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DiPA: Probabilistic Multi-Modal Interactive
Prediction

for Autonomous Driving
Anthony Knittel1, Majd Hawasly1, Stefano V. Albrecht1,2, John Redford1, Subramanian Ramamoorthy1,2

Abstract—Accurate prediction is important for operating an
autonomous vehicle in interactive scenarios. Prediction must be
fast, to support multiple requests from a planner exploring
a range of possible futures. The generated predictions must
accurately represent the probabilities of predicted trajectories,
while also capturing different modes of behaviour (such as
turning left vs continuing straight at a junction). To this
end, we present DiPA, an interactive predictor that addresses
these challenging requirements. Previous interactive prediction
methods use an encoding of k-mode-samples, which under-
represents the full distribution. Other methods optimise closest-
mode evaluations, which test whether one of the predictions
is similar to the ground-truth, but allow additional unlikely
predictions to occur, over-representing unlikely predictions. DiPA
addresses these limitations by using a Gaussian-Mixture-Model
to encode the full distribution, and optimising predictions using
both probabilistic and closest-mode measures. These objectives
respectively optimise probabilistic accuracy and the ability to
capture distinct behaviours, and there is a challenging trade-off
between them. We are able to solve both together using a novel
training regime. DiPA achieves new state-of-the-art performance
on the INTERACTION and NGSIM datasets, and improves over
the baseline (MFP) when both closest-mode and probabilistic
evaluations are used. This demonstrates effective prediction for
supporting a planner on interactive scenarios.

Index Terms—Autonomous Vehicle Navigation, Motion and
Path Planning, Deep Learning Methods

I. INTRODUCTION

PREDICTION of the future motion of surrounding road
users is essential for the safe operation of an autonomous

vehicle (AV). Road scenarios such as intersections, merges and
roundabouts require significant interaction between agents in
the scene, where agent behaviour is influenced by the presence
of nearby agents, as well as reactions to actions that other
agents take. In order to support planning, a predictor needs to
estimate the future states of the surrounding road users based
on observations of their recent history, and to estimate the risk
of conflict for possible ego actions.

A planning system used in interactive scenarios needs to
consider different possible actions that other vehicles may
take, and the futures that result from different actions. In
order to explore these futures, a supporting predictor needs

Manuscript received: October 8, 2022; Revised March 7, 2023; Accepted
May 16, 2023.

This paper was recommended for publication by Ashis Banerjee upon
evaluation of the Associate Editor and Reviewers’ comments.

1Five AI Ltd, UK. contact: anthony.knittel@five.ai
2School of Informatics, University of Edinburgh, Edinburgh, UK
Digital Object Identifier (DOI): see top of this page.

0.8 0.2

Fig. 1. Top: Use of k-mode samples (red, k=2) under-represents the
distribution of future positions (black). This prevents effective planning by
underestimating states which are reasonably likely to occur. Bottom: A
GMM encoding, with associated mode weights, provides a more accurate
representation of the full distribution by covering a wider range of samples.
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Fig. 2. Top: Optimising for closest-mode evaluations can allow unrealistic
predictions to be over-represented. For an instance of data (black dot), the
closest predicted mode (red) is evaluated while additional modes (blue)
can predict unrealistic behaviours without penalty. Unlikely predicted modes
interfere with planning, for example causing an emergency break to avoid a
predicted collision that is unlikely. Bottom: Optimising for both closest-mode
and probabilistic evaluations penalises unlikely predictions, while minimising
over- and under-representation.

to be computationally fast, and to provide accurate predictions
that represent the expected distribution of future states of each
agent. Many combinations of actions may be possible, so an
interactive predictor needs to be fast in order to allow different
futures to be explored.

Existing predictors addressing this task have encoded pre-
dictions using a fixed number of mode samples, for example
using 6 predicted trajectories encoded as center positions [1],
[2], [3]. These are evaluated using minimum average- or final-
displacement error (minADE/FDE) and miss-rate (MR) (see
Section IV-B). These measures compare the closest predicted
mode with the ground-truth, and are important for demon-
strating that predictions closely capture distinct modes of
behaviour observed in the data.
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Fig. 3. A merge scenario produces a bi-modal distribution (black samples).
Optimising closest-mode (minADE/FDE) evaluations favours diverse predic-
tions (green), while probabilistic (predRMS) evaluations favour predictions
close to the mean (red), that minimise the penalty of incorrect mode estimates.
Solving both requires diverse predictions with the ability to accurately estimate
mode probabilities.

