘I don’t know’ (PNA and IDK, respectively). The PNA 
option was available for all 109 analysed questions with non-response 
options, of which 83 questions allowed the IDK option, administered 
to the study population of 360,628 unrelated participants of European 
genetic ancestry with available genetic data. Participants selected PNA 
less frequently (8.82% at least once) than IDK (67.02% at least once), 
possibly reflecting the effects of the IDK option being presented first 
among the response options or effects of social desirability bias or 
satisficing to avoid attributing a nonresponse to personal preference41 
(Table 1 and Supplementary Fig. 1). For each question, on average, 0.16% 
of participants chose PNA and 2.17% chose IDK (Supplementary Tables 
1 and 2). Importantly, individuals could only select one non-response 
answer per question, so a response of IDK necessarily precluded a 
response of PNA and vice versa.

The demographic trends of individuals with at least one non-
response were broadly consistent with previous non-response litera-
ture18 (Table 1). Females answered PNA more often than males (9.4% 
females vs 8.2% males, P < 5 × 10−5), while males were more likely to 
answer IDK than females (66.0% females vs 68.3% males, P < 5 × 10−5). 
Nonresponders had markedly lower educational attainment (18.73% of 
nonresponders had college or university degrees vs 33.45% for respond-
ers for PNA; 29.41% of nonresponders had college or university degrees 
vs 37.75% for responders for IDK).

The items with the highest rates of nonresponse were consistent 
with differential use of the two nonresponse options. PNA was the 
more common response among questions capturing potential illegal 
behaviour or social stigma (for example, ‘How often do you drive faster 
than the speed limit on the motorway?’ or ‘Does your partner or a close 
relative or friend complain about your snoring?’) (Supplementary 
Fig. 2a). By comparison, participants selected IDK more frequently in 
questions about their distant past such as ‘Were you breastfed when 
you were a baby?’ or ‘During your childhood, how many times did you 
suffer painful sunburn?’, consistent with a higher difficulty of remem-
bering those items (Supplementary Fig. 2b). We hypothesized that the 
frequency of PNA or IDK answers might also increase as a function of 
the order in which the questions were asked because of fatigue expe-
rienced by the participant as time spent taking a survey increases, but 
negative binomial regression found no evidence of a positive trend for 
IDK or PNA (Supplementary Fig. 2).

Correlation patterns of item nonresponse and factor analyses
To measure the degree to which item nonresponse behaviour is shared 
across survey questions, we began by inspecting phenotypic (tetra-
choric) correlations (Fig. 2). PNA answers showed an overall higher 
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correlation than IDK (mean r2 = 0.66 (interquartile range (IQR) = 0.17) 
for PNA and mean r2 = 0.28 (IQR = 0.13) for IDK), indicating that indi-
viduals who responded to questions with PNA tended to do so more 
consistently across questions than individuals who responded to  
questions with IDK. Indeed, we identified a small number of individuals 
who responded to all survey questions with PNA (N = 11).

Item non-response behaviour was also more similar among survey  
questions from similar phenotype domains. In other words, item non- 
response behaviour was not independent of answering patterns across 
questions. For example, the average correlation of PNA answers among 
questions within the food intake and the mental health domains (mean 
r2 = 0.85 (IQR = 0.08) and mean r2 = 0.76 (IQR = 0.12), respectively) was 
higher than the correlations between food intake and mental health 
questions (mean r2 = 0.14 (IQR = 0.05)).

On the basis of the observed structure across survey domains, 
we next estimated latent (unmeasured) factors for overall IDK and 
PNA item non-response behaviour, conditional on the correlated sub-
structure. To do so, for each response type, we first assessed the survey 
substructure by performing factor analysis (FA) with the full set of 
questions and examining cluster analyses of the residual correlations 
from a single-factor model (Supplementary Figs. 3 and 4, respectively). 
These residuals provided us with the magnitude of the correlation not 
explained by a single general factor model, allowing us to identify bifac-
tor FA model as an appropriate model for the survey substructure. The 
chosen bifactor FA models the observed correlation matrix for item 
nonresponse as a function of one general factor affecting nonresponse 
for all items and possibly two or more additional domain-specific 

factors affecting subsets of items identified by the model. Since this 
model may not fully address nested substructure within groups of 
items, we fit the bifactor FA model on a reduced set of survey questions 
pruned for high pairwise correlations observed in the residual cluster 
analysis of the single-factor model (Methods). From exploratory factor 
analysis, we selected a 5-factor solution for the pruned PNA responses 
and a 4-factor solution for the pruned IDK responses, both with oblique 
(‘biquartimin’) rotations, as our final models based on standard fit 
metrics (Supplementary Table 3).

The common general latent factor, representing the underlying 
general item non-response behaviour across questions, explained 
51.26% and 25.61% of the total variance for PNA and IDK, respectively, 
based on the selected models. Our approach also identified sub-
stantial variance in item non-response behaviour (11.63% and 11.20% 
for PNA and IDK, respectively) that was accounted for by additional 
domain-specific factors rather than a general factor (Fig. 3, for con-
firmatory factor analysis (CFA): Supplementary Figs. 5 and 6 for PNA 
and IDK, respectively). Two of these factors (influencing items we 
might consider as affecting ‘Health’ and ‘Psychiatric’ domains) par-
tially overlap between PNA and IDK. The domain-specific factor with 
items related to ‘Ethnicity’ was specific to PNA and was present when 
respondents did not answer questions about ethnic background and 
skin colour, with loadings of 0.69 and 0.51, respectively.

We focused the remainder of our analysis on the general factors 
for PNA and IDK since we expect these factors to capture broad predis-
position to nonresponse that should be more generalizable than the 
domain-specific factors and less specific to the set of items included 
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Fig. 1 | Directed acyclic graph (DAG) of potential influences linking 
nonresponse to the association between genetics (G) and target phenotypes 
(Y1 and Y2). Potential elements of nonresponse include overall item non-
response behaviour (I), item-specific nonresponse (I1 and I2) and survey or 
study-level nonparticipation or ascertainment (S). Boxes indicate sets of traits, 
with paths to/from a box indicating potential paths to one or more traits in 
the box. GWAS aims to discover direct (α) or indirect (δ×η) associations with 
genetics G on phenotypes Y conditional on covariates. Analyses of observed 

data implicitly condition on nonresponse (I,S) and thus may be biased if that 
conditioning affects the expected joint distribution of genetic data, covariates 
and phenotypes (for example, β ≠ 0, θ ≠ 0 or γ×δ or γ×η ≠ 0). Modelling the 
missingness mechanism, including use of mediators as auxiliary variables, can 
reduce bias from nonresponse that does not depend directly on the missing 
value (that is, paths other than θ). The current study demonstrates association 
of genetics with nonresponse (that is, β and δ×γ) and considers the prospect of 
modelling missingness in GWAS.
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in our analysis in UKB, while avoiding ethical concerns from more  
narrowly targeted inference (Box 1).

PNA and IDK predict response to follow-up questionnaires
To evaluate the relationship of non-response behaviour with other 
phenotypic and genetic measures, we estimated each individual’s latent 
factor scores for the general PNA and IDK factors from confirmatory 
analysis of the selected bifactor models (Supplementary Fig. 7). We 
hypothesized that the common latent factors for PNA and IDK should 
relate to future item-level non-response behaviours, as well as maybe 
capturing a broader non-participation tendency (that is, survey non-
response). Therefore, we evaluated whether the PNA and IDK latent 
factors were able to predict item-level nonresponse on a follow-up 
mental health questionnaire, as well as whether participants did or did 
not complete the online follow-up dietary questionnaires distributed 
by UKB.

Among individuals in our sample who completed the mental 
health follow-up questionnaire (N = 118,037), 25.3% responded IDK at 
least once and 10.1% responded PNA at least once across the 58 ques-
tions available for analysis. This is a substantially lower rate of ever 
responding IDK than the baseline (67%), probably reflecting the dif-
ferential content of the survey and the added opportunities for nonpar-
ticipation in the follow-up (for example, ascertainment33, survey-level 
nonresponse). PNA and IDK factor scores computed at baseline jointly 
predicted whether an individual selected a non-response option for 
at least one of the 58 questions included in the analysis (N = 36,517), 
beyond basic sample covariates (incremental pseudo-R2 = 0.056). 
Within this model, each non-response factor contributed significant 
variance (βPNA = 0.336 (s.e. = 0.02), P = 3.60 × 10−83; βIDK = 0.823 (s.e. = 
0.01), P < 1 × 10−308). These results were only minimally altered by the 
inclusion of college completion and self-reported health as additional 
covariates (incremental pseudo-R2 = 0.046, βPNA = 0.316 (s.e. = 0.02), 
βIDK = 0.800 (s.e. = 0.01)), indicating that our estimated non-response 
factors capture information about item nonresponse that is not fully 
explained by health and education as previously established corre-
lates of nonresponse26. The generalizability of baseline item-level 

non-response behaviour to robustly predict future item nonresponse, 
albeit with modest accuracy, suggests that item nonresponse is at least 
partially durable as an individual trait, consistent with potential genetic 
associations with this behaviour.

