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a b s t r a c t 

The class imbalance problem is common in the credit scoring domain, as the number of defaulters is usu- 

ally much less than the number of non-defaulters. To date, research on investigating the class imbalance 

problem has mainly focused on indicating and reducing the adverse effect of the class imbalance on the 

predictive accuracy of machine learning techniques, while the impact of that on machine learning inter- 

pretability has never been studied in the literature. This paper fills this gap by analysing how the stability 

of Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), two 

popular interpretation methods, are affected by class imbalance. Our experiments use 2016–2020 UK res- 

idential mortgage data collected from European Datawarehouse. We evaluate the stability of LIME and 

SHAP on datasets of progressively increased class imbalance. The results show that interpretations gener- 

ated from LIME and SHAP are less stable as the class imbalance increases, which indicates that the class 

imbalance does have an adverse effect on machine learning interpretability. To check the robustness of 

our outcomes, we also analyse two open-source credit scoring datasets and we obtain similar results. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Financial institutions rely on credit scoring models to estimate 

he default probability of borrowers and decide whether or not to 

pprove loan applications. With the boosted enthusiasm in the ma- 

hine learning-based predictive techniques adopted in finance, ap- 

lications such as credit scoring have gained substantial interest 

rom both academia and industry ( Bank of England, 2019; Brown 

 Mues, 2012; Chang et al., 2018; Lessmann et al., 2015 ). However, 

achine learning techniques such as Neural Networks and Extreme 

radient Boosting (XGBoost) are regarded as “black-box” methods 

ince they are too complex to explain and validate their predic- 

ions. 

In academia, there has been a debate about the trade-off be- 

ween the gain in accuracy and the loss in interpretability ob- 

ained with advanced credit scoring models (e.g., Bücker et al., 

021; Dumitrescu et al., 2022; Gunnarsson et al., 2021 ). Moreover, 

egulators have been committed to revealing new risks brought by 

achine learning techniques and emphasising the need for mod- 

lling transparency and interpretability in the lending sector. For 

xample, in the United States, the Equal Credit Opportunity Act 

ECOA) requires creditors to provide statements of specific rea- 

ons to applicants against whom adverse action is taken. There- 
∗ Corresponding author. 
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ore the public can be protected from the risk of using “black-box”

redit scoring models following this regulation ( Consumer Finan- 

ial Protection Bureau, 2022 ). Similar regulation is also included 

n the General Data Protection Regulation (GDPR) in the European 

nion ( Voigt & von dem Bussche, 2017 ). The European Union also 

roposed the Artificial Intelligence (AI) Act to identify risk cat- 

gories for AI applications, and credit scoring is classified as a 

igh-risk AI application ( European Commission, 2021 ). The Euro- 

ean Banking Authority (EBA) recognises the necessity for finan- 

ial institutions to take interpretability into account in their fi- 

ancial decisions ( European Banking Authority, 2020 ). It also in- 

ists on using machine learning interpretability techniques when 

uilding Internal ratings-based models ( European Banking Author- 

ty, 2021 ). Similarly, in a report on the governance of AI in Finance

 Laurent Dupont et al., 2020 ), the French Prudential Supervision 

nd Resolution Authority (ACPR) discusses the requirements of in- 

erpretability and potential interpretability methods that could be 

sed with “black-box” models in credit scoring. As mentioned by 

BA and ACPR ( European Banking Authority, 2020; Laurent Dupont 

t al., 2020 ), model-agnostic interpretation methods such as Local 

nterpretable Model-agnostic Explanations (LIME) ( Ribeiro et al., 

016 ) and SHapley Additive exPlanations (SHAP) ( Lundberg & Lee, 

017 ) could be used at a second stage to interpret the predic- 

ion results generated by the “black-box” credit scoring models. 

hese interpretation methods can keep the high predictive accu- 

acy of the machine learning models and make the prediction 

nterpretable. 
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1 https://archive.ics.uci.edu/ml/datasets/South+German+Credit . 
2 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients . 
3 The results of XGBoost and Random Forest (RF) are very similar. Due to the 

page limits, we only present the results of XGBoost in the main text. The results of 

RF can be found in Supplementary Materials (Part H). 
Class imbalance is also a common issue in the credit scoring 

omain, as bad customers only account for a very small proportion 

f all customers. The proportion of defaults varies with financial 

roducts. For example, the default rate in mortgage portfolios is 

ypically less than 0.5% ( Thomas et al., 2017 ), while loans to Small

nd Medium Enterprises (SMEs) have a higher percentage (around 

%) ( Andreeva et al., 2016; Gramegna & Giudici, 2021 ). In the con-

ext of the class imbalance problem, current research has mainly 

ocused on analysing the effects of class imbalance on the predic- 

ive ability of machine learning techniques. It can be concluded 

hat the predictive performance decreases as the class imbalance 

evel increases and the researchers have proposed various methods 

o improve it (e.g. Calabrese & Osmetti, 2015; Chawla et al., 2011; 

rawczyk, 2016; Li et al., 2019 ). However, based on our knowledge, 

he impact of class imbalance on the performance of interpreta- 

ion methods has never been studied in the literature. Considering 

he growing popularity of using interpretation methods for high- 

takes decision-making such as credit scoring, this omission is a 

ignificant gap in the research. 

Since regulations like ECOA ( Consumer Financial Protection Bu- 

eau, 2022 ) and GDPR ( Voigt & von dem Bussche, 2017 ) provide

he right for individuals to receive an explanation of a decision 

ade by “black-box” systems, customers could expect some guid- 

nce provided by interpretation methods on how to act to observe 

 desired outcome, such as an approval of a loan ( ICO & The Alan

uring Institute, 2020; Singh et al., 2021 ). However, suppose the 

nterpretive performance could be disturbed due to the class im- 

alance problem - customers may put effort into improving a spe- 

ific feature (credit index) that may not be taken into account in 

heir next loan application, hence getting disappointed and losing 

pportunities due to the misleading information. Moreover, finan- 

ial institutions who provide unstable or misleading interpretations 

or similar situations seem to violate regulations (e.g., ECOA and 

DPR) and could thus put themselves at risk. Customers will also 

ose faith in those financial institutions which may lead to a crisis 

f confidence and consequently bring substantial financial loss to 

he institutions. 

We make three methodological and three empirical contribu- 

ions to the literature. From the methodological perspective, first, 

e propose an experimental framework including a controlled 

ampling process to investigate the stability of LIME and SHAP con- 

idering the effects of class imbalance, which has never been stud- 

ed in the literature. Second, we apply two novel indexes, named 

equential Rank Agreement (SRA) ( Ekstrøm et al., 2019 ) and Co- 

fficient of Variation (CV), to evaluate the interpretation stability 

n two ways. For both LIME and SHAP, key information sought by 

sers is the importance ranking of the relevant features. Specifi- 

ally, a ranking list of features is determined by the magnitude of 

he absolute SHAP values and the magnitude of the absolute LIME 

oefficient values. Therefore, in this paper, we measure the stability 

f LIME and SHAP based on their feature ranking lists and the cor- 

esponding feature importance values. We use SRA to measure the 

eature ranking stability, defined as the similarity of feature rank- 

ng lists generated to interpret the prediction results for a specific 

arget at the same class imbalance level. For the feature impor- 

ance value stability, we use CV to measure the similarity of the 

bsolute SHAP values and absolute LIME coefficients correspond- 

ng to the same feature when interpreting the prediction results 

or a specific target at the same class imbalance level. Third, we 

xtend the work of Visani et al. (2021) to measure and compare 

he “internal” and “external” stability of LIME by checking the co- 

fficients’ confidence intervals and the similarity of features during 

he feature selection process in LIME, using the Coefficients Stabil- 

ty Index (CSI) and the Variables Stability Index (VSI), respectively. 

From the empirical point of view, our first contribution is to 

easure the stability of LIME and SHAP when the level of class 
2 
mbalance incrementally increases in the credit scoring context for 

he first time. To make our experiments as close to bank prac- 

ice as possible, we use a dataset on residential mortgage defaults 

btained from the European Datawarehouse, a centralised secu- 

itisation repository implemented by the European Central Bank 

hat collects, validates and distributes standardised loan-level data 

or several European countries. We also use two additional open 

ource credit scoring datasets, which are South German Credit 

ataset 1 and Taiwan Credit Card Dataset, 2 to enable reproducibility 

nd verify the robustness of our experiments. Second, we use both 

GBoost and Random Forest 3 as the “black-box” machine learn- 

ng models to make predictions, and we evaluate the interpreta- 

ion stability based on them. We choose XGBoost and RF since 

hey have become increasingly prevalent in the credit scoring do- 

ain over recent years for their superior predictive performance 

 Barbaglia et al., 2021; Gunnarsson et al., 2021; Xia et al., 2017 ).

oreover, they perform relatively better with class imbalance than 

ther “black-box” machine learning models ( Brown & Mues, 2012; 

itzpatrick & Mues, 2016 ). Third, we show that the stability of LIME 

nd SHAP will be affected by the class imbalance, especially at ex- 

reme class imbalance levels (lower than 5% default rate). Specif- 

cally, the feature importance ranking becomes less stable as the 

lass distribution becomes less balance. The variation of feature 

mportance value deepens with the increase of the class imbal- 

nce level, and the “internal” stability of LIME does suffer from 

xtremely imbalanced data. 

The rest of this paper is structured as follows. Section 2 re- 

iews the work that has used the interpretation methods in the 

redit scoring domain, and we focus on how they deal with the 

lass imbalance problem. A brief introduction to XGBoost, LIME 

nd SHAP can be found in Section 3 . Section 4 thoroughly ex- 

lains the proposed experimental framework from two aspects: 

ata pre-processing and sampling procedure. Section 5 explains 

he stability indexes used in this paper. The results of the empir- 

cal study are then presented and discussed in Section 6 . Eventu- 

lly, Section 7 gives the conclusions drawn from the study and dis- 

usses the possible directions of future research. 

