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Abstract—Machine-checked cryptography aims to re-
inforce confidence in the primitives and protocols
that underpin all digital security. However, machine-
checked proof techniques remain in practice difficult
to apply to real-world constructions. A particular chal-
lenge is structured reasoning about complex construc-
tions at different levels of abstraction. The State-
Separating Proofs (SSP) methodology for guiding cryp-
tographic proofs by Brzuska, Delignat-Lavaud, Four-
net, Kohbrok and Kohlweiss (ASIACRYPT’18) is a
promising contestant to support such reasoning. In this
work, we explore how SSPs can guide EasyCrypt for-
malisations of proofs for modular constructions. Con-
cretely, we propose a mapping from SSP to EasyCrypt
concepts which enables us to enhance cryptographic
proofs with SSP insights while maintaining compatibil-
ity with existing EasyCrypt proof support. To showcase
our insights, we develop a formal security proof for the
cryptobox family of public-key authenticated encryption
schemes based on non-interactive key exchange and
symmetric authenticated encryption. As a side effect,
we obtain the first formal security proof for NaCl’s
instantiation of cryptobox. Finally we discuss changes to
the practice of SSP on paper and potential implications
for future tool designers.

I. Introduction
Increasing trust in cryptographic algorithms has been

at the core of modern research in cryptography, since
Goldwasser and Micali’s [1] and Dolev and Yao’s [2]
seminal contributions. Goldwasser and Micali’s work gave
rise to the field of provable security, which focuses on
proving security against computationally-bounded, prob-
abilistic adversaries that can violate abstractions. The
complexity of proofs in this model initially made it suit-
able only for primitives and simple schemes. In practice,
these primitives and simple schemes are used inside larger
protocols, which are stateful and interactive constructions
whose scale requires modular reasoning. As the practice of
provable security evolved towards these protocols, proofs
necessarily became more structured, replacing direct rea-
soning about the correctness of reductions with sequences
of games [3], [4], and structuring definitions themselves
so cryptographic security proofs can be composed [5],
[6]. Tool support for the verification—or indeed automa-
tion—of proofs in this computational model has also been
improving, with techniques and tools generally falling into
one of two classes:

1) Techniques that are well-suited to reasoning about
primitives and small schemes, but do not scale well
to protocols. Examples include CertiCrypt [7], Easy-
Crypt1 [8], [9], FCF [10], or CryptHOL [11].

2) Techniques that handle large protocols well, but rely
on strong assumptions or manual proofs about primi-
tives—and sometimes some statistical reasoning. Ex-
amples include F7 [12] and F⋆ [13]—both of which
target executable code; CryptoVerif [14], IPDL [15] and
Squirrel [16]. Another class of examples are tools for
symbolic verification when combined with computa-
tional soundness results [17]. Symbolic verification is
the analysis of protocols against unbounded adver-
saries that respect some of the abstractions they are
presented with, and has led to the development of
highly effective tools for the automated verification
of protocols [18], [19] but often under strong assump-
tions on the underlying cryptographic primitives.

However, there is currently a clear lack of support for
formal reasoning that combines cryptographic primitives
and protocols. A few attempts have been made to cross
the gap, and bring together in a single tool the ability to
reason about low-level cryptographic arguments and high-
level protocol security. These range from

• ad hoc applications of cryptographic reasoning tools
to larger protocols, e.g. [20], [21], [22], [23], [24], [25],
[26], [27], [28], to

• the extension of protocol-level reasoning tools with
the relational reasoning capabilities required to reason
about primitive security [29], to

• the formalization of composition frameworks in these
reasoning tools [30], [31] or in more general proof
assistants [32], [15], and also to

• ad hoc combinations of tools from both classes [33],
as well as

• extensions of symbolic verification tools (such as
Tamarin [19]) with support for specific cryptographic
primitives, like Diffie-Hellman [34] or XOR [35].

Despite these efforts, there is still no single technique
that handles well both high-level logical reasoning about
cryptographic protocols and low-level mathematical rea-

1https://easycrypt.info



soning about primitives and schemes while allowing formal
connections between the two.

A. Our contributions

Brzuska et al. [36] recently proposed State-Separating
Proofs (SSP) as a way to structure large cryptographic
proofs combining reasoning about cryptographic primi-
tives and protocols, initially with F⋆ security proofs of
protocols like TLS 1.3 in mind. The methodology has since
been applied in the context of key exchange [37], [38] and
secure multiparty computation [39]. SSP is a pen-and-
paper proof methodology and associated definitional style
that relies on simple composition theorems for sequential
and parallel composition and replication, and on factoring
out shared cryptographic state as separate packages. The
approach focuses on explicitly capturing the requirements
of modularity and statefulness, but has also demonstrated
it can be applied to large interactive protocols by encoding
interactivity into state and code.

We start from the observation that the structuring
constructs of the EasyCrypt proof assistant can very closely
capture the concept of SSP packages, and explore if and
how SSPs can usefully guide EasyCrypt formalisations. Our
focus is on SSP-style modularity and statefulness. Since
SSPs encode interactivity into oracle state we believe the
approach works also in those settings, but leave further ex-
ploration as future work—focusing in this paper on laying
down principles and identifying helpful tool improvements.
Concretely, our exploration is performed as a case study
of the widely-used cryptobox construction, a stateless
and non-interactive Public-Key Authenticated Encryption
(PKAE) scheme, which combines Non-Interactive Key
Exchange and Authenticated Encryption (NIKE+AE) and
dates back to Diffie and Hellman [40]. Our case study
involves corruption, which requires oracle state, and all
forms of composition (including replication), but does
not have protocol-level state.2 Using ideas from SSPs to
shape EasyCrypt definitions and proofs then enables us to
prove—with relative ease—the security of cryptobox in
this general setting. In particular, reduction steps made
trivial by the application of SSP are also trivial in our
EasyCrypt mapping, and the constrained definitional style
enables further modular reasoning. All formal definitions
and proofs are available for review from https://gitlab.
com/fdupress/ec-cryptobox.3

Unlike previous attempts at reaching towards structured
composition from a cryptographic proof assistant [30], [31],
we do not attempt to formally capture and prove compo-
sition theorems. Instead, we rely on EasyCrypt’s built-in
composition, which naturally follows from the semantics of
its specification language. Interestingly, we find that this

2We note that pen-and-paper SSPs do not make special provisions
for protocol-level state, which is captured in the same state variables
we use later to capture oracle state.

3HEAD commit at the time of submission: 3685c758.

is in fact sufficient in the context of a stateless protocol
with unbounded replication and corruption.

Our exploration yields several concrete contributions of
independent interest:

1) A mapping of SSP concepts to EasyCrypt, as basis for
using the SSP framework to guide high-level protocol
security definitions and proofs in EasyCrypt (Sec-
tions III and IV). Importantly, we do not mechanize
SSP as a framework, but instead map its concepts
to EasyCrypt concepts, allowing us to leverage Easy-
Crypt’s modularity without the overhead of a formal
framework.

2) A formal proof of security for the generic NIKE+AE
construction, based on standard assumptions on the
underlying Non-Interactive Key Exchange and Au-
thenticated Encryption primitives (Sections V, VI);

3) A discussion of friction points and observations future
tool designers should be aware of when planning sup-
port for modular security proofs in SSP style, or more
generally for designing tools that perform equally well
on primitives and protocols (Section VIII.)

Section VII discusses related work on formalisations
of cryptographic frameworks and protocols related to
cryptobox. The paper starts with an introduction to
PKAE as running example for the first sections.

II. Public-Key Authenticated Encryption
Authenticated encryption (AE) schemes provide both

privacy and authenticity of data. We give a brief overview
over public-key authenticated encryption (PKAE) [41] as
our running example as well as the basis for our case study.

a) Syntax: A nonce-based PKAE scheme P consists
of a tuple of efficient algorithms P = (pkgen, pkenc, pkdec).
The probabilistic key generation algorithm pkgen samples
and returns a fresh pair (pk, sk) of secret and public key.
The encryption algorithm pkenc takes as input two keys,
the sender’s secret key sk and receiver’s public key pk, as
well as a message m and nonce n and returns a ciphertext
c. Upon input of two keys, the sender’s public key and the
receiver’s secret key, as well as a ciphertext c and nonce n,
the decryption algorithm pkdec outputs either a message
m or ⊥. Both encryption and decryption are deterministic.

b) Security: We define PKAE security as indis-
tinguishability between two games: In the real game
GPKAE0

P encryption and decryption is honest. The ideal
game GPKAE1

P samples random ciphertexts and performs
log-based decryption when both sender and receiver are
honest, and encrypts and decrypts honestly otherwise. The
games provide oracles pkgen, csetpk, pkenc and pkdec for
honest key generation, corrupt key registration, encryption
and decryption that are shown in Figure 1. Note the use of
assertions to check validity of inputs. We assume that key
logs PK, SK and ciphertext log M are initialized to be
empty. Entries in PK can be either 0, 1 or ⊥ to indicate
corruption status of public keys while SK maps public to
secret keys. With our case study in mind (Section V), our

https://gitlab.com/fdupress/ec-cryptobox
https://gitlab.com/fdupress/ec-cryptobox


