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FPGA-Accelerated Distributed Sensing System
for Real-Time Industrial Laser Absorption
Spectroscopy Tomography at Kilo-Hertz

Jiangnan Xia, Godwin Enemali, Member, IEEE , Rui Zhang, Yalei Fu, Hugh McCann, Bin Zhou,
and Chang Liu, Senior Member, IEEE

Abstract— Fast and continuous data acquisition (DAQ)
with well resolved spectral information is essential for high-
speed and high-fidelity measurement of thermophysical
parameters of industrial processes using laser absorption
spectroscopy tomography (LAST). However, the state-of-
the-art DAQ systems suffer a) inability to collect raw spec-
tral data in real time due to the very high data throughput;
b) degradation of spectral integrity when excessive on-chip
down-sampling is implemented to reduce data throughput.
In this work, we designed a star-networked and reconfig-
urable DAQ system for real-time LAST imaging at kilo-Hz
frame rate. The DAQ system is embedded with a new field
programmable gate array (FPGA)-accelerated digital lock-in
(DLI) technique, whereby a cascaded integrator-comb (CIC)
filter is implemented for down-sampling of the raw signal
with well-maintained spectral information. Furthermore, a
customized data-encapsulation protocol is developed to
enable continuity of real-time data communication between
the front-end DAQ hubs and back-end processor. Perfor-
mance of the developed DAQ system is experimentally
validated by flame temperature imaging at 1 kHz, providing
the necessary temporal resolution to penetrate turbulent
flow and related industrial processes such as reaction
propagation.

Index Terms— real-time data acquisition; networked em-
bedded system; field programmable gate array; hardware
acceleration; laser absorption spectroscopy

NOMENCLATURE

Acronym Abbreviation
DAQ Data Acquisition
LAST Laser Absorption Spectroscopy Tomography
FPGA Field Programmable Gate Array
DLIA Digital Lock-in Amplifier
CIC Cascaded Integrator-Comb
IPT Industrial Process Tomography
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SNR Signal-to-Noise Ratio
WMS Wavelength Modulation Spectroscopy
ADC Analog-to-Digital Converter
SSM Semi-Scan Multiplexing
FDM Frequency-Division Multiplexed
FIR Finite-Impulse-Response
LPF Low Pass Filter
UDP User Datagram Protocol
FIFO First in, First Out
TS Time Stamp
FFT Fast Fourier Transform

I. INTRODUCTION

H IGH-speed and high-fidelity distributed sensing net-
works and data acquisition (DAQ) systems are essential

for monitoring and control of industrial process [1]–[3]. To
comprehensively characterize the industrial processes, indus-
trial process tomography (IPT) techniques have been widely
developed for acquiring two/three-dimensionally distributed
parameters [4]. Depending on different sensing modalities, the
IPT techniques generally involve ultra-sensitive measurement
of multi-channel electrical [5], ultrasonic [6], optical signals
[7], via signal modulation/demodulation techniques to improve
the measurement Signal-to-Noise Ratio (SNR). Furthermore,
most IPT applications require continuous imaging of the indus-
trial processes with penetrating temporal resolution, placing
significant requirement on the high-speed DAQ and real-time
data communication between the front-end sensors and back-
end high-level processors.

Among the various IPT techniques, laser absorption spec-
troscopy tomography (LAST) [8], [9] provides the unique
capability of imaging thermophysical parameters of reactive
flows, e.g., temperature, species concentration and velocity.
The implementation of modulation/demodulation technique in
LAST is Wavelength Modulation Spectroscopy (WMS) [9],
[10]. In WMS, the laser source is driven by the superposition
of a low-frequency wavelength scan, fs, typically from several
Hz to a few kHz, and a high-frequency modulation, fm,
typically from 50 kHz to 250 kHz. A faster laser wavelength
scan and modulation contribute to higher temporal resolution
and stronger measurement noise immunity, respectively. A
LAST system with both frequencies at relatively high values
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could facilitate dynamic and in-depth characterization of the
reactive turbulences, which is highly attractive to the process
industry [11]. However, a DAQ system that can sample such
laser transmissions from many channels, generally more than
30, is fundamentally and practically challenging due to:

(1) the massive amount of raw digitized data for keeping
spectral information;

(2) the highly demanded synchrony and consistency be-
tween the sampling channels for snapshotting the target flows;

(3) the high-bandwidth data throughput for real-time
front/back-end data communication with proven data conti-
nuity;

(4) reconfigurability of the sampling channels for flexible
LAST implementation.

