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Abstract

Background

DNA methylation is a dynamic epigenetic mechanism that occurs at cytosine-phosphate-

guanine dinucleotide (CpG) sites. Epigenome-wide association studies (EWAS) investigate

the strength of association between methylation at individual CpG sites and health out-

comes. Although blood methylation may act as a peripheral marker of common disease

states, previous EWAS have typically focused only on individual conditions and have had

limited power to discover disease-associated loci. This study examined the association of

blood DNA methylation with the prevalence of 14 disease states and the incidence of 19 dis-

ease states in a single population of over 18,000 Scottish individuals.

Methods and findings

DNA methylation was assayed at 752,722 CpG sites in whole-blood samples from 18,413

volunteers in the family-structured, population-based cohort study Generation Scotland

(age range 18 to 99 years). EWAS tested for cross-sectional associations between baseline

CpG methylation and 14 prevalent disease states, and for longitudinal associations between

baseline CpG methylation and 19 incident disease states. Prevalent cases were self-

reported on health questionnaires at the baseline. Incident cases were identified using link-

age to Scottish primary (Read 2) and secondary (ICD-10) care records, and the censoring

date was set to October 2020. The mean time-to-diagnosis ranged from 5.0 years (for

chronic pain) to 11.7 years (for Coronavirus Disease 2019 (COVID-19) hospitalisation). The

19 disease states considered in this study were selected if they were present on the World
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Health Organisation’s 10 leading causes of death and disease burden or included in base-

line self-report questionnaires. EWAS models were adjusted for age at methylation typing,

sex, estimated white blood cell composition, population structure, and 5 common lifestyle

risk factors. A structured literature review was also conducted to identify existing EWAS for

all 19 disease states tested. The MEDLINE, Embase, Web of Science, and preprint servers

were searched to retrieve relevant articles indexed as of March 27, 2023. Fifty-four of

approximately 2,000 indexed articles met our inclusion criteria: assayed blood-based DNA

methylation, had >20 individuals in each comparison group, and examined one of the 19

conditions considered. First, we assessed whether the associations identified in our study

were reported in previous studies. We identified 69 associations between CpGs and the

prevalence of 4 conditions, of which 58 were newly described. The conditions were breast

cancer, chronic kidney disease, ischemic heart disease, and type 2 diabetes mellitus. We

also uncovered 64 CpGs that associated with the incidence of 2 disease states (COPD and

type 2 diabetes), of which 56 were not reported in the surveyed literature. Second, we

assessed replication across existing studies, which was defined as the reporting of at least 1

common site in >2 studies that examined the same condition. Only 6/19 disease states had

evidence of such replication. The limitations of this study include the nonconsideration of

medication data and a potential lack of generalizability to individuals that are not of Scottish

and European ancestry.

Conclusions

We discovered over 100 associations between blood methylation sites and common dis-

ease states, independently of major confounding risk factors, and a need for greater stan-

dardisation among EWAS on human disease.

Author summary

Why was this study done?

• Blood DNA methylation can inform us about the biological mechanisms that underlie

common disease states. Epigenome-wide association studies (EWAS) investigate

whether the proportion of methylation at loci termed CpG sites (cytosine-phosphate-

guanine dinucleotides) associate with health outcomes of interest.

• There is a need for large-scale EWAS that probe for epigenetic signals across a wide

range of conditions as well as a structured literature review to inform the utility of this

approach in identifying disease-relevant loci.

What did the researchers do and find?

• DNA methylation was assayed at 752,722 CpG sites using whole-blood samples from

18,413 volunteers, which were collected at the study baseline of Generation Scotland

(2006 to 2011).
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• EWAS tested for associations between differential methylation at CpG sites and the

prevalence and incidence of 14 and 19 disease states, respectively. Prevalence and inci-

dence data were derived from self-report questionnaires and electronic health record

linkage, respectively.

• We identified over 100 CpG associations with 4 prevalent conditions (breast cancer,

chronic kidney disease, ischemic heart disease, and type 2 diabetes) and 2 incident con-

ditions (chronic obstructive pulmonary disease and type 2 diabetes). We also found

poor replicability among existing studies with lung cancer showing the highest degree of

replication (17% of sites replicated in at least 2 studies).

What do these findings mean?

• Blood DNA methylation could act as a peripheral marker of several common disease

states including breast cancer, cardiopulmonary disease, and type 2 diabetes.

• As population biobank resources expand, studies that examine the same condition

should reach consensus on covariate strategies, phenotype definitions, and reporting

guidelines.

1. Introduction

Epigenetic modifications to DNA represent an important mechanism by which the environ-

ment interacts with the genome [1]. DNA methylation (DNAm) is one of the best-studied epi-

genetic mechanisms and involves the addition of chemical tags termed methyl groups to DNA,

typically in the context of cytosine-phosphate-guanine dinucleotides (CpG sites). Factors such

as diet, stress, and smoking behaviours may influence the process of methylation. The addition

of these chemical tags can alter whether, and to what extent, a gene is active. In contrast to

genetic sequence variation, these modifications are reversible and can modulate gene expres-

sion in cell- and tissue-specific manners [2]. Genome-wide patterns of DNAm are most com-

monly assayed using microarray-based technologies such as the Illumina HumanMethylation

450K and HumanMethylationEPIC arrays. The arrays permit a cost-effective assessment of

DNAm at a scale required for large-scale population health studies [3,4].

Epigenome-wide association studies (EWAS) examine associations between the proportion

of methylation at CpG sites and health outcomes of interest, such as chronic disease states [5].

Primarily, EWAS have been conducted using whole-blood DNAm. Patterns of DNAm identi-

fied in blood do not necessarily mirror DNAm patterns in distal or disease-relevant tissues

such as nervous tissue for Alzheimer’s disease [6,7]. However, blood sampling represents a

minimally invasive route for scalable biomarker measurement. Blood-based EWAS have also

implicated differential methylation at individual loci as candidate markers of disease risk. For

example, TXNIP and ABCG1 are important regulators of glucose and cholesterol metabolism,

respectively. Hypomethylation within TXNIP (cg19693031) and ABCG1 hypermethylation

(cg06500161) have been associated with type 2 diabetes risk across individuals of multiple

ancestries [8–11].