PKAE security notion models the setting without PKI,
where public keys are not associated with any other form
of IDs. A session between sender S and receiver R is hence
identified by their respective public keys pkS , pkR only.4

GEN()
(pk, sk)←$P.pkgen
P K[pk]← true
SK[pk]← sk

return pk

CSETPK(pk)
assert P K[pk] = ⊥
P K[pk]← false
return ()

PKENC(pks, pkr, m, n)
assert SK[pks] ̸= ⊥
sks ← SK[pks]
assert P K[pkr] ̸= ⊥
honpkr ← P K[pkr]
h← sort(pks, pkr)
assert M [h, n] = ⊥
if b ∧ honpkr then

c←$Dc(|m|)
else

c← P.pkenc(sks,

pkr, m, n)
M [h, n]← (m, c)
return c

PKDEC(pkr, pks, c, n)
assert SK[pkr] ̸= ⊥
skr ← SK[pkr]
assert P K[pks] ̸= ⊥
honpks ← P K[pks]
m← ⊥
if b ∧ honpks then

h← sort(pks, pkr)
m← getmsg(M [h, n], c)

else
m← P.pkdec(skr,

pks, c, n)
return m

Fig. 1: PKAE security games GPKAEb
P . sort is a sort-

ing function on public keys. The deterministic function
getmsg((m, c′), c) returns m if c = c′ and ⊥ otherwise.

Note that this choice implies two attack vectors within
the model: (1) An adversary can make an honest party
use a corrupt public identity (i.e. register their honest
public keys as corrupt), resulting in a complete loss of
security. Since one cannot make any meaningful security
statement in this case, we have to prohibit it entirely
(see assertion in CSETPK). (2) An adversary can guess
the secret key corresponding to an honest public key, in
particular a freshly sampled honest key can collide with an
existing corrupt key. Our PKAE security notion does allow
this attack to capture the most liberal model possible. A
protocol secure in our model thus places the burden of
checking the origin of public keys on its parties, as opposed
to a setting with identities or PKI.

Denote by ϵP
GPKAE(A) the advantage of adversary A in

distinguishing GPKAE0
P and GPKAE1

P , i.e. the proba-
bility of A with access to the oracles of GPKAE0

P and
GPKAE1

P , respectively, distinguishing the two games:

ϵP
GPKAE(A) := | Pr[AGP KAE0

P = 1] − Pr[AGP KAE1
P = 1]|.

Definition 1 (PKAE security). A PKAE scheme P is se-
cure if for any PPT adversary A, ϵP

GPKAE(A) is negligible.

Our security notion can be seen as porting An’s PKAE
notion with two fixed parties [41] to the multi-instance
setting in a game-based style similar to Bellare and Tack-
mann’s AE notion [43], as well as extending the multi-
instance setting of [43] to include an arbitrary number
of corrupt keys. The latter is particularly interesting in
the public-key setting since encryptions (and similarly
decryptions) are performed under two keys, i.e. honest and
corrupt keys may be reused and combined arbitrarily.

4Though outside of the scope of this work, cryptobox makes this
choice to claim repudiability guarantees [42] .

Looking ahead, we remark that we prove cryptobox se-
curity in Section V in a restricted model where the second
attack is prohibited. Corollary 1 in the next section shows
that our proof implies PKAE security of cryptobox.

III. Introduction to SSPs
A. Packages

The central SSP notion is that of a package as structur-
ing unit for code-based games.

Definition 2 (Package). A package P is a set of oracle
definitions Ω and a set of state variables Σ on which the
oracles operate on.

gen()
(pk, sk)←$ pkgen
P K[pk]← true
SK[pk]← sk

return pk

csetpk(pk)
assert P K[pk] = ⊥
P K[pk]← false
return ()

getsk(pk)
assert SK[pk] ̸= ⊥
return SK[pk]

honpk(pk)
assert P K[pk] ̸= ⊥
return P K[pk]

Fig. 2: Oracles of
PKEY0

pkgen.

From now on, all package names
will be written in typewriter
style. The set of names of the
oracles in Ω define a package P’s
output interface out(P). We say that
the package provides these oracles.
Similarly, if the oracles in a package
P’s Ω query oracles not in Ω, the set
of names of these oracles define P’s
input interface in(P). In addition to
oracles and state, SSP packages can
also have two kinds of parameters,
indicated by annotations to the
package name. The first kind is
visible to other packages and used
e.g. to parametrize a package with
a cryptographic scheme. The second
kind is invisible to other packages
and is used for distinguishing bits in
security games.

As an example, consider a simple package
PKEY0

pkgen for generating and storing keys and their
corruption status. The package has output interface
out(PKEY0

pkgen) = {gen, csetpk, getsk, honpk} and input
interface in(PKEY0

pkgen) = ∅, and is parametrized by key
sampling algorithm pkgen and a distinguishing bit 0 whose
relevance will become clear in a moment. The package
provides oracles for honest key generation according to
pkgen, registering corrupt keys, and retrieving stored keys
and their corruption status, respectively. The oracles are
described in Figure 2.

SSP often visualizes packages as directed graphs. Nodes
stand for packages and incoming edges for oracles. Edges
can be annotated with oracle names. Figure 3 shows such
a graph for PKEY0

pkgen.

B. Composition
gen, 

csetpk, 
getsk, 
honpk 

Fig. 3: PKEY0
pkgen.

SSP allows oracles of one package
to query (or call) oracles provided by
another package which gives rise to
the concept of package composition.
Individual packages can be composed sequentially or in
parallel to form larger, composed structures. The resulting



structure is again a packages, with output and input inter-
faces derived from the individual packages. We sometimes
denote the sequential composition of packages P and Q
as P → Q. The SSP framework also defines composed
packages using directed, acyclic graphs, where each node
represents a package and the edges represent which oracles
of a package are queried by oracles of a composed package.

pkenc, 
pkdec 

getsk, 
honpk

Fig. 4: PKAEb
P as graph.

With this knowledge, we
now extend our example from
above with packages PKAEb

P ,
b ∈ {0, 1} with oracles for
encryption and decryption according to PKAE scheme
P. In contrast to PKEY0

pkgen, in(PKAEb
P) is not empty, but

consists of oracles getsk and honpk for accessing the key
material of other separate key store packages such as
PKEY0

pkgen. The oracles of PKAEb
P are described in Figure 5,

and Figure 4 show the package graph. Note that the
oracles of the two packages differ depending on b, with
b = 0 indicating honest encryption and b = 1 idealized
(i.e. log-based) encryption.

pkenc(pks, pkr, m, n)
sks ← getsk(pks)
honpkr ← honpk(pkr)
h← sort(pks, pkr)
assert M [h, n] = ⊥
if b ∧ honpkr then

c←$Dc(|m|)
else

c← P.pkenc(sks, pkr, m, n)
M [h, n]← (m, c)
return c

pkdec(pkr, pks, c, n)
skr ← getsk(pkr)
honpks ← honpk(pks)
m← ⊥
if b ∧ honpks then

h← sort(pks, pkr)
m← getmsg(M [h, n], c)

else
m← P.pkdec(skr, pks, c, n)

return m

Fig. 5: Oracles of the PKAEb
P package.

getsk, honpkpkenc, 
pkdec 

gen,  
csetpk 

Fig. 6: Graph of com-
posed game GPKAEb

P .

Crucially, we can now com-
pose PKAEb

P with PKEY0
P.pkgen.

We define composed packages
GPKAEb

P for b ∈ {0, 1} as shown
in Figure 6. Each GPKAEb

P
has interfaces out(GPKAEb

P) =
{gen, csetpk, getsk, honpk} and in(GPKAEb

P) = ∅.
C. Games and adversaries

Security is commonly defined by bounding an adver-
sary’s advantage of distinguishing two games, i.e. its
probability of distinguishing a pair of games. In SSP, a
game is a package with an empty input interface. As a
convention and as exemplified in the name GPKAEb

P , we use
the prefix G for names of games when they are games in
the conventional cryptographic sense. An adversary on the
other hand is a special package with a single oracle that
returns one bit. The behaviour of this oracle is unknown.
The composition of an adversary A with a game G allows
us to express that the adversary has access to all oracles
of G, and we define the advantage of A in distinguishing a
pair of games Gb, b ∈ {0, 1}, as

ϵG(A) := | Pr[A → G0 = 1] − Pr[A → G1 = 1]|.

