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SWENDSEN-WANG DYNAMICS FOR THE FERROMAGNETIC ISING MODEL WITH
EXTERNAL FIELDS

WEIMING FENG, HENG GUO, JIAHENG WANG

AbstRact. We study the sampling problem for the ferromagnetic Ising model with consistent external
fields, and in particular, Swendsen-Wang dynamics on this model. We introduce a new grand model
unifying two closely related models: the subgraph world and the random cluster model. Through this
new viewpoint, we show:
(1) polynomial mixing time bounds for Swendsen-Wang dynamics and (edge-flipping) Glauber dynam-

ics of the random cluster model, generalising the bounds and simplifying the proofs for the no-field
case by Guo and Jerrum (2018);

(2) near linear mixing time for the two dynamics above if the maximum degree is bounded and all fields
are (consistent and) bounded away from 1.

KeywoRds. Ising model, random cluster model, Markov chain, mixing time, Swendsen-Wang dynamics,
holographic transformation

1. IntRoduction

The Ising model is a classical statistical physics model for ferromagnetism that had far-reaching
impact in many areas. In computer science / combinatorics terms, the model defines a weighted dis-
tribution over cuts of a graph. To be more precise, let 𝐺 = (𝑉 , 𝐸) be a simple undirected graph. For
each edge 𝑒 ∈ 𝐸, we have the local interaction strength 𝛽𝑒 ∈ R>0, and for each vertex 𝑣 ∈ 𝑉 , we have
the external magnetic field (namely vertex weight) 𝜆𝑣 ∈ R>0. An Ising model is specified by the tuple
(𝐺 ; 𝜷,𝝀), where 𝜷 = (𝛽𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 . We assign spins {0, 1} to the vertices 𝑉 . For each spin
configuration 𝜎 ∈ {0, 1}𝑉 , the weight of 𝜎 is defined by

wtIsing(𝜎) :=
∏

𝑒=(𝑢,𝑣) ∈𝐸
𝛽 I[𝜎 (𝑢 )=𝜎 (𝑣) ]𝑒

∏
𝑢∈𝑉

𝜆𝜎 (𝑢 )𝑢 ,

where I[𝜎 (𝑢) = 𝜎 (𝑣)] is the indicator variable of the event 𝜎 (𝑢) = 𝜎 (𝑣). The Gibbs distribution 𝜋Ising is
defined by

∀𝜎 ∈ {0, 1}𝑉 , 𝜋Ising(𝜎) =
wtIsing(𝜎)
𝑍Ising

,(1)

where
𝑍Ising = 𝑍Ising(𝐺 ; 𝜷,𝝀) :=

∑
𝜏∈{0,1}𝑉

wtIsing(𝜏)

is the partition function. In this paper we focus on the ferromagnetic case, where 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸,
with consistent fields, where 𝜆𝑣 ∈ (0, 1] for all 𝑣 ∈ 𝑉 . Note that by flipping the spins, the last assumption
is equivalent to assuming 𝜆𝑣 ∈ [1,∞) for all 𝑣 ∈ 𝑉 .

There is extensive computational interest in simulating the Ising model and in evaluating various
quantities related to it. A major contribution in the rigorous algorithmic study of the model is the
Jerrum-Sinclair algorithm [JS93], which is the first fully polynomial-time randomised approximation
scheme (FPRAS) for the partition function 𝑍Ising of the ferromagnetic Ising model with consistent fields
on any graph. The main ingredient of their algorithm is to show that a natural Markov chain mixes in
polynomial-time to sample from the so-called “subgraph-world” model, which has the same partition
function up to some easy to compute factors.

(Weiming Feng, Heng Guo, Jiaheng Wang) School of InfoRmatics, UniveRsity of EdinbuRgh, InfoRmatics FoRum,
EdinbuRgh, EH8 9AB, United Kingdom. E-mail: wfeng@ed.ac.uk, hguo@inf.ed.ac.uk, jiaheng.wang@ed.ac.uk
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Usually, using self-reducibility, approximately evaluating the partition function is computationally
inter-reducible to approximate sampling [JVV86]. However, in the case of the Ising model, the original
algorithm by Jerrum and Sinclair does not directly yield a sampling algorithm for spin configurations.
This is because inconsistent fields may be created during the self-reduction, making the algorithm no
longer applicable. To circumvent this issue, Randall and Wilson [RW99] showed that when there is no
external field, an efficient approximate sampler for spin configurations exists by doing self-reductions
in the so-called random cluster model. This is a model introduced by Fortuin and Kasteleyn [FK72] and
also has the same partition function as the previous two models up to some easy to compute factors.1

On the other hand, a different Markov chain introduced by Swendsen and Wang [SW87] has shown
great performance on sampling Ising configurations in practice. This dynamics is best understood via
the Edwards-Sokal distribution [ES88], which is a joint distribution on both edges and vertices. The
marginal distribution on vertices is the Ising model, and the marginal distribution on edges is the
random cluster model. Sokal and later Peres2 conjectured that the Swendsen-Wang (SW) dynamics
mixes in polynomial-time for ferromagnetic Ising models, and this was resolved in affirmative by Guo
and Jerrum [GJ18]. They showed that the edge-flipping dynamics for the random clustermodelmixes in
polynomial-time, and this dynamics is known to be no faster than the SW dynamics [Ull14]. Another
consequence of [GJ18] is that there is a perfect sampler for the ferromagnetic Ising model and the
corresponding random cluster model, improving upon the approximate sampler of [RW99]. This is
done via monotone coupling from the past (CFTP) [PW96] as the random cluster model is monotone.

One restriction of [GJ18] is that their result only applies to the ferromagnetic Ising model without
external fields. The original random cluster formulation of [FK72] does not incorporate external fields,
although it is not hard to do so by generalising to a weighted random cluster formulation. Indeed,
Park, Jang, Galanis, Shin, Štefankovič, and Vigoda [PJG+17] generalised the SW dynamics 𝑃 Ising

SW (see
Section 2.3.2 for detailed description) in the presence of external fields. They also showed efficiency of
this algorithm in certain parameter regimes and on random graphs. This left open the question if the
generalised SW dynamics is efficient in general.

To start stating our results, let us first define themixing time of Markov chains, which measures the
convergence rate and efficiency of Markov chain based algorithms. Let 𝑃 be a Markov chain whose
stationary distribution is 𝜋 over the state space Ω. The mixing time of 𝑃 is defined by

∀0 < 𝜀 < 1, 𝑇mix(𝑃, 𝜀) = max
𝑋0∈Ω

min
{
𝑡 | 𝑑TV

(
𝑃𝑡 (𝑋0, ·), 𝜋

)
≤ 𝜀

}
,

where 𝑑TV (𝜇, 𝜋) = 1
2

∑
𝜎∈Ω |𝜇 (𝜎) − 𝜋 (𝜎) | is the total variation distance between two distributions.

First, we show that the edge-flipping dynamics for the weighted random cluster model mixes in
polynomial-time. By adapting [Ull14] to the case with fields, this implies that the generalised SW
dynamics has a polynomial running time for any ferromagnetic Ising model with consistent fields on
any graph, answering the question above.

Theorem 1.1. Let 1 < 𝛽min ≤ 𝛽max be constants. For any ferromagnetic Ising model on graph𝐺 = (𝑉 , 𝐸)
with parameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where 𝛽min ≤ 𝛽𝑒 ≤ 𝛽max and 0 < 𝜆𝑣 ≤ 1, the mixing time
of Swendsen-Wang dynamics is 𝑂 (𝑁 4𝑚2 (

𝑚 + log 1
𝜀 )

)
, where 𝑁 = min

{
𝑛, 1

1−𝜆max

}
, 𝜆max = max𝑣∈𝑉 𝜆𝑣 ,

𝑛 = |𝑉 | and𝑚 = |𝐸 |.

Note that if 𝛽𝑒 = 1 for some 𝑒 ∈ 𝐸, it is equivalent to remove such an edge. Also if 𝜆𝑣 = 0 for some
𝑣 ∈ 𝑉 , it is equivalent to pin 𝑣 to 0 and then absorb 𝑣 into its neighbours external fields. Thus, any
ferromagnetic Ising model with consistent external fields can be transformed into one satisfying the
condition of Theorem 1.1. The big-𝑂 notation hides a constant factor depending only on 𝛽min and 𝛽max.
See (33) for the details of the hidden constant.

The main technical innovation of ours is to introduce a grand model, which incorporates both the
so-called subgraph world [JS93] and the random cluster model. The subgraph world assigns weights

1The random cluster model has a parameter 𝑞 > 0. The Ising model corresponds to the case of 𝑞 = 2.
2Peres further conjectured that the sharp mixing time bound is 𝑂 ( |𝑉 |1/4).
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to subsets of edges, where each vertex of an odd degree in the induced graph suffers a penalty corre-
sponding to its external field (or the lack thereof). Detailed definitions of the basic models are given
in Section 2.1.

The main inspiration of our grand model is the coupling given by Grimmett and Janson [GJ07b]
between the two models above without external fields. Our model assigns 3 states to each edge: 0, 1, 2.
A sample of ourmodel can be generated as follows: first, we sample a subset of edges from the subgraph
world model, and assign 1 to them; then, we assign 0 or 2 to each remaining independently with a
carefully chosen probability. Detailed definitions are in Section 3.1. The marginal distribution of edges
assigned 1 clearly follow the subgraph world distribution, and we show that the non-zero edges follow
the weighted random cluster model (Lemma 3.3). This last step is done using Valiant’s holographic
transformations [Val08]. It is also a generalisation of [GJ07b] in the presence of external fields.

We give a polynomial upper bound of the mixing time of the Glauber dynamics for the grand model
in Section 4 via the method of canonical paths [JS89]. Our construction of the canonical path is a
variation of the original paths by Jerrum and Sinclair [JS93]. The projection of this dynamics to the
non-zero edges is exactly the Glauber dynamics for the weighted random cluster model. We show
that this project does not slow down the dynamics (Section 6), and therefore mixing time bounds for
the weighted random cluster model is a direct consequence. This implies Theorem 1.1. When there is
no field, our argument recovers the result of Guo and Jerrum [GJ18]. However, our argument is both
simpler and more general.

Another important feature of the grand model is that it gives a Gibbs distribution, in the sense that
variables are independent if we condition on a subset of edges which disconnect the graph. This is a
feature absent in the random cluster models. Recently, there is a lot of progress in analysing the mixing
time of dynamics for Gibbs distributions, especially using the notion of spectral independence [ALO20].
Since the domain in our case is not Boolean, we use a generalisation of [FGYZ21] (see also [CGŠV21]
for a different generalisation). An important development along this line is that in bounded degree
graphs, spectral independence implies near-linear mixing time of dynamics for the Gibbs distribution
[CLV21a]. To bemore precise, they showed a constant decay rate for the relative entropy in this setting.

Back to the Ising model, when the maximum degree is bounded and all external fields are bounded
away from 1, Chen, Liu, and Vigoda [CLV21b] established spectral independence for the subgraph
world model. Using our grand model, this implies spectral independence for the random cluster model
as well. However, since the random cluster model does not have conditional independence, the method
of [CLV21a] does not apply. Instead, we show spectral independence for the grand model in this
setting. Thus, via the method of [CLV21a] and exploiting the fact that the grand model is indeed
a Gibbs distribution, we obtain a constant decay rate for the relative entropy for the (edge-flipping)
Glauber dynamics for the weighted random cluster model. (We apply the result of projecting chains
in Section 6 here again.)

However, this is still not quite enough to obtain desired mixing time bounds for the Swendsen-Wang
dynamics. The reason is that the aforementioned comparison techniques of [Ull14] is an analysis of the
eigenvalues of transitionmatrices, and thus it works only for spectral gaps but not for relative entropies.
For this last step, we introduce a new comparison argument for the decay rate of relative entropies
between the (edge-flipping) Glauber dynamics and the Swendsen-Wang dynamics in Section 7.

To be more precise, we perform a careful analysis between the Glauber dynamics and the so-called
“single-bond” dynamics introduced in [Ull14]. Our analysis utilises ideas from high-dimensional ran-
dom walks [ALOV19, CGM21]. For both the Glauber dynamics and the single-bond dynamics, we
decompose them into two sub-steps: the down-walk and the up-walk. Using our grand model, we
bound the decay rate of relative entropy for the down-walk of Glauber dynamics. By a new com-
parison argument, we show that the relative entropy also decays for the down-walk of “single-bond”
dynamics with a slightly weaker rate. Finally, we compare the down-walk of “single-bond” dynamics
to the Swendsen-Wang dynamics via a simple application of the data processing inequality. Our analy-
sis not only works for the decay of relative entropy, but also gives a very simple proof (see Remark 7.5)
to the main result in [Ull14].
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Theorem 1.2. Let 1 < 𝛽min ≤ 𝛽max,Δ ≥ 3 and 0 < 𝛿 < 1 be constants. For any ferromagnetic Ising
model on graph𝐺 = (𝑉 , 𝐸) with parameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where 𝛽min ≤ 𝛽𝑒 ≤ 𝛽max, 0 < 𝜆𝑣 ≤ 1−𝛿
and the maximum degree of 𝐺 is at most Δ, the mixing time of Swendsen-Wang dynamics is 𝑂 (𝑛 log 𝑛

𝜀 ),
where 𝑛 = |𝑉 |.

By the same reasoning below Theorem 1.1, we do not lose generality by assuming 𝛽min > 1 and
𝜆𝑣 > 0 in Theorem 1.2. The big-𝑂 notation hides a constant factor depending only on 𝛽min, 𝛽max, 𝛿 and
Δ. See (34) for the details of the hidden constant.

Comparing toTheorem 1.1, Theorem 1.2 has a faster mixing time bound but comes with two further
assumptions: constant degree bound and no trivial field. It would be very interesting to relax either
restriction. Essentially, the bottleneck in Theorem 1.1 comes from the overhead in the canonical path
[JS93] or multicommodity flow method [Sin92] arguments. Unfortunately, there does not seem to be
any progress in improving the mixing time bound of these methods in the last three decades. Instead,
Theorem 1.2 relies on recent progress of analysing spin systems via high-dimensional random walks
[CLV21a, CLV21b]. This method has very recently been generalised to bypass the bounded degree
restriction [AJK+21, CFYZ22, CE22] in various models. It is an interesting question whether this is
also possible in the setting of Theorem 1.2. To bypass the no trivial field restriction, we would need a
new spectral independence bound, for which there seems to be less progress. In particular, it seems
hard to explain the Θ(𝑛1/4) mixing time on the complete graph without fields [LNNP14] with spectral
independence.

Previously, most studies on Swendsen-Wang dynamics focus on the case without fields (with the
exception of [PJG+17] discussed earlier), and are usually for the more general Potts model instead of
just the Ising model. Very sharp mixing time bounds have been obtained recently, either for special
cases of graphs such as Z𝑑 [BCP+21], or in the tree uniqueness region for general graphs [BCC+22].
Our Theorem 1.2 does not have these restrictions, but it only works with the presence of non-trivial
external fields for the Ising model. In the settings of Theorem 1.2, we conjecture that the sharp mixing
time bound is 𝑂 (log𝑛). The current argument reduces the analysis of SW dynamics to that of the
single-bond dynamics, as the latter is “no-faster” in a technical sense. However, since the diameter
of the single-bond dynamics is Ω(𝑛), it cannot mix in 𝑜 (𝑛) time [LP17, §7.1.2], making this line of
argument difficult to approach the conjectured sharp bound for SW dynamics.

Lastly, by applying the monotone CFTP [PW96], we obtain perfect sampling versions of the (edge-
flipping) Glauber dynamics in Section 8 for theweighted random clustermodels. Using that, we achieve
perfectly sampling for the ferromagnetic Ising model with consistent external fields.

Theorem 1.3. Let 1 < 𝛽min ≤ 𝛽max be two constants. There is a perfect sampling algorithm such that
given any ferromagnetic Ising model on graph 𝐺 = (𝑉 , 𝐸) with parameters (𝛽𝑒)𝑒∈𝐸 and (𝜆𝑣)𝑣∈𝑉 , where
𝛽min ≤ 𝛽𝑒 ≤ 𝛽max and 0 < 𝜆𝑣 < 1, the algorithm returns a perfect sample in expected time𝑂 (𝑁 4𝑚4 log𝑛),
where 𝑁 = min

{
𝑛, 1

1−𝜆max

}
and 𝜆max = max𝑣∈𝑉 𝜆𝑣 .

Furthermore, if𝐺 has bounded maximum degree Δ = 𝑂 (1) and there exists a constant 𝛿 > 0 such that
𝜆𝑣 ≤ 1 − 𝛿 for all 𝑣 ∈ 𝑉 , the algorithm runs in expected time 𝑂 (𝑛2 log2 𝑛).

We remark that the overhead in monotone CFTP is 𝑂 (log |𝑉 |) and there is an extra factor𝑚 = |𝐸 |
to implement each step of CFTP. The hidden constants can be found in (44).

A natural question is if we can relax the assumptions on the parameters in Theorem 1.1, 1.2, and 1.3.
For anti-ferromagnetic Ising models, the sampling problem (either approximate or perfect) has no
polynomial-time algorithmunlessNP = RP [JS93]. Even restricted to the ferromagnetic case, Goldberg
and Jerrum [GJ07a] showed that the problem becomes #BIS-equivalent when inconsistent fields are
allowed, where #BIS stands for counting bipartite independent sets. Its approximation complexity is
a major open problem and is usually conjectured to have no polynomial-time algorithm. Thus, it is
unlikely to extend the range of parameters in in Theorem 1.1, 1.2, and 1.3.
Subsequent work. After our paper was posted on arXiv, Chen and Zhang [CZ23] gave a sampling
algorithm of the ferromagnetic Ising model on any graph with running time �̃� (𝑚), where 𝑚 is the
number of edges, providing all the external fields are bounded away from 1 and all the edge interactions
are consistent and bounded away from 1. This is a setting similar to our Theorem 1.2 without the
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bounded degree assumption. Their work relies heavily on our coupling result, Lemma 3.3. Furthermore,
their algorithm is based on the field dynamics introduced in [CFYZ21], and does not imply mixing time
bounds for either the Glauber dynamics or the Swendsen-Wang dynamics considered in the current
paper.

2. PReliminaRies

2.1. The models and their equivalences. Here we define the weighted random cluster model, and
the subgraph-world model. Then we give some equivalence results between them and the ferromag-
netic Ising model.

2.1.1. Weighted random cluster model. The standard random cluster model (at 𝑞 = 2) is equivalent to
the ferromagnetic Ising model without external fields. To handle Ising models with fields, we need
to introduce weights to the random cluster model. Given a graph 𝐺 = (𝑉 , 𝐸), the parameters of this
model are 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1 and 𝜆𝑣 > 0. The weight of any subset of
edges 𝑆 ⊆ 𝐸 is given by

(2) wtwrc(𝑆) :=
∏
𝑒∈𝑆

𝑝𝑒
∏
𝑓 ∈𝐸\𝑆

(1 − 𝑝 𝑓 )
∏

𝐶∈𝜅 (𝑉 ,𝑆 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
,

where 𝜅 (𝑉 , 𝑆) is the set of all connected components of the graph (𝑉 , 𝑆), where each 𝐶 ∈ 𝜅 (𝑉 , 𝑆) is a
subset of vertices that forms a connected subgraph. The probability that 𝑆 is drawn is

𝜋wrc(𝑆) =
wtwrc(𝑆)
𝑍wrc

(3)

where
𝑍wrc = 𝑍wrc(𝐺 ;𝒑,𝝀) :=

∑
𝑆⊆𝐸

wtwrc(𝑆)

is the partition function of the weighted random cluster model. The (general) standard random cluster
model allows a uniform weight 𝑞 for each connected component, and in the special case of 𝜆𝑣 = 1 for
all 𝑣 ∈ 𝑉 , the weighted random cluster model degenerates to the standard random cluster model at
𝑞 = 2. On the other hand, in our model the weight of each cluster depends on the vertices inside it,
which makes it different from the standard random cluster models.

2.1.2. Subgraph-world model. Fix a graph𝐺 = (𝑉 , 𝐸). For any subset of edges 𝑆 ⊆ 𝐸, denote by odd(𝑆)
the set of vertices with odd degree in 𝑆 . The subgraph-world model [JS93] with parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸
and 𝜼 = (𝜂𝑣)𝑣∈𝑉 is defined by following: each subset of edges 𝑆 has weight

(4) wtsg(𝑆) :=
∏
𝑒∈𝑆

𝑝𝑒
∏
𝑓 ∈𝐸\𝑆

(1 − 𝑝 𝑓 )
∏

𝑣∈odd(𝑆 )
𝜂𝑣 .

The probability that 𝑆 is drawn is

𝜋sg(𝑆) =
wtsg(𝑆)
𝑍sg

(5)

where
𝑍sg = 𝑍sg(𝐺 ;𝒑,𝜼) :=

∑
𝑆⊆𝐸

wtsg(𝑆)

is the partition function of the subgraph-world model. In the special case where 𝑝𝑒 = 𝑝 ∈ (0, 1) for all
𝑒 ∈ 𝐸 and 𝜂𝑣 = 0 for all 𝑣 ∈ 𝑉 , the weight of any subgraph 𝑆 does not vanish if and only if 𝑆 is an even
subgraph, i.e., odd(𝑆) = ∅. This yields the even subgraph model, or the so-called “high-temperature
expansion” in the context of statistical mechanics.
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2.1.3. Equivalences of the three models. We have the following equivalence result among the ferromag-
netic Ising model with external fields, the weighted random cluster model, and the subgraph-world
model. The proof of the equivalence result is given in Appendix A for completeness.

Proposition 2.1. Given any graph 𝐺 = (𝑉 , 𝐸), any 𝜷 = (𝛽𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 satisfying 𝛽𝑒 > 1 for
all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 , it holds that

(6)
(∏
𝑒∈𝐸

𝛽𝑒

)
· 𝑍wrc(𝐺 ; 2𝒑,𝝀) = 𝑍Ising(𝐺 ; 𝜷,𝝀) =

(∏
𝑣∈𝑉
(1 + 𝜆𝑣)

) (∏
𝑒∈𝐸

𝛽𝑒

)
𝑍sg(𝐺 ;𝒑,𝜼),

where 𝒑 = (𝑝𝑒)𝑒∈𝐸 satisfying 𝑝𝑒 = 1
2

(
1 − 1

𝛽𝑒

)
and 𝜼 = (𝜂𝑣)𝑣∈𝑉 satisfying 𝜂𝑣 =

1−𝜆𝑣
1+𝜆𝑣 .

In addition, there are also probabilistic equivalence relations among the models, which will be the
topic in Section 3.

Remark 2.2. For the ferromagnetic Ising model (𝐺 ; 𝜷,𝝀) = (𝐺 ; 𝛽, 1), where 𝛽𝑒 = 𝛽 > 1 for all 𝑒 ∈ 𝐸
and 𝜆𝑣 = 1 for all 𝑣 ∈ 𝑉 , its relationship with the even subgraph model and the random cluster model
is well known (see e.g. [vdW41, FK72, Gri06]). Formally,

𝛽 |𝐸 |𝑍wrc(𝐺 ; 2𝑝, 1) = 𝑍Ising(𝐺 ; 𝛽, 1) = 2 |𝑉 |𝛽 |𝐸 |𝑍sg(𝐺 ; 𝑝, 0) where 𝑝 =
1
2

(
1 − 1

𝛽

)
,

which is a special case of Proposition 2.1.