Existing EWAS on common diseases can be broadly categorised into prevalence analyses

(i.e., cross-sectional) and incidence analyses (i.e., longitudinal assessment of incident cases in

unaffected individuals). EWAS have often relied on modest sample sizes (<1,000 individuals),
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which has limited the discovery of loci that associate with disease states. Meta-analyses can

increase power but may be vulnerable to between-study heterogeneities. There is a need for

large-scale EWAS that examine the prevalence and incidence of multiple disease states in a sin-

gle population. These analyses would help to establish the relevance of blood methylation as a

peripheral marker of common disease states. Furthermore, there is a need for structured litera-

ture reviews to assess the level of agreement in locus discovery among existing EWAS that

examine the same condition. A synthesis of the level of concordance between published associ-

ation studies would aid in evaluating the utility of epigenome-wide analyses as an avenue for

identifying risk mechanisms underlying common disease states.

Here, we utilise Generation Scotland: the Scottish Family Health Study (GS), a large cohort

with DNAm data (n = 18,413). We hypothesise that differential methylation at CpG sites asso-

ciates with the prevalence of 14 conditions and the incidence of 19 disease states. First, we inte-

grate blood DNAm and self-reported disease data from questionnaires answered at the study

baseline to perform EWAS on 14 prevalent disease states (cross-sectional analyses). Second,

we conduct EWAS on 19 incident disease states ascertained through electronic health record

linkage over up to 14 years of follow-up (longitudinal analyses). Third, we perform a struc-

tured literature review to identify blood-based EWAS findings on all 19 disease states consid-

ered in this study. We examine whether findings in this study replicate previous analyses and

quantify the level of agreement within previously published studies. Fourth, we employ genetic

colocalisation analyses to determine whether DNAm levels at the loci identified in our EWAS

and disease risk mechanisms are likely influenced by shared or distinct genetic variants. These

analyses would help to determine whether DNAm is an important molecular mechanism con-

necting genetic risk to disease endpoints. Fig 1 provides a visual summary of the study design.

2. Methods

2.1. Ethics statement

All components of Generation Scotland received ethical approval from the NHS Tayside Com-

mittee on Medical Research Ethics (REC Reference Number: 05/S1401/89). Generation Scot-

land has also been granted Research Tissue Bank status by the East of Scotland Research Ethics

Service (REC Reference Number: 20-ES-0021), providing generic ethical approval for a wide

range of uses within medical research. Written informed consent was obtained from all partic-

ipants. This study was performed in accordance with the Helsinki declaration.

2.2. Generation Scotland cohort

Generation Scotland, or GS, is a large family-structured cohort study that consists of 24,000

individuals from across Scotland. Participants were identified via Community Health Index

numbers, with the support of Scottish Practices and Professionals Involved in Research. The

initial phase of recruitment (2006 to 2010) focussed on the Glasgow and Tayside regions of

Scotland and was later extended to Ayrshire, Arran, and the Northeast of Scotland. Individuals

must have been aged between 35 and 65 years, had�1 first-degree relative and�1 full sibling.

The age range was later broadened to 18 to 65 years. Family members of probands were also

invited to partake in the study. In total, 23,960 individuals were recruited, which encompassed

6,665 probands, 16,007 family members, and 1,288 individuals who self-volunteered without

invitation. There were 5,573 families with a mean size of 4 members and 1,400 participants

without relatives. The median age at baseline was 47 years and the sample was 59% female

[12,13]. Detailed health and lifestyle information were collected via questionnaires at the study

baseline alongside venepuncture to obtain whole blood samples from which DNAm was
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assayed. This study is reported as per the Strengthening the Reporting of Observational Studies

in Epidemiology (STROBE) guideline (S1 STROBE Checklist).

The present study does not have a registered prospective protocol. An unpublished, infor-

mal analysis plan was made and discussed among study authors prior to the implementation

of statistical analyses (August 2022). There were no significant changes to the analysis plan fol-

lowing informal review among the study authors, with the exception of pathway enrichment

and outlier sensitivity analyses following peer review.

Fig 1. Study design for epigenome-wide analyses on prevalent and incident disease states in Generation Scotland.

(A) Recruitment for Generation Scotland took place between 2006 and 2011. Prevalence analyses: participants self-

reported disease status and donated blood samples at the study baseline. Incidence analyses: linked healthcare data

were used to determine if participants who were free from a particular condition at baseline went on to develop the

condition over up to 14 years of follow-up. Controls were free of the disease at the baseline and during follow-up. (B).

Blood DNAm at baseline was available for 18,413 participants. The mean age was 47.5 years and the sample was 58.8%

female. EWAS tested for associations between blood CpG methylation and the prevalence of 14 disease states at

baseline or the incidence (time-to-onset) of 19 disease states during follow-up. The mean time-to-diagnosis ranged

from 5.0 years (for chronic pain) to 11.7 years (for COVID-19 hospitalisation). Significant findings were tested for

replication in existing studies via a structured literature review. Replication within existing studies was also

investigated. Colocalisation analyses were employed to help dissect whether associations between DNAm and disease

states reflected shared or distinct genetic architectures. (C). The first box lists the 14 self-reported disease states at the

study baseline, which were included in this study. The second box lists the 19 incident disease states identified through

electronic health record linkage. They include the same 14 conditions listed in the first box along with 5 additional

disease states. Of note, prevalent AD reflected family history of the disease due to the young mean age of the sample at

baseline, whereas incident AD reflected diagnosed disease. Image created using Biorender.com. AD, Alzheimer’s

dementia; COVID-19, Coronavirus Disease 2019; CpG, cytosine-phosphate-guanine dinucleotide; DNAm, DNA

methylation; EWAS, epigenome-wide association studies.

https://doi.org/10.1371/journal.pmed.1004247.g001
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2.3. Preparation of DNA methylation data

Whole-blood DNAm was measured using the Illumina Infinium MethylationEPIC array.