Going back to our example: PKEY0
pkgen is technically a

game (though not necessarily a very useful one), and so
are GPKAE0

P and GPKAE1
P . In fact, the latter are our SSP

equivalents of the PKAE security games we saw in Section
II, and we can define PKAE security as follows:

Definition 3 (PKAE security, SSP style). Let P be a
PKAE scheme. P is secure if for any PPT adversary A,
ϵP

GPKAE(A) is negligible.

D. State separation and state sharing
As the name suggests, separating the state of different

packages is an underlying principle of SSP. The separation
enables local reasoning at the level of individual packages
when studying games that consist of multiple packages.
The state Σ of a package is local and cannot be inspected
from the outside; any access to that state from the outside
has to be through one of the package’s oracles. What about
when two packages P and Q do need to share state though?
The solution is simply to encapsulate the shared state in a
package S, with appropriate oracle access, and compose P
and Q with S. Jumping ahead, we will use this method of
state-sharing during the security proof of our case study
in Section V.

Recall GPKAE1
P . The package is defined as composition of

two packages: PKEY0
P.pkgen is generating and storing keys,

and hence its state consists of keys and their corruptions
status. PKAE1

P on the other hand is oblivious to how and
when keys were generated. The package’s state consists of
a ciphertext log that is used to answer idealized decryp-
tion queries. Concretely, state separation guarantees that
PKEY0

P.pkgen cannot modify PKAE1
P ’s state, and PKAE1

P can
only modify PKEY0

P.pkgen’s state through oracle calls.

E. Proofs
SSP security notions are typically game-based, and the

standard proof techniques for this setting still apply:
• code transformations [4] to establish perfect equiva-

lence of two games (possibly after inlining the oracles
of one package into another when necessary),

• application of the failure event lemma [3] for estab-
lishing equivalence up to a bad event, and

• reductions to the security of components or compu-
tational hardness assumptions.

In addition, the algebraic properties of SSP package com-
position, in particular associativity, allow to break down
arguments about a game into arguments about subgames,
thus greatly simplifying reduction arguments. (Security
definitions on the other hand may require more care in
SSP. We will discuss this point further in Section VIII-D2.)

To illustrate how reductions are simplified, let us return
to our running example. We defined PKAE security in
Def. 3 as indistinguishability of games GPKAEb

P , b ∈ {0, 1}
and observed in Section II that the notion provides an
attack vector: An adversary can guess the secret key of
an honest party. We already forbid the registration of an



existing honest key as corrupt, but the other way to launch
the attack is to register a public key as corrupt and hope
that one of the subsequent gen queries will sample it.

gen()
(pk, sk)←$ pkgen
assert PK[pk] ̸= false

P K[pk]← true
SK[pk]← sk

return pk

Fig. 7: gen oracle of
PKEY1

pkgen package.

Our plan is to introduce a mod-
ified PKAE notion that prohibits
key collisions altogether and show
that security under the modified
notion implies security under the
general notion. Now observe that
key collisions are a property of
key sampling alone. Conveniently,
our SSP modeling of PKAE se-
curity separates key sampling and
management from encryption and decryption. We can
thus introduce a new package PKEY1

pkgen (identical to
PKEY0

pkgen except for gen oracle shown in Figure 7) that
aborts when detecting such collision with an existing
corrupt key. Define the modified PKAE security games
as GuPKAEb

P (u for uniqueness) by replacing PKEY0
P.pkgen

by PKEY1
P.pkgen in GPKAEb

P . We can then prove a general
property about PKEY0

pkgen and PKEY1
pkgen and reduce dis-

tinguishing the PKAE games to distinguishing PKEY0
P.pkgen

and PKEY1
P.pkgen. Importantly, defining the reduction is

trivial as we will see in a moment.

Lemma 1 (Bound on public key collisions). Let pkgen
be a key sampling algorithm, and let pguess be the least
upper bound on the probability of any given public key
being sampled in pkgen. Then for any GPKAEb

P adversary
A making at most qgen queries to gen and qcsetpk queries
to csetpk,

ϵPKEYpkgen (A) ≤ qgen · qcsetpk · pguess.

Proof. The packages PKEY0
pkgen and PKEY1

pkgen differ only
in the gen oracle so we will focus on that one. In particular,
the packages differ only in one assertion. Using the failure
event lemma with the event of violating the assertion, we
can split the proof into two cases. If the assertion is not
violated in any of the oracle calls, then the assertion is
dead code and we can perform a code transformation on
PKEY1

pkgen to remove it. The resulting package is identical
to PKEY0

pkgen. If the assertion is violated, PKEY1
pkgen aborts

and the two packages can be distinguished. It suffices to
bound the probability of this event. The probability that
a particular gen call of the adversary violates the assertion
is bounded by |C| ·pguess where C is the set of public keys
registered as corrupt at the time. |C| is always at most
qcsetpk. Hence the probability that any gen call violates
the assertion is at most qgen · qcsetpk · pguess.

Corollary 1. Let P be a PKAE scheme, and let pguess

be the least upper bound on the probability of any given
public key being sampled in P.pkgen. Then for any GPKAEb

P
adversary A making at most qgen queries to gen and qcsetpk

queries to csetpk,

ϵP
GPKAE(A) ≤ 2qgenqcsetpkpguess · ϵP

GuPKAE(A).

Proof. Let A be an adversary. Consider the games GPKAE0
P

and GuPKAE0
P , and remember their structure (Figure 6). If

we can rewrite the games into a reduction that calls the
oracles of PKEY0

P.pkgen and PKEY1
P.pkgen, then we can apply

Lemma 1. In SSP, this is achieved by performing a cut in
the graph: To the right of the cut is the assumption, and
to the left is the reduction, consisting of the composition
of multiple modules. Figure 8 shows such a cut for GPKAE0

P
with package RPKEY := PKAE0

P becoming the reduction.
An analogous cut can be made for GuPKAE0

P . Applying
Lemma 1 with adversary A → RPKEY then yields that the
distinguishing advantage between GPKAE0

P and GuPKAE0
P is

bounded by qgenqcsetpkpguess. Repeating the argument for
GPKAE1

P and GuPKAE1
P concludes our proof.

get, honpkenc, 
pkdec 

gen,  
csetpk 

Fig. 8: Cut in
GPKAEb

P graph (dashed
line). Right of cut:
PKEY0

P.pkgen, left of cut:
reduction RPKEY.

On a conceptual level,
we were simply redrawing
package boundaries to make
PKAE0

P (and later PKAE1
P) a

part of the adversary. Note
how this approach trivially
guarantees that the reduction
RPKEY, when interacting
with PKEY0

P.pkgen, simulates
the behaviour of security
game GPKAE0

P correctly
towards the adversary, a step that is often glossed over in
pen-and-paper proofs. Corollary 1 can moreover be seen
as factoring out the repeated application of the failure
event lemma for the same event. Instead of dealing with
this event repeatedly in subsequent proof steps relating
to the same construction or even proofs of different
constructions, we can bound its probability once and then
prohibit the event.

IV. Mapping SSPs to EasyCrypt
EasyCrypt is an interactive proof assistant focusing on

the formalisation of game-based code-based cryptographic
proofs. Its most salient feature, compared to previous tools
for machine-checking cryptographic proofs, is a module
system which interacts with the tool’s logics to support
modular reductions (and mainly the modular construc-
tion of adversaries) in the formalisation of game-based
proofs—as they were presented by Halevi [44].

In Halevi’s approach, security properties are specified
through an experiment taking care of initialising the
oracles’ state, and coordinating the adversary’s run as
needed, including to enforce query flow (for example,
that a public key must have been registered before use)
and other constraints. In contrast, other game-based ap-
proaches (including Bellare and Rogaway’s [4], but also
SSPs) instead present a view where the adversary directly
interacts with oracles, which themselves do the work of
enforcing constraints on oracle queries, instead of having
them enforced by the experiment. It is not immediately
clear that a module system designed specifically to tackle



definitions and proofs in Halevi’s style [44] will adapt
smoothly to cover definitions and proofs in the SSP style.

In this section, we explain how to translate basic SSP
definitions and sketches into EasyCrypt definitions and
lemma statements. Some more advanced considerations
are discussed as part of the proof and further discussions.
Our mapping is made as systematic as possible, but kept
informal: recall that our goal is only to rely on principles
of state separation (and ultimately pen-and-paper state-
separating sketches) to systematically guide a full formal-
isation in EasyCrypt, not to formally prove properties of
state separation as a framework.

A. Packages

module type PKEYout =
proc gen() : pkey⊥
proc csetpk(_ : pkey) : unit
proc getsk(_ : pkey) : skey⊥
proc honpk(_ : pkey) : bool⊥

module PKEY1 =

var pkm : pkey ⇀ bool
var skm : pkey ⇀ skey

proc gen() =
(pk, sk)←$ dkp;
if (pkm.[pk] ̸=⊥ false)⌊ pkm.[pk]← true;

skm.[pk]← sk;
r← pk;

return r⊥;

proc csetpk(pk : pkey) =⌊
if (pkm.[pk] = ⊥)⌊

pkm.[pk]← false;

proc getsk(pk : pkey) : skey⊥ = if (pkm.[pk] =⊥ true)⌊
r←⊥ skm.[pk];

return r⊥;

proc honpk(pk : pkey) : bool⊥ =⌊
return pkm.[pk];

Fig. 9: Def. of module
type PKEYout and module
PKEY1 of type PKEYout.