Table 1 | Baseline demographics of PNA and IDK nonresponders

Characteristic No PNA (N = 328,843) PNA (N = 31,785) No IDK (N = 118,928) IDK (N = 241,700)

Mean age (s.d.) - yr 56.64 (8.00) 58.55 (7.84) 55.49 (8.08) 57.46 (7.89)

Age group - no. (%)

≤51 yr 93,859 (28.54) 6,678 (21.01) 40,217 (33.82) 60,320 (24.96)

51 < yr ≤ 58 77,607 (23.60) 6,517 (20.50) 29,220 (24.57) 54,904 (22.72)

58 < yr ≤ 63 80,082 (24.35) 8,151 (25.64) 26,638 (22.40) 61,595 (25.48)

yr > 63 77,295 (23.51) 10,439 (32.84) 22,853 (19.22) 64,881 (26.84)

Female sex - no. (%) 175,701 (53.43) 18,166 (57.15) 66,000 (55.50) 127,867 (52.90)

Participants in UK 
Regions - no. (%)

East Midlands 23,476 (7.14) 2,419 (7.61) 8,336 (7.01) 17,559 (7.26)

London 21,953 (6.68) 2,139 (6.73) 8,340 (7.01) 15,752 (6.52)

North East 38,720 (11.77) 3,990 (12.55) 13,859 (11.65) 28,851 (11.94)

North West 50,212 (15.27) 5,276 (16.60) 17,009 (14.30) 38,479 (15.92)

Scotland 25,216 (7.67) 2,416 (7.60) 9,293 (7.81) 18,339 (7.59)

South East 30,905 (9.39) 2,603 (8.19) 11,762 (9.89) 21,746 (9.00)

South West 45,626 (13.87) 3,659 (11.51) 17,246 (14.50) 32,039 (13.26)

Wales 13,804 (4.20) 1,311 (4.12) 4,981 (4.19) 10,134 (4.19)

West Midlands 28,499 (8.67) 3,186 (10.02) 10,051 (8.45) 21,634 (8.95)

Yorkshire 50,432 (15.34) 4,786 (15.06) 18,051 (15.18) 37,167 (15.38)

College/University degree - no. (%) 110,011 (33.45) 5,924 (18.73) 44,890 (37.75) 71,075 (29.41)

Mean Townsend Deprivation Index (s.d.) −1.59 (2.92) −0.72 (3.34) −1.72 (2.83) −1.41 (3.02)

PNA and IDK columns refer to those participants who chose these options at least once throughout the questionnaire.
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The scale of possible correlations ranges from −1 to 1.
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To examine prediction of future survey-level response based on 
our baseline item-level non-response factors, we considered separately 
the completion of the follow-up online dietary questionnaire only in 
the first wave of the invitation (N = 69,735 completed versus N = 146,712 
not completed for PNA and IDK analyses, respectively) or in all the  
4 waves of the invitation (N = 19,097 completed versus N = 99,151 not 
completed for PNA and IDK analyses, respectively). We quantified the 
improved prediction after controlling for basic covariates, as well as 
education and self-rated health status since these have been shown 
to be proxies for survey non-response behaviours14,24. PNA and IDK 
factors slightly improved prediction of participation for all four waves 
of survey invitation, on top of education and self-rated health status, 
both when each factor was considered independently (incremental 
pseudo-R2 = 0.0027, P < 2 × 10−16 and incremental pseudo-R2 = 0.0012, 
P = 3 × 10−11 for PNA and IDK, respectively) and when the two factors 
were combined (incremental pseudo-R2 = 0.0034, P < 2 × 10−16). Com-
bining PNA and IDK resulted in a better prediction of not responding to 
all four waves of follow-up survey invitations compared with predicting 
just one wave (incremental pseudo-R2 = 0.0014, P < 2 × 10−16) (Supple-
mentary Table 4). In sum, the general factors for item nonresponse are 
associated with whether participants will continue to engage in future 
follow-up research, and our estimated scores for those factors are able 
to provide prediction beyond established proxies for nonresponse 
such as education and self-rated health status.

GWAS of item nonresponse
To assess potential genetic components of item non-response  
behaviour, we conducted a GWAS on the estimated factor scores for the 
general PNA and IDK behaviour across survey questions. We identified 
4 genome-wide significant (P < 5 × 10−8) loci for PNA and 35 loci for IDK 
(Fig. 4, and Supplementary Tables 5 and 6, respectively). Of these loci, 
2 were shared between PNA and IDK.

Variants within these loci have been previously associated  
with traits in the domains of health (for example, type 2 diabetes42), 
psychiatry (for example, schizophrenia43), personality (for example, 
neuroticism44), cognition (for example, intelligence45) and socioeco-
nomic status (for example, educational attainment46). The lead SNP of 
the top locus for IDK, rs9401593 in an intronic region of chromosome 
6, has been previously associated with socioeconomic status (SES) 
traits such as household income47 and years of education48, as well as 
with broader participation-related phenotypes such as providing valid 
information necessary for recontact and accepting an invitation to 
complete a mental health follow-up questionnaire33,38. Beyond the top 
locus, several additional IDK loci were also associated with participa-
tion phenotypes in previous studies (that is, providing valid recontact 
information38, completion of a mental health follow-up questionnaire33 
and sex-differential participation bias39). The top locus for PNA, a 
locus shared with IDK, maps to a highly pleiotropic missense SNP in 
SLC39A8 (p.Ala391Thr, rs13107325). Given the wide range of pheno-
types associated with this variant—from schizophrenia49 to Crohn’s 
disease50 to scoliosis51—it is perhaps unsurprising that this locus would 
be associated with both forms of non-response patterns in this study. 
Such overlap with GWAS of other traits may reflect some instances of 
shared aetiology, for example through the many traits associated with 
health and socioeconomic status, but may also be evidence of genetic 
variants associated with nonresponse leading to selection bias in some 
previous GWAS studies.

The general factors for PNA and IDK were both significantly heri-
table, with higher estimated SNP heritability for IDK (h2

g = 0.068, 
P = 3.46 × 10−95) than for PNA (h2

g = 0.021, P = 6.16 × 10−16). We also 
observed a significant heritability enrichment for central nervous 
system cell types (enrichment PPNA = 0.001, PIDK = 7.32 × 10−17)52, con-
sistent with the expectation that nonresponse relies on cognitive 
processes3. Within the brain52,53, both PNA and IDK were significantly 
associated with regions differentially expressed in the cerebellum 

(coefficient P = 0.003 for both PNA and IDK; Supplementary Table 7). 
Importantly, the SNP heritability for these factor scores also shows 
substantially stronger genetic signal than GWAS using a simple sum of 
the number of nonresponses over all survey items. In comparison, the 
SNP heritability of the simple sum score for PNA responses was lower 
and non-significant (h2

g = 0.002, P = 0.5). This is consistent with an 
expectation that the factor analysis provides improved power, reduc-
ing measurement error across items and clarifying the signal in the 
context of correlated residual structure.

Shared vs question-specific item non-response behaviour
One concern in our analysis is that the GWAS results for the item 
non-response phenotypes may be driven by questions with the highest 
number of PNA and IDK responses (Supplementary Fig. 2), rather than 
capturing an underlying behaviour shared across survey questions. This 
is a concern both because it affects the interpretation of the results and 
because it could expose undesired information about nonresponse to 
individual items (Box 1). To explore this concern, we performed a GWAS 
of IDK for the question with the largest number of IDK responses, which 
was ‘During your childhood, how many times did you suffer painful 
sunburn?’ We observed a moderate genetic correlation with the IDK 
factor (rg = 0.40(0.03), P = 2.13 × 10−34) and we identified 4 genome-wide 
significant loci for this GWAS. None of these 4 loci were genome-wide 
significant in the GWAS of either the PNA or IDK factors. Instead, the 
top genetic results appear to correlate with the number of sunburn 
occasions. For example, the IDK-increasing allele for rs35407 allele, a 
3′ UTR variant in SLC45A2, is associated with increased risk for mela-
noma54 and cutaneous squamous cell carcinoma55. We hypothesize that 
this result reflects that it is harder to recall the number of childhood 
sunburns when that number is large compared with having few or no 
sunburns, thus increased predisposition to sunburns will increase 
both IDK responses and skin cancer risk. This result suggests that our 
factor score GWAS successfully highlights shared components affect-
ing item nonresponse generally (rg > 0) while avoiding capturing more 
question-specific non-response behaviour that is less related to overall 
nonresponse (for example, P = 0.326 for rs35407).