DNAm profiling of the GS samples was carried out by the Genetics Core Laboratory at the

Edinburgh Clinical Research Facility, Edinburgh, Scotland. Methylation typing was performed

in 3 distinct sets. Quality control steps are detailed in full in S1 Text. Following quality control,

there were 5,087, 4,450, and 8,876 individuals within Sets 1, 2, and 3, respectively. Set 1 con-

tained related individuals. Set 2 consisted of individuals who were unrelated to each other and

those in Set 1. Set 3 consisted of related individuals, and individuals related to those in Sets 1

and 2. The sets were combined and dasen normalisation was performed across all individuals

[14]. Linear regression models were used to adjust methylation M-values for chronological

age, sex, and experimental batch (factor with 121 levels, i.e., individuals were assayed across

121 unique batches). Residualised M-values were taken forward for analyses. In total, 752,722

probes and 18,413 individuals passed quality control criteria and were considered as a single

analytical sample in our analyses.

2.4. Preparation of disease phenotypes

Nineteen common disease states were considered across prevalence and incidence analyses: (i)

Alzheimer’s dementia (AD); (ii) breast cancer; (iii) chronic kidney disease (CKD); (iv) chronic

neck and/or back pain; (v) chronic obstructive pulmonary disease (COPD); (vi) colorectal can-

cer; (vii) Coronavirus Disease 2019 (COVID-19) severity (requiring hospitalisation); (viii)

inflammatory bowel disease (IBD); (ix) ischemic heart disease; (x) liver cirrhosis; (xi) long

COVID; (xii) lung cancer; (xiii) osteoarthritis; (xiv) ovarian cancer; (xv) Parkinson’s disease;

(xvi) prostate cancer; (xvii) rheumatoid arthritis; (xviii) stroke; and (xix) type 2 diabetes. Out-

comes were selected if they were present among the 10 leading causes of death in high-income

countries, the 10 leading causes of disease burden (disease-adjusted life years (DALYs)) in

high-income countries or self-reported conditions at the baseline [15–17]. Depression was

not considered as it is included in an ongoing meta-analysis EWAS. Although asthma can

occur at any age, it has a higher prevalence among children aged 0 to 17 years than in adults.

It was therefore excluded from the present analyses that used an adult sample with a broad

age profile [18].

Self-report data were used for 12 disease states in cross-sectional analyses of disease preva-

lence. Self-reported parental history of AD was used a proxy variable for AD. Analyses on self-

reported parental history of AD were restricted to participants who were>45 years at baseline.

This ensured that only participants whose parents were likely old enough at baseline to be at

risk of AD were considered (i.e., >65 years). The CKD Epidemiology Collaboration, or

CKD-EPI, equation was implemented to estimate glomerular filtration rate (eGFR) at baseline.

Individuals with an eGFR <60 ml/min/1.73 m2 were deemed to have CKD [19]. Therefore, 14

disease phenotypes were considered in prevalent analyses.

All 19 phenotypes were included in longitudinal analyses via linkage to electronic health

records (with the exception of self-reported long COVID). The primary and secondary care

codes used to define incident phenotypes are available in S1 Appendix. Prevalent cases from

the study baseline were excluded for these analyses as were those where record linkage pro-

vided evidence of a diagnosis prior to baseline. Therefore, incident cases included those diag-

nosed after baseline who had died and those who received a diagnosis and remained alive.

Controls were censored if they were free of a diagnosis at the time of death or at the end of the

follow-up period. Further information on the preprocessing of incident phenotypes, including

COVID phenotypes, is available in S2 Text.
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2.5. Epigenome-wide association studies on prevalent disease

First, logistic regression models were used to adjust prevalent phenotypes for chronological

age and sex, with the exception of breast cancer and prostate cancer, which were adjusted for

age after restricting the cohort to females and males, respectively. Second, linear regression

models were used for EWAS via the OSCA (OmicS-data-based Complex trait Analysis) soft-

ware [20]. Residuals from logistic regression models were entered as the dependent variable

and age-, sex-, and batch-adjusted CpG M-values represented the independent variable. This

strategy was employed to reduce computational burden. A Bonferroni significance threshold

was set at p< 2.6 × 10−9 (= 3.6 × 10−8/14 phenotypes) [21]. Two models with different covari-

ate strategies were employed, as described below:

1. Basic model: Phenotype and CpG M-values, processed as described above, and 5 House-

man-estimated white blood cell (WBC) proportions as fixed effect covariates [22]. Six cell

types are estimated from the Houseman method. However, their proportions sum to 100%.

Therefore, the percentage of granulocytes was not included in this analysis given that it is

collinear with the other 5 cell types. The basic model was as follows:

Phenotype (residuals) ~ CpG M-values (residuals) + 5 methylation-predicted WBC

proportions.

2. Fully adjusted model: additional adjustments for 5 common lifestyle factors, which were

alcohol consumption, body mass index, deprivation index (Scottish Index of Multiple Dep-

rivation), methylation-based smoking score (EpiSmokEr) [23], and years of education.

Body mass index was log transformed prior to analysis. Furthermore, multidimensional

scaling was applied to GS genotype data to obtain an estimate of population structure. The

first 20 genetic principal components were extracted and included in our analytical models.

The fully adjusted model was as follows:

Phenotype (residuals) ~ CpG M-values (residuals) + 5 methylation-predicted WBC propor-

tions + alcohol consumption (units/week) + log(body mass index (kg/m2)) + deprivation

index (Scottish Index of Multiple Deprivation) + education (an 11-category ordinal variable) +

methylation-based smoking score (EpiSmokEr) + 20 genetic PCs (population structure).

Results from basic and fully adjusted models are presented within the main text. Both mod-

els are included to assess the effects of lifestyle factors on associations between methylation

sites and common disease states. Some covariates may be more appropriate for one disease

state over another (e.g., body mass index for type 2 diabetes versus cigarette smoking for

COPD). However, all 5 risk factors are included in an effort to capture the most common envi-

ronmental and lifestyle risk factors across a broad range of disparate conditions. We do not

further present unadjusted analyses (i.e., using DNAm data that are not adjusted for age, sex,

and batch effects) given the strong, possible confounding effects of age and technical variation

on associations between CpG methylation and age-related disease states. We also did not ini-

tially adjust for family structure in our models. However, we later ran a series of sensitivity

analyses (outlined in Section 3.5), including adjustment for relatedness between participants.