SSP packages map almost
directly to EasyCrypt mod-
ules, which declare global
variables (corresponding to
a package’s state variables)
and procedures (correspond-
ing to a package’s oracles).
A package’s output inter-
face can be captured natu-
rally as an EasyCrypt module
type, which specifies oracles
that a module of that type
must implement. We note
that a module that imple-
ments more procedures than
specified by a module type is
still considered to implement
that module type—any addi-
tional oracles are simply not
exposed to their context.

Figure 95 shows this map-
ping on our PKAE example:
SSP package PKEY1

pkgen be-
comes the EasyCrypt module
PKEY1, and the output inter-
face is described by module
type PKEYout. PKEY1 has
two global variables: the se-
cret key map skm, and the
honesty map pkm;6 and provides procedures gen, csetpk,

5We prettify EasyCrypt notations slightly. Given a type t, an
element of type t⊥ is either ⊥ or some value in t. We often use
abbreviated notations for pattern matching on option types, using
=⊥ (and ̸=⊥) to check an equality (or inequality) that should fail
if the left-hand side is ⊥, and use a monadic notation ←⊥ for
assignments that cause the entire procedure to return ⊥ if the right-
hand side is ⊥. Given types t1 and t2, an element of type t1 ⇀ t2 is
a partial map from t1 to t2.

6In our EasyCrypt implementation, we merge these maps into a
single map whose codomain implicitly captures an important invari-
ant: public keys that are mapped to a secret key by skm are exactly
those public keys that are honest (and mapped to true by pkm).
This removes the need to explicit formulate and reason about these
invariants.

getsk and honpk. Note how the assertion in gen is replaced
by an explicit check since EasyCrypt does not provide error
handling. (See Section VIII-C1 for discussions of error
handling.) PKEY0 of type PKEYout is defined analogously.

EasyCrypt modules can be parameterized by other mod-
ules of a given type via module parameters. Module
parameters are given a name and a module type, which we
use to capture packages’ input interfaces. Figure 10 shows
the module type PKAEin representing the input interface
of the SSP packages PKAEb

P , as well as the output interface
PKAEout. In EasyCrypt, it is also sometimes useful to define
the type of a package (the combined package interface);
this allows us to prove abstract results that hold for all
possible implementations of a module’s parameter. We
show this definition for PKAE below. Intuitively, a module
of type PKAE uses its global state and the procedures getsk
and honpk provided by its parameter to implement its own
exported procedures pkenc and pkdec.

module type PKAEin =⌊
proc getsk(_ : pkey) : skey⊥
proc honpk(_ : pkey) : bool⊥

module type PKAEout =⌊
proc pkenc(_ : pkey× pkey× ptxt× nonce) : ctxt⊥

proc pkdec(_ : pkey× pkey× ctxt× nonce) : ptxt⊥

module type PKAE(E : NBPES) (PK : PKAEin) =
⌊ include PKAEout

Fig. 10: Def. of module types PKAEin, PKAEout and PKAE.

Although the description we have made of them so
far makes them look like an obvious choice to model
SSP packages, EasyCrypt modules differ from packages
in two significant respects: they do not enforce memory
separation, and they cannot be parameterised by values.

1) Memory Model: Unlike SSP packages, which en-
force a strict memory separation—where only a package’s
oracles can read or write its state variables—EasyCrypt
modules can read and write any other module’s state
variables—this reflects the tool’s Halevi-style lineage, in
that it allows the experiment to reach into the oracles’
memory to initialise their variables. It is also quite a
convenient feature to keep intermediate proofs concise: a
common proof pattern is to define a module that only
contains variables, for use in all intermediate games. Part
of our approach is to follow the SSP discipline, and to
define only modules that reach into another module’s
memory through that module’s output interface. But this
discipline can only be enforced by EasyCrypt in limited
cases, which we discuss in Section IV-D.

2) Value-Parameters: SSP packages can be parame-
terised by values. For example, packages PKEY0

pkgen and
PKEY1

pkgen are parameterised by the keypair-generation
algorithm pkgen, and the PKAEb

P packages, which define
PKAE security, are parameterised by the nonce-based
public-key encryption scheme P being studied.



EasyCrypt modules cannot currently be parameterised
by values. Our handling of these value parameters (such
as pkgen) is not currently systematic, and would likely
be tweaked depending on the needs of the application.
EasyCrypt offers two main parameterisation mechanisms:

1) module parameters, through which a module’s pro-
cedures can be parameterised by other procedures
specified by a module type;

2) theory parameters, through which an entire develop-
ment can be parameterised by types and functions
over them (including constants and distributions).

Module parameters are limited to algorithms with a
fixed type, but the specific algorithms passed in can vary
through the proof. This makes the mechanism useful to
capture, for example, the parameterisation of PKAE by
the nonce-based public-key encryption scheme P—we call
this parameter NBPES in later EasyCrypt snippets. Note
in particular that, although the SSP definition implicitly
assumes a stateless encryption scheme, our use of a module
parameter here in fact means that our proof applies to
stateful schemes as well. In the EasyCrypt code presented
later in this paper, we use superscripts to denote package
parameters represented as module parameters.

Theory parameters, on the other hand, can be used to
parameterise an entire proof by the types of the values
manipulated by the scheme and the core mathemati-
cal operations themselves. This supports abstraction and
proof reuse, but comes with its limitations: within a given
proof, theory parameters are fixed. We use this mechanism
generally to carry out our proof in an abstract DH group,
and over abstract datatypes. For example, the PKEY1
package in Figure 9 is defined over abstract types for pkey
and skey, such that it can be re-used regardless of the exact
implementation of each type.

We also use it more specifically to capture the param-
eterisation of PKEYb by the keypair generation algorithm
pkgen over keypairs—this is the distribution dkp in Easy-
Crypt. Although this is less general than using a mod-
ule parameter (which would allow stateful or interactive
keypair generation), the fact that keypair generation is
stateless is used in our proof to keep track of the validity
of honest keys—which allows us to leverage the correctness
of the NIKE.

Anticipating slightly on later discussions, value param-
eters in SSPs are sometimes used to define a family of
packages—indexed by some set—with each package in
the family operating over its own state variables, and
described as a program that can inspect the value of its
index. (For example, Figure 5 can be seen as such a family
of packages, indexed by a boolean b.) When the packages
thus indexed have package state, but the index set is
unbounded, or too large to allow explicit definitions for all
members of the family, we define an indexed module whose
global state and procedures are indexed—the global state
becomes a partial map from the index set to global states,
and procedures take an index as an additional argument.

We use and discuss this mechanism—and its effect on the
proof burden—when discussing our formalisation of hybrid
arguments, in Section VI-B.
B. Composition

With simple packages mapped to EasyCrypt definitions,
we now consider the encoding of package composition.
Sequential composition—wiring one package’s output in-
terface to another’s input interface—is naturally done
through the use of module parameters. Given a module
M expecting a parameter of type Nout and a module N of
type Nout, the instantiation M(N) of M with N corresponds
to the sequential composition of M and N: a package with
input interface Nin and output interface Mout.

We model the parallel composition of given, specific,
packages through wiring modules.7 Given two modules
M and N and their associated module types (Min, Mout,
Nin and Nout), we define their parallel composition by
defining the merged module types Win and Wout (as the
module type encoding of the parallel package interface),
and defining the module W(_ : Win) : Wout whose
procedures are simply the union of those of M and N.

Going back to our running example, we are interested in
defining the PKAE security games as shown in Figure 1.
To do so, we define a parameterised EasyCrypt module of
output type GPKAEout with procedures gen, csetpk, pkenc,
and pkdec. In contrast to PKEYout, the instantiations
of GPKAEout are not defined directly by implementing
the procedures, but as composition of existing modules
PKAE0/1 with PKEY0/1. For this purpose, we define a
wiring module GPKAE of type GPKAEout that combines
modules of type PKAE and PKEYout (Figure 11).8 The
module is parameterised by a nonce-based public-key en-
cryption scheme (NBPES) E, and describes how to wire
any module PKAE of type PKAE with a module PK of
type PKEYout to define the PKAE security of scheme E.
This wiring is a direct translation of the graph shown in
Figure 11: the wiring module exposes PK’s gen and csetpk,
as well as the procedures PKAE(E, PK) provides.

module GPKAE (E : NBPES) (PK : PKEYout) (PKAE : PKAE) =⌊
include PK[gen, csetpk]
include PKAE(E, PK)[enc, dec]

Fig. 11: Definition of wiring module GPKAE.

