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a b s t r a c t 

We consider the single-item single-stocking location stochastic inventory system under a fixed ordering 

cost component. A long-standing problem is that of determining the structure of the optimal control 

policy when this system is subject to order quantity capacity constraints; to date, only partial character- 

isations of the optimal policy have been discussed. An open question is whether a policy with a single 

continuous interval over which ordering is prescribed is optimal for this problem. Under the so-called 

“continuous order property” conjecture, we show that the optimal policy takes the modified multi- (s, S) 

form. Moreover, we provide a numerical counterexample in which the continuous order property is vi- 

olated, and hence show that a modified multi- (s, S) policy is not optimal in general. However, in an 

extensive computational study, we show that instances violating the continuous order property do not 

surface, and that the plans generated by a modified multi- (s, S) policy can therefore be considered, from 

a practical standpoint, near-optimal. Finally, we show that a modified (s, S) policy also performs well in 

this empirical setting. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

This study focuses on one of the fundamental problems in 

nventory control theory ( Arrow, Harris, & Marschak, 1951; Por- 

eus, 2002 ): the periodic review single-item single-stocking lo- 

ation stochastic inventory system under nonstationary demand, 

omplete backorders, and a fixed ordering cost component. By in- 

roducing the concept of K-convexity, Scarf (1960) proved, under 

ild assumptions, that the optimal control policy takes the well- 

nown ( s, S) form: if the inventory level falls below the reorder 

oint s , one should place an order and raise inventory up to level

; otherwise, one should not order. Compared to the case investi- 

ated by Scarf , in which the order quantity is unconstrained, the 

apacitated version of the stochastic inventory problem is inher- 

ntly harder, both structurally and computationally. This work is 

oncerned with this variant of the problem. We assume the ca- 
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acity is fixed and known, as opposed to uncertain (e.g. Ciarallo, 

kella, & Morton, 1994 ). 

If the fixed ordering cost is absent, but ordering capacity con- 

traints are enforced, a so-called modified base stock policy is op- 

imal for both the finite and infinite horizon cases ( Federgruen & 

ipkin, 1986a; 1986b ). While in a classical base stock policy one 

imply orders up to S, in a modified base stock policy, when the in-

entory level falls below S, one should order up to S, or as close to

as possible, given the ordering capacity. The classical base stock 

olicy is thus “modified” to embed order saturation. 

In the presence of a positive fixed ordering cost, Wijngaard 

1972) was the first to investigate the influence of capacity con- 

traints on the structure of the optimal control policy. In analogy 

o the aforementioned modified base stock policy, Wijngaard con- 

ectured that an optimal strategy may feature a so-called modified 

s, S) structure : if the inventory level is greater or equal to s , do not

rder; otherwise, order up to S, or as close to S as possible, given 

he ordering capacity. Unfortunately, both Wijngaard (1972) and 

haoxiang & Lambrecht (1996) provided counterexamples that 

uled out the optimality of a modified (s, S) policy. However, 

haoxiang & Lambrecht (1996) proved that, under stationary de- 

and and a finite horizon, the optimal policy features a so-called 

 − Y band structure: when initial inventory level is below X , it 

s optimal to order at full capacity; when initial inventory level 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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1 Under complete backordering, it is sufficient to replace the inventory level with 

the inventory position as the state variable, and modify the demand distribution to 

account for the presence of positive lead-time (Scarf, 1960, p. 201) . 
2 A geometrical interpretation of K-convexity can be found in Porteus (2002 , p. 
s above Y , it is optimal to not order. Gallego & Scheller-Wolf 

20 0 0) introduced CK-convexity, a generalisation of Scarf’s K- 

onvexity; by leveraging this property, they extended the analysis 

n Shaoxiang & Lambrecht (1996) and further characterized the 

ptimal policy by identifying four regions: in two of these regions 

he optimal policy is completely specified, while it is only partially 

pecified in the other two regions. Chan & Song (2003) discussed 

urther properties of the optimal order policy when the inven- 

ory level falls within Shaoxiang & Lambrecht ’s X − Y band, and 

evised an efficient algorithm to compute optimal policy param- 

ters. Shaoxiang (2004) extended the analysis in Shaoxiang & 

ambrecht (1996) and proved that the optimal policy continues to 

xhibit the X − Y band structure under infinite horizon; moreover, 

haoxiang proved that the X − Y band width is no more than the 

apacity. Gallego & Toktay (2004) investigated the case in which 

he fixed ordering cost is large relative to the variable cost of a 

ull order; this assumption allowed them to restrict their analysis 

o full-capacity orders; under this setting they showed that the 

ptimal policy is a threshold policy: if the inventory level falls 

elow the threshold s , issue a full-capacity order; otherwise, do 

ot order. Finally, Shi, Zhang, Chao, & Levi (2014) developed an 

pproximation algorithm with worst-case performance guarantee. 

As mentioned in Shi et al. (2014) , when order quantity capac- 

ty constraints are enforced, only some partial characterization of 

he structure of the optimal control policy is available in the liter- 

ture. To the best of our knowledge, the problem of determining 

he structure of the optimal policy of the capacitated stochastic in- 

entory problem remains open. A long-standing open question in 

he literature, originally posed by Gallego & Scheller-Wolf (20 0 0) , 

s whether a policy with a single continuous interval over which 

rdering is prescribed is optimal for this problem. This is the so- 

alled “continuous order property” conjecture, which was later also 

nvestigated by Chan & Song (2003) . To the best of our knowledge, 

o date this conjecture has never been confirmed or disproved. This 

ap motivates the present study. 

We make the following contributions to the literature on 

tochastic inventory control. 

• In light of the results presented in Shaoxiang (2004) , we 

show how to simplify the optimal policy structure presented 

by Gallego & Scheller-Wolf (20 0 0) . Moreover, we extend the 

discussion in Gallego & Scheller-Wolf (20 0 0) and provide a 

full characterisation of the optimal policy for instances for 

which the continuous order property holds. In particular, we 

show that the optimal policy takes the modified multi- (s, S) 

form . 
• We provide a numerical counterexample in which the con- 

tinuous order property is violated. This closes a fundamen- 

tal and long standing question in the literature: a policy 

with a single continuous interval over which ordering is pre- 

scribed is not optimal in general. Since generating similar 

counterexamples is far from trivial, in our Appendix we il- 

lustrate the analytical insights we relied upon to generate 

such instances. 
• In an extensive computational study comprising 9720 in- 

stances constructed by using realistic demand patterns and 

cost configurations investigated in the literature, we show 

that no violation of the continuous order property is found. 

From a practical standpoint, a modified multi- (s, S) order- 

ing policy can therefore be considered near-optimal for the 

problem under scrutiny. Moreover, we empirically find that 

the number of reorder-point/order-up-to-level pairs that this 

policy features in each period is always less or equal to 6 in 

our test bed. Finally, we show that a well-known heuristic 

policy, the modified ( s, S) policy ( Wijngaard, 1972 ), also per- 
forms well in this empirical setting. 1

2

The rest of this paper is organised as follows. In Section 2 , 

e introduce the well-known stochastic inventory problem as 

riginally discussed in Scarf (1960) . In Section 3 , we extend the 

roblem description to accommodate order quantity capacity con- 

traints. In Section 4 we summarise known properties of the op- 

imal policy from the literature. In Section 5 we introduce the 

o-called “continuous order property,” which has been previously 

onjectured in the literature, and illustrate the structure that 

he optimal policy would take if this property were to hold. In 

ection 6 we present a numerical counterexample in which the 

ontinuous order property is violated. In Section 7 we illustrate re- 

ults of our extensive computational study aimed at showing that 

o violation of the continuous order property occurs, that a mod- 

fied multi- (s, S) ordering policy is near-optimal from a practical 

tandpoint, and that a modified (s, S) ordering policy also performs 

ell in this empirical setting. In Section 8 we draw conclusions. 

. Preliminaries on the ( s, S) policy 

The rest of this work is concerned with a single-item single- 

tocking point inventory control problem. A finite planning hori- 

on of n discrete time periods, which are labelled in reverse order 

or convenience, is assumed. Period demands are stochastic, d t in 

eriod t , with known probability density and cumulative distribu- 

ion functions f t and F t , respectively. The cost components that are 

aken into account include: the ordering cost c(x ) for placing an 

rder for x units; the inventory holding cost h for any excess unit 

f stock carried over to next period; and the shortage cost p that 

s incurred for each unit of unmet demand in any given period. 

nmet demand is backordered. Without loss of generality, it is as- 

umed that there is no lead-time and deliveries are instantaneous. 1 

Let x represent the pre-order inventory level, and 

̂ C n (x ) denote 

he minimum expected total cost achieved by employing an opti- 

al replenishment policy over the planning horizon n, . . . , 1 ; then 

ne can write 

 

 n (x ) � min 

x ≤y 

{
c(y − x ) + L n (y ) + 

∫ ∞ 

0 

̂ C n −1 (y − ξ ) f n (ξ )d ξ

}
, 

here ̂ C 0 � 0 and L n (y ) � 

∫ y 
0 

h (y − ξ ) f n (ξ )d ξ + 

∫ ∞ 

y p(ξ − y ) f n (ξ )

 ξ . 

