

Edinburgh Research Explorer

Universally Composable Simultaneous Broadcast against a
Dishonest Majority
Citation for published version:
Arapinis, M, Zacharias, T, Lamprou, N, Medley, L & Kocsis, Á 2023, Universally Composable Simultaneous
Broadcast against a Dishonest Majority. in PODC '23: Proceedings of the 2023 ACM Symposium on
Principles of Distributed Computing. ACM, New York, pp. 200-210, The 42nd ACM Symposium on
Principles of Distributed Computing, Orlando, Florida, United States, 19/06/23.
https://doi.org/10.1145/3583668

Digital Object Identifier (DOI):
10.1145/3583668

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PODC '23: Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Aug. 2023

https://doi.org/10.1145/3583668
https://doi.org/10.1145/3583668
https://www.research.ed.ac.uk/en/publications/7fcc1eeb-3462-40c9-9071-de909cae4978

Universally Composable Simultaneous Broadcast against a
Dishonest Majority and Applications

Myrto Arapinis

The University of Edinburgh

Edinburgh, United Kingdom

marapini@ed.ac.uk

Ábel Kocsis

The University of Edinburgh

Edinburgh, United Kingdom

abelkcss@gmail.com

Nikolaos Lamprou

The University of Edinburgh

Edinburgh, United Kingdom

nikolaoslabrou@yahoo.gr

Liam Medley

Royal Holloway University of London

Egham, United Kingdom

liam.medley.2018@live.rhul.ac.uk

Thomas Zacharias

The University of Edinburgh

Edinburgh, United Kingdom

tzachari@ed.ac.uk

ABSTRACT
Simultaneous broadcast (SBC) protocols, introduced in [Chor et

al., FOCS 1985], constitute a special class of broadcast channels

which, besides consistency, guarantee that all senders broadcast

their messages independently of the messages broadcast by other

parties. SBC has proved extremely useful in the design of various

distributed computing constructions (e.g., multiparty computation,

coin flipping, electronic voting, fair bidding). As with any commu-

nication channel, it is crucial that SBC security is composable, i.e.,

it is preserved under concurrent protocol executions. The work

of [Hevia, SCN 2006] proposes a formal treatment of SBC in the

state-of-the-art Universal Composability (UC) framework [Canetti,

FOCS 2001] and a construction secure assuming an honest majority.

In this work, we provide a comprehensive revision of SBC in

the UC setting and improve the results of [Hevia, SCN 2006]. In

particular, we present a new SBC functionality that captures both

simultaneity and liveness by considering a broadcast period such

that (i) within this period all messages are broadcast independently

and (ii) after the period ends, the session is terminated without re-

quiring full participation of all parties. Next, we employ time-lock

encryption (TLE) over a standard broadcast channel to devise an

SBC protocol that realizes our functionality against any adaptive

adversary corrupting up to all-but-one parties. In our study, we

capture synchronicity via a global clock [Katz et al., TCC 2013],

thus lifting the restrictions of the original synchronous commu-

nication setting used in [Hevia, SCN 2006]. As a building block

of independent interest, we prove the first TLE protocol that is

adaptively secure in the UC setting, strengthening the main result

of [Arapinis et al., ASIACRYPT 2021].

Finally, we formally exhibit the power of our SBC construction in

the design of UC-secure applications by presenting two interesting

use cases: (i) distributed generation of uniform random strings, and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’23, June 19–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0121-4/23/06. . . $15.00

https://doi.org/10.1145/3583668.3594591

(ii) decentralized electronic voting systems, without the presence

of a special trusted party.

CCS CONCEPTS
• Security and privacy→ Distributed systems security; Cryp-
tography; Formal security models.

KEYWORDS
Secure Broadcast, Universal Composability, Time-Lock Encryption

ACM Reference Format:
Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas

Zacharias. 2023. Universally Composable Simultaneous Broadcast against a

Dishonest Majority and Applications. In ACM Symposium on Principles of

Distributed Computing (PODC ’23), June 19–23, 2023, Orlando, FL, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3583668.3594591

1 INTRODUCTION
Communication over a broadcast channel guarantees consistency

of message delivery, in the sense that all honest parties output the

same message, even when the sender is malicious. Since its intro-

duction by Pease et al. [23], broadcast has been a pivotal concept

in fault tolerant distributed computing and cryptography. From a

property-based security perspective, broadcast communication dic-

tates that every honest party will output some value (termination)

that is the same across all honest parties (agreement) and matches

the sender’s value, when the sender is honest (validity). The first

efficient construction was proposed by Dolev and Strong [11]. In

particular, the Dolev-Strong broadcast protocol deploys public-key

infrastructure (PKI) to achieve property-based security against an

adversary corrupting up to 𝑡 < 𝑛 parties, where 𝑛 is the number of

parties. In the context of simulation-based security though, Hirt

and Zikas [19] proved that broadcast under 𝑡 > 𝑛
2
corruptions (dis-

honest majority) is impossible, even assuming a PKI. In the model

of [19], the adversary may adaptively corrupt parties within the du-

ration of a round (non-atomic communication model). Subsequently,

Garay et al. [13] showed that in the weaker setting where a party

cannot be corrupted in themiddle of a round (atomic communication

model), PKI is sufficient for realizing adaptively secure broadcast

against an adversary corrupting up to 𝑡 < 𝑛 parties.

An important class of protocols that has attracted considerable

attention is the one where broadcast is simultaneous, i.e., all senders

transmit their messages independently of the messages broadcast

https://orcid.org/0009-0007-1757-1423
https://orcid.org/0009-0009-6731-2555
https://orcid.org/0000-0003-3695-0385
https://orcid.org/0009-0009-4533-7890
https://orcid.org/0000-0002-5022-8543
https://doi.org/10.1145/3583668.3594591
https://doi.org/10.1145/3583668.3594591

PODC ’23, June 19–23, 2023, Orlando, FL, USA Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

Figure 1: Overview of the paper’s contributions. We denote ΠX the X, and FX the ideal functionality capturing the security
requirements for X, and in UC fashion we write ΠX ≈ FX to denote that the protocol ΠX realizes the ideal functionality FX (thus,
ensuring the same security properties). Our results rely on the following hybrid functionalities: (i) the global clock Gclock, (ii)
the random oracles FRO and F ∗RO, (iii) the wrapperW𝑞 (·), (iv) the certification Fcert modelling a PKI, (v) the relaxed broadcast
FRBC that allows a single message to be broadcast in an unfair manner (and can be realized via Fcert and Gclock, cf. Fact 1), (vi)
the public key threshold key generation FPKG, and (vii) the signature key generation FSKG.

by other parties. The concept of simultaneous broadcast (SBC) was

put forth by Chor et al. [8] and has proved remarkably useful in the

design of various distributed computing constructions (e.g., multi-

party computation, coin flipping, electronic voting, fair bidding).