Genetic correlations with heritable traits
To better understand which traits and behaviours share genetic over-
lap with item non-response behaviour, we calculated genetic correla-
tions between the PNA and IDK factors with 654 additional heritable 
phenotypes, 615 of which were internal to UKB and 39 were obtained 
from previously published GWAS, using Linkage Disequilibrium Score 
Regression (LDSC) (Supplementary Table 8). Note that 109 out of 654 
(16.67%) traits tested were included in the set of questions used to derive 
the item non-response phenotypes.

Consistent with our phenotypic findings reported above, the PNA 
and IDK factors are strongly genetically correlated with other survey 
participation in UKB. Specifically, we observed a strong genetic cor-
relation between our factors and agreeing to participate in the online 
follow-up diet questionnaire (PNA rg = −0.47 (0.05), P = 6.75 × 10−19; 
IDK rg = −0.29 (0.04), P = 1.00 × 10−15), indicating that associations with 
item-level nonresponse partially overlap with those of response to 
follow-up. The PNA and IDK factors also show high genetic correlation 
with opting to skip the sexual history section in the UKB survey (PNA 
rg = 0.58(0.04), P = 1.61 × 10−46; IDK rg = 0.50(0.03), P = 1.05 × 10−52). 
Importantly neither of these questions were used for deriving PNA and 
IDK factors, providing additional evidence that the derived phenotypes 
are indeed capturing consistent item non-response behaviour in the 
UK Biobank.

More broadly, we observed strong genetic correlations 
between the PNA and IDK factors and a wide range of phenotypes 
including health indicators (for example, rg_PNA = 0.51(0.03) and  
rg_IDK = 0.49(0.02) with overall health rating), psychiatric disorders (for 
example, rg_PNA = 0.32(0.05) and rg_IDK = 0.30(0.03) with attention-deficit 
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General
factor Ethnicity Socioeconomic

status Psychiatric Health

0 0.35 0.70 0 0.35 0.70 0 0.35 0.70 0 0.35 0.70 0 0.35 0.70

Illness/injury, last 2 years

Use of UV protection
Adopted as a child

Disability allowance
Medication for pain relief

Taking prescriptions
Fractured/broken bones

Cancer diagnosed by MD
Diabetes diagnosed by MD

Bowel cancer screening
Weight change in last year

Overall health rating
Able to confide

Seen a psychiatrist
Ease of skin tanning

Skin color
Face age

Age 10 height/body size
Breastfed as a baby

Time at current address
Hair colour
Dairy type

Snoring
Chronotype

Variation in diet
Narcolepsy

Sunlamp use
Speeding on motorway

Cooking/heating system
Ethnic background
Medical diagnoses

Wheeze in the chest
Long−term illness/infirmity

Hearing diiculty/problems
Chest pain

Getting up in the morning
Sunburn as a child
Mobile phone use

Frequency of visits
Fish/meat intake

Physical activities
Vegetable intake

Cereal/coee/tea intake
Time driving/using PC

Time watching TV/sleeping
Time outdoors

Frequency tired/lethargic
Unenthusiasm/tenseness

Risk taking
Mood swings

Worry after embarrassment
Irritability

Loneliness and isolation
Sensitivity feelings

Nervous/tense feelings
Anxious feelings

Guilty feelings

Sunlamp use
Sunburn as child, face age

Major dietary changes
No processed food

Food/alcohol intake
Vegetable intake

Snoring
Chronotype

Sleep quality
Mobile phone use

Speeding on motorway
Time driving/using PC

Outdoors/TV time
Social activities
Physical activity
Smoking status

Disability allowance
Falls in the last year

Long−term illness/infirmity
Eye problems

Dietary supplements
Recent pain

Mouth/teeth problems
Overall health status
Heart/lung problems

Able to confide
Seen a psychiatrist

Neuroticism
Unenthusiasm/tenseness

Frequency of visits
Qualifications

Current accommodation
Employment status

Adopted/handedness/hair
Skin colour

Ethnic background

Loading

a

General
factor Psychiatric Lifestyle Health

0 0.35 0.70 0 0.35 0.70 0 0.35 0.70 0 0.35 0.70

Loading

b

Fig. 3 | Bar graph of factor loadings of the questions in the PNA and IDK 
confirmatory factor analyses. For each item in the analysis: a, The fitted 
loadings of PNA responses on each latent factor in the CFA with the selected 

bifactor model for PNA. b, The fitted loadings in CFA of the bifactor model for 
IDK. Error bars indicate ±1 s.e. Loadings without bars were constrained to 0 in the 
corresponding CFA.
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hyperactivity disorder), personality measures (for example,  
rg_PNA = 0.34(0.03) and rg_IDK = 0.24(0.02) with neuroticism score) and 
cognition (for example, rg_PNA = −0.48(0.03) and rg_IDK = −0.27(0.03)) 
with fluid intelligence score (Fig. 5 and Supplementary Table 8). As 
with the pleiotropic top hits, this overlap with other GWAS can be 
expected to reflect a mix of truly shared genetic risk factors and inflated 
similarity to item nonresponse due to selection bias. Among the top 
genetic correlations for both non-response factors are traditional 
indicators of SES such as educational attainment (rg_PNA = −0.51(0.03) 
and rg_IDK = −0.38(0.02)) and total household income before tax  
(rg_PNA = −0.57(0.04) and rg_IDK = −0.46(0.02)). These results are consis-
tent with previous work33 suggesting that non-response behaviours 
are strongly linked with SES.

Given the strong previous evidence for the association of non-
response with SES, we next evaluated the degree to which the over-
all pattern of genetic correlations could be explained by SES using 
genomic structural equation modelling56,57 (genomic SEM). First, we 
estimated that total household income47, region-based social depriva-
tion58 and education46—items traditionally considered major indicators 
of SES47,59—jointly explain 34% of the SNP heritability in PNA (standard-
ized residual variance = 0.664(0.0815)) and 22% of the heritability in 
IDK (standardized residual variance = 0.782(0.0392)) (Supplementary 
Fig. 8a). We then estimated genetic correlations between PNA, IDK and 
the remaining 654 heritable phenotypes with the same control for 
income, local social deprivation and educational attainment GWAS 
with genomic SEM (Supplementary Fig. 8b). Overall, we observed a 
decrease in the number of traits significantly correlated with PNA and 
IDK factors after performing this analysis, suggesting that many of the 
observed genetic correlations for PNA and IDK may be at least partially 
explained by SES (Supplementary Fig. 9 and Table 9). On the other hand, 
both the PNA and IDK factors remained at least nominally associated 
with poor self-reported overall health (rg = 0.27, P = 2.46 × 10−4 and 
rg = 0.30, P = 4.75 × 10−13, respectively). The IDK factor in particular 
remained significantly associated with a number of health-related 
items, such as ‘Number of self-reported non-cancer illnesses’ (rg = 0.23, 
P = 2.93 × 10−12) and ‘Long-standing illness, disability or infirmity’ 
(rg = 0.22, P = 3.00 × 10−9), while PNA retained specific associations to 
psychiatric items such as schizophrenia (rg = 0.18, P = 4.92 × 10−5) and 
feeling ‘tense’ or ‘high-strung’ (rg = 0.28, P = 4.87 × 10−8). These results 
suggest that genetic association of nonresponse with poor overall 
physical and mental health is not fully accounted for by the genetics of 
socioeconomic factors. Overall, these results highlight traits that may 

be genetically associated with nonresponse and are at highest risk of 
being affected by bias from nonrandom missingness, beyond what we 
can learn from using phenotypic information alone.

Independent associations with PNA and IDK
In addition to the genetic correlation of the PNA and IDK factors with 
other traits, we observe substantial genetic correlation between these 
two factors (rg = 0.73(0.03), P = 3.92 × 10−125), reflecting partial but not 
complete (rg < 1, P = 1.20 × 10−19) genetic overlap between these two fac-
tors. Notably, genetic correlation facilitates this comparison between 
forms of item nonresponse by using genetics to overcome the limitation 
that UK Biobank participants could only respond with one of PNA or 
IDK on a given item, not both. The substantial genetic correlation may 
in part reflect shared aetiology or overlapping use of the nonresponse 
options beyond their literal meaning, such as reporting IDK to avoid 
invoking personal preference41 or reporting PNA when an item’s answer 
is not immediately obvious.