2.6. Epigenome-wide association studies on incident disease

First, Cox proportional hazards models were used to adjust incident phenotypes for age at

baseline and sex (17/19 phenotypes). Only age was included for breast, ovarian, and prostate

cancer. Time-to-onset for the disease, or censoring, was the survival outcome in Cox propor-

tional hazards models. Only individuals with an age at event or censoring�65 years were
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considered for AD. As outlined above, controls were censored at the time of death or at the

end of the follow-up period. Logistic regression models were used to adjust 2 remaining

COVID phenotypes prior to EWAS analyses. Cox models were not employed for COVID phe-

notypes owing to the limited differences in time-to-event data between individuals with posi-

tive COVID diagnoses. Whereas DNAm was corrected for age at baseline (as well as sex and

batch), COVID phenotypes were adjusted for sex and age at COVID testing or diagnosis.

Here, age at COVID testing or diagnosis was considered given the variation in time elapsed

between baseline visits (between 2006 and 2011) and the onset of the COVID pandemic. Sec-

ond, martingale residuals or logistic regression residuals were extracted and included as

dependent variables in OSCA. A Bonferroni-corrected significance threshold was set at

p< 1.9 × 10−9 (= 3.6 × 10−8/19 phenotypes). Basic and fully adjusted models were employed,

as described in the previous section. Methods for sensitivity EWAS analyses are detailed under

S3 Text.

2.7. Pathway enrichment analyses

Enrichment was assessed among Kyoto Encyclopaedia of Genes and Genomes (KEGG) path-

ways and Gene Ontology (GO) terms using the gometh() function in the R package missMethyl
[24]. This function models the relationship between the number of probes per gene and the

probability of being selected, accounting for the selection bias associated with probe-dense

genes. The top 100 CpGs (i.e., smallest EWAS p-values) from each fully adjusted model were

included as input features. There were 33 such models for consideration (14 prevalent and 19

incident models). Pathways with an FDR-adjusted p-value < 0.05 were deemed significant.

2.8. Structured literature review on blood-based EWAS of common disease

MEDLINE, Embase (Ovid interface, 1980 onwards), Web of Science (core collection, Thom-

son Reuters), and preprint servers were searched to identify relevant articles indexed as of

March 27, 2023. The initial search dates were between August 1, 2022 and August 31, 2022,

and later updated and performed again on March 27, 2023. We used the following search

terms or their synonyms appropriate to each database: (“blood”.mp OR “whole blood”.mp OR

“peripheral blood.mp”) AND (“EWAS” OR exp “epigenome-wide*” / OR exp “epigenome-

wide association” /) AND (the disease of interest, e.g., “COPD” OR “chronic obstructive pul-

monary disease”). The search strategy returned approximately unique 2,000 articles, of which

54 passed inclusion criteria. Inclusion criteria were as follows: (i) original research article; (ii)

EWAS performed with blood DNAm; (iii) there were at least 20 individuals in each compari-

son group (i.e., cases and controls); and (iv) the study examined at least one of the 19 common

disease states outlined in our study.

Here, we make an important distinction between systematic reviews and our structured lit-

erature review. The structured search of the literature was intended to identify appropriate

studies for look-up analyses using a predefined and agreed list of search terms. This is similar

to systematic reviews in that search terms are used to systematically screen literature databases.

However, our approach differed from a systematic review in that no original or meta-analyses

were performed using data from the literature beyond a look-up analysis of CpGs identified in

these studies. Unlike a systematic review, the approach also does not provide an estimate for a

clinical question and rather summarises the current EWAS literature.

First, we wished to examine whether the CpG associations identified in our study had been

previously described. A CpG site was declared as novel in our study if it was not previously

reported at experiment-wise significance thresholds deemed by each of the 54 studies. Of note,

these studies used different significance thresholds. Several studies did not make their full
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summary statistics available, which prohibited the use of a common significance threshold for

look-up analyses. However, the studies also differed from one another with respect to methyla-

tion arrays, phenotype definitions, and covariate strategies. We focussed on unique CpGs

rather than unique genomic locations. Look-up analyses were performed separately for each

condition following our structured literature review. Second, we aimed to determine the level

of agreement among studies that examined the same condition with respect to locus discovery.

Here, our study was ignored as we were only interested in the previous literature for this analy-

sis. A CpG site or its gene (if available) was considered to be replicated if it was reported as sig-

nificant (at thresholds set by each study) in at least 2 studies that examined the same

condition. While focusing on genes alone may neglect intergenic CpGs, the CpG-level and

gene-level look-up analyses are included together in an effort to capture as much information

as possible from disparate studies in the literature.

2.9. Colocalisation analyses

Colocalisation analyses required GWAS summary statistics for CpG sites (i.e., methylation

Quantitative Trait Loci–mQTLs, trait 1) and for respective disease states (trait 2; [25–30]). The

GoDMC mQTL resource represents the largest mQTL study to date in terms of sample size

but only focused on 450k array sites [31]. Therefore, the GoDMC resource was utilised for

sites that are common to the EPIC and 450k arrays. However, mQTL analyses were also con-

ducted in GS due to the need to generate mQTL summary statistics for sites present on the

EPIC array only (S4 Text). In instances where CpGs had associations in both GS and

GoDMC, we used the following criteria to determine which dataset to retain: (i) the dataset

must have>10 genetic variants available and (ii) if both datasets satisfy (i), then retain the

dataset with the larger sample size. Of note, GS served as the replication cohort within the orig-

inal GoDMC analyses. Effect sizes in GS and GoDMC showed correlation coefficients of 0.97

and 0.96 for cis and trans variants, respectively, in the original GoDMC publication [31]. We

observed a similar coefficient of 0.97 between effect sizes for the subset of CpGs used in our

colocalisation analyses. Therefore, there was likely little heterogeneity between the data sources

used in our workflow.

The coloc.abf() function in the R package coloc was used to test for colocalisation and

default parameters were applied (version 5.1.0) [32]. SNPs ±1 Mb surrounding each CpG site

were extracted from mQTL datasets (i.e., GS or GoDMC, trait 1) and disease GWAS summary

statistics (trait 2). The method tests for 5 mutually exclusive hypotheses, H0: there are no

causal variants for either trait in the tested region; H1 and H2: causal variant for trait 1 and

trait 2 only, respectively; H3: distinct causal variants for both traits; and H4: the traits share a

causal variant. Posterior probabilities�95% for H4 provided strong evidence in favour of

colocalisation.