The works of Chor and Rabin [9] and Gennaro [15] improve the

round complexity of [8] from linear to logarithmic, and from loga-

rithmic to constant (in 𝑛), respectively. From a security modeling

aspect, Hevia and Micciancio [18] point out the hierarchy between

the SBC definitions in [8, 9, 15] as [8]⇒[9]⇒[15] (from strongest

to weakest). Specifically, the simulation-based definition of [8] im-

plies sequentially composable security. Under the definition of [15],

Faust et al. [12] present a construction with a performance gain

in the presence of repeated protocol runs. All the aforementioned

SBC solutions [8, 9, 12, 15] achieve security that tolerates 𝑡 < 𝑛
2

corruptions (honest majority).

The concept of SBC that retains security under concurrent exe-

cutions has been formally investigated by Hevia [17]. Namely, [17]

proposes a formal SBC treatment in the state-of-the-art Universal

Composability (UC) framework of Canetti [5] along with a construc-

tion that has constant round complexity and is secure assuming an

honest majority. Composable security is crucial for any broadcast

channel functionality that serves as a building block for distributed

protocol design and is a primary goal of our work.

Our contributions. We explore the SBC problem in the context of

UC security against a dishonest majority. We improve the results

of [17] both from a definitional and a security aspect. In more detail,

we achieve the following improvements (cf. Figure 1(a)):

• We define a new SBC functionality that abstracts communication

given an agreed broadcast period, outside of which all broadcast

operations are discarded. Our functionality captures (i) simultane-

ity: corrupted senders broadcast without having any information

about honest senders’ messages; (ii) liveness: after the broadcast

period ends, termination is guaranteed (with some delay) without

the requirement of full participation by all parties. We stress that

the latter property is not captured by the functionality of [17],

as the adversary (simulator) may wait indefinitely until it allows

termination of the execution which happens only after all (honest

and corrupted) senders have transmitted their value.

• We provide a construction that realizes our SBC functionality in

an optimal way, that is, it preserves UC security against a Byzan-

tine adversary that can adaptively corrupt up to 𝑡 < 𝑛 parties in the

non-atomic communication model. To overcome the impossibility

result of [19], besides PKI, we deploy (i) adaptively secure time-

lock encryption (TLE) in the UC setting; (ii) a programmable

random oracle (RO). Specifically, via TLE (and the programmable

RO), senders perform (equivocable) encryptions of their message

that can be decrypted by any party when the decryption time

comes, with some delay upon the end of the broadcast period. It

is easy to see that the semantic security of the TLE ciphertexts

that lasts throughout the broadcast period guarantees simultane-

ity. The broadcast period is set dynamically, by having the first

sender of the session (as scheduled by the environment) “wake

up” the other parties via the broadcast of a special message.

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC ’23, June 19–23, 2023, Orlando, FL, USA

Although using a programmable RO is standard to enable equiv-

ocation in simulation-based security (e.g., in [2, 4, 10, 22]), TLE

with adaptive UC security is not available in the literature. To

construct it, we rely on the findings of the following papers:

(1) The work of Arapinis et al. [2] that provides a UC treatment

of TLE and a protocol that is secure against a static adversary.

(2) The work of Cohen et al. [10] that studies the concept of broad-

cast and fairness in the context of resource-restricted cryptog-

raphy [14]. They prove that time-lock puzzles (TLPs) (a notion

closely related to TLE) and a programmable RO are sufficient

for building stand-alone simulation-based secure broadcast

against an adaptive adversary that corrupts up to 𝑡 < 𝑛 parties

in the non-atomic model. They also show that neither TLPs nor

programmable ROs alone are enough to achieve such level of

security. In [10], standard broadcast encompasses fairness, i.e.,

an adversary that adaptively corrupts a sender after learning

her value cannot change this original value. The weaker notion

of unfair broadcast [19] can be realized by the Dolev-Strong

protocol [11] against 𝑡 < 𝑛 adaptive corruptions.

Compared to [2] and [10], we take the following steps: first, we

adapt the fair broadcast (FBC) and unfair broadcast (UBC) func-

tionalities in [10] to the UC setting, where multiple senders may

perform many broadcasts per round. Then, similar to [2, 3, 14],

we model resource-restriction in UC via wrapper that allows all

parties to perform up to a number of RO queries per round. Next,

we revisit the FBC protocol in [10] by using the TLE algorithms

of [2] instead of an arbitrary time-lock puzzle and show that

our instantiation UC-realizes our FBC functionality. Finally, we

prove that by deploying the TLE protocol of [2] over our FBC

functionality is sufficient to provide an adaptively secure realiza-

tion of the TLE functionality in [2]. We view the construction

of the first adaptively UC secure TLE protocol as a contribution

of independent interest. We refer the reader to Section 3.2 for

a detailed discussion of the key subtleties to the design of our

composably secure (un)fair broadcast protocols.

• The SBC construction in [17] is over the synchronous communi-

cation functionality in [5]. As [20] shows, this functionality does

not provide the guarantees expected of a synchronous network

(specifically, termination). These limitations are lifted when rely-

ing on a (global) clock functionality [20], as we do in our formal

treatment. The use of a global clock is the standard way to model

loose synchronicity in UC: every clock tick marks the advance

of the execution rounds while within a round, communication is

adversarially scheduled by the environment.

Armed with our construction, we present two interesting appli-

cations of SBC that enjoy adaptive UC security. Namely,

• Distributed uniform random string generation (Figure 1(b)). We

devise a protocol where a set of parties contribute their share of

randomness via our SBC channel. After some delay (upon the

end of the broadcast period), the honest parties agree on the XOR

of the shares they received as a common uniform random string.

We call this delayed uniform random string (DURS) generation.

• Self-tallying e-voting (Figure 1(c)). Self-tallying voting systems

(STVSs) constitute a special class of decentralized electronic vot-

ing systems put forth by Kiayias and Yung [21], where the voters

can perform the tally themselves without the need for a trusted

tallying authority. Most existing efficient STVSs [16, 21, 24] re-

quire a trusted party to ensure election fairness (i.e., no partial

results are leaked before the end of the vote casting period). We

remove the need of a trusted party in self-tallying elections by

modifying the construction in [24] (shown secure in the UC

framework). In particular, we deploy our SBC channel for vote

casting instead of a bulletin board used in the original protocol.