Following Scarf (1960) , we assume that the ordering cost takes 

he form 

(x ) � 

{
0 x = 0 , 

K + v x x > 0 . 

For convex L n (y ) , Scarf (1960) proved that the optimal policy 

akes the (s, S) form, and thus features two policy control parame- 

ers: s and S. In the (s, S) policy, an order of size S − x is placed if

nd only if the pre-order inventory level is x < s . 

More specifically, Scarf (1960) introduced the concept of K- 

onvexity ( Definition 1 ). 2 

efinition 1 K-convexity . Let K ≥ 0 , g(x ) is K-convex if for all x ,

 > 0 , and b > 0 , 

K + g(x + a ) − g(x ) 
)
/a ≥

(
g(x ) − g(x − b) 

)
/b. 

By leveraging this concept, Scarf proved that ̂ G n (y ) is K-convex, 

here 

̂ 

 n (y ) � v y + L n (y ) + 

∫ ∞ ̂ C n −1 (y − ξ ) f n (ξ )d ξ . 
06–107). 
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Fig. 1. KBC1 in the context of Example 1 , when B = 65 . For the sake of illustration, 

ˆ g (y ) � (g(y ) − g(y − b)) /b, x = y , and b is a small positive number, obtaining K + 

G n (x + a ) − G n (x ) − a ̂ G n (x ) ≥ 0 for 0 < a ≤ B . 
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f  
his observation implies that the (s, S) policy is optimal, and the 

olicy parameters s and S satisfy ̂ G n (s ) = ̂

 G n (S) + K. Note that 

hen the order quantity is not subject to capacity constraints, S

oincides with the global minimizer of ̂ G n (y ) . In what follows, we 

ill see that this may not be the case when a capacity constraint 

s enforced on the order quantity. 

. Capacitated ordering 

The stochastic inventory problem investigated in Scarf 

1960) assumes that order quantity Q in each period can be 

s large as needed. In practice, one may want to impose the 

estriction that 0 ≤ Q ≤ B , where B is a positive value denoting the

aximum order quantity in each period. 

We generalise ̂ C n (x ) and 

̂ G n (x ) to reflect capacity restrictions 

 n (x ) � min 

x ≤y ≤x + B 

{
c(y − x ) + L n (y ) + 

∫ ∞ 

0 

C n −1 (y − ξ ) f n (ξ )d ξ

}
; (1) 

 n (y ) � v y + L n (y ) + 

∫ ∞ 

0 

C n −1 (y − ξ ) f n (ξ )d ξ . (2)

inally, we present a useful result that will be used in the coming 

ections. 

efinition 2. A function f : R → R is coercive if lim x →−∞ 

f (x ) =
im x →∞ 

f (x ) = ∞ . 

emma 1. G n (x ) is coercive. 

roof. The limiting behaviour of G n (x ) can be characterized 

s lim x →∞ 

G 

′ 
n (x ) = nh and lim x →−∞ 

G 

′ 
n (x ) = −np, and from the

undamental theorem of calculus it follows lim x →∞ 

G n (x ) = 

im x →−∞ 

G n (x ) = ∞ . �

. Review of known properties of the optimal policy 

We next introduce 3 “(K, B ) -convexity 1” (KBC1) for a function g

 Gallego & Scheller-Wolf, 20 0 0 ). 

efinition 3. Let K ≥ 0 , B ≥ 0 , g is KBC1 if it satisfies 

K + g(x + a ) − g(x ) 
)
/a ≥

(
g(y ) − g(y − b) 

)
/b 

or 0 < a ≤ B , 0 < b ≤ B , and y ≤ x . 

xample 1. Consider a planning horizon of n = 4 periods, and a 

emand d t distributed in each period t = 1 , . . . , n according to a

oisson law with rate λt ∈ { 20 , 40 , 60 , 40 } . Other problem parame-

ers are K = 100 , h = 1 and p = 10 ; to better conceptualise the ex-

mple we let v = 0 . In Fig. 1 we plot G n (y ) and illustrate the con-

ept of KBC1 for the case in which B = 65 . 

emma 2. If G n (resp. C n ) is KBC1 and it is optimal to place an order

t x 0 , then G n (y ) (resp. C n (y ) ) is nonincreasing for y ≤ x 0 . 

roof. Since G n is KBC1, if it is optimal to place an order at x 0 , say

n order of a units, then 0 ≥ (K + G n (x 0 + a ) − G n (x 0 )) /a , and G n 

s nonincreasing for y ≤ x 0 , since 0 ≥ (K + G n (x 0 + a ) − G n (x 0 )) /a ≥
G n (y ) − G n (y − b)) /b, for y ≤ x 0 and 0 < b ≤ B . The proof for C n is

dentical. �

emma 3. If G n is KBC1, there exists a pair of values S m 

and s m 

such

hat s m 

� sup { x | C n (x ) = G n (x ) − v x } is the maximum inventory level

t which it is optimal to place an order, and S m 

� s m 

+ a , where 0 <

 ≤ B is the order quantity at s m 

. 
3 This was originally called strong CK-convexity in Gallego & Scheller-Wolf 

20 0 0) ; however, in line with Scarf (1960) , in the present work we used C to de- 

ote the cost function, and B for the ordering capacity, hence the concept has been 

enamed (K, B ) -convexity. 

i

a

t

3 
roof. Let x 0 be any point at which it is optimal to order, say, 

 units, 0 < a ≤ B . G n (y ) is a nonincreasing function for y ≤ x 0 
 Lemma 2 ). This result implies that there must exist an upper 

ound on inventory level beyond which no ordering is optimal. 

therwise G n (y ) would be a nonincreasing function for all y , which

ontradicts Lemma 1 . �

We next introduce “(K, B ) -convexity 2” (KBC2) for a function g

 Shaoxiang, 2004 ). 

efinition 4. Let K ≥ 0 , B ≥ 0 , g is KBC2 if it satisfies 

K + g(x + a ) − g(x ) 
)
/a ≥

(
K + g(y ) − g(y − B ) 

)
/B 

or 0 < a ≤ B and y ≤ x . 

xample 2. In Fig. 2 we plot C n (y ) and illustrate the concept of

BC2 for our numerical example. 

efinition 5. g is (K, B ) -convex if it satisfies KBC1 and KBC2. 

heorem 1. G n (x ) and C n (x ) are (K, B ) -convex. 

roof. Proofs are available in Gallego & Scheller-Wolf (20 0 0) , 

haoxiang (2004) . �

Originally in Shaoxiang & Lambrecht (1996) , and then by intro- 

ucing the concept of KBC2 in Shaoxiang (2004) , Shaoxiang & Lam- 

recht established existence of a level Y � s m 

beyond which it is 

ot optimal to order, and of another level X � Y − B below which

t is optimal to order up to capacity. The optimal policy therefore 

eatures a so-called “X − Y band” structure. 

emma 4. If G n is KBC2, it is optimal to order up to capacity at any

 ≤ s m 

− B . 

roof. Let x 0 be any point at which it is optimal to order some- 

hing. By KBC2, 

 > 

(
K + G n (x 0 + a ) − G n (x 0 ) 

)
/a ≥

(
K + G n (y ) − G n (y − B ) 

)
/B, 

or all y ≤ x 0 . Thus, 0 > K + G n (y ) − G n (y − B ) , because G n is non-

ncreasing for y ≤ x 0 . Hence, it is optimal to order up to capacity 

t any y ≤ x 0 − B . �

Gallego & Scheller-Wolf (20 0 0) further characterised the struc- 

ure of the optimal policy within Shaoxiang & Lambrecht ’s X − Y 
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Fig. 2. KBC2 in the context of Example 1 , when B = 65 . For the sake of illustration, we set x = y . Intuitively, for all a ≤ B , the slope of segment X is greater or equal to the 

slope of segment Z. 
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and. In particular, they showed that 

 n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

G 

B 
n (x ) x < min

α min {−v x + G n (x ) , G 

B 
n (x ) } + (1 − α) G 

S 
n (x ) min { s ′ 

min {−v x + G n (x ) , G 

S 
n (x ) } max { s ′ 

−v x + G n (x ) x > s ′ 

here 

G 

B 
n (x ) � K − v x + G n (x + B ) 