The state-of-the-art LAST DAQ systems can be conceptu-
ally categorized as raw signal sampling and on-chip prepro-
cessed signal sampling. The raw signal sampling with fully
parallel scheme is the most straightforward method that maxi-
mally preserves both the temporal information and full spectral
information. Its implementation demands an enormous data
throughput, which can overload the real-time front/back-end
data communication and violates the data continuity. On-board
data storage in memories is possible [12]. However, it will
easily overflow SDRAM in a few seconds of measurement.

To lower the data throughput for high-speed, real-time and
continuous DAQ of LAST measurements, recent effort has
been made by implementing various demodulation algorithms
on embedded platforms. Most are implemented on a field
programmable gate array (FPGAs), which has been widely
adopted for industrial signal conditioning [13] and acceleration
of image processing [14]. Recent efforts have been made on
down sampling the raw transmission signal within a wave-
length scan to a few samples, for example, by extracting
the peak of each harmonic shown in Fig. 1 (a), via an on-
chip neural network based peak extractor [15]. However, the
extracted peaks cannot maintain spectral integrity since they
are unable to indicate the absorbance lineshape [10], which
is an important chemo-physical filter for noise rejection. To
avoid degradation of the spectral integrity, accumulator-based
digital lock-in amplifiers (DLIA) were developed [16], [17]
to down sample the raw transmission signal and maintain
the lineshape information. By channel-multiplexing at the
modulation frequency, an accumulator-based DLIA has been

Fig. 1. Schematic of on-chip pre-processing DAQ schemes for (a) peak-
detection and (b) quasi-parallel (QP).

recently demonstrated with a microsecond-level interval be-
tween the neighboring channels [16], as shown in Fig. 1 (b).
This is cost-effective in terms of hardware resource for multi-
channel DAQ with a single analog-to-digital converter (ADC).
However, its implementation requires very high modulation-to-
scan frequency ratio (fm/fs), since (a) the spectral samples can
only be demodulated from an integer number of modulation
periods and (b) all the multiplexed channels equally share
the demodulated samples. These fundamental limits the scan
frequency and thus the image rate up to a few hundred Hz.

To address the above-mentioned challenges, we develop
an FPGA-accelerated distributed DAQ system for high-speed
LAST imaging with well-maintained spectral information.
The developed system is demonstrated experimentally for
streaming real-time LAST measurement data between the front
and back ends at kHz-level temporal resolution. Distributed
deployment of the sensing system also facilitates large-scale
industrial implementation of LAST, e.g., visualization of full-
size gas turbine exhaust [18] and power-plant boilers [19].

The significance contribution as well as the novelty of the
work covers:

1) A novel online DLIA aided by the cascaded integrator-
comb (CIC) filter, that is superior to the state-of-art methods
in terms of maintaining the spectral information integrity,
is designed and implemented on the FPGA. The FPGA-
accelerated implementation enables kHz-level and continuous
LAST imaging that offers better insight of the dynamics of
industrial reactive flowfields.

2) A new laser scan scheme, i.e., semi-scan multiplexing
(SSM), is proposed. By utilizing the laser absorption in both
crest and trough semi periods of a sinusoidal laser wave-
length scan, the LAST imaging rate is maximized at a given
wavelength scan frequency. The proposed SSM scheme also
maintains strong synchrony and consistency of neighboring-
channel DAQ.

3) Customized data encapsulation and de-encapsulation
algorithms are developed to check the data continuity between
the front/back-end data communication. This implementation
facilitates well time stamping between the measurement data
with the industrial processes.

4) The Ethernet-networked star topology is introduced for
distributed deployment of the DAQ hubs. The independence
of each DAQ hub also offers great flexibility to reconfigure
the LAST system with increased number of measurement
channels.

The rest of the paper is organized as follows. Section II
introduces the spectroscopic fundamentals, the proposed SSM
scheme and the CIC filter-aided online DLIA. Section III
describes the FPGA hardware and firmware design as well
as the implementation of the proposed principles and the
data encapsulation. Section IV validates the proposed design
with a proof-of-concept combustion experiment. The paper is
concluded in Section V.