The proofs of all the theorems and lemmas can be found in the

companion full version [1].

2 BACKGROUND
2.1 Network model
We consider synchronous point-to-point communication among 𝑛

parties in P, where protocol execution is carried out in rounds. The

adversary is Byzantine and may adaptively corrupt any number

of 𝑡 < 𝑛 parties. The corruption is w.r.t. the strong non-atomic

communication model (cf. [10, 19]) where the adversary may corrupt

parties in the middle of a round.

2.2 The UC framework
Universal Composability (UC), introduced by Canetti in [5], is a

state-of-the-art framework for the formal study of protocols that

should remain secure under concurrent executions. In UC, security

is captured via the real world/ideal world paradigm as follows.

• In the ideal world, an environmentZ schedules the execution and

provides inputs to the parties that are dummy, i.e., they simply

forward their inputs to an ideal functionality F , which abstracts

the studied security notion (e.g., secure broadcast). The func-

tionality is responsible for carrying out the execution given the

forwarded input and returns to the party some output along with

a destination identity 𝐼𝐷 , so that the dummy party forwards the

output to 𝐼𝐷 . By default, we assume that the destination is Z,

unless specified explicitly. The execution is carried out in the pres-

ence of an ideal adversary S, the simulator, that interacts with F
andZ and controls corrupted parties. We denote by EXECF,S,Z
the output ofZ after ending the ideal world execution.

• In the real world, Z schedules the execution and provides in-

puts as previously, but now the parties actively engage in a joint

computation w.r.t. the guidelines of some protocolΠ (e.g., a broad-

cast protocol). The execution is now in the presence of a real

(Byzantine) adversary A that interacts withZ and may (adap-

tively) corrupt a number of parties. We denote by EXECΠ,A,Z
the output ofZ after ending the real world execution.

Definition 1. We say that a protocolΠ UC-realizes the ideal func-

tionality F if for every real world adversary A there is a simulator

S such that for every environmentZ, the distributions EXECF,S,Z
and EXECΠ,A,Z are computationally indistinguishable.

According to the UC Theorem, the UC security of Π implies that Π
can be replaced by F in any protocol that invokes Π as a subrou-

tine. Besides, a protocol may use as subroutine a functionality that

abstracts some setup notion (e.g., PKI, a random oracle, or a global

clock). These setup functionalities maybe global, in the sense that

share their state across executions of multiple protocols [7]. If a

protocol utilizes a set of functionalities {F1, . . . , F𝑘 }, then we say

that its UC security is argued in the (F1, . . . , F𝑘)-hybrid model.

PODC ’23, June 19–23, 2023, Orlando, FL, USA Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

2.3 Hybrid functionalities
Throughout the paper, 𝜆 denotes the security parameter and negl(·)
a negligible function.

The global clock functionality. The global clock (cf. [3, 20]) can

be read at any moment by any party. For each session, the clock ad-

vances only when all the involved honest parties and functionalities

in the session make an Advance_Clock request.

The random oracle functionality. The RO functionality (cf. [22])

can be seen as a trusted source of random input. Given a query, it

returns a random value. It also updates a local variable 𝐿H in order

to return the same value to similar queries. This functionality can

be seen as the "idealization" of a hash function.

The certification functionality. The certification functionality

(cf. [6]) abstracts a certification scheme which provides signatures

bound to identities. It provides commands for signature genera-

tion and verification, and is tied to a single party (so each party

requires a separate instance). It can be realized via an EUF-CMA

secure signature scheme combined with a party acting as a trusted

certification authority.

The wrapper functionality. We recall the wrapper functionality

from [2] in the full version (in the adaptive corruption model), for

the special case where the wrapped evaluation functionality is the

random oracle FRO. The wrapperW𝑞 allows the parties to access

FRO only up to 𝑞 times per round (clock tick).

The relaxed broadcast functionality FRBC (P).

The functionality initializes a pair of variables

(Output, Sender) as (⊥,⊥). It also maintains the set

of corrupted parties, Pcorr, initialized as empty.

■Upon receiving (sid, Broadcast, 𝑀) from 𝑃 ∈ P \ Pcorr,
if (Output, Sender) = (⊥,⊥), it records the output-

sender pair (Output, Sender) ← (𝑀, 𝑃) and sends

(sid, Broadcast, 𝑀, 𝑃) to S.
■Upon receiving (sid, Broadcast, 𝑀, 𝑃) from S on behalf

of 𝑃 ∈ Pcorr, if (Output, Sender) = (⊥,⊥), it sends

(sid, Broadcast, 𝑀, 𝑃) to all parties and S, and halts.

■Upon receiving (sid,Allow, 𝑀̃) fromS, if Sender ∈ Pcorr,
it sends (sid, Broadcast, 𝑀̃, Sender) to all parties and S,
and halts. Otherwise, it ignores the message.

■ Upon receiving (sid𝐶 ,Advance_Clock) from

𝑃 ∈ P \ Pcorr, if Sender = 𝑃 , it sends

(sid, Broadcast,Output, Sender) to all parties and S,
and halts. Otherwise, it returns (sid𝐶 ,Advance_Clock)
to 𝑃 with destination identity Gclock.

Figure 2: The functionality FRBC interacting with the parties
in P and the simulator S.

The relaxed broadcast functionality. In Figure 2, we present

the relaxed broadcast functionality FRBC (for a single message) in

[13] that is the stepping stone for realizing unfair broadcast (cf.

Subsection 3.1) which, in turn, is in the core of the design of the fair

and simultaneous broadcast constructions. The functionality cap-

tures agreement, but only a weak notion of validity, i.e., if a sender

is always honest and broadcasts a message𝑀 , then every honest

party will output the value𝑀 . In addition, we modify the original

description of FRBC by forcing the delivery of the message to all

parties, when the sender (i) is initially corrupted, or (ii) remains

honest in the execution and completes her part by forwarding an

Advance_Clock message. This was implicit in [13]. As presented

in [13, 19], FRBC can be realized based on the Dolev-Strong proto-

col [11] and a UC-secure signature scheme. Formally,

Fact 1 ([13, 19]). There exists a protocol ΠRBC that UC-realizes

FRBC in the (Fcert,Gclock)-hybrid model against an adaptive adver-

sary corrupting 𝑡 < 𝑛 parties (in the non-atomic model).