. Literature review 

Besides applying interpretable predictive models (e.g. logistic 

egression), using model-agnostic interpretation methods ( Molnar, 

021 ) to explain the prediction results separately after applying 

he machine learning “black-box” predictive models, has attracted 

ore attention from both academia and industry. The great ad- 

antage of the model-agnostic interpretation methods over in- 

erpretable predictive models is their flexibility, including model 

exibility, explanation flexibility and representation flexibility (See 

ibeiro et al., 2016 for more details). 

Researchers have developed various model-agnostic interpreta- 

ion methods focusing on different interpretation aspects. Some 

ethods such as Partial Dependence Plots ( Friedman, 2001 ) and 

ccumulated Local Effects Plots ( Apley & Zhu, 2020 ) interpret the 

black-box” models by analysing the relationships among features 

r between features and dependent variables. Other methods try 

o interpret the prediction results of “black-box” models in vari- 

us ways, including through identifying the features’ contributions 

o the predictions like SHAP or through analysing the variance in 

eature values when disturbing the prediction results like Counter- 

actual Explanations ( Wachter et al., 2017 ). There are also methods 

https://archive.ics.uci.edu/ml/datasets/South+German+Credit
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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Table 1 

Summary of papers using model-agnostic interpretation methods in the credit scoring domain. 

Authors (year) ML models Interpretation methods Dataset Class distribution Method for class imbalance 

Ariza-Garzon et al. (2020) XGBoost, RF SHAP P2P lending 20% Hybrid-sampling 

Barbaglia et al. (2021) XGBoost, GB ALE plots Residential mortgages 0.3%-15% (7 countries) Under-sampling, 

Over-sampling 

Bracke et al. (2019) GB Shapley values Residential mortgages 2.5% None 

Bücker et al. (2021) SVM, GB SHAP, LIME, iBreakDown, 

PDPs 

Home equity line of credit 52% None 

Bussmann et al. (2021) XGBoost SHAP P2P lending for SMEs 11% None 

Gramegna & Giudici 

(2021) 

XGBoost SHAP, LIME SMEs Loans 1% Under-sampling 

Liu et al. (2022) XGBoost, Variants of GB, 

RF, SVM, NN 

SHAP Residential mortgages, 

Bank loans, P2P lending 

6.7%-24% (4 datasets) None 

Martens et al. (2007) SVM Rule extraction techniques Bankruptcy of firms 18% None 

Moscato et al. (2021) RF, NN SHAP, LIME, LORE, BEEF, 

Anchors 

P2P lending 23% Under-sampling, 

Over-sampling, 

Hybrid-sampling 

Óskarsdóttir & Bravo 

(2021) 

XGBoost SHAP Agricultural lending 12% None 

Patil et al. (2020) XGBoost, NN SHAP, LIME, LRP Fraud detection 0.1% Over-sampling 

Szwabe & Misiorek (2018) GB, RF Rule extraction techniques Credit cards 6.7%-30% (4 datasets) None 
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ike LIME and Local Rule-Based Explanation ( Guidotti et al., 2018 ) 

sing interpretable models such as logistic regression and decision 

rees to understand the prediction results or extract the IF-THEN 

ules directly. 

Table 1 summarises the existing literature on model-agnostic 

nterpretation methods in the credit scoring domain. Martens et al. 

2007) and Szwabe & Misiorek (2018) used Support Vector Ma- 

hine (SVM) and Tree-based ensembles, respectively, to predict the 

redit scoring behaviours. Both papers applied decision trees such 

s C4.5 and CART to approximate predictions provided by first 

tage “black-box” models, finally generating decision rules to in- 

erpret the prediction results. Bracke et al. (2019) at the Bank of 

ngland applied Shapley values and clustering algorithms to ex- 

lain how much each feature of a scoring model contributes to the 

nal prediction provided by a Gradient Tree Boosting (GB) model. 

he authors concluded that the important features found by Shap- 

ey values, loan-to-value ratio and current interest rate, are in line 

ith the relevant literature. Barbaglia et al. (2021) from the Euro- 

ean Commission similarly used GB classifiers to predict loan de- 

aults. Using ALE plots, they observed a non-linear relationship be- 

ween the current LTV and the probability of default. Ariza-Garzon 

t al. (2020) and Moscato et al. (2021) used the same loan de- 

ault data from a P2P platform. They applied various interpreta- 

ion methods such as LIME and SHAP to explain some classification 

odels such as RF, XGBoost and Neural Networks (NN). Gramegna 

 Giudici (2021) also used LIME and SHAP to generate feature 

eights after applying XGBoost to estimate the default probabil- 

ty of SMEs. To evaluate LIME and SHAP’s ability to define distinct 

roups of observations, the authors further employed the feature 

eights generated by LIME and SHAP as input space for a K -means 

lustering and an RF model. The results showed that SHAP seems 

o have a clear advantage in terms of discriminative power com- 

ared with that of LIME. Bücker et al. (2021) tried to build the ex- 

lanation framework for credit scoring by using different model- 

gnostic interpretation methods to provide either global-level or 

ocal-level interpretations at various stages of the credit scoring 

rocess to satisfy the requirements of stakeholders’ interests. It can 

e seen from Table 1 that LIME and SHAP are the two most popu-

ar model-agnostic interpretation methods used in the credit scor- 

ng domain, and therefore we use both of them in this paper. 

We report in Table 1 the percentage of defaults in each work. 

xcept Bücker et al. (2021) , all other datasets have different de- 

rees of class imbalance, which is regarded as a common charac- 

eristic in the credit scoring domain ( Thomas et al., 2017 ). 
3 
The class imbalance has an adverse effect on detecting rare 

vents (e.g., the defaulters in credit scoring datasets) in the classi- 

cation problem. To achieve better classification performance, sev- 

ral imbalanced learning techniques have been proposed. For a 

eview of these methods, see Haixiang et al. (2017) ; He & Gar- 

ia (2009) and Kaur et al. (2019) . Focusing on credit risk, Brown 

 Mues (2012) and Fitzpatrick & Mues (2016) performed a com- 

arison of different classifiers on few credit scoring datasets, and 

oncluded that the Tree-based ensembles such as GB and RF per- 

ormed relatively well with pronounced class imbalance. Other re- 

earch also indicated that balancing sample distribution such as 

sing under-sampling or over-sampling techniques can improve 

lassification accuracy ( Crone & Finlay, 2012; Marqués et al., 2013; 

oscato et al., 2021; Namvar et al., 2018 ). The main analyses in 

redit risk summarised in Table 1 are in line with the findings of 

he above literature that they either used Tree-based ensembles as 

lassification models or employed sampling techniques to achieve 

etter predictive power. 

Besides analysing the adverse effect of class imbalance on 

lassification performance, some researchers also investigated its 

mpact on the interpretations of the explanatory variables for 

nterpretable models, such as Logistic Regression. King & Zeng 

2001a,b) theoretically and empirically showed that the estimation 

ias of coefficients in Logistic Regression could be greatly mag- 

ified by class imbalance. Owen (2007) also suggested that, in 

he case of extreme class imbalance, the minority class only con- 

ributes to the Logistic Regression estimation via its sample mean 

ector, and this issue cannot be solved by using penalisation or 

ikelihood weighting ( Li et al., 2019 ). 

However, to the best of our knowledge, no research has consid- 

red the potential effect of class imbalance on the model-agnostic 

nterpretation methods. For example, Patil et al. (2020) obtained 

 balanced dataset by oversampling, and they applied LIME and 

HAP to the balanced dataset to pick out the important features. 

hey concluded that oversampling does not alter the feature cor- 

elation since the important features for predictions of valid and 

raud observations are consistent. Still, they did not compare the 

erformance of LIME and SHAP on the imbalanced dataset with 

he balanced one. Bussmann et al. (2021) only mentioned in the 

onclusion and future research section that it would be interesting 

o analyse the effects of imbalanced datasets and sampling tech- 

iques on their proposed Shapley value context. 

Some researchers have already questioned the general robust- 

ess of the model-agnostic interpretation methods, such as LIME 
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Table 2 

XGBoost hyper-parameters tuning grid. 

Hyper-parameters Grid setting 

Maximum tree depth 1, 3, 5 

Sample-based subsampling rate 0.6, 0.8, 1 

Feature-based subsampling rate 0.6, 0.8 

Minimum child weight 1, 3, 5 

No. of iterations 100, 110, 120,130,..., 500 
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t

nd SHAP, especially when interpreting the out-of-distribution 

amples, due to the permutation mechanism and the sampling 

rocedure included in these methods ( Alvarez-Melis & Jaakkola, 

018; Shaikhina et al., 2021; Sundararajan & Najmi, 2020; Visani 

t al., 2021 ). Some possible remedies to solve this problem were 

roposed. For example, both Slack et al. (2021) and Zhao et al. 

2021) exploited prior knowledge in Bayesian framework and de- 

eloped Bayesian versions of LIME and SHAP to capture the 

ncertainty and improve the consistency in interpretations. Li 

t al. (2020) utilised a fixed reference distribution (e.g., train- 

ng set) to control the uncertainty brought by permutation in re- 

eated interpretations of SHAP. A similar method is also used by 

hankaranarayana & Runje (2019) and Zafar & Khan (2019) for 

IME. Although the above research evaluated the robustness of 

IME and SHAP, none of them take into account the class imbal- 

nce problem. The intuitions could be that the class imbalance 

ay be of no effect on the stability of the interpretations or even 

itigate the uncertainty since the interpretations may come from 

he majority class, which may have more stable distributions, or 

t could have an adverse effect on the performance of interpreta- 

ion methods since the rare events may be out-of-distribution and 

herefore it could be hard to interpret them. Therefore, this pa- 

er contributes to filling this gap by designing a novel framework 

ased on feature ranking and value stability indexes to compare 

he stability of the two most used interpretation methods - LIME 

nd SHAP - under different levels of class imbalance to see how 

he class imbalance affects the interpretations. 

. Overview of XGBoost, LIME and SHAP 

In this section, we present an overview of XGBoost, LIME and 

HAP. We start by setting the notation. Let D = 

{
( x i , y i ) 

}N 

i =1 
be a 

ataset with N loans where x i is the feature vector, and y i be 

 binary response variable with y = 1 if default occurs and y = 0

therwise. Let x j ( j = 1 , 2 , . . . , P ) be the value of jth feature of

 

i . In this section, we briefly introduce XGBoost, the “black-box”

achine learning technique chosen to make predictions, and LIME 

nd SHAP, the interpretation methods chosen to explain the pre- 

ictions provided by XGBoost. 