G 

S 
n (x ) � K − v x + min 

x ≤y ≤x + B 
G n (y ) 

s � inf 

{
x | K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) ≥ 0 

}

s ′ � max 

{
x ≤ S m 

| K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) ≤ 0 

}
nd α is an indicator variable that takes value 1 if s ′ − s > B , and 0

therwise. 

emma 5. s ′ − B < s ≤ s ′ 

roof. Observe that s m 

= s ′ , thus s ≤ s ′ ; by Lemma 4 , it is optimal

o order up to capacity at any x ≤ s m 

− B ; hence C n (x ) = G 

B 
n (x ) for

 < s ′ − B , and C n (x ) = G 

S 
n (x ) at x = s ′ − B ; therefore s > s ′ − B . �

By leveraging Lemma 5 , it is possible to further simplify Gallego 

 Scheller-Wolf ’s structure of the optimal policy as follows. To the 

est of our knowledge, this simplified policy structure has not 

een previously discussed in the literature. 

emma 6. 

 n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

G 

B 
n (x ) x < s m 

− B 

G 

S 
n (x ) s m 

− B ≤ x < s 

min {−v x + G n (x ) , G 

S 
n (x ) } s ≤ x ≤ s m 

−v x + G n (x ) x > s m 

(4) 

roof. Observe that s m 

= s ′ ; because of Lemma 5 , it is clear that

 m 

− s ≤ B and α = 0 . �

. The modified multi-( s, S) policy 

We next introduce the continuous order property, and charac- 

erise the structure of the optimal policy for instances for which 

his property holds. 
4 
B, s } 
 } ≤ x < max { s ′ − B, s } 
s } ≤ x ≤ s ′ 

(3) 

efinition 6 (Continuous Order Property) . Let x 0 be an inventory 

evel at which it is optimal to place an order, C n is said to have the

ontinuous order property if it is optimal to place an order at y ,

or all y < x 0 . 

emma 7. If C n has the continuous order property, { x | C n (x ) −
G n (x ) − v x ) < 0 } is a convex set. 

roof. If C n has the continuous order property, in Gallego & 

cheller-Wolf ’s policy s = s ′ ; hence for all x ≤ s ′ it is optimal to

rder, that is C n (x ) − (G n (x ) − v x ) ≤ 0 , and for all x > s ′ it is opti-

al to not order, that is C n (x ) − (G n (x ) − v x ) > 0 ; hence { x | C n (x ) −
G n (x ) − v x ) < 0 } is a convex set. �

In Fig. 3 we illustrate Lemma 7 for our numerical example, 

hich incidentally satisfies the continuous order property. 

Consider C n as defined in Eq. (1) , let this function be (K, B ) -

onvex, and assume that the continuous order property holds. 

hen inventory falls below the reorder threshold s m 

, defined in 

emma 3 , the optimal policy takes the following form: at the be- 

inning of each period, let x be the initial inventory, the order 

uantity Q is computed as 

 = 

{
min { S k − x, B } s k −1 < x ≤ s k , 

0 x > s m 

; (5) 

here k = 1 , . . . , m and s 0 = −∞ . In essence, the policy features

 reorder thresholds s 1 < s 2 < . . . < s m 

and associated order-up- 

o-levels S 1 < S 2 < . . . < S m 

; at the beginning of each period, if in-

entory drops between reorder threshold s k and reorder threshold 

 k −1 , it is optimal to order a quantity Q = min { S i − x, B } . For con-

enience, we denote the case Q = B as saturated ordering , and the 

ase 0 < Q < B as unsaturated ordering . We shall name this control

ule modified multi - (s, S) policy , or ( s k , S k ) policy in short. This pol-

cy structure was also described in Gallego & Scheller-Wolf (20 0 0 , 

. 612); however, Gallego & Scheller-Wolf did not establish a rela- 

ion between the continuous order property and the optimality of 

his policy. 
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Fig. 3. Lemma 7 in the context of Example 1 , when B = 65 . 
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emma 8. Consider S m 

and s m 

as defined in Lemma 3 , and let S ∗ �
rg min y G n (y ) , 

(a) S m 

≤ S ∗; 

(b) G n (S m 

) ≤ G n (x ) for x < S m 

; 

(c) G n (s m 

) > G n (x ) for s m 

< x ≤ S m 

. 

roof. (a) If s m 

≥ S ∗ − B , then we must necessarily order up to S ∗

s no point dominates a global minimum. If s m 

< S ∗ − B , then we

o not have sufficient capacity to reach S ∗, hence the optimum or- 

er quantity will be a value a ≤ B ; and from s m 

we will order up to

 point S m 

� s m 

+ a ≤ S ∗. (b) Assume, ex absurdo, G n (S m 

) > G n (S)

or some S such that s m 

< S < S m 

; then from s m 

it would not be

ptimal to order up to S m 

, which contradicts Lemma 3 . (c) Assume, 

x absurdo, G n (s m 

) ≤ G n (s ) for some s such that s m 

< s ≤ S m 

; then

rom s it would be optimal to order up to S m 

, this contradicts the

act that s m 

is the maximum inventory level at which it is optimal 

o place an order ( Lemma 3 ). �

Observe that S m 

is not necessarily a minimizer of G n ; this is 

urther illustrated in Appendix A . 

By building upon (K, B ) -convexity of G n (x ) and C n (x ) , and

pon the assumption that the continuous order property in 

efinition 6 holds, we next establish existence of reorder thresh- 

lds s 1 < s 2 < . . . < s m 

and associated order-up-to-levels S 1 < S 2 <

 . . < S m 

that can be used to control the system according to the 

ptimal ordering policy in Eq. (5) . 

efinition 7. A function g : D → R defined on a convex subset D ∈
 is quasiconvex if, for all x, y ∈ D and λ ∈ [0 , 1] , 

 

(
λx + (1 − λ) y 

)
≤ max 

{
g(x ) , g(y ) 

}
. 

efinition 8. The quasiconvex envelope (QCE) ˜ g of a function g on 

 convex subset D ∈ R is defined as 

up 

{
˜ g (x ) | ̃  g : R → R quasiconvex , ̃  g (x ) ≤ g(x ) ∀ x ∈ D 

}
. 

emma 9. The QCE of G n on interval (s m 

, S m 

) is nonincreasing. 

roof. From Lemma 8 b and Lemma 8 c, it follows G n (s m 

) > G n (x ) ≥
 n (S m 

) for s m 

< x < S m 

. Hence, the QCE of G n on interval (s m 

, S m 

)

s a nonincreasing function. �

efinition 9. Consider a function g : R → R , a point x in the do-

ain of g is a strict local minimum from the right if there exists 

> 0 such that g(y ) > g(x ) for all y ∈ (x, x + δ] . 

efinition 10. Let [ a, b] , a ≤ b, in the domain of a function g be

 compact interval such that b is a strict local minimum from 

he right, g(x ) = g(b) for all x ∈ [ a, b] , and g(a ) = ˜ g (a ) ; [ a, b] non-

rivially belongs to the QCE ˜ g of g, if there exists δ > 0 such that

(y ) > g(x ) and g(y ) = ˜ g (y ) for all y ∈ (a − δ, a ] ; [ a, b] trivially be-

ongs to the QCE ˜ g of g, if there is no δ > 0 such that g(y ) = ˜ g (y )

or all y ∈ (a − δ, a ) . 
5 
The concepts introduced in Definition 10 are illustrated in 

ig. 4 . 