2.4 Time-lock encryption
To realize our secure SBC we will mobilise a special type of encryp-

tion, called time-lock encryption (TLE). TLE allows one to encrypt

a message 𝑀 for a set amount of time 𝜏 . Decryption requires a

witness𝑤 whose computation is inherently sequential. [2] provides

a UC treatment of the TLE primitive, and a TLE scheme that is UC

secure against static adversaries. We will revisit TLE in the presence

of adaptive adversaries in Section 4.

The time-lock encryption (TLE) functionality. In Figure 3, we

present the TLE functionality from [2]. Here, leak(·) is a function
over time slots that captures the timing advantage of the adversary

in intercepting the TLE ciphertexts, and delay is an integer that

express the delay of ciphertext generation.

The Astrolabous TLE scheme.We utilize the algorithms of the

Astrolabous TLE scheme from [2]. Given Astrolabous, FTLE is UC-

realized in the static corruption model as stated below.

Fact 2 ([2]). Let FBC be the broadcast functionality defined in [2].

There exists a protocol that UC-realizes F leak,delay
TLE in the (W𝑞 (F ∗RO),

FRO, FBC,Gclock)-hybrid model against a static adversary corrupting

𝑡 < 𝑛 parties, with leakage function leak(Cl) = Cl + 1 and delay = 1,

where FRO and F ∗RO are distinct random oracles.

3 UC (UN)FAIR BROADCAST AGAINST
DISHONEST MAJORITIES

The prior work of Cohen et al. [10] studies broadcast fairness in

a stand-alone fashion. Here, we revisit the concept of broadcast

fairness in the setting of UC security, where protocol sessions may

securely run concurrently or as subroutines of larger protocols;

and in each session, every party can send of multiple messages. We

provide a comprehensive formal treatment of the notions of unfair

broadcast (UBC) and fair broadcast (FBC) that will be the stepping

stones for the constructions of the following sections.

3.1 Unfair broadcast definition and realization
TheUBC functionality.We consider a relaxation of FBC, captured

by the notion of unfair broadcast introduced in [19]. We present the

UBC functionality in Figure 4. Informally, in UBC, the adversary

(simulator) is allowed to receive the sender’s message before broad-

casting actually happens, and (unlike in FBC) adaptively corrupt

the sender to broadcast a message of its preference.

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC ’23, June 19–23, 2023, Orlando, FL, USA

The time-lock encryption functionality F leak,delay
TLE (P).

The functionality initializes the list of recorded mes-

sage/ciphertext 𝐿rec as empty and defines the tag space

TAG. It also maintains the set of corrupted parties, Pcorr,
initialized as empty.

■Upon receiving (sid, Enc, 𝑀, 𝜏) from 𝑃 ∉ Pcorr, it reads
the time Cl and does:

(1) If 𝜏 < 0, it returns (sid, Enc, 𝑀, 𝜏,⊥) to 𝑃 .
(2) It picks tag

$← TAG and it inserts the tuple

(𝑀,Null, 𝜏, tag,Cl, 𝑃) → 𝐿rec.

(3) It sends (sid, Enc, 𝜏, tag,Cl, 0 |𝑀 | , 𝑃) to S. Upon receiv-

ing the token back fromS it returns (sid, Encrypting)
to 𝑃 .

■ Upon receiving (sid,Update, {(𝑐 𝑗 , tag𝑗)}
𝑝 (𝜆)
𝑗=1
)

from S, for all 𝑐 𝑗 ≠ Null it updates each

tuple (𝑀𝑗 ,Null, 𝜏 𝑗 , tag𝑗 ,Cl𝑗 , 𝑃) in 𝐿rec to

(𝑀𝑗 , 𝑐 𝑗 , 𝜏 𝑗 , tag𝑗 ,Cl𝑗 , 𝑃).
■Upon receiving (sid, Retrieve) from 𝑃 , it reads the time

Cl and does:

(1) For every tuple (𝑀,Null, 𝜏, tag,Cl′, 𝑃) ∈ 𝐿rec such that

Cl − Cl′ ≥ delay, it picks 𝑐
$← {0, 1}𝑝′ (𝜆) and updates

the tuple as (𝑀,𝑐, 𝜏, tag,Cl′, 𝑃).
(2) It sets C := {(𝑀,𝑐, 𝜏)} (𝑀,𝑐,𝜏,·,Cl′,𝑃) ∈𝐿rec:Cl−Cl′≥delay.
(3) It returns (sid, Encrypted, C) to 𝑃 .
■Upon receiving (sid,Dec, 𝑐, 𝜏) from 𝑃 ∉ Pcorr, if 𝑐 ≠ Null:
(1) If 𝜏 < 0, it returns (sid,Dec, 𝑐, 𝜏,⊥) to 𝑃 . Else, it reads

the time Cl from Gclock and:
(a) If Cl < 𝜏 , it sends (sid,Dec, 𝑐, 𝜏,More_Time) to 𝑃 .
(b) If Cl ≥ 𝜏 , then

– If there are two tuples

(𝑀1, 𝑐, 𝜏1, ·, ·, ·), (𝑀2, 𝑐, 𝜏2, ·, ·, ·) in 𝐿rec such that

𝑀1 ≠ 𝑀2 and 𝑐 ≠ Null where 𝜏 ≥ max{𝜏1, 𝜏2}, it
returns to 𝑃 (sid,Dec, 𝑐, 𝜏,⊥).
– If no tuple (·, 𝑐, ·, ·, ·, ·) is recorded in 𝐿rec,

it sends (sid,Dec, 𝑐, 𝜏) to S. Upon receiv-

ing (sid,Dec, 𝑐, 𝜏, 𝑀) back from S it stores

(𝑀,𝑐, 𝜏,Null, 0,Null) in 𝐿rec and returns

(sid,Dec, 𝑐, 𝜏, 𝑀) to 𝑃 .
– If there is a unique tuple (𝑀,𝑐, 𝜏dec, ·, ·, ·) in
𝐿rec, then if 𝜏 ≥ 𝜏dec, it returns (sid, Dec, 𝑐, 𝜏, 𝑀)
to 𝑃 . Else, if Cl < 𝜏dec, it returns (sid,
Dec, 𝑐, 𝜏,More_Time) to 𝑃 . Else, if Cl ≥ 𝜏dec > 𝜏 ,

it returns (sid,Dec, 𝑐, 𝜏, Invalid_Time) to 𝑃 .
■ Upon receiving (sid, Leakage) from S, it

reads the time Cl from Gclock and returns

(sid, Leakage, ({(𝑀,𝑐, 𝜏)}∀(𝑀,𝑐,𝜏,·,·,·) ∈𝐿rec:𝜏≤leak(Cl) ∪
{(𝑀,𝑐, 𝜏, tag,Cl, 𝑃) ∈ 𝐿rec}∀𝑃∈Pcorr)) to S.