2.2. 𝑓 -divergences. A widely-used quantity for measuring the difference between two distributions
is the 𝑓 -divergence. Let 𝑓 : R≥0 → R be a convex function satisfying 𝑓 (1) = 0. Let 𝜇 be a distribution
with (finite) support Ω = Ω(𝜇). Let 𝜈 be a distributions with support Ω(𝜈) ⊆ Ω. The 𝑓 -divergence
between 𝜈 and 𝜇 is defined by

𝐷 𝑓 (𝜈 ∥ 𝜇) := E𝑋∼𝜇

[
𝑓

(
𝜈 (𝑋 )
𝜇 (𝑋 )

)]
.

In this paper, we consider three important 𝑓 -divergences: the total variation distance, the 𝜒2-divergence,
and the Kullback-Leibler divergence (KL divergence).

Let 𝑓 (𝑥) = 1
2 |𝑥 − 1|. The total variation distance between 𝜈 and 𝜇 is defined by

𝑑TV (𝜈, 𝜇) :=
1
2

∑
𝑥∈Ω
|𝜈 (𝑥) − 𝜇 (𝑥) | .

We say the random variable (𝑋,𝑌 ) ∈ Ω×Ω is a coupling between 𝜈 and 𝜇 if the marginal distributions
satisfy 𝑋 ∼ 𝜈 and 𝑌 ∼ 𝜇. The coupling inequality states that for any coupling (𝑋,𝑌 ),

Pr[𝑋 ≠ 𝑌 ] ≥ 𝑑TV (𝜈, 𝜇) ,(7)

and there exists an optimal coupling between 𝜈 and 𝜇 such that equality holds.
Let 𝑓 (𝑥) = 𝑥2 − 1. The 𝜒2 divergence between 𝜈 and 𝜇 is defined by

𝐷𝜒2 (𝜈 ∥ 𝜇) :=
∑
𝑥∈Ω

𝜈2(𝑥)
𝜇 (𝑥) − 1.

A similar notion is the relative variance of a function 𝑔 : Ω → R≥0 over 𝜇:

Var𝜇 (𝑔) = E𝜇 [𝑔2] − E2𝜇 [𝑔] =
∑
𝑥∈Ω

𝜇 (𝑥)𝑔2(𝑥) −
(∑
𝑥∈Ω

𝜇 (𝑥)𝑔(𝑥)
)2

.

Clearly, if 𝑔(𝑥) = 𝜈 (𝑥 )
𝜇 (𝑥 ) , then Var𝜇 (𝑔) = 𝐷𝜒2 (𝜈 ∥ 𝜇). The following relation is well-known

𝑑TV (𝜈, 𝜇) ≤
√
𝐷𝜒2 (𝜈 ∥ 𝜇).(8)
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Let 𝑓 (𝑥) = 𝑥 log𝑥 . The Kullback-Leibler divergence (KL divergence) is defined by

𝐷KL (𝜈 ∥ 𝜇) :=
∑
𝑥∈Ω

𝜈 (𝑥) log
(
𝜈 (𝑥)
𝜇 (𝑥)

)
.

A similar notion is the relative entropy of a function 𝑔 : Ω → R≥0 over 𝜇:

Ent𝜇 (𝑔) := E𝜇 [𝑔 log𝑔] − E𝜇 [𝑔] logE𝜇 [𝑔] =
∑
𝑥∈Ω

𝜇 (𝑥)𝑔(𝑥) log𝑔(𝑥) −
(∑
𝑥∈Ω

𝜇 (𝑥)𝑔(𝑥)
)
log

(∑
𝑥∈Ω

𝜇 (𝑥)𝑔(𝑥)
)
,

where the convention is that 0 log 0 = 0. Clearly, if 𝑔(𝑥) = 𝜈 (𝑥 )
𝜇 (𝑥 ) , Ent𝜇 (𝑔) = 𝐷KL (𝜈 ∥ 𝜇). The following

Pinsker’s inequality is well known

𝑑TV (𝜈, 𝜇) ≤
√

𝐷KL (𝜈 ∥ 𝜇)
2

.(9)

For any stochastic matrix 𝑃 that transforms any 𝑥 ∈ Ω to a random 𝑦 ∈ Ω′ (Ω′ is not necessarily
the same as Ω), the following data-processing inequality is well-known: for any 𝑓 -divergence,

𝐷 𝑓 (𝜈𝑃 ∥ 𝜇𝑃) ≤ 𝐷 𝑓 (𝜈 ∥ 𝜇) .

2.3. Markov chains and down-up walks. Let Ω be a finite state space. Let (𝑋𝑡 )𝑡≥0 be a Markov
chain over Ω and 𝑃 denote the transition matrix. We say 𝑃 is

• irreducible if for any 𝑥,𝑦 ∈ Ω, there exists 𝑡 > 0 such that 𝑃𝑡 (𝑥,𝑦) > 0;
• aperiodic if gcd{𝑡 | 𝑃𝑡 (𝑥, 𝑥) > 0} = 1 for all 𝑥 ∈ Ω;
• reversible with respect to 𝜇 if the following detailed balance equation holds

∀𝑥,𝑦 ∈ Ω, 𝜇 (𝑥)𝑃 (𝑥,𝑦) = 𝜇 (𝑦)𝑃 (𝑦, 𝑥) .

We say the distribution 𝜇 is a stationary distribution of 𝑃 if 𝜇𝑃 = 𝜇. If 𝑃 is reversible with respect to
𝜇, then 𝜇 is a stationary distribution of 𝑃 . If 𝑃 is both irreducible and aperiodic, then 𝑃 has a unique
stationary distribution. The mixing time of 𝑃 is defined by

∀𝜀 > 0, 𝑡mix(𝑃, 𝜀) := max
𝑥∈Ω

min{𝑡 | 𝑑TV
(
𝑃𝑡 (𝑥, ·), 𝜇

)
≤ 𝜀}.

In this paper, we consider two Markov chains: Glauber dynamics and Swendsen-Wang dynamics.
It will be convenient for us to view Glauber dynamics as a so-called “down-up” walk, which we will
define next.

Let Ω0 and Ω1 denote two finite state spaces. Let 𝜇0 and 𝜇1 denote two distributions over Ω0 and Ω1

respectively. For 𝑓 , 𝑔 : Ω𝑖 → R, define ⟨𝑓 , 𝑔⟩𝜇𝑖 =
∑

𝑥∈Ω𝑖
𝜇𝑖 (𝑥) 𝑓 (𝑥)𝑔(𝑥). Let 𝑃↑ : Ω0 × Ω1 → R≥0 and

𝑃↓ : Ω1 × Ω0 → R≥0 denote two transition matrices. We say 𝑃↑ and 𝑃↓ are a pair of adjoint operator if

∀𝑓 : Ω0 → R, 𝑔 : Ω1 → R, ⟨𝑓 , 𝑃↑𝑔⟩𝜇0 = ⟨𝑃↓ 𝑓 , 𝑔⟩𝜇1 .

The following equation holds for adjoint 𝑃↑ and 𝑃↓:

∀𝑥0 ∈ Ω0, 𝑥1 ∈ Ω1, 𝜇0(𝑥0)𝑃↑ (𝑥0, 𝑥1) = 𝜇1(𝑥1)𝑃↓ (𝑥1, 𝑥0) .

Moreover, for any distribution 𝜈 over Ω1 and 𝑓 = 𝜈
𝜇1
, it holds that

𝐷KL
(
𝜈𝑃↓ ∥ 𝜇0

)
= Ent𝜇1

(
𝑃↑ 𝑓

)
and 𝐷𝜒2

(
𝜈𝑃↓ ∥ 𝜇0

)
= Var𝜇1

(
𝑃↑ 𝑓

)
.

It is straightforward to verify 𝑃∨ = 𝑃↓𝑃↑ and 𝑃∧ = 𝑃↑𝑃↓ are self-adjoint, i.e. ⟨𝑓 , 𝑃∨𝑔⟩𝜇1 = ⟨𝑃∨ 𝑓 , 𝑔⟩𝜇1
and ⟨𝑓 , 𝑃∧𝑔⟩𝜇0 = ⟨𝑃∧ 𝑓 , 𝑔⟩𝜇0 . Hence, 𝑃∨ and 𝑃∧ are reversible with respect to 𝜇1 and 𝜇0 respectively.
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2.3.1. Glauber dynamics. Given a distribution 𝜇 with support𝑄𝑉 , let Ω1 = 𝑄𝑉 and Ω0 = {𝜎 ∈ 𝑄𝑉 \{𝑣} |
𝑣 ∈ 𝑉 }. and the current state 𝑋 ∈ Ω, the transition 𝑋 → 𝑋 ′ of Glauber dynamics can be interpreted
as the following two steps

• down walk 𝑃↓Glauber: pick 𝑣 ∈ 𝑉 uniformly at random and transform 𝑋 ∈ Ω1 to 𝑋𝑉 \𝑣 ∈ Ω0;
• up walk 𝑃↑Glauber: sample 𝑐 ∼ 𝜇

𝑋𝑉 \{𝑣}
𝑣 and transform 𝑋𝑉 \𝑣 ∈ Ω0 to 𝑋 ′ ∈ Ω1 such that 𝑋 ′𝑣 = 𝑐 and

𝑋 ′
𝑉 \{𝑣} = 𝑋𝑉 \{𝑣} .

Let 𝜇0 := 𝜇𝑃↓Glauber be a distribution over Ω0. Then 𝑃↓Glauber and 𝑃
↑
Glauber is a pair of adjoint operators with

respect to distributions 𝜇1 = 𝜇 and 𝜇0. Thus, Glauber dynamics is a down-up walk and is reversible
with respect to 𝜇.

2.3.2. Swendsen-Wang dynamics. Let 𝐺 = (𝑉 , 𝐸) be a graph. Consider the ferromagnetic Ising model
on 𝐺 with parameters 𝜷 = (𝛽𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , where 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸, and the weighted
random cluster model on 𝐺 with parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , where 𝑝𝑒 = 1 − 1

𝛽𝑒
for all

𝑒 ∈ 𝐸. Recall 𝜋Ising from (1) and 𝜋wrc from (3).
Define the following two transformations between Ising and weighted random cluster models.
• 𝑃I→R : {0, 1}𝑉 → 2𝐸 : Given any Ising configuration 𝜎 ∈ {0, 1}𝑉 , 𝑃I→R transforms 𝜎 into
a weighted random cluster model configuration 𝑆 ⊆ 𝐸. For each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with
𝜎 (𝑢) = 𝜎 (𝑣), add 𝑒 independently into 𝑆 with probability 𝑝𝑒 = 1 − 1

𝛽𝑒
. Formally,

∀𝜎 ∈ {0, 1}𝑉 , 𝑆 ⊆ 𝐸, 𝑃I→R (𝜎, 𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] ·
∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

)
·

∏
𝑓 ∈𝑀 (𝜎 )\𝑆

1
𝛽𝑓

,(10)

where𝑀 (𝜎) = {𝑒 = {𝑢, 𝑣} ∈ 𝐸 | 𝜎𝑢 = 𝜎𝑣} is the set of monochromatic edges with respect to 𝜎 .
• 𝑃R→I : {0, 1}𝐸 → {0, 1}𝑉 : Given any weighted random cluster model configuration 𝑆 ⊆ 𝐸,
𝑃R→I transforms 𝑆 to an Ising configuration 𝜎 ∈ {0, 1}𝑉 . For each connected component
𝐶 ⊆ 𝑉 in graph 𝐺 ′ = (𝑉 , 𝑆), sample 𝑥𝐶 ∈ {0, 1} independently according to the following
distribution

𝑥𝐶 =

{
1 with probability

∏
𝑣∈𝐶 𝜆𝑣

1+∏𝑣∈𝐶 𝜆𝑣
;

0 with probability 1
1+∏𝑣∈𝐶 𝜆𝑣

,

and then let 𝜎 (𝑣) = 𝑥𝐶 for all vertices 𝑣 ∈ 𝐶 . Formally,

∀𝜎 ∈ {0, 1}𝑉 , 𝑆 ⊆ 𝐸, 𝑃R→I (𝑆, 𝜎) = I[𝑆 ⊆ 𝑀 (𝜎)] ·
∏

𝐶∈𝜅 (𝑉 ,𝑆 )

∏
𝑣∈𝐶 𝜆𝜎 (𝑣)𝑣

1 +∏
𝑣∈𝐶 𝜆𝑣

,(11)

where 𝜅 (𝑉 , 𝑆) is the set of connected components in graph 𝐺 ′ = (𝑉 , 𝑆).
The Swendsen-Wang dynamics for Ising models is defined by

𝑃
Ising
SW := 𝑃I→R𝑃R→I,(12)

and the Swendsen-Wang dynamics for weighted random cluster models is defined by
𝑃wrc
SW := 𝑃R→I𝑃I→R .(13)

The following adjoint result about Swendsen-Wang dynamics is well-known. However, here we
consider more general Ising models with external fields and weighted random cluster models. For
completeness, we provide a proof of the following proposition in Appendix B.
Proposition 2.3. For any functions 𝑓 : {0, 1}𝑉 → R and 𝑔 : 2𝐸 → R, it holds that

⟨𝑓 , 𝑃I→R𝑔⟩𝜋Ising = ⟨𝑃R→I 𝑓 , 𝑔⟩𝜋wrc .(14)

By Proposition 2.3, it holds that 𝜋Ising𝑃I→R = 𝜋wrc and 𝜋wrc𝑃R→I = 𝜋Ising. Both 𝑃
Ising
SW and 𝑃wrc

SW are
down-up walks, and their stationary distributions are 𝜋Ising and 𝜋wrc respectively.

Finally, the mixing times of 𝑃 Ising
SW and 𝑃wrc

SW have the following relationships:

𝑇mix

(
𝑃
Ising
SW , 𝜀

)
≤ 𝑇mix

(
𝑃wrc
SW , 𝜀

)
+ 1 and 𝑇mix

(
𝑃wrc
SW , 𝜀

)
≤ 𝑇mix

(
𝑃
Ising
SW , 𝜀

)
+ 1.(15)
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We prove the first one, the second one holds similarly. Let 𝑇 = 𝑇mix
(
𝑃wrc
SW , 𝜀

)
. For any distribution 𝜈

over {0, 1}𝑉 , we have

𝑑TV
(
𝜈 (𝑃 Ising

SW )
𝑇+1, 𝜋Ising

)
= 𝑑TV

(
(𝜈𝑃I→R) (𝑃wrc

SW )𝑇𝑃R→I, 𝜋wrc𝑃R→I
)

(by data processing inequality) ≤ 𝑑TV
(
(𝜈𝑃I→R)(𝑃wrc

SW )𝑇 , 𝜋wrc
)
≤ 𝜀.

2.4. Canonical paths and variance decay. Let 𝑃 denote a random walk over Ω that is reversible
with respect to 𝜇. It is well-known that 𝑃 has real eigenvalues 1 = 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆 |Ω | . The spectral
gap is defined by

𝔊𝔞𝔭(𝑃) = 1 − 𝜆2.

Define the Dirichlet form of 𝑃 by for any functions 𝑓 , 𝑔 : Ω → R,

E𝑃 (𝑓 , 𝑔) = ⟨𝑓 , (𝐼 − 𝑃)𝑔⟩𝜇 =
1
2

∑
𝑥,𝑦∈Ω

𝜇 (𝑥)𝑃 (𝑥,𝑦) (𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔(𝑥) − 𝑔(𝑦)) .

We can also characterise the spectral gap𝔊𝔞𝔭(𝑃) in a variational form:

𝔊𝔞𝔭(𝑃) = inf

{
E𝑃 (𝑓 , 𝑓 )
Var𝜇 (𝑓 )

| 𝑓 : Ω → R ∧ Var𝜇 (𝑓 ) ≠ 0

}
.(16)

A useful tool to analyse the spectral gap of a reversibleMarkov chain is the canonical path introduced
by Jerrum and Sinclair [JS89]. Let 𝑃 be a reversible Markov chain over the state space Ωwith stationary
distribution 𝜋 . Let 𝛾𝑋𝑌 = (𝑍0 = 𝑋,𝑍1, 𝑍2, . . . , 𝑍ℓ = 𝑌 ) be a path of length ℓ moving in the state space
using transitions of 𝑃 , i.e. for any 𝑖 ∈ [ℓ], 𝑃 (𝑍𝑖−1, 𝑍𝑖) > 0. For each pair of 𝑋,𝑌 ∈ Ω, its path 𝛾𝑋𝑌 is
assigned a weight 𝑤 (𝛾𝑋𝑌 ) = 𝜇 (𝑋 )𝜇 (𝑌 ). Let Γ be the collection of all canonical paths. The congestion
of Γ is defined by

(17) 𝜚 (Γ) := max
(𝑍,𝑍 ′ ) ∈Ω2,𝑃 (𝑍,𝑍 ′ )>0

𝐿

𝜇 (𝑍 )𝑃 (𝑍,𝑍 ′)
∑

𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾
𝑤 (𝛾)

where 𝐿 is the maximum length of path in Γ. Sinclair [Sin92] showed that the congestion of any
collection of paths Γ for a Markov chain 𝑃 is an upper bound of the inverse of its spectral gap, namely,

1
𝔊𝔞𝔭(𝑃) ≤ 𝜚 (Γ).

Consider the down-up walk 𝑃∨ = 𝑃↓𝑃↑ over Ω1, where 𝑃↓ : Ω1×Ω0 → R≥0 and 𝑃↑ : Ω0×Ω1 → R≥0
are a pair of adjoint operators with respect to distribution 𝜇0 over Ω0 and 𝜇1 over Ω1. For simplicity,
we denote Ω1 by Ω, and we denote 𝜇1 by 𝜇. The following result holds for 𝑃∨.

Proposition 2.4. Let 𝑃∨ = 𝑃↓𝑃↑ be a down-up walk over Ω that is reversible with respect to 𝜇. For any
0 < 𝛿 < 1, the spectral gap𝔊𝔞𝔭(𝑃∨) ≥ 𝛿 if and only if for any distribution 𝜈 over Ω,

𝐷𝜒2

(
𝜈𝑃↓ ∥ 𝜇𝑃↓

)
≤ (1 − 𝛿) 𝐷𝜒2 (𝜈 ∥ 𝜇) .(18)

Proof. Let 𝑓 = 𝜈
𝜇 . It holds that

E𝑃∨ (𝑓 , 𝑓 ) = ⟨𝑓 , 𝑓 ⟩𝜇 − ⟨𝑓 , 𝑃∨ 𝑓 ⟩𝜇 = ⟨𝑓 , 𝑓 ⟩𝜇 − ⟨𝑃↑ 𝑓 , 𝑃↑ 𝑓 ⟩𝜇0 = Var𝜇 (𝑓 ) − Var𝜇0
(
𝑃↑ 𝑓

)
.

Then the lemma follows from 𝐷𝜒2
(
𝜈𝑃↓ ∥ 𝜇𝑃↓

)
= Var𝜇0

(
𝑃↑ 𝑓

)
, 𝐷𝜒2 (𝜈 ∥ 𝜇) = Var𝜇 (𝑓 ), and (16). □
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2.5. Spectral independence and entropy decay. Let 𝑄 be a finite set. Let 𝜇 be a distribution with
support 𝑄𝑉 . Fix a partial pinning 𝜏 ∈ 𝑄Λ for some Λ ⊆ 𝑉 . Define the absolute influence matrix Ψ𝜏

𝜇 by

∀𝑢, 𝑣 ∈ 𝑉 \ Λ with 𝑢 ≠ 𝑣, Ψ𝜏
𝜇 (𝑢, 𝑣) := max

𝑖, 𝑗∈𝑄
𝑑TV

(
𝜇𝜏∧(𝑢←𝑖 )
𝑣 , 𝜇𝜏∧(𝑢←𝑗 )

𝑣

)
∀𝑣 ∈ 𝑉 \ Λ, Ψ𝜏

𝜇 (𝑣, 𝑣) := 0.

where 𝑑TV (·, ·) denotes the total variation distance and 𝜇𝜏∧(𝑢←𝑖 )
𝑣 denotes the marginal distribution on

𝑣 conditional on that variables in Λ take the value 𝜏 and𝑢 takes the value 𝑖 . We say that the distribution
𝜇 is ℓ∞-spectrally independent with parameter 𝜁 if

∀Λ ⊂ 𝑉 , 𝜎 ∈ 𝑄Λ,
Ψ𝜎

𝜇


∞
= max

𝑢∉Λ

∑
𝑣∉Λ

Ψ𝜎
𝜇 (𝑢, 𝑣) ≤ 𝜁 .

Call 𝜇 𝑏-marginally bounded if

min
Λ⊆𝑉 ,𝑣∉Λ

min
𝜎∈𝑄Λ,𝑐∈𝑄

𝜇𝜎𝑣 (𝑐) ≥ 𝑏.

In this paper, we are particularly interested in Gibbs distributions. We will consider a slightly more
general than usual version defined over hypergraphs. Let 𝐻 = (𝑉 , E) be a hypergraph. Given weight
functions (𝜙𝑣)𝑣∈𝑉 and (𝜙𝑒)𝑒∈E , where 𝜙𝑣 : 𝑄 → R>0 and 𝜙𝑒 : 𝑄𝑒 → R>0, define the Gibbs distribution
𝜇 over 𝑄𝑉 by

∀𝜎 ∈ 𝑄𝑉 , 𝜇 (𝜎) ∝
∏
𝑣∈𝑉

𝜙𝑣 (𝜎𝑣)
∏
𝑒∈E

𝜙𝑒 (𝜎𝑒) .

Let 𝐺𝜇 = (𝑉 , 𝐸) be a graph such that {𝑢, 𝑣} ∈ 𝐸 if 𝑢 ∈ 𝑒′ and 𝑣 ∈ 𝑒′ for some 𝑒′ ∈ E. For any
disjoint 𝐴, 𝐵,𝐶 ⊆ 𝑉 , if the removal of 𝐶 disconnects 𝐴 and 𝐵 in 𝐺𝜇 , it holds that variables in 𝐴 and 𝐵
are independent in 𝜇 conditional on any assignment on 𝐶 . Define maximum degree 𝐷𝜇 of the Gibbs
distribution 𝜇 as the maximum degree of the graph 𝐺𝜇 .

The spectral independence is related to the mixing time of Glauber dynamics. The following result
is proved in [CLV21a, BCC+22] (see also [CLV21b, Theorem 13])

Theorem 2.5 ([CLV21a, BCC+22]). Let 𝜁 , 𝑏, 𝐷 > 0. For any Gibbs distribution 𝜇 over𝑄𝑉 , where |𝑉 | = 𝑛,
if 𝜇 is ℓ∞-spectrally independent with parameter 𝜁 , 𝑏-marginally bounded and has the maximum degree
at most 𝐷 , then the down walk of the Glauber dynamics satisfies that

∀distribution 𝜈 over 𝑄𝑉 , 𝐷KL
(
𝜈𝑃↓Glauber ∥ 𝜇𝑃

↓
Glauber

)
≤

(
1 − 1

𝐶𝑛

)
𝐷KL (𝜈 ∥ 𝜇) ,

where 𝐶 =
(𝐷
𝑏

)1+2⌈ 𝜁𝑏 ⌉
> 1 is a constant depending only on 𝜁 , 𝑏 and 𝐷 .