II. PRINCIPLE OF DESIGN

A. Background of WMS
The fundamentals of WMS and its implementation of ratio

thermometry have been detailed in [10], [20]. Two laser ab-
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sorption transition lines [10], whose wavenumbers are centered
at v1 and v2, are adopted and thus the corresponding two laser
diodes are frequency division multiplexed (FDM) [20], [21]
shown in Fig. 2. The lasers are driven by the injected current
with the same scan frequency fs, and different modulation
frequencies fm1 and fm2, respectively. The laser wavenumber
for transition line l (l = 1, 2), µvl(t), is expressed as the
superposition of wavenumber scan µl,s(t) and modulation
µl,m(t):

µvl(t) = µl,s(t) + µl,m(t) (1)

Accompanied by the wavenumber modulation, the laser inci-
dent intensity for transition line l, Ivl0 (t), is also the superposi-
tion of scan intensity Isl0 (t) and modulation intensities Iml

0 (t):

Ivl0 (t) = Isl0 (t) + Iml
0 (t) (2)

Coupled by a fiber coupler, the FDM incident laser intensity
I0(t) is:

I0(t) =
2∑

l=1

Ivl0 (t) (3)

For simplicity, subscript l will be eliminated afterwards when
working on either of the two transitions.

The incident laser signal is split into N beams. For the i-
th beam (i = 1, 2, ..., N), the I0(t) is absorbed by the target
gas molecule. The absorption process is modelled using Beer-
Lambert’s law, which describes the relationship between the
transmitted laser intensity It,i(t), incident intensity I0,i(t) as
well as the absorbance [10]:

It,i(t) = I0,i(t)e
−αi[µv(t)] (4)

αi[µv(t)] = ϕ[µv(t)] · Pi · Sv(Ti) ·Xi · Li (5)

where αi[µv(t)] is the absorbance, ϕ[µv(t)] the line-shape
function, Sv(Ti) the transition line strength. Pi, Xi, Ti are
the pressure, concentration and temperature of the target gas,
respectively. Li is the absorption path length for the i-th laser
beam.
Ai,v is defined as the integrated area of the absorbance

αi[µv(t)] over wavenumber µv(t) along the absorption path.
As the line shape function is normalized to unit, i.e.,∫ +∞
−∞ ϕ (µ) dµ ≡ 1, it can be expressed as:

Ai,v =

∫
αi(µv)dµv = Pi · Sv(Ti) ·Xi · Li (6)

Fig. 2. Diagram of multi-beam digitization of FDM WMS signals using
the proposed DAQ system.

Flow parameters distributions, such as temperature and gas
concentration, are inferred from Ai,v . Typically, the first- and
second-order harmonics of It,i(t), i.e., 1f and 2f signals, are
demodulated using a DLIA. Then, 1f -normalized WMS-2f
signal (WMS-2f /1f ) can be calculated by normalizing the 2f
signal with the 1f signal. As a result, WMS-2f /1f signal is
free from calibration of the laser intensity and laser specific
turning characteristics [22]. By least-square fitting the WMS-
2f /1f signal, Ai,v is extracted and used to infer the absolute
flow parameters, such as temperature and gas concentration
[23].

B. SSM-WMS scheme for multi-beam LAST sensing
In this subsection, rather than using the full-scan multi-

plexing [18], [24], the SSM scheme is proposed to maximize
the LAST imaging rate at a given fs. To maintain strong
synchrony and consistency of neighboring-channel DAQ, two
adjacent beams are bonded as a channel pair shown in Fig.
2 and will be sampled by the same ADC. As a result, the
N beams are divided into M (M = N / 2) channel pairs. As
illustrated in Fig. 3, the two channels, It,i(t) and It,i+1(t), of
j-th channel pair, where j = ⌊(i+1)/2⌋ with i an odd integer,
are 2-to-1 multiplexed at the crest and trough of the sinusoidal
scan, i.e., every semi-scan period. Therefore, both the down
and up scan are utilized as two independent measurements. In
the k-th laser scan period (k = 1, 2, 3, . . . ), the multiplexed
j-th channel-pair output Imux,j(t) is the sequential of the down

Fig. 3. Flowchart of SSM-WMS scheme for j-th channel-pair.
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scan of It,i(t) and the up scan of It,i+1(t), which is written
as:

Imux,j(t) =


It,i(t),

(k − 1)

fs
≤ t <

(2k − 1)

2fs

It,i+1(t),
(2k − 1)

2fs
≤ t <

k

fs

(7)

This multiplexed output is digitized by an ADC with sampling
rate fq and thus the number of wavelength samples P in each
scan period is calculated as:

P = fq/fs (8)

Demodulated by the DLIA, WMS-2f /1f for the j-th channel
Smux
v,j (d), which is also the sequential WMS-2f /1f of the i-th

and (i+1)-th laser beams, Sv,i(d) and Sv,i+1(d), is expressed
as :

Smux
v,j (d) =

 Sv,i(d), (k − 1)P ≤ d < (k − 1
2 )P

Sv,i+1(d), (k − 1
2 )P ≤ d < kP

(9)

where d is the index of the digitized wavelength samples.
By adopting the above SSM-WMS scheme, the absorption

and spectral information of the two laser beams can be
sampled using a single ADC channel. As measurement of the
two laser beams are implemented sequentially in a scan period,
the image frame rate is same as the scan frequency, which is
equivalent to a fully parallel DAQ for sawtooth ramp scan with
the same scan frequency [18], [21], [24].