Figure 3: The functionality F leak,delay
TLE parameterized by the

security parameter 𝜆, a leakage function leak, a delay variable
delay, interacting with the parties in P, the simulator S, and
global clock Gclock.

The unfair broadcast functionality FUBC (P).

The functionality initializes list 𝐿pend of pending messages

as empty. It also maintains the set of corrupted parties,

Pcorr, initialized as empty.

■Upon receiving (sid, Broadcast, 𝑀) from 𝑃 ∈ P \ Pcorr,
it picks a unique random tag from {0, 1}𝜆 , adds the tuple
(tag, 𝑀, 𝑃) to 𝐿pend and sends (sid, Broadcast, tag, 𝑀, 𝑃)
to S.
■Upon receiving (sid, Broadcast, 𝑀, 𝑃) from S on behalf

of 𝑃 ∈ Pcorr, it sends (sid, Broadcast, 𝑀) to all parties

and S.
■Upon receiving (sid,Allow, tag, 𝑀̃) from S, if there is a
tuple (tag, ·, 𝑃) ∈ 𝐿pend such that 𝑃 ∈ Pcorr, it does:
(1) It sends (sid, Broadcast, 𝑀̃) to all parties and

(sid, Broadcast, 𝑀̃, 𝑃) to S.
(2) It deletes (tag, ·, 𝑃) from 𝐿pend.

■Upon receiving (sid𝐶 ,Advance_Clock) from 𝑃 ∈ P \
Pcorr it does:
(1) It reads the time Cl from Gclock. If this is the first time

that 𝑃 has sent a (sid𝐶 ,Advance_Clock) message dur-

ing round Cl, then for every (tag, 𝑀, 𝑃) ∈ 𝐿pend, it

does:

(a) It sends (sid, Broadcast, 𝑀) to all parties and

(sid, Broadcast, 𝑀, 𝑃) to S.
(b) It deletes (tag, 𝑀, 𝑃) from 𝐿pend.

(2) It returns (sid𝐶 ,Advance_Clock) to 𝑃 with destina-

tion identity Gclock.

Figure 4: The functionality FUBC interacting with the parties
in P and the simulator S.

The UBC protocol. In Figure 5, we present a simple protocol

that utilizes multiple instances of FRBC (cf. Figure 2) to realize

concurrent unfair broadcast executions. The invocation to the FRBC
instances replaces the composition of multiple Dolev-Strong runs.

By the description of ΠUBC, the Universal Composition Theo-

rem [5], and Fact 1, we get the following lemma.

Lemma 1. There exists a protocol that UC-realizes FUBC in the

(Fcert,Gclock)-hybrid model against an adaptive adversary corrupt-

ing 𝑡 < 𝑛 parties.

The FBC functionality. Our FBC functionality F Δ,𝛼
FBC has the FBC

functionality in [10] as a reference point, and extends [10] to the

setting where any party can send of multiple messages per round.

In FBC, the adversary (simulator) can receive the sender’s message

before its broadcasting actually happens. However, even if it adap-

tively corrupts the sender, the adversary cannot alter the original

message that has been “locked” as the intended broadcast value.

The functionality is parameterized by two integers: (i) a delay Δ,
and (ii) an advantage 𝛼 of the simulator S to retrieve the broadcast

messages compared to the parties. Specifically, if a message is re-

quested to be broadcast at time Cl∗, then F Δ,𝛼
FBC will send it to the

parties at time Cl∗ + Δ, whereas S can obtain it at time Cl∗ + Δ − 𝛼 .

PODC ’23, June 19–23, 2023, Orlando, FL, USA Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

The unfair broadcast protocol ΠUBC (FRBC, P).

Every party 𝑃 maintains two counters total𝑃 , count𝑃 , ini-
tialized to 0.

■Upon receiving (sid, Broadcast, 𝑀) from Z, the party

𝑃 does:

(1) She increases count𝑃 and total𝑃 by 1.

(2) She sends (sid, Broadcast, 𝑀) to F 𝑃,total𝑃

RBC .

■Upon receiving (sid, Broadcast, 𝑀∗, 𝑃∗) from F 𝑃∗,·
RBC, the

party 𝑃 forwards (sid, Broadcast, 𝑀∗) toZ.

■ Upon receiving (sid𝐶 ,Advance_Clock) from Z, the

party 𝑃 reads the timeCl from Gclock. If this is the first time

that she has received a (sid𝐶 ,Advance_Clock) command

during round Cl, she does:
(1) For every 𝑗 = 1, . . . , count𝑃 , she sends

(sid𝐶 ,Advance_Clock) to F 𝑃,total𝑃 −(count𝑃 − 𝑗)
RBC .

Namely, 𝑃 instructs F 𝑃,total𝑃 −(count𝑃 − 𝑗)
RBC to broadcast

her 𝑗-th message for the current round Cl.
(2) She resets count𝑃 to 0.

(3) She forwards (sid𝐶 ,Advance_Clock) to Gclock.

Figure 5: The protocol ΠUBC with the parties in P.

3.2 Fair broadcast definition and realization
The functionality associates each Broadcast request with a unique

random tag, marks the request as “pending”, and informs S of the

senders’ activity by leaking the tag and the sender’s identity to

S. After Δ − 𝛼 rounds, S can perform an Output_Reqest and

obtain the message that corresponds to a specific tag. However,

at this point and unlike in UBC, the message becomes “locked”

and S cannot alter it with a message of its choice, even if the

sender gets adaptively corrupted. Besides, by performing a Corrup-

tion_Reqest, S can obtain the pending messages of all corrupted

parties, so that it can update the state of the corresponding simu-

lated party with the actual pending messages. The simulator may

change the original message of a broadcast request with a value of

its choice only if (i) the associated sender is corrupted and (ii) the

original message is not locked. The message delivery to the parties

happens when the parties forward an Advance_Clock message

for the round that is Δ time after the broadcast request occurred.

The functionality is formally presented in Figure 6.

The FBC protocol. The (stand-alone) FBC protocol proposed

in [10] is not UC secure. In Figure 6, we present our protocol that

realizes concurrent fair broadcast executions. As in [10], we deploy

(a) UBC, (b) time-lock puzzles (instantiated by the TLE algorithms

in [2]) to achieve broadcast fairness, and (c) a programmable RO to

allow equivocation (also applied in [2, 4, 22]).