In [CLV21a, BCC+22], they mainly establish the so-called “approximate tensorization of entropy”
property for 𝜇. However this is equivalent to the contraction of relative entropy by 𝑃↓Glauber [CLV21a].

2.6. Holographic transformation. We will need holographic transformations [Val08] to show cou-
plings between the subgraph-worldmodel and theweighted random cluster model. Let 𝑓 : {0, 1}𝑑 → C
be a function. We may represent it by a vector (either row or column vector) (𝑓0, · · · , 𝑓𝑥 , · · · , 𝑓2𝑑−1)
where 𝑓𝑥 is the value of 𝑓 on 𝑥 ∈ {0, 1}𝑑 by regarding 𝑥 as a binary representation. In the symmetric
casewhere 𝑓 is invariant under permutations of indices, we use a succinct “signature” [𝑓0, · · · , 𝑓𝑤, · · · , 𝑓𝑑 ]
to express 𝑓 , where 𝑓𝑤 is the value of 𝑓 on inputs of Hamming weight𝑤 , i.e. all 𝑥 ∈ {0, 1}𝑑 satisfying
|𝑥 | = 𝑤 .

Given a bipartite graph 𝐻 = (𝑉 , 𝐸) with partition𝑉 = 𝑉1 ⊎𝑉2. Let F = (𝑓𝑣)𝑣∈𝑉1 and G = (𝑔𝑣)𝑣∈𝑉2 be
two sets of functions such that the arity of the function is the degree of the corresponding vertex. The
(bipartite) Holant (an edge weighted partition function) is defined by

Holant(𝐻 ;F | G) :=
∑

𝜎 :𝐸→{0,1}

∏
𝑣∈𝑉1

𝑓𝑣
(
𝜎 |𝐸 (𝑣)

) ∏
𝑢∈𝑉2

𝑔𝑢
(
𝜎 |𝐸 (𝑢 )

)
,
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where 𝜎 |𝐸 (𝑣) stands for the restriction of the assignment 𝜎 to the incident edges of 𝑣 .3
Let𝑴 be a 2×2matrix and 𝑓 be a function of arity𝑑 . If 𝑓 is represented by a column (resp. row) vector,

we write 𝑴 𝑓 = 𝑴⊗𝑑 𝑓 (resp. 𝑓𝑴 = 𝑓𝑴⊗𝑑 ) as the transformed signature. Given Holant(𝐻 ;F | G) and
an invertible matrix 𝑻 ∈ C2×2, we view signatures in F as row vectors and define F𝑻 = {𝑓 ′𝑣 | 𝑣 ∈
𝑉1∧𝑓 ′𝑣 = 𝑓𝑣𝑻 }; and view signatures inG as column vectors and define 𝑻 −1G = {𝑔′𝑣 | 𝑣 ∈ 𝑉2∧𝑔′𝑣 = 𝑻 −1𝑔𝑣}.
Valiant’s celebrated Holant Theorem [Val08] states
Theorem 2.6. Holant(𝐻 ;F | G) = Holant(𝐻 ;F𝑻 | 𝑻 −1G) for any invertible 𝑻 ∈ C2×2.

3. The gRand model and a geneRalised GRimmett–Janson coupling

We introduce a grand model, inspired by [GJ07b], that unifies the subgraph and random cluster
models introduced in Section 2.1. We also generalise the coupling of Grimmett and Janson [GJ07b]
for ferromagnetic Ising models with external fields. It is possible to also include vertex configurations
in this grand model à la Edwards and Sokal [ES88], so that the Ising model is also unified under this
framework. However it does not appear to have much benefit and we choose not to do so.

3.1. The grand model. Let 𝐺 = (𝑉 , 𝐸) be a simple undirected graph. The grand model, specified by
parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 = (𝜂𝑣)𝑣∈𝑉 where 0 ≤ 𝑝𝑒 ≤ 1/2 and 0 ≤ 𝜂𝑣 ≤ 1, defines a distribution
𝜋gm over all configurations on the edges of three states 𝑋 : 𝐸 → {0, 1, 2}. Given an assignment 𝑋 in
the grand model, denote by 𝑋 −1(𝑞) the set of edges that are assigned 𝑞 under 𝑋 where 𝑞 = 0, 1, 2. The
weight of each configuration is given by

(19) wtgm(𝑋 ) =
∏

𝑒∈𝑋 −1 ({1,2})
𝑝𝑒

∏
𝑓 ∈𝑋 −1 (0)

(1 − 2𝑝 𝑓 )
∏

𝑣∈O(𝑋 )
𝜂𝑣,

where O(𝑋 ) is the set of vertices of odd degree in the subgraph (𝑉 ,𝑋 −1(1)). The probability of each
configuration 𝑋 is

(20) 𝜋gm(𝑋 ) =
wtgm(𝑋 )
𝑍gm

where
𝑍gm = 𝑍gm(𝐺 ;𝒑,𝜼) :=

∑
𝑋 ∈Ωgm (𝐺 )

wtgm(𝑋 )

is the partition function of the grand model.
Equivalently, a random sample from the grand model can be generated by the following procedure.
• Step-I: Sample 𝑆 ∼ 𝜋sg, where 𝜋sg is the distribution specified by the subgraph-world model
with parameters (𝒑,𝜼); for each 𝑒 ∈ 𝐸, let 𝑋 (𝑒) = 1 if 𝑒 ∈ 𝑆 and let 𝑋 (𝑒) = ∗ if 𝑒 ∉ 𝑆 .
• Step-II: Independently for each 𝑒 ∈ 𝐸 with 𝑋𝑒 = ∗, set 𝑋 (𝑒) = 2 with probability 𝑝𝑒

1−𝑝𝑒 , and
𝑋 (𝑒) = 0 otherwise.

It is straightforward to verify that the outcome distribution is exactly the grand model distribution.
Recall the definition of a Gibbs distribution and its maximum degree in Section 2.5. The grand model

is indeed a Gibbs distribution in the sense of Theorem 2.5. Each edge of 𝐺 corresponds to a variable,
and each vertex 𝑣 ∈ 𝑉 corresponds to a weight function. In other words, this is a Holant-type problem
[CLX11]. Theorem 2.5 applies to Holant-type problems, as explained in [CLV21b, Section 2.2]. The
underlying graph of 𝜋gm (as defined in Section 2.5) is the line graph of 𝐺 , whose maximum degree is
at most 2Δ − 1. Thus we have the following observation.
Observation 3.1. The distribution 𝜋gm is a Gibbs distribution with maximum degree 𝐷 ≤ 2Δ − 1, where
Δ is the maximum degree of the graph 𝐺 = (𝑉 , 𝐸).

The next lemma gives the relation among the grand model, the subgraph-world model and the ran-
dom cluster model.
Lemma 3.2. Let 𝑋 ∼ 𝜋gm be a random sample from the grand model with parameter 𝒑 = (𝑝𝑒)𝑒∈𝐸 and
𝜼 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤ 𝑝𝑒 ≤ 1/2 and 0 ≤ 𝜂𝑣 ≤ 1. It holds that

3Holant problems can also be defined for not necessarily bipartite graphs, but we do not need those here.
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• S = {𝑒 ∈ 𝐸 | 𝑋 (𝑒) = 1} follows the distribution specified by the subgraph-world model with
parameters (𝒑,𝜼);
• R = {𝑒 ∈ 𝐸 | 𝑋 (𝑒) = 1∨𝑋 (𝑒) = 2} follows the distribution specified by the random cluster model
with parameters (2𝒑,𝝀), where 𝜆𝑣 = 1−𝜂𝑣

1+𝜂𝑣 for all 𝑣 ∈ 𝑉 .

Namely,𝑋 (𝑒) = 1means 𝑒 is present in the subgraph-world model (Step-I), and𝑋 (𝑒) = 2means 𝑒 is
absent in the subgraph-world model, but gets added into the random cluster model in Step-II.𝑋 (𝑒) = 0
means 𝑒 is absent in both models.

The first part of Lemma 3.2 holds trivially. The second part is proved by a generalised Grimmett–
Janson coupling [GJ07b]. The proof of the second part is given in Section 3.2.

3.2. Coupling via holographic transformation. Under the unweighted setting, Grimmett and Jan-
son [GJ07b, Theorem 3.5] discovered a coupling between random even subgraphs and random cluster
configurations. The following lemma is a generalisation to the weighted case via holographic transfor-
mations.

Lemma 3.3. Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤ 𝑝𝑒 ≤ 1/2 for all 𝑒 ∈ 𝐸
and 𝜂𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 . Let S ⊆ 𝐸 be a random sample from the subgraph-world model (𝐺 ;𝒑,𝜼). Let
R be S with each remaining edge 𝑒 ∈ 𝐸 \ S added into R independently with probability 𝑝𝑒/(1 − 𝑝𝑒).
Then the random subgraph R satisfies the distribution of the random cluster model with parameter (2𝒑,𝝀)
where 𝜂𝑣 =

1−𝜆𝑣
1+𝜆𝑣 for all 𝑣 ∈ 𝑉 .

We remark that the second part of Lemma 3.2 is a straightforward consequence of Lemma 3.3. We
need the following lemma to prove Lemma 3.3.

Lemma 3.4. Let𝐺 = (𝑉 , 𝐸) be a graph. Let 𝝀 = (𝜆𝑣)𝑣∈𝑉 where 0 ≤ 𝜆𝑣 < 1 for all 𝑣 ∈ 𝑉 . For each 𝑣 ∈ 𝑉 ,
let 𝜂𝑣 =

1−𝜆𝑣
1+𝜆𝑣 . It holds that

(21)
∏

𝐶∈𝜅 (𝑉 ,𝐸 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
=

(∏
𝑣∈𝑉
(1 + 𝜆𝑣)

) (
1
2

) |𝐸 | ∑
𝐸′⊂𝐸

∏
𝑢∈odd(𝐸′ )

𝜂𝑢,

where 𝜅 (𝑉 , 𝐸) is the set of connected components in graph 𝐺 = (𝑉 , 𝐸).

Proof. Define a bipartite graph 𝐻 with left part 𝑉1 = 𝑉 corresponding to vertices in 𝐺 and right part
𝑉2 = 𝐸 corresponding to edges in𝐺 . Two vertices 𝑣 ∈ 𝑉1 and 𝑒 ∈ 𝑉2 are adjacent in 𝐻 if 𝑣 is incident to
𝑒 in 𝐺 . Let 𝑑𝑣 denote the degree of 𝑣 in 𝐺 . Consider the following set of signatures

F (1) =
{
𝑓 (1)𝑣 = [1, 0]⊗𝑑𝑣 + 𝜆𝑣 [0, 1]⊗𝑑𝑣 | 𝑣 ∈ 𝑉

}
,

F (2) =
{
𝑓 (2)𝑣 =

1
1 + 𝜆𝑣

(
[1, 1]⊗𝑑𝑣 + 𝜆𝑣 [1,−1]⊗𝑑𝑣

)
| 𝑣 ∈ 𝑉

}
,

G = {𝑔𝑒 = [1, 0, 1] | 𝑒 ∈ 𝐸} .

We remark that 𝑓 (2)𝑣 = [1, 𝜂𝑣, 1, 𝜂𝑣, . . .]. Let 𝑻 =
(
1 1
1 −1

)
. Observe that 𝑓 (1)𝑣 𝑻 = (1 + 𝜆𝑣) 𝑓 (2)𝑣 and

𝑻 −1𝑔𝑒 = 1
2𝑔𝑒 . By Theorem 2.6, it holds that

Holant
(
𝐻 ;F (1) | G

)
=

(∏
𝑣∈𝑉
(1 + 𝜆𝑣)

) (
1
2

) |𝐸 |
Holant

(
𝐻 ;F (2) | G

)
.(22)

This equation is indeed (21) in disguise. The equivalence between the left-hand sides of (22) and (21) is a
simple observation that the signature [1, 0, 1] on the edge forces the spins of vertices in each connected
component 𝐶 to be the same. Each component contributes a weight 1 + ∏

𝑢∈𝐶 𝜆𝑢 . The equivalence
between the right-hand sides of (22) and (21) follows from how F (2) and G are defined. This proves
the lemma. □
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Proof of Lemma 3.3. For each subgraph 𝑅 ⊆ 𝐸 of 𝐺 = (𝑉 , 𝐸),

Pr[R = 𝑅] = 1
𝑍sg(𝐺 ;𝒑,𝜼)

∑
𝑆⊆𝑅

∏
𝑢∈odd(𝑆 )

𝜂𝑢
∏
𝑒∈𝑆

𝑝𝑒
∏
𝑓 ∈𝐸\𝑆

(1 − 𝑝 𝑓 )
∏

𝑔∈𝑅\𝑆

𝑝𝑔

1 − 𝑝𝑔

∏
ℎ∈𝐸\𝑅

1 − 2𝑝ℎ
1 − 𝑝ℎ

=
1

𝑍sg(𝐺 ;𝒑,𝜼)
∑
𝑆⊆𝑅

∏
𝑢∈odd(𝑆 )

𝜂𝑢
∏
𝑒∈𝑅

𝑝𝑒
∏

𝑓 ∈𝐸\𝑅
(1 − 2𝑝 𝑓 )

=
1

𝑍sg(𝐺 ;𝒑,𝜼)
2−|𝑅 |

∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1 − 2𝑝 𝑓 )
∑
𝑆⊆𝑅

∏
𝑢∈odd(𝑆 )

𝜂𝑢

=
1

𝑍sg(𝐺 ;𝒑,𝜼)
∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1 − 2𝑝 𝑓 )
∏
𝑣∈𝑉

1
1 + 𝜆𝑣

∏
𝐶∈𝜅 (𝑉 ,𝑅)

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
(By (21) on (𝑉 , 𝑅))

=
1

𝑍wrc(𝐺 ; 2𝒑,𝝀)
∏
𝑒∈𝑅
(2𝑝𝑒)

∏
𝑓 ∈𝐸\𝑅

(1 − 2𝑝 𝑓 )
∏

𝐶∈𝜅 (𝑉 ,𝑅)

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
.(By (6))

= 𝜋wrc(𝑅) . □

4. VaRiance decay of GlaubeR dynamics on the gRand model

Let𝐺 = (𝑉 , 𝐸) be a graph. Let 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 = (𝜂𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1/2 and 0 < 𝜂𝑣 < 1. Let
𝜋gm denote the distribution specified by the grand model with parameters 𝒑 and 𝜼. Let Ω(𝜋gm) denote
the support of 𝜋gm. We use 𝑃GlauberGM to denote Glauber dynamics on 𝜋gm as defined in Section 2.3.1.

Lemma 4.1. The Glauber dynamics 𝑃GlauberGM satisfies that for any distribution 𝜈 with support Ω(𝜈) ⊆
Ω(𝜋gm),

𝐷𝜒2

(
𝜈𝑃↓GlauberGM ∥ 𝜋gm𝑃

↓
GlauberGM

)
≤

(
1 −

𝜂4minmin {𝑝min, 1 − 2𝑝max}
𝑚2

)
𝐷𝜒2

(
𝜈 ∥ 𝜋gm

)
,

where 𝜂min = min𝑣∈𝑉 𝜂𝑣 and𝑚 = |𝐸 |.

By Proposition 2.4, we only need to bound the spectral gap of the Glauber dynamics. The rest of
this section endeavours to show

(23) 𝔊𝔞𝔭 (𝑃GlauberGM) ≥
𝜂4min

𝑚2 min {𝑝min, 1 − 2𝑝max} .

This will be proved using the canonical path method adapted from [JS93].

4.1. Construction of the canonical path. Below is the main lemma of this subsection.

Lemma 4.2. For any grand model on a graph𝐺 = (𝑉 , 𝐸) with parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 = (𝜂𝑣)𝑣∈𝑉 ,
if 0 < 𝜂𝑣 < 1 for all 𝑣 ∈ 𝑉 , then there exists a set of canonical paths Γ = {𝛾𝑋𝑌 : 𝑋,𝑌 ∈ Ω} for the Glauber
dynamics 𝑃gm such that

(1) 𝑤gm(𝑋,𝑌 ) = 𝜋gm(𝑋 )𝜋gm(𝑌 );
(2) |𝛾𝑋𝑌 | ≤ 𝑚;
(3) for any transition (𝑍, 𝑍 ′) with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1, where the only edge 𝑒 of discrepancy is

assigned 1 in either 𝑍 or 𝑍 ′, it holds that

(24)
∑

𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾
𝑤gm(𝛾) ≤ 𝜂−4minmin

{
𝜋gm(𝑍 ), 𝜋gm(𝑍 ′)

}
where 𝜂min := min𝑣 𝜂𝑣 ;

(4) for any transition (𝑍, 𝑍 ′) with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1, where the only edge 𝑒 of discrepancy is
assigned 1 in neither 𝑍 nor 𝑍 ′, it holds that

(25)
∑

𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾
𝑤gm(𝛾) ≤ min

{
𝜋gm(𝑍 ), 𝜋gm(𝑍 ′)

}
.
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Proof. Webegin the proofwith the construction of the paths. Suppose all vertices and edges are indexed
by distinct integers, and there is a fixed ordering ≺ for all paths and cycles of the graph𝐺 . For any pair
of assignments 𝑋,𝑌 in the grand model, the canonical path 𝛾𝑋𝑌 contains two stages, moving from 𝑋
to𝑊 and𝑊 to 𝑌 respectively.

Stage 1. (1-edge mending.) Midst this stage we mend the edges assigned 1 in either 𝑋 or 𝑌 but not
the other. Denote the set of such edges 𝐷 := 𝑋 −1(1) ⊕ 𝑌 −1(1). The resulting configuration𝑊 has the
property that (1) for any edge 𝑒 ∈ 𝐷 , it holds that𝑊 (𝑒) = 𝑌 (𝑒), and (2) for any other edge 𝑒 ∉ 𝐷 , it
holds that𝑊 (𝑒) = 𝑋 (𝑒).

Let 2𝑘 be the number of the odd-degree vertices in 𝐷 . Then, 𝐷 can be decomposed into an edge-
disjoint union of exactly 𝑘 paths 𝑃1, · · · , 𝑃𝑘 and cycles 𝐶1, · · · ,𝐶𝑘 ′ . We pick the unique one such that
𝑃1, · · · , 𝑃𝑘 ,𝐶1, · · · ,𝐶𝑘 ′ is the first one in the lexicographic order induced by ≺.

To move from𝑋 to𝑊 , we process each of the paths and cycles one by one. For each of them, we first
choose the vertex and edge to start with. When winding (handling) a path, the starting vertex is one
of the two open vertices of the path that has a smaller index; when winding a cycle, the starting vertex
is the one with the smallest index, and the next vertex (which together with the starting one defines a
starting edge) is one of the two neighbours of the starting vertex of the cycle that has a smaller index
than the other one. After deciding the starting vertex and edge, we just move along the path/cycle.
For each of the edge, we set the assignment to it as that in 𝑌 . Obviously this gives𝑊 satisfying the
properties aforementioned because every edge in 𝐷 is mended while the rest are left untouched.

Stage 2. (0, 2-edge mending.) None of the conflicting edges between𝑊 and 𝑌 can be assigned 1 in
either of them. In this stage, we simply change all remaining disagreeing edges from the value in𝑊
to the value in 𝑌 one by one according to the order of their indices.

We then show that the set of canonical paths Γ constructed above fulfills Lemma 4.2. Assign weight
𝑤gm(𝛾) = 𝜋gm(𝑋 )𝜋gm(𝑌 ) to the path 𝛾𝑋𝑌 . The length (number of transitions) of each path 𝛾𝑋𝑌 is at
most𝑚, because each edge is mended at most once.

We first prove (24). Let (𝑍, 𝑍 ′) be a transition with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1, where the only edge
𝑒 of discrepancy is assigned 1 in either 𝑍 or 𝑍 ′. Note that (𝑍, 𝑍 ′) will only be used by any path in its
first stage described above. Define a mapping 𝜑𝑍,𝑍 ′ : Ω × Ω → Ω over any pair of configurations 𝑋,𝑌
whose corresponding path 𝛾𝑋𝑌 uses the transition (𝑍, 𝑍 ′) by
(26) 𝜑𝑍,𝑍 ′ (𝑋,𝑌 ) = 𝑈 where 𝑈 (𝑒) = 𝑋 (𝑒) + 𝑌 (𝑒) − 𝑍 (𝑒),∀𝑒 ∈ 𝐸 (𝐺) .
We claim that 𝜑𝑍,𝑍 ′ is an injection. Given 𝑈 and 𝑍 , we can recover 𝑋 (𝑒) + 𝑌 (𝑒) for any edge 𝑒 . First
we can find 𝐷 , the set of conflicting 1-edge in Stage 1, as it is simply {𝑒 : 𝑋 (𝑒) + 𝑌 (𝑒) = 1 or 3}. This
gives rise to the unique edge-disjoint decomposition 𝑃1, · · · , 𝑃𝑘 ,𝐶1, · · · ,𝐶𝑘 ′ . By looking at 𝑍 and 𝑍 ′,
we know the edge that is currently being wound, and, together with the edge-disjoint decomposition,
the stage of the whole winding process. Therefore, we can continue the winding from 𝑍 ′ with these
information, and when finished,𝑊 (defined in the process Stage 1) is obtained. To further recover 𝑌 ,
note that 𝑒 gets mended in Stage 2 if any only if 𝑈 (𝑒) + 𝑍 (𝑒) = 2 and 𝑍 (𝑒) ≠ 1. This follows from the
fact that 𝑍 (𝑒) (in the first stage) is in line with 𝑋 (𝑒) so long as 𝑍 (𝑒) ≠ 1. Therefore, we can decide all
such edges and mend the assignment to obtain 𝑌 . To get 𝑋 , we just reverse the operations backwards
from 𝑍 .

Given this injection, we compute
∑

𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾 𝑤gm(𝛾). The goal here is to bound the following ratio

(27)
𝜋gm(𝑋 )𝜋gm(𝑌 )
𝜋gm(𝑈 )𝜋gm(𝑍 )

, or equivalently,
wtgm(𝑋 )wtgm(𝑌 )
wtgm(𝑈 )wtgm(𝑍 )

.