To help understand which genetic components are unique to 
PNA and IDK, we considered traits whose correlation with the two 
non-response types differed (Supplementary Fig. 8c). Of the 654 
additional traits tested, 38 had significantly different genetic correla-
tion estimates for PNA and IDK (Supplementary Table 8 and Fig. 5c). 
Among these 38 phenotypes, PNA had stronger genetic correlations 
with psychiatric (for example, schizophrenia60 rg_PNA = 0.21(0.03) vs 
rg_IDK = −0.006(0.02), Pdiff = 3.72 × 10−12), cognitive (for example, general 
cognitive performance45 rg_PNA = −0.46(0.03) vs rg_IDK = −0.27(0.02), 
Pdiff = 3.33 × 10−12) and sociodemographic variables (for example, 
educational attainment46 rg_PNA = −0.51(0.03) vs rg_IDK = −0.38(0.02), 
Pdiff = 2.05 × 10−8). IDK showed more substantial correlation with 
reported activities (for example, using UV protection rg_IDK = −0.12(0.03) 
vs rg_PNA = 0.05(0.02), Pdiff = 1.41 × 10−6) and nutrition (salad intake  
rg_IDK = −0.21(0.03) vs rg_PNA = −0.02(0.04), Pdiff = 5.83 × 10−7).

Given the strong genetic correlation between IDK and PNA, 
these differences create the possibility that the genetic correlation 
between one of the non-response types and an outside trait may be 
fully explained by correlations with the other non-response type. 
To test this possibility, we estimated the conditional genetic cor-
relation between PNA and other heritable phenotypes controlling  
for the genetic associations of IDK and vice versa for correlations  
with IDK conditional on PNA, using genomic SEM57 (Supplementary 
Fig. 8d). After accounting for the shared genetic associations between 
PNA and IDK, much of the genetic correlation observed between IDK 
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and SES-related traits was reduced (Supplementary Fig. 10). The 
‘PNA-adjusted’ IDK factor was no longer even nominally associated 
with educational attainment (rg = −0.01, P = 0.830) and total household 
income (rg = −0.10, P = 0.136), while the association with self-rated 
general health (rg = 0.20, P = 7.33 × 10−4) was attenuated. Conversely, 
‘IDK-adjusted’ PNA maintained significant associations with edu-
cational attainment (rg = −0.38, P = 3.45 × 10−19), income (rg = −0.37, 
P = 2.11 × 10−11) and general health (rg = 0.26, P = 1.28 × 10−7). Corre-
sponding analyses of conditional genetic correlations for psychiatric 
disorders yielded a cross-over effect, with ‘PNA-adjusted’ IDK cor-
relations with schizophrenia (rg = −0.23, P = 3.58 × 10−7) and bipolar 
disorder (rg = −0.21, P = 4.99 × 10−8) moving towards the opposite sign 
of the observed genetic correlations with PNA. Taken together, these 
results highlight that although PNA and IDK have substantial genetic 
overlap, they remain partially distinct. The genetic association of 
IDK with education and other SES-related variables may be largely 
explained by genetic factors shared with PNA, while the association of 
PNA with psychiatric phenotypes appears to involve more genetically 
distinct elements.

Polygenic score analysis of the National Longitudinal Study of 
Adolescent to Adult Health (Add Health) data
To test the generalizability of our genetic findings, we constructed 
polygenic scores for the PNA and IDK factors in Wave 4 of the Add Health 
data. Item nonresponse in Add Health was identified on the basis of  
163 questions with a possible response of ‘I don’t know’ and 217 ques-
tions with a possible response of ‘refused to answer’ (Supplementary 
Table 10). The IDK and PNA polygenic scores showed significant asso-
ciation with whether individuals gave a corresponding IDK or PNA 
response to at least one question. Specifically, using logistic regression 
models, we estimated that a one-standard-deviation increase in the 
PNA polygenic score is associated with a 2% increase in the probability 
of an individual ever answering with ‘refused to answer’ in the Wave 4 
Add Health data (incremental pseudo-R2 = 0.1%). We also estimated 
that a one-standard-deviation increase in the IDK polygenic score  
is associated with a 2% increase in the probability of an individual  
ever answering with ‘I don’t know’ in the Wave 4 Add Health data  
(incremental pseudo-R2 = 0.5%). Taken together, these results suggest 

that our findings in the UK Biobank replicate in an external US-based 
study of younger individuals.

We also considered whether better polygenic prediction can  
currently be achieved in Add Health using a recently developed poly-
genic score for educational attainment (continuous years of completed 
education)46, theorizing that a score for a trait highly genetically cor-
related with nonresponse derived from a much larger sample size 
(N = 1,131,881) could improve prediction of our two non-response 
outcomes (Supplementary Table 11). Better prediction of nonresponse 
from a different polygenic score could be of interest for improving the 
power of some methods for correcting selection bias. We found that 
the educational attainment polygenic score was significantly associ-
ated with a 1% increase in the probability of an individual ever answer-
ing ‘refused to answer’ in the Wave 4 Add Health data (incremental  
pseudo-R2 = 0.08%) and was not significantly associated with the  
‘I don’t know’ outcome, suggesting that polygenic scores based on the 
GWAS of IDK and PNA should currently be preferred for prediction of 
overall nonresponse.

Heckman correction of GWAS results
Finally, we evaluate the potential impact of adjustment for missing-
ness from nonresponse in GWAS using Heckman correction61. Briefly,  
the Heckman two-step estimator first builds a selection model for  
each individual’s likelihood of missingness and then uses this predic-
tion of missingness as a covariate to adjust the regression model of  
interest (for example, GWAS; Methods). As a proof of concept, 
we apply this approach to GWAS of FI measured at follow-up in 
UKB (N = 83,677), since it has substantial item- and survey-level  
missingness and strong genetic correlations with both PNA 
(rg = −0.39(0.04)) and IDK (rg = -0.26(0.03)). We find that the selec-
tion model modestly predicts missingness in FI (pseudo-R2 = 0.045) 
with significant effects of the factor scores for PNA (P = 1.46 × 10−69) and  
IDK (P = 1.93 × 10−43). The predicted missingness is then strongly 
associated with FI in the response model (Heckman λ coeffi-
cient = 2.886(0.042), P < 1 × 10−308), suggesting that the observed miss-
ingness is informative and correction may reduce bias.

In this example application, we find substantial differences 
between GWAS results for FI with and without using Heckman 
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correction. Of 11 loci significantly associated with FI in the uncor-
rected GWAS, only 3 of the lead SNPs remain genome-wide signifi-
cant after Heckman correction (Supplementary Table 12), with effect 
sizes of these lead SNPs being 15% smaller on average (Deming regres-
sion slope = 0.851(0.023), P = 8.86 × 10−11 for test of slope = 1; Fig. 6). 
Genome-wide, Heckman correction yields a small but significant dif-
ference in the overall pattern of genetic results (rg = 0.967(0.002), 
P = 2.14 × 10−39 for test of rg = 1). Encouragingly, the Heckman correc-
tion reduces genetic correlation with PNA (rg = −0.28(0.04)) and IDK 
(rg = −0.11(0.03)), with the remaining correlation possibly reflecting 
incomplete correction for nonresponse or true underlying correlation 
with non-response behaviour. More substantively, meaningful differ-
ences in genetic correlation with GWAS of other traits are observed, 
such as a much weaker correlation with coronary artery disease after 
Heckman correction (uncorrected GWAS rg = −0.14(0.03), corrected 
GWAS rg = −0.04(0.03); Supplementary Table 13). However, we strongly 
caution against adopting these proof-of-concept results as definitive 
for the genetics of FI, since they are sensitive to the specification of the 
selection model (Supplementary Information and Table 14) and addi-
tional modelling is probably appropriate to fully capture the relevant 
missingness mechanisms62,63. Taken together, these results broadly 
demonstrate the potential impact of correcting for nonresponse on 
substantive GWAS findings.

Discussion
Nonresponse can impact the generalizability and reliability of 
survey-based research64,65. We show that overall item-level nonresponse 
is not random in the UK Biobank, with a significant heritable compo-
nent. These findings on item-level nonresponse provide insight on more 
granular non-response behaviour to extend recent work characteri-
zing the genetics of baseline study participation66 and participation 

at follow-up33,38. Given the critical importance of respecting the  
ethical boundaries presented by the individual’s stated decision not  
to respond to a given item (Box 1), the current analysis focuses on  
characterizing overall item non-response behaviour, avoiding infer-
ence about item-specific reasons for nonresponse. We demonstrate 
that accounting for the selection bias induced by the overall likelihood 
of nonparticipation has the potential to substantially impact other 
GWAS results.