Assume G n is (K, B ) -convex; this function must be increasing 

ver some intervals in (s m 

, ∞ ) , otherwise G n (y ) would be a non-

ncreasing function for all y , which contradicts Lemma 1 . Let ̂ S be 

he set of all points a such that interval [ a, b] ∈ (s m 

, S m 

) nontrivially

elongs to the QCE of G n . 

emma 10. Let x 0 be any point at which it is optimal to place an

rder; then either it is the case that arg min y ∈ (x 0 ,x 0 + B ] G n (y ) = x 0 + B ,

r that arg min y ∈ (x 0 ,x 0 + B ] G n (y ) = ̂

 S k , for some ̂  S k ∈ 

̂ S . 

roof. Assume that at x 0 it is optimal to place an order. Then ei- 

her the lowest cost will be attained by ordering up to x 0 + B , or

y ordering up to some local minimum S ∈ (x 0 , x 0 + B ) . Consider

his latter case. We first show that S must belong to the QCE of G n 

n (s m 

, S m 

) . Assume, ex absurdo, that S does not belong to the QCE

f G n on (s m 

, S m 

) ; since the QCE of G n is nonincreasing on (s m 

, S m 

)

 Lemma 9 ), there must exist some other local minimum 

̂ S , such 

hat s m 

< ̂

 S < S and G n ( ̂  S ) < G n (S) , which contradicts the fact that

t x 0 it is optimal to order up to S. Finally, assume interval [ S, b] ,

or some b ≥ S, trivially belongs to the QCE of G n on (s m 

, S m 

) , this

eans there must exist some other local minimum 

̂ S , such that 

 m 

< ̂

 S < S and G n ( ̂  S ) = G n (S) ; hence ordering up to S is no better

han ordering up to ̂  S . �

Lemma 10 is further illustrated in a numerical example pre- 

ented in Appendix B . 

In what follows, we shall assume that ̂ S � { ̂  S 1 , ̂
 S 2 , . . . , ̂

 S w −1 } ⊆ S
s an ordered set, so that s m 

< ̂

 S 1 < ̂

 S 2 < . . . < ̂

 S w −1 < S m 

, and | ̂  S | ≥
 . 

emma 11. G n (s m 

) > G n ( ̂  S 1 ) > G n ( ̂  S 2 ) > . . . > G n ( ̂  S w −1 ) > G n (S m 

) . 

roof. Immediately follows from the definition of ̂ S and from 

emma 9 . �

orollary 1. ̂ S is empty if G n is quasiconvex on (s m 

, S m 

) . 

roof. If G n quasiconvex on (s m 

, S m 

) , from Lemma 9 it follows that

 n is nonincreasing, and hence it does not admit any strict local 

inima from the right in this interval. �

For the sake of convenience let ̂  S w 

� S m 

. 

emma 12. For each ̂ S k ∈ 

̂ S there exists a nonempty set { b| ̂  S k < b <
 

 k +1 , G n (b) ≥ G n ( ̂  S k ) } . 

roof. Consider s m 

and S m 

as defined in Lemma 3 . From 

emma 11 , G n ( ̂  S k ) > G n ( ̂  S k +1 ) , for s m 

< ̂

 S k < ̂

 S k +1 < S m 

. The result

n this lemma follows from the extreme value theorem, since 

 n must attain a local maximum at x ∗ ∈ ( ̂  S k , ̂
 S k +1 ) , such that
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Fig. 4. Graphical illustration of the concepts introduced in Definition 10 ; note that intervals [ a, b] and [ c, d] can be degenerate, and reduce to a single point. 
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(

 n (x ∗) > G n ( ̂  S k ) > G n ( ̂  S k +1 ) . Note that there cannot be a point S ∈̂ 

 , such that ̂  S k < S < ̂

 S k +1 . �

efinition 11. For k = 1 , . . . , w − 1 , b k � max { b| ̂  S k < b < ̂

 S k +1 ,

 n (b) ≥ G n ( ̂  S k ) } , and s k � b k − B ; finally, for the sake of conve-

ience, we define s 0 � −∞ . 

emma 13. s k −1 < ̂

 S k − B < s k 

roof. This follows from Definition 11 . �

emma 14. C n (x ) = −v x + min { G n (x ) , min x ≤y ≤x + B G n (y ) + K} takes

he general form 

 n (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

K − v x + G n (x + B ) s k −1 < x ≤ ̂ S k − B k = 1 , . . . , w − 1

K − v x + G n ( ̂  S k ) ̂ S k − B < x ≤ s k k = 1 , . . . , w − 1

K − v x + G n (x + B ) s w −1 < x ≤ S m 

− B 

K − v x + G n (S m 

) S m 

− B < x ≤ s m 

−v x + G n (x ) x > s m 

. 

roof. If at x it is optimal to order a � S − x units, where a > 0 ,

hen C n (x ) = K − v x + G n (S) . We consider each interval for x in or-

er. 

x > s m 

: this case follows from Lemma 3 , since s m 

denotes an

nventory level beyond which no ordering is optimal. Conversely, 

ecause of the continuous order property, for x ≤ s m 

it is always 

ptimal to order; 

S m 

− B < x ≤ s m 

: in this interval, arg min y ∈ (x,x + B ] G n (y ) = S m 

, this

ollows from the definition of S m 

( Lemma 3 ) and from the fact that

 n is nonincreasing in (−∞ , s m 

] ( Lemma 2 ); 

s w −1 < x ≤ S m 

− B : in this interval, from Definition 11 it fol-

ows that arg min y ∈ (x,x + B ] G n (y ) = x + B , since G n ( ̂  S k ) > G n (S m 

) , for

ll k = 1 , . . . , w − 1 ; ̂ S k − B < x ≤ s k , for all k = 1 , . . . , w − 1 : in this

nterval, from Definition 11 and from Lemma 13 , it follows that 

rg min y ∈ (x,x + B ] G n (y ) = ̂

 S k ; 

s k −1 < x ≤ ̂ S k − B , for all k = 1 , . . . , w − 1 : in this interval,

rom Definition 11 and from Lemma 13 , it follows that 

rg min y ∈ (x,x + B ] G n (y ) = x + B , since G n ( ̂  S k ) > G n ( ̂  S k +1 ) ; finally, note

hat if s 0 < x ≤ ̂ S 1 − B , then arg min y ∈ (x,x + B ] G n (y ) = x + B , since G n 

s nonincreasing in (−∞ , ̂  S 1 ] : in fact, G n is nonincreasing in 

−∞ , s m 

] ( Lemma 2 ), ̂ S is an ordered set, hence by definition there

xists no point s m 

< S < ̂

 S 1 that is a strict local minimum from the

ight, G n (s m 

) > G n ( ̂  S 1 ) ( Lemma 11 ), and thus G n is nonincreasing

n (s m 

, ̂  S ] . �

C n (x ) = 

⎧ ⎨ 

⎩ 

K − v x + G n (x + B )
K + min x ≤y ≤x + B { G n

−v x + G n (x ) 
1 

6 
efinition 12. S k � ̂

 S k , for all k = 1 , . . . , w − 1 ; and, for conve-

ience, let m � w . 

By applying Definition 12 , we can rewrite, for k = 1 , . . . , m , 

 n (x ) 

= 

⎧ ⎨ 

⎩ 

K − v x + G n (x + B ) s k −1 < x ≤ S k − B (saturated ordering) 

K − v x + G n (S k ) S k − B < x ≤ s k (unsaturated ordering) 

−v x + G n (x ) x > s m (no order) 

(6) 

here S 1 , . . . , S m 

are the order-up-to-levels and s 1 , . . . , s m 

the re-

rder points of the (s k , S k ) policy. 

orollary 2. If the continuous order property holds, the (s k , S k ) policy

eneralises the X − Y band discussed in Shaoxiang (2004) . 

roof. In Shaoxiang , Y � s m 

and X � Y − B , where X denotes an

nventory level below which it is optimal to order up to capac- 

ty; hence, their X − Y band has size B . According to Lemma 14 , it

s optimal to order up to capacity for all x ≤ S 1 − B . According to

emma 8 c, s m 

< S 1 , and thus s m 

− B < S 1 − B . By letting X̄ � S 1 − B ,

e obtain a tighter band X̄ − Y . �

orollary 3. If the continuous order property holds, the (s k , S k ) policy

eneralises the policy discussed in Gallego & Scheller-Wolf (20 0 0) . 

roof. Gallego & Scheller-Wolf ’s optimal policy structure fea- 

ures two thresholds: s and s ′ , where −∞ ≤ s ≤ s ′ ≤ S ∗, and S ∗ =
rg min y G n (y ) . Clearly, s ′ is the same threshold we denoted as 

 m 

, and under the assumption that the continuous order property 

olds, it follows that s = s ′ . Gallego & Scheller-Wolf ’s optimal pol- 

cy therefore reduces to 

x ≤ s m 

− B (saturated) 
v x } s m 

− B < x ≤ s m 

(unsaturated or saturated) 
x > s m 

(no order) , 

hich is equivalent to Shaoxiang ’s X-Y band. �

orollary 4. If the continuous order property holds, the (s k , S k ) policy

eneralises the (s, S) policy discussed in Scarf (1960) . 

roof. When B = ∞ , S m 

− B = −∞ , and from Lemma 14 it is clear

hat the optimal policy must feature a single reorder threshold s 

nd order-up-to-level S. �

In Fig. 5 we illustrate G n (y ) for different ordering capacities ( B ∈
 35 , 65 , 71 , ∞} ) imposed for the problem in Example 1 . 