In order to construct FBC in a settingwith recurring and arbitrary

scheduled broadcast executions, several technical issues arise. The

key challenge here is to ensure that messages are retrieved by all

parties in the same round. Our protocol carefully orchestrates TLE

encryption, emission, reception, and TLE decryption of messages

broadcast in UBC manner w.r.t. the global clock to achieve this. The

UC-secure protocol ΠFBC encompasses the following key features:

The fair broadcast functionality F Δ,𝛼
FBC (P).

The functionality initializes the list 𝐿pend of (unlocked)

pending messages as empty, the list 𝐿lock of locked mes-

sages as empty, and a variable Output as ⊥. It also main-

tains the set of corrupted parties, Pcorr, initialized as empty.

■Upon receiving (sid, Broadcast, 𝑀) from 𝑃 ∈ P \ Pcorr
or (sid, Broadcast, 𝑀, 𝑃) from S on behalf of 𝑃 ∈ Pcorr,
it reads the time Cl from Gclock, picks a unique random
tag from {0, 1}𝜆 , and adds the tuple (tag, 𝑀, 𝑃,Cl) to 𝐿pend.
Then, it sends (sid, Broadcast, tag, 𝑃) to S.
■ Upon receiving (sid,Output_Reqest, tag) from S,
it reads the time Cl from Gclock. If there is a tuple

(tag, 𝑀, 𝑃,Cl∗) ∈ 𝐿pend such that Cl − Cl∗ = Δ − 𝛼 , it

adds (tag, 𝑀, 𝑃,Cl∗) to 𝐿lock, removes it from 𝐿pend, and

sends (sid,Output_Reqest, tag, 𝑀, 𝑃,Cl∗) to S.
■ Upon receiving (sid,Corruption_Reqest) from S,
it sends (sid,Corruption_Reqest, ⟨(tag, 𝑀, 𝑃,Cl∗) ∈
𝐿pend : 𝑃 ∈ Pcorr⟩) to S.
■Upon receiving (sid,Allow, tag, 𝑀̃, 𝑃) from S, it does:
(1) If there is no tuple (tag, 𝑀, 𝑃,Cl∗) in 𝐿pend or 𝐿lock, it

ignores the message.

(2) If 𝑃 ∈ P \Pcorr or (tag, 𝑀, 𝑃,Cl∗) ∈ 𝐿lock, it ignores the
message.

(3) If 𝑃 ∈ Pcorr and (tag, 𝑀, 𝑃,Cl∗) ∈ 𝐿pend (i.e., the mes-

sage is not locked), it sets Output← 𝑀̃ . If there is no

tuple (tag, ·, ·, ·) in 𝐿lock, it adds (tag,Output, 𝑃,Cl∗) to
𝐿lock and removes (tag, 𝑀, 𝑃,Cl∗) from 𝐿pend. It sends

(sid,Allow_OK) to S.
■Upon receiving (sid𝐶 ,Advance_Clock) from 𝑃 ∈ P \
Pcorr, it does:
(1) It reads the time Cl from Gclock.
(2) Let 𝐿 ← 𝐿pend@𝐿lock be the concatenation of the two

lists. It sorts 𝐿 lexicographically w.r.t. the second coor-

dinate (i.e. messages) of its tuples.

(3) For every tuple (tag∗, 𝑀∗, 𝑃∗,Cl∗) ∈ 𝐿, if Cl−Cl∗ = Δ,
it sends (sid, Broadcast, 𝑀∗) to 𝑃 .

(4) It returns (sid𝐶 ,Advance_Clock) to 𝑃 with destina-

tion identity Gclock.

Figure 6: The functionality F Δ,𝛼
FBC interacting with the parties

in P and the simulator S, parameterized by delay Δ and sim-
ulator advantage 𝛼 .

(1) Resource-restriction is formalized via a wrapperW𝑞 (F ∗RO) that
allows a party or the adversary to perform up to 𝑞 parallel

queries per round (cf. [2, 3, 14] for similar formal treatments).

(2) To take advantage of parallelization that the wrapper offers,

parties generate puzzles for creating TLE ciphertexts (and solve

the puzzles of the ciphertexts they have received) only when

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC ’23, June 19–23, 2023, Orlando, FL, USA

they are about to complete their round. I.e., when receiving an

Advance_Clock command by the environment, they broadcast

in UBCmanner all their messages (TLE encryptedwith difficulty

set to 2 rounds and equivocated) for the current round. Observe

that if without such restriction and allow senders broadcast

their messages upon instruction by the environment, then this

would lead to an "waste of resources"; so, parties would not be

able to broadcast more than 𝑞 messages per round and/or they

would not have any queries left to proceed to puzzle solution.

(3) For realization of FFBC, a message must be retrieved by all

parties in the same round. Hence, we require that parties, when

acting as recipients, begin decryption (puzzle solving) in the

round that follows the one they received the associated TLE

ciphertext. Otherwise, the following may happen: let parties 𝐴,

𝐵, and𝐶 complete round Cl first, second, and third, respectively.
If 𝐵 broadcasts an encrypted message𝑀 , then, unlike 𝐶 , 𝐴 will

have exhausted its available resources (RO queries) by the time

she receives𝑀 . As a result,𝐶 is able to retrieve𝑀 at roundCl+1
(by making the first set of 𝑞 RO queries in Cl and the second

set in Cl + 1) whereas 𝐴 not earlier than Cl + 2 (by making the

first set in Cl + 1 and the second in Cl + 2).
(4) The reason that we impose time difficulty of two rounds instead

of just one is rather technical. Namely, if it was set to one round,

then the number of queries required for puzzle solution is 𝑞.

However, a rushing real-world adversary may choose to waste

all of its resources to decrypt a TLE ciphertext in the same round

that the ciphertext was intercepted. In this case, the simulator

would not have time for equivocating the randomness hidden

in the underlying puzzle and simulation would fail.

The protocol is formally described in Figure 6. The core idea of

the construction is the following: to broadcast a message 𝑀 in

a fair manner, the sender chooses a randomness 𝜌 and creates a

TLE ciphertext 𝑐 of 𝜌 . Then, she queries the RO on 𝜌 to receive a

response 𝜂, computes𝑀 ⊕ 𝜂, and broadcasts (𝑐,𝑀 ⊕ 𝜂) via FUBC.
When decryption time comes, any recipient can decrypt 𝑐 as 𝜌 ,

obtain 𝜂 via a RO query on 𝜌 , and retrieve𝑀 by an XOR operation.