C. CIC filter-aided online DLIA technique
We develop a novel DLIA technique, aided by the CIC filter

[25], by taking the advantage of down sampling of the raw
transmission with well-maintained spectral information. Fig.
4 illustrates the architecture for the proposed demodulator,
i.e., a combination of a FPGA-level acceleration and a high
(PC)-level of harmonic extraction. Such a separation of the
signal flow makes the most use of the efficiency of the
two platforms. The former effectively demodulates the multi-
channel transmissions accompanied by a spectral information-
reserved down sampling, while the latter further denoises the
down-sampled data for high-fidelity recovery of the harmonics.

Specifically, the FPGA-accelerated harmonic extraction
contains a lock-in module and a CIC filter. Within the former
module, the in-phase (I) and quadrature (Q) components
of the nth-order harmonic of the digitized j-th channel-pair
transmission Imux,j(d) for the transition v, noted as IRnf,v,j

and QRnf,v,j , are isolated by multiplying the I and Q reference
signal, i.e., sin and cos functions with the corresponding
frequency nfm:

IRnf,v,j(d) = Imux,j(d) · sin(2πnfm · d) (10)

QRnf,v,j(d) = Imux,j(d) · cos(2πnfm · d) (11)

These locked-in components have the same number of
samples as the raw transmission Imux,j(d). Then, the CIC
filter [25] is introduced, working in two aspects: (a) lowering

the data throughput for real-time data transfer; (b) preliminary
low-pass filtering of the locked-in components. A single-
stage CIC filter contains an integrator, a decimator and a
comb filter, with cascade connection. The integrator performs
smooth down sampling on IRnf,v,j(d) and QRnf,v,j(d), while
the overall CIC filter is equivalent to a stable finite-impulse-
response (FIR) filter with rectangular impulse response.

The number of the down-sampled WMS-2f /1f wavelength
samples PD within a down or up scan is calculated as:

PD = fq/(2 ∗D ∗ fs) (12)

Given the laser is scanned at fs = 1 kHz and the sampling
rate is fq = 20 MHz, the CIC filter with D = 25 can decrease
the number of demodulated wavelength samples from P = 20k
to PD = 400. In comparison with the harmonic peak extraction
and accumulator-based DLIA noted in Section I, the CIC filter
with configurable D can flexibly satisfy the spectral integrity.

Then, the down-sampled outputs from the CIC filter, noted
as ICnf,v,j(d) and QCnf,v,j(d), are expressed as recursive
forms:

QCnf,v,j(d) = [QRnf,v,j(d)− QRnf,v,j(d−D)]
+QCnf,v,j(d− 1)

(13)

ICnf,v,j(d) = [IRnf,v,j(d)− IRnf,v,j(d−D)]
+ICnf,v,j(d− 1)

(14)

Since only addition (subtraction) operations are involved in
(12-13), the CIC filter is resource saving and therefore suitable
to be implemented on the FPGA. However, the smoothing
and comb filters have limited effect on noise elimination.
Using the above parameters, Fig. 5 shows the Fast Fourier
Transformation (FFT) of the 1f -magnitude C1f,v,j(d), i.e.,

C1f,v,j(d) =

√
[IC1f,v,j(d)]

2
+ [QC1f,v,j(d)]

2 (15)

Fig. 4. Flow diagram of CIC filter-aided demodulation of n-th order
harmonics.

Fig. 5. FFT of 1f -magnitude (fs = 1 kHz, fm = 100 kHz and fq =
20 MHz) output from the CIC filter at D = 25 and 200-order FIR filter,
respectively.
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The locked-in 1f -harmonics from the CIC filter is dominated
by the noise from other frequencies. Therefore, an additional
FIR [26] Low Pass Filter (LPF) is implemented on the high-
level processor to further remove the noise:

Xnf,v,j(d) = F [ICnf,v,j(d)] (16)

Ynf,v,j(d) = F [QCnf,v,j(d)] (17)

where Xnf,v,j and Ynf,v,j are the FIR-low pass filter (LPF)
outputs of the I and Q components. F[·] represents the FIR-
LPF operation. As shown in Fig. 5, the noise in the 1f -
magnitude output from a 200-order FIR filter, for example,
is significantly suppressed, enabling Xnf,v,j and Ynf,v,j with
good SNRs.