The optimal (s k , S k ) ordering policy under ordering capacity 

onstraints for our numerical example is shown in Table 1 , and in 

ig. 6 for the case in which B = 65 . 

In Appendix C we characterise the structure of the optimal pol- 

cy for the open numerical example in Shaoxiang & Lambrecht 

1996 , p. 1015), for which the continuous order property holds. 
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Table 1 

Optimal (s k , S k ) ordering policy under ordering capacity constraints ( B ∈ { 35 , 65 , 71 , ∞} ) for our nu- 

merical example; in all cases the continuous order property holds. 

Period B 

35 65 71 ∞ 

s k S k s k S k s k S k s k S k 

1 39 68 -11 31 -16 27 15 67 

46 81 14 70 7 71 

13 84 

2 64 99 -5 51 27 76 28 49 

28 82 34 105 

35 100 

3 61 96 18 71 12 71 55 109 

55 109 55 109 

4 28 49 28 49 28 49 28 49 

Fig. 5. Numerical example illustrating G n (y ) for different ordering capacities. 

Fig. 6. Optimal ordering policy in period 1 when B = 65 ; note that G n (y ) and Q are 

not plotted according to the same vertical scale. 

6

i

l

S

Table 2 

Probability mass functions of the nonstationary demand d t considered in 

Example 3 . 

d 1 34 (0.018) 159 (0.888) 281 (0.046) 286 (0.048) 

d 2 14 (0.028) 223 (0.271) 225 (0.170) 232 (0.531) 

d 3 5 (0.041) 64 (0.027) 115 (0.889) 171 (0.043) 

d 4 35 (0.069) 48 (0.008) 145 (0.019) 210 (0.904) 
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. A counterexample 

The continuous order property in Definition 6 has been orig- 

nally conjectured by Gallego & Scheller-Wolf (20 0 0) , and it was 

ater further investigated by Chan & Song (2003) . Gallego & 

cheller-Wolf (20 0 0) wrote: 

A number of problems still remain. The most vexing is the 

possibility that under the current structure there could exist 
7 
a number of intervals [... ] where it is optimal to start and 

stop ordering. An optimal policy with a single continuous in- 

terval over which ordering is prescribed, as was found for all 

of the cases tested [... ], is much more analytically appealing. 

[... ] Unfortunately, the proof of this has thus far eluded us. It 

should be mentioned that it is likewise possible, although we 

believe it unlikely, that such a structure simply does not ex- 

ist. To show this requires a problem instance in which the op- 

timal policy has multiple disjoint intervals in which ordering is 

optimal. Our computational study suggests that this is not the 

case. 

Chan & Song (2003) wrote: 

If our conjecture [the continuous order property] holds, the 

computational time for obtaining the optimal ordering policy 

parameters can be further reduced [... ]. We can only show that 

this conjecture holds for a special case where [the capacity] is 

large enough [... ]. It should be an interesting problem for re- 

searchers to prove or disprove the conjecture is true for small 

[capacity]. 

In the rest of this section, we introduce a numerical instance 

hat violates the continuous order property. To the best of our 

nowledge, no such instance has ever been discussed in the lit- 

rature. 

xample 3. Consider a planning horizon of n = 4 periods and a 

onstationary demand d t distributed in each period t according to 

he probability mass function shown in Table 2 . Other problem pa- 

ameters are K = 250 , B = 41 , h = 1 and p = 26 and v = 0 . 

In Table 3 we report an extract of the tabulated optimal policy 

n which the continuous order property is violated ( Fig. 7 ). 

Our numerical example confirms that it is possible to con- 

truct instances for which it is optimal to start and stop ordering, 

nd that the continuous order property conjectured in Gallego & 

cheller-Wolf (20 0 0) , Chan & Song (20 03) does not hold for the

eneral case of the stochastic inventory problem under order quan- 

ity capacity constraints. In Appendix D we discuss the rationale 

nderpinning the generation of our counterexample. 
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Table 3 

An extract of the optimal policy for period t = 1 of Example 3 , in which the continuous order property is violated. 

Starting inventory level 593 594 595 596 597 598 599 600 601 

Optimal order quantity 41 40 39 38 37 36 35 34 33 

Starting inventory level 602 603 604 605 606 607 608 609 610 

Optimal order quantity 0 0 0 0 0 0 0 0 0 

Starting inventory level 611 612 613 614 615 616 617 618 619 

Optimal order quantity 0 0 0 0 0 41 41 41 0 

Fig. 7. Lemma 7 does not hold in the context of Example 3 : { x | C n (x ) − (G n (x ) −
v x ) < 0 } is not a convex set; hence the continuous order property is violated and 

s < s ′ . 
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Table 4 

Modified (s, S) policy ( Wijngaard, 1972 ) parameters and optimality gaps for 

Example 1 , when B ∈ { 35 , 65 , 71 } . 
Period B 

35 65 71 

s m S m s m S m s m S m 

1 46 81 14 70 13 84 

2 64 99 35 100 34 105 

3 61 96 55 109 55 109 

4 28 49 28 49 28 49 

Optimality gap (%) 0.000 0.123 0.192 

Table 5 

Pivot table for our computational study: discrete uniform demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.004 0.122 3 270 

500 0.000 0.050 3 270 

1000 0.000 0.007 3 270 

v 2 0.002 0.122 3 270 

5 0.000 0.057 3 270 

10 0.000 0.032 3 270 

p 5 0.000 0.057 3 270 

10 0.001 0.122 3 270 

15 0.001 0.115 3 270 

B 2.0D 0.000 0.047 2 270 

3.0D 0.001 0.122 3 270 

4.0D 0.000 0.062 3 270 

Demand EMP1 0.002 0.122 3 81 

EMP2 0.003 0.044 3 81 

EMP3 0.003 0.039 3 81 

EMP4 0.003 0.057 3 81 

LC1 0.000 0.000 1 81 

LC2 0.002 0.008 1 81 

RAND 0.006 0.018 2 81 

SIN1 0.000 0.002 3 81 

SIN2 0.000 0.001 1 81 

STA 0.000 0.001 1 81 

Overall 0.000 0.122 3 810 
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. Computational study 

Albeit in the previous section we demonstrated that it is possi- 

le to construct instances for which the continuous order property 

oes not hold, we must underscore that these instances are hard 

o generate, as they do not show up in numerical experiments fea- 

uring conventional parameter ranges found in the literature. This 

s also the reason why the conjecture in Gallego & Scheller-Wolf 

20 0 0) , Chan & Song (2003) remained open for over twenty years.

n this section, we consider an extensive test bed comprising a 

road family of demand distributions and problem parameters; our 

im is threefold. First, we aim to show empirically that instances 

hat violate the continuous order property do not surface when re- 

listic cost configurations and demand patterns investigated in the 

iterature are considered. In turn, this means that the plans gener- 

ted by the modified multi- (s, S) ordering policy can therefore be 

onsidered, from a practical standpoint, near-optimal. Second, the 

odified multi- (s, S) ordering policy may feature, in each period, a 

ariable number of thresholds s k and associated order-up-to-levels 

 k . In our computational study, the number of thresholds in a mod- 

fied multi-( s, S) policy remains less or equal to 6 in each period.

inally, as shown in Table 4 , a modified ( s, S) policy ( Wijngaard,

972 ) with parameters (s m 

, S m 

) appears to perform well in the

ontext of Example 1 ; in our study we proceed to show that this

imple policy, which has been known for decades, also performs 

ell across all instances considered. 

.1. Test bed 

In our test bed, the planning horizon comprises n = 20 peri- 

ds. We consider 10 different patterns for the expected value of 

he demand in each period, as shown in Fig. 8 : 2 life cycle pat-

erns (LCY1 and LCY2), 2 sinusoidal patterns (SIN1 and SIN2), 1 
8 
tationary pattern (STA), 1 random pattern (RAND), and 4 empirical 

atterns (EMP1, EMP2, EMP3, EMP4) derived from demand data in 

urawarwala & Matsuo (1996) . Further details of expected demand 

ates in each period are given in Table E.1 in Appendix E . 

We consider a broad family of demand distributions commonly 

sed in practice: discrete uniform, geometric, Poisson, normal, log- 

ormal, and gamma. Demands in different periods are assumed 

o be mutually independent. More specifically, let μt denote the 

ean demand in period t , we investigate a demand that follows a 

iscrete uniform distribution in [0 , 2 μt ) ; a demand that follows a 

eometric distribution with mean μt ; and a demand that follows 

 Poisson distribution with rate μt . Finally, given the coefficient of 

ariation of the demand in each period c v = σt /μt , where σt is the 

tandard deviation of the demand in period t , we consider normal- 
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Fig. 8. Demand patterns in our computational study. 
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2

r  

4 The Java code is available at ( Rossi, 2018 ); a self-contained Python code is also 
 lognormal-, and gamma-distributed demands with mean μt and 

tandard deviation σt . 