In the following lemma, we prove that our FBC protocol UC-

realizes F Δ,𝛼
FBC for delay Δ = 2 and advantage 𝛼 = 2. Namely, the

parties retrieve the messages after two rounds and the simulator

two rounds earlier (i.e., in the same round).

The fair broadcast protocol ΠFBC (FUBC,W𝑞 (F ∗RO), FRO, P).

The protocol utilizes the TLE algorithms (AST.Enc,AST.Dec)
described in [2]. Every party 𝑃 maintains (i) a list 𝐿𝑃pend of

messages pending to be broadcast, (ii) a list 𝐿𝑃wait of received

ciphertexts waiting to be decrypted, and (iii) a list 𝐿𝑃 of messages

ready to be delivered. All three lists are initialized as empty.

■ Upon receiving (sid, Broadcast, 𝑀) from Z, 𝑃 adds 𝑀 to

𝐿𝑃pend.

■Upon receiving (sid, Broadcast, (𝑐∗, 𝑦∗)) from FUBC, 𝑃 reads

the time Cl from Gclock and adds (𝑐∗, 𝑦∗,Cl) to 𝐿𝑃wait.

■ Upon receiving (sid,Advance_Clock) from Z, the party 𝑃

reads the time Cl from Gclock. If this is the first time that 𝑃 has

received (sid,Advance_Clock) for time Cl, she does:
(1) For every 𝑀 in 𝐿𝑃pend, she picks puzzle randomness

𝑟𝑀
0
| | · · · | |𝑟𝑀

2𝑞−1
$←

(
{0, 1}𝜆

)
2𝑞
.

(2) For every (𝑐∗, 𝑦∗,Cl − 1) in 𝐿𝑃wait, she parses 𝑐
∗
as (2, 𝑐∗

2
, 𝑐∗

3
)

and 𝑐∗
3
as

(
𝑟 ∗
0
, 𝑧∗

1
, . . . , 𝑧∗

2𝑞
) . For every (𝑐∗∗, 𝑦∗∗,Cl−2) in 𝐿𝑃wait,

she parses 𝑐∗∗ as (2, 𝑐∗∗
2
, 𝑐∗∗

3
) and 𝑐∗

3
as

(
𝑟 ∗∗
0
, 𝑧∗∗

1
, . . . , 𝑧∗∗

2𝑞
) .

(3) She makes all available 𝑞 queries𝑄0, . . . ,𝑄𝑞−1 toW𝑞 (F∗RO)
for Cl and gets responses 𝑅0, . . . , 𝑅𝑞−1, respectively, where
• 𝑄0 =

(
∪
𝑀∈𝐿𝑃pend

{𝑟𝑀
0
, . . . , 𝑟𝑀

2𝑞−1}
) ⋃ (

∪(𝑐∗,𝑦∗,Cl−1) ∈𝐿𝑃wait
{𝑟 ∗

0
}
) ⋃ (

∪(𝑐∗∗,𝑦∗∗,Cl−2) ∈𝐿𝑃wait
{𝑧∗∗𝑞 ⊕ ℎ∗∗𝑞−1}

)
.

• 𝑅0 =
(
∪
𝑀∈𝐿𝑃pend

{ℎ𝑀
0
, . . . , ℎ𝑀

2𝑞−1}
) ⋃ (

∪(𝑐∗,𝑦∗,Cl−1) ∈𝐿𝑃wait
{ℎ∗

0
}
) ⋃ (

∪(𝑐∗∗,𝑦∗∗,Cl−2) ∈𝐿𝑃wait
{ℎ∗∗𝑞 }

)
.

• For 𝑗 ≥ 1, 𝑄 𝑗 =
(
∪(𝑐∗,𝑦∗,Cl−1) ∈𝐿𝑃wait

{𝑧∗
𝑗
⊕

ℎ∗
𝑗−1}

) ⋃ (
∪(𝑐∗∗,𝑦∗∗,Cl−2) ∈𝐿𝑃wait

{𝑧∗∗
𝑗+𝑞 ⊕ ℎ∗∗𝑗+𝑞−1}

)
.

• For 𝑗 ≥ 1, 𝑅 𝑗 =
(
∪(𝑐∗,𝑦∗,Cl−1) ∈𝐿𝑃wait

{ℎ∗
𝑗
}
) ⋃ (

∪(𝑐∗∗,𝑦∗∗,Cl−2) ∈𝐿𝑃wait
{ℎ∗∗

𝑗+𝑞 }
)
.
a

(4) For every𝑀 in 𝐿𝑃pend:

(a) She chooses a random value 𝜌 from the TLE message space;

(b) She encrypts as 𝑐 ← AST.Enc(𝜌, 2) using RO responses

(ℎ𝑀
0
, . . . , ℎ𝑀

2𝑞−1) obtained by queryingW𝑞 (F∗RO) on𝑄0.

(c) She queries FRO on 𝜌 and receives a response 𝜂.

(d) She computes 𝑦 ← 𝑀 ⊕ 𝜂.
(e) She deletes 𝑀 from 𝐿𝑃pend, and sends

(sid, Broadcast, (𝑐, 𝑦)) to FUBC.
(5) For every (𝑐∗∗, 𝑦∗∗,Cl − 2) in 𝐿𝑃wait:

(a) She sets the decryption witness as 𝑤∗∗
2
← (ℎ∗∗

0
, . . . , ℎ∗∗

𝑞−1) .
(b) She computes 𝜌∗∗ ← AST.Dec(𝑐∗∗, 𝑤∗∗

2
) .

(c) She queries FRO on 𝜌∗∗ and receives a response 𝜂∗∗.
(d) She computes𝑀∗∗ ← 𝑦∗∗ ⊕ 𝜂∗∗ and adds𝑀∗∗ to 𝐿𝑃 .
(e) She deletes (𝑐∗∗, 𝑦∗∗,Cl − 2) from 𝐿𝑃wait.

(6) She sorts 𝐿𝑃 lexicographically.

(7) For every 𝑀∗∗ in 𝐿𝑃 , she returns (sid, Broadcast, 𝑀∗∗) to
Z.

(8) She resets 𝐿𝑃 as empty.