Recall that this ratio may contain two kinds of factors, emerging from both the vertices and edges. For
the factor from edges, the construction of𝑈 ensures that (1) if 𝑋 (𝑒) +𝑌 (𝑒) = 𝑈 (𝑒) +𝑍 (𝑒) ∈ {0, 1, 3, 4},
or 𝑋 (𝑒) + 𝑌 (𝑒) = 2 and 𝑋 (𝑒) ≠ 1, then it must holds that either 𝑋 (𝑒) = 𝑈 (𝑒) and 𝑌 (𝑒) = 𝑍 (𝑒),
or 𝑋 (𝑒) = 𝑍 (𝑒) and 𝑌 (𝑒) = 𝑈 (𝑒); (2) if 𝑋 (𝑒) = 𝑌 (𝑒) = 1, then 𝑒 never gets mended throughout
the canonical path, and hence 𝑍 (𝑒) = 𝑈 (𝑒) = 1. In either case, all the terms rising from the edges
in the numerator and denominator cancel. The terms rising from the vertices come from those in
O(𝑋 ),O(𝑌 ),O(𝑈 ),O(𝑍 ). It is not hard to see that the ones that do not get cancelled only arise from
the current cycle or path that is being processed, and more specifically, the vertex incident to the two
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edges wound before and after 𝑍 , which contributes twice, and the starting vertex of the current cycle,
which contributes twice as well. Therefore,

(28)
𝜋gm(𝑋 )𝜋gm(𝑌 )
𝜋gm(𝑈 )𝜋gm(𝑍 )

≤ 𝜂−4min,

as 0 < 𝜂𝑣 < 1 for all 𝑣 .
Then, (24) follows from (28) that∑

𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾
𝑤gm(𝛾) =

∑
𝑋,𝑌 :(𝑍,𝑍 ′ ) ∈𝛾𝑋𝑌

𝜋gm(𝑋 )𝜋gm(𝑌 )(By definition)

≤ 𝜂−4min

∑
𝑋,𝑌 :(𝑍,𝑍 ′ ) ∈𝛾𝑋𝑌

𝜋gm(𝑍 )𝜋gm(𝜑𝑍,𝑍 ′ (𝑋,𝑌 ))(By (28))

≤ 𝜂−4min𝜋gm(𝑍 ).(𝜑𝑍,𝑍 ′ is injective)

We construct the other mapping 𝜑 ′𝑍,𝑍 ′ (𝑋,𝑌 ) by taking 𝜑𝑍,𝑍 ′ (𝑋,𝑌 )(𝑒) = 𝑋 (𝑒) + 𝑌 (𝑒) − 𝑍 ′(𝑒). The
same argument shows that

∑
𝛾 ∈Γ:(𝑍,𝑍 ′ ) ∈𝛾 𝑤gm(𝛾) ≤ 𝜂−4min𝜋gm(𝑍 ′).

To prove (25), we look at the transition step (𝑍, 𝑍 ′)with |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1where the only edge
𝑒 of discrepancy is assigned 1 in neither 𝑍 nor 𝑍 ′. We use the same mapping 𝜑𝑍,𝑍 ′ (𝑋,𝑌 ) as above, and
claim it is still injective in this case. Recall that 𝑒 gets mended in Stage 2 if and only if𝑈 (𝑒) +𝑍 (𝑒) = 2
and 𝑍 (𝑒) ≠ 1, and we can again determine the edges to be mended in Stage 2. Moreover, by looking
at the difference of 𝑍 and 𝑍 ′, we know the index of the edge being mended, and therefore we can
continue this process manually according to the instruction of Stage 2, knowing which edges to mend,
to obtain 𝑌 . To get𝑋 , we first go backwards from 𝑍 to the beginning of Stage 2 to obtain𝑊 , and revert
the whole Stage 1 using the same argument aforementioned.

To show (25), note that the edge factors in the ratio of (27) again cancel, and because no edge with
assignment 1 is involved, the vertex factors cancel as well. Hence the ratio is exactly 1, and (25) follows
according to the same calculation. □

4.2. Total congestion and rapid mixing. We next bound the total congestion for Γgm. For each
transition (𝑍,𝑍 ′) such that |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1, where the only edge of discrepancy is assigned 1
in either 𝑍 or 𝑍 ′, we have

𝐿

𝜋gm(𝑍 )𝑃gm(𝑍,𝑍 ′)
∑
𝛾 ∈Γ:
(𝑍,𝑍 ′ ) ∈𝛾

𝑤gm(𝛾) ≤
𝑚𝜂−4minmin{𝜋gm(𝑍 ), 𝜋gm(𝑍 ′)}

𝜋gm(𝑍 )𝑃gm(𝑍, 𝑍 ′)
=: (♠)

by Lemma 4.2. To continue the calculation, there are several cases (𝑍 (𝑒), 𝑍 ′(𝑒)) = (0, 1), (2, 1), (1, 0), (1, 2).
Below we only prove the case (𝑍 (𝑒), 𝑍 ′(𝑒)) = (0, 1). The rest cases can be argued the same way and
yield the same bound. Let 𝑒 = (𝑢, 𝑣). There are some more subcases, depending on if 𝑢 or 𝑣 is in O(𝑍 ).

• 𝑢, 𝑣 ∉ O(𝑍 ). In this case, setting the edge to 1 leads to extra factors from both vertices in 𝑍 ′.
Cancelling all the edges and vertices not involved, we obtain

(♠) =
𝑚2𝜂−4minmin{1 − 2𝑝𝑒 , 𝑝𝑒𝜂𝑢𝜂𝑣}
(1 − 2𝑝𝑒) 𝑝𝑒𝜂𝑢𝜂𝑣

(1−2𝑝𝑒 )+(𝑝𝑒𝜂𝑢𝜂𝑣 )+𝑝𝑒
≤
𝑚2𝜂−4minmin{1 − 2𝑝𝑒 , 𝑝𝑒𝜂𝑢𝜂𝑣}

(1 − 2𝑝𝑒)(𝑝𝑒𝜂𝑢𝜂𝑣)
≤

𝑚2𝜂−4min

1 − 2𝑝𝑒

where we use the fact that 𝜂𝑢, 𝜂𝑣 ≤ 1.
• 𝑢, 𝑣 ∈ O(𝑍 ). In this case, setting the edge to 1 removes the factors from both vertices in 𝑍 ′.
Cancelling all the edges and vertices not involved, we obtain

(♠) =
𝑚2𝜂−4minmin{(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒 }
(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣 𝑝𝑒

(1−2𝑝𝑒 )𝜂𝑢𝜂𝑣+𝑝𝑒+𝑝𝑒𝜂𝑢𝜂𝑣
≤
𝑚2𝜂−4minmin{(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒 }

(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣𝑝𝑒
≤
𝑚2𝜂−4min

𝑝𝑒

where we use the fact that 𝜂𝑢, 𝜂𝑣 ≤ 1 again.
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• WLOG suppose 𝑢 ∈ O(𝑍 ), 𝑣 ∉ O(𝑍 ). In this case, setting the edge to 1 causes the vertex factor
to switch. Cancelling all the edges and vertices not involved, we obtain

(♠) =
𝑚2𝜂−4minmin{(1 − 2𝑝𝑒)𝜂𝑢, 𝑝𝑒𝜂𝑣}
(1 − 2𝑝𝑒)𝜂𝑢 𝑝𝑒𝜂𝑣

(1−2𝑝𝑒 )𝜂𝑢+(𝑝𝑒𝜂𝑣 )+(𝑝𝑒𝜂𝑢 )
.

If 𝜂𝑢 < 𝜂𝑣 , then above becomes
𝑚2𝜂−4minmin{(1 − 2𝑝𝑒) 𝜂𝑢𝜂𝑣 , 𝑝𝑒 }
(1 − 2𝑝𝑒) 𝜂𝑢𝜂𝑣

𝑝𝑒
(1−2𝑝𝑒 ) 𝜂𝑢𝜂𝑣 +𝑝𝑒+𝑝𝑒

𝜂𝑢
𝜂𝑣

≤
𝑚2𝜂−4min

𝑝𝑒
.

Otherwise, it can be written as
𝑚2𝜂−4minmin{(1 − 2𝑝𝑒), 𝑝𝑒 𝜂𝑣𝜂𝑢 }

(1 − 2𝑝𝑒)
𝑝𝑒

𝜂𝑣
𝜂𝑢

(1−2𝑝𝑒 )+𝑝𝑒 𝜂𝑣
𝜂𝑢
+𝑝𝑒

≤
𝑚2𝜂−4min

1 − 2𝑝𝑒
.

For each transition (𝑍,𝑍 ′) such that |{𝑒 : 𝑍 (𝑒) ≠ 𝑍 ′(𝑒)}| = 1, where the only edge of discrepancy is
assigned 1 in none of 𝑍 or 𝑍 ′, the calculation is similar as above but simpler. WLOG assume 𝑍 (𝑒) = 0
and 𝑍 ′(𝑒) = 2.

𝐿

𝜋gm(𝑍 )𝑃gm(𝑍, 𝑍 ′)
∑
𝛾 ∈Γ:
(𝑍,𝑍 ′ ) ∈𝛾

𝑤gm(𝛾) ≤
𝑚min{𝜋gm(𝑍 ), 𝜋gm(𝑍 ′)}

𝜋gm(𝑍 )𝑃gm(𝑍, 𝑍 ′)
(Lemma 4.2)

≤ 𝑚2min{1 − 2𝑝𝑒 , 𝑝𝑒 }
(1 − 2𝑝𝑒) 𝑝𝑒

1−2𝑝𝑒+𝑝𝑒+𝑝𝑒 1
𝜂𝑢𝜂𝑣

≤ min

{
1
𝑝𝑒

,
1

1 − 2𝑝𝑒

}
𝑚2𝜂−2min.(Worst case of 𝜂 terms)

There is no canonical path using the self loop (𝑍,𝑍 ), so the congestion is zero. In all, the congestion is
bounded by𝑚2𝜂−4minmax

{
1

𝑝min
, 1
1−2𝑝max

}
, from which (23) follows.

5. EntRopy decay of GlaubeR dynamics on the gRand model

In Section 4, we analysed the variance decay of Glauber dynamics on the grand model. We now
continue to analyse its relative entropy decay. Let 𝐺 = (𝑉 , 𝐸) be a graph, and 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 =
(𝜂𝑣)𝑣∈𝑉 be the parameters, where 0 < 𝑝𝑒 < 1/2 for any 𝑒 ∈ 𝐸 and 𝜂𝑣 > 0 for any 𝑣 ∈ 𝑉 . Let 𝜋gm denote
the distribution specified by the grand model with parameters 𝒑 and 𝜼. Let Ω(𝜋gm) denote the support
of 𝜋gm. We use 𝑃GlauberGM to denote Glauber dynamics on 𝜋gm.

Lemma 5.1. If 0 < 𝜂𝑣 < 1 for all 𝑣 ∈ 𝑉 , then for any distribution 𝜈 with support Ω(𝜈) ⊆ Ω(𝜋gm),
Glauber dynamics 𝑃GlauberGM satisfies

𝐷KL
(
𝜈𝑃↓GlauberGM ∥ 𝜋gm𝑃

↓
GlauberGM

)
≤

(
1 − 1

𝐶𝑛

)
𝐷KL

(
𝜈 ∥ 𝜋gm

)
,

where 𝐶 = 𝐶 (Δ, 𝜂min, 𝑝min, 𝑝max), 𝜂min = min𝑣∈𝑉 𝜂𝑣 , 𝑝min = min𝑒∈𝐸 𝑝𝑒 , 𝑝max = max𝑒∈𝐸 𝑝𝑒 , Δ is the
maximum degree of 𝐺 and 𝑛 = |𝑉 |.
Remark 5.2. For interested readers, the constant 𝐶 in the lemma above can be taken as

𝐶 = Δ

(
2Δ

𝜂2minmin {1 − 2𝑝max, 𝑝min}

)2+ 16Δ2

𝜂4min min{1−2𝑝max,𝑝min}

.

Lemma 5.1 is proved byTheorem 2.5. To apply Theorem 2.5, we need to verify (1) 𝜋gm is a Gibbs dis-
tribution with maximum degree 𝐷 = 2Δ− 1; (2) 𝜋gm is ℓ∞-spectrally independent; (3) 𝜋gm is marginally
bounded. The rest of this section is dedicated to the proof of Lemma 5.1.

Lemma 5.3. 𝜋gm is ℓ∞-spectrally independent with parameter 𝜁 = 𝑂 (Δ2/𝜂2min).
We need the following result in [CLV21b] to prove Lemma 5.3. We view the subgraph world as a

distribution over {0, 1}𝐸 , where each 𝑌 ∈ {0, 1}𝐸 corresponds to 𝑆 = {𝑒 ∈ 𝐸 | 𝑌𝑒 = 1}.
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Lemma5.4 ([CLV21b]). Let𝐺 = (𝑉 , 𝐸) be a graphwith themaximum degreeΔ ≥ 3. Let𝒑 = (𝑝𝑒)𝑒∈𝐸 and
𝜼 = (𝜂𝑣)𝑣∈𝑉 , where 0 ≤ 𝑝𝑒 < 1/2 and 0 < 𝜂𝑣 ≤ 1. The distribution 𝜋sg specified by the subgraph-world
model with parameters (𝒑,𝜼) is ℓ∞-spectrally independent with parameter 𝜁 = 𝑂 (Δ2/𝜂2min).

Remark 5.5. In [CLV21b], the authors only formalise the proof for the uniform case (i.e., all 𝜂𝑣’s take
the same value) while stating that the argument works for non-uniform case without a proof. This in
fact holds true by going through the proof and taking the worst region of stability. The final spectral
independence parameter is

𝜁 = 8
©«
(
1+𝜂min
1−𝜂min

)1/Δ
+ 1(

1+𝜂min
1−𝜂min

)1/Δ
− 1

ª®®¬
2

∼ 8Δ2/𝜂2min.

Note that the 𝜆 in their paper is actually 𝑝/(1 − 𝑝) in our formulation of the subgraph-world model
(under the uniform edge parameter setting). Also note that we are only considering the region 0 < 𝑝 <
1/2, so the 𝜆 in their paper is bounded from above by 1.

Proof of Lemma 5.3. Fix a pinning 𝜎 ∈ {0, 1, 2}Λ for some Λ ⊆ 𝐸. According to the definition of the
grand model, to draw 𝑋 ∼ 𝜋gm, we first sample 𝑌 ∼ 𝜋sg (where 𝑌 ∈ {0, 1}𝐸 as we view 𝜋sg as a
distribution over {0, 1}𝐸), then flip independent coins for each 𝑒 ∈ 𝐸 with 𝑌𝑒 = 0. Define the pinning
𝜏 ∈ {0, 1}Λ by 𝜏𝑒 = 1 if 𝜎𝑒 = 1 and 𝜏𝑒 = 0 if 𝜎𝑒 = 0 or 𝜎𝑒 = 2. Consider the influence

Ψ𝜎
𝜋gm (𝑒, 𝑓 ) = max

{
𝑑TV

(
𝜋𝜎∧𝑒←0
gm,𝑓 , 𝜋𝜎∧𝑒←1

gm,𝑓

)
, 𝑑TV

(
𝜋𝜎∧𝑒←0
gm,𝑓 , 𝜋𝜎∧𝑒←2

gm,𝑓

)
, 𝑑TV

(
𝜋𝜎∧𝑒←1
gm,𝑓 , 𝜋𝜎∧𝑒←2

gm,𝑓

)}
,

where 𝑒, 𝑓 ∈ 𝐸 \ Λ and 𝑒 ≠ 𝑓 . Since each coin flipping is independent with the random sample from
𝜋gm, we can couple two distributions 𝜋𝜎∧𝑒←0

gm,𝑓
and 𝜋𝜎∧𝑒←1

gm,𝑓
as follows:

• sample 𝑌𝑓 , 𝑌 ′𝑓 from the optimal coupling between 𝜋𝜏∧𝑒←0
sg,𝑓 and 𝜋𝜏∧𝑒←1

sg,𝑓 ;
• flip a coin C independently with probability of HEADS being 𝑝𝑓

1−𝑝𝑓
;

• if 𝑌𝑓 = 1, let 𝑋𝑓 = 1; otherwise, if the outcome of C is HEADS, let 𝑋𝑓 = 2, if the outcome of C
is not HEADS, let 𝑋𝑓 = 0;
• if 𝑌 ′

𝑓
= 1, let 𝑋 ′

𝑓
= 1; otherwise, if the outcome of C is HEADS, let 𝑋 ′

𝑓
= 2, if the outcome of C

is not HEADS, let 𝑋 ′
𝑓
= 0;

It is straightforward to verify that (𝑋𝑓 , 𝑋
′
𝑓
) is sampled from a coupling between 𝜋𝜎∧𝑒←0

gm,𝑓
and 𝜋𝜎∧𝑒←1

gm,𝑓
.

By the coupling inequality (7) and as 𝑌𝑓 and 𝑌 ′𝑓 are optimally coupled, we have

𝑑TV
(
𝜋𝜎∧𝑒←0
gm,𝑓 , 𝜋𝜎∧𝑒←1

gm,𝑓

)
≤ Pr

[
𝑋𝑓 ≠ 𝑋 ′𝑓

]
= Pr

[
𝑌𝑓 ≠ 𝑌 ′𝑓

]
= 𝑑TV

(
𝜋𝜏∧𝑒←0
sg,𝑓 , 𝜋𝜏∧𝑒←1

sg,𝑓

)
.

Similarly, we have

𝑑TV
(
𝜋𝜎∧𝑒←0
gm,𝑓 , 𝜋𝜎∧𝑒←2

gm,𝑓

)
= 0 and 𝑑TV

(
𝜋𝜎∧𝑒←1
gm,𝑓 , 𝜋𝜎∧𝑒←2

gm,𝑓

)
≤ 𝑑TV

(
𝜋𝜏∧𝑒←0
sg,𝑓 , 𝜋𝜏∧𝑒←1

sg,𝑓

)
.

Hence, by Lemma 5.4, Ψ𝜎
gm


∞
≤

Ψ𝜏
sg


∞
≤ 𝜁 . □

Lemma 5.6. 𝜋gm is 𝑏-marginally bounded, where 𝑏 = 𝜂2minmin {1 − 2𝑝max, 𝑝min}.

Proof. Consider the marginal distribution of an edge 𝑒 = (𝑢, 𝑣). Let 𝑒1, . . . , 𝑒𝑘 be the edges adjacent
to either 𝑢 or 𝑣 (but not both). Suppose we have an arbitrary pinning 𝑋 on Λ ⊂ 𝐸 and 𝑒 ∉ Λ. Let 𝑌
be an arbitrary pinning on Λ ∪ {𝑒1, . . . , 𝑒𝑘 } that is consistent with 𝑋 . The true marginal of 𝑒 under 𝑋
is a linear combination of marginals conditioned on all possibilities of 𝑌 (namely, we first sample 𝑌
and then sample 𝑒 conditioned on 𝑌 ). Thus, to establish a lower bound, it suffices to establish a lower
bound under any 𝑌 . Given 𝑌 , the marginal of 𝑒 depends only on 𝑝𝑒 and whether 𝑢 or 𝑣 is in O(𝑌 ).
These cases are verified as follows.
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• 𝑢, 𝑣 ∉ O(𝑌 𝑒→0), where 𝑌 𝑒→0 is the configuration of 𝑌 with 𝑒 further pinned to 0. In this case
the marginal is at least

min{1 − 2𝑝𝑒 , 𝑝𝑒𝜂𝑢𝜂𝑣, 𝑝𝑒 }
1 − 2𝑝𝑒 + 𝑝𝑒𝜂𝑢𝜂𝑣 + 𝑝𝑒

≥ min{1 − 2𝑝𝑒 , 𝑝𝑒𝜂𝑢𝜂𝑣}.

Note that the denominator is no greater than 1 because 𝜂𝑢, 𝜂𝑣 ≤ 1.
• 𝑢, 𝑣 ∈ O(𝑌 𝑒→0). Then the marginal is at least

min{1 − 2𝑝𝑒𝜂𝑢𝜂𝑣, 𝑝𝑒 , 𝑝𝑒𝜂𝑢𝜂𝑣}
(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣 + 𝑝𝑒 + 𝑝𝑒𝜂𝑢𝜂𝑣

≥ min{(1 − 2𝑝𝑒)𝜂𝑢𝜂𝑣, 𝑝𝑒 }.

• In the remaining cases, assume w.l.o.g. 𝑢 ∈ O(𝑌 𝑒→0) while 𝑣 ∉ O(𝑌 𝑒→0). Then the marginal is
at least

min{(1 − 2𝑝𝑒)𝜂𝑢, 𝑝𝑒𝜂𝑣, 𝑝𝑒𝜂𝑢}
(1 − 2𝑝𝑒)𝜂𝑢 + 𝑝𝑒𝜂𝑣 + 𝑝𝑒𝜂𝑢

=


min{ (1−2𝑝𝑒 ) 𝜂𝑢𝜂𝑣 ,𝑝𝑒

𝜂𝑢
𝜂𝑣
}

(1−2𝑝𝑒 ) 𝜂𝑢𝜂𝑣 +𝑝𝑒+𝑝𝑒
𝜂𝑢
𝜂𝑣

≥ min{(1 − 2𝑝𝑒) 𝜂𝑢𝜂𝑣 , 𝑝𝑒
𝜂𝑢
𝜂𝑣
}, if 𝜂𝑢 < 𝜂𝑣 ;

min{ (1−2𝑝𝑒 ),𝑝𝑒 𝜂𝑣
𝜂𝑢
}

(1−2𝑝𝑒 )+𝑝𝑒 𝜂𝑣
𝜂𝑢
+𝑝𝑒
≥ min{(1 − 2𝑝𝑒), 𝑝𝑒 𝜂𝑣𝜂𝑢 }, otherwise.

In all cases, the value
𝑏 = 𝜂2minmin {1 − 2𝑝max, 𝑝min}

suffices as a marginal lower bound. □

Proof of Lemma 5.1. Combine Theorem 2.5, Observation 3.1, Lemma 5.3, Lemma 5.6 and𝑚 ≤ 𝑛Δ. □

6. Rapid mixing of GlaubeR dynamics on the Random clusteR model

Let 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝜼 = (𝜂𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1/2 and 0 < 𝜂𝑣 < 1. Let 𝜋wrc denote the
distribution specified by the random cluster model with parameters 2𝒑 and 𝝀, where 𝜆𝑣 = 1−𝜂𝑣

1+𝜂𝑣 . Let
Ω(𝜋wrc) denote the support of 𝜋wrc. We use 𝑃GlauberRC to denote Glauber dynamics on 𝜋wrc.

Lemma 6.1. Let 𝜋wrc be the distribution specified by weighted random cluster model with parameters
(2𝒑,𝝀). The Glauber dynamics 𝑃GlauberRC satisfies that for any distribution 𝜈 with support Ω(𝜈) ⊆
Ω(𝜋wrc),

• 𝐷𝜒2

(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1 − 𝛼

𝑚2

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc),

• 𝐷KL
(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1 − 1

𝐶𝑛

)
𝐷KL (𝜈 ∥ 𝜋wrc),

where

𝛼 =

(
1 − 𝜆max

1 + 𝜆max

)4
min {𝑝min, 1 − 2𝑝max} ,

𝐶 = Δ

(
8Δ

(1 − 𝜆max)2min {1 − 2𝑝max, 𝑝min}

)2+ 256Δ2

(1−𝜆max )4 min{1−2𝑝max,𝑝min}
,

𝜆max = max𝑣∈𝑉 𝜆𝑣 , 𝜆min = min𝑣∈𝑉 𝜆𝑣 , 𝑝max = max𝑒∈𝐸 𝑝𝑒 , 𝑝min = min𝑒∈𝐸 𝑝𝑒 , Δ is the maximum degree of
𝐺 , 𝑛 = |𝑉 | and𝑚 = |𝐸 |.

Lemma 6.1 projects the decay results (Lemma 4.1 and Lemma 5.1) from the grand model to the
random cluster model. Lemma 6.1 is proved by a comparison lemma in Section 6.1 that works for
general projections and 𝑓 -divergences.