The current results for IDK and PNA suggest substantial simi-
larity in the use of these two forms of nonresponse, but with some 
response-specific features. Phenotypically, both IDK and PNA exhibit 
substantial correlation across questions, both broadly and within 
clusters that reflect the survey’s content and structure. Strong genetic 
correlation is observed between the GWAS of estimated general factors  
for PNA and IDK across items, but the correlation is significantly less 
than 1 (rg = 0.73(0.03)). Notably genetics enables this comparison 
despite the forced choice between responding either IDK or PNA to 
any given item in UKB. Among genome-wide significant loci, two of 
the four loci associated with PNA are also associated with IDK, and 
three of IDK-associated loci have recently been associated with at least 
one aspect of study participation (that is, providing valid recontact 
information33, participation in follow-up surveys38 and sex-differential 
participation bias39). These results are consistent with the idea that item 
nonresponse, unit nonresponse and study nonparticipation may be 
associated with a shared spectrum of factors, and this shared spectrum 
may have a genetic component, with remaining residual genetic factors 
more specific to particular forms of nonresponse.

Given that previous literature suggests a strong relationship 
of nonresponse with socioeconomic status and health26–28,38,39, we 
carefully characterize the behaviour of our phenotypic and genetic 
findings with respect to these variables. First, we recapitulate the  
previously reported association with these variables, showing that  
both IDK and PNA also strongly genetically correlate with education 
and self-reported health. These results are consistent with recent 
findings for polygenic associations with attrition37 and study participa-
tion66. Second, conditional genetic correlation analysis suggests that 
the genetic correlation of IDK with socioeconomic status (that is, edu-
cational attainment and household income) can be largely explained 
by its correlation with PNA. This may indicate that the genetic overlap 
between IDK and PNA includes the genetic correlates of SES, with  
additional SES-related effects potentially unique to PNA responses. 
Third, IDK and PNA continue to show significant genetic and  
phenotypic associations conditional on SES and health variables. This is 
important for two reasons: (1) it suggests that non-response behaviour 
is not fully mediated through, for example education, and thus associa-
tions beyond these variables need to be identified to fully characterize 
nonresponse and (2) the current estimates for IDK and PNA behaviour in 
this paper are already sufficient to improve prediction of nonresponse 
both phenotypically (that is, with estimated factor scores in UKB) and 
genetically (that is, with polygenic scores), including generalization 
of the polygenic score to other samples. As discussed below, accurate 
modelling of non-response behaviour is likely to be a key component 
of successfully correcting GWAS and other analysis for selection bias.

Observed genetic correlation of the nonresponse factors with 
other traits may provide additional insight into potentially unique 
genetic components of IDK and PNA. For instance, PNA appears to 
have a unique genetic correlation with psychiatric phenotypes (for 
example, schizophrenia) not observed in IDK, while IDK shows some 
signs of unique correlation with health-related diet and lifestyle behav-
iours. If we presuppose that these correlations reflect true shared 
genetic variants associated with nonresponse (for example, path α × θ 
in Fig. 1), then these results may for instance suggest that PNA partially 
reflects nonresponse more related to anxiety over the question (for 
example, ‘tense’/‘high-strung’ (UKB code 1990) rg,IDK = 0.183(0.025), 
rg,PNA = 0.339(0.041)), while some IDK responses may reflect strategic 
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Fig. 6 | GWAS results for lead SNPs associated with FI with and without 
Heckman correction for missingness in N = 83,677 UKB participants in a 
follow-up FI survey. Deming regression of the observed betas in the two GWAS 
(solid blue line) indicates that betas from the Heckman corrected GWAS are, 
on average, attenuated downward from being equal to the uncorrected GWAS 
(dashed red line). Grey error bars reflect ±1 s.e. on the estimated betas for each 
SNP. Lead SNPs for GWAS of FI identified using FUMA88. Deming regression 
performed with the R package ‘deming’101.
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avoidance of disclosing some health-related behaviours (for exam-
ple, salad/vegetable intake (UKB code 1299) rg,IDK = −0.213(0.031), 
rg,PNA = −0.021(0,045)). The latter hypothesis would be consistent with 
the possibility that the higher phenotypic rate of IDK responses is 
associated with social desirability bias or satisficing41. On the other 
hand, presupposing that the observed genetic correlation reflects 
collider bias (for example, paths θ and β > 0 in Fig. 1) would invert 
these interpretations. In either case, these correlations are expected to 
reflect the combination of effects of selection bias and shared genetic 
associations with phenotypic drivers of nonresponse. While we were 
unable to fully explore this question in this study, future work might 
focus on additionally triangulating these comparisons with GWAS 
of other elements of participation and nonresponse, and how they 
generalize to nonparticipation in other cohorts to better distinguish 
between evidence of uncorrected selection bias in existing GWAS and 
true associations with nonresponse.

Finally, this investigation of the genetics of nonresponse in UKB 
is motivated primarily by the desire to understand and address selec-
tion bias in other GWAS. The current results demonstrate that simple  
correction (that is, the two-step Heckman estimator) of GWAS using the 
current estimates of general IDK and PNA behaviour has the potential to 
substantially impact observed genetic results. Our Heckman correction 
however has a key limitation: the effectiveness of this correction will 
depend on having the ability to correctly specify an accurate model for 
the missing data mechanisms affecting the sample67. The same is prob-
ably true for the many other possible correction methods that have 
been proposed (for example, full information maximum likelihood68, 
imputation40, sample weighting14,69, instrumental variables62 or match-
ing to population demographics18). Identifying genetic associations 
with missingness, whether from item nonresponse or other selection 
effects, has the advantage of aiding this modelling of missingness solely 
from genetic data without advanced knowledge of what phenotypic 
measures explain the missingness.

Where possible, however, these genetic elements should be sup-
plemented by considering phenotypic correlates of nonresponse 
within the sample70 and/or comparison to expected population 
descriptive statistics from national registries16 or by linkage to indi-
vidual data71, since those analyses will still provide valuable information 
about participation and nonresponse, and highlight what individuals 
may be underrepresented in the study or particular analysis. While 
we were limited in our correction exercise here, we anticipate that 
ideal correction of selection bias in GWAS will require incorporating 
the associations with item nonresponse identified here with findings 
on unit nonresponse33,38, study participation66 and other ascertain-
ment effects16,39, as well as other confounds such as stratification and  
longitudinal change or misreporting72.

In conclusion, we use phenotypic and genetic data to provide an 
investigation of overall item-level nonresponse across items in the  
UK Biobank. These results should be considered when analysing  
the UK Biobank, among other biobank-scale survey efforts, and  
when developing novel methods aimed at correcting and leverag-
ing nonresponse in genetic analyses. We also encourage readers to  
carefully consider the ethical considerations and interpretations of  
our work, which are highlighted in Box 1, Methods and the Supple-
mentary Information.

Methods
Ethical approval
Use of the UKB data was approved under application 31063. Because of 
the sensitive nature of this study, we also explicitly sought permission 
for the specific scope of this paper (that is, ‘to also study response rates 
and response characteristics (for example, how often a response is left 
unanswered) and to examine whether there are any genetic factors that 
correlate with these response phenotypes’), which the UK Biobank 
granted under the same application.

Analysis of the UKB data was reviewed by the Partners HealthCare 
IRB (Partners Human Research), which determined in expedited review 
that the project met the US federal criteria definition of ‘not human 
subjects research’ (Protocol no. 2019P000883 titled ‘Behavioural 
Genetics Study of Responsiveness from UKBB Questionnaires’).

Analysis of the Add Health data was reviewed by the Office of 
Research Subject Protection (OSRP) at the Broad Institute of MIT and 
Harvard, which determined that the project met US federal criteria 
for exemption from IRB review (Project no. 0001 titled ‘Genetic and 
environmental factors influencing complex social behaviour’).

UKB and inclusion criteria
The UKB is a health resource which has the purpose of improving 
the prevention, diagnosis and treatment of human disease73. It con-
sists of a prospective cohort of 502,620 men and women aged 40–69 
recruited in the years 2006–2010 throughout the United Kingdom. 
The touchscreen questionnaire is a collection of self-reported infor-
mation regarding general health, dietary habits, physical activity, 
psychological and cognitive states, sociodemographic factors and so 
on. We began with 361,194 unrelated individuals of European genetic 
ancestry who passed quality control measures (https://www.nealelab.
is/uk-biobank/ukbround2announcement). We excluded individuals 
who were enrolled only in the UKB pilot study (N = 335). Participants 
who decided to terminate the touchscreen questionnaire were asked 
to select PNA to all subsequent questions and they were kept in our 
analyses. Conversely, individuals who withdrew from the study without 
filling out the touchscreen survey were excluded from the analysis 
(N = 231). As a result, a total of N = 360,628 participants took part in the 
survey and answered every question of interest in the study; this is the 
final analytic sample size.