A limitation of this sample-based encoding is that it does
not represent the full distribution of expected future positions,
and as such many variations are under-represented (Fig. 1). A
further limitation is that probabilities of predicted modes are
not considered. When training a model based on closest-mode
evaluations, additional predicted modes (other than the closest)
do not affect scoring, which allows the predictor to predict
behaviour modes that are unlikely to occur. Each predicted
mode has equal weight, which results in over representation
of unlikely predictions (Fig. 2).

These limitations can be addressed using a Gaussian Mix-
ture Model (GMM), which represents the full predicted dis-
tribution, along with probability estimates of each mode.
This is preferred over increasing the number of samples, as
GMMs provide a compact encoding of the distribution and
a practical means of evaluating the probability distribution.
Previous methods [4], [5] have used GMMs on the NGSIM
dataset, which are evaluated using negative-log-likelihood
(NLL) evaluations. Further methods have used mode probabil-
ity estimates [6], [7] which are evaluated using predicted-mode
RMS (predRMS) evaluations (see Section IV-B).

Probabilistic and closest-mode evaluations provide compli-
mentary measures that are more informative than either alone,
and are analogous to precision and recall in binary classi-
fication. We argue that an effective predictor for interactive
scenarios needs to optimise both measures, to demonstrate
that it is able to closely capture distinct behaviour modes,
while also accurately representing probabilities. This is a
challenging task as different evaluation measures are supported
by contradictory prediction strategies. Closest-mode evalua-
tions (minADE/FDE/MR) favour diverse predictions, while
probabilistic evaluations (predRMS, NLL) favour conserva-
tive predictions close to the mean of expected behaviours,
where the cost of incorrect mode estimates is minimised
(Figure 3). Optimising both evaluation approaches together
demonstrates accurate multi-modal prediction, and reduces the
over-representation of unlikely predictions seen in Figure 2.

To that end, we present DiPA (Diverse and Probabilistically
Accurate) – a fast method for predicting in interactive scenar-
ios using a GMM encoding, that is able to optimise both objec-
tives together, by producing a diverse set of predictions with
accurate probability estimates. This allows distinct behaviours
to be accurately modelled, while producing an accurate repre-

sentation of the full trajectory distribution. This improves over
previous methods [1], [3] using closest-mode evaluations on
the INTERACTION dataset [8], and improves over previous
methods [7], [4] using probabilistic evaluations on NGSIM [9].
DiPA also improves over a baseline method (Multiple-Futures
Prediction (MFP)) [5] when comparing both closest-mode and
probabilistic measures together. This demonstrates a predictor
that is suitable for supporting an AV planner in interactive
scenarios.

Beyond highlighting the importance of evaluating predictors
with both closest-mode and probabilistic evaluations, the key
contributions are: 1) a fast prediction architecture with a flex-
ible representation that processes agent interactions in wide-
ranging road layouts, that produces high accuracy predictions
on interactive scenarios, 2) a training regime that supports a
diverse set of predicted modes using a GMM-based spatial
distribution, with accurate probability estimates, and 3) a
revision to the NLL measure for evaluating GMM predictions,
to correct for an important limitation.

II. RELATED WORK

A number of different structures have been used for pre-
diction of agents in road scenes, including graph-, goal- and
regression-based methods.

StarNet [1] represents the scene and agents using vector-
based graphs, and uses a combined representation of agents
within their own reference frame and from the points of view
of other agents. Further graph-based methods such as [10],
[3], [11] combine map information and agent positions into
a common representation, commonly processed with a Graph
Neural Network [12] in an encoder-decoder framework. These
methods allow encoding the static layout of the scene and
various agents in a generalisable way, and have shown good
results on closest-mode prediction.

Goal-based methods [13], [14], [15], [16], [17], [18] identify
a number of potential future targets that each agent may
head towards, determine likelihoods of each, and produce
predicted trajectories towards those goals. Flash [7] uses a
combination of Bayesian inverse-planning and mixture-density
networks to produce accurate predictions of trajectories in
highway driving scenarios. Goal-based methods use the map
to inform trajectory generation, and can use kinematically-
sound trajectory generators. However, this can lead to limited
diversity on other factors such as motion profile and path
variations compared to data-driven methods.