Lemma 6.1 provides an entropy decay rate and a 𝜒2-divergence decay rate. When 𝜆max is bounded
away from 1, the entropy decay rate is better. On the other hand, the 𝜒2-divergence decay rate has a
better dependency on 1 − 𝜆max. In particular, when 𝜆max = 1, namely when some vertices do not have
external fields, neither statement provides any decay. In such cases, we can perturb 𝜆 by a factor of
1/𝑛. This incurs a cost of a polynomial factor in 𝑛 for 𝛼 and an exponentially large factor for 𝐶 . Thus,
we need to apply the 𝜒2-divergence decay rate in Lemma 6.1 after perturbation in the 𝜆max = 1 case.
Specifically, in Section 6.2 we showed the following.
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Lemma 6.2. Let 𝜋wrc be the distribution specified by the weighted random cluster model with parame-
ters (2𝒑,𝝀). The Glauber dynamics 𝑃GlauberRC satisfies that for any distribution 𝜈 with support Ω(𝜈) ⊆
Ω(𝜋wrc),

𝐷𝜒2

(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤

(
1 − min {𝑝min, 1 − 2𝑝max}

104𝑛4𝑚2

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc) .

We remark that both Lemma 6.1 and Lemma 6.2 consider the random cluster model specified by
parameters (2𝒑,𝝀). Combining Lemma 6.1 and Lemma 6.2, we have the following mixing result for
the Glauber dynamics on random cluster model.

Theorem 6.3. Let𝐺 = (𝑉 , 𝐸) be a 𝑛-vertex and𝑚-edge graph with maximum degree Δ. Let 𝒑 = (𝑝𝑒)𝑒∈𝐸
and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , where 0 < 𝑝𝑒 < 1 and 0 < 𝜆𝑣 ≤ 1. Let 𝜋wrc be the distribution specified by the random
cluster model with parameters (𝒑,𝝀). The mixing of Glauber dynamics 𝑃GlauberRC on 𝜋wrc satisfies

𝑇mix(𝑃GlauberRC, 𝜀) ≤ 𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1 − 𝜆max

)4}
·𝑚2 ·

(
log

1
𝜀
+𝑚

)
,

where 𝐶1(𝑝min, 𝑝max) = 𝑂
(

1
min{𝑝min,1−𝑝max} log

1
min{𝑝min,1−𝑝max}

)
.

Furthermore, if there exists 𝛿 > 0 such that 𝜆𝑣 ≤ 1 − 𝛿 for all 𝑣 ∈ 𝑉 , then the mixing time satisfies

𝑇mix(𝑃GlauberRC, 𝜀) ≤ 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛
(
log𝑛 + log 1

𝜀

)
,

where 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) =
(

Δ
𝛿2 min{𝑝min,1−𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min,1−𝑝max}

)
.

Proof. Let 𝜋wrc,min = min𝑆⊆𝐸 𝜋wrc(𝑆) denote the minimum probability in 𝜋wrc. It is straightforward to
verify that 𝜋wrc,min ≥ min{𝑝min, 1 − 𝑝max}𝑚/2𝑚+𝑛 . By the data processing inequality,

𝐷 𝑓 (𝜈𝑃GlauberRC ∥ 𝜋wrc) = 𝐷 𝑓 (𝜈𝑃GlauberRC ∥ 𝜋wrc𝑃GlauberRC) ≤ 𝐷 𝑓

(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
.

By Lemma 6.1 and Lemma 6.2, we know that after each transition step of Glauber dynamics, the 𝜒2-
divergence and KL-divergence between the current distribution of the stationary distribution decays
by factors specified earlier. The 𝜒2-divergence between the initial distribution and the stationary dis-
tribution is at most 1

𝜋wrc,min
, and the KL-divergence is at most log 1

𝜋wrc,min
. By Lemma 6.1, Lemma 6.2,

and (8),

𝑇mix(𝑃GlauberRC, 𝜀) ≤
104

min {𝑝min/2, 1 − 𝑝max}
·min

{
𝑛4,

(
1 + 𝜆max

1 − 𝜆max

)4}
·𝑚2

(
log

1
𝜀2𝜋wrc,min

)
≤ 𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1 − 𝜆max

)4}
·𝑚2 ·

(
log

1
𝜀
+𝑚

)
.

Note that 1 < 1 + 𝜆max ≤ 2.
By Lemma 6.1, (9) and𝑚 ≤ Δ𝑛, if for all 𝜆𝑣 ≤ 1 − 𝛿 , then we have 1 − 𝜆max ≥ 𝛿 and

𝑇mix(𝑃GlauberRC, 𝜀) ≤ Δ

(
8Δ

𝛿2min {1 − 𝑝max, 𝑝min/2}

)2+ 256Δ2

𝛿4 min{1−𝑝max,𝑝min/2} · 𝑛
(
log log

1
𝜋wrc,min

+ log 1
2𝜀2

)
≤ 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛

(
log𝑛 + log 1

𝜀

)
. □

6.1. Comparing the decay rates of down walks. Here we consider a general projection from a
larger state space to a smaller one. Let 𝑄 and 𝑅 be two finite sets, and let Ω ⊆ 𝑄𝑉 be the state space.
Consider a mapping 𝑔 : 𝑄 → 𝑅. (Note that here we can restrict 𝑅 to the range of 𝑔 without changing
the rest of the argument. In other words, after the mapping the effective domain is never larger than
𝑄 , although we do not need to require |𝑄 | ≥ |𝑅 | a priori.) Given any 𝜎 ∈ Ω, we map 𝜎 to 𝜏 = (𝜏𝑣)𝑣∈𝑉 ,
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where 𝜏𝑣 = 𝑔(𝜎𝑣). We abuse the notation and denote 𝜏 = 𝑔(𝜎). Let Ω′ = {𝑔(𝜎) | 𝜎 ∈ Ω} ⊆ 𝑅𝑉 . Define
the projection matrix 𝑃 : Ω × Ω′ → {0, 1}:

∀𝜎 ∈ Ω, 𝜏 ∈ Ω′, 𝑃 (𝜎, 𝜏) = I[𝜏 = 𝑔(𝜎)] .
We remark that 𝑃 is a stochastic matrix.

Let𝜋 be a distributionwith supportΩ. Define the distribution 𝜇 = 𝜋𝑃 with supportΩ′. Let 𝑃↓Glauber,𝜋 :
Ω × Ωdown → R≥0 denote the down walk of Glauber dynamics on 𝜋 , where Ωdown = {𝜎𝑉 \{𝑣} | 𝑣 ∈
𝑉 ∧𝜎 ∈ Ω}. Given any configuration 𝜎 ∈ Ω, 𝑃↓Glauber,𝜋 picks a variable 𝑣 ∈ 𝑉 uniformly at random, and
then transforms 𝜎 to 𝜎𝑉 \{𝑣} by dropping the value of 𝑣 . Similarly, let 𝑃↓Glauber,𝜇 denote the down walk
of Glauber dynamics on the distribution 𝜇 = 𝜋𝑃 .

Lemma 6.4. Let 0 < 𝛿 < 1. Let 𝑓 : R≥0 → R be a convex function with 𝑓 (1) = 0. If 𝑃↓Glauber,𝜋 satisfies
that for any distribution 𝜈 with support Ω,

𝐷 𝑓

(
𝜈𝑃↓Glauber,𝜋 ∥ 𝜋𝑃

↓
Glauber,𝜋

)
≤ (1 − 𝛿)𝐷 𝑓 (𝜈 ∥ 𝜋) ,

then 𝑃↓Glauber,𝜇 satisfies that for any distribution 𝜑 with support Ω′,

𝐷 𝑓

(
𝜑𝑃↓Glauber,𝜇 ∥ 𝜇𝑃

↓
Glauber,𝜇

)
≤ (1 − 𝛿)𝐷 𝑓 (𝜑 ∥ 𝜇) .

Proof. Given any 𝜌 ∈ Ωdown, we can map 𝜌 to 𝜂 = 𝑔(𝜌), where 𝜂𝑢 = 𝑔(𝜌𝑢) for any variable 𝑢. Let
Ω′down = {𝑔(𝜌) | 𝜌 ∈ Ωdown}. Define the projection matrix 𝑃 ′ : Ωdown × Ω′down → {0, 1}:

∀𝜌 ∈ Ωdown, 𝜂 ∈ Ω′down, 𝑃 ′(𝜌, 𝜂) = I[𝜂 = 𝑔(𝜌)] .
We remark that 𝑃 ′ is a stochastic matrix. Since both 𝑃 and 𝑃 ′ project the value of each variable inde-
pendently, the following equation is straightforward to verify

𝑃↓Glauber,𝜋 · 𝑃
′ = 𝑃 · 𝑃↓Glauber,𝜇 .(29)

For any configuration 𝜏 ∈ Ω′, define the distribution 𝜋𝜏 over Ω by

∀𝜎 ∈ Ω, 𝜋𝜏 (𝜎) = I[𝑔(𝜎) = 𝜏]𝜋 (𝜎)
𝜇 (𝜏) .

For any 𝜎 ∈ Ω, let 𝜏 = 𝑔(𝜎), it holds that 𝜋 (𝜎) = 𝜇 (𝜏)𝜋𝜏 (𝜎). Fix a distribution 𝜑 with support Ω′.
Define the distribution 𝜈 by

∀𝜎 ∈ Ω, 𝜈 (𝜎) = 𝜑 (𝜏)𝜋𝜏 (𝜎), where 𝜏 = 𝑔(𝜎).(30)
We have

𝐷 𝑓 (𝜈 ∥ 𝜋) = E𝜎∼𝜋

[
𝑓

(
𝜈 (𝜎)
𝜋 (𝜎)

)]
= E𝜏∼𝜇 E𝜎∼𝜋𝜏

[
𝑓

(
𝜑 (𝜏)𝜋𝜏 (𝜎)
𝜇 (𝜏)𝜋𝜏 (𝜎)

)]
= E𝜏∼𝜇

[
𝑓

(
𝜑 (𝜏)
𝜇 (𝜏)

)]
= 𝐷 𝑓 (𝜑 ∥ 𝜇) .

(31)

By the definition in (30), we have for all 𝜏 ∈ Ω′,
(𝜈𝑃) (𝜏) =

∑
𝜎 :𝑔 (𝜎 )=𝜏

𝜈 (𝜎) = 𝜑 (𝜏)
∑

𝜎 :𝑔 (𝜎 )=𝜏
𝜋𝜏 (𝜎) = 𝜑 (𝜏),

which implies 𝜑 = 𝜈𝑃 . Recall that 𝜇 = 𝜋𝑃 . We have

𝐷 𝑓

(
𝜑𝑃↓Glauber,𝜇 ∥ 𝜇𝑃

↓
Glauber,𝜇

)
= 𝐷 𝑓

(
𝜈𝑃𝑃↓Glauber,𝜇 ∥ 𝜋𝑃𝑃

↓
Glauber,𝜇

)
(by (29)) = 𝐷 𝑓

(
𝜈𝑃↓Glauber,𝜋𝑃

′ ∥ 𝜋𝑃↓Glauber,𝜋𝑃
′
)

(by data processing inequality) ≤ 𝐷 𝑓

(
𝜈𝑃↓Glauber,𝜋 ∥ 𝜋𝑃

↓
Glauber,𝜋

)
(by assumption) ≤ (1 − 𝛿)𝐷 𝑓 (𝜈 ∥ 𝜋)

(by (31)) = (1 − 𝛿)𝐷 𝑓 (𝜑 ∥ 𝜇) . □

We are now ready to prove Lemma 6.1.
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Proof of Lemma 6.1. Let Ω = {0, 1, 2}𝐸 denote the support of 𝜋gm. Define the map 𝑔 by 𝑔(0) = 0,
𝑔(1) = 1 and 𝑔(2) = 1. By Lemma 3.2, it holds that 𝜋wrc = 𝜋gm𝑃 . Lemma 6.1 follows from Lemma 4.1,
Lemma 5.1 and Lemma 6.4. □

6.2. Faster mixing via perturbed chains. Given a subgraph-world model (𝐺 ;𝒑,𝜼), we define the
“perturbed” model (𝐺 ;𝒑,𝜼) by

(32) 𝜂𝑣 =

{
1
𝑛 , if 0 ≤ 𝜂𝑣 ≤ 1

𝑛

𝜂𝑣, otherwise.

Call the induced distribution 𝜋sg. Take a random subgraph S according to 𝜋sg, and add each remaining
edge 𝑒 ∈ 𝐸 \ S with probability 𝑝𝑒/(1 − 𝑝𝑒) to obtain R. By Lemma 3.3, the resulting distribution
is 𝜋wrc(𝐺 ; 2𝒑,𝝀) =: 𝜋wrc, where 𝜆𝑣 = 1−𝜂𝑣

1+𝜂𝑣 . Let 𝑃wrc denote the Glauber dynamics on 𝜋wrc. Let 𝑃wrc
↓

denote the down-walk of 𝑃wrc. Applying the first item of Lemma 6.1 to the perturbed random-cluster
model (𝐺 ; 2𝒑,𝝀) yields that for any distribution 𝜈 ,

𝐷𝜒2

(
𝜈𝑃wrc

↓ ∥ 𝜋wrc𝑃wrc
↓) ≤ (

1 − min {𝑝min, 1 − 2𝑝max}
𝑚2𝑛4

)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc)

By Proposition 2.4, we know that

𝔊𝔞𝔭(𝑃wrc) ≥
min {𝑝min, 1 − 2𝑝max}

𝑚2𝑛4
.

Based on this, the main effort of this subsection is to bound the spectral gap of the original model
(𝐺 ; 2𝒑,𝝀) via the bounds for (𝐺 ; 2𝒑,𝝀).

We start with comparing the two distributions.
Lemma 6.5. For any 𝑅 ⊆ 𝐸,

1
9
≤ 𝜋wrc(𝑅)

𝜋wrc(𝑅)
< e.

Proof. Let 𝑛 = |𝑉 |. If 𝑛 = 1, the only possible 𝑅 is ∅ and the lemma holds. We assume 𝑛 ≥ 2 in the rest.
To prove the first inequality,

𝜋wrc(𝑅)
𝜋wrc(𝑅)

=
𝑍wrc

𝑍wrc

·
�wtwrc(𝑅)
wtwrc(𝑅)

=
𝑍wrc

𝑍wrc

·
∏

𝐶∈𝜅 (𝑉 ,𝑆 )

1 +∏
𝑢∈𝐶 𝜆𝑢

1 +∏
𝑢∈𝐶 𝜆𝑢

.

Note that 𝑍wrc

𝑍wrc
≥ 1 because 𝜆𝑢 ≤ 𝜆𝑢 , which implies that the weight of each configuration of the random

cluster model decreases after replacing 𝝀 with 𝝀. The second term can be handled by∏
𝐶∈𝜅 (𝑉 ,𝑆 )

1 +∏
𝑢∈𝐶 𝜆𝑢

1 +∏
𝑢∈𝐶 𝜆𝑢

≥
∏

𝐶∈𝜅 (𝑉 ,𝑆 )

∏
𝑢∈𝐶 𝜆𝑢∏
𝑢∈𝐶 𝜆𝑢

≥
(
𝑛 − 1
𝑛 + 1

)𝑛
≥ 1

9

as 𝑛 ≥ 2.
For the second inequality, the definition of 𝜋wrc, together with the relation between 𝑍wrc and 𝑍sg in

Equation (6), gives

𝜋wrc(𝑅)
𝜋wrc(𝑅)

=
𝑍sg(𝐺 ;𝒑,𝜼)
𝑍sg(𝐺 ;𝒑,𝜼)

·

∏
𝑣∈𝑉

1
1+𝜆𝑣∏

𝑣∈𝑉
1

1+𝜆𝑣
·

∏
𝐶∈𝜅 (𝑉 ,𝑅)

(
1 +∏

𝑢∈𝐶 𝜆𝑢
)∏

𝐶∈𝜅 (𝑉 ,𝑅) (1 +
∏

𝑢∈𝐶 𝜆𝑢)
.

There are three terms. For the first one, note that 𝜂𝑣 > 𝜂𝑣 for all 𝑣 , indicating that the weight of each
configuration of the subgraph-world model is increased after replacing 𝜼 with 𝜼. As such, it is less
or equal than 1. The third term is also less or equal than 1 due to 𝜆𝑣 < 𝜆𝑣 . The second term can be
bounded by ∏

𝑣∈𝑉
1

1+𝜆𝑣∏
𝑣∈𝑉

1
1+𝜆𝑣

=
∏

𝑣∈𝑉 (1 + 𝜂𝑣)∏
𝑣∈𝑉 (1 + 𝜂𝑣)

≤
(
1 + 1

𝑛

)𝑛
< e

which concludes this lemma. □
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We also have a bound on the ratio of the transition probability between the original and perturbed
model in the Glauber dynamics.

Lemma 6.6. Let 𝑃wrc and 𝑃wrc be the transition matrices of Glauber dynamics on the random cluster
models (𝐺 ; 2𝒑,𝝀) and (𝐺 ; 2𝒑,𝝀) respectively. Then it holds that

1
9e
≤ 𝑃wrc(𝑍,𝑍 ′)

𝑃wrc(𝑍,𝑍 ′)
≤ 9e for all |𝑍 ⊕ 𝑍 ′ | = 1.

Proof. Assume 𝑍 ′ = 𝑍 +𝑒 where 𝑒 ∉ 𝑍 . The case 𝑍 ′ = 𝑍 −𝑒 where 𝑒 ∈ 𝑍 follows by a similar argument.
We then have

1
9e
≤ 𝑃wrc(𝑍, 𝑍 ′)

𝑃wrc(𝑍, 𝑍 ′)
=
𝜋wrc(𝑍 ′) (𝜋wrc(𝑍 ) + 𝜋wrc(𝑍 ′))
(𝜋wrc(𝑍 ) + 𝜋wrc(𝑍 ′))𝜋wrc(𝑍 ′)

≤ 9e. □

Now we are ready to prove Lemma 6.2.

Proof of Lemma 6.2. Fix a test function 𝑓 . Denote by E(𝑓 , 𝑓 ), Ê (𝑓 , 𝑓 ) the Dirichlet form of 𝑃wrc and 𝑃wrc
respectively. Denote by Var[𝑓 ] and V̂ar[𝑓 ] the variance of 𝑓 with respect to 𝜋wrc and 𝜋wrc respectively.
Then by Lemma 6.5 and Lemma 6.6,

E(𝑓 , 𝑓 )
Var[𝑓 ] =

∑
𝑋,𝑌 ⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋 )𝑃wrc(𝑋,𝑌 ) (𝑓 (𝑋 ) − 𝑓 (𝑌 ))2

∑
𝑋,𝑌 ⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋 )𝜋wrc(𝑌 ) (𝑓 (𝑋 ) − 𝑓 (𝑌 ))2

≥

1
9e2

∑
𝑋,𝑌 ⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋 )𝑃wrc(𝑋,𝑌 ) (𝑓 (𝑋 ) − 𝑓 (𝑌 ))2

81
∑

𝑋,𝑌 ⊆𝐸
|𝑋⊕𝑌 |=1

𝜋wrc(𝑋 )𝜋wrc(𝑌 ) (𝑓 (𝑋 ) − 𝑓 (𝑌 ))2
>

1
104
Ê (𝑓 , 𝑓 )
V̂ar[𝑓 ]

.

Therefore,𝔊𝔞𝔭(𝑃wrc) ≥ 1
104𝔊𝔞𝔭(𝑃wrc) ≥ min{𝑝min,1−2𝑝max}

104𝑛4𝑚2 . Lemma 6.2 follows from Proposition 2.4. □

7. Rapid mixing of Swendsen-Wang dynamics

Having analysed the edge-flipping dynamics, now we turn to relating it with the Swendsen-Wang
dynamics. From this point on, we no longer need the grand model. We first reiterate the settings for
clarity. Let 𝐺 = (𝑉 , 𝐸) be a graph. We consider the Ising model on 𝐺 with parameters 𝝀 = (𝜆𝑣)𝑣∈𝑉
and 𝜷 = (𝛽𝑒)𝑒∈𝐸 , where 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 and 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸, as well as the weighted
random cluster model on 𝐺 with parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , where 𝑝𝑒 = 1 − 1

𝛽𝑒
for all

𝑒 ∈ 𝐸. Let 𝜋Ising over ΩI = {0, 1}𝑉 denote the Gibbs distribution of the Ising model, and 𝜋wrc over
ΩR = {0, 1}𝐸 denote the distribution of the weighted random cluster model. We remark that we view
𝜋wrc as a distribution over {0, 1}𝐸 instead of 2𝐸 .

Let 𝑃wrc
SW = 𝑃R→I𝑃I→R denote the transition matrix of the Swendsen-Wang dynamics for weighted

random cluster models as defined in Section 2.3.2, and 𝑃GlauberRC denote the transition matrix of the
Glauber dynamics for weighted random cluster models. In this section, we compare the Swendsen-
Wang dynamics with the Glauber dynamics. Ullrich [Ull14] showed the following result about the
variance decay (spectral gap) of the Swendsen-Wang dynamics.

Lemma 7.1 ([Ull14, Remark 2 and Theorem 5]). Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . It holds that

𝔊𝔞𝔭(𝑃wrc
SW ) ≥

𝔊𝔞𝔭 (𝑃GlauberRC)
2

.
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The above result is proved in [Ull14] in the case where 𝑝𝑒 = 𝑝 ∈ (0, 1) for all 𝑒 ∈ 𝐸 and 𝜆𝑣 = 1
for all 𝑣 ∈ 𝑉 .4 The model we consider allows that each 𝑒 has different 𝑝𝑒 ∈ (0, 1) and each 𝑣 has
different 𝜆𝑣 ∈ (0, 1]. However, there is no substantial change required to generalise it to our setting.
Alternatively, we provide a somewhat simpler proof of Lemma 7.1 in Remark 7.5.

Lemma 7.1 only compares the decay rate of the variance. The main technical result in this section
is the following comparison lemma on the decay rate of the relative entropy.

Lemma 7.2. Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Let 0 < 𝛿 < 1. For any distribution 𝜈 over ΩR , if

𝐷KL
(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤ (1 − 𝛿)𝐷KL (𝜈 ∥ 𝜋wrc) ,

then it holds that

𝐷KL
(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃wrc
SW

)
≤

(
1 − 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) .

We are now ready to prove the main results in Theorem 1.1 and Theorem 1.2.

Proofs of Theorem 1.1 and Theorem 1.2. Let 𝜋wrc,min = min𝑆⊆𝐸 𝜋wrc(𝑆) denote the minimum probability
in 𝜋wrc. It is straightforward to verify that 𝜋wrc,min ≥ min{𝑝min, 1−𝑝max}𝑚/2𝑚+𝑛 . By the data processing
inequality, Proposition 2.3 and Proposition 2.4, we have

𝐷𝜒2
(
𝜈𝑃wrc

SW ∥ 𝜋wrc
)
= 𝐷𝜒2

(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃wrc
SW

)
≤ 𝐷𝜒2 (𝜈𝑃R→I ∥ 𝜋wrc𝑃R→I)

≤
(
1 −𝔊𝔞𝔭(𝑃wrc

SW )
)
𝐷𝜒2 (𝜈 ∥ 𝜋wrc) .