Fixed ordering cost K takes values in { 250 , 500 , 1000 } ; inven-

ory holding cost h is 1; unit variable ordering cost v takes val- 

es in { 2 , 5 , 10 } ; unit penalty cost p ranges in { 5 , 10 , 15 } . For the

ase of normal, lognormal, and gamma distributed demand, the co- 

fficient of variation takes values in { 0 . 1 , 0 . 2 , 0 . 3 } . Let D denote

he average demand rate over the whole n periods horizon for a 

iven demand pattern; the maximum order quantity B takes values 

n { round (2 D ) , round (3 D ) , round (4 D ) } , where the round operator

ounds the value to the nearest integer. 

Since we adopt a full factorial design, we consider 810 in- 

tances for discrete uniform, geometric, and Poisson distributed 

emand, respectively; and 2430 instances for normal, lognormal, 

nd gamma distributed demands, respectively, since in these lat- 

a

9 
er cases we must also consider the three levels of the coefficient 

f variation. In total, our computational study comprises 9720 in- 

tances. Our experimental design is similar to that investigated in 

 number of existing studies (see e.g. Dural-Selcuk, Rossi, Kilic, & 

arim, 2020; Xiang, Rossi, Martin-Barragan, & Tarim, 2018 ). 

.2. Results 

We run experiments on an Intel(R) Xeon(R) @ 3.5GHz with 

6Gb of RAM. The library used in our experiments is jsdp ( Rossi, 

022b ). 4 SDP state space boundaries are fixed — inventory may 

ange in (−10 0 0 0 , 10 0 0 0) — and in all cases we adopt a unit dis-
vailable at ( Rossi, 2022a ). 
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Table 6 

Pivot table for our computational study: geometric demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.274 0.610 3 270 

500 0.238 0.530 3 270 

1000 0.200 0.427 2 270 

v 2 0.284 0.610 3 270 

5 0.235 0.478 3 270 

10 0.193 0.383 3 270 

p 5 0.174 0.368 2 270 

10 0.242 0.510 3 270 

15 0.296 0.610 2 270 

B 2.0D 0.279 0.610 2 270 

3.0D 0.234 0.495 2 270 

4.0D 0.199 0.416 3 270 

Demand EMP1 0.279 0.596 2 81 

EMP2 0.280 0.602 3 81 

EMP3 0.240 0.488 2 81 

EMP4 0.272 0.610 2 81 

LC1 0.241 0.573 1 81 

LC2 0.205 0.435 1 81 

RAND 0.239 0.501 2 81 

SIN1 0.224 0.490 2 81 

SIN2 0.199 0.451 1 81 

STA 0.196 0.452 1 81 

Overall 0.237 0.610 3 810 

Table 7 

Pivot table for our computational study: Poisson demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.125 1.918 5 270 

500 0.130 1.583 5 270 

1000 0.029 0.424 5 270 

v 2 0.146 1.918 5 270 

5 0.086 0.972 5 270 

10 0.052 0.650 5 270 

p 5 0.070 1.048 4 270 

10 0.100 1.623 5 270 

15 0.114 1.918 5 270 

B 2.0D 0.103 1.918 4 270 

3.0D 0.100 1.623 4 270 

4.0D 0.081 1.583 5 270 

Demand EMP1 0.204 1.623 4 81 

EMP2 0.176 1.918 4 81 

EMP3 0.181 1.479 5 81 

EMP4 0.248 1.583 5 81 

LC1 0.018 0.154 4 81 

LC2 0.027 0.160 4 81 

RAND 0.043 0.429 4 81 

SIN1 0.016 0.088 3 81 

SIN2 0.017 0.106 4 81 

STA 0.016 0.093 5 81 

Overall 0.095 1.918 5 810 

c

a

M

m

l

s

t

g

i

e

m

e  

t

i

served never exceeds 2%. 
retization, therefore running time for each instance is constant; 

 continuity correction is introduced for continuous distributions. 

onte Carlo simulation runs are determined by targeting an esti- 

ation error of 0.01% for the mean estimated at 95% confidence 

evel; we adopt a common random number strategy ( Kahn & Mar- 

hall, 1953 ) across all instances. 

In Tables 5–10 we present the results of our study for each of 

he demand distributions under scrutiny. For all instances investi- 
10 
ated, a modified multi- (s, S) policy is optimal. Moreover, the max- 

mum number of thresholds observed in any given period never 

xceeds 6 over the whole test bed. We also report the average and 

aximum % optimality gap of a modified (s, S) policy with param- 

ters (s m 

, S m 

) extracted from the SDP tables. This policy is found

o be near optimal in our study, since its average % optimality gap 

s consistently negligible, while the maximum % optimality gap ob- 
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Table 8 

Pivot table for our computational study: normal demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.092 2.006 5 810 

500 0.056 1.435 6 810 

1000 0.015 0.565 6 810 

v 2 0.083 2.006 6 810 

5 0.050 0.971 6 810 

10 0.029 0.476 6 810 

p 5 0.034 0.893 5 810 

10 0.060 1.597 6 810 

15 0.068 2.006 6 810 

B 2.0D 0.050 2.006 5 810 

3.0D 0.068 1.597 5 810 

4.0D 0.045 1.435 6 810 

Demand EMP1 0.104 1.597 4 243 

EMP2 0.088 2.006 4 243 

EMP3 0.092 1.435 6 243 

EMP4 0.120 1.392 5 243 

LC1 0.016 0.357 5 243 

LC2 0.019 0.910 6 243 

RAND 0.040 1.347 5 243 

SIN1 0.024 0.437 5 243 

SIN2 0.024 0.742 5 243 

STA 0.015 0.327 5 243 

c v 0.1 0.111 2.006 6 810 

0.2 0.047 1.237 5 810 

0.3 0.006 0.565 4 810 

Overall 0.054 2.006 6 2430 

Table 9 

Pivot table for our computational study: lognormal demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.108 1.891 5 810 

500 0.072 1.424 6 810 

1000 0.033 0.579 6 810 

v 2 0.099 1.891 6 810 

5 0.067 0.931 6 810 

10 0.047 0.729 6 810 

p 5 0.050 0.893 5 810 

10 0.076 1.578 6 810 

15 0.086 1.891 6 810 

B 2.0D 0.066 1.891 5 810 

3.0D 0.086 1.578 5 810 

4.0D 0.061 1.424 6 810 

Demand EMP1 0.130 1.578 4 243 

EMP2 0.100 1.891 4 243 

EMP3 0.103 1.424 6 243 

EMP4 0.139 1.285 5 243 

LC1 0.033 0.286 5 243 

LC2 0.035 0.887 6 243 

RAND 0.056 1.262 5 243 

SIN1 0.042 0.600 5 243 

SIN2 0.041 0.695 5 243 

STA 0.030 0.311 5 243 

c v 0.1 0.110 1.891 6 810 

0.2 0.055 0.923 5 810 

0.3 0.048 0.579 4 810 

Overall 0.071 1.891 6 2430 

11 
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Table 10 

Pivot table for our computational study: gamma demand. 

modified (s, S) modified multi- (s, S) 

% optimality gap max thresholds instances 

avg max 

K 250 0.101 1.930 5 810 

500 0.068 1.424 6 810 

1000 0.029 0.570 6 810 

v 2 0.094 1.930 6 810 

5 0.062 0.923 6 810 

10 0.043 0.731 6 810 

p 5 0.046 0.894 5 810 

10 0.071 1.585 6 810 

15 0.081 1.930 6 810 

B 2.0D 0.062 1.930 5 810 

3.0D 0.080 1.585 5 810 

4.0D 0.057 1.424 6 810 

Demand EMP1 0.125 1.585 4 243 

EMP2 0.095 1.930 4 243 

EMP3 0.100 1.424 6 243 

EMP4 0.130 1.312 5 243 

LC1 0.029 0.308 5 243 

LC2 0.032 0.894 6 243 

RAND 0.052 1.290 5 243 

SIN1 0.036 0.421 5 243 

SIN2 0.037 0.708 5 243 

STA 0.027 0.317 5 243 

c v 0.1 0.109 1.930 6 810 

0.2 0.050 1.013 5 810 

0.3 0.040 0.570 4 810 

Overall 0.066 1.930 6 2430 
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. Conclusions 

The periodic review single-item single-stocking location 

tochastic inventory system under nonstationary demand, com- 

lete backorders, a fixed ordering cost component, and order 

uantity capacity constraints is one of the fundamental problems 

n inventory management. 