.1. XGBoost 

.1.1. Brief overview 

XGBoost proposed by Chen & Guestrin (2016) is an advanced 

radient tree boosting model in the machine learning literature. It 

hares the concept of gradient boosting algorithm which applies an 

dditive form of weak base learners to minimise the loss function 

o measure how well the model fits the current data. The general 

radient boosting runs a series of iterations m ( m = 1 , 2 , . . . , M),

here at each iteration m , the base learner f m 

is sought by min-

mising the objective function expressed as follows: 

in 

N ∑ 

i =1 

L 
(
y i , F m −1 ( x 

i ) + f m 

( x 

i ) 
)

(1) 

here L (·) is the loss function, f m 

( x i ) is the base learner and

 M 

( x i ) = 

∑ M 

m =1 f m 

( x i ) is the additive boosted model that repre- 

ents the prediction on the m th iteration. Specifically, XGBoost uses 

ART decision tree algorithm as the base learner: 

f m 

( x 

i ) = T ( x 

i , �) = 

K ∑ 

k =1 

w k I( x 

i ∈ R k ) (2) 

here { R k } K k =1 denotes K disjoint regions of the feature space ( K

eaves in a CART), I(·) is an indicator function, with I = 1 if and

nly if x i ∈ R and I = 0 otherwise, w represents the weights on
k k 

4

he k th leaf and � = (w k , R k ) 
K 
k =1 

is a set of unknown parameters

hat needs to be optimised. 

In XGBoost, a regularisation term is added to Eq. (1) to avoid 

verfitting: 

in 

N ∑ 

i =1 

L 
(
y i , F m −1 ( x 

i ) + f m 

( x 

i ) 
)

+ 

( 

αK + 

1 

2 

λ
K ∑ 

k =1 

w k 
2 

) 

(3) 

here α > 0 is a l 1 -penalty on the number of leaves in a CART as

hown in Eq. (2) , λ > 0 is a l 2 -penalty on the leaf nodes weights

 k . Compared to the general gradient boosting algorithm, XGBoost 

uickly approximates Eq. (3) with a second-order Taylor expansion 

nd it further speeds the convergence during the model training by 

pplying an approximate greedy algorithm for finding the optimal 

ree structure. For more details about XGBoost see Chen & Guestrin 

2016) and Xia et al. (2017) . 

.1.2. Parameter tuning 

Implementation of XGBoost requires setting several hyper- 

arameters. For example, the learning rate and the number of iter- 

tions are two hyper-parameters, which control the model conver- 

ence to make the boosting process more robust to over-fitting. A 

ower learning rate generally requires a larger number of iterations 

o ensure a sufficient convergence. Other hyper-parameters such as 

he penalty terms α and λ introduced in Eq. (3) , maximum tree 

epth, feature-based and sample-based subsampling rates, enable 

GBoost to control the tree complexity, thereby avoiding overfit- 

ing and accelerating learning. This paper uses the Python package 

gboost ( Chen & Guestrin, 2016 ) to conduct the learning process. 

Considering a trade-off between the model performance and 

he computational cost, we employ a stepwise parameter tuning 

rocess, which is also used in Xia et al. (2017) . First, we follow

he learning rate 0.1 as suggested by Friedman (2001) ; Xia et al. 

2017) , and we fix the number of iterations at 200. The rest of 

he hyper-parameters are tuned using a grid search method. Af- 

erwards, we keep the learning rate at 0.1, and tune the number of 

terations with the rest of the hyper-parameters fixed at the values 

btained from the first step. Table 2 reports the parameter tun- 

ng grid and other parameters that are not involved will be set 

o the default values in the xgboost Python package. The param- 

ter values selected for the tuning grid are based on the prelimi- 

ary exploration and similar research using gradient boosting algo- 

ithms in the credit scoring domain ( Barbaglia et al., 2021; Chang 

t al., 2018; Fitzpatrick & Mues, 2016; Gunnarsson et al., 2021; Xia 

t al., 2017 ). In each step, we use five-fold cross-validation to find 

he best combination of the hyper-parameters with the highest H- 

easure obtained on the validation data. 

We use H-measure in Python package hmeasure to evaluate the 

redictive performance of XGBoost since it is a preferred metric 

or the imbalanced dataset ( Calabrese et al., 2016; Fitzpatrick & 

ues, 2016; Lessmann et al., 2015 ). As a coherent alternative to 

he Area Under the Curve (AUC), H-measure allows one to specify 

 severity ratio, measured by the cost of misclassifying a class 0 

ata point to the cost of misclassifying a class 1 data point ( Hand,

009; 2010 ). This paper uses the default setting of the severity ra- 

io which equals to the reciprocal of relative class frequency, so 
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hat misclassifying the rare class (class 1 data points) is consid- 

red a more severe mistake, which exactly suits the credit scoring 

pplications. 

.2. LIME 

LIME proposed by Ribeiro et al. (2016) aims to interpret the 

achine learning model prediction of a specific target x i by ap- 

ropriating the “black-box” machine learning model ( f : R 

d → R ) 

ith a local interpretable model g ∈ G , where G is a family of pos-

ible interpretable models. To fit a local surrogate centred on x i , 

IME generates a new dataset (neighbourhood around x i ) by ran- 

omly perturbing features from the target x i and obtaining the 

orresponding predictions from the “black-box” model. The inter- 

retable model g is then trained on the new dataset Z , which is 

eighted by the distances from the perturbed samples to the tar- 

et x i . Therefore, the learned interpretable model g ensures local 

delity, which means it should be a good approximation of the 

black-box” model predictions locally (focusing on the target x i ) 

ut does not guarantee a good global approximation. Mathemat- 

cally, the interpretation for the target x i can be obtained by opti- 

ising the following objective function: 

rgmin L ( f, g, πx i ) + �(g) 

here πx i represents a proximity measure between a sample to 

he target x i , so we need to define the neighborhood around x i . 

( g ) is a regulation term which measures the complexity of the 

nterpretable model g, L (·) is a loss function which is minimised 

o get an interpretable model g most similar to f in the neigh- 

ourhood defined by πx i , while the model complexity �(g) is kept 

ow: 

 ( f, g, πx i ) = 

∑ 

z , z ′ ∈Z 
πx i ( z )( f ( z ) − g( z ′ )) 2 

here z ′ denotes the simplified inputs and z ′ ∈ { 0 , 1 } P ′ . 4 In this

aper, we follow the default setting in the Python package lime 

or applying LIME to tabular data. Specifically, Ridge Regression is 

sed as the interpretable model g. πx i ( z ) = exp (−D ( x i , z ) 2 /σ 2 ) is

n exponential kernel, which smoothly assigns higher weights to 

amples closer to the target of interest. Here we use the default 

etting in the lime package, where D represents the Euclidean dis- 

ance function and σ is the kernel width 0 . 75 ×
√ 

P . To control the

odel complexity �(g) , a feature selection step is performed ini- 

ially to select 10 most important features to be used in the Ridge 

egression. 

The Ridge regression estimates a linear relationship between 

he selected features and the approximated predictions, which pro- 

ides an interpretation of the prediction through its coefficients: 

he larger the absolute coefficient values, the larger variation in the 

alue of the response variable when the feature is changed. There- 

ore, the absolute coefficient values of features can represent the 

eature importance value. By sorting the absolute coefficient val- 

es in a decreasing order, we can get a feature ranking list, which 

ill be used for the LIME stability measurement. 

.3. SHAP 

SHAP ( Lundberg et al., 2020; Lundberg & Lee, 2017 ) is based 

n the Shapley value ( Shapley, 1953 ), a concept from game theory 

hat assigns fair payout to a player depending on its contribution 

o the total gain when coalitions are taken into account. In the ma- 

hine learning field, a player is a certain feature value, coalitions 
4 Interpretation methods often use simplified inputs x ′ ∈ { 0 , 1 } P ′ that map to the 

riginal inputs through a mapping function x = h x ( x ′ ) . Local methods try to ensure 

( z ′ ) ≈ f (h x ( z ′ )) whenever z ′ ≈ x ′ . 

v

c

f

5 
re possible feature subsets S, and the fair payout represents the 

ontribution of a certain feature value to the prediction. Thus, in 

ur context, the Shapley value φ j of a feature value x j in the target 

 

i can be calculated by averaging the prediction differences (con- 

ribution) generated between the model with and without j over 

ll possible feature subsets S and considering all feature orderings: 

j = 

∑ 

S⊆{ 1 , ... ,P} 

| S| !(P − | S| − 1)! 

P ! 

[
f S (x S ) − f S\ j (x S\ j ) 

]
(4) 

here x S denotes the values of the input features in the set S of 

arget x i , f S (x S ) denotes the model trained with x j present in x S ,

nd f S\ j (x S\ j ) denotes the model trained without x j in x S . It is

roved that Shapley values is the only explanation method in the 

road class of additive feature attribution methods that could si- 

ultaneously satisfy three properties — local accuracy, missingness 

nd consistency ( Lundberg & Lee, 2017 ). 

Unfortunately, as the number of the features increases, averag- 

ng over all possible feature subsets will be an intractable problem, 

ence sampling-based approximation methods are always applied 

o solve Eq. (4) ( Lundberg & Lee, 2017; Štrumbelj & Kononenko, 

014 ). However, those approximation methods reply on post hoc 

odelling of an arbitrary function and thus can still be slow and 

lso suffer from sampling variability. 

Lundberg et al. (2020) therefore proposed Tree SHAP that could 

rovide a fast and exact computation of Shapley values by lever- 

ging the internal structure of tree-based models such as XGBoost. 

hapley values require a summation of prediction differences over 

ll possible feature subsets. Tree SHAP collapses this summation 

nto a set of calculations specific to each leaf in a tree in the 

ree-based models, hence reducing the complexity of exact Shapley 

alue computation from exponential to polynomial time. 