(9) She sends (sid𝐶 ,Advance_Clock) to FUBC. Upon re-

ceiving (sid𝐶 ,Advance_Clock) from FUBC, she forwards

(sid𝐶 ,Advance_Clock) to Gclock and completes her round.

a
Namely, the first query includes all puzzle generation queries required for

the TLE of every message that will be broadcast by 𝑃 . The 𝑗 -th query

includes (i) all 𝑗 -th step puzzle solving queries for decrypting messages

received in round Cl − 1 and (ii) all (𝑞 + 𝑗)-step puzzle solving queries for

decrypting messages received in round Cl − 2. The queries are computed

as described in Subsection 2.4. As a result, the decryption witness for each

TLE ciphertext can be computed in two rounds (upon completing all

necessary 2𝑞 hashes).

Figure 6: The protocol ΠFBC with the parties in P.

Lemma 2. The protocol ΠFBC in Figure 6 UC-realizes F 2,2
FBC in the

(FUBC,W𝑞 (F ∗RO), FRO,Gclock)-hybrid model against an adaptive

adversary corrupting 𝑡 < 𝑛 parties.

PODC ’23, June 19–23, 2023, Orlando, FL, USA Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

4 UC TIME-LOCK ENCRYPTION AGAINST
ADAPTIVE ADVERSARIES

In this section, we strengthen the main result of [2] (cf. Fact 2), pre-

senting the first UC realization of FTLE against adaptive adversaries.
Specifically, we prove that the TLE construction in [2] is UC secure

when deploying FFBC as the hybrid that establishes communication

among parties. In more details, the TLE construction in [2] requires

that an encryptor broadcasts her TLE ciphertext to all other parties

to allow them to begin solving the associated time-lock puzzle for

decryption. The following theorem shows that FBC is sufficient to

guarantee adaptive security of the TLE protocol.

Theorem 1. Let Δ, 𝛼 be integers s.t. Δ ≥ 𝛼 ≥ 0. The protocol ΠTLE

in Figure ?? UC-realizes F leak,delay
TLE in the (W𝑞 (F ∗RO), FRO, F

Δ,𝛼
FBC,

Gclock)-hybrid model, where leak(Cl) = Cl + 𝛼 and delay = Δ + 1.

5 SIMULTANEOUS BROADCAST
In this section, we present our formal study of the simultaneous

broadcast (SBC) notion in the UC framework, which comprises

a new functionality FSBC and a TLE-based construction that we

prove it UC-realizes FSBC. Our approach revisits and improves

upon the work of Hevia [17] w.r.t. several aspects. In particular,

(1) We consider SBC executions where honest parties agree on a

well-defined broadcast period, outside of which all broadcast

messages are ignored. This setting is plausible, as simultaneity

suggests that no sender broadcasts a message depending on

the messages broadcast by other parties. If there is no such

broadcast period, then liveness and simultaneity are in conflict,

as a malicious sender could wait indefinitely until all honest

parties are forced to either (i) abort, or (ii) reveal their messages

before all (malicious) senders broadcast their values. On the

contrary, within an agreed valid period, honest parties can safely

broadcast knowing that every invalid message will be discarded.

Unlike [17], participation of all parties is not necessary for the

termination of the protocol execution. In Section 6, we propose

practical use cases where our SBC setting is greatly desired.

(2) The SBC functionality of [17] is designed w.r.t. the synchronous

communication setting in [5]. As shown in [20], this setting

has limitations (specifically, guarantee of termination) that are

lifted when using Gclock. In our formal treatment, synchronicity

is captured in the state-of-the-art Gclock-hybrid model.

(3) The SBC construction in [17] is proven secure only against

adversaries that corrupt a minority of all parties. By utilizing

TLE, our work introduces the first SBC protocol that is UC

secure against any adversary corrupting 𝑡 < 𝑛 parties.

The SBC functionality. Our SBC functionality FSBC (cf. Fig-

ure 7) interacts with Gclock and is parameterized by a broadcast

time span Φ, a message delivery delay Δ and a simulator ad-

vantage 𝛼 . Upon first Broadcast request, it sets the current

global time as the beginning of the broadcast period that lasts Φ
rounds. If a Broadcast request was made by an honest sender

𝑃 , then the functionality leaks only the sender’s identity. All

Broadcast requests are recorded as long as they are made

within the broadcast period. The recorded messages are issued

to each party (resp. the simulator) Δ rounds (resp. Δ−𝛼 rounds)

after the end of the period.

The simultaneous broadcast functionality F Φ,Δ,𝛼
SBC (P).

The functionality initializes the list 𝐿pend of pending mes-

sages as empty and two variables 𝑡start, 𝑡end to ⊥. It also
maintains the set of corrupted parties, Pcorr, initialized as

empty.

■Upon receiving (sid, Broadcast, 𝑀) from 𝑃 ∈ P \ Pcorr
or (sid, Broadcast, 𝑀, 𝑃) from S on behalf of 𝑃 ∈ Pcorr,
it does:

(1) It reads the time Cl from Gclock.
(2) If 𝑡start = ⊥, it sets 𝑡start ← Cl and 𝑡end ← 𝑡start + Φ.
(3) If 𝑡start ≤ Cl < 𝑡end, it does :

(a) It picks a unique random tag from {0, 1}𝜆 .
(b) If 𝑃 ∈ P \ Pcorr, it adds (tag, 𝑀, 𝑃,Cl, 0) to 𝐿pend

and sends (sid, Sender, tag, 0 |𝑀 | , 𝑃) to S. Other-
wise, it adds (tag, 𝑀, 𝑃,Cl, 1) to 𝐿pend and sends

(sid, Sender, tag, 𝑀, 𝑃) to S.
■ Upon receiving (sid,Corruption_Reqest) from S,
it sends (sid,Corruption_Reqest, ⟨(tag, 𝑀, 𝑃,Cl∗, 0) ∈
𝐿pend : 𝑃 ∈ Pcorr⟩) to S.
■Upon receiving (sid,Allow, tag, 𝑀̃, 𝑃) from S, it does:
(1) It reads the time Cl from Gclock.
(2) If 𝑡start ≤ Cl < 𝑡end and there is a tuple

(tag, 𝑀, 𝑃,Cl∗, 0) ∈ 𝐿pend and 𝑃 ∈ Pcorr, it updates the
tuple as (tag, 𝑀̃, 𝑃,Cl∗, 1) and sends (sid,Allow_OK)
to S. Otherwise, it ignores the message.

■Upon receiving (sid𝐶 ,Advance_Clock) from 𝑃 ∈ P \
Pcorr, it does:
(1) It reads the time Cl from Gclock.
(2) If this is the first time it has received a

(sid𝐶 ,Advance_Clock) message from 𝑃 during

round Cl, then
(a) If it has received no other (sid𝐶 ,Advance_Clock)

message during round Cl,
(i) If Cl = 𝑡