UKB item non-response definitions
We considered only the touchscreen questionnaire phenotypes with 
the response options ‘Prefer not to answer’ (PNA, response code -3)  
or ‘I don’t know’ (IDK, response code -1). Items were included in our 
analyses only if valid responses existed for all participants in our  
sample (N questions = 109 and 83 for PNA and IDK, respectively). This 
included one instance of a derived item that retained nonresponse 
information (UKB FieldID 20116). Items excluded from our analyses  
thus included those with incomplete data due to, for example, 
being asked only to a subset of participants, or being added to the  
touchscreen questionnaire later in the recruitment process.

National Longitudinal Study of Adolescent to Adult Health 
(Add Health) cohort
Add Health originated as an in-school survey of a nationally representa-
tive sample of US adolescents enroled in grades 7 through 12 during 
the 1994–1995 school year74. Respondents were born between 1974 
and 1983, and a subset of the original Add Health respondents has been  
followed up with in-home interviews, which allows researchers to  
assess correlates of outcomes in the transition to early adulthood.  
In Add Health, the mean birth year of respondents is 1979 (s.d. = 1.8) and 
the mean age at the time of assessment (Wave 4) is 29.0 years (s.d. = 1.8). 
All phenotypes included in this study came from Wave 4, the latest wave 
of Add Health data collection (2007–2009).

Phenotype definitions in Add Health
To investigate item non-response bias phenotypes in Add Health, we 
considered two possible answer choices across hundreds of questions 
from the Wave 4 Add Health in-home interview questionnaire: ‘refused 
to answer’ and ‘I don’t know’. The final study population included 3,414 
unrelated participants of European genetic ancestry with available genetic 
data. The ‘refused to answer’ option was available for 217 questions, while 
only 163 questions allowed the ‘I don’t know’ option. Our final outcomes 
were whether respondents ever answered at least once with ‘refused 
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to answer’ or ‘I don’t know’, respectively. We also predicted the two 
non-response outcomes in Add Health using a recently developed poly-
genic score for educational attainment46 (completed years of education).

Factor model construction
Single-factor model. Exploratory factor analysis (EFA) with a single 
latent factor was performed separately on tetrachoric correlation 
matrices between each of the dichotomized PNA and IDK responses 
and was implemented using the fa function of the psych package in 
R software (v.3.4.4) with the oblique rotation ‘biquartimin’ and the 
‘ordinary least squares’ extraction method.

Residuals from the initial EFA revealed a correlation structure 
indicative of further clustering unaccounted for by the general fac-
tor, with both broad correlations across item domains as well as some 
highly specific pairwise structure at the item level. Given that we were 
interested in modelling overall non-response behaviour, not behaviour 
specific to or driven by single item groupings or domains, we sought 
to reduce this additional structure first by pruning items with highly 
correlated non-response patterns and then by fitting a bifactor model. 
This initial pruning step was necessary to flatten the nested correlation 
structure observed within domains to facilitate fitting of the more inter-
pretable bifactor model. To implement this pruning, we performed 
agglomerative clustering of the residuals from the single-factor EFA 
and inspected the resulting dendrogram (Supplementary Figs. 3 and 4). 
We chose to cut the dendrograms at height 0.500 and 0.775 in PNA and 
IDK, respectively, to minimize the number of branches (that is, clusters 
of variables grouped together) while also maintaining homogeneity 
within these branches (for example, questions belonging to the same 
field). This led to 37 and 56 branches in PNA and IDK, respectively. In the 
IDK analysis, summing the IDK for each participant across questions 
inside each branch was sufficient to reduce the substructure of the 
residuals. For PNA, we observed that in the four largest branches (that 
is, person-specific information, food intake, overall health status and 
mental health), the distribution of PNA per participant was J-shaped, 
with a large number of individuals with zero PNA responses in the 
branch, a continuously decreasing number of participants who chose 
PNA in 1 or more question and a small peak of individuals who chose 
PNA in every question in the branch. For this reason, we scored each 
participant as follows: ‘0’ if a participant answered all questions (that is, 
never chose PNA), ‘1’ if a participant chose only PNA only once, ‘3’ if a par-
ticipant preferred not to answer all the items that fell in the same branch 
and ‘2’ for participants who did not fit into the previous three catego-
ries. These scores were input as ordinal values for bifactor analysis,  
allowing for minimal item non-response information loss while limiting 
the influence of individuals responding PNA to all questions.

Bifactor model. The bifactor model is a factor analysis model that 
assumes the observed covariance between items (approximately) 
reflects the contributions on one shared factor influencing all items and 
two or more specific factors influencing subsets of items75,76. This model 
was chosen to reflect the apparent structure of correlations among the 
observed item nonresponse with a general factor for overall response 
behaviour (IDK or PNA) and specific factors influencing sets of items 
with related content. We chose to focus on the results for this general 
factor since we expect it to be more generalizable to nonresponse on a 
broad range of items in UKB and other studies, and to be less influenced 
by the specific set of questions included in our analyses.

To run bifactor analysis on the pruned set of UKB questions, 
we first split the dataset between 80% of participants (N = 288,502) 
for EFA77 and 20% of participants (N = 72,126) for CFA. For EFA, we 
used the fa function, with ‘biquartimin’ and ‘OLS’ as the rotation and  
factoring methods, respectively. We implemented CFA using the cfa  
function from the lavaan package78 in R software (v.3.4.4) and also  
using the weighted least square mean and variance adjusted estimator. 
We selected the initial factor structure from the EFA, first fitting models 

with different numbers of domain factors (Supplementary Table 3), 
then confirmed the fit of the model in the hold-out sample using the 
root mean square error of approximation and the Tucker–Lewis Index. 
Upon selecting the optimal model and confirming fit, we re-ran the 
CFA in the full combined dataset; the final PNA and IDK phenotypes 
used in all downstream analyses were obtained as factor scores of the 
CFA-derived general factor in the full dataset. We extracted the factor 
scores using the ‘Empirical Bayes Model’ method as implemented in 
the lavPredict function.

Predicting participation and item-level nonresponse in follow-up 
questionnaires. We ran logistic regression to predict item nonresponse 
on a follow-up mental health questionnaire using our PNA and IDK factor  
scores. Of 141 total items on the mental health follow-up questionnaire, 
only 58 contained valid responses for all participants (N = 118,037 in 
our sample) and, of those, all had an option to respond PNA, while 
only 14 had an IDK option. Due to this imbalance and the hypothesis of 
shared overlap in PNA and IDK behaviours, we chose to collapse PNA 
and IDK responses across items, identifying 36,517 individuals (30.5%) 
responding either PNA or IDK at least once across the 58 included 
items. Logistic regression was performed to associate this binarized 
outcome with PNA and IDK factor scores computed at baseline, along 
with chromosomal sex, age, age2, sex × age2 and the first 20 principal 
components of the variance–covariance matrix of the genetic data as 
covariates. To determine the significance and magnitude of prediction, 
we calculated the incremental pseudo-R2 (Cox-Snell, as implemented 
in the Python package statsmodels) of including PNA and IDK scores 
over the baseline covariates described above. We also examined the 
significance of the individual PNA and IDK coefficients. We repeated 
these analyses using the additional covariates college completion 
(UKB fieldID 6138) and self-reported overall health (UKB fieldID 2178) 
to determine whether associations with PNA and IDK remained condi-
tional on these well-known predictors of nonresponse.