A long standing open question in the literature is whether 

 policy with a single continuous interval over which order- 

ng is prescribed is optimal for this problem. The so-called 

continuous order property” conjecture was originally posited 

y Gallego & Scheller-Wolf (20 0 0) , and later also investi- 

ated by Chan & Song (2003) . To the best of our knowl- 

dge, to date this conjecture has never been confirmed or 

isproved. 

In this work, we provided a numerical counterexample that vio- 

ates the continuous order property. This closes a fundamental and 

ong standing problem in the literature: a policy with a single con- 

inuous interval over which ordering is prescribed is not optimal. 

Gallego & Scheller-Wolf (20 0 0) provided a partial characterisa- 

ion of the optimal policy to the problem. In light of the results 

resented in Shaoxiang (2004) , we showed how to simplify the op- 

imal policy structure presented by Gallego & Scheller-Wolf (20 0 0) . 

allego & Scheller-Wolf (20 0 0) also briefly sketched the form that 

n optimal policy would take under moderate values of K. We for- 

alised this discussion and provided a full characterisation of the 

ptimal policy for instances for which the continuous order prop- 

rty holds. In particular, we showed that under this assumption 

he optimal policy takes the modified multi- (s, S) form . 

By leveraging an extensive computational study, we showed 

hat instances violating the continuous order property do not sur- 

ace when realistic cost configurations and demand patterns inves- 

igated in the literature are considered. The modified multi- (s, S) 

rdering policy can therefore be considered near-optimal for the 
12 
roblem under scrutiny. Moreover, we observed that the number 

f thresholds in a modified multi-( s, S) policy remains less or equal 

o 6 in each period. Finally, we showed that a well-known heuristic 

olicy, the modified ( s, S) policy ( Wijngaard, 1972 ), also performs 

ell across all instances considered. 

Since a policy with a single continuous interval over which or- 

ering is prescribed is not optimal in general, future works may fo- 

us on establishing what restrictions (if any) to the problem state- 

ent, e.g. nature of the demand distribution, may ensure that such 

 policy is optimal. 

ppendix A. Possible scenarios one may observe when 

nventory hits level s m 

There are two possible cases one may encounter when inven- 

ory hits reorder threshold s m 

: either we order less than B , or we

rder the maximum allowed quantity B . We next illustrate these 

wo possible cases via Example 1 . 

ase 1: The first case ( B = 65 ) is shown in Fig. 6 . In this case there

re m = 2 local minima up to (and including) the global minimizer 

 m 

. Let y denote the initial inventory and apply Eq. (5) . Since s 2 +
 ≥ S 2 , if s 1 < y < s 2 we order x = min { S 2 − y, B } ; if y < s 1 we order

 = min { S 1 − y, B } . Finally, if y ≥ s 2 , we do not order. 

ase 2: The second case ( B = 71 ) is shown in Fig. A.1 . 

In this case there are m = 3 local minima up to (and including)

he global minimizer S ∗. Let y denote the initial inventory and ap- 

ly Eq. (5) . Since capacity B is insufficient to reach the global min-

mizer S ∗, if s 2 < y < s 3 we order x = S 3 − s 3 = B ; if s 1 < y < s 2 we

rder x = min { S 2 − y, B } ; and if y < s 1 , we order x = min { S 1 − y, B } .
inally, if y ≥ s 3 , we do not order. 

These two cases exhaust all possible scenarios one may observe 

hen inventory hits level s m 

. 
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Fig. A.1. Optimal ordering policy in period 1 when B = 71 ; note that G n (y ) and Q are not plotted according to the same vertical scale. If y > s 3 , it is not convenient to order. 
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Table C.1 

Optimal policy as illustrated in Shaoxiang (2004 , p. 417). 

Starting inventory level -3 -2 -1 0 1 2 3 4 5 6 7 

Optimal order quantity 9 8 7 9 8 7 9 8 7 0 0 
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&
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f  

7  
ppendix B. Numerical example illustrating Lemma 10 

xample 4. Consider a planning horizon of n = 12 pe- 

iods; a demand d t distributed in each period t = 

 , . . . , n according to a Poisson law with rate λt ∈ 

 151 , 152 , 58 , 78 , 134 , 13 , 22 , 161 , 43 , 55 , 110 , 37 } ; K = 494 , v = 0 ,

 = 1 , p = 15 , and B = 128 . 

We focus on period 6, and in Fig. B.1 we plot G 6 (y ) for an initial

nventory y ∈ (60 , 145) . It is clear that at any point x 0 in which it

s optimal to place an order, if we have sufficient capacity to order 

eyond b 1 , we should do so; however, if we do not have sufficient 

apacity, then we would never order up to S, as this point is clearly 

ominated by ̂ S . Observe that while ̂ S belongs to the QCE of G 6 —

llustrated as a dashed line where it departs from G 6 — S does not. 
ig. B.1. Example 4 , plot of function G 6 (y ) for an initial inventory y ∈ (60 , 145) ; the 

CE of G 6 , when it departs from G 6 , is illustrated as a dashed line. Observe that ̂  S 

elongs to the QCE of G 6 , while S does not. 
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ppendix C. Example from Shaoxiang & Lambrecht (1996) 

We hereby illustrate that an (s k , S k ) ordering policy is opti- 

al for the numerical example originally presented in Shaoxiang 

 Lambrecht (1996 , p. 1015) and also investigated in Shaoxiang 

2004) under an infinite horizon. 

xample 5. Consider a planning horizon of n = 20 periods and a 

tationary demand d distributed in each period according to the 

ollowing probability mass function: Pr { d = 6 } = 0 . 95 and Pr { d =
 } = 0 . 05 . Other problem parameters are K = 22 , B = 9 , h = 1 and

p = 10 and v = 1 ; note that, if the planning horizon is sufficiently

ong, v can be safely ignored. The discount factor is α = 0 . 9 . 

In Table C.1 we report the tabulated optimal policy as illustrated 

n Shaoxiang (2004 , p. 417). 

In Fig. C.1 we plot G n (y ) for an initial inventory y ∈ (−5 , 50)

nd n = 20 . The optimal (s k , S k ) policy is shown in Table C.2 ; this

s equivalent to the policy illustrated in Shaoxiang & Lambrecht 

1996 , p. 1015) and to the stationary policy tabulated in Shaoxiang 

2004 , p. 417). 
Table C.2 

Optimal (s k , S k ) policy for a generic period t of the example in 

( Shaoxiang & Lambrecht, 1996 ). 

s k S k 

-1 6 

2 9 

5 12 
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Fig. C.1. Optimal ordering policy for the stationary example in Shaoxiang & Lambrecht (1996) ; note that G n (y ) and Q are not plotted according to the same vertical scale. 
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ppendix D. Generating counterexamples to the continuous 

rder property 

Generating counterexamples to the continuous order property 

s not trivial. We believe this is the reason why the continuous 

rder property originally conjectured by Gallego & Scheller-Wolf 

20 0 0) has not been so far confirmed or disproved. In this section, 

e outline the reasoning we followed to generate our counterex- 

mple. Our analysis was inspired by the work of Gallego & Toktay 

2004) . 

emma 15. Let f be convex, and S be a minimizer of f , then 

(x ) � min 

y ∈ [ x,x + B ] 
f (y ) − f (x ) = 

⎧ ⎨ 

⎩ 

0 S ≤ x 
f (S) − f (x ) S − B ≤ x ≤ S 
f (x + B ) − f (x ) x ≤ S − B 

s nondecreasing. 

roof. Following ( Karush, 1959 ), g(x ) is constant for S ≤ x ; it is

ondecreasing for S − B ≤ x ≤ S, since f (S) is constant, and f is 

onincreasing in this region; finally, it is nondecreasing for x ≤
 − B , since f is convex and hence f (x + B ) − f (x ) is nondecreas-

ng for all x . �

Consider G n and C n as defined in Eqs. (1) and (2) , respectively, 

nd let these functions be (K, B ) -convex. To show that the contin-

ous order property holds, one must show that { x | C n (x ) − (G n (x ) −
 x ) < 0 } is the convex set (−∞ , s m 

) . 