Finally, the multiplexed WMS-2f /1f, S mux
v, j , is calculated

as:

Smux
v,j =

√√√√(
X2f,v,j

K1f,v,j
−

X0
2f,v,j

K0
1f,v,j

)

2

+ (
Y2f,v,j

K1f,v,j
−

Y 0
2f,v,j

K0
1f,v,j

)

2

(18)

K0
1f,v,j =

√
(X0

1f,v,j)
2
+ (Y 0

1f,v,j)
2 (19)

K1f,v,j =

√
(X1f,v,j)

2
+ (Y1f,v,j)

2 (20)

where symbols with superscript ‘0’ correspond to the
absorption-free components obtained using the same DLIA.

III. SYSTEM IMPLEMENTATION

In this section, the proposed DLIA technique is embedded
in newly designed FPGA-based multi-channel DAQ electron-
ics. To facilitate data communication from the front end to
the back end, a data-encapsulation protocol is proposed and
implemented in the FPGA to check the data continuity.

A. Hardware and firmware implementation
As shown in Fig. 6, each developed DAQ hub contains

the analogue front-end, FPGA-accelerated signal processing
and Ethernet-based data transmission. The analogue front-
end has eight channels, i.e., four channel pairs, to make the
full use of the Gigabit Ethernet communication bandwidth.
The raw analogue input is pre-filtered and amplified by the
programmable-gain amplifier (THS7002, Texas Instruments)
firstly. According to the SSM scheme, the 8-beam transmitted
signals are multiplexed to 4 channel-pair outputs by an 8-
to-4 multiplexer (ADG1434, Analog Device) with timing
logic controlled from a Cyclone IV FPGA (EP4CE40F29C8,
Altera). The multiplexed signal Imux,j(t) is digitized by a 14-
bit ADC (AD9251, Analog Device) whose sampling frequency
is controlled by the FPGA clock wire adc clk with frequency
fq = 20 MHz. The quantized signal Imux,j(d) is processed in
the FPGA according to the proposed online DLIA scheme.

The upper part of Fig. 7 shows the detailed structure of
the CIC-aided online DLIA module, in which all the registers
are clocked by the ADC clock adc clk. The data flow path
is also labeled on Fig. 7. Specifically, I and Q reference
signals in (10) and (11) are digitized as 14-bit fixed-point
data and stored in the FPGA memory. Imux,j(d) is multiplied

by the I and Q reference signals to extract 1f and 2f at the
frequency fm and 2fm, respectively. As a result, 28-bit fixed-
point components IR1f,v,j , QR1f,v,j , IR2f,v,j and QR2f,v,j

are produced for each transition v, and then streamed into the
CIC filter described in (13) and (14). According to (13) and
(14), the width of the CIC filter output Bout is calculated by:

Bout = ⌊Bin + log2(D)⌋ (21)

where Bin is the CIC filter input data width, i.e., 28 in
this case. By setting the decimation factor D = 25, the four
components output from the CIC filter, IC1f,v,j , QC1f,v,j ,
IC2f,v,j and QC2f,v,j , have 32-bit data width with fq/D =
800 kSps throughput for each component. It is notable that
the decimation factor D is reconfigurable and can be optimized
to reach the trade-off between the spectral integrity and maxi-
mum usage of Gigabit Ethernet bandwidth. For each DAQ hub,
4 parallel channel pairs with two transitions generate the total
data throughput of 819.2 Mbps (4 channel pairs × 32 bits/S
× 0.8 M/s × 4 components × 2 transitions). These data will
be encapsulated according to the format described in the next
subsection and transferred to the data transmission module,
in which the User Datagram Protocol (UDP) is realized for
real-time data transmission through Gigabit Ethernet. The data

Fig. 6. Schematic of the analogue front-end, FPGA central processor
and the Gigabit Ethernet transmission.

Fig. 7. Data flow diagram for j-th channel-pair output of transition v in
FPGA.
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transmission is working at a different clock domain, i.e.,
gmii clk at 125 MHz, and hence a First In, First Out (FIFO)
buffer is used to connect the two clock domains.