Regression-based methods use representations that directly
map observations to predicted outputs. SAMMP [4] produces
joint predictions of the spatial distribution of vehicles, using
a multi-head self-attention function to capture interactions
between agents. Multiple-Futures Prediction (MFP) [5] models
the joint futures of a number of interacting agents, using
learnt latent variables for generating predicted future modes.
Mersch et al. [19] present a temporal-convolution method for
predicting interacting vehicles in a highway scenario where
neighbouring agents are assigned specific roles based on
relative positions to a central agent. These regression-based
methods can be fast and accurate, but may have limited gen-
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eralisability to different layouts when role-based representation
of inputs is used.

Existing interactive prediction using the INTERACTION
dataset have demonstrated good results based on closest-mode
evaluations (minADE / FDE / MR) [1], [2], [3]. These have
typically used a prediction encoding using a fixed number of
modes, each represented as a trajectory sample. Optimising
closest-mode evaluations produces diverse predictions, which
closely capture distinct modes of behaviour.

Methods using the NGSIM dataset have shown good results
on probabilistic evaluations (predRMS, NLL) [4], [19], [5],
[7]. These have used a range of encodings including k-mode-
samples [7], or GMM models [4], [6], [5]. Optimising these
measures allows the probability distribution of predictions
to be captured, however may not capture distinct behaviour
modes closely.

The importance of balancing prediction diversity and prob-
abilistic accuracy has been recognised in [4] which trains a
GMM model with NLL loss and shows improved diversity
against prior art measured by MR. Rhinehart et al. [20]
examined the generation of paths that are both diverse, to cover
instances in the dataset, and precise, to minimise inconsistency
with the data, using a specific cross-entropy term per objective.
This balance is also addressed in generative CVAE models
such as [21] which uses a trajectory sampler trained to extract
diverse and plausible samples generated by the model.

To address the limitations of closest-mode and mean eval-
uation measures, [20] propose the use of information-based
cross-entropy evaluations. The importance of evaluating with
both displacement-error and NLL-based evaluations has also
been recognised by [22], for evaluating trajectories produced
by a generative model. Measures of diversity and precision
have also been explored by [23] using closest-mode and mean
mode evaluations, performed on joint predictions of various
agents in a scene. A limitation of this approach is the lack of
probabilistic weighting of predicted modes.

A useful interactive predictor requires (1) speed, which
can be achieved by minimising unnecessary complexity; (2)
an accurate encoding of the full probability distribution over
trajectory predictions, as provided by a GMM; and (3) ac-
curate predictions that capture distinct behaviour modes with
an accurate distribution, as measured by closest-mode and
probabilistic evaluations. Addressing these factors together is
challenging, as there are trade-offs between solving each, for
example increasing diversity to capture distinct behaviours
introduces a cost with estimating the probability distribution
accurately. We demonstrate that the proposed DiPA method
addresses this joint task, in a generalisable way that can be
applied to the various scenes of interactive scenarios.

III. PROPOSED METHOD

DiPA uses an encoder-decoder architecture, where inter-
actions between agents are captured using a Graph Neural
Network (GNN). An overview of the network structure is
shown in Figure 4. In order to support speed of processing,
and to identify the essential elements needed, the design
is focused on the minimal complexity that is needed to

produce high-quality predictions. Agents are encoded based
on observed histories such as positions and velocities, and
each of the agents are treated as symmetric entities in an
unordered set, with no need to assign specific roles based on
relative positions. This allows flexible comparisons between
agents to be performed and enables generalisability to widely
varying scenarios including roundabouts, junctions, highways
and other road topologies with a varying numbers of agents
in diverse arrangements. Predictions are performed jointly on
up to 20 agents at a time, while for evaluation purposes a
single agent is used for each instance, where the surrounding
neighbours are provided for context.

Inputs to the model are the observed histories of each
agent (positions, orientations and speeds), and agent features
including dimensions and type. The model produces predic-
tions as a multi-modal GMM, represented with a 2D Gaussian
distribution for each timestep.

Observed states for each agent are encoded using tempo-
ral convolution layers, and interactions between agents are
processed using an edge-based GNN. Edge features between
pairs of interacting agents are produced by broadcasting agent
encodings using concatenation, which are processed with MLP
layers for each agent × agent pair.