Recall that 

C n (x ) = min 

⎧ ⎨ 

⎩ 

L n (x ) + 

∫ ∞ 

0 C n −1 (x − ξ ) f n (ξ )d ξ , 

min x<y ≤x + B { K + v (y − x ) + L n (y ) 

+ 

∫ ∞ 

0 C n −1 (y − ξ ) f n (ξ )d ξ} 

⎫ ⎬ 

⎭ 

, 

 n (x ) = v x + L n (x ) + 

∫ ∞ 

0 

C n −1 (x − ξ ) f n (ξ )d ξ , 

C n (x ) = −v x + min 

{
G n (x ) , K + min 

x ≤y ≤x + B 
G n (y ) 

}
. 

o prove that { x | C n (x ) − (G n (x ) − v x ) < 0 } is a convex set, it is suf-

cient to show that the function 

 n (x ) � C n (x ) − (G n (x ) − v x ) 

s nondecreasing in x for each n . Let [ x ] − � min { 0 , x } , and note that

 n (x ) = 

[
K + min 

x ≤y ≤x + B 
G n (y ) − G n (x ) 

]−
. 
14 
ne may want to try and show by induction that V n (x ) is nonde-

reasing in x for each n . Let C 0 � 0 , then 

 1 (x ) = 

[
K + min 

x ≤y ≤x + B 
{ v (y − x ) + L 1 (y ) } − L 1 (x ) 

]−
;

ince the unit cost v is linear, and L 1 is convex, from Lemma 15 it

ollows that V 1 (x ) is nondecreasing. Given this base case, we may 

hen assume that V n (x ) is nondecreasing in x , and try to show that

 n +1 (x ) is nondecreasing in x . 

First, observe that 

 n +1 (x ) = 

[
K + min 

x ≤y ≤x + B 

(
v y + L n +1 (y ) + 

∫ ∞ 

0 

C n (y − ξ ) f n +1 (ξ )d ξ

)

−
(

v x + L n +1 (x ) + 

∫ ∞ 

0 

C n (x − ξ ) f n +1 (ξ )d ξ

)]−
. 

o investigate whether V n +1 (x ) is nondecreasing, we shall analyse 

K + min 

x ≤y ≤x + B 
v (y − x ) + C n (y ) − C n (x ) 

= min 

x ≤y ≤x + B 

{
K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 

}
, 

ince C n (x ) = V n (x ) + G n (x ) − v x . Consider s m 

as defined in

emma 3 , and recall this value denotes an inventory level be- 

ond which no ordering is optimal. There are three intervals 

e need to analyse: x ≤ s m 

− B , s m 

− B < x ≤ s m 

, and x > s m 

. Ob-

erve that, from the definition of s m 

in Lemma 3 , if x = s m 

,

hen K + min x ≤y ≤x + B G n (y ) − G n (x ) ≤ 0 ; moreover, by induction 

ypothesis V n (x ) is assumed nondecreasing, hence V n (x ) = K +
in x ≤y ≤x + B G n (y ) − G n (x ) for x ≤ s m 

. 

Let x ≤ s m 

− B ; in this interval V n (x ) = K + min x ≤y ≤x + B G n (y ) −
 n (x ) , thus 

min x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= min x ≤y ≤x + B 
{

K − ( min x ≤z≤x + B G n (z)) + ( min y ≤w ≤y + B G n (w )) 
}

= min x ≤y ≤x + B 
{

K − G n (x + B ) + min y ≤w ≤y + B G n (w ) 
}

= K + min x ≤y ≤x +2 B G n (y ) − G n (x + B ) , 

= K + min x + B ≤y ≤x +2 B G n (y ) − G n (x + B ) , (D.1) 

ecause G n (x ) is assumed (K, B ) -convex and, by Lemma 2 , it

s nonincreasing for x ≤ s m 

, therefore it is also nonincreasing in 

x, x + B ) , since x ≤ s m 

− B . 

Let s m 

− B < x ≤ s m 

, in this interval V n (x ) = K +
in x ≤z≤x + B G n (z) − G n (x ) , thus 

min x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= min x ≤y ≤x + B 
{

G n (y ) + V n (y ) 
}

− min x ≤z≤x + B G n (z) 
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Table E.1 

Expected demand values for demand patterns in our test bed. 

Pattern Expected demand values 

STA 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

LC1 46 49 50 50 49 46 42 38 35 33 30 28 26 23 21 18 14 11 8 6 

LC2 7 9 11 13 17 22 24 26 32 34 36 41 44 47 48 50 50 49 47 44 

SIN1 47 30 13 6 13 30 47 54 47 30 13 6 13 30 47 30 15 8 11 30 

SIN2 36 30 24 21 24 30 36 39 36 30 24 21 24 30 36 31 24 21 26 33 

RAND 63 27 10 24 1 23 33 35 67 7 14 41 4 63 26 45 53 25 10 50 

EMP1 5 15 46 140 80 147 134 74 84 109 47 88 66 28 32 89 162 36 32 50 

EMP2 14 24 71 118 49 86 152 117 226 208 78 59 96 33 57 116 18 135 128 180 

EMP3 13 35 79 43 44 59 22 55 61 34 50 95 36 145 160 104 151 86 123 64 

EMP4 15 56 19 84 136 67 67 155 87 164 194 67 65 132 35 131 133 36 173 152 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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X

= min x ≤y ≤x + B 
{

C n (y ) + v y 
}

− min x ≤z≤x + B G n (z) 

= min s m <y ≤x + B 
{

C n (y ) + v y 
}

− min s m <z≤x + B G n (z) = 0 , (D.2) 

ecause G n (x ) and C n (x ) are assumed (K, B ) -convex and, by

emma 2 , they are nonincreasing for x ≤ s m 

; and since no 

rdering is optimal beyond s m 

, then min s m <y ≤x + B C n (y ) + v y =
in s m <z≤x + B G n (z) . 

Let x > s m 

, in this interval K + min x ≤y ≤x + B G n (y ) − G n (x ) > 0 ,

ence V n (x ) = 0 , V n (y ) = 0 , and 

in x ≤y ≤x + B 
{

K + G n (y ) − G n (x ) − V n (x ) + V n (y ) 
}

= K + min x ≤y ≤x + B G n (y ) − G n (x ) > 0 . (D.3) 

Equipped with Eqs. (D.1) , (D.2) , and (D.3) for the intervals we 

onsidered, it is immediate to see that 

K + min 

x ≤y ≤x + B 
v (y − x ) + C n (y ) − C n (x ) 

]−

= 

⎧ ⎨ 

⎩ 

V n (x + B ) x ≤ s m 

− B 

0 s m 

− B < x ≤ s m 

0 x > s m 

s nondecreasing. However, it is not possible to determine if 

 K + min x ≤y ≤x + B v (y − x ) + 

∫ ∞ 

0 (C n (y − ξ ) − C n (x − ξ )) f n +1 (ξ )d ξ ] −

s nondecreasing; and reintroducing term min x ≤y ≤x + B L n +1 (y ) −
 n +1 (x ) only worsens the matter. But because of the behav- 

or of 
[
K + min x ≤y ≤x + B v (y − x ) + C n (y ) − C n (x ) 

]−
in intervals 

 m 

− B < x ≤ s m 

and x ≤ s m 

− B , one may observe that a V n +1 (x )

unction featuring some decreasing regions may be produced by 

he convolution 

∫ ∞ 

0 (C n (y − ξ ) − C n (x − ξ )) f n +1 (ξ )d ξ , provided 

emand is sufficiently “lumpy.” In other words, the instance must 

eature demand whose probability mass function features some 

alues larger than B possessing non negligible probability mass. 

 demand that is so structured may ensure that the convolution 

bends” sufficiently V n +1 (x ) beyond s m 

so that it turns negative. 

On the basis of this observation, we have generated several ran- 

om instances as follows. The fixed ordering cost is a randomly 

enerated value uniformly distributed between 1 and 500; hold- 

ng cost is 1; penalty cost is a randomly generated value uniformly 

istributed between 1 and 30; the ordering capacity is a randomly 

enerated value uniformly distributed between 20 and 200; de- 

and distribution in each period is obtained as follows: the proba- 

ility mass function comprises only four values in the support, one 

f these values must fall below the given order capacity, the other 

hree values must fall above, and be smaller or equal to 300; prob- 

bility masses are then allocated uniformly to each of these values. 

he Java code to generate instances that violate the continuous or- 

er property is available on http://gwr3n.github.io/jsdp/ . 5 
5 File https://github.com/gwr3n/jsdp/blob/master/jsdp/src/main/java/jsdp/app/ 

tandalone/stochastic/capacitated/CapacitatedStochasticLotSizingFast.java 

15 
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Expected demand values for demand patterns in our test bed 

re shown in Table E.1 . 
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