The FPGA firmware is coded by the hardware description
language Verilog, synthesized and implemented using the
Quartus Prime 18.1. The firmware performance is evaluated
in two aspects, i.e., the resource usage and the timing per-
formance. Specifically, the usage of logic elements, registers,
IO pins and 9-bit multipliers is listed in TABLE I as well
as the occupation percentage of the total available resources.
The resource usage for DLIA purely by FIR LPF [26] is also
listed for comparison. The result shows that the developed
FPGA firmware is cost-effective and resource-saving as all the
hardware resources usage is below 30%. On the contrary, if the
DLIA is realized purely FIR, we require extreme large FPGA
resources, which far exceed the available resources and are not
implementable for the FPGA. Only synthesis is done for the
FIR DLIA due to significant excess of hardware resources.

The timing performance is evaluated on the two clocks, i.e.,
adc clk and gmii clk from ADC sampling and ethernet trans-
mission respectively. As the most critical timing parameter,
the setup and hold time slack of each clock, on the worst-
case timing path are evaluated. The maximum clock frequency
Fmax is also calculated according to the worst-case timing path
delay. As illustrated in TABLE II, in the worst-case timing
path, the time slacks of those two clocks are positive in both
setup and hold scenarios, indicating all timing requirements are
met. Accordingly, the calculated maximum running frequency
Fmax of adc clk and gmii clk are 81.17 MHz and 144.59 MHz,
which are higher than their target working frequencies of 20
MHz and 125 MHz, respectively.

In a LAST system, the above hardware and firmware
configuration are extended to multiple DAQ hubs for the ease
of multi-channel reconfiguration. The multiple DAQ hubs are
star networked via an Ethernet switch. An external trigger
signal is used to synchronize all the hubs with the laser-driving
signal.

TABLE I
FPGA RESOURCES COMPARED BETWEEN CIC AND FIR DLIAS

CIC DLIA
Usage/Total (%)

Pure FIR DLIA
Usage/Total (%)

Logic Elements 4392/39600 (8.36%) 5029k/39600 (12700%)

Registers 2468 5082k

IO Pins 125/533 (23%) 125/533 (23%)

Memory Bits 191k/1161k (16%) 191k/1161k (16%)

9-bit Multiplier 64/232 (28%) 42496/232 (18317%)

TABLE II
TIMING PERFORMANCE EVALUATION OF THE DESIGNED FPGA

FIRMWARE

Item
Clock ADC Sampling

adc clk
Data Transmission

gmii clk

Setup time Slack (ns) 37.527 1.084

Hold time Slack (ns) 0.149 0.178

Target F (MHz) 20 125

Fmax (MHz) 80.17 144.59

Data Delay 12.372 6.485

B. Data encapsulation and continuity check

Data continuity is essential for a LAST DAQ system,
ensuring (a) the images are reconstructed at a fixed frame rate

Fig. 8. Schematic design of the data-encapsulation protocol in FPGA.

Algorithm 1: Data continuity checking and continuous 
signal extraction from the encapsulated data 
Input: Number of lock-in components samples per semi-scan Pd, 
number of parallel lock-in components Np, encapsulated measured 
data S 
Output: Data loss index set I, number of discontinuity q and valid 
continuous data V 
Initialize: Empty V and I, q ← 0, ts_cur ← 0, ts_prev ← 0, i ← 0 
1:    L ← Pd ×Np, F ← length of S 
2:    Locate the start of trigger: 
3:    for k in {1, 2, …, F} do 
4:  if S(k) is 0 and S(k+1) is not 0 then 
5:  S ← {S(k – 31), S(k – 30), …, S(F)} 
6:  break 
7:    Check data continuity: 
8:    while 2 × i × L < F do  
9:  ts_prev ← ts_cur, ts_cur ← S(2 × i × L + L) 
10:  mux_down ←S(2 × i × L + L – Np) 
11:  mux_up ←S(2 × (i + 1) × L – Np) 
12:  if ts_cur – ts_prev = 1 and mux_down =1 and 

 mux_down =2 then 
13:  i ← i + 1 
14:  else 
15:  q ← q + 1 
16:  I(q) ← i 
17:  for j in {2 × i × L + 1, 2 × i × L + 2, …, F} do 
18:  if S(j : j+31) = 0 and S(j + L – Np ) = 1 then 
19:  remove {S(2 × i × L + 1), …, S(j – 1)} 
20:  F ← length of S 
21:  break  
22:  V ← S 
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and (b) each single frame is reconstructed using the projection
data sampled from all the laser beams. However, if data discon-
tinuity happens, it is critical to locate the breaking point and
the lost period(s). In this case, the remaining measurements
can be temporally aligned with the reactive process of the
target flow fields. In this subsection, the CIC down-sampled
data is encapsulated in the FPGA with a customized protocol,
which facilitates the check of data continuity.