This design has been chosen to emphasise the ability to
directly process relative values between pairs of interacting
agents, such as encodings of positions, velocities and orienta-
tions, which are trained based on regression. This is in contrast
to standard GNN approaches [12], which use an encoding
per agent, where interactions between agents are processed
using summation (or other reductions) of encoding messages
passed from neighbouring nodes. The proposed approach has
similarities with the processing of entities in an unordered set
used in PointNet [24].

Reduction over edges (agent pairs) for each agent (node)
produces a summary encoding for each agent, while reduction
over agent nodes produces a scene context encoding, which
allows properties of the scene to influence agent predictions.
The agent-context representation is decoded to produce pre-
dicted trajectory positions, spatial distribution parameters and
mode weight estimates. This design captures the important
elements of processing agent predictions with interactions,
while removing unnecessary complexity.

A. Training
A typical approach for training GMM predictions is to

minimise a NLL loss, such as the score used for evaluation in
(10). When this loss is used, the spatial distribution parameters
are updated using the predicted mode weight. Inaccuracy
in predicted weights produces randomness in mode training
weights, resulting in mode convergence and loss of diversity.

We propose a novel training method that improves predic-
tion diversity, which allows distinct modes of behaviour to
be captured, and produces accurate estimates of probabilities.
Training is performed with 1) a spatial distribution loss for
training spatial distribution parameters, and 2) a mode weight
estimation loss for training predicted mode weights.

Training mode weights (used with both losses) define the
extent that each predicted mode will be updated based on an
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Fig. 4. Network diagram of DiPA model. Trajectory history and agent dimensions are inputs. The following symbols represent ⊗=broadcasting,
⊕=concatenation, ⊖=max reduction. Outputs are predicted trajectories, spatial distribution parameters and mode prediction weights.

observation, where a flat training distribution leads to conver-
gent modes while a biased distribution encourages diversity.
Mode weight distributions W ∈ RM ,

∑M
m Wm = 1 represent

the weighting of each mode for training or prediction. Training
mode weights Wr are a combination of the closest mode
weight Wc and posterior mode weight Wp, using a proportion
weighting kr = 0.5, chosen experimentally as described in
Section V-A.

Wr = (1− kr)Wc + krWp (1)

Wc is a strongly biased (one-hot) distribution that encourages
training of the single most similar mode to the ground-truth.
µm,t is the predicted trajectory position for mode m at time
t, and xt is the ground-truth.

Wc,m =

{
1 ifm = argminm( 1

T

∑T
t ||xt − µm,t||)

0 otherwise
(2)

Wp is a weakly biased distribution based on the posterior
of the observation under the GMM model, and produces
a balance of convergent and divergent mode training that
facilitates participation of the different modes. Wp prevents
one or a few modes from dominating, and reduces sensitivity
to initialisation. Σm,t is the predicted covariance matrix.

Wp,m =
1

T

T∑
t

N (x, µm,t,Σm,t)∑M
i N (x, µi,t,Σi,t)

(3)

In contrast, MFP [5] uses a combination of posterior and
predicted distribution weights for training the GMM, which
has a tendency to produce a single dominant mode.

1) Spatial distribution training: The spatial distribution
loss (4) minimises the NLL score of an observation x under the
predicted model, weighted by the training mode distribution
Wr. This trains the parameters of the normal distribution µ,Σ,
while Wr is constant.

Lspatial = − 1

T

T∑
t

ln(

M∑
m

Wr,mN (x, µm,t,Σm,t)) (4)

The training weight distribution Wr emphasises training
modes similar to the observation, supporting mode diversity,

in contrast to standard NLL training based on the predicted
mode weight distribution.