We additionally ran logistic regression to predict completion of an 
online follow-up 24 h recall dietary questionnaire (UKB fieldID 110001) 
by using our PNA and IDK factors as predictor variables. To measure 
the variance explained by the model, we computed the pseudo-R2 
using the McKelvey and Zavoina statistical method79. Completion of 
the first wave of a dietary questionnaire was coded as 1 if a participant 
completed this wave and 0 if a participant did not (N = 69,735 and 
N = 146,712, respectively). Individuals with missing values (NA), reflect-
ing individuals not invited to the dietary follow-up, were removed from 
the analysis (N = 144,181). Similarly, completion of all 4 waves of the 
dietary questionnaire was coded as 1 if someone completed all 4 waves 
and 0 if someone did not complete all 4 waves of the questionnaire 
(N = 19,097 and N = 99,151, respectively). Participants coded as miss-
ing or who completed some but not all of the dietary questionnaires 
were not considered in this analysis (N = 242,380). We examined the 
association of our standardized factors with sex, age, age2, sex × age2, 
the first 20 principal components of the variance–covariance matrix 
of the genetic data, self-reported health (UKB fieldID 2178) and years 
of education. Years of education was created by recoding the Qualifica-
tions field (UKB fieldID 6138) as follows, according to the International 
Standard Classification of Education (ISCED) codes 46:

 (1) College or University degree (ISCED) = 20 yr of education
 (2) Advanced (A) levels/Advanced Subsidiary (AS) levels or  

equivalent (ISCED 3) = 15 yr of education
 (3) Ordinary (O) levels/General Certicate of Secondary Education 

(GCSE) or equivalent (ISCED 2) = 13 yr of education
 (4) Certicate of Secondary Education (CSE) or equivalent  

(ISCED 2) = 12 yr of education
 (5) National Vocational Qualication (NVQ) or Higher National  

Diploma (HND) or Higher National Certicate (HNC) or  
equivalent (ISCED 5) = 19 yr of education
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 (6) Other professional qualication (for example, nursing, teach-
ing) (ISCED 4) = 17 yr of education

 (7) None of the above (ISCED 1) = 6 yr of education

Participants who chose PNA or IDK for either years of education 
or self-reported health were excluded.

Genotyping and imputation. Genotyping and imputation procedures 
for UKB have been detailed previously73. Briefly, UKB participants were 
genotyped using the Affymetrix UK BiLEVE Axiom array and UKB Axiom 
array. After extensive quality control, imputation was performed using 
SHAPEIT380 and a reimplementation of IMPUTE281 with the Haplo-
type Reference Consortium and merged 1000 Genomes82 + UK10K83  
reference panels.

Genotyping in Add Health was performed at the Institute for 
Behavioral Genetics in Boulder, Colorado, using Illumina’s Human 
Omni1-Quad-BeadChip84. After imputing the genetic data to the Haplo-
type Reference Consortium85 using the Michigan Imputation Server86, 
only HapMap3 variants were included, as these are well imputed  
and provide good coverage of common variation across the genome. 
Analyses were limited to individuals of European ancestry, and cryp-
tically related individuals and ancestry outliers were dropped from 
analyses. Finally, only HapMap3 variants with a call rate above 98% and 
a minor allele frequency >1% were used.

UKB GWAS. We performed GWAS using linear regression implemented 
in Hail87, including chromosomal sex, age, age2, sex × age2 and the  
first 20 principal components of the variance–covariance matrix of  
the genetic data as covariates. We included autosomal variants 
with imputation INFO column values > 0.8, minor allele frequency 
(MAF) > 0.01 and Hardy–Weinberg equilibrium (HWE) P > 1 × 10−10, 
as well as annotated protein-truncating or missense variants with 
MAF > 1 × 10−6 (based on Ensembl VEP consequence annotations). Fol-
lowing these filters, 9,367,367 total variants were included in the GWAS.

Identiication of independent loci. We used the FUMA88 pipeline to 
identify independent genomic loci. We considered an independent 
locus as the region including all SNPs in pairwise linkage disequilibrium 
(r2 > 0.6), with the lead SNPs in a range of 250 kb and independent from 
other loci at r2 < 0.1. We used the 1000 Genomes Phase3 Northern 
Europeans LD reference panel82.

Heritability and tissue-speciic enrichment. We used stratified LD 
Score regression (S-LDSR)89 to estimate the proportion of variation in 
our PNA and IDK factors that is explained by inherited SNPs, using the 
Baseline v.1 model with 53 variant annotations for functional catego-
ries to better fit variability in effect sizes across the genome. For these 
analyses, as well as for all analyses involving LDSR, we filtered to SNPs 
in the HapMap3 reference panel that had MAF > 0.01 and INFO > 0.90 
in our sample (N = 1,089,172).

S-LDSR90 was also used to estimate heritability enrichment for 
certain regions of the genome on the basis of outside annotations 
conditional on the baseline model. For these analyses, we used three 
separate annotation sets based on previous papers52: (1) 10 different cell 
type groups based on unions of 220 individual histone-based annota-
tions43,90–94, (2) multitissue expression annotations (N = 205) based 
on GTEx and Franke lab data52,53,95,96 and (3) annotation of differential 
gene expression across 13 different brain regions based in GTEx data53. 
Given the overlap between the annotations of brain tissues and their 
differential expression, multiple testing correction was only performed 
within-analysis (for example, P < 0.005 for the first annotation set using 
IDK summary statistics).

Genetic correlation. Genetic correlation between traits was com-
puted using GWAS summary statistics with LD Score regression97 using 

reference panel LD estimates from European-ancestry individuals in 
the 1000 Genomes Project82. We ran genetic correlations for PNA and  
IDK with a total of 654 traits, 615 which were from UKB and are publicly 
available98. An additional 39 traits were selected from previous GWAS 
and spanned the domains of cognition, psychiatry, personality, medical  
diagnoses, physical characteristics and sociodemographics (Supplemen-
tary Table 8). Traits used for genetic correlation analyses were chosen  
before conducting the analyses, with the agreement of the coauthors.

Genomic SEM. Genomic SEM56 is a two-stage structural equation 
modelling approach that operates on genetic, rather than pheno-
typic, covariance matrix. In the first stage, the genetic and sampling 
covariance matrices are estimated using LDSR. In the second stage, a 
multivariate system of covariance associations involving the genetic 
components of phenotypes are specified, and their corresponding 
parameters are estimated by minimizing the discrepancy between the 
model-implied covariance matrix and the empirical covariance matrix. 
We used genomic SEM to implement the following analyses: (1) obtain 
PNA and IDK residual heritability conditional on the genetic contribu-
tions of SES variables (Supplementary Fig. 8a), (2) adjust genetic cor-
relations for the contributions of SES variables (Supplementary Fig. 
8b), (3) determine the significance of differences in estimated genetic 
correlations of PNA and IDK with additional traits (Supplementary Fig. 
8c) and (4) adjust genetic correlations of PNA and IDK with additional 
traits for the genetic contribution of the other nonresponse factor (that 
is, IDK and PNA, respectively; Supplementary Fig. 8d). For the purpose 
of these models, SES variables included total household income47, 
region-based social deprivation58 and educational attainment46.

Polygenic scoring. Polygenic scores were constructed with LDpred99. 
LDpred estimates polygenic scores using SNP weights that estimate the 
conditional association of each SNP account for LD and the estimated 
genetic architecture of the trait, and has been shown to have greater 
prediction accuracy than conventional LD pruning followed by P value 
thresholding. We used a Wald test to evaluate the significance of the 
polygenic scores on the outcomes.

For the Add Health sample, we used the genotyped data from the 
Add Health prediction cohort to create the LD reference file. After 
imputing the genetic data to the Haplotype Reference Consortium85 
using the Michigan Imputation Server86, we used only HapMap3 vari-
ants with a call rate >98% and a minor allele frequency >1% to construct 
the polygenic scores. We limited the analyses to European-ancestry 
individuals. Polygenic scores were calculated with an expected fraction 
of causal genetic markers set at 100%. In total, we used 1,168,025 Hap-
Map3 variants to construct the polygenic scores in Add Health. We then 
used Plink100 to multiply the genotype probability of each variant by the 
corresponding LDpred posterior mean over all variants. In total, we cre-
ated two polygenic scores using the summary statistics of our two main 
phenotypes: PNA and IDK. We then determined the association of the 
polygenic score for the related ‘refused to answer’ and IDK phenotypes 
in Add Health. Prediction accuracy was based on a logistic regression 
of the outcome phenotype on the polygenic score and a set of standard 
controls, which included birth year, sex, an interaction between birth 
year and sex, and the first 10 genetic principal components of the 
variance–covariance matrix of the genetic data. Variance explained 
by the polygenic scores was calculated in regression analyses as the 
Nagelkerke’s pseudo-R2 change, that is, the pseudo-R2 of the model 
including polygenic scores and covariates minus the pseudo-R2 of the 
model including only covariates. The 95% confidence intervals around 
all pseudo-R2 values were bootstrapped with 1,000 repetitions each. 
We also used a recently developed score for educational attainment46 
to predict both of our binary non-response outcomes in Add Health.