3. Results

3.1. Demographics and disease counts in Generation Scotland

The mean age of the sample was 47.5 years (n = 18,413, standard deviation (SD) = 14.9) and

the sample was 58.8% female. Summary data for demographic variables are presented in

Table 1. Additional data on covariates and disease counts are displayed in S1–S3 Tables. The

number of self-reported cases for prevalent disease at baseline ranged from 34 participants

with Parkinson’s disease to 5,296 with chronic neck and/or back pain, respectively (basic

model). Further, the number of cases with incident disease since baseline (derived from health

record linkage) ranged from 31 for severe COVID (hospitalisation from COVID-19 infection)

to 1,886 for chronic neck and/or back pain. Associations between covariates and disease states
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are displayed in S4 and S5 Tables for prevalent and incident disease states, respectively (also

available in S1 and S2 Figs).

3.2. Epigenome-wide analyses of prevalent disease

We first tested for cross-sectional associations between blood CpG methylation and 14 disease

states at the study baseline. There were 1,340 significant associations across 10 diseases in a

basic model that adjusted for age, sex, and estimated blood cell proportions (p< 2.6 × 10−9;

Fig 2A, S6 Table). Over 90% of these associations (n = 1,246) were attributed to type 2 diabetes

(n = 703 associations, 52.5%), COPD (n = 301, 22.5%), and chronic pain (n = 242, 18.1%).

Genomic inflation factors ranged from 0.8 to 1.6 across all basic models (S7 Table). Look-up

analyses in the EWAS Catalog showed that 617/1,340 associations involve CpGs that were pre-

viously associated with common disease risk factors including body mass index, smoking, and

alcohol consumption [33]. For clarity, we do not present summary statistics (i.e., 95% CIs and

p-values) for all individual CpG associations in the main text given the large number of associ-

ations present in basic and fully adjusted models. However, these are made available in S6 and

S8 Tables, respectively.

Next, we conducted a fully adjusted model that further accounted for 5 common lifestyle

risk factors and population structure. The 5 risk factors were alcohol consumption, body mass

index, deprivation (Scottish Index of Multiple Deprivation), a methylation-based proxy for

tobacco smoking [23], and years of education. The fully adjusted model returned 78 associa-

tions across 8 disease states (p< 2.6 × 10−9; Fig 2B, S8 Table). Sixty-nine associations from

the basic model were also present in the fully adjusted analysis. The 69 associations were

spread across 4 disease states: CKD (n = 1); ischemic heart disease (n = 6); breast cancer

(n = 10); and type 2 diabetes (n = 52). Genomic inflation factors ranged from 0.8 to 1.8 across

all fully adjusted models and were 1.1, 1.8, 1.0, and 1.1 for CKD, ischemic heart disease, breast

cancer, and type 2 diabetes, respectively (S7 Table). The significant findings included associa-

tions between self-reported history of breast cancer and hypomethylation within cg06072257

and cg06123699, which are located near UBIAD1 and TPRG1 on chromosomes 1 and 3,

respectively (p = 6.5 × 10−103 and p = 2.4 × 10−101, respectively). The site cg17944885 located

between ZNF788 and ZNF20 on chromosome 19 associated with prevalent CKD

(p = 1.7 × 10−12). Furthermore, CpGs annotated to ABCG1, DHCR24, and MYLIP were com-

mon to ischemic heart disease and type 2 diabetes (Fig 2B). We also examined where the 69

Table 1. Summary of demographic variables in the Generation Scotland cohort.

Phenotype Units n Mean SD
Age years 18,413 47.5 14.9

Alcohol Consumption units/week 16,705 11.0 13.0

Body Mass Index kg/m2 18,299 27.0 5.2

DNAm smoking score (EpiSmokEr) - 18,413 1.4 4.3

n Median IQR
Education 11-category ordinal variable 17,389 4 3

Scottish Index of Multiple Deprivation rank 17,287 4,331 3,115

n n-female % female
Sex - 18,413 10,833 58.8

DNAm, DNA methylation; IQR, interquartile range; SD, standard deviation.

Education was measured as an ordinal variable: 0, 0 years; 1, 1–4 years; 2, 5–9 years; 3, 10–11 years; 4, 12–13 years; 5, 14–15 years; 6, 16–17 years; 7, 18–19 years; 8, 20–

21 years; 9, 22–23 years; 10,�24 years.

https://doi.org/10.1371/journal.pmed.1004247.t001
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associations of interest were located in relation to CpG islands. CpG islands are clusters of

methylation sites that typically occur at or near transcription start sites. Only 1 CpG was anno-

tated to a CpG island (cg00994936), 20 were located in shores (0 to 2 kb from islands), 11 were

in shelves (2 to 4 kb from islands), and the remaining 37 were annotated to the “open sea” (iso-

lated sites outside of islands) (S8 Table).

Genetic colocalisation analyses provided weak evidence for a shared causal variant underly-

ing methylation at cg00857282 (MYLIP) and risk of ischemic heart disease (PP = 63%; S9

Table). There was also moderate evidence for distinct causal variants underlying 10 of the 69

prevalent associations (PP > 75%).

Fig 2. Epigenome-wide association studies on 14 prevalent disease states in Generation Scotland. (A) Diseases that

had CpG associations in only the basic model or the fully adjusted model are shown in bold. Colorectal cancer was

present in both the basic and fully adjusted model, but no CpGs were common to both models for this condition. (B).

Ideogram showing 69 sites that were common to both the basic and fully adjusted models. These loci associated with 4

unique disease states. Full information is available in S8 Table. Image created using Biorender.com. CKD, chronic

kidney disease; COPD, chronic obstructive pulmonary disease; CpG, cytosine-phosphate-guanine dinucleotide; WBC,

white blood cells.

https://doi.org/10.1371/journal.pmed.1004247.g002
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3.3. Epigenome-wide analyses on incident disease

Using health record linkage, we tested whether CpGs measured at baseline associated with the

future onset of 19 disease states. We observed 14,237 associations between baseline CpG meth-

ylation and the incidence of 11 disease states in the basic model (p< 1.9 × 10−9; Fig 3A, S10

Table). Of these, 11,305 (79.4%) and 2,657 (18.7%) were attributed to COPD and type 2

Fig 3. Epigenome-wide association studies on 19 incident disease states in Generation Scotland. Diseases that were identified in only the basic

model or only the fully adjusted model are shown in bold. COVID severity, liver cirrhosis, and ovarian cancer were present in both a basic and fully

adjusted model, but there were no overlapping CpGs for these disease states in both models. (B). Ideogram showing 64 associations that were

common to the basic and fully adjusted models. Full information is available in S12 Table. Image created using Biorender.com. COPD, chronic

obstructive pulmonary disease; CpG, cytosine-phosphate-guanine dinucleotide; WBC, white blood cells.

https://doi.org/10.1371/journal.pmed.1004247.g003
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diabetes, respectively. Well-established smoking-associated probes (e.g., cg14391737 within

PRSS23 and cg05575921 within AHRR) associated with the incidence of COPD, lung cancer,

ischemic heart disease, stroke, pain, and/or CKD. Genomic inflation factors ranged from 0.8

to 3.8 across all basic incidence models (S11 Table).