It is possible to only partially instantiate a module’s
parameters. For example, for a fixed E, we can define a
new parameterised module

W0 (PK : GPKAEin) = GPKAE(E, PK, PKAE0),
7Note that this is different from the limited replication mechanism

discussed in Section IV-A2, and both also differ from more general
parallel replication scenarios. We note that SSP-style definitions
rarely—if ever—consider explicit replication: definitions usually cap-
ture unbounded instances directly through a single interface.

8Our formalisation uses an independently-defined type GPKAEin

that coincides with PKEYout; this allows us to define packages and
their interfaces without reference to other packages, only bringing
things together when defining composite packages.



which describes the package RPKEY on the left of the
cut in Figure 1. Further composing W0 sequentially
with PKEY0, i.e. instantiating it with a module of
type GPKAEin, yields then GPKAE0 as above. (That
is, EasyCrypt can trivially show that W0(PKEY0) ≡
GPKAE(E, PKEY0, PKAE0)). Note that in principle arbi-
trary combinations of composition can be used to achieve
complex composed structures. However, EasyCrypt’s pro-
gram logic is sometimes imprecise when reasoning about
parallel compositions of abstract modules (whose code is
not given). We discuss this in Section VIII-B. For now,
we note that full module types for packages are best
parameterized by a single module parameter regardless of
the expected number of libraries.

C. Games and Adversaries

module type AP KEY (PK : PKEYout) =
⌊ proc run() : bool

Fig. 12: Def. of module type APKEY.

In EasyCrypt
terms, any fully
instantiated
module is a game.
Continuing to use EasyCrypt modules in place of SSP
packages, adversaries, modelled as packages in SSP,
are EasyCrypt modules with a single procedure run, as
shown in Figure 12 for APKEY. Following our mapping
for sequential composition, an adversary interacting with
a game is simply a module that takes the game they are
playing as a module parameter. In EasyCrypt, we cannot
define a specific advantage function like ϵP

PKEY(A) since
modules are not first-class objects. Instead, we express
it whenever needed in theorem statements, and given an
adversary A, as

| Pr[A(PKEY0).run() @ &m : res]
− Pr[A(PKEY1).run() @ &m : res]|.

Unpacking notation, the first probability expression de-
notes the probability that running the game A(PKEY0)
in some initial memory &m returns true (where res is a
special variable denoting a procedure’s return value).

EasyCrypt memories are typed mappings from global
variable names to values. In general, it is clear that
the probability of an event may depend on the initial
values of some of the program’s global variables. Standard
practice in EasyCrypt —and mimicking again Halevi-style
game-playing proofs—is to have the experiment initialise
memories. However, this prevents the kind of “proofs by
cuts” used in SSPs, since reductions now need to take over
some of the initialisation code. In our mapping, we do not
initialise memories explicitly. Instead, we explicitly restrict
the memories considered (using logical preconditions) to
memories where the variables corresponding to packages’
state variables are properly initialised.

For example in the PKEY distinguishing advantage
above, we only want to consider the case of memories &m

where the key maps skm are initially empty:

∀ &m, PKEY0.skm{m} = empty ∧
PKEY1.skm{m} = empty ⇒ . . .

This modelling choice currently causes friction when
composing proofs, which we discuss in Section VIII-A. It
is likely that finding a halfway point between Halevi-style
game-hopping and SSP’s implicit initialisation of state will
yield a more pleasant setting in which to carry out proofs.
D. State Separation

As discussed in Section IV-A1, enforcing state separa-
tion between modules requires some care in EasyCrypt. As
default, a module’s state can be accessed by other mod-
ules. Restricting access is however possible—and indeed
necessary, to prevent adversaries from simply reaching
into the oracles’ memory to read secrets. When stating
the advantage function as shown above, we quantify over
adversaries as

∀ (A <: AP KEY {PKEY0, PKEY1}) . . .

to be read as "for all A of type AP KEY that do not access
the state of modules PKEY0 and PKEY1".
E. Proofs

EasyCrypt was built specifically to support code-based
game-playing proofs, and hence all standard game-based
proof techniques mentioned in Section III-E are already
supported. Our main concern is to retain the simplic-
ity of SSP-style reduction steps (which simply shift
package boundaries to define new adversaries), without
making it more difficult to reason about the “smart
steps”—deconstructions, statistical arguments, complex
probabilistic arguments on primitives—that make crypto-
graphic proofs difficult.

We consider our example again, and now focus on
expressing and proving in EasyCrypt Corollary 1, which
bounds the distinguishing advantage of an adversary
against games GPKAE0/1 with that of some other ad-
versary against GuPKAE0/1. (Recall that GuPKAE0/1 =
GPKAE(E, PKEY1, PKAE0/1), while PKAE0/1 uses PKEY0
instead of PKEY1.) Again, we first establish statistical
equivalence of PKEY0/1 and then apply this assumption
in the reduction.

Lemma 2. Let dkp be the distribution over keypairs used
in the gen oracle of PKEY0 and PKEY1, and let pguess

be the least upper bound on the probability of any given
public key being sampled in dkp. Let &m be a memory such
that the global variables of modules PKEY0/1 are initialised
to their typed default. Then for any PKEY adversary A
making at most qgen queries to gen and qcsetpk queries to
csetpk, the following holds.

| Pr[A(PKEY0).run() @ &m : res]
− Pr[A(PKEY1).run() @ &m : res]|

≤ qgen · qcsetpk · pguess



Proof. The core of the proof is a simple application of
EasyCrypt’s probabilistic Hoare logic (pHL) and the Fail-
ure Event Lemma: using pHL, we show that the probabil-
ity of a query to gen sampling a keypair whose public key
has already been registered as corrupt can be bounded as
stated—given the bound on the number of corrupt keys;
the failure event lemma then bounds the probability that
such an event occurs in qgen queries.

Corollary 2. Let dkp be the distribution over keypairs used
in the gen oracle of PKEY0 and PKEY1, and let pguess be
the least upper bound on the probability of any given public
key being sampled in dkp. Let &m be a memory such that
the global variables of modules GPKAE0/1 and GuPKAE0/1
are initialised to their typed default. Then for any GPKAE
adversary A making at most qgen queries to gen and qcsetpk
queries to csetpk,

| Pr[A(GPKAE0).run()@&m : res]
− Pr[A(GPKAE1).run()@&m : res]|

≤ 2 · qgen · qcsetpk · pguess

+ | Pr[A(GuPKAE0).run()@&m : res]
− Pr[A(GuPKAE1).run()@&m : res]|.

Proof. In SSP, we would identify our assumption about
PKEYb

P.pkgen in GPKAEb
P and GuPKAEb

P by performing a cut
in the package graphs, and considering as adversarial the
package to the left of the cut. In EasyCrypt, this step is
simply done by redefining module boundaries to identify
our assumption on PKEY0/1 and the corresponding re-
duction. This is exactly the wiring module W0 we defined
in Section IV-B. The proof that the cut is valid (and in
particular preserves the distribution on the adversary’s
output) is a syntactic equality of module expressions.

V. Case Study: cryptobox
We now discuss our case study proof of cryptobox.

We begin by introducing the protocol itself, as well as its
building blocks and their associated security models.

To ease readability, we use pseudocode to define oracles
and graphs to define (composed) packages and their inter-
faces. Similarly, we use the advantage notation introduced
in Section II instead of using EasyCrypt theorem state-
ments. The EasyCrypt code corresponding to the models
and the proof can be obtained by applying the mapping we
presented in Section IV or more directly at the following
URL, where each EasyCrypt file corresponds to a package:
https://gitlab.com/fdupress/ec-cryptobox.

A. The cryptobox Protocol Family
cryptobox is a family of nonce-based public key authen-

ticated encryption (PKAE) schemes obtained by compos-
ing a non-interactive key exchange (NIKE) and a nonce-
based symmetric encryption scheme (NBSES).

A NIKE scheme N consists of algorithms
(pkgen, sharedkey) that sample public/secret key pairs
and compute a shared symmetric key from a public key

and a secret key, respectively. Additionally, we use N .kdist
to denote the (ideal) output distribution of N .sharedkey.
Note that we omit the typical setup algorithm that
outputs a set of public system parameters and instead
assume that the system parameters are fixed in advance
for pkgen and sharedkey.