2) Mode weight estimation training: Two predicted mode
weight terms are produced by the model, Ws and Wn, which
are based on similarity of trajectory positions, and low spatial
distribution error respectively. Separate terms are used as the
ideal mode weights can be inconsistent for different objectives.
The trajectory-based mode estimation weight Ws is trained
with a MSE-based loss, as shown in (5). (Ws is trained while
µ is constant)

LMSE =

M∑
m

Ws,m
1

T

T∑
t

||xt − µm,t||2 (5)

The spatial distribution mode weight Wn is trained in order
to minimise the NLL score, and to approach the training mode
distribution Wr, as shown in (6). (Wn is trained and µ,Σ,Wr

are constant)

LDIST = − 1

T

T∑
t

ln(

M∑
m

Wn,mN (x, µm,t,Σm,t))

+DKL(Wr||Wn) (6)

The two mode estimation distributions Ws and Wn are
based on different objectives, and favour trajectory- and
distribution-based evaluations respectively. In order to produce
a single prediction that balances these objectives, a weighted
average is returned Wo = (1 − kn)Ws + knWn, using
kn = 0.9, which has been chosen experimentally as shown in
Section V-A, so that the proposed method out-performs prior
methods on all tasks.

IV. EXPERIMENTS

Experiments are conducted to demonstrate that the pro-
posed DiPA method meets the objectives for supporting an
interactive planner, which requires fast processing, the ability
to capture distinct modes of behaviour, and to accurately
capture the probability distribution for predictions. Experi-
ments are conducted on the INTERACTION [8] dataset to
compare existing benchmarks using closest-mode evaluations,
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to demonstrate capturing distinct behaviour modes. Experi-
ments on NGSIM [9] compare against prior methods using
probabilistic evaluations, to demonstrate the ability to capture
the distribution accurately. As there is a trade-off between op-
timising closest-mode and probabilistic tasks, experiments are
conducted on the joint task using both evaluation approaches
on each dataset, which is compared against MFP as a baseline
(Section IV-A).

1) INTERACTION dataset: The INTERACTION
dataset [8] is divided into instances based on each fully-
observed agent in each case window, with a 4 second
duration. Prediction is performed using a 1 second observed
period and 3 second prediction period.

2) NGSIM dataset: The NGSIM dataset contains trajectory
tracks for agents in two scenes (US-101 and I-80). Agents are
assigned to train/evaluation splits based on vehicle identifier,
as used in [6]. Instances are created based on a central agent,
for each fully-observed window of 8 seconds (3 observed, 5
future). For each instance up to 20 neighbouring agents are
also observed, while agents that have been assigned to different
splits are not used for training.

On both datasets global coordinates are used. Pre-processing
centers units on the last observed position of the agent to be
predicted, with rotation such that the yaw of the prediction
agent is zero (at the last observed timestep).

A. Revised implementation of Multiple-Futures Prediction

MFP [5] is a useful baseline as it is an accurate method
based on a GMM, allowing comparison on each of the
evaluation measures. A limitation of MFP is that it has
been implemented using local lane-based coordinates, which
are suitable for highway driving involving mostly parallel
lanes. This representation is not directly generalisable to more
complex scenarios involving intersections, roundabouts and
other non-parallel topology, as are used in INTERACTION.

In order to use global coordinates, for consistency each
instance is re-framed to be centered on the last observed
position and rotated on the orientation of the central agent.
A revised neighbour grid is used to allow MFP to operate on
widely varying road topologies. MFP represents neighbours
using a 13×3 grid of positions in the central and neighbouring
lanes, based on distances from the central agent. A comparable
neighbour grid is produced based on the central and neigh-
bouring lane patches corresponding with the central agent.
All following and preceding lane patches from the central
lane patch(es) represent the central lane, and similarly for the
neighbouring lanes. Grid spacing distances for each neighbour
agent are found based on the nearest midline path, using the
progress distance of the neighbour agent relative to the central
agent. This defines a neighbour grid similar to that used in
MFP, and implements the MFP-general method.

B. Evaluation measures

1) predRMS: the RMS error of the most probable predicted
mode is calculated for a number of timesteps, over the

instances of the dataset N as shown in (7), where µi is the pre-
dicted position for the most probable mode i = argmax

m
(Wm)

as used in [6], [5], [7]:

predRMSt =

√√√√ 1

N

N∑
n=1

||xn,t − µi,t||2 (7)

We use the same number of modes as used in corresponding
minADE/FDE experiments.

2) minADE: evaluates the closest average Euclidian dis-
tance between the predicted trajectory mode and the ground
truth over a horizon T , while minFDE evaluates the closest
final position, as follows.

minADE = min
m

(
1

T

T∑
t=1

||xt − µt,m||) (8)

minFDE = min
m

(||xT − µT,m||) (9)

3) Miss-rate (MR): is defined as the percentage of instances
where the minimum spatial error on the final timestep is larger
than a given threshold, ie minFDE > k ∈ R. We use a
threshold of k = 2m as used in [13], [4].