A lower bound of𝔊𝔞𝔭(𝑃wrc
SW ) can be obtained by Proposition 2.4, Lemma 6.2 and Lemma 7.1. Let𝐶1 be

the constant in Theorem 6.3. By a similar calculation as that in the proof of Theorem 6.3, we have

𝑇mix(𝑃wrc
SW , 𝜀) ≤ 2𝐶1(𝑝min, 𝑝max) ·min

{
𝑛4,

(
1

1 − 𝜆max

)4}
·𝑚2 ·

(
log

1
𝜀
+𝑚

)
.

By (15), the mixing time of Swendsen-Wang dynamics on Ising model satisfies

𝑇mix(𝑃 Ising
SW , 𝜀) ≤ 𝐶′1(𝛽min, 𝛽max) ·min

{
𝑛4,

(
1

1 − 𝜆max

)4}
·𝑚2 ·

(
log

1
𝜀
+𝑚

)
,

where 𝑝min = 1 − 1
𝛽min

, 𝑝max = 1 − 1
𝛽max

, and thus

𝐶′1(𝛽min, 𝛽max) = 𝑂

(
1

min{𝑝min, 1 − 𝑝max}
log

1
min{𝑝min, 1 − 𝑝max}

)
= 𝑂

((
𝛽min

1 − 𝛽min
+ 𝛽max

)
log

(
𝛽min

1 − 𝛽min
+ 𝛽max

))
.(33)

This proves Theorem 1.1.
For the decay of the relative entropy, the initial KL-divergence is at most log 1

𝜋wrc,min
. Let 𝐶2 be the

constant in Theorem 6.3. By Lemma 7.2, Lemma 6.1, and (9), we can use a similar calculation as that in
the proof of Theorem 6.3 to obtain

𝑇mix(𝑃wrc
SW , 𝜀) ≤ 4𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) · 𝑛

(
log𝑛 + log 1

𝜀

)
.

By (15), the mixing time of Swendsen-Wang dynamics on Ising model satisfies

𝑇mix(𝑃 Ising
SW , 𝜀) ≤ 𝐶′2(Δ, 𝛿, 𝛽min, 𝛽max) · 𝑛

(
log𝑛 + log 1

𝜀

)
4In [Ull14], Ullrich proved this for general random cluster models with an arbitrary 𝑞 ≥ 1, but when 𝑞 ≠ 2 that model

cannot be easily translated to the notation we use.
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where

𝐶′2(Δ, 𝛿, 𝛽min, 𝛽max) =
(

Δ

𝛿2min{𝑝min, 1 − 𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min,1−𝑝max}

)

=

(
Δ

𝛿2

(
𝛽min

1 − 𝛽min
+ 𝛽max

))𝑂 (
Δ2

𝛿4

(
𝛽min

1−𝛽min
+𝛽max

))
.(34)

This proves Theorem 1.2. □

The rest of this section is dedicated to the proof of Lemma 7.2.

7.1. FKES distribution and single-bond dynamics. To compare the Swendsen-Wang dynamics
to the Glauber dynamics, we first introduce the FKES (Fortuin-Kasteleyn-Edwards-Sokal) distribu-
tion [FK72, ES88] 𝜋FKES over ΩI × ΩR , which couples the Ising distribution 𝜋Ising and the random
cluster distribution 𝜋wrc:

∀𝜎 ∈ ΩI, 𝜏 ∈ ΩR, 𝜋FKES(𝜎𝜏) := 𝜋Ising(𝜎)𝑃I→R (𝜎, 𝜏)
(★)
= 𝜋wrc(𝜏)𝑃R→I (𝜏, 𝜎),(35)

where ΩI = {0, 1}𝑉 , ΩR = {0, 1}𝐸 , 𝑃I→R and 𝑃R→I are defined in (10) and (11) respectively. The
equation (★) holds due to Proposition 2.3. We use ΩFKES ⊆ ΩI × ΩR to denote the support of the
distribution 𝜋FKES. The above equation shows that

• the marginal distribution projected from 𝜋FKES to ΩI is 𝜋Ising;
• the marginal distribution projected from 𝜋FKES to ΩR is 𝜋wrc;
• conditional on 𝜎 ∈ ΩI , the marginal distribution projected from 𝜋FKES to ΩR is PI→R (𝜎, ·);
• conditional on 𝜏 ∈ ΩR , the marginal distribution projected from 𝜋FKES to ΩI is PR→I (𝜏, ·).

Define the following stochastic matrix from the weighted random cluster model to the FKES model
∀𝜏1 ∈ ΩR, 𝜎𝜏2 ∈ ΩFKES, 𝑃R→FKES(𝜏1, 𝜎𝜏2) = 𝑃R→I (𝜏1, 𝜎) · I[𝜏1 = 𝜏2],

The operator 𝑃R→FKES maps from 𝐿2(𝜋FKES) to 𝐿2(𝜋wrc), where 𝐿2(𝜋) is the vector space with the inner
product ⟨·, ·⟩𝜋 . The adjoint operator 𝑃FKES→R is defined by

∀𝜎𝜏1 ∈ ΩFKES, 𝜏2 ∈ ΩR, 𝑃FKES→R (𝜎𝜏1, 𝜏2) = I[𝜏1 = 𝜏2] .
For any 𝑓 ∈ 𝐿2(𝜋FKES) and 𝑔 ∈ 𝐿2(𝜋wrc), it holds that ⟨𝑃R→FKES 𝑓 , 𝑔⟩𝜋wrc = ⟨𝑓 , 𝑃FKES→R𝑔⟩𝜋FKES .

Next, we define the edge down-walk on the joint distribution. Fix an edge 𝑒 ∈ 𝐸. Given 𝜎𝜏 ∈ ΩFKES,
let 𝑃↓𝑒 denote the edge down-walk that drops the value on edge 𝑒 . Formally, 𝑃↓𝑒 is defined on any
𝜎𝜏 ∈ ΩFKES and any 𝜎 ′𝜏 ′ ∈ Ω𝑒

FKES,

𝑃↓𝑒 (𝜎𝜏, 𝜎 ′𝜏 ′) = I[𝜎 = 𝜎 ′ ∧ 𝜏 ′ = 𝜏𝐸−𝑒],

where we use 𝐸 − 𝑒 to denote 𝐸 \ {𝑒}. Let 𝜋𝑒
FKES = 𝜋FKES𝑃

↓
𝑒 . Let Ω𝑒

FKES denote the support of 𝜋FKES𝑃
↓
𝑒 .

Suppose 𝑒 = {𝑢, 𝑣}. We then define the edge up-walk 𝑃↑𝑒 , for all 𝜎 ′𝜏 ′ ∈ Ω𝑒
FKES and 𝜎𝜏 ∈ ΩFKES,

𝑃↑𝑒 (𝜎 ′𝜏 ′, 𝜎𝜏) = I[𝜎 = 𝜎 ′ ∧ 𝜏𝐸−𝑒 = 𝜏 ′] ×


𝑝𝑒 if 𝜏𝑒 = 1 and 𝜎 (𝑢) = 𝜎 (𝑣);
1 − 𝑝𝑒 if 𝜏𝑒 = 0 and 𝜎 (𝑢) = 𝜎 (𝑣);
0 if 𝜏𝑒 = 1 and 𝜎 (𝑢) ≠ 𝜎 (𝑣);
1 if 𝜏𝑒 = 0 and 𝜎 (𝑢) ≠ 𝜎 (𝑣) .

For any 𝑓 ∈ 𝐿2(𝜋FKES) and 𝑔 ∈ 𝐿2(𝜋𝑒
FKES), it holds that ⟨𝑃

↑
𝑒 𝑓 , 𝑔⟩𝜋𝑒

FKES
= ⟨𝑓 , 𝑃↓𝑒𝑔⟩𝜋FKES .

Since in each transition step of 𝑃↑𝑒 , 𝜎 ′𝜏 ′𝐸−𝑒 = 𝜎𝜏𝐸−𝑒 and the distribution of 𝜏 ′𝑒 depends only on 𝜎𝑢 and
𝜎𝑣 , the following observation is straightforward to verify.

Observation 7.3. For any 𝑒, 𝑓 ∈ 𝐸, it holds that
• (𝑃↓𝑒 𝑃↑𝑒 ) (𝑃↓𝑓 𝑃

↑
𝑓
) = (𝑃↓

𝑓
𝑃↑
𝑓
)(𝑃↓𝑒 𝑃↑𝑒 ).

• 𝑃↓𝑒 𝑃
↑
𝑒 = (𝑃↓𝑒 𝑃↑𝑒 )2.

24



The single bond dynamics 𝑃SB : ΩR × ΩR → R≥0 is defined as follows

𝑃SB = 𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

)
𝑃FKES→R .

Intuitively, given any 𝜏 ∈ ΩR , 𝑃SB first transforms 𝜏 into a joint configuration 𝜎𝜏 ∈ ΩFKES; samples an
edge 𝑒 ∈ 𝐸 uniformly at random; updates 𝜏𝑒 conditional on 𝜎 ; drops 𝜎 and keeps the random cluster
configuration 𝜏 . Similarly, we can decompose the single bond dynamics as 𝑃SB = 𝑃↓SB𝑃

↑
SB:

𝑃↓SB = 𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

)
and 𝑃↑SB = 𝑃↑𝐸𝑃FKES→R,(36)

where for convenience, we treat ( 1𝑚
∑

𝑒∈𝐸 𝑃
↓
𝑒 ) as a matrix defined on ΩFKES × (∪𝑒∈𝐸Ω𝑒

FKES) and 𝑃↑𝐸 :

(∪𝑒∈𝐸Ω𝑒
FKES) × ΩFKES → R≥0 is defined by 𝑃↑𝐸 (𝑥,𝑦) = 𝑃↑𝑒 (𝑥,𝑦) where 𝑥 ∈ Ω𝑒

FKES for some 𝑒 ∈ 𝐸

and 𝑦 ∈ ΩFKES. Note that once 𝑥 is given, 𝑒 is uniquely determined, and 𝑃↑𝐸 agrees with 𝑃↑𝑒 . It is
straightforward to check ( 1𝑚

∑
𝑒∈𝐸 𝑃

↓
𝑒 ) and 𝑃↑𝐸 is a pair of adjoint operators.

Lemma 7.4. Suppose 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Let 0 < 𝛿 < 1. For any distribution 𝜈 over ΩR , if

𝐷KL
(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
≤ (1 − 𝛿)𝐷KL (𝜈 ∥ 𝜋wrc) ,

then it holds that

𝐷KL
(
𝜈𝑃↓SB ∥ 𝜋wrc𝑃

↓
SB

)
≤

(
1 − 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) .(37)

The proof of Lemma 7.4 is deferred to Section 7.2. We are now ready to prove Lemma 7.2.

Proof of Lemma 7.2. By Observation 7.3, the Swendsen-Wang dynamics 𝑃wrc
𝑆𝑊 can be written as

𝑃wrc
SW = 𝑃R→FKES

(∏
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

)
𝑃FKES→R = 𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

) (∏
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

)
𝑃FKES→R

= 𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

)
𝑃↑𝐸

(∏
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

)
𝑃FKES→R = 𝑃↓SB𝑃

↑
𝐸

(∏
𝑒∈𝐸

𝑃↓𝑒 𝑃
↑
𝑒

)
𝑃FKES→R .

Hence, by the data processing inequality, we have

𝐷KL
(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃wrc
SW

)
≤ 𝐷KL

(
𝜈𝑃↓SB ∥ 𝜋wrc𝑃

↓
SB

)
≤

(
1 − 𝛿

4

)
𝐷KL (𝜈 ∥ 𝜋wrc) ,

where the last inequality holds due to Lemma 7.4. □

Remark 7.5 (a simple proof of the main result in [Ull14] and Lemma 7.1). If we replace KL-divergence
in the above proof with 𝜒2-divergence, the same proof shows that for any distribution 𝜈 ,

𝐷𝜒2
(
𝜈𝑃wrc

SW ∥ 𝜋wrc𝑃wrc
SW

)
≤ 𝐷𝜒2

(
𝜈𝑃↓SB ∥ 𝜋wrc𝑃

↓
SB

)
.

By Proposition 2.4, we have the following result

𝔊𝔞𝔭((𝑃wrc
SW )2) ≥ 𝔊𝔞𝔭(𝑃SB) =⇒ 𝔊𝔞𝔭(𝑃wrc

SW ) ≥
𝔊𝔞𝔭(𝑃SB)

2
,

which recovers the main result in [Ull14] up to the factor 2.
The above analysis loses a factor of 2 because we compare 𝑃wrc

SW with 𝑃↓SB. Note that 𝑃wrc
SW can be

decomposed as 𝑃R→I · 𝑃I→R . This factor 2 can be saved by comparing the intermediate step 𝑃R→I
with 𝑃↓SB. Define the intermediate state space Ω∗R = {0, 1, ∗}𝐸 , where for any 𝜏 ∈ Ω∗R and 𝑒 ∈ 𝐸, 𝜏𝑒 = ∗
means that 𝑒 is not assigned with any value, in other words, the value on 𝑒 is dropped. We can view
𝑃↓𝑒 as a random walk on ΩI × Ω∗R such that given any 𝜎𝜏 ∈ ΩI × Ω∗R , 𝑃

↓
𝑒 drops the value 𝜏𝑒 (i.e.
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sets 𝜏𝑒 = ∗) and keeps 𝜎𝜏𝐸\{𝑒 } unchanged. It is straightforward to verify that 𝑃R→I is equivalent to
𝑃R→FKES

∏
𝑒∈𝐸 𝑃

↓
𝑒 . Note that

𝑃R→FKES

∏
𝑒∈𝐸

𝑃↓𝑒 = 𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

) ∏
𝑒∈𝐸

𝑃↓𝑒 ,

as updating an edge twice is the same as updating it once. Recall (36) that 𝑃R→FKES( 1𝑚
∑

𝑒∈𝐸 𝑃
↓
𝑒 ) is

equivalent to 𝑃↓SB. By the data processing inequality, we have the following stronger result

𝐷𝜒2 (𝜈𝑃R→I ∥ 𝜋wrc𝑃R→I) ≤ 𝐷𝜒2

(
𝜈𝑃↓SB ∥ 𝜋wrc𝑃

↓
SB

)
,

which gives a better bound𝔊𝔞𝔭(𝑃wrc
SW ) ≥ 𝔊𝔞𝔭(𝑃SB), matching [Ull14].

For Lemma 7.1, we still need to compare𝔊𝔞𝔭(𝑃SB) with𝔊𝔞𝔭(𝑃GlauberRC). We claim that𝔊𝔞𝔭(𝑃SB) ≥
𝔊𝔞𝔭(𝑃GlauberRC)/2. By a simple comparison argument through the Dirichlet form (see for example
[LP17, Section 13.3]), it suffices to show

𝑃GlauberRC(𝐴, 𝐵)
𝑃SB(𝐴, 𝐵)

≤ 2

for all 𝐴, 𝐵 ⊆ 𝐸 such that |𝐴 ⊕ 𝐵 | = 1. Let 𝑒 be the edge where 𝐴 and 𝐵 differ. By writing down the
transition probability explicitly, the above ratio is 1 if 𝐴 and 𝐵 give the same connected components,
and

1

1 −
(
1 − 1+𝑋𝑌

(1+𝑋 ) (1+𝑌 )

)
𝑝𝑒

otherwise, where 𝑋 =
∏

𝑣∈𝐶1
𝜆𝑣 , 𝑌 =

∏
𝑤∈𝐶2

𝜆𝑤 , and 𝐶1,𝐶2 are the two components created by discon-
necting 𝑒 . Using the inequality that 1/2 ≤ (1 + 𝑋𝑌 )/((1 + 𝑋 ) (1 + 𝑌 )) ≤ 1 for all 0 ≤ 𝑋,𝑌 ≤ 1, the
above ratio is bounded by 2.

7.2. Comparing Glauber dynamics to single-bond dynamics. We first introduce some notations.
Let 𝜇 be a distribution with support Ω ⊆ 𝑄𝑉 .

For any 𝑆 ⊆ 𝑉 , we use 𝜇𝑆 to denote the marginal distribution on 𝑆 induced by 𝜇. Let Ω(𝜇𝑆 ) denote
the support of 𝜇𝑆 . Given any 𝑥𝑆 ∈ Ω(𝜇𝑆 ), we use 𝜇𝑥𝑆 to denote the distribution over Ω obtained from 𝜇
conditional on 𝑥𝑆 . Formally, for any𝑦 ∈ Ω, 𝜇𝑥𝑆 (𝑦) = I[𝑦𝑆 = 𝑥𝑆 ]𝜇 (𝑦)/𝜇𝑆 (𝑥𝑆 ), where𝑦𝑆 is the restriction
of 𝑦 on 𝑆 . For any Λ ⊆ 𝑉 , we use 𝜇𝑥𝑆Λ to denote the marginal distribution on Λ induced by 𝜇𝑥𝑆 . We
need the following chain rule of the KL-divergence. Such a result is very well-known. See for example
[CP21, Lemma 3.1].

Lemma 7.6. For any distribution 𝜈 be a distribution over Ω, any 𝑆 ⊆ 𝑉 , it holds that

𝐷KL (𝜈 ∥ 𝜇) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆 ) + E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆 ) + 𝜇 [Ent𝑉 −𝑆 (𝑓 )],
where 𝑉 − 𝑆 = 𝑉 \ 𝑆 and 𝑓 : Ω → R≥0 is defined by 𝑓 (𝑥) = 𝜈 (𝑥)/𝜇 (𝑥) and

𝜇 [Ent𝑉 −𝑆 (𝑓 )] =
∑

𝑥𝑆 ∈Ω (𝜇𝑆 )
𝜇𝑆 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑓 ) .

Proof. The first equation𝐷KL (𝜈 ∥ 𝜇) = 𝐷KL (𝜈𝑆 ∥ 𝜇𝑆 ) +E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) follows directly from the
standard chain rule of KL-divergence. To prove the second equation, for any 𝑥𝑆 ∈ Ω(𝜈𝑆 ), define

∀𝑦 ∈ Ω, 𝑔𝑥𝑆 (𝑦) :=
{
𝜈𝑥𝑆 (𝑦)
𝜇𝑥𝑆 (𝑦) =

𝜈 (𝑦)𝜇𝑆 (𝑥𝑆 )
𝜇 (𝑦)𝜈𝑆 (𝑥𝑆 ) =

𝜇𝑆 (𝑥𝑆 )
𝜈𝑆 (𝑥𝑆 ) 𝑓 (𝑦) if 𝑦𝑆 = 𝑥𝑆 ;

0 otherwise.
Since Ω(𝜈𝑆 ) ⊆ Ω(𝜇𝑆 ), we have

E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) =
∑

𝑥𝑆 ∈Ω (𝜈𝑆 )
𝜈 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑔𝑥𝑆 ) =

∑
𝑥𝑆 ∈Ω (𝜈𝑆 )

𝜈 (𝑥𝑆 )Ent𝜇𝑥𝑆
(
𝜇𝑆 (𝑥𝑆 )
𝜈𝑆 (𝑥𝑆 )

𝑓

)
=

∑
𝑥𝑆 ∈Ω (𝜈𝑆 )

𝜇 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑓 ) .(as Ent𝜇𝑥𝑆 (𝑐 𝑓 ) = c Ent𝜇𝑥𝑆 (𝑓 ))
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Note that for all 𝜎 ∈ Ω such that 𝜎𝑆 ∈ Ω(𝜇𝑆 ) \ Ω(𝜈𝑆 ), it holds that 𝑓 (𝜎) = 𝜈 (𝜎 )
𝜇 (𝜎 ) = 0, implying that

Ent𝜇𝜎𝑆 (𝑓 ) = 0. We have

E𝑥𝑆∼𝜈𝑆 𝐷KL (𝜈𝑥𝑆 ∥ 𝜇𝑥𝑆 ) =
∑

𝑥𝑆 ∈Ω (𝜈𝑆 )
𝜇 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑓 ) +

∑
𝑥𝑆 ∈Ω (𝜇𝑆 )\Ω (𝜈𝑆 )

𝜇 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑓 )

=
∑

𝑥𝑆 ∈Ω (𝜇𝑆 )
𝜇 (𝑥𝑆 )Ent𝜇𝑥𝑆 (𝑓 ) = 𝜇 [Ent𝑉 −𝑆 (𝑓 )] . □

Now we are ready to prove Lemma 7.4.

Proof of Lemma 7.4. For any 𝑒 ∈ 𝐸, let 𝐸 − 𝑒 = 𝐸 \ {𝑒}, using Lemma 7.6, it holds that

𝐷KL (𝜈 ∥ 𝜋wrc) = 𝐷KL
(
𝜈𝐸−𝑒 ∥ 𝜋wrc,𝐸−𝑒

)
+ 𝜋wrc [Ent𝑒 (𝑓 )], where 𝑓 (𝜏) = 𝜈 (𝜏)

𝜋wrc(𝜏)
.

Averaging over all 𝑒 ∈ 𝐸, we get
1
𝑚

∑
𝑒∈𝐸

𝜋wrc [Ent𝑒 (𝑓 )] =
1
𝑚

∑
𝑒∈𝐸

𝐷KL (𝜈 ∥ 𝜋wrc) −
1
𝑚

∑
𝑒∈𝐸

𝐷KL
(
𝜈𝐸−𝑒 ∥ 𝜋wrc,𝐸−𝑒

)
= 𝐷KL (𝜈 ∥ 𝜋wrc) − 𝐷KL

(
𝜈𝑃↓GlauberRC ∥ 𝜋wrc𝑃

↓
GlauberRC

)
.

By the assumption of Lemma 7.4, we have
1
𝑚

∑
𝑒∈𝐸

𝜋wrc [Ent𝑒 (𝑓 )] ≥ 𝛿𝐷KL (𝜈 ∥ 𝜋wrc) .(38)

Next, by (36), we have

𝐷KL
(
𝜈𝑃↓SB ∥ 𝜋wrc𝑃

↓
SB

)
= 𝐷KL

(
𝜈𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

)
∥ 𝜋wrc𝑃R→FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

))
= 𝐷KL

(
𝜈joint

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

)
∥ 𝜋FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

))
,

where 𝜈joint = 𝜈𝑃R→FKES so that for any 𝜎𝜏 ∈ ΩFKES, 𝜈joint(𝜎𝜏) = 𝜈 (𝜏)𝜋𝜏
FKES,𝑉 (𝜎). Hence, we have

𝐷KL
(
𝜈joint ∥ 𝜋FKES

)
=

∑
𝜎𝜏∈ΩFKES

𝜈joint(𝜎𝜏) log
𝜈 (𝜏)𝜋𝜏

FKES,𝑉 (𝜎)
𝜋wrc(𝜏)𝜋𝜏

FKES,𝑉 (𝜎)
= 𝐷KL (𝜈 ∥ 𝜋wrc) .