An NBSES E consists of algorithms (kgen, enc, dec) for
key generation, encryption and decryption, where encryp-
tion and decryption take a nonce as input in addition to
the symmetric key and the plaintext/ciphertext. We will
use E .kdist to denote the output distribution of E .kgen.

cryptobox (cb for short) is parameterized by a
NIKE scheme cb.N and an NBSES scheme cb.E , where
cb.N .kdist = cb.E .kdist. Two parties using cryptobox
first establish a shared key via cb.N using their public and
private keys, and then use cb.E with the shared key to en-
crypt further communication. This is shown more formally
in Figure 13. Although the general idea was proposed
by Diffie and Hellman [40], cryptobox has since been
implemented in the widely used NaCl library [45]9 with
the particular choice of NIKE based on curve25519 [46] and
HSalsa20 [47], and a NBSES based on XSalsa20 [47] and
Poly1305. This approach to constructing PKAE remains
a mainstay of real-world cryptography as the de facto
default for “secure encryption from public keys” when no
additional properties are desired.

pkgen()
(u, U)←$N .pkgen
return (u, U)

pkenc(sk, pk, m, n)
k ← N .sharedkey(pk, sk)
return E .enc(k, m, n)

pkdec(pk, sk, c, n)
k ← N .sharedkey(pk, sk)
return E .dec(k, c, n)

Fig. 13: cryptobox construction based on NIKE scheme
N and NBSES E .

B. Assumptions
The security of cryptobox follows from that of its NIKE

and NBSES. We now define those assumptions.

sharedkey

set, cset

getsk, honpk 

get, hon 

gen, csetpk 

Fig. 14: Modular description of GNIKEb
N .

1) Non-Interactive Key Exchange (NIKE): For some
NIKE scheme, N and some b ∈ {0, 1}, we define the
security game GNIKEb

N —shown in Figure 14—as the com-
position of a main package NIKEN with the PKEY0

N .pkgen
package (as defined in Figures 2 and 7) and a KEYb

N .kdist
package. KEY0

N .kdist is a simple key-value store, used to
store the shared secrets output by sharedkey. Its ideal
version KEY1

N .kdist operates similarly, but replaces keys

9https://nacl.cr.yp.to/

https://gitlab.com/fdupress/ec-cryptobox
https://nacl.cr.yp.to/


stored through its honest interface with keys sampled
freshly in N .kdist.

The KEYb
kdist package simply provides oracles for the

storage of honest (set), or dishonest (cset) keys, as well
as the retrieval of their values (get) and their honesty
information (hon). It is parameterized with a bit b causing
either real (b = 0) or ideal (b = 1) behaviour of the set
oracle. In the real case, set stores the input value of the
oracle as honest key. In the ideal case, it samples a random
value from kdist, which it stores instead of the oracle’s
input value. Figure 15 shows pseudocode for set.

KEY0
kdist .set(h, k)

assert K[h] = ⊥
H[h]← true
K[h]← k

KEY1
kdist .set(h, k)

assert K[h] = ⊥
H[h]← true
K[h]←$ kdist

Fig. 15: set oracle of
KEYb

kdist packages.

Finally, the NIKEN package pro-
vides a single oracle, which takes
as input two public keys, where
for the first one, a private key has
to be available in the PKEYb

N .pkgen
package. It then fetches that pri-
vate key, performs the sharedkey
operation and stores the result in
the KEYb

N .kdist package, either via
set, if both public keys are honest,
or via cset otherwise.

Our NIKE notion is close in
spirit to the CKS security no-
tion for NIKE schemes of Freire,
Hofheinz, Kiltz and Paterson [48]–itself based on work by
Cash, Kiltz and Shoup [49]. However, whereas Freire et
al. use identifiers to index queries to gen and sharedkey,
we use public keys directly as identifiers. This matches
the PKAE security definition introduced in Section II and
creates similar issues regarding collisions between corrupt
and honest public keys.

2) Authenticated Encryption (AE): We model AE as
a single-instance security game in the same way as Ro-
gaway [50] with the exception that we don’t consider
authenticated data as additional input. The resulting
single-package game GSAEb

E (where E is an NBSES) is
functionally similar to GPKAEb

P in that it is a distinguishing
game in the real-or-random style that allows the adversary
to randomly generate a single symmetric key (set), as well
two oracles to interact with that key (enc and dec).

3) Multi-Instance vs. Single Instance Assumptions: The
choice of a single instance assumption for AE allows us to
explore and demonstrate various forms of modularity in
proofs, without the additional proof detracting from the
main message of the paper.

In contrast, simplifying our NIKE assumption down to
the security of a single session would not add much value:
since the security of a single session needs to consider cor-
ruption (of other parties), the single-session assumption is
not much simpler; yet formalizing the additional reduction
would be a solid contribution in its own right—and would
more than double the proof effort.

C. cryptobox Security
We now present the security theorem for cryptobox.

The corresponding proof follows in Section VI.

Theorem 1 (Security of cryptobox). Let E be an NBSES
and N a NIKE scheme with distinguishing advantage
ϵE

GSAE and ϵN
GNIKE, respectively. Consider cryptobox with

E and N . Denote by qgen and qcsetpk the maximum allowed
number of honest keypairs and registered corrupt keys
in N , and by pguess an upper bound on the probability
of predicting a public key sampled according to N .kgen.
Moreover, denote by qpkenc and qpkdec the maximum al-
lowed number of queries to the encryption and decryp-
tion oracles, respectively, to cryptobox. Then for any
adversary A there exist reductions RGNIKE and RGSAE,i,
i ∈ {1, . . . , qpkenc + qpkenc} with time complexity similar to
A, and such that

ϵcryptobox
GPKAE (A) ≤ 4 · qgen · qcsetpk · pguess

+ ϵN
GNIKE(ARGNIKE)

+
qpkenc+qpkdec∑

i=1
ϵE

GSAE(ARGSAE,i).

VI. cryptobox Security Proofs
Our goal is to reduce the GPKAEb

P security of cryptobox
to the previously introduced assumptions GNIKEb

N and
GSAEb

E . We first massage our theorem down to its core,
leveraging the following Lemmas and Corollaries.

Our first step relies on Corollary 1 (Section III-E) to
consider security in a game that uses the PKEY1 variant
of the key package—which prevents the adversary from
winning by predicting honest public keys.

A. Bounding Honesty-Changing Collisions in GNIKEb
N

Corollary 3 similarly shows that the security of GuNIKEb
N

(a variant of the GNIKEb
N game using PKEY1) is closely

related to that of GNIKEb
N .

Corollary 3. Let N be a NIKE scheme, and let pguess

be the least upper bound on the probability of any given
public key being sampled in N .kdist. Then for any GNIKEb

N
adversary A making at most qgen queries to gen and qcsetpk
queries to csetpk,

ϵN
GNIKE(A) ≤ 2 · qgen · qcsetpk · pguess + ϵN

GuNIKE(A)

Proof. The proof is similar to that of Corollary 1
with RPKEY defined as the composition of NIKEN and
KEYb

N .kdist .

B. Hybrid argument (From multi- to single-instance secu-
rity)

We now introduce our multi-instance AE assumption
GAEb

E and reduce its security to that of GSAEb
E .

From a functional standpoint GAEb
E lifts GSAEb

E to the
multi-instance setting and additionally allows the adver-
sary to register and interact with their own (dishonest)



keys. Its functionality is split into two packages: AEb
E ,

which provides the enc and dec oracles, and KEY1
E.kdist as

introduced in Section V-B1 and manages key material. See
Figure 16 for the composed game GAEb

E , where E is an
NBSES and b ∈ {0, 1}.

get, hon
enc,dec

set, cset 

Fig. 16: Composition of
KEY1

E.kdist and AEb
E , yielding

composed GAEb
E package.

The resulting assump-
tion allows the adversary
to generate random, hon-
est keys (via set) or their
own, dishonest keys via
cset, each with a handle
of their choice. The adver-
sary can then interact with the keys via an enc or dec
oracle, using the handle to determine the key they want
to interact with.

Lemma 3. Let E be an NBSES with multi-instance distin-
guishing advantage ϵE

GAE and single-instance distinguishing
advantage ϵE

GSAE respectively, and denote by qset the maxi-
mum number of queries to the set oracle. Then for any ad-
versary A, there exist reductions RGSAE,i, i ∈ {1, . . . , qset}
with time complexity similar to that of A, and such that

ϵE
GAE(A) ≤

qset∑
i=1

ϵE
GSAE(ARGSAE,i).

Proof. The proof of Lemma 3 relies on a relatively simple
hybrid argument. The combination of SSP and EasyCrypt,
however, gives rise to some interesting insights.

1) Replication: We first note that hybrid argu-
ments—and replication in general—are not treated in the
same way in SSP and in EasyCrypt. State-separating proofs
usually allow general (indexed) replication of packages,
each of which is given its own separate state and pa-
rameters. As discussed, this is impossible to capture as
is in EasyCrypt. Instead, our EasyCrypt formalization, like
others before it [20], [27], replicates the state (as a map
from instance index to state) and parameterises a single
instance of the oracles with an instance index used by the
caller to specify which instance of the package they wish
to interact with.

2) Hybrid argument: Although our “state replication
and handles”-based approach in line with more recent
SSP practice, the distinction between package replication
in SSP and state replication in EasyCrypt becomes more
salient when formalizing hybrid arguments that reduce the
security of multiple instances of a package to that of a
single instance of the same package.