4) Negative-log-likelihood (NLL): describes the log-
probability of observed instances under a predicted distri-
bution. Previous methods [5], [25], [4] use a GMM repre-
sentation, although NLL can be compared between different
representations. Calculation of the NLL score using a GMM
is shown in (10). This is represented using a center position
µm ∈ R2, covariance matrix Σm ∈ R2×2 and weight Wm ∈ R
for each predicted mode, where x ∈ R2 is the ground-truth
position.

NLL =
1

T

T∑
t=1

− ln(

M∑
m=1

WmN (xt, µm,t,Σm,t))

N (x, µ,Σ) =
1

2π
√

|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ) (10)

NLL as a concept is a dimensionless property, however
previous results and the evaluation in (10) represent probability
density, without reducing to a dimensionless value. Observed
samples are points, which have zero probability in a spatial
distribution as a result of being a position with no size. It
is possible to produce a probability evaluation using an area
instead of a point, however the area to use is not well defined
or meaningful for the task. As dimensioned probability density
values are used, and the NLL measure is determined from
this value, it is important to record the units of the density-
based NLL property reported. Previous methods have used
inconsistent units, in feet [5] and in meters [4], so to address
this problem we present units of measurement with reported
results.

Another limitation is that in existing definitions NLL is an
unbounded quantity, which allows scores on a small number of
instances to greatly influence evaluation over the dataset. This
is both a theoretical and a practical problem, as for example a
dataset may contain a stationary object, where the center of a
predicted GMM can be accurately chosen, and the distribution
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TABLE I
PROBABILISTIC PREDRMS SCORES ON NGSIM

predRMS (by time period) [m]
Method 1s 2s 3s 4s 5s
CV [26] 0.76 1.82 3.17 4.80 6.70
CSP(M) [6], [4] 0.59 1.27 2.13 3.22 4.64
GRIPa [27] 0.52 1.22 2.05 3.13 4.47
SAMMP [4] 0.51 1.13 1.88 2.81 3.98
Flash [7] 0.51 1.15 1.84 2.64 3.62
MFP [5] 0.54 1.17 1.87 2.71 3.67
DiPA 0.46 1.04 1.70 2.47 3.43
Trajectory mode weight 0.46 1.04 1.70 2.45 3.39
Spatial mode weight 0.47 1.08 1.79 2.62 3.64
Standard NLL loss 0.44 1.03 1.66 2.48 3.50
Closest-mode training 0.43 0.99 1.64 2.44 3.43
Posterior training 0.43 0.99 1.65 2.47 3.50

aResults are adjusted to correct for scoring with RMS with average over
spatial dimension values instead of Euclidean distance RMS.

width reduced to an arbitrarily high density, bounded only by
numerical limits. When represented with a 64-bit float (with
limit 5.5 × 10−309), this can result in a NLL score of −710
for a single instance.

We suggest that a maximum probability density be applied,
as for vehicle prediction there is no practical advantage in dis-
tinguishing between very tight bounds. Mercat et al. [4] apply
a minimum limit to the standard deviation of σ = 0.1m, for the
purposes of avoiding overfitting. We extend this definition to
apply to evaluation, where the probability density is capped for
each instance, based on the maximum probability density of a
normal distribution with σ = 0.1m, which gives a minimum
NLL score of − ln( 1

2π0.12 ) (approx. −2.77). This can be used
with any probability distribution, including GMMs and raster-
based representations.

V. RESULTS

a) Capturing probability distribution: Comparison using
probabilistic evaluations on NGSIM are shown in Tables I
and II (ablations are below the double line, as discussed
in Section V-A). DiPA improves over previous methods on
predRMS evaluations, which involves generating a set of pre-
dicted trajectories and accurately predicting the most probable
mode. Evaluation of the spatial distribution using NLL shows
improved probabilistic accuracy with DiPA over previous
methods. These experiments show advantages of DiPA for
capturing probabilistic predictions on NGSIM.

b) Capturing distinct behaviours: Comparisons using
closest-mode evaluations on INTERACTION is shown in Ta-
ble III. DiPA shows lower error based on the closest mode than
the comparison methods. Comparison of closest-mode Miss-
Rate (MR) evaluations on NGSIM are shown in Table IV.
DiPA shows improved MR evaluation over methods such as
SAMMP [4] that are based on standard NLL training, showing
improved ability to produce diverse modes that closely cover
individual instances of the dataset. These experiments show
that DiPA improves over previous methods for accurately
capturing distinct modes of behaviour.