With these two equations, our goal, (37), is equivalent to

𝐷KL
(
𝜈joint ∥ 𝜋FKES

)
− 𝐷KL

(
𝜈joint

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

)
∥ 𝜋FKES

(
1
𝑚

∑
𝑒∈𝐸

𝑃↓𝑒

))
≥ 𝛿

4
𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
.(39)

Using Lemma 7.6, for any 𝑒 ∈ 𝐸, let 𝑉 + 𝐸 − 𝑒 be 𝑉 ∪ 𝐸 \ {𝑒}, it holds that

𝐷KL
(
𝜈joint ∥ 𝜋FKES

)
= 𝐷KL

(
𝜈joint,𝑉+𝐸−𝑒 ∥ 𝜋FKES,𝑉+𝐸−𝑒

)
+ 𝜋FKES

[
Ent𝑒

(
𝑓
)]

,

where

𝑓 (𝜎𝜏) =
𝜈joint(𝜎𝜏)
𝜋FKES(𝜎𝜏)

=
𝜈 (𝜏)𝜋𝜏

FKES,𝑉 (𝜎)
𝜋wrc(𝜏)𝜋𝜏

FKES,𝑉 (𝜎)
=

𝜈 (𝜏)
𝜋wrc(𝜏)

= 𝑓 (𝜏).

Hence, (39) is equivalent to
1
𝑚

∑
𝑒∈𝐸

𝜋FKES
[
Ent𝑒

(
𝑓
)]
≥ 𝛿

4
𝐷KL

(
𝜈joint ∥ 𝜋FKES

)
=
𝛿

4
𝐷KL (𝜈 ∥ 𝜋wrc) .

Given (38), to prove the above inequality, it suffices to show that for any 𝑒 ∈ 𝐸,

4 · 𝜋FKES
[
Ent𝑒

(
𝑓
)]
≥ 𝜋wrc [Ent𝑒 (𝑓 )] .(40)
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We now prove (40). We use 𝜎 to denote the vertex configuration in {0, 1}𝑉 and 𝜏 to denote the edge
configuration 𝜏 ∈ {0, 1}𝐸 . Suppose 𝑒 = {𝑢, 𝑣}. We use 𝜏−𝑒 to denote a configuration in {0, 1}𝐸−𝑒 . To
ease the notation, we use 𝜋FKES(𝜎𝜏−𝑒) to denote 𝜋FKES,𝐸−𝑒 (𝜎𝜏−𝑒). For any 𝜏𝑒 ∈ {0, 1}, we use 𝜏−𝑒𝜏𝑒 to
denote a full configuration 𝜏 in {0, 1}𝐸 . We have

𝜋FKES
[
Ent𝑒

(
𝑓
)]

=
∑
𝜎𝜏−𝑒

𝜋FKES(𝜎𝜏−𝑒)Ent𝜋𝜎𝜏−𝑒
FKES

(
𝑓
)

=
∑
𝜎𝜏−𝑒

𝜋FKES(𝜎𝜏−𝑒)
∑

𝜏𝑒 ∈{0,1}
𝜋𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒) log

𝑓 (𝜎𝜏−𝑒𝜏𝑒)∑
𝜏𝑒 ∈{0,1} 𝜋

𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒)

.

If 𝜎𝑢 ≠ 𝜎𝑣 , then 𝜋𝜎𝜏−𝑒
FKES,𝑒 (0) = 1, and in this case∑
𝜏𝑒 ∈{0,1}

𝜋𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒) log

𝑓 (𝜎𝜏−𝑒𝜏𝑒)∑
𝜏𝑒 ∈{0,1} 𝜋

𝜎𝜏−𝑒
FKES,𝑒 (𝜏𝑒) 𝑓 (𝜎𝜏−𝑒𝜏𝑒)

= 0.

Thus we only need to consider the case where the two endpoints of 𝑒 get the same spin. Note that this
always happens if 𝜏−𝑒 ∈ 𝐶𝑒 , where 𝐶𝑒 ⊆ {0, 1}𝐸−𝑒 is the set of 𝜏−𝑒 such that 𝑢 and 𝑣 are connected by
edges assigned 1 in 𝜏−𝑒 . Again, to ease the notation, let 𝜋wrc(𝜏−𝑒) be 𝜋wrc,𝐸−𝑒 (𝜏−𝑒). Hence, we have

𝜋FKES
[
Ent𝑒

(
𝑓
)]

=
∑

𝜏−𝑒 ∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒 , 𝜏−𝑒) +
∑

𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒) Pr𝜎∼𝜋𝜏−𝑒
FKES,𝑉
[𝜎𝑢 = 𝜎𝑣]ℎ(𝑝𝑒 , 𝜏−𝑒)

≥
∑

𝜏−𝑒 ∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒 , 𝜏−𝑒) +
1
2

∑
𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒 , 𝜏−𝑒),(41)

where

ℎ(𝑝𝑒 , 𝜏−𝑒) := 𝑝𝑒 𝑓 (𝜏−𝑒1) log 𝑓 (𝜏−𝑒1) + (1 − 𝑝𝑒) 𝑓 (𝜏−𝑒0) log 𝑓 (𝜏−𝑒0)
− (𝑝𝑒 𝑓 (𝜏−𝑒1) + (1 − 𝑝𝑒) 𝑓 (𝜏−𝑒0)) log(𝑝𝑒 𝑓 (𝜏−𝑒1) + (1 − 𝑝𝑒) 𝑓 (𝜏−𝑒0)) .

(Recall that 𝜏−𝑒𝜏𝑒 is a full configuration on 𝐸, where 𝜏𝑒 = 0 or 1.) To see (41), since all external fields are
consistent, Pr𝜎∼𝜋𝜏−𝑒

FKES,𝑉
[𝜎𝑢 = 𝜎𝑣] ≥ 1/2. This is because we can further condition on 𝜏𝑒 : if 𝜏𝑒 = 1, then

𝜎𝑢 = 𝜎𝑣 with probability 1, and if 𝜏𝑒 = 0, then 𝜎𝑢 and 𝜎𝑣 are independent and biased towards the same
direction, in which case they are equal with probability at least 1/2. The final probability is a linear
combination of the two cases.

Similarly, we can expand the right hand side of (40),

𝜋wrc [Ent𝑒 (𝑓 )] =
∑
𝜏−𝑒

𝜋wrc(𝜏−𝑒)Ent𝜋𝜏−𝑒
wrc
(𝑓 )

=
∑
𝜏−𝑒

𝜋wrc(𝜏−𝑒)
∑

𝜏𝑒 ∈{0,1}
𝜋𝜏−𝑒
wrc,𝑒 (𝜏𝑒) 𝑓 (𝜏−𝑒𝜏𝑒) log

𝑓 (𝜏−𝑒𝜏𝑒)∑
𝜏𝑒 ∈{0,1} 𝜋

𝜏−𝑒
wrc,𝑒 (𝜏𝑒) 𝑓 (𝜏−𝑒𝜏𝑒)

=
∑

𝜏−𝑒 ∈𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ(𝑝𝑒 , 𝜏−𝑒) +
∑

𝜏−𝑒∉𝐶𝑒

𝜋wrc(𝜏−𝑒)ℎ
(

𝑝𝑒
1 − 𝛼 (𝜏−𝑒) (𝑝𝑒 − 1)

, 𝜏−𝑒

)
.(42)

In the last step above we use 𝑝𝑒
1−𝛼 (𝜏−𝑒 ) (𝑝𝑒−1) = 𝜋𝜏−𝑒

wrc,𝑒 (1) where 𝛼 (𝜏−𝑒) is a factor depending on 𝜏−𝑒 ,
derived as follows. Suppose 𝑒 = {𝑢, 𝑣}. Consider the random cluster configuration with 𝑒 set not to be
taken, and adding 𝑒 causes the two connected components 𝐶1 and 𝐶2 to be merged as one, where 𝑢 is
in 𝐶1 and 𝑣 is in 𝐶2. Let 𝑋 = 𝑋 (𝜏−𝑒) =

∏
𝑤∈𝐶1

𝜆𝑤 and 𝑌 = 𝑌 (𝜏−𝑒) =
∏

𝑤∈𝐶2
𝜆𝑤 . We have

𝜋𝜏−𝑒
wrc,𝑒 (1) =

𝑝𝑒 (1 + 𝑋𝑌 )
𝑝𝑒 (1 + 𝑋𝑌 ) + (1 − 𝑝𝑒) (1 + 𝑋 ) (1 + 𝑌 )

=
𝑝𝑒

1 − 𝑋+𝑌
1+𝑋𝑌 (𝑝𝑒 − 1)

,

which means we can take 𝛼 (𝜏−𝑒) = 𝑋+𝑌
1+𝑋𝑌 . Moreover, we have 0 ≤ 𝛼 (𝜏−𝑒) ≤ 1 since 0 < 𝑋 ≤ 1 and

0 < 𝑌 ≤ 1.
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To finish the proof, define the following functions

𝑡 (𝑥, 𝑝, 𝛼) := 𝑔(𝑥, 𝑝)
𝑔(𝑥, 𝑝/(1 − 𝛼 (𝑝 − 1))) where 𝑔(𝑥, 𝑝) := 𝑝𝑥 log𝑥 − (𝑝𝑥 + 1 − 𝑝) log(𝑝𝑥 + 1 − 𝑝)

for 0 ≤ 𝑝 ≤ 1 and 0 ≤ 𝛼 ≤ 1. Define 𝑡 (0, 𝑝, 𝛼) := lim𝑥↓0 𝑡 (𝑥, 𝑝, 𝛼) and 𝑡 (1, 𝑝, 𝛼) := lim𝑥→1 𝑡 (𝑥, 𝑝, 𝛼). It is
not hard to verify that 𝑡 (𝑥, 𝑝, 𝛼) is continuous with respect to 𝑥 over [0,∞) for any fixed 𝑝 and 𝛼 , and
𝑡
(
𝑓 (𝜏−𝑒 ,1)
𝑓 (𝜏−𝑒 ,0) , 𝑝𝑒 , 𝛼 (𝜏−𝑒)

)
= ℎ (𝑝𝑒 ,𝜏−𝑒 )

ℎ
(

𝑝𝑒
1−𝛼 (𝜏−𝑒 ) (𝑝𝑒 −1) ,𝜏−𝑒

) . This function admits the following monotonicity property,

whose proof is postponed till Appendix C.

Lemma 7.7. For any 0 ≤ 𝑝 ≤ 1 and 0 ≤ 𝛼 ≤ 1, 𝑡 (𝑥, 𝑝, 𝛼) is monotone decreasing in 𝑥 over 𝑥 ≥ 0.

Given this, 𝑡 (𝑥, 𝑝, 𝛼) has a lower bound

𝑡 (𝑥, 𝑝, 𝛼) ≥ lim
𝑥→∞

𝑡 (𝑥, 𝑝, 𝛼) = (1 − 𝛼 (𝑝 − 1)) log𝑝
log𝑝 − log(1 − 𝛼 (𝑝 − 1)) =: 𝐶 (𝑝, 𝛼) .

We remark that the constant 𝐶 = 𝐶 (𝑝, 𝛼) satisfies

(43) 0.5 ≤ 𝐶 (𝑝, 𝛼) ≤ 2.

The proof is given in Appendix C, too. Using this fact, we conclude (40) by comparing (41) with (42).
This finishes the proof of Lemma 7.4. □

8. PeRfect sampling via coupling fRom the past

In this section, we give a perfect sampler for the ferromagnetic Ising model with consistent fields.
We first give a perfect sampler for the weighted random cluster model, then turn it into a perfect
sampler for the Ising model.

Theorem 8.1. There exists a perfect sampling algorithm such that given any weighted random cluster
model on graph 𝐺 = (𝑉 , 𝐸) with parameters 𝒑 = (𝑝𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 , if 0 < 𝑝𝑒 < 1 for all
𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 , the algorithm returns a perfect sample from weighted random
cluster models in expected time𝐶1(𝑝min, 𝑝max)𝑁 4𝑚4 log𝑛, where 𝑁 = min

{
𝑛, 1

1−𝜆max

}
, 𝜆max = max𝑣∈𝑉 𝜆𝑣 ,

𝐶1(𝑝min, 𝑝max) = 𝑂
(

1
min{𝑝min,1−𝑝max} log

1
min{𝑝min,1−𝑝max}

)
, 𝑝max = max𝑒∈𝐸 𝑝𝑒 and 𝑝min = min𝑒∈𝐸 𝑝𝑒 .

Furthermore, if there exists 𝛿 > 0 such that 𝜆𝑣 ≤ 1 − 𝛿 for all 𝑣 ∈ 𝑉 , then the algorithm runs in time

𝐶2(Δ, 𝛿, 𝑝min, 𝑝max)𝑛2 log2 𝑛, where 𝐶2(Δ, 𝛿, 𝑝min, 𝑝max) =
(

Δ
𝛿2 min{𝑝min,1−𝑝max}

)𝑂 (
Δ2

𝛿4 min{𝑝min,1−𝑝max}

)
.

Note that if 𝑝𝑒 = 0, we can simply remove 𝑒 , and if 𝑝𝑒 = 1, we can contract 𝑒 . Similarly if 𝜆𝑣 = 0, we
may pin 𝑣 to 0 and absorb it into its neighbours external fields. Thus for any weighted random cluster
model, we can modify it so that it satisfies the condition of Theorem 8.1.

8.1. Perfect ferromagnetic Ising sampler. We now prove Theorem 1.3. We give the perfect fer-
romagnetic Ising sampler assuming the algorithm in Theorem 8.1. Let 𝐺 = (𝑉 , 𝐸) be a graph. Let
𝜷 = (𝛽𝑒)𝑒∈𝐸 and 𝝀 = (𝜆𝑣)𝑣∈𝑉 be parameters for the Ising model, where 𝛽𝑒 > 1 for all 𝑒 ∈ 𝐸 and
0 < 𝜆𝑣 < 1 for all 𝑣 ∈ 𝑉 . Let 𝑝𝑒 = 1 − 1

𝛽𝑒
for all 𝑒 ∈ 𝐸. We first use algorithm in Theorem 8.1 to draw a

perfect random sampleS ⊆ 𝐸 from the weighted random cluster model with parameters 𝒑 and 𝝀. Then
we using the Markov chain PR→I in (11) to transform S into a random Ising configuration 𝜎 ∈ {0, 1}𝑉 .
By Proposition 2.3, since S ∼ 𝜋wrc, 𝜎 is a perfect sample from the Ising model. The running time of
the transformation step is 𝑂 (𝑛 +𝑚). Note that

𝑝min = 1 − 1
𝛽min

, 1 − 𝑝max =
1

𝛽max
.
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By Theorem 8.1, the total running time is 𝐶1𝑁
4𝑚4 log𝑛 and 𝐶2𝑛

2 log2 𝑛 for all 𝜆𝑣 ≤ 1 − 𝛿 , where

𝐶1 = 𝐶1(𝛽min, 𝛽max) = 𝑂

((
𝛽max +

𝛽min

𝛽min − 1

)
log

(
𝛽max +

𝛽min

𝛽min − 1

))
,

𝐶2 = 𝐶2(Δ, 𝛿, 𝛽min, 𝛽max) =
(
Δ

𝛿2

(
𝛽max +

𝛽min

𝛽min − 1

))𝑂 (
Δ2

𝛿4

(
𝛽max+

𝛽min
𝛽min−1

))
.

(44)

8.2. CFTP for weighted random cluster models. We give a perfect sampler for weighted random
cluster models based on coupling form the past (CFTP) applied to the Glauber dynamics. Here is an
equivalent definition of the Glauber dynamics. There is a one-to-one correspondence between vectors
in {0, 1}𝐸 and subsets in 2𝐸 (i.e. for any 𝑋 ∈ {0, 1}𝐸 , let 𝑆𝑋 = {𝑒 ∈ 𝐸 | 𝑋𝑒 = 1}). We assume that the
Markov chain is defined over the state space {0, 1}𝐸 . The Glauber dynamics starts from an arbitrary
subset of edges 𝑋0 ∈ {0, 1}𝐸 . For the 𝑡-th transition step, the chain does the following:

• pick an edge 𝑒𝑡 ∈ 𝐸 uniformly at random;
• sample a real number 𝑟𝑡 ∈ [0, 1] uniformly at random; if 𝑟𝑡 < 𝑎𝑡 , let 𝑋𝑡 = 𝑋 𝑒←1

𝑡−1 ; if 𝑟𝑡 ≥ 𝑎𝑡 , let
𝑋𝑡 = 𝑋 𝑒←0

𝑡−1 , where 𝑋 𝑒←𝑐
𝑡−1 satisfies 𝑋 𝑒←𝑐

𝑡−1 (𝐸 \ {𝑒}) = 𝑋𝑡−1(𝐸 \ {𝑒}) and 𝑋 𝑒←𝑐
𝑡−1 (𝑒) = 𝑐 , and

𝑎𝑡 = 𝑎(𝑋𝑡−1, 𝑒) :=
𝜋wrc(𝑋 𝑒←1

𝑡−1 )
𝜋wrc(𝑋 𝑒←0

𝑡−1 ) + 𝜋wrc(𝑋 𝑒←1
𝑡−1 )

.(45)

The Glauber dynamics for weighted random cluster models admits a grand monotone coupling. Let
Ω = {0, 1}𝐸 . Let 𝑃 : Ω × Ω → R≥0 denote the transition matrix of the Glauber dynamics. We use the
function 𝜑 (·, ·) to represent each transition step of edge flipping dynamics. For any 𝑡 , given the current
configuration 𝑋𝑡−1 ∈ Ω, the next configuration can be generated by 𝑋𝑡 = 𝜑 (𝑋𝑡−1,𝑈𝑡 ), where 𝑈𝑡 is the
randomness used in the 𝑡-th transition step. Specifically,

𝑈𝑡 ∼ D and𝑈𝑡 = (𝑒𝑡 , 𝑟𝑡 ) ∈ Ω𝑅 = 𝐸 × [0, 1],

where D is a distribution such that 𝑒𝑡 is a uniform random edge in 𝐸, 𝑟𝑡 is a uniform random real
number in [0, 1], and they are independent. The function 𝜑 uses the transition rule defined above
to map 𝑋𝑡−1 to a random state 𝑋𝑡 = 𝜑 (𝑋𝑡−1,𝑈𝑡 ), where the randomness of 𝑋𝑡 is determined by the
randomness of𝑈𝑡 ∼ D. The function 𝜑 (·, ·) is called a grand coupling of flipping dynamics because

∀𝜎, 𝜏 ∈ Ω, Pr𝑈∼𝐷 [𝜑 (𝜎,𝑈 ) = 𝜏] = 𝑃 (𝜎, 𝜏) .

Define a partial ordering ⪯ among all vectors in {0, 1}𝐸 : for any 𝑋,𝑌 ∈ {0, 1}𝐸 ,

𝑋 ⪯ 𝑌 if 𝑋 (𝑒) ≤ 𝑌 (𝑒) for all 𝑒 ∈ 𝐸.

Let 𝑋min = 0 be the constant 0 vector and 𝑋max = 1 be the constant 1 vector, so that 𝑋min ⪯ 𝑋 ⪯ 𝑋max

for all 𝑋 ∈ {0, 1}𝐸 . The next lemma shows that the grand coupling 𝜑 is monotone with respect to the
partial ordering ⪯.

Lemma 8.2. Suppose 0 ≤ 𝑝𝑒 < 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . The grand coupling 𝜑 of the
Glauber dynamics for weighted random cluster models is monotone, i.e. for any 𝜎, 𝜏 ∈ Ω with 𝜎 ⪯ 𝜏 , any
𝑈 ∈ Ω𝑅 , it holds that 𝜑 (𝜎,𝑈 ) ⪯ 𝜑 (𝜏,𝑈 ).

The proof of Lemma 8.2 is deferred to Section 8.3. With the monotone grand coupling 𝜑 , we apply
CFTP to the Glauber dynamics for weighted random cluster models in Algorithm 1.

Remark 8.3. In Algorithm 1, infinitely many𝑈𝑡 are generated in Line 1. To implement the algorithm,
we can first generate𝑈−1, and then generate (𝑈𝑡 )−2𝑇 ≤𝑡<−𝑇 when updating 𝑇 ← 2𝑇 .

Let𝑇D be the time cost for generating a random sample fromD. Let𝑇𝜑 be the time cost for comput-
ing the value of the function 𝜑 . Let 𝑇mix(·) denote the mixing time of the edge flipping dynamics for
weighted random cluster models. By the standard result of the CFTP for monotone systems [PW96]
(also see [LP17, Chapter 25]), we have the following proposition about Algorithm 1.
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Algorithm 1: CFTP of the Glauber dynamics for weighted random cluster models
Input: a weighted random cluster model on graph 𝐺 = (𝑉 , 𝐸) with parameters 𝝀 = (𝜆𝑣)𝑣∈𝑉

and 𝒑 = (𝑝𝑒)𝑒∈𝐸 , where 0 < 𝑝𝑒 < 1 for all 𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 .
Output: a perfect sample 𝑋 ∼ 𝜋wrc, where 𝜋wrc is the distribution over {0, 1}𝐸 defined by the

input weighted random cluster model.
1 generate𝑈𝑡 ∼ D independently for all integers 𝑡 ∈ (−∞,−1];
2 𝑇 = 1;
3 repeat
4 𝑋min = 0 and 𝑋max = 1;
5 for 𝑡 = −𝑇 to −1 do
6 𝑋min ← 𝜑 (𝑋min,𝑈𝑡 );
7 𝑋max ← 𝜑 (𝑋max,𝑈𝑡 );

// 𝜑 is the monotone grand coupling in Lemma 8.2
8 𝑇 ← 2𝑇
9 until 𝑋min = 𝑋max;

10 return 𝑋min;

Proposition 8.4 ([PW96]). Suppose the input weighted random cluster model satisfies 0 ≤ 𝑝𝑒 < 1 for all
𝑒 ∈ 𝐸 and 0 < 𝜆𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 . Algorithm 1 returns a perfect sample for the stationary distribution
of edge flipping dynamics for weighted random cluster models, i.e. the distribution 𝜋wrc. The expected
running time of Algorithm 1 is 𝑂 ((𝑇D +𝑇𝜑 )𝑇mix( 14𝑒 ) log𝑛).

Now, we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. By definitions of D and 𝜑 , it is straightforward to verify that 𝑇D = 𝑂 (1) and
𝑇𝜑 = 𝑂 (𝑛 +𝑚). The mixing time can be obtained fromTheorem 6.3. □

8.3. Proof of monotonicity. Here we prove Lemma 8.2. Fix 𝜎, 𝜏 ∈ {0, 1}𝐸 such that 𝜎 ⪯ 𝜏 . Fix
𝑈 = (𝑒, 𝑟 ) ∈ Ω𝑅 . Let 𝑒 = {𝑢, 𝑣}. Let 𝜎−𝑒 and 𝜏−𝑒 denote 𝜎 (𝐸 \ {𝑒}) and 𝜏 (𝐸 \ {𝑒}) respectively, and 𝐺𝜎

and𝐺𝜏 be the graphs with vertices𝑉 and edges in 𝜎−𝑒 and 𝜏−𝑒 respectively. Note that𝐺𝜎 is a subgraph
of𝐺𝜏 . We prove the lemma by considering three cases (1) 𝑢, 𝑣 are connected in both𝐺𝜎 and𝐺𝜏 (2) 𝑢, 𝑣
are neither connected in neither 𝐺𝜎 nor 𝐺𝜏 (3) 𝑢, 𝑣 are connected in 𝐺𝜏 but not in 𝐺𝜎 .

First suppose 𝑢, 𝑣 are connected in both 𝐺𝜎 and 𝐺𝜏 . In this case 𝑎(𝜎, 𝑒) = 𝑎(𝜏, 𝑒) = 𝑝𝑒 , where 𝑎(·, ·)
is defined in (45). The lemma holds trivially.