The hybrid (Fig. 17) is expressed as an SSP-style
reduction that is internally parameterized by a query
index i. The hybrid keeps a counter for set queries to
GAE and stores the index of each queried handle. The
challenge instance is determined by the handle of the ith
query to set. The hybrid acts as forwarder for queries
to the challenge instance and simulates all other queries
internally: when the handle’s index is less (greater) than
i, ideal (real) encryption and decryption are used.

get, 
hon

AE1

SAE0/1

KEY1

AE0

set, enc, dec

enc, dec

enc, dec

set, cset

set 
cset 
enc 
dec

HYBRID

Fig. 17: AE hybrid game GHb
i , reduction marked in gray.

The careful reader might note that Figure 17 considers
ideal and real oracles—answering those hybrid queries not
being forwarded to the challenge instance—that share all
of their state: both the AE0 and the AE1 package access the
KEY1 package.

C. Core Lemma
Finally, we introduce and prove our core Lemma 4,

where we reduce the GuPKAEb
cryptobox security of cryptobox

to the security of GuNIKEb
cb.N and GAEb

cb.E .

Lemma 4 (Core lemma). Let E be an NBSES and
N a NIKE scheme with distinguishing advantages ϵE

GAE
and ϵN

GuNIKE, respectively. Consider cryptobox (cb) with
cb.E = E and cb.N = N . Then for any adversary A there
exist reductions RGNIKE and RGAE with time complexity
similar to that of A, s.t.

ϵcryptobox
GuPKAE(A) ≤ ϵcb.N

GuNIKE(ARGuNIKE) + ϵcb.E
GAE(ARGAE).

Proof. Our proof of Lemma 4 follows a common SSP
pattern of reduction proofs: deconstructing the high-level
security game into a composition of packages, identifying
the security assumption and reduction in the package
graph, and then applying the assumption. For this strat-
egy, we need to define a reduction MODPKAE that simulates
the behaviour of the high-level security notion towards
an adversary, using the functionality provided by the
underlying assumptions.

1) Reduction Package: The proof starts by constructing
the package MODPKAE, which simulates the functionality of
GuPKAEb

cb by exposing a pkenc and a pkdec oracle. Inter-
nally, the oracles first call NIKEcb.N .sharedkey to derive the
shared key from the pair of input public keys, followed by
a call to either enc or dec to perform the specific operation.

The composition with our other packages as shown
on the right in Figure 18 yields the composed game
GMODPKAEbnike,bae

cb.N ,cb.E . We use bnike and bae to denote the dis-
tinguishing bits of the KEYbnike

N .kdist and AEbae
cb.E respectively.

2) Perfect Equivalence: Our first step is to prove that
our composed reduction game GMODPKAE0,0

cb.N ,cb.E simulates
GuPKAE0

cb correctly to the adversary, i.e. perfect equiva-
lence of the two games in Figure 18.

In a pen-and-paper proof, this step is both hard to
implement and hard to verify: Our only tool for proving
perfect equivalence on paper is via side-by-side comparison
of oracle (pseudo-)code. We would first have to perform
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Fig. 18: Step 1: Perfect equivalence of real games GuPKAE0
cb and GMODPKAE0,0

cb.N ,cb.E .

pkenc,
pkdec

sharedkey

set, cset

getsk, honpk

enc, dec

get, hon

gen, csetpk

Fig. 19: Step 2: Transition from game GMODPKAE0,0
cb.N ,cb.E to

GMODPKAE1,0
cb.N ,cb.E , where the composed reduction package

RGuNIKE is to the left of the dashed line.

code manipulation steps on the GMODPKAE0,0
cb.N ,cb.E side by

hand to obtain a code that is visually comparable to
that of GuPKAE0

cb. Our EasyCrypt proof brings machine-
checking, but also some local modularity to this step.
The deconstruction proof relies on invariants relating the
local state of various packages in the deconstructed game
(for example, that a handle that is assigned an honest
key corresponds to two honest public keys). These global
invariants—typically looked at as a whole when reasoning
on paper—can in fact be modularly broken down into
package-specific chunks that can be discharged easily and
locally to each package. These local proofs, done once and
for all, can then be leveraged in the deconstruction proof
to establish equivalence properties (for example, that an
honest key stored at handle (pks, pkr) is necessarily equal
to the NIKE’s output on sks and pkr).

A machine-checked proof on the other hand avoids the
pitfalls of pen-and-paper proofs by virtue of machine-
checking each individual step. In fact, many tedious but
simple proof parts can be discharged automatically by
EasyCrypt’s built-in tactics, which is the case for the
equivalence proof step described above.

3) Graph Manipulation: We now follow the same pat-
tern as in the proof of Corollary 1 and begin with a cut
in the graph. Consider Figure 19. The dashed line cuts
the graph into two parts: the reduction RGuNIKE to the
left, and the GuNIKEbnike

cb.N game to the right. On paper, it
is immediately clear that these two “views” of the graph
are perfectly equivalent. We have already seen that this
is also obvious to EasyCrypt —it is in fact so obvious that
we prove the result holds regardless of the implementation
provided for set, cset, get and hon.

4) Idealizing NIKE Assumption: Having refactored our
game into an adversary interacting with GuNIKEbnike

cb.N , we
idealize our NIKE assumption GuNIKEbnike

cb.N as depicted in
Figure 19, by flipping the bit bnike from 0 to 1. This incurs

an adversarial advantage increase of ϵcb.N
GuNIKE(ARGuNIKE).

5) Idealizing AE Assumption: In Step 3, we define a
reduction package RGAE and idealize the AE assumption
GAEbae

cb.E using the same technique. This adds the adversar-
ial advantage ϵcb.E

GAE(ARGAE) for the given NBSES E .
6) Re-Applying Equivalence Proof: Finally, we prove

perfect equivalence (as described in Section VI-C2) with
b = 1, to justify the game hop from GMODPKAE1,1

cb.N ,cb.E
to the idealized GuPKAE1

cb. Since steps 1 and 4 establish
perfect equivalences, the final adversarial advantage is

ϵcb.N
GuNIKE(ARGuNIKE) + ϵcb.E

GAE(ARGAE),

This concludes the proof of Lemma 4.

D. Main Security Proof (Theorem 1)
Proof of Theorem 1. Theorem 1 follows from the Lemmas
and Corollaries above. More precisely, by transitivity of
the advantage function, we obtain

ϵcb
GPKAE(A)
≤ 2 · qgen · qcsetpk · pguess + ϵcb

GuPKAE(A) (Corollary 1)
≤ 2qgenqcsetpkpguess + ϵcb.N

GuNIKE(ARGNIKE)
+ ϵcb.E

GAE(ARGAE) (Lemma 4)
≤ 4qgenqcsetpkpguess + ϵcb.N

GNIKE(ARGNIKE)
+ ϵcb.E

GAE(ARGAE) (Corollary 3)
≤ 4qgenqcsetpkpguess + ϵcb.N

GNIKE(ARGNIKE)

+
qpkenc+qpkdec−1∑

i=0
ϵcb.E

GSAE(ARGSAE,i). (Lemma 3)

VII. Related Work
a) Mechanization of cryptographic frameworks: Re-

cently a number of works mechanized cryptographic
frameworks with the intention of providing formal seman-
tics and composition guarantees, including EasyUC [30]
for UC [5] in EasyCrypt, Lochbihler et al. [51] for Construc-
tive Cryptography [6] in CryptHOL [11], and SSProve [32]
for SSP in Coq. In contrast, we approach SSP, the frame-
work of our choice, from a different angle and focus on
directly applying the framework’s ideas to our proofs
instead of establishing formal guarantees about the frame-
work itself. We see the mechanization of frameworks as
an important and complementary problem, with solutions
providing stronger guarantees, but with less flexibility.



We finally mention miTLS, the F⋆-verified implementa-
tion of TLS [12], [52], [33], [53]. Its analysis includes an
early SSP formalization. (The development of SSP was in
fact concurrent to the miTLS line of work and initially
heavily influenced by it.) Since F⋆’s focus is not usually
on this type of proofs, miTLS captured the SSP-inspired
pen-and-paper proofs to the extent possible and can check
reductions and some of the side conditions of perfect
equivalences for SSP. Advanced usage allows some limited
reasoning about perfect equivalences and statistical steps.

b) cryptobox-adjacent formalizations: Multiple pro-
tocols with similarities to cryptobox have been analyzed
and proven secure both on paper and using a variety of
formal verification tools, and we mention a selection here.
The work on miTLS and specifically their work on the
complete TLS handshake protocol [33] provides a com-
posed and formally verified proof of TLS. Their modular
proof was co-designed with early versions of SSP and is a
strong indicator that SSP makes a good guide for formally
verified proofs. The authors of the original SSP paper [54,
Section 4] (and later formalized by SSProve [32]), provide
a pen-and-paper proof of a KEM-DEM construction whose
high-level structure is similar to our cryptobox proof.
However, in contrast to our cryptobox proof, their model
is restricted to the single-instance setting without the ad-
versarial ability to create corrupt key instances. The sim-
ilarities in proof structure despite significant differences
in the interaction and adversary model are a testament
to the robustness of SSPs as a modular proof technique.
Alwen et al. [55] provide an analysis of the HPKE standard
using CryptoVerif. Finally, the Noise framework [56] for
constructing secure channel protocols has been analyzed in
the symbolic setting: Kobeissi et al. [57] introduced “Noise
Explorer”, a comprehensive symbolic tool for generation
and formal analysis of protocols built using the Noise
framework, and Girol [58] used the Tamarin Prover to con-
duct a similar symbolic analysis of the Noise framework.