In general, the wavelength scan could cover the non-
absorption regions [27]. These regions, corresponding to the
head and tail of each CIC down-sampled component, will be
replaced as the indexing information in the encapsulated data
shown in Fig. 8. Once the DAQ is triggered, a counter that is
clocked by the decimated sampling frequency (fq/D), will start
to count from zero to Pd, indicating the index of each down
(up) scan. The encapsulated data is structured by Pd outputs,
each with 32-bit width. Concretely, the first output is given by
32-bit zeros at the start of each down (up) scan to indicate the
triggered state. The following 2nd to (Pd – 2)th outputs are the
wavelength samples of the same indexed CIC down-sampled
component. The (Pd – 1)th output is the multiplexing index,
which gives “1” for detecting trigger’s rising edge (down
scan) and “2” for falling edge (up scan). The last output is
a time stamp (TS) that indexes the wavelength scan periods.
A TS counter counted on the trigger’s rising edge is designed
to record the indices. Linear increment of the TS value is
expected given non-existence of data discontinuity. Given all
the 4 CIC down-sampled components of the 2 transitions in
the 4 channel pairs, there are 32 encapsulated data generated
in parallel per semi scan. The data is serialized and transferred
to the back-end host computer.

To realize the de-encapsulation, Algorithm 1 is developed
and implemented on the high-level processor to check the data
loss. The algorithm is initialized by detecting the first rising
edge of the DAQ trigger. For each wavelength scan period,
the TS value and the multiplexer index are extracted. If no
data is lost, the TS value should be increased by 1 per scan.
The down-scan and up-scan multiplexer indices should be 1
and 2, respectively. Otherwise, the algorithm will relocate the
trigger indicator, i.e., the 32-bit zeros, for the next wavelength
scan period and remove the samples in the latest discontinuous
encapsulation(s). The output I records the index of the scan
periods when the data discontinuity is observed.

IV. EXPERIMENT VALIDATION

A full DAQ system with 4 hubs is developed to sample the
projections from a 32-beam LAST optical sensor. In this work,
two transitions of water vapor, one of the main combustion
products, are selected at v1=7185.6 cm−1 and v2 = 7444.36
cm−1 with laser diodes at both wavenumbers available in our
lab. The two lasers are scanned at f s = 1 kHz and modulated
at fm1 = 100 kHz and fm2 = 130 kHz, respectively. The
two laser outputs are fiber coupled and split into 32 laser
beams. As shown in Fig. 9, the laser beams are arranged
at 4 equiangular projection views with 8 parallel beams in
each projection view. More details of the beam arrangement
can be found in [28]. The target flames in the sensing region

are generated by two identical burners with butane-propane
mixed fuel. The diameter the burner outlets is 4.8 cm. The
32 laser beams penetrate the target flames at the height of
5.6 cm above the burner outlets and are detected by 32
photodetectors. Finally, the 32-channel transmitted signals are
digitized and demodulated by the developed DAQ system. A
10 Gbps Ethernet switch is used to connect the 4 hubs and
the host computer in the star topology.

The full DAQ system will be validated from two aspects:
(a) the spectral integrity of the down-sampled harmonics
measured using the developed FPGA-accelerated DAQ and
(b) image reconstruction at 1 kfps and its data continuity
to characterize the dynamics temperature distributions of the
reactive flows.

Validation (a): The spectral integrity of the down-sampled
demodulated signals is examined by spectral fitting of the
measured WMS-2f /1f to a reference one [23]. The reference
WMS-2f /1f is obtained using the absorbance line-shape and
the spectral parameters, e.g., full-width at half maximum, from
HITRAN database [29], which gives full spectral integrity of
the target transitions. Therefore, a good fitting result indi-
cates a well-maintained spectral integrity in the down-sampled
WMS-2f /1f, and thus high-accuracy projection data, i.e., path

Fig. 9. System implementation of 32-beam LAST experiment. (a)
Schematic and (b) picture of the LAST optical sensor and the developed
DAQ electronics.
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integrated absorbance Av,i, extracted from the WMS-2f /1f for
the subsequent image reconstruction.

Fig. 10 shows a channel-pair measurement of WMS-2f /1f
at the two transitions. Given fq = 20 MHz and D = 25, PD is
400. The central 200 out of the 400 WMS-2f /1f wavelength
samples are selected to highlight the absorption. By spectrally
fitting the down-sampled WMS-2f /1f, the residuals between
the measured and fitted signals for all the four cases are smaller
than 1%, indicating good agreement between the two signals
and thus a well-maintained spectral integrity for the down-
sampled signal.