Specifically, to compute the impact of a specific feature subset 

 f S (x S ) in Eq. (4) ) during the Shapley value calculation, Tree SHAP

ses interventional expectations over a user-supplied background 

ataset: 

f S (x S ) = E [ f (X ) | do(X S = x S ) ] (5) 

here X represents a sample in the background dataset, and the 

o-notation formulation emphasizes an intervention on X when 

e manually set the feature values in X S to the same values in 

 S of the target x i ( X S = x S ). The interventional Tree SHAP enforces

ndependence between the set S and the set of remaining features 

ased on the laws of causality ( Janzing et al., 2019 ). It should be

oted that since the background dataset is fixed, Tree SHAP cal- 

ulates Eq. (5) by iterating over each sample in the background 

ataset, hence there is no estimation variability in Tree SHAP like 

ther sampling-based approximation methods (see Lundberg et al., 

020 for more algorithm details). 

In this paper, we use the training set as the background dataset 

nd we use the Python package shap to apply Tree SHAP (abbrevi- 

ted as SHAP in this paper) in our experiments. For each target x i , 

he absolute SHAP value of each feature measures the magnitude 

f contribution to the prediction and therefore can be regarded as 

he feature importance value. Features with larger absolute SHAP 

alues contribute more to the prediction and therefore are more 

mportant. By sorting the absolute SHAP values in a decreasing or- 

er, we could get a ranking list of features, which will be used for 

HAP stability measurement. 

.4. LIME and SHAP comparison 

Both LIME and SHAP measure feature contribution at the obser- 

ation level (local explanation). Benefiting from the solid theoreti- 

al foundation in game theory, SHAP ensures that the prediction is 

airly distributed among the features, and therefore could further 
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rovide global model interpretations such as global feature impor- 

ance for a whole dataset, which are consistent with the local ex- 

lanations ( Lundberg & Lee, 2017 ). Based on the solid theory, SHAP 

lso guarantees contractive explanations by comparing the predic- 

ion with the average prediction, which is not feasible for LIME. 

herefore, SHAP is more suitable and compliant when people need 

ull interpretations locally and globally based on a solid theoretical 

oundation. 

While LIME lacks the theoretical foundation as SHAP and tends 

o be “internal” unstable (this will be discussed in Section 5.3.3 ), 

IME is time efficient and can make human-friendly explanations 

ompared to SHAP. Tree SHAP is relatively faster compared to other 

ypes of SHAP by leveraging the internal structure of tree-based 

odels. Machine learning models other than tree-based models 

an only rely on other SHAP algorithms, such as Kernel SHAP, 

hich is slow and impractical to use when computing Shapley 

alues for many observations ( Molnar, 2021 ). LIME provides short 

nd clear explanations using the feature selection step. An inter- 

retable model, such as Ridge regression in LIME, also enables 

IME to make statements about changes in prediction for changes 

n the input, which is not applicable in SHAP. Besides, LIME is ca- 

able of providing interpretations for a new observation only based 

n properties of the training set (mean and standard deviation) 

nd the machine learning prediction function, while SHAP needs 

o access the data (training set or other background datasets) to 

ompute the Shapley values ( Lundberg & Lee, 2017; Ribeiro et al., 

016 ). Therefore, LIME is more appropriate in applications when 

he recipient of interpretations is a lay person or with a limitation 

f time, or there is a restriction of access to data. 

. Experimental setup 

To analyse the effects of the class imbalance on LIME and SHAP, 

his paper conducts an empirical study, which compares the per- 

ormance of LIME and SHAP when explaining the predictions of 

GBoost on credit scoring datasets with different default rates. The 

roposed experimental framework is provided in Fig. 1 . In this sec- 

ion, we use the European Datawarehouse data as an example to 

xplain the experimental framework. 

In Step 1 , loan data for residential property purchased in the 

K are collected and pre-processed for the following analysis. The 

etailed data preparation process will be introduced in Section 4.1 . 

ince LIME and SHAP interpret the predictions on individuals, to 

ake the stability of the interpretive performance across varied 

lass imbalance comparable, it is necessary to initially sample the 

arget individuals of which the predictions from the “black-box”

odel will be interpreted. Therefore, we randomly select 100 de- 

aults 5 and 100 non-defaults to be used as targets ( T argetset = 

( x i , y i ) 
}T 

i =1 
, T = 200 ) for local interpretation in Step 2 . After the

nitial sampling, for the rest of the data, we build 12 training sets 

 T rainset u = { ( x su , y su ) } Z s =1 ) with the same sample size Z but dif- 

erent default rates u ( u = 1% , 2 . 5% , 5% , 10% , . . . , 45% , 50% ) in Step

 . By doing so, it is possible to identify whether the interpreta- 

ions of machine learning predictions generated by LIME and SHAP 

re adversely affected when there is a substantially lower num- 

er of observations in one of the classes. The sampling procedure 

ill be explained in Section 4.2 . In Step 4 , XGBoost is trained on

he training sets generated from Step 3 with the best parameters 

elected using the grid search method introduced in Section 3.1.2 . 
5 The reason why we choose 100 defaults is based on the number of defaults in 

he sample, which is 3229. When initially sampling 100 defaults, we have a sam- 

le size Z equals to (3229 − 100) × 2 = 6258 , with a reasonable number of defaults 

n the dataset with 1% default rate, which equals to 63 ( 6258 × 1% ). A larger ini- 

ially sampled number of defaults will lead to fewer defaults in the dataset with 1% 

efault rates. Please refer to Section 4.2 for more details of the sampling process. 

s

h

t

t

i

6 
he trained XGBoost with parameters selected with the highest H- 

easure value is then applied to get the predictions on each tar- 

et x i obtained in Step 2. In Step 5 , the feature importance value, 

eferring to the absolute LIME coefficient value LIME iu 
b 

(F p ) or the 

bsolute SHAP value SHAP iu 
b 

(F p ) of each feature F p in the feature 

et F = { F 1 , . . . , F P } , is generated for each target x i at each default

ate u . We repeat the process from Step 3 to Step 5 B = 100 times.

fter iterations, for each target x i at each default rate u , we ob- 

ain 100 feature importance values for each feature F p , denoted as 

IME iu (F p ) = { LIME iu 
b 

(F p ) } B b=1 
or SHAP iu (F p ) = { SHAP iu 

b 
(F p ) } B b=1 

. Then

n Step 6 , for each target x i at each default rate u , we first mea-

ure the ranking and value stability for each feature F p , based on 

ts 100 feature importance values 6 , noted as RankStab iu (F p ) and 

 alueStab iu (F p ) . Then we calculate the final ranking stability for 

ach target x i at each default rate u , denoted as RankStab iu 
d 

, by ag-

regating ranking stability indexes of features at each list depth 

of feature ranking lists. Simultaneously, the final value stability 

or each target x i at each default rate u , denoted as V alueStab iu , is

easured by the average of value stability indexes of all features in 

he feature set F = { F 1 , . . . , F P } . The details of stability indexes will

e introduced in Section 5 . Note that we repeat the whole exper- 

ment 5 times to obtain the stability measurements for 5 sets of 

argets ( 5 × 200 targets) to avoid any potential bias results when 

nly depending on 200 targets. The stability measurements results 

or 5 sets are reported in Section 6 . 

.1. Data pre-processing 

In this empirical study, we use UK residential mortgage data 

etween January 2016 and December 2020, collected from Euro- 

ean Datawarehouse. Here a mortgage default is defined as be- 

ng in arrears for three months or more with mortgage payments. 

he loan-level data provides loan characteristics, borrower infor- 

ation, property information and loan performance for each loan. 

n particular, the loan characteristics include some static informa- 

ion such as loan original balance, and some dynamic information 

uch as the current interest rate. The borrower information con- 

ains the employment status, age, annual income, etc., of the loan 

orrower collected at the origination of the loan. The underlying 

ssets information provides the type, original value, current value 

dynamic), location, etc., of the property. Loan performance infor- 

ation provides the status of the loan, whether it is performing or 

n arrears, and for how many months it has been in arrears, which 

s also dynamic. Note that the dynamic information is updated at 

east quarterly. 

To select the explanatory variables as close as possible to a real 

cenario, we refer to several published papers that used the same 

r similar database. Barbaglia et al. (2021) is a paper from the Eu- 

opean Commission, which used the residential mortgage dataset 

rom the European Datawarehouse as we did. Bracke et al. (2019) is 

 paper from the Bank of England, which similarly conducted a 

K residential mortgage default analysis. Li et al. (2019) ; Sirignano 

t al. (2018) also predicted the mortgage loan default with similar 

eatures as we have, although they used mortgage data from the 

.S. 

As Barbaglia et al. (2021) indicated, European Datawarehouse 

ata is rich but unexplored. It comes with some flaws that need 

o be addressed before using it. The main flaws include: inactive 

r matured loans still exist in the database; some loans are incon- 

istent across time period analysed; and some loans have unex- 
6 We present some examples in the Supplementary Materials (Part B) that show 

ow the distribution of absolute SHAP values for specific features over 100 itera- 

ions could change when the default rate increases from 1% to 50% for a specific 

arget. This further demonstrates the importance of studying the effects of class 

mbalance on the interpretations 
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Fig. 1. Proposed experimental framework. 
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ected attributes such as very high interest rate (e.g., over 20%). In 

rder to address these flaws, we implemented an intensive data 

leaning process based on our understanding of the data, com- 

ined with the data cleaning steps mainly introduced in Barbaglia 

t al. (2021) ; Bracke et al. (2019) . The data cleaning details can be

ound in Supplementary Materials (Part A). Table 3 reports the ex- 

lanatory variables we used in the loan default predictive model. 