Heckman correction. To provide proof of concept for using knowl-
edge of non-response patterns to correct associations for bias from 
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nonresponse, we demonstrated the impact of Heckman correction 
on GWAS associations. The Heckman two-step estimator (heckit)61 
first fits a selection model for missingness in the dependent variable 
using probit regression, for example:
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 , where ϕ() is the standard normal density 
function, which helps reduce bias by conditioning the expected value 
of the observed phenotype on the likelihood of selection. For the selec-
tion model, we included both nonresponse factors (that is, PNA and 
IDK), missingness-related SES and health variables (that is, educational 
attainment (UKB fieldID 6138, response code 1-College/University 
degree), total household income (UKB fieldID 738), neighbourhood 
Townsend social deprivation index (UKB fieldID 189) and self-rated 
health (UKB fieldID 2178)), along with chromosomal sex, age, age2, 
sex × age2, the first 20 principal components of the variance–covari-
ance matrix of the genetic data and dummy codes for the baseline 
assessment centre. The response model included covariates for  
chromosomal sex, age, age2, sex × age2 and the first 20 principal  
components of the variance–covariance matrix of the genetic data. 
GWAS of the response model was implemented in Hail (https://github.
com/hail-is/hail).

We demonstrated the effect of Heckman correction on asso-
ciations with FI score in the UKB mental health follow-up survey
(UKB fieldID 20191). We anticipated this variable to be a strong 
proof-of-concept given the strong observed genetic correlation of 
our non-response factors with fluid intelligence, its measurement 
after the items contributing to our non-response factor scores and the 
substantial informative missingness in the mental health follow-up38.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The GWAS results for our PNA and IDK phenotypes are available 
through GWAS catalogue accession nos. GCST90266936 for PNA and 
GCST90266935 for IDK. UK Biobank data are available to researchers 
via application at the following link: https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access. Information about accessing 
1000 Genomes Project or Hapmap3 data can be found at https://www.
internationalgenome.org. For information about access to the data 
from this study, contact addhealth@unc.edu.

Code availability
All software used to perform the analyses are available online. Scripts 
used to perform the analyses are available at https://github.com/
gianmarcomigno/Item-nonresponse.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The GWAS results for our PNA and IDK phenotypes are available through the GWAS catalog accession nos. GCST90266936 for PNA and GCST90266935 for IDK.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was used as a covariate in all of the analyses presented in this study.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Genetic ancestry was determined using genetic data (using Principal Components analysis). Here we limited our sample to 
only individuals of European ancestry due to the statistical confounds presented by population stratification, as is standard in 
the literature. All GWAS and polygenic prediction exercises also controlled for genetic ancestry (the top 20 principal 
components of the genetic variance-covariance matrix of the genetic data for GWAS analyses and the top 10 for polygenic 
prediction exercises).

Population characteristics Population characteristics for both samples are described in the "Behavioural & social sciences study design" section below.

Recruitment The UK Biobank (UKB) is a health resource which has the purpose of improving the prevention, diagnosis, and treatment of 
human disease75. It consists of a prospective cohort of 502,620 men and women aged 40-69 recruited in the years 
2006-2010 throughout the United Kingdom. The touchscreen questionnaire is a collection of self-reported information 
regarding general health, dietary habits, physical activity, psychological and cognitive states, sociodemographic factors, etc. 
We began with 361,194 unrelated individuals of European genetic ancestry who passed quality control measures (https://
www.nealelab.is/uk-biobank/ukbround2announcement). We excluded individuals who were enrolled only in the UKB pilot 
study (N=335). Participants who decided to terminate the touch screen questionnaire were asked to select PNA to all 
subsequent questions, and they were kept in our analyses. Conversely, individuals who withdrew from the study without 
filling out the touchscreen survey were excluded from the analysis (N=231). As a result, a total of N=360,628 participants 
took part in the survey and answered every question of interest in the study; this is the final analytic sample size. 
 
Add Health originated as an in-school survey of a nationally representative sample of US adolescents enrolled in grades 7 
through 12 during the 1994-1995 school year. Respondents were born between 1974 and 1983, and a subset of the original 
Add Health respondents has been followed up with in-home interviews, which allows researchers to assess correlates of 
outcomes in the transition to early adulthood. In Add Health, the mean birth year of respondents is 1979 (SD = 1.8), and the 
mean age at the time of assessment (Wave 4) is 29.0 years (SD = 1.8). All phenotypes included in this study come from Wave
4, the latest wave of Add Health data collection (2007-2009).

Ethics oversight Use of the UK Biobank data was approved under application 31063. Because of the sensitive nature of this study, we also 
explicitly sought permission for the specific scope of this paper (i.e., “to also study response rates and response 
characteristics (e.g., how often a response is left unanswered) and to examine whether there are any genetic factors that 
correlate with these response phenotypes”), which the UK Biobank granted under the same application. 
Analysis of the UK Biobank data was reviewed by the Partners HealthCare IRB (Partners Human Research), which determined 
in expedited review that the project met the US federal criteria definition of “not human subjects research” (Protocol 
#2019P000883 titled “Behavioral Genetics Study of Responsiveness from UKBB Questionnaires”). 
Analysis of the Add Health data was reviewed by the Office of Research Subject Protection (OSRP) at the Broad Institute of 
MIT and Harvard, which determined that the project met US federal criteria for exemption from IRB review (Project #0001 
titled “Genetic and environmental factors influencing complex social behavior”). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We performed the most in-depth nvestigation of item nonresponse behavior to date. We created factor scores for the two most 
common nonresponse answers, "Prefer Not to Answer" (PNA) AND "I Don't Know" (IDK) in our datasets. We conducted
complementary phenotypic and genetic analyses to gain insights that would not otherwise have be obtainable by solely leveraging 
questionnaire-based information. All data was quantitative.

Research sample Using the UK Biobank, we examined nonresponse behavior in 109 questionnaire items for 230,629 individuals. We performed 
replication exercises using polygenic scores for 3,414 individuals in the Add Health study. We chose these samples because of the 
large and required sample size for genetic analyses (UK Biobank) and for existence of well-phenotyped replication data (Add Health). 
the UK Biobank is not a nationally representative study, while the Add Health study is a US-based nationally representative study. 

Sampling strategy Analytic samples were decided by using the samples of subsamples that had the largest N for a given outcome under study. This 
strategy was chosen, because large samples are prioritized to have enough statistical power to isolate small genetic associations. This 
is common practice in the field. 

Data collection The UK Biobank (UKB) is a health resource which has the purpose of improving the prevention, diagnosis, and treatment of human 
disease75. It consists of a prospective cohort of 502,620 men and women aged 40-69 recruited in the years 2006-2010 throughout 
the United Kingdom. The touchscreen questionnaire is a collection of self-reported information regarding general health, dietary 
habits, physical activity, psychological and cognitive states, sociodemographic factors, etc. We began with 361,194 unrelated 
individuals of European genetic ancestry who passed quality control measures (https://www.nealelab.is/uk-biobank/
ukbround2announcement). We excluded individuals who were enrolled only in the UKB pilot study (N=335). Participants who 
decided to terminate the touch screen questionnaire were asked to select PNA to all subsequent questions, and they were kept in 
our analyses. Conversely, individuals who withdrew from the study without filling out the touchscreen survey were excluded from 
the analysis (N=231). As a result, a total of N=360,628 participants took part in the survey and answered every question of interest in 
the study; this is the final analytic sample size. 
 
Add Health originated as an in-school survey of a nationally representative sample of US adolescents enrolled in grades 7 through 12 
during the 1994-1995 school year. Respondents were born between 1974 and 1983, and a subset of the original Add Health 
respondents has been followed up with in-home interviews, which allows researchers to assess correlates of outcomes in the 
transition to early adulthood. In Add Health, the mean birth year of respondents is 1979 (SD = 1.8), and the mean age at the time of 
assessment (Wave 4) is 29.0 years (SD = 1.8). All phenotypes included in this study come from Wave 4, the latest wave of Add Health 
data collection (2007-2009).

Timing The UK Biobank is a prospective cohort of 502,620 men and women aged 40-69 recruited in the years 2006-2010 throughout the 
United Kingdom.  
 
Add Health originated as an in-school survey of a nationally representative sample of US adolescents enrolled in grades 7 through 12 
during the 1994-1995 school year. Respondents were born between 1974 and 1983, and a subset of the original Add Health 
respondents has been followed up with in-home interviews, which allows researchers to assess correlates of outcomes in the 
transition to early adulthood. 

Data exclusions We use only individuals of European ancestry due to the statistical confounds presented by population stratification, as is standard in 
the literature.

Non-participation Participants were able to select nonresponse options through the questionnaires in the UK Biobank and Add Health. We used these 
nonresponse options as the primary analysis variables in our study.

Randomization Randomization was not a relevant component in this study, as there were no experimental conditions being tested and participants 
were divided into whether they answered questionnaires with nonresponse options or not. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
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