TABLE II
PROBABILISTIC NLL SCORES ON NGSIM (MODES=5)

NLL (by time period) [lnm−2]
Method 1s 2s 3s 4s 5s
CV [26]a 0.82 2.32 3.23 3.91 4.46
CSP(M) [6], [4]a -0.41 1.07 1.93 2.55 3.08
SAMMP [4]a -0.36 0.70 1.51 2.13 2.64
MFP [5] -0.64 0.71 1.56 2.21 2.74
DiPA -1.22 0.20 1.23 2.01 2.61
Non-thresholded -2.50 -0.14 1.12 1.98 2.60
Trajectory weight 9810.85 3670.04 63.28 29.92 17.52
Spatial weight -1.24 0.18 1.21 2.00 2.60
Standard NLL loss -1.36 0.06 1.11 1.91 2.60
Closest-mode -1.17 0.51 1.60 2.36 2.86
Posterior training -1.30 0.11 1.16 1.95 2.60

aPreviously reported NLL results do not use the thresholded NLL score
described in Section IV-B4.

TABLE III
CLOSEST-MODE SCORES ON INTERACTION (MODES=6)

Method minADE6 minFDE6 MR6

TNT [13] 0.21 0.67
ReCoG [10] 0.19 0.66
ITRA [2] 0.17 0.49
GoHome [3] 0.45
StarNet [1] 0.16 0.49
joint-StarNet [1] 0.13 0.38
MFP-general 0.43 1.20 0.19
DiPA 0.11 0.34 0.02
Trajectory mode weight 0.11 0.34 0.02
Spatial mode weight 0.11 0.34 0.02
Standard NLL loss 0.18 0.47 0.03
Closest-mode training 0.11 0.33 0.01
Posterior training 0.11 0.36 0.02

c) Combined task: In order to compare the ability to
optimise both closest-mode and probabilistic tasks at the same
time, results using multiple evaluation measures are shown
for MFP and DiPA in Tables I, II and IV. These show that
MFP produces accurate probabilistic predictions as measured
with predRMS and NLL, however shows relatively high error
on closest-mode evaluations. This suggests limited diversity
of predictions, which limits the ability to closely match
individual instances. Comparison of multiple evaluations on
INTERACTION is shown in Tables III, V and VI. This also
shows improved results with DiPA against MFP-general on
all evaluation measures, showing advantages of DiPA for
optimising both tasks together.

Figure 5 shows selected instances from the INTERACTION
dataset and predictions produced by DiPA. This shows DiPA’s
ability to represent the full predicted distribution using a GMM
encoding, providing greater coverage of variations compared
to the typical k-mode-samples approach, while also capturing
distinct modes of behaviour.

The run-time of the model is ∼16ms to predict 20 agents
at a time (Python/Tensorflow), using a NVidia 2080Ti GPU.
This fast run-time for repeat calls allows multiple predictions
to be made as part of inference performed by a planner.
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Fig. 5. Qualitative results, showing use of the GMM encoding to represent the full predicted distribution (blue ellipses show σ = 1). Ego is red vehicle,
green vehicles are neighbours, showing history (yellow) and future (orange). L-R: 1. spread to capture variations over chosen paths, 2. narrow spread with
variations in speed when crossing intersection, 3. cyclist prediction with large variations in speed and path, 4. distinct modes, with narrow prediction while
crossing intersection and also wide spread at slower speeds.