There were 79 unique associations in the fully adjusted model, which were spread across 5

disease states (Fig 3B, S12 Table). However, only 64 associations for COPD (n = 6) and type 2

diabetes (n = 58) were present across both basic and fully adjusted models. One site was anno-

tated to a CpG island (cg14334350), 10 were in shores, 12 were in shelves, and 41 were located

in the “open sea.” Genomic inflation factors ranged from 0.8 to 1.8 across all fully adjusted

incidence models and were 1.1 and 1.8 for COPD and type 2 diabetes, respectively (S11

Table). Genes annotated to CpGs that associated with COPD included ALPG, C11orf91,

CPOX, GPR15, HLA-DRB5, and PRSS23. Genes annotated to CpGs that were associated with

type 2 diabetes included ABCA1, ABCG1, CPT1A, SREBF1, SLC7A11, SLC7A5, and TXNIP
among others (see S12 Table for full details). Only type 2 diabetes had CpGs common to

cross-sectional and longitudinal analyses and reflected 17 CpGs annotated to 11 unique genes.

There was only moderate evidence for distinct causal variants underlying 11/64 incident

associations (PP> 75%). No associations showed strong evidence of colocalisation (S13 Table).

As a further analysis, we examined the contribution of each of the 5 common lifestyle risk

factors in attenuating the 1,340 prevalent associations and 14,237 incident associations that

were brought forward to the fully adjusted stage. The findings are outlined in full in S5 Text

and S14 Table. In brief, the mean attenuation in effect sizes by each of the covariates ranged

from 5.5% (for body mass index) to 63.1% (for smoking). However, there was heterogeneity

across disease states given their distinct risk profiles.

3.4. Pathway enrichment analysis for methylation sites associated with

common disease states

The top 100 CpGs (i.e., with the smallest EWAS p-values) for each fully adjusted model were

assessed for enrichment in KEGG pathways and GO terms (see Methods). Thirty-three models

were considered and reflected 14 prevalent and 19 incident phenotypes (S15 Table). Signifi-

cant pathways were returned only for prevalent type 2 diabetes and ischemic heart disease

(FDR-corrected p-value <0.05). The overrepresented terms included cholesterol and meta-

bolic processes as well as alcohol metabolic pathways, which may indicate residual confound-

ing despite adjustment for self-reported alcohol consumption.

3.5. Associations between CpG methylation and disease states are robust in

sensitivity analyses

Mixed-effects models that included a kinship matrix were used to account for relatedness as

sensitivity analyses. Effect sizes correlated >0.99 with associations from the standard EWAS,

which included related individuals (S16 and S17 Tables, S3 Fig). Further, Cox proportional

hazard models are often used to conduct incidence analyses. This model relies on the propor-

tional hazard assumption, which in effect states that the hazard ratio remains constant over

time and implies that the effect of a risk variable is also constant over the length of follow-up.

The assumption is supported by a nonsignificant relationship between Schoenfeld residuals

and time and refuted by a significant association. Fourteen of the 64 incident associations vio-

lated the proportional hazard assumption (p< 0.05 between Schoenfeld residuals and time;

S18 Table). However, we also restricted the analyses to each possible year of follow-up and

found that there were minimal differences in hazard ratios between time-points that failed the

assumption versus those that did not (S19 Table). This suggested the hazards were
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proportional over time and all associations were therefore retained. Furthermore, death was

considered as a censoring event within our study rather than a competing risk. Effect sizes

were correlated >0.99 when incidence models were repeated with death as a competing event,

and when individuals who had died were excluded from analyses (S20 Table).

The large number of association models employed in EWAS renders it challenging to

examine the potential influence of outlying values for each CpG site, particularly where multi-

ple phenotypes are evaluated. In an effort to highlight possible influential outliers, we com-

puted Cook’s distance measurements across all 69 prevalent associations (4 prevalent

phenotypes) and 64 incident associations (2 incident phenotypes) that were present in basic

and fully adjusted models. There were therefore 133 association models for which Cook’s dis-

tance was computed. Cook’s distance is a measure of the effect of deleting an observation on

the estimated coefficients, and the associated plots for all 133 models are shown in S2 Appen-

dix [34,35]. Two separate criteria were used to identify influential outliers: (i) individuals were

deemed as outliers if their distance was greater than 3 times the mean distance across data

points (standard rule of thumb) or (ii) a smaller subset of “extreme outliers” were identified

based on visual inspection of the plots. There were between 174 to 565 outliers across models

using the first criterion and 0 to 4 extreme outliers identified by the second criterion. Effect

sizes were correlated 0.7 with those from the original EWAS when outliers from the first crite-

rion were removed and 0.99 when those from the second criterion were omitted (S21 Table).

Fully adjusted models were repeated using logistic regression (prevalent disease) or Cox

models (incident disease) with age and sex included as fixed-effect covariates. This differs

from the main analytical strategy that used linear regression models with adjusted phenotype

and methylation variables and allowed us to return effect sizes on an interpretable scale. Fig 4

shows odds ratios and hazard ratios associated with a per-1 SD increase in adjusted CpG meth-

ylation M-values for all 69 and 64 prevalent and incident disease associations (S22 Table). We

also computed the Harrell’s C-statistic for each of the 64 incident associations, which is a mea-

sure of goodness of fit within survival analyses. Specifically, we calculated the difference

between the C-statistic between a fully adjusted model with and without each CpG of interest.