VIII. Discussion
In this paper, we describe how State-Separating Proofs

can be effectively and systematically leveraged to guide
EasyCrypt formalisations of proofs for modular construc-
tions while retaining the ability to dive down into less
modular proofs as needed. We illustrate the technique on
a new and important example—demonstrating that the
technique is not limited to reproducing existing results.

At its core, our technique relies on a mapping from SSP
concepts to EasyCrypt constructs. This mapping is some-
what systematic, although further exploration is needed
to understand some aspects (in particular, how to best
capture package parameters). The mapping also preserves
the good modularity properties of the SSP sketches: we
reason locally about invariants of individual packages, and
combine and leverage them in reasoning about composites.

Further work on mapping semi-formal proof sketches
to machine-checkable statements may ultimately lead to

a better and more formal integration of automated and
interactive reasoning techniques. This would enable mixed
proofs, such as Bhargavan et al.’s F⋆ proof for the TLS
1.2 handshake (which uses EasyCrypt to prove the KEM
secure, but SSP-like reasoning for the rest of the pro-
tocol), to be carried out without informal hops between
formalisms. In particular, our work identifies some friction
points that deserve further attention. We now discuss some
of these friction points. We use them to both motivate
future work on tools for machine-checked cryptography;
and suggest minor changes to the practice of SSP on paper
which would put further systematisation—and perhaps
automation—within reach.

A. State initialisation and composition
As mentioned in Section IV-A1, EasyCrypt and SSP’s

memory model have a significant mismatch. Our initial
assumption was that the adversary should always run first
as in pen-and-paper SSP and hence initialisation code
would get in the way of SSP-style composition.10 Indeed,
initialisation code would need to be managed carefully,
called before the adversary’s run, and dispatched into the
relevant packages upon deconstruction. This assumption
deserves further investigation though.

First, EasyCrypt currently does not treat memories as
first class objects. Applying our lemmas expressed as they
are—“for all memories whose relevant variables have been
initialized”—is incredibly difficult since it is impossible
to express the fact that such a memory exists—let alone
exhibit one such memory. Our solution here is to locally
insert initialisation code, and use lemmas over these ex-
tended programs for modular and compositional reason-
ing. It is then easy to show that, in a properly initialised
memory, the initialisation code can be removed without
effect on the semantics. This is deeply inelegant, and better
solutions must exist, even without first class memories.

Second, it turns out that we in fact cannot get away
with always having the adversary run first: our hybrid
reductions need some initialisation code to set the hybrid
parameter. Although we did not attempt to further com-
pose our proofs with arguments below the hybrid, all seems
to indicate that the initialisation code would not in fact
hinder such modular reasoning. We thus encourage anyone
embarking on a journey similar to ours to investigate the
use of initialisation code that runs before the adversary.

B. Package specifications as module types
Although pen-and-paper SSP does not traditionally

have a notion of package type, our formalization uses
module types to specify sets of packages that implement
a given output interface from a given input interface. This
is necessary in order for us to easily capture the “graph

10We note here that having an init oracle, in the style of Bellare
and Rogaway [4], would not help, since we would still need to initialise
the flag that keeps track of whether the init oracle has been called.



cutting” proof technique central to SSP-style reductions,
as outlined in Sections IV-B and IV-E.

Explicitly capturing these package types also allows us
to reason abstractly about properties of a package that are
independent of the implementation of its input interface.
As a simple example, equivalence of “graph cuts”, as
in Step 2 of our core proof (Figure 19) can often be
proved independently of the specific package implemen-
tations—given reasonable constraints on variable sharing.

This is a powerful technique, but enabling it requires
care. In particular, when defining module types that
capture packages in their generality, it is important to
ensure that the input interface is defined as a single
parameter—even if it is known that it will be instantiated
by distinct concrete modules. Consider abstract modules
A0/1 and B0/1 (such that A0 ≡ A1 and B0 ≡ B1). It
is easy to prove that M(A0, B0) ≡ M(A1, B1) if A0/1
and B0/1 do not share variables. If, say, A0 and B0 were
later instantiated with packages that do share state, the
equivalence result on M(A0, B0) would be inapplicable. A
similar lemma shown with M parameterised by a merged
interface would, however, apply to a parallel composition
of A0 and B0.

More generally, the practice of proofs in EasyCrypt could
greatly benefit (in terms of verbosity) from more flexibility
in defining ad hoc module types. The latter would have
been particularly useful in our case study for defining the
frequently required wiring modules “on the go”. Pen-and-
paper SSPs on the other hand could benefit from the more
abstract “interface-level” reasoning possible in EasyCrypt
that abstracts from a package’s implementation.

C. Improving tools for machine-checked cryptography
Some of the issues where friction arises in our case study

seem inherent to the definitional and reasoning style of
SSPs, which should inform future tool development.

1) Handling assertions: Security definitions in the style
of state-separating proofs use assertions to enforce good
adversary behaviour. An assertion failure is usually speci-
fied as oracle silencing[59]: the query causing the assertion
failure and all subsequent oracle queries are simply made
to return ⊥, ensuring that they reveal no information
to the adversary beyond the fact that they violated an
assertion. EasyCrypt’s pWhile language does not support
assertions. Instead, we model assertion-checking as explicit
control-flow. Although this makes our models more com-
plex to read, this does give us more flexibility than a fixed
assertion semantics (which other tools opt for) otherwise
would. This flexibility is important since different ways
of handling adversary misbehaviour do not always yield
equivalent definitions [60]. It is an interesting tooling prob-
lem to find ways of improving the conciseness of definitions
while keeping this expressivity, and without adding too
much complexity to EasyCrypt’s program logics.

2) Forward reasoning: The encoding of assertions as
control-flow forces us to use forward reasoning when prov-

ing program equivalences. A very common pattern of proof
throughout the cryptobox example, but also in reasoning
locally about individual packages, was to perform a case
analysis on some property of the initial memory, and—in
each case—to simplify the oracles down to a single ex-
ecution path. The SSP use of control-flow—rather than
division into separate oracles—to distinguish between fully
honest and semi-corrupt sessions reinforces the importance
of this pattern of reasoning. For example, in the NIKE
functionalities, more traditional definitions such as [49]
might expose an oracle for honest sessions, and an oracle
for “corrupt reveal” queries. However, the SSP approach of
keeping the game interface close to that interacted with by
real adversaries is in part what enables modular reasoning,
and gives SSP their strength in dealing with interactive
protocols. However, this goes against the grain of existing
tools’ design, and further research and tool development
will be needed to enable the mixed use of symbolic ex-
ecution and program logics for relational reasoning, and
facilitate the use of these proof techniques at scale.

D. Improving State-Separating Proofs
So far, we have mostly discussed ways in which Easy-

Crypt and other tools for machine-checked cryptography
could be improved to better support SSP-like reasoning.
We now discuss potential improvements to the pen-and-
paper practice of SSPs that stem from observations made
during the formalisation.

1) Hybrids without replication: Interestingly, and by
necessity, we handle hybrid arguments without package
replication. This yields SSP-like hybrid arguments where
simulated instances of the scheme—those not being pulled
out as a challenge—can still share state in unrestricted
ways. The technique might be useful to use on paper to
avoid complex and repeated switching between handle-
based and replication-based views of multi-session set-
tings. In particular, “pulling out” only one instance of each
state variable—as opposed to spreading them across an
unbounded number of packages—may simplify the mental
manipulation of relational invariants in the corresponding
equivalence proofs.

2) Trustworthy State-Separating Definitions: Our ob-
jective was to remain close to the practice of SSPs.
We therefore used SSP-style security definitions. How-
ever, these definitions are expressed using ideal packages
that embed sometimes complex notions of corruption
into control-flow. (Deciding whether a query or instance
is honest or corrupt would be left to the security ex-
periment in more traditional game-based settings.) Such
definitions (and simulation-based notions more generally)
are perhaps harder to understand and trust than the
standard game-based definitions to which they are often
equivalent. Although our focus was not on definitions, the
formalisation of SSP-style definitions and of proofs relating
them to more traditional security notions could serve to
reinforce trust in the framework and broaden its use. This



could, in turn enable further work on the development of
framework-specific proof tools.
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