Since the database is updated at a quarter level and we need 

o predict the loan status (1 = default, 0 = non-default) one year 

head, here we identify the loan status (i.e. response variable) 

uarterly and collected the explanatory variables one year in ad- 

ance to build our dataset. The detailed data collection time is 

hown in Table 4 . Note that we first exclude those loans that were

lready defaulted in 2016 Q1–Q4 from the whole dataset since we 

o not have data in 2015 to collect their explanatory variables. Af- 

er this data collection process, we have a dataset in which for 

ach loan there are loan records for a series of quarters. Based on 

his dataset, when a loan is first found to be in default in a certain

uarter in the period 2017Q1 to 2020Q4, we remove its records in 

ther quarters to ensure that there is no duplicated defaulted loan 

n the dataset and avoid the possibility that the defaulted loan is 

a

7 
lso shown as a non-defaulted one in a different period. Since we 

o not consider the impact of the time change on the prediction 

nd interpretation results in this study, we also remove the dupli- 

ated non-defaulted loans, in other words, we randomly select one 

ecord for each non-defaulted loan in the dataset ( Calabrese et al., 

016 ). As a result of this selection, we obtain a dataset with all dis-

inct loans, including 3229 defaulted loans. The default rate is 0.6%, 

hich indicates the highly unbalanced nature of the mortgage de- 

ault variable as stated in Thomas et al. (2017) . 

.2. Sampling procedure 

After initially sampling the targets, which will also be used as a 

est set to evaluate accuracy, we perform data resampling to create 

he training sets with various loan default rates ranging from 5% 

o 50% in increments of 5%. We also include two more extreme 

oan default rates which are 2.5% and 1%. To exclude the effect 

f sample size on the predictive and interpretive performance, we 

x the sample size to Z = 6258 , which is the size of a balanced

ataset (loan default rate = 50%) with all 3129 defaults included 

nd 3129 randomly selected non-defaults. Note that we do not use 
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Table 3 

Explanatory variables. 

Explanatory variable Type Description 

Loan Characteristics 

Loan Seniority Numeric Number of months since the loan granted 

Current Loan Balance Numeric Unpaid principal balance 

Interest Rate Type Categorical Floating rate, Discount rate, Fixed rate or fixed rate with a compulsory future switch to floating 

Interest Rate Numeric Current interest rate 

Re-mortgage Categorical If is a re-mortgage loan - Yes, No 

Repayment Method Categorical Interest only, Repayment, Mixed principal and interest 

DTI Numeric Original debt-to-income ratio 

Borrower Information 

Age of Borrower Numeric (Primary) borrower age 

Gross Income Numeric Sum of primary income and secondary income (if reported) 

Employment Type Categorical Employed, Self-employed, Other 

Single Borrower Categorical If is single borrower - Yes, No 

First Time Buyer Categorical If is first time buyer - Yes, No 

Property Information 

Property Type Categorical Bungalow, Terraced house, Flat/Apartment, House (detached) 

LTV Numeric Original loan-to-value 

CLTV Numeric Current loan-to-value 

Region Categorical 10 English regions, Wales, Scotland, Northern Ireland, Not known 

Table 4 

Data collection time. 

Collect explanatory variable 2016Q1 2016Q2 2016Q3 2016Q4 2017Q1 2017Q2 2017Q3 2017Q4 

Collect response variable 2017Q1 2017Q2 2017Q3 2017Q4 2018Q1 2018Q2 2018Q3 2018Q4 

Collect explanatory variable 2018Q1 2018Q2 2018Q3 2018Q4 2019Q1 2019Q2 2019Q3 2019Q4 

Collect response variable 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 

Table 5 

Datasets structure. 

Default rate Number of defaults Number of non-defaults Total 

1% 63 6195 6258 

2.5% 156 6102 6258 

5% 313 5945 6258 

10% 626 5632 6258 

15% 939 5319 6258 

20% 1252 5006 6258 

25% 1565 4693 6258 

30% 1877 4381 6258 

35% 2190 4068 6258 

40% 2503 3755 6258 

45% 2816 3442 6258 

50% 3129 3129 6258 
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t

ny over-sampling method such as SMOTE ( Harald et al., 2016 ) to 

reate more records of defaults and to artificially increase the sam- 

le size since this method involves randomness that might gener- 

te unseen features with a stochastic approach that would add an 

dditional level of complexity to the problem ( Bueff et al., 2022 ). 

Therefore, with the sample size fixed at 6258, we under-sample 

he defaults as well as randomly select more non-defaults to obtain 

n increasing level of class imbalance. The number of the defaults 

nd non-defaults for each default rate are shown in Table 5 . 

. Stability measurement 

In this paper, we use Sequential Rank Agreement (SRA) pro- 

osed by Ekstrøm et al. (2019) to measure the ranking stability 

f feature lists generated by LIME and SHAP for each target x i at 

ach default rate u ( RankStab iu in Fig. 1 ). Based on our knowledge,

his paper is the first research that uses this method to compare 

he LIME and SHAP feature ranking lists. The details of SRA can 

e found in Section 5.1 . Besides evaluating the feature ranking sta- 

ility, we also measure the feature importance value stability gen- 

rated by LIME and SHAP for each target x i at each default rate 
8 
 ( V alueStab iu in Fig. 1 ) using the Coefficient of Variation (CV), as

xplained in Section 5.2 . 

For the sake of completeness, we also include another two sta- 

ility measures, namely Variables Stability Index (VSI) and Coeffi- 

ients Stability Index (CSI), that have been used before in the lit- 

rature only for LIME ( Visani et al., 2021 ). The VSI is proposed to

heck whether the selected features are the same or not among 

he repeated LIME interpretations. The CSI measures the LIME sta- 

ility through the similarity of coefficients among the repeated 

IME interpretations. The details of VSI and CSI are introduced in 

ection 5.3 . 

Both SRA and VSI are based on feature variation, but SRA takes 

nto account the feature’s position in the ranking lists. SRA can 

e used for both SHAP and LIME but VSI can only apply to LIME 

ince VSI focuses on feature selection step which is not included 

n SHAP. Both CV and CSI focus on feature importance value sta- 

ility. CV considers the feature coefficient value itself whereas CSI 

nly checks whether the confidence intervals of coefficients for the 

ame feature overlap or not in different LIME interpretations. Note 

hat Visani et al. (2021) proposed VSI and CSI originally to check 

he “internal” stability of LIME, which refers to the stability of ex- 

lanations derived from repeated LIME calls under the same condi- 

ions and the same distribution (law). As mentioned in Section 3.3 , 

here should be no “internal” instability (estimation variability) in 

ree SHAP like LIME since the background dataset is fixed. There- 

ore, in this paper, we consider VSI and CSI specifically for LIME to 

xamine the class imbalance effects on the “internal” stability and 

ompare them with the “external” stability for LIME. More details 

re explained in Section 5.3.3 . 

We remind that b ( b = 1 , . . . , B ) represents the iteration with

 = 100 and F = { F 1 , . . . , F P } the feature set in this section. 

.1. Sequential rank agreement 

The SRA value could provide the level of ranking agreement us- 

ng a function of the depth in the lists. Following our experimental 

ramework ( Fig. 1 ), for each target x i at each default rate u , we ob-

ain 100 feature importance values for each feature after repeating 
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Table 6 

Example set of ranking lists shows: (a) three sets of feature importance values ( �1 , 

�2 , �3 ) with the CV values of features ( ValueStab(F p ) ), (b) three feature ranking 

lists ( L 1 , L 2 , L 3 ) based on Panel (a), (c) ranking R (F p ) obtained by each feature in 

each of three lists with the ranking agreement values of features ( RankStab(F p ) ), 

and (d) the cumulative set of features up to a given depth in the three ranking lists 

(i.e., a feature is added to S(d) whenever it appears in at least one list) with the 

SRA value RankStab d of each list depth d. 

(a) 

Feature �1 �2 �3 ValueStab(F p ) 

A 5 6 5 0.11 

B 4 4 7 0.35 

C 3 5 6 0.33 

D 2 3 3 0.22 

E 1 2 4 0.65 

(b) 

Ranking L 1 L 2 L 3 

1 A A B 

2 B C C 

3 C B A 

4 D D E 

5 E E D 

(c) 

Feature R 1 R 2 R 3 RankStab(F p ) 

A 1 1 3 1.33 

B 2 3 1 1 

C 3 2 2 0.33 

D 4 4 5 0.33 

E 5 5 4 0.33 

(d) 

Depth (d) S d RankStab d 

1 { A, B } 2.33 

2 { A, B, C } 2.66 

3 { A, B, C } 2.66 

4 { A, B, C, D, E } 3.32 

5 { A, B, C, D, E } 3.32 
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tep 3 to Step 5 100 times. In other words, we obtain 100 sets of

eature importance values of all features for each target x i at each 

efault rate u . Therefore, by sorting the feature importance values 

n each set in decreasing order, the corresponding ordered feature 

ames could form 100 feature ranking lists. Therefore, in what fol- 

ows, we describe the process of obtaining SRA values based on 

00 feature ranking lists for one target x i at a specific default rate 

 . 

We denote the feature importance value of a feature as 
iu 
b 
(F p ) . 

7 Therefore, a set of feature importance values of all fea- 

ures can be denoted as �iu 
b 

= 

{
�iu 

b 
(F 1 ) , . . . , �

iu 
b 
(F P ) 

}
. By sorting 

he feature importance values in �iu 
b 

in decreasing order, we ob- 

ain the feature ranking list L iu 
b 

. Every feature ranking list L iu 
b 

con- 

ains the same number of features. We point out that in the SHAP 

eature ranking lists, the number of features equals to that used 

n the “black-box” machine learning model since SHAP uses all 

eatures involved in the predictive model to interpret the predic- 

ion result. While in LIME feature ranking lists, the number of fea- 

ures equals to the number of unique features selected during the 

eature selection step in all 100 LIME interpretable models. We 

urther denote a ranking function of a feature ranking list L iu 
b 

as 

 

iu 
b 

: { F 1 , . . . , F P } → { 1 , . . . , P } , such that R iu 
b 
(F p ) is the ranking of a

eature F p in a feature ranking list L iu 
b 

, as illustrated in Table 6 . For

xample, �1 in Panel (a) is a set of feature importance values of 

 features, L 1 in Panel (b) is the feature ranking list based on �1 ,
7 In our experimental framework ( Fig. 1 ), �iu 
b 
(F p ) would be either LIME iu 

b 
(F p ) or 

HAP iu 
b 

(F p ) . 

p

c

9 
nd the value of R 1 in Panel (c) is the corresponding ranking of 

ach feature in L 1 . Thus, for each feature F p , the ranking agreement

alue RankStab iu (F p ) across B feature ranking lists can be calculated 

s follows: 

ankStab iu (F p ) = 

1 

B − 1 

B ∑ 

b=1 

(
R 

iu 
b (F p ) − R 

iu 
(F p ) 

)2 

(6) 

here R 
iu 
(F p ) = 

1 
B 

∑ B 
b=1 R 

iu 
b 
(F p ) is the expected ranking of the fea- 

ure F p over B feature ranking lists. Therefore, the ranking agree- 

ent value of features A, B, C, D and E in Panel (c) of Table 6 is

.33, 1, 0.33, 0.33 and 0.33 respectively. RankStab iu (F p ) can be inter- 

reted as the expected Euclidean distance of the individual rank- 

ngs from the expected ranking over all the lists for each feature 

 p . 