The model without the CpG included age, sex, estimated blood cell proportions, population

structure, and 5 common lifestyle factors as outlined previously. The C-statistic from this

model was 0.87 and 0.80 for COPD and type 2 diabetes, respectively. All CpGs increased the

concordance index. The increment obtained from CpGs ranged from 0.1% to 1.2% (for

cg00163198, type 2 diabetes) across all 64 loci (S22 Table).

3.6. Structured literature review on existing epigenome-wide analyses of

common diseases

We performed a structured review of the literature to identify blood-based EWAS on the 19

disease states considered in our study (n = 54 studies; Fig 5). Characteristics for each of the 54

studies are outlined (S23 Table). The studies were deemed to be of high quality. However,

there was a high risk of selection bias among epigenome-wide analyses as well as attrition bias

(i.e., in the incidence analyses). Fourteen disease states had at least 1 EWAS reported in the lit-

erature. The number of studies ranged from 1 (for long COVID) to 7 (for type 2 diabetes and

lung cancer) (S24 and S25 Tables). Four studies used the Illumina 27k array (7.4%), 36 used

the 450k array (66.7%), 12 employed the EWAS array (22.2%), and 2 implemented alternative

arrays (Infinium Multi-Ethnic Global-8 and PyroMark Q24, 3.7%). Sixteen studies examined

incident disease, while the remaining 38 focused on prevalent disease.

First, we performed look-up analyses to determine whether CpGs identified in our study

were previously reported at significance thresholds deemed by each individual study. Only 11/
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69 prevalent associations in this study (including 1 for CKD and 10 for type 2 diabetes) and 8/

64 incident associations (for type 2 diabetes only) were reported in the literature (at

p< 2 × 10−5, which represented the least conservative threshold across studies for these traits;

Fig 5). The replicated associations for type 2 diabetes implicated genes including ABCG1,

CPT1A, SREBF1, and TXNIP.

Fig 4. Blood CpGs associated with prevalent or incident disease states showing effect sizes on interpretable scale.

Effect sizes were reestimated using logistic regression (prevalent disease, blue points) or Cox proportional hazards

models (incident disease, violet points) to return more interpretable effect sizes. Effect sizes represent a per-1 SD

increase in age-, sex-, and experimental batch-adjusted CpG methylation M-values (or age- and batch-adjusted for

breast cancer). CpGs shown were significant in both basic and fully adjusted models. Odds ratios and hazard ratios are

detailed in S22 Table. CI, confidence interval; CpG, cytosine-phosphate-guanine dinucleotide; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1004247.g004
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Second, we assessed how well previous studies that examined the same trait (e.g., the 7 stud-

ies on type 2 diabetes) agreed with one another in terms of locus discovery. The present study

was not included in this analysis as here we were interested only in the previous literature. A

CpG was considered to be replicated in the literature if 2 or more studies reported it as signifi-

cant at the threshold defined in their study. As different arrays may not have the same CpG

sites, we also considered whether a given gene was replicated in at least 2 studies examining

the same condition. There were 10 disease states that were available for testing (i.e., had 2 or

more studies with available summary statistic data). The number of unique CpGs that were

reported as significant by the authors ranged from 7 (for COPD) to 2,746 (for ovarian cancer).

Six of the 10 disease states had evidence of replication across existing studies with respect to

the CpGs identified by EWAS. They were IBD (1.1% of CpGs replicated), stroke (1.8%), ovar-

ian cancer (2.2%), CKD (5.2%), type 2 diabetes (6.5%), and lung cancer (16.8%) (Fig 5). Simi-

lar percentages were observed for genes, with the exception of CKD, which had no common

genes across studies as all of the replicated CpGs were intergenic (S25 Table).

Discussion

Using one of the world’s largest methylation datasets, we perform a series of EWAS on the

prevalence and incidence of a broad range of conditions. We undertook a large-scale, compre-

hensive review of the literature and highlight the poor agreement that exists across previous

epigenome-wide analyses that examine the same condition. By comparing these data with our

own findings, we uncover 58 novel associations with the prevalence of 3 self-reported disease

states at the study baseline (breast cancer, ischemic heart disease, and type 2 diabetes). We also

Fig 5. Look-up and replication analyses within EWAS on common disease states. A structured literature search was

performed to identify existing EWAS on 19 common disease states (either prevalent or incident). (1) We first determined

whether associations in our study replicated those of previous studies. We focussed only on associations that were

common to basic and fully adjusted models. There were 69 prevalent associations across 4 conditions (breast cancer, CKD,

ischemic heart disease, and type 2 diabetes), and 64 incident associations across 2 conditions (COPD and type 2 diabetes).

We found that 11/69 prevalent associations and 8/64 incident associations were reported in the literature. (2) We then

turned our attention to the existing studies and asked whether studies that examined the same trait (e.g., incident type 2

diabetes) reported the same loci in their studies. We omit our study here as we are only interested in the previous

literature. We required that a CpG site was reported in at least 2 studies that examined the same trait. There was a limited

amount of replication in the literature as indicated in the right-hand side of the figure. Image created using Biorender.com.

CKD, chronic kidney disease; CpG, cytosine-phosphate-guanine dinucleotide; COPD, chronic obstructive pulmonary

disease; IBD, inflammatory bowel disease.

https://doi.org/10.1371/journal.pmed.1004247.g005
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identify 56 novel associations between CpGs and the time-to-onset of 2 disease states (COPD

and type 2 diabetes). These associations were independent of common lifestyle risk factors.

However, we also observe a vast number of additional associations whereby CpGs index or

track associations between lifestyle factors and common disease states, further highlighting the

appropriateness of DNAm as a biomarker of lifestyle behaviours.

The novel associations observed in this study could strengthen evidence for candidate

molecular pathways underlying peripheral disease states, e.g., self-reported history of breast

cancer associated with differential methylation at cg06072257 (UBIAD1) and cg06123699

(TPRG1). UBIAD1 (UbiA Prenyltransferase Domain Containing 1) is a biosynthetic enzyme

that converts vitamin K1 (phylloquinone) to menaquinone, which is the most abundant form

of vitamin K2 in human tissue [36]. Low expression of UBIAD1 in human breast tumours cor-

relates with reduced survival [37] and also associates with risk for bladder cancer [38]. TPRG1
encodes for Tumour protein P63 Regulated 1 and its expression is associated with estrogen

receptor-positive and triple-negative breast cancers [39,40]. Furthermore, in relation to

COPD, cg23353945 (C11orf91) correlated with incidence of the disease and has been associ-

ated in trans with CCL21 protein levels [41]. Serum CCL21 levels are elevated in COPD

patients and may contribute to the development of lung cancer [42,43]. This may suggest that

a C11orf91-CCL21 axis contributes to risk of pulmonary disease independently from lifestyle

risk factors. However, these findings warrant further investigation in mechanistic in vitro and

in vivo studies.