Next assume 𝑢, 𝑣 are neither connected in neither 𝐺𝜎 nor 𝐺𝜏 . Suppose 𝑢, 𝑣 belong to connected
components 𝐶1,𝐶2 (or 𝐶′1,𝐶′2) in 𝐺𝜎 (or𝐺𝜏 ) respectively. Define

𝑥𝜎1 :=
∏
𝑤∈𝐶1

𝜆𝑤, 𝑥𝜎2 :=
∏
𝑤∈𝐶2

𝜆𝑤, 𝑥𝜏1 :=
∏
𝑤∈𝐶′1

𝜆𝑤, 𝑥𝜏2 :=
∏
𝑤∈𝐶′2

𝜆𝑤 .

We have

𝑎(𝜎, 𝑒) =
𝑝𝑒 (1 + 𝑥𝜎1 𝑥𝜎2 )

𝑝𝑒 (1 + 𝑥𝜎1 𝑥𝜎2 ) + (1 − 𝑝𝑒) (1 + 𝑥𝜎1 )(1 + 𝑥𝜎2 )
,

𝑎(𝜏, 𝑒) =
𝑝𝑒 (1 + 𝑥𝜏1𝑥𝜏2 )

𝑝𝑒 (1 + 𝑥𝜏1𝑥𝜏2 ) + (1 − 𝑝𝑒)(1 + 𝑥𝜏1 ) (1 + 𝑥𝜏2 )
.

Since 𝜆𝑤 ≤ 1 for all𝑤 ∈ 𝑉 , 𝑥𝜎1 ≥ 𝑥𝜏1 and 𝑥𝜎2 ≥ 𝑥𝜏2 , which implies

(1 + 𝑥𝜎1 )(1 + 𝑥𝜎2 )
(1 + 𝑥𝜎1 𝑥𝜎2 )

≥
(1 + 𝑥𝜏1 ) (1 + 𝑥𝜏2 )
(1 + 𝑥𝜏1𝑥𝜏2 )

.

Hence 𝑎(𝜎, 𝑒) ≤ 𝑎(𝜏, 𝑒), which implies the lemma.
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Lastly suppose𝑢, 𝑣 are connected in𝐺𝜏 but not in𝐺𝜎 . Suppose𝑢, 𝑣 belong to connected components
𝐶1,𝐶2 in 𝐺𝜎 . Define 𝑥𝜎1 and 𝑥𝜎2 in the same way.

𝑎(𝜎, 𝑒) =
𝑝𝑒 (1 + 𝑥𝜎1 𝑥𝜎2 )

𝑝𝑒 (1 + 𝑥𝜎1 𝑥𝜎2 ) + (1 − 𝑝𝑒)(1 + 𝑥𝜎1 ) (1 + 𝑥𝜎2 )
, 𝑎(𝜏, 𝑒) = 𝑝𝑒 .

Since (1 + 𝑥𝜎1 ) (1 + 𝑥𝜎2 ) ≥ 1 + 𝑥𝜎1 𝑥𝜎2 , 𝑎(𝜎, 𝑒) ≤ 𝑎(𝜏, 𝑒), which implies the lemma.
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Appendix A. PRoof of the eivalence Result

A.1. Equivalence between Ising and weighted random cluster models. Fix a graph 𝐺 = (𝑉 , 𝐸).
We first show the first equation in (6). Observe that we can decompose the Ising model interaction
matrix as

𝑓
Ising
𝑒 = ©«

𝛽𝑒 1

1 𝛽𝑒

ª®¬ = ©«
1 1

1 1

ª®¬ + ©«
𝛽𝑒 − 1 0

0 𝛽𝑒 − 1
ª®¬ =: 𝑓 (0)𝑒 + 𝑓 (1)𝑒 .

By definition, 𝑓 (1)𝑒 forces the two endpoints to take the same spin, while 𝑓 (0)𝑒 poses no requirements. In
this way, we can perform an extra enumeration over all the assignments over the edges 𝜏 : 𝐸 → {0, 1},
the decompose the effect of 𝑓 Ising𝑒 into 𝑓 (0)𝑒 and 𝑓 (1)𝑒 . The partition function of Isingmodel then becomes∑

𝜎∈{0,1}𝑉
wtIsing(𝜎) =

∑
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝑓
Ising
𝑒 (𝜎 (𝑢), 𝜎 (𝑣))

∏
𝑢∈𝑉

𝜆𝜎 (𝑢 )𝑢

=
∑

𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣) ∈𝐸

©«
∑

𝜏 (𝑒 ) ∈{0,1}
𝑓 (𝜏 (𝑒 ) )𝑒 (𝜎 (𝑢), 𝜎 (𝑣))ª®¬

∏
𝑢∈𝑉

𝜆𝜎 (𝑢 )𝑢

=
∑

𝜏∈{0,1}𝐸

∑
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝑓 (𝜏 (𝑒 ) )𝑒 (𝜎 (𝑢), 𝜎 (𝑣))
∏
𝑢∈𝑉

𝜆𝜎 (𝑢 )𝑢 .(∗)

Fix 𝜏 . Consider the subgraph 𝐺 ′ = (𝑉 , 𝑆) where 𝑆 is the set of edges assigned to 1 under 𝜏 . Each
connected component 𝐶 ⊆ 𝑉 of 𝐺 ′ must take the same spin in 𝜎 , otherwise the contribution to the
sum is 0. Let 𝐸𝐶 ⊆ 𝑆 denote all the edges in component 𝐶 . The total weight of the component 𝐶 is∏

𝑒∈𝐸𝐶 (𝛽𝑒 − 1) (1 +
∏

𝑢∈𝐶 𝜆𝑢). Combining all components yields∑
𝜎∈{0,1}𝑉

∏
𝑒=(𝑢,𝑣) ∈𝐸

𝑓 (𝜏 (𝑒 ) )𝑒 (𝜎 (𝑢), 𝜎 (𝑣))
∏
𝑢∈𝑉

𝜆𝜎 (𝑢 )𝑢 =
∏
𝑒∈𝑆
(𝛽𝑒 − 1)

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
.

And hence

(∗) =
∑
𝑆⊆𝐸

∏
𝑒∈𝑆
(𝛽𝑒 − 1)

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
=

(∏
𝑒∈𝐸

𝛽𝑒

)
·
∑
𝑆⊆𝐸

∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽𝑓

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
= 𝑍wrc(𝐺 ; 2𝒑,𝝀)

by taking 2𝑝𝑒 = 1 − 1/𝛽𝑒 .

A.2. Equivalence between Ising and subgraph-world. To applyTheorem 2.6, we express the Ising
model (𝐺 = (𝑉 , 𝐸); 𝜷,𝝀) as a Holant problem. Given an Ising model on graph 𝐺 = (𝑉 , 𝐸). We define
a bipartite graph 𝐻 with left part 𝑉1 = 𝑉 corresponding to vertices in 𝐺 and right part 𝑉2 = 𝐸 corre-
sponding to edges in 𝐺 . Two vertices 𝑣 ∈ 𝑉1 and 𝑒 ∈ 𝑉2 are adjacent in graph 𝐻 if 𝑣 is incident to 𝑒 in
graph𝐺 . By definition, each edge 𝑒 = (𝑢, 𝑣) in𝐺 is decomposed into two half-edges (𝑣, 𝑒) and (𝑢, 𝑒) in
graph 𝐻 .

For any vertex 𝑣 ∈ 𝑉1, we force the assignment to its incident half-edges to be equal, and further
more, if they are all ones, then wemultiply the weight by 𝜆𝑣 . This yields the signature [1, 0, · · · , 0, 𝜆𝑣] =
[1, 0]⊗𝑑𝑣+𝜆𝑣 [0, 1]⊗𝑑𝑣 on each vertex 𝑣 , where𝑑𝑣 is the degree of 𝑣 in𝐺 . For any edge 𝑒 in𝐺 , its signature
is [𝛽𝑒 , 1, 𝛽𝑒] to model the ferromagnetic Ising interaction. Define

FIsing =
{
[1, 0]⊗𝑑𝑣 + 𝜆𝑣 [0, 1]⊗𝑑𝑣 | 𝑣 ∈ 𝑉

}
and GIsing = {[𝛽𝑒 , 1, 𝛽𝑒] | 𝑒 ∈ 𝐸} .

It is straightforward to verify

Holant(𝐻 ;FIsing | GIsing) = 𝑍Ising(𝐺 ; 𝜷,𝝀) .(46)
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For subgraph-world models, we define a Holant problem on the same bipartite graph 𝐻 . The signa-
ture on each vertex 𝑣 is defined by [1, 𝜂𝑣, 1, 𝜂𝑣, · · · ], and on each edge 𝑒 ∈ 𝐸, it is defined by [1−𝑝𝑒 , 0, 𝑝𝑒].
Define

Fsg = {[1, 𝜂𝑣, 1, 𝜂𝑣, · · · ] | 𝑣 ∈ 𝑉 } and Gsg = {[1 − 𝑝𝑒 , 0, 𝑝𝑒] | 𝑒 ∈ 𝐸} .
It is straightforward to verify

Holant(𝐻 ;Fsg | Gsg) = 𝑍sg(𝐺 ;𝒑,𝜼) .(47)

Take 𝑇 =
(
1 1
1 −1

)
. Let 𝑝𝑒 = 1

2

(
1 − 1

𝛽𝑒

)
. It holds that(

𝑻 −1
)⊗2 (𝛽𝑒 , 1, 1, 𝛽𝑒)⊤ =

(
𝛽𝑒 + 1
2

, 0, 0,
𝛽𝑒 − 1
2

)⊤
= 𝛽𝑒

[
𝛽𝑒 + 1
2𝛽𝑒

, 0,
𝛽𝑒 − 1
2𝛽𝑒

]
= 𝛽𝑒 [1 − 𝑝𝑒 , 0, 𝑝𝑒] .

Let 𝜂𝑣 = 1−𝜆𝑣
1+𝜆𝑣 . We have(
(1, 0)⊗𝑑𝑣 + 𝜆𝑣 (0, 1)⊗𝑑𝑣

)
𝑻 ⊗𝑑𝑣 = (1, 1)⊗𝑑𝑣 + 𝜆𝑣 (1,−1)⊗𝑑𝑣 = (1 + 𝜆𝑣) [1, 𝜂𝑣, 1, 𝜂𝑣, · · · ] .

Combining Theorem 2.6, (46) and (47) with the above, it holds that

𝑍Ising(𝐺 ; 𝜷,𝝀) =
(∏
𝑣∈𝑉
(1 + 𝜆𝑣)

) (∏
𝑒∈𝐸

𝛽𝑒

)
𝑍sg(𝐺 ;𝒑,𝜼).

Appendix B. PRoof of the adjointness

Proof of Proposition 2.3. Let 𝐷Ising = diag(𝜋Ising) and 𝐷wrc = diag(𝜋wrc) denote the diagonal matrices
induced from vectors 𝜋Ising and 𝜋wrc respectively. We have

⟨𝑓 , 𝑃I→R𝑔⟩𝜋Ising = 𝑓 𝑇𝐷Ising𝑃I→R𝑔 and ⟨𝑃R→I 𝑓 , 𝑔⟩𝜋wrc = 𝑓 𝑇𝑃𝑇R→I𝐷wrc𝑔.

For any 𝜎 ∈ {0, 1}𝑉 and 𝑆 ⊆ 𝐸, we show that(
𝐷Ising𝑃I→R

)
(𝜎, 𝑆) =

(
𝑃𝑇R→I𝐷wrc

)
(𝜎, 𝑆)

Recall𝑀 (𝜎) = {{𝑢, 𝑣} ∈ 𝐸 | 𝜎𝑢 = 𝜎𝑣}. It holds that(
𝐷Ising𝑃I→R

)
(𝜎, 𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] · 𝜋Ising(𝜎) ·

∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

) ∏
𝑓 ∈𝑀 (𝜎 )\𝑆

1
𝛽𝑓

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍Ising

·
∏
𝑣∈𝑉

𝜆𝜎 (𝑣)𝑣

∏
ℎ∈𝑀 (𝜎 )

𝛽ℎ
∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

) ∏
𝑓 ∈𝑀 (𝜎 )\𝑆

1
𝛽𝑓

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍Ising

·
∏
𝑣∈𝑉

𝜆𝜎 (𝑣)𝑣

∏
𝑒∈𝑆
(𝛽𝑒 − 1).(48)

Recall 𝜅 (𝑉 , 𝑆) is the set of all connected components of graph (𝑉 , 𝑆). It holds that(
𝑃𝑇R→I𝐷wrc

)
(𝜎, 𝑆) = I[𝑆 ⊆ 𝑀 (𝜎)] · 𝜋wrc(𝑆) ·

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

∏
𝑣∈𝐶 𝜆𝜎 (𝑣)𝑣

1 +∏
𝑣∈𝐶 𝜆𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc

·
∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽𝑓

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

(
1 +

∏
𝑢∈𝐶

𝜆𝑢

)
·

∏
𝐶∈𝜅 (𝑉 ,𝑆 )

∏
𝑣∈𝐶 𝜆𝜎 (𝑣)𝑣

1 +∏
𝑣∈𝐶 𝜆𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc

·
∏
𝑒∈𝑆

(
1 − 1

𝛽𝑒

) ∏
𝑓 ∈𝐸\𝑆

1
𝛽𝑓

∏
𝑣∈𝑉

𝜆𝜎 (𝑣)𝑣

= I[𝑆 ⊆ 𝑀 (𝜎)] · 1
𝑍wrc

·
∏
ℎ∈𝐸

1
𝛽ℎ

∏
𝑣∈𝑉

𝜆𝜎 (𝑣)𝑣

∏
𝑒∈𝑆
(𝛽𝑒 − 1)(49)
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By Proposition 2.1, we know that (∏
𝑒∈𝐸

𝛽𝑒

)
𝑍wrc = 𝑍Ising.

Combining above equation with (48) and (49) proves
(
𝐷Ising𝑃I→R

)
(𝜎, 𝑆) =

(
𝑃𝑇R→I𝐷wrc

)
(𝜎, 𝑆). □

Appendix C. PRoof of analytic lemmata

This section of appendix proves Lemma 7.7 and (43).

Proof of Lemma 7.7. The goal is to show 𝜕𝑡 (𝑥, 𝑝, 𝛼)/𝜕𝑥 < 0 for all 𝑥 ∈ (0, 1) ∪ (1, +∞). The lemma then
follows by combining this with continuity.

A straightforward calculation shows that
𝜕𝑡 (𝑥, 𝑝, 𝛼)

𝜕𝑥
=

−(1 − 𝛼 (1 − 𝑝)) (1 − 𝑝)𝑝(
𝑥𝑝 log𝑥 − ((1 + 𝛼) (1 − 𝑝) + 𝑝𝑥) log

(
1 + 𝑝 (𝑥−1)

1+𝛼 (1−𝑝 )

))2 𝑠 (𝑥, 𝑝, 𝛼)
where

𝑠 (𝑥, 𝑝, 𝛼) := (1 + 𝛼) (log𝑥) log
(
1 + 𝑝 (𝑥 − 1)

1 + 𝛼 (1 − 𝑝)

)
−

(
log𝑥 + 𝛼 log

(
1 + 𝑝 (𝑥 − 1)

1 + 𝛼 (1 − 𝑝)

))
log(1 + 𝑝 (𝑥 − 1)) .

This means sgn(𝜕𝑡 (𝑥, 𝑝, 𝛼)/𝜕𝑥) = −sgn(𝑠 (𝑥, 𝑝, 𝛼)), and hence we only need to show 𝑠 (𝑥, 𝑝, 𝛼) > 0
whenever 𝑥 ∈ (0, 1) ∪ (1, +∞).

From now on in this section, we use the notation 𝐴 ≷𝑥 𝐵 to represent that 𝐴 > 𝐵 when 𝑥 > 1, and
𝐴 < 𝐵 when 0 < 𝑥 < 1. In other words, when 𝑥 > 1, ≷𝑥 should be read as >, and vice versa.

We first claim the following inequalities:
(50) (1 + 𝛼) log𝑥 − 𝛼 log(1 + 𝑝 (𝑥 − 1)) ≷𝑥 0;

(51) log

(
1 + 𝑝 (𝑥 − 1)

1 + 𝛼 (1 − 𝑝)

)
≷𝑥 0;

(52) log(1 + (𝑥 − 1)𝑝) ≷𝑥 0.

We focus on 𝑠 (𝑥, 𝑝, 𝛼) and postpone the proof of these simple inequalities till the end. By collecting
terms of log

(
1 + 𝑝 (𝑥−1)

1+𝛼 (1−𝑝 )

)
, one can find that 𝑠 (𝑥, 𝑝, 𝛼) > 0 if and only if

((1 + 𝛼) log𝑥 − 𝛼 log(1 + 𝑝 (𝑥 − 1))) log
(
1 + 𝑝 (𝑥 − 1)

1 + 𝛼 (1 − 𝑝)

)
> (log𝑥) log(1 + 𝑝 (𝑥 − 1)) .

By using (50), it is equivalent to show that

log

(
1 + 𝑝 (𝑥 − 1)

1 + 𝛼 (1 − 𝑝)

)
≷𝑥

(log𝑥) log(1 + 𝑝 (𝑥 − 1))
(1 + 𝛼) log𝑥 − 𝛼 log(1 + 𝑝 (𝑥 − 1)) ,

or equivalently, using (50)(51)(52), to show that

(53) 1
log(1 + (𝑥 − 1)𝑝) ≷𝑥

𝛼

1 + 𝛼 ·
1

log𝑥
+ 1
1 + 𝛼 ·

1

log
(
1 + 𝑝 (𝑥−1)

1+𝛼 (1−𝑝 )

) .
Note that the following function

𝑢𝑥,𝑝 (𝑦) :=
1

log
(
1 + 𝑝 (𝑥−1)

𝑦

)
reveals the essence of (53) in the way that (53) is equivalent to

(54) 𝑢𝑥,𝑝 (1) ≷𝑥
𝛼

1 + 𝛼 · 𝑢𝑥,𝑝 (𝑝) +
1

1 + 𝛼 · 𝑢𝑥,𝑝 (1 − 𝛼 (𝑝 − 1)),
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and note that
1 =

𝛼

1 + 𝛼 · 𝑝 +
1

1 + 𝛼 · (1 − 𝛼 (𝑝 − 1)) .
This means (54) follows if for fixed 𝑥 > 1 (resp., 0 < 𝑥 < 1) and 𝑝 , 𝑢𝑥,𝑝 (𝑦) is a concave (resp., convex)
function over 𝑦 ∈ (𝑝, 2) ⊇ (𝑝, 1−𝛼 (𝑝 − 1)), which would conclude the proof. We verify this as follows.

A straightforward calculation shows that
d2

d𝑦2
𝑢𝑥,𝑝 (𝑦) =

(𝑥 − 1)𝑝
𝑦 (𝑦 + (𝑥 − 1)𝑝)2 log3

(
1 + 𝑝 (𝑥−1)

𝑦

) (
2 · 𝑝 (𝑥 − 1)

𝑦
−

(
2 + 𝑝 (𝑥 − 1)

𝑦

)
log

(
1 + 𝑝 (𝑥 − 1)

𝑦

))
.

It is not hard to verify that

(55) log

(
1 + 𝑝 (𝑥 − 1)

𝑦

)
≷𝑥 0,

which we prove later. With a bit more endeavour, we can also show that

(56) −
(
2 · 𝑝 (𝑥 − 1)

𝑦
−

(
2 + 𝑝 (𝑥 − 1)

𝑦

)
log

(
1 + 𝑝 (𝑥 − 1)

𝑦

))
≷𝑥 0,

whose proof is postponed as well. Concavity/Convexity is then established by combining the expres-
sion for the second-order derivative, (55) and (56). □

Proof of (50), (51), (52), (55), and (56). For (50), because log𝑥 ≷𝑥 0, we only need to show
𝑥

1 + (𝑥 − 1)𝑝 ≷𝑥 1.

Note that 1 + (𝑥 − 1)𝑝 is positive. The above is hence equivalent to
(𝑥 − 1)(1 − 𝑝) ≷𝑥 0,

which is obvious.
All of (51), (52) and (55), after simple calculation, are equivalent to (𝑥 − 1)𝑝 ≷𝑥 0, which is obvious,

too.
Finally, we show (56). Let 𝑧 := 𝑝 (𝑥 − 1)/𝑦. LHS is then 𝑟 (𝑧) := (2+𝑧) log(1+𝑧) − 2𝑧. It is not hard to

show that 𝑟 (𝑧) is monotone in 𝑧 over 𝑧 ∈ (−1, +∞), by observing that 𝑟 ′(𝑧) = 1
1+𝑧 − 1 − log

1
1+𝑧 , which

is non-negative as log𝑥 ≤ 𝑥 − 1 for 𝑥 > 0. Moreover, 𝑟 (0) = 0. Therefore, when 𝑥 > 1, we have 𝑧 > 0,
and (56) holds. When 0 < 𝑥 < 1, we have −1 < (𝑥 − 1) ≤ 𝑧 < 0, and (56) holds too. □

Proof of (43). For convenient reference, the expression of interest is

𝐶 (𝑝, 𝛼) := (1 − 𝛼 (𝑝 − 1)) log𝑝
log𝑝 − log(1 − 𝛼 (𝑝 − 1)) .

Taking derivative with respect to 𝛼 , we get

𝜕

𝜕𝛼
𝐶 (𝑝, 𝛼) =

(1 − 𝑝) log(𝑝)
(
1 + log

(
𝑝

1+𝛼 (1−𝑝 )

))
(
log

(
𝑝

1+𝛼 (1−𝑝 )

))2 .

A simple calculation shows that
• if 𝑝 ≤ 1/𝑒 , then 𝐶 (𝑝, 𝛼) is increasing with 𝛼 , and hence lies between 𝐶 (𝑝, 0) = 1 and 𝐶 (𝑝, 1) =

(2−𝑝 ) log𝑝
log𝑝−log(2−𝑝 ) ;

• if 1/𝑒 < 𝑝 < 2/(1+𝑒), then𝐶 (𝑝, 𝛼) is decreasing within 𝛼 ∈ (0, (𝑒𝑝−1)/(1−𝑝)) and increasing
within 𝛼 ∈ ((𝑒𝑝 − 1)/(1 − 𝑝), 1), and hence lies between 𝐶 (𝑝, (𝑒𝑝 − 1)/(1 − 𝑝)) = −𝑒𝑝 log𝑝 ≥
2𝑒 log((1 + 𝑒)/2)/(1 + 𝑒) > 0.90 and max{𝐶 (𝑝, 0),𝐶 (𝑝, 1)}; and
• if 𝑝 ≥ 2/(1 + 𝑒), then 𝐶 (𝑝, 𝛼) is decreasing, and hence lies between 𝐶 (𝑝, 1) = (2−𝑝 ) log𝑝

log𝑝−log(2−𝑝 ) and
𝐶 (𝑝, 0) = 1.

From the case-by-case analysis, it suffices to show that 0.5 ≤ (2−𝑝 ) log𝑝
log𝑝−log(2−𝑝 ) ≤ 2, which is a simple

analytic exercise. □
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