As shown in Panel (d) of Table 6 , we define the list depth d

s an integer, with 1 ≤ d ≤ P , then S iu 
d 

denotes the set of unique

eatures ranked less than or equal to the list depth d in all the 

eature ranking lists in the set L iu . Hence, after obtaining the rank- 

ng agreement values RankStab iu (F p ) for all features in the set F ,

e could obtain the SRA value RankStab iu 
d 

of each list depth d by 

alculating the weighted expected ranking agreement values of all 

eatures in the set S iu 
d 

: 

ankStab iu d = 

∑ 

F p ∈ S iu d 
(B − 1) RankStab iu (F p ) 

(B − 1) | S iu 
d 
| (7) 

here | S iu 
d 
| is the cardinality of the set S iu 

d 
. Therefore, the SRA value

f list depth 1 to 5 in Panel (d) of Table 6 is 2.33, 2.6 6, 2.6 6, 3.32

nd 3.32 respectively. The SRA value RankStab iu 
d 

in each list depth 

is equivalent to the pooled variance of features found in S iu 
d 

. 

When comparing SRA values for one target under the same 

ist depth among different class imbalance levels, a smaller SRA 

alue suggests the feature ranking lists agree more on the rank- 

ngs, which means the feature rankings are more stable. For exam- 

le, the RankStab iu 
d 

of every list depth will be 0 when the ranking 

ists are identical. 

.2. Coefficient of variation 

The CV is a statistical measure of relative variability, defined as 

he ratio of the standard deviation to the mean among a set of 

ata points. The CV is particularly suitable for our study as it is 

imensionless and thus, comparable among different sets of data 

oints with various means or various units. 

We continue using the notations in Section 5.1 . The CV value for 

 feature F p ( V alueStab iu (F p ) ) across B sets of feature importance

alues can then be calculated as follows: 

 alueStab iu (F p ) = 

√ ∑ B 
b=1 (�

iu 
b 
(F p ) −�

iu 
(F p )) 

2 

B −1 

�
iu 
(F p ) 

(8) 

here the numerator is the sample standard deviation of the fea- 

ure importance values for the feature F p over B sets of feature im- 

ortance values, and the denominator �
iu 
(F p ) = 

1 
B 

∑ B 
b=1 �

iu 
b 
(F p ) , is 

he expected feature importance value of the feature F p over B sets 

f feature importance values. For example, the CV values of 5 fea- 

ures in Table 6 are shown in Panel (a). 

After getting the CV value V alueStab iu (F p ) for each feature F p ,

he CV value for a target x i at a default rate u , which is defined

s V alueStab iu , can be obtained by calculating the average of CV 

alues V alueStab iu (F p ) of all the features whose importance values 

resenting at least 2 times 8 in the B sets of feature importance 
8 When calculating the CV value for each target x i at a default rate u , we do not 

onsider the feature which only presents once in all B explanation models since it 
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alues, which can be expressed as follows: 

 alueStab iu = 

1 

P ∗

P ∗∑ 

p=1 

V alueStab iu (F p ) . (9) 

Since the CV value V alueStab iu measures the degree of variabil- 

ty in the feature importance values, when comparing CV values 

or one target among different class imbalance levels, a larger CV 

alue indicates less stable interpretations of the prediction made 

or the chosen target. 

.3. Variables stability index & coefficients stability index 

In this section, we introduce the VSI and CSI proposed by Visani 

t al. (2021) to measure the stability of LIME. We start by setting 

he notation. We consider g iu 
1 

, . . . , g iu 
M 

as M interpretable models 

Ridge regressions) generated by LIME for a target x i at a default 

ate u . 

.3.1. VSI 

The VSI is proposed to check the stability of the feature se- 

ection step included in LIME — whether the selected features 

re same among M interpretable models. Let C iu = { C iu 
1 

, . . . , C iu 
K 
} be

he set of all possible combinations of the M interpretable mod- 

ls, two by two. The generic element of the set C iu is the pair

f interpretable models C iu 
k 

= (g iu α , g iu 
β
) and the number of pairs

in the set C iu equals to M! 
2!(M−2)! 

. For each pair C iu 
k 

, we count 

he number of the same features used by both interpretable mod- 

ls, denoted by SAME(C iu 
k 

) . Note that SAME(C iu 
k 

) is an integer and

 ≤ SAME(C iu 
k 

) ≤ 10 9 hence the VSI value v si iu for a target x i at a

efault rate u can be calculated as follows: 

 si iu = 

1 
K 

∑ K 
k =1 SAME(C iu 

k 
) 

10 

(10) 

here the numerator calculates the average number of same fea- 

ures used by all pairs of interpretable models in the set C iu . We

urther normalise dividing by the number of selected features 10, 

nd obtain the VSI value v si iu for one target ranging from 0 to

. The more it approaches 1, the more features found in M inter- 

retable models are the same. 

.3.2. CSI 

The CSI measures the LIME stability through the similarity of 

oefficients generated from M interpretable models for a target x i 

t a default rate u . Specifically, we calculate 95% confidence in- 

ervals of each coefficient in M interpretable models (see Visani 

t al., 2021 for more mathematical explanation), and consider the 

oefficients for a feature to be unstable when the calculated confi- 

ence intervals for this feature from different interpretable models 

re not overlapped at all. Instead, we consider the coefficients of a 

eature to be stable whenever the confidence intervals overlap to 

ome extent. In what follows, we use equations to explain the CSI. 

The comparison among confidence intervals is carried 

ut separately for each feature F p . Therefore, let CI iu (F p ) = 

 C I iu 
1 

(F p ) , . . . , C I 
iu 
D 

(F p ) } be the set of all 95% confidence intervals

f the coefficients for a certain feature F p presented in the M

nterpretable models. Let A 

iu (F p ) = { A 

iu 
1 
(F p ) , . . . , A 

iu 
T 
(F p ) } be the

et of all possible combinations of the D confidence intervals 

f the coefficients for the feature F p , two by two. The generic 
ill have only one feature importance value and the CV value ValueStabF eat iu (F p ) 

f this feature will be 0, which cannot truly represent a meaningful degree of vari- 

bility. Therefore, P ∗ in Eq. (9) will be less than or equal to the number of unique 

eatures in B interpretable models. 
9 The maximum value of SAME(C iu 

k 
) is the number of features selected in the 

eature selection step, which equals to 10. 

m

f

t

T

P

10 
lement of the set A 

iu (F p ) is the pair of confidence intervals 

 

iu 
t (F p ) = (A 

iu 
α (F p ) , A 

iu 
β
(F p )) and the number of pairs T in the set

 

iu (F p ) equals to D ! 
2!(D −2)! 

. Hence for each pair A 

iu 
t (F p ) , we consider

 binary variable OV ERLAP (A 

iu 
t (F p )) , which equals to 1 if the pair

f confidence intervals is overlapped and 0 otherwise: 

V ERLAP (A 

iu 
t (F p )) = 

{
0 If A 

iu 
α (F p ) ∪ A 

iu 
β
(F p ) = ∅ 

1 Otherwise . 

We calculate OV ERLAP (A 

iu 
t (F p )) for all pairs of confidence inter- 

als in the set A 

iu (F p ) and add them up. The outcome is a count

ariable, which we normalise dividing by the number of pairs T , 

o obtain a Partial Index P I iu (F p ) for the feature F p considered: 

 I iu (F p ) = 

1 

T 

T ∑ 

t=1 

OV ERLAP (A 

iu 
t (F p )) . 

To obtain the CSI value csi iu for a target x i at a default rate u ,

e average the Partial Indices of all the features presenting at least 

 times 10 in the M interpretable models, which can be expressed 

s follows: 

si iu = 

1 

P ∗

P ∗∑ 

p=1 

P I iu (F p ) . (11) 

Similar to the VSI value v si iu , the CSI value csi iu for one target

lso ranges from 0 to 1, and the more it approaches to 1, the more

he LIME coefficients for the same feature in the M interpretable 

odels can be considered stable for the chosen target. 

.3.3. Internal stability vs. external stability 

Consider performing LIME to explain a prediction made for a 

ertain target for several times when the predictive model and the 

nderlying training set stay unchanged. Hence LIME follows the 

ame distribution (law) to generate new data points to build the 

nterpretable models. However, due to the random nature of the 

ampling, LIME could still generate different data points among 

epeated calls and build different interpretable models, thus pro- 

iding unstable interpretations for the chosen target. The internal 

tability described here is different from the stability measured by 

ollowing our experimental framework introduced in Fig. 1 . In our 

xperiments, we measure the ranking and value stability of LIME 

nder the same class imbalance level using different training sets 

nd therefore different predictive models, which means LIME gen- 

rates data points and build interpretable models based on differ- 

nt training sets and therefore different distribution (law) to some 

xtent. Therefore, we name the stability measured in our experi- 

ents the “external” stability. 