TABLE IV
CLOSEST-MODE SCORES ON NGSIM

Method minADE5 minFDE5 MR5

CV [26] 0.71
CSP(M) [6], [4] 0.44
SAMMP [4] 0.23
MFP [5] 1.07 2.15 0.40
DiPA 0.48 0.86 0.07
Trajectory mode weight 0.48 0.86 0.07
Spatial mode weight 0.48 0.86 0.07
Standard NLL loss 0.90 1.75 0.32
Closest-mode training 0.46 0.82 0.05
Posterior training 0.51 0.99 0.16

TABLE V
PROBABILISTIC PREDRMS SCORES ON INTERACTION

predRMS [m]
Method 1s 2s 3s
MFP-general 0.21 0.95 2.37
DiPA 0.11 0.47 1.28
Trajectory mode weight 0.11 0.47 1.25
Spatial mode weight 0.12 0.51 1.38
Standard NLL loss 0.11 0.44 1.18
Closest-mode training 0.15 0.50 1.28
Posterior training 0.10 0.46 1.27

A. Ablation study

Experiments using variations of DiPA are shown in each
result table below the double line. Evaluating with Non-
thresholded NLL scores show lower error values, particularly
for short time horizons that involve narrower error distribu-
tions. These low scores can result from tight bounds on a
few instances, and thresholded scores are more informative.
Predicting with the trajectory mode weight Ws alone (kn = 0)
favours RMS scores at a cost of NLL evaluations, while the
spatial mode weight Wn alone (kn = 1) produces lower
NLL error with increased RMS errors. The effect of changing
the proportion kn is shown in Figure 6, showing values for
the final timestep. A proportion of kn = 0.9 allows effec-
tive prediction according to both trajectory- and distribution-
based evaluation. Standard NLL loss shows a condition where
training is performed directly from the NLL loss, using the

TABLE VI
PROBABILISTIC NLL SCORES ON INTERACTION (MODES=6)

NLL [lnm−2]
Method 1s 2s 3s
MFP-general -1.87 0.46 2.17
DiPA -2.09 -0.85 0.76
Non-thresholded -4.82 -1.67 0.35
Trajectory mode weight 93.20 18.19 12.79
Spatial mode weight -2.10 -0.87 0.76
Standard NLL loss -2.27 -0.58 0.95
Closest-mode training -1.56 -0.87 0.73
Posterior training -2.22 -0.94 0.70

predicted mode distribution as the training weights. This shows
lower error on NLL, but substantially higher error on closest-
mode evaluations, showing that it is not able to capture specific
behaviour modes as well. Closest-mode training based on the
mode weight Wc only (kr = 0) shows lower closest-mode
errors but higher NLL error on NGSIM, which contains more
noise than INTERACTION. During development, we have
found that using Wc only can lead to one or a few modes
dominating, and is expected to be sensitive to initialisation.
Posterior training based on Wp (kr = 1) shows lower pre-
dRMS and NLL error but higher closest-mode error, showing
it is not as effective at capturing distinct behaviour modes. A
balanced setting (kr = 0.5) provides a reliable approach that
improves over prior methods on all measures.

VI. CONCLUSION

In order to support an AV planner for operating in interactive
scenarios, a predictor needs to be fast, to identify distinct
modes of behaviour, and accurately represent the probability
distribution of predictions. Previous interactive predictors are
able to capture distinct modes of behaviour, as measured by
closest-mode evaluations, however the k-mode-samples encod-
ing under-represents the full distribution, and misses many
variations that can reasonably be expected. In addition, when
probability estimates are not reported or used for optimisation,
the predictions can over-represent behaviours that are unlikely
to occur.

Our proposed DiPA method uses a GMM encoding to
represent the full predicted distribution, and uses a novel
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Fig. 6. Effect of changing proportion kn balancing trajectory- and spatial-
distribution-based mode weights.

architecture and training regime that allows learning of distinct
modes of behaviour, while also accurately representing the
probability distribution. Solving both of these tasks together
is more challenging than solving either on its own.

Results on the INTERACTION and NGSIM datasets show
DiPA captures distinct behaviour modes and probability es-
timates better than previous methods. There is a trade-off
between these tasks, and comparison using both evaluations
shows improvement over the MFP baseline on each measure,
demonstrating the ability to accurately model the probability
distribution of a diverse set of predicted behaviours.

Limitations of DiPA are that it does not use map informa-
tion, which prevents following a given road layout, and as
a regression-based network, the model can also occasionally
produce unrealistic predictions. This is currently mitigated
using a wrapper to constrain maximum predicted speeds.

DiPA shows fast run times, and produces an accurate encod-
ing of the full distribution of predictions, that minimises both
over- and under-representation of predictions. This provides
useful predictions for supporting an AV planner in interactive
scenarios.

REFERENCES
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