The most consistent associations across models and look-up analyses were for type 2 diabe-

tes. This is likely attributed to the strong correlation between metabolic processes (e.g., glucose

and lipid metabolism) and DNAm in blood [44]. The condition with the highest degree of rep-

lication within the existing literature alone was lung cancer. This may reflect the strong influ-

ence of smoking on DNAm. From these analyses, it is apparent that EWAS possess a general

low level of replicability, in particular when compared to genome-wide association studies (or

GWAS), which show replication rates of 50% to 90% [45,46]. However, unlike DNAm, genetic

factors remain fixed across the life-course and large sample sizes in GWAS have ensured ade-

quate power. Epigenetic analyses are also highly susceptible to adjustments for environmental

exposures as indicated above. Caution should be paid to covariate strategies particularly where

the primary objective is to identify causal molecular mechanisms that connect genetic risk to

disease endpoints, which should mandate high replicability. Furthermore, in our study, EWAS

were conducted using linear regression models, which examined each CpG site in isolation.

The risk of overfitting was low due to the large number of observations compared to the num-

ber of model parameters. However, the vast number of associations observed in our analyses

may be attributable to the large sample size and possibly to the correlation structure among

CpG sites within the same genomic region or distal sites influenced by similar lifestyle factors.

As sample sizes grow, it may be necessary to employ additional methods that permit the joint

and conditional estimation of probe effects while accounting for correlation structure and

unknown confounders [20,47].

The generally poor replication across existing EWAS reflects a number of possible factors.

These include the use of (i) different statistical models and significance thresholds; (ii) arrays

with different CpG content (e.g., 450k versus EPIC arrays); (iii) different study designs (e.g.,

community-based designs with no enrichment for a particular disease versus targeted case/con-

trol designs); (iv) heterogeneities in genetic backgrounds; (v) variation in phenotype definitions

for health record linkage analyses; and (vi) the use of disparate covariate strategies. Some studies

also did not make full summary statistics available. Nevertheless, our review is critical and

timely given that the scale of EWAS continues to rise in tandem with enhancements in array

technologies, population biobank sizes, and health record phenotyping algorithms.
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We highlight a number of further considerations in addition to those arising from the struc-

tured literature review. First, there was limited overlap between methylation sites identified in

the prevalence and incidence analyses. Prevalence analyses relied on self-report data, which

may have been prone to recall bias, whereas incidence analyses considered diagnosed disease.

A subset of controls within the prevalence analyses will also have been reassigned to cases in

the incidence analyses, which could attenuate common signal between these analyses. Second,

the majority of disease states showed weak associations with differential methylation at CpG

sites despite the large sample size employed. This is further highlighted by the lack of consis-

tency in coefficient estimates across models. It is important to note that while the overall sam-

ple size was large, the number of cases in many conditions was modest, which may have

limited power. The analyses also emphasise that epigenome-wide analyses are highly sensitive

to adjustments for environmental exposures. Third, colocalisation analyses did not provide

evidence that altered methylation and disease risk mechanisms shared common genetic vari-

ants. The CpG associations may instead reflect distinct genetic aetiologies, unknown con-

founding factors, and some of the associations could capture subclinical disease in the

participants. Fourth, we did not consider multimorbidity in this study. There are a number of

possible trajectories that a particular participant may have shown, as well as a number of

recorded events for a given condition (e.g., stroke). Indeed, we focused on time-to-first-event

in this study alone. Future research will focus on applying sophisticated statistical methods to

model all possible multimorbidity trajectories from linked healthcare data and disentangle

their relationships with peripheral methylation.

Our study has a number of limitations. First, winsorization of methylation values was not

applied in our study. Winsorizing limits extreme values in the data, e.g., in M-values for a

given CpG site, and can reduce the effect of possibly spurious outliers [34]. However, sensitiv-

ity analyses using Cook’s distance metrics suggested that regression coefficients were largely

stable when influential data points were removed, particularly where extreme outliers were

excluded. Second, we did not adjust for medication data, which may confound associations

between peripheral methylation and disease. Third, we did not consider disease subtypes as

this may have reduced power to detect associations. Fourth, we utilised family history of Alz-

heimer’s disease as proxy for prevalent disease due to the young mean age of the sample at

baseline. This complicates its generalisability with incident analyses on Alzheimer’s disease,

which relied on diagnosed disease. Our phenotype definitions may also have neglected poten-

tial cases for other disorders such as CKD, including individuals with proteinuria and normal

eGFR or with tubular disorders. Indeed, there is stark heterogeneity in clinical presentations

among all conditions considered in our study given their multifactorial aetiologies. Future

research may benefit from focussing on precise common endpoints in the disease process,

such as fibrosis for CKD and liver cirrhosis. Fifth, our findings in blood might not reflect

important changes in distal, disease-relevant tissues. Sixth, our analyses consisted of individu-

als with European ancestry and might not be generalisable to individuals of other ancestries.

Seventh, the look-up analyses in our structured literature review relied on genome-wide signif-

icant p-value thresholds set by individual studies. This metric is not fully informative given

that significant associations will be tightly coupled to characteristics such as the sample size of

the study.

Moving forward, we recommend that studies examining the same condition could engage

in consortium efforts, which may provide an opportunity to reach consensus on covariate

strategies and normalisation methods. Furthermore, it is essential that all studies report clearly

the output of nested models, such as models with and without adjustments for lifestyle risk fac-

tors, and provide full publicly available summary statistics where possible.
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Our epigenome-wide analyses uncovered over 100 novel associations between blood CpGs

and common disease states that act independently of major confounding risk factors. Our

summary data and synthesis of the literature provide a timely foundation that will expedite dis-

coveries into the role of blood DNAm in common disease states.
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