It is important to note that Tree SHAP used in our experiments 

oes not include a sampling procedure, hence there is no need to 

heck the internal stability for SHAP. To check the internal stability 

f LIME, we perform an experiment in which we use the same 200 

nitially sampled targets and adjust Step 5 of experimental frame- 

ork introduced in Fig. 1 to fit the measurement of internal sta- 

ility of LIME. We specifically repeat the Step 5 for 30 times, so 

hat we could get 30 LIME interpretable models (Ridge regressions) 

ased on the same conditions (generating the neighborhood from 

he same training set/distribution). Moreover, other than repeating 

he process from Step 3 to Step 5 for 100 times, here we only re-

eat for 10 times. Hence we could get 30 × 10 LIME interpretable 

odels for each target at each default rate, in which every 30 LIME 
10 Similar to the CV value, When calculating the CSI csi iu for a target x i at a de- 

ault rate u , we do not consider the features which only presents once in all M in- 

erpretable models since there is no pair of confidence intervals can be compared. 

herefore, P ∗ in Eq. (11) will be less than or equal to the number of unique features 

in M interpretable models. 
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v

i

nterpretation models are based on the same conditions. We then 

alculate the VSI value v si iu using Eq. (10) and the CSI value csi iu 

sing Eq. (11) for every 30 LIME interpretable models based on the 

ame conditions. Therefore, at every default rate u , we could obtain 

0 VSI values and 10 CSI values for each target x i and we calculate 

he average of them respectively to get the average VSI v si iu 
internal 

nd the average CSI csi iu 
internal 

for each target x . 

In this study, we also measure the external stability of LIME us- 

ng CSI and VSI. Specifically, we follow our original experimental 

ramework ( Fig. 1 ) to calculate the VSI value v si iu 
external 

using Eq.

10) and the CSI value csi iu 
external 

using Eq. (11) for 100 interpretable 

odels (100 sets of feature importance values) based on differ- 

nt conditions (generating the neighborhood from different train- 

ng set/distribution) for each target x i at the same default rate u . 

By doing this, we could compare v si iu 
internal 

and csi iu 
internal 

with 

 si iu 
external 

and csi iu 
external 

respectively, to gain a greater insight into 

he effects of class imbalance on the interpretation stability of 

IME. 

. Experimental results 

Following the experimental framework described at the begin- 

ing of Section 4 , for LIME and SHAP respectively, we repeat Step 

 to Step 5100 11 times to obtain 100 sets of feature importance 

alues, which can be transformed into 100 feature ranking lists, 

or each target x i at every class imbalance level u . We then cal- 

ulate the SRA value RankStab iu 
d 

of each list depth d introduced 

n Section 5.1 to measure the feature ranking stability of LIME 

nd SHAP for each target x i at every class imbalance level u , and 

he results are discussed in Section 6.1 . Similarly, the CV value 

 alueStab iu introduced in Section 5.2 are calculated to measure the 

eature importance value stability of LIME and SHAP for each target 

 

i at every class imbalance level u , and the results are discussed in 

ection 6.2 . Moreover, for each target x i , we obtain the internal VSI 

alue v si iu 
internal 

and CSI value csi iu 
internal 

, as well as the external VSI

alue v si iu 
external 

and CSI values csi iu 
external 

following the description 

n Section 5.3 to further evaluate the stability of LIME, and the re- 

ults are discussed in Section 6.3 . Note that our results are consis- 

ent across all three datasets. In Sections 6.1 –6.3 , we describe the 

esults for the European Datawarehouse data. In Section 6.4 , we 

ummarise the results of two open-source credit scoring datasets, 

nd the details of the results can be found in the Supplemen- 

ary Materials (Parts F and G). The prediction results (H-measure) 

an also be found in Supplementary Materials (Part C). Note that 

he relative spread of H-measure values (dispersion levels of H- 

easure values) for fixed targets (regarded as the test set) over 

ifferent levels of class imbalance is basically stable, which con- 

rms that the prediction performance will not affect the stability 

f the interpretations generated by LIME and SHAP. 

.1. SRA results 

Recall that we repeat the whole experiment framework 5 times 

nd therefore we have stability measurement results for 10 0 0 ( 5 ×
00 ) targets. To achieve a more general result, at each class imbal- 

nce level u , we calculate the average of the SRA value RankStab iu 
d 

f all 10 0 0 initially sampled targets for each list depth d. Panel

a) and Panel (b) of Fig. 2 shows the average SRA value for LIME

nd SHAP respectively. Here we use a line chart to show, for a 

articular list depth d, the trend of the average SRA value as the 
11 We take 100 iterations since we need to make sure the stability indexes con- 

erge for more accurate measurements. Based on our experiments, the results of 

easurements converge after around 60 iterations (See Supplementary Materials 

Part E) for more details). 

w  

i

a

o

11 
lass imbalance level decreases. Specifically, on the x -axis is the 

lass imbalance level, represented by the default rate, ranging from 

% (extreme imbalanced) to 50% (balanced), and on the y -axis is 

he average SRA value. Please note that the range of the average 

RA value on the y -axis for LIME and SHAP is different in order 

o make the line chart more visible. Each line represents a list 

epth and therefore each point corresponding to a default rate 

n the line is the average SRA value at a certain class imbalance 

evel. Note that for clarity of presentation, here we only show the 

verage SRA value for the list depth from 1 to 5, which repre- 

ents the ranking stability of the top most important 5 features, 

nd the average SRA values for the complete list depths can be 

ound in Supplementary Materials (Part D), which leads to similar 

onclusions. 

Every line in Fig. 2 show a distinct downward trend with slight 

uctuations, which means the average SRA value of each list depth 

ontinues to decrease as the default rate gradually increases. Recall 

hat the smaller the SRA value, the better the agreement achieves 

mong the ranking lists. The results indicate that the feature rank- 

ng stability increases with the decrease of the class imbalance, 

hereby confirming the class imbalance does have an adverse ef- 

ect on the interpretive performance of both LIME and SHAP. 

Other than comparing the average SRA value based on the vari- 

tion of the class imbalance level, we could also observe a reg- 

lar tendency when comparing within each class imbalance level 

default rate). With the exception of 1% and 2.5% default rates in 

he line chart of LIME, in each default rates for LIME and SHAP, 

he average SRA value presents the minimum when the list depth 

quals to 1, indicating the best agreement, and then increases as 

he list depth increases. It indicates that the feature ranking lists 

enerated by LIME and SHAP agree more on higher rankings and 

an achieve the most stable ranking for the most important fea- 

ure, but the variability still exists as the average SRA value is not 

qual to 0. For the average SRA value within 1% and 2.5% default 

ates in the line chart of LIME, although not distinct, there is an 

pposite trend that they show higher disagreement (larger average 

RA value) in the top of the lists followed by a decrease as the list

epth increases. The reason behind this is rather subtle. Looking 

t the absolute value of the Ridge regression coefficients in LIME, 

e see that most of them are very close to zero and have almost 

qual absolute value at these two extreme class imbalance levels 

1% and 2.5%). It implies that when features are ranked according 

o the magnitude of their absolute value of the coefficients, their 

rder becomes more uncertain and more close to a random per- 

utation. Hence the feature ranked in the top of the lists may ob- 

ain a larger ranking agreement value RankStab iu (F p ) according to 

q. (6) , which results in a larger average SRA value. 

When comparing the average SRA value between LIME and 

HAP, it can be seen that for every default rate, the average SRA 

alue of all list depths for SHAP are larger than those for LIME. 

his is reasonable since LIME performs a preliminary feature selec- 

ion step and only use 10 selected features but not all 37 features 

sed by SHAP to generate interpretations, which leads to a much 

maller ranking range for LIME, and hence a smaller average SRA 

alue. 

.2. CV results 

At each class imbalance level u , we obtain a total of 10 0 0 CV

alues V alueStab iu for all 10 0 0 initially sampled targets. For better 

llustration, for LIME and SHAP respectively, we draw a box-and- 

hisker plot (boxplot) for every set of 10 0 0 CV values at each class

mbalance level, as shown in Panel (a) and Panel (b) in Fig. 3 . 

The x -axis represents the class imbalance level (default rate), 

nd the y -axis represents the CV value. The range of the CV value 

n the y -axis for LIME and SHAP is different in order to make 
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Fig. 2. Line charts of averaged SRA values for LIME in Panel (a) and SHAP in Panel (b). 

Fig. 3. Boxplots of CV values for LIME in Panel (a) and SHAP in Panel (b). 
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he box plot more visible. Each box in Fig. 3 extends from the 

rst quartile (Q1) to the third quartile (Q3) of the set of CV val-

es, with a line at the median (Q2). The whiskers extend no 

ore than 1 . 5 × IQR (IQR = Q3 − Q1) and end at the farthest data

oint within this interval from the edges of box, to show the 

ange of the set of CV values. Outliers are plotted as separate blue 

ots. The red dot on each box shows the mean of the set of CV

alues. 

As demonstrated in Panel (a) of Fig. 3 , CV values for LIME under

% and 2.5% default rates are evidently larger compared with the 

ther sets of CV values. While there is a decreasing trend after 5%, 

here is no significant difference in the sets of CV values when the 

efault rate is greater than 15%. Recall that the larger the CV value, 

he greater the (average) variability among the feature importance 

alues. It proves that the absolute LIME coefficients generated are 

uch less stable in the case of the extreme class imbalance. The 

ame conclusion can also applies to SHAP based on the results pre- 

ented in Panel (b) of Fig. 3 , with the distinction between the CV

alues at the 1%, 2.5% default rates and others are relatively more 

bvious. 

When comparing the CV values between LIME and SHAP, we 

an see that the CV values for SHAP at each default rate are larger
 a  

12 
han those for LIME. One possible reason behind this could be that 

he CV values of SHAP are calculated based on all 37 features, 

hich may result in more variation among feature importance val- 

es especially for those relatively unimportant features. 

.3. VSI and CSI results 

We now focus on the feature selection stability and the fea- 

ure coefficients stability of LIME, which are measured by VSI and 

SI respectively. Fig. 4 shows the boxplots of internal VSI values 

 si iu 
internal 

, external VSI values v si iu 
external 

, internal CSI values csi iu 
internal 

nd external CSI values csi iu 
external 

in Panel (a), (b), (c) and (d) re- 

pectively. For all four plots, on the x -axis is the default rate, which

epresents the class imbalance level, and on the y -axis is the VSI or 

SI value. The range of the internal VSI value in Panel (a) and the 

xternal VSI value in Panel (b) on the y -axis is the same, starting

rom 0.6 to 1. For clarity of presentation, in Panel (c) we zoom in 

n the internal CSI value with a range from 0.9 to 1 on the y -axis,

nd we zoom out on the external CSI value in Panel (d) with a 

ange from 0.2 to 1 on the y -axis. Each boxplot in Fig. 4 represents

 set of 10 0 0 VSI or CSI values at a certain class imbalance level
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Fig. 4. Boxplots of internal VSI values in Panel (a), external VSI values in Panel (b), internal CSI values in Panel (c) and external CSI values in Panel (d) for LIME. 
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or all 10 0 0 initially sampled targets. The setting of the boxplot is 

he same as that described for Fig. 3 in Section 6.2 . 

Recall that for the chosen target, the more the VSI value ap- 

roaches 1, the more the features found in different LIME inter- 

retable models are the same. Similarly, the more the CSI value 

pproaches 1, the more the LIME coefficient values for the same 

eature in different LIME interpretable models may be considered 

table. 

As we can see in Panels (a) and (b) of Fig. 4 , internal and ex-

ernal VSI values show different behaviours. As shown in Panel (a), 

ll the internal VSI values are above 0.8, most 0.9, which means 

hat the selected features in LIME interpretable models generated 

rom the same conditions are almost the same. Even for the ex- 

reme class imbalanced cases (1%, 2.5% and 5% default rates), inter- 

al VSI values are slightly lower than for the more balanced cases, 

ut with an average still around 0.9. However, we can more clearly 

ee the adverse effect of class imbalance on the stability of LIME 

nterpretations from the boxplots of external VSI values in Panel 

b). Specifically, the mean of each set of external VSI values starts 

rom 0.7 at 1% default rate and has a distinct growing tendency 

ith the increase of the default rate, which proves that the similar- 

ty of the selected features in LIME interpretable models increases 

s the class distribution becomes more balanced. 
13
When looking into the internal and external CSI values in Pan- 

ls (c) and (d) of Fig. 4 , we can see both of them share the effect

f class imbalance on stability, although for the external CSI val- 

es such an effect is more extreme. Similar to the internal VSI val- 

es, all the internal CSI values in Panels (c) are above 0.9, but the 

ange of the set of internal CSI values for the extreme class im- 

alanced cases (1%, 2.5% and 5% default rates) are obviously larger 

han for the more balanced cases. The mean of the set of internal 

SI values also increases from 1% default rate and remains basi- 

ally unchanged after the default rate reaches 10%. It confirms that 

he coefficients are less stable in the case of an extreme class im- 

alance (1%, 2.5% and 5% default rates). As shown in Panel (d), the 

ean of each set of external CSI values starts from only around 0.3 

t 1% default rate, then goes up with the default rate and shows a 

ramatic increase between 2.5% default rate and 5% default rate. It 

onfirms that LIME generates more stable coefficients of the same 

eature based on more balanced datasets, and the concordance of 

oefficients to the same feature tends to be seriously affected at 

he extreme class imbalance level (1% and 2.5% default rates). 

When comparing the internal stability with the external stabil- 

ty of LIME, for both VSI and CSI values, the internal ones show 

igher values than the external ones at each class imbalance level. 

t indicates that although there are still inconsistencies, repeated 
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alls of LIME based on the same conditions tend to yield more 

table interpretation results than those based on different condi- 

ions. This is reasonable since the neighbourhoods sampled from 

ifferent training sets on which the interpretable models are built 

an increase the instability of the interpretations for a certain tar- 

et. Moreover, the external stability of LIME is more affected by 

lass imbalance than its internal stability. One possible reason be- 

ind this is that when we repeat the sampling procedure, due 

o the lack of information for defaulters in the (extreme) imbal- 

nced training sets, we can only build the interpretable models for 

 certain target based on incomplete and distinct information and 

herefore increase the variability among the interpretation results. 

.4. Robustness check using two additional datasets 

We apply the experiments above described also to two addi- 

ional datasets to check the robustness of the stability measure- 

ent results. We use the South German Credit Dataset, which 

ontains 10 0 0 observations and 21 predictors with personal credit 

isk information; and the Taiwan Credit Card Dataset, which con- 

ains 30,0 0 0 observations and 24 predictors with customers’ credit 

ard transaction information. Both datasets are open-sourced, dif- 

er with respect to the number of observations and predictors, 

nd are used by many papers in the credit scoring literature (e.g., 

unnarsson et al., 2021; Lessmann et al., 2015 ), which complement 

he European Datawarehouse mortgage data in terms of feature 

nd sample size variety. 

The details of the results are presented in Supplementary Ma- 

erials (Parts F and G). Overall, the SRA, CV, CSI and VSI results 

sing the two open-source datasets are consistent with those us- 

ng European Datawarehouse data. This confirms the robustness of 

ur results that the stability of interpretability results could be ad- 

ersely affected by class imbalance. For feature importance ranking 

tability, the only difference is that for the open source datasets, 

he SRA values when the list depth is equal to 1 significantly differ 

rom the SRA values at other list depths. This may be because the 

eatures ranked first are relatively stable, but there is greater ran- 

omness in the subsequent rankings. The feature importance val- 

es generated by LIME and SHAP are also less stable at extreme 

lass imbalance based on open source datasets, while the differ- 

nce between CV values at 1% and 2.5% default rates and CV values 

t larger default rates are less obvious for SHAP compared to that 

n the European Datawarehouse data. Similarly, the results of VSI 

nd CSI for LIME on the open source data also agree with those on 

he European Datawarehouse data. 

. Conclusions and future research 

In this paper, we consider two popular model-agnostic interpre- 

ation methods — LIME and SHAP, and study their interpretative 

erformance over various class imbalance levels. We achieve this 

y proposing a controlled sampling process to produce a series of 

atasets with different default rates but the same sample size. We 

se residential mortgage data provided by the European Dataware- 

ouse and two more open source credit scoring datasets to verify 

he robustness of our results. XGBoost and Random Forest are se- 

ected as the “black-box” machine learning models to generate pre- 

iction since they are widely used in the credit scoring literature 

or their excellent performance ( Barbaglia et al., 2021; Gunnars- 

on et al., 2021; Xia et al., 2017 ). We focus on the feature ranking

ists and the corresponding feature importance values generated by 

IME and SHAP. Sequential Rank Agreement (SRA) and Coefficient 

f Variation (CV) are then applied to measure the feature ranking 

tability and the feature importance value stability respectively. We 

urther evaluate the “internal” stability and the “external” stabil- 
14 
ty of LIME by using Variables Stability Index (VSI) and Coefficients 

tability Index (CSI). 

The results of our experiments show that the class imbalance 

oes have an adverse effect on the interpretive performance of 

oth LIME and SHAP. Firstly, the feature importance rankings gen- 

rated by LIME and SHAP are more stable as the class imbalance 

evel decreases (from 1% default rate to 50% default rate). Secondly, 

here is greater variability among the absolute SHAP values corre- 

ponding to the same feature and also the absolute LIME coeffi- 

ients corresponding to the same feature in the case of an extreme 

lass imbalance (1%, 2.5% and 5% default rates). Finally, in LIME, 

he consistency of the selected features, as well as the similarity of 

he coefficients for the same feature, does increase as the class dis- 

ribution becomes more balanced (from 1% default rate to 50% de- 

ault rate). Even when we measure the “internal” stability of LIME, 

or which we perform repeated calls of LIME based on the same 

redictive model and the same training set, it appears that LIME 

oes generate less stable interpretations at extreme class imbal- 

nce levels (1%, 2.5% and 5% default rates). 

To the best of our knowledge, this is the first study that mea- 

ures the stability of LIME and SHAP in terms of class imbalance, 

hich fills a key research gap in the literature. Although we focus 

n credit scoring in this paper, the proposed experimental frame- 

ork can be used in other operational research applications that 

lso suffer from the class imbalance problem, such as the med- 

cal industry. Our research has important implications for finan- 

ial institutions and other adopters who have already or are will- 

ng to use the model-agnostic interpretation methods to interpret 

he “black-box” machine learning models, to measure the stabil- 

ty of the selected interpretation methods. Although the interpre- 

ation methods are flexible and easy to adopt, practitioners should 

e very careful when applying them to imbalanced datasets and 

aking any decisions based on them, as the class imbalance can 

bviously exacerbate the instability of interpretations, especially at 

xtreme class imbalance levels (under 5% for the proportion of the 

are events). 

As mentioned in the Introduction, various imbalanced learn- 

ng techniques have been introduced to improve classification per- 

ormance (e.g. Calabrese & Osmetti, 2015; Chawla et al., 2011; 

rawczyk, 2016 ). Similarly, the potential effects of these imbal- 

nced learning techniques on the performance of interpretation 

ethods could be investigated in future research. It is worth not- 

ng that although the resampling methods could be used to tackle 

mbalanced data challenges, they could cause problems such as 

verfitting (over-sampling methods) or information loss (under- 

ampling methods) ( Fernández et al., 2018; Haixiang et al., 2017; 

aur et al., 2019; Li et al., 2019 ). More importantly, resampling 

ethods could increase randomness and add noise for the original 

nput data, which is not desirable in financial applications and lim- 

ts their prevalent in the corporate landscape ( Gunnarsson et al., 

021; Lessmann et al., 2015; Sanz et al., 2015 ). Therefore, it would 

e preferable to apply other imbalanced learning techniques to 

redit scoring, such as cost-sensitive or algorithm-based methods 

e.g., Paleologo et al., 2010; Zhang et al., 2014 ) to help in generating

nbiased interpretation results. More fundamentally, it would be 

aluable to investigate the effects of class imbalance on the stabil- 

ty of interpretation methods theoretically. For example, we could 

tart using Logistic Regression as the predictive model and estab- 

ishing the theoretical results of interpretations generated by SHAP 

r LIME in the context of class imbalance. This could provide fur- 

her guidance for analysing the stability of interpretation methods 

hen using more complicated “black-box” machine learning mod- 

ls. 

Besides the directions of future research mentioned above, an- 

ther interesting extension would be to explore how sample size 

hanges may affect the stability of the interpretation methods 
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hile the class imbalance remains the same. Finally, the novel in- 

erpretation method could be investigated to consider the class im- 

alance issue and the potential stability measurements could be 

mbedded to provide insights of the interpretation stability. 
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