Validation (b): In this experiment, laser transmission is
continuously sampled by the proposed DAQ implementation.
The first 4 consecutive seconds (s), i.e., 4000 laser scan
periods, are selected for detailed analysis. The Algorithm 1 in
Section III.B is applied to examine the data continuity of the
4000 sampled periods. The TS values are extracted from the
real-time encapsulated data and plotted against the real elapsed
time in the experiment. As shown in Fig. 11, the TS value
linearly increases as the time elapses, indicating the down-
sampled measurements are transferred to the host computer
without any breaking points.

In the 4-second experiment, the fuel flow of burner 1 is
decreased gradually from 0 to 2nd second and then increased
from 2nd to 4th second, while the fuel flow of burner 2
remains stable. The temperature images with 48×48 pixels
are reconstructed by CSTNet [30]. Given the imaging rate

Fig. 10. Example channel-pair measurement and fitted WMS-2f /1f
for(a) v1 at channel 1, (b) v1 at channel 2,(c) v2 at channel 1, (d) v2 at
channel 2.

Fig. 11. Continuous time stamps over measurement time (ms).

of 1 kfps, 4,000 frames of temperature images are recon-
structed. Fig. 12 shows two representative states of the flames
and their cross-sectional temperature reconstructions. Strong
consistency exists between the reconstructed temperature dis-
tributions and the physical flames. The shapes and radiative
intensities of the two flames in Fig. 12 (a) are similar, giving
similar temperature profiles and peak values (959 K for flame
1 and 951 K for flame 2) of the two reconstructed hot spots in
Fig. 12 (b). Fig. 12 (c) exhibits a much weaker flame generated
by burner 1 than that by burner 2, which is also reflected in

Fig. 12. Pictures of the flame at frames (a) No. 541 and (b) No. 2030,
and (c, d) the corresponding reconstructed temperature images.

Fig. 13. Extracted time-dependent peak temperature from the two
reconstructed hot spots.

Fig. 14. Frequency analysis of the time-dependent peak temperature
value for the two flames.
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the reconstructed temperature profiles and peak values (543 K
for flame 1 and 990 K for flame 2) of the two hot spots in
Fig 12 (d).

In the target flames, regular pulsations and fluctuations can
be observed due to their diffusive nature. To quantify the
dynamic temperature variations, the peak temperature values
and their moving averages of the two flames during the 4-
second experiment are obtained. As shown in Fig. 13, the tem-
perature curves of flame 1 clearly present a decreased tendency
approximately between frames No. 800 and No. 1700 and
then an increased tendency between frames No. 2200 and No.
3000. The temperature curves of flame 2 display a steady state
with periodic vibration. Flame pulsation is further analyzed by
FFT of the time-dependent peak temperature values of the two
flames. As shown in Fig. 14, two flames exhibit similar FFT
results. The strongest frequency component locates at 8.5 Hz.
The second, third and fourth-order harmonics of fundamental
pulsation are also detected at 17 Hz, 25.5 Hz and 34 Hz,
respectively. It is noteworthy that the high-frequency pulsation
at 91 Hz and 184 Hz, which is not visible by human eyes or
the measurement using thermocouples [31], are successfully
captured due to the kHz-level temporal resolution of the
developed DAQ.

V. CONCLUSION

A novel FPGA-accelerated distributed DAQ system is de-
signed for dynamic imaging of industrial combustion processes
using LAST. The online CIC filter-aided DLI and semi-scan
multiplexing schemes are developed and embedded in the
FPGA to accelerate the imaging rate to kfps-level, while
maintaining adequate spectral integrity and multi-channel sam-
pling synchrony. The measured data is encapsulated with a
customized protocol, enabling the check of data continuity
during the measurement.

The developed DAQ system is experimentally validated in
two steps: First, the measured WMS-2f /1f is spectrally fitted
with a residual lower than 1% in comparison with the reference
absorbance, indicating good spectral integrity is maintained in
the CIC down-sampled signal. Second, dynamic temperature
distributions of two diffusive flames are reconstructed at 1
kfps, which agrees well with the real flame features. The
groundbreaking temporal resolution enables fine characteriza-
tion of the flame turbulences. Facilitated by the reconfigurable
design concept, the DAQ system can be extended to more
channels when applying to large-scale industrial combustion
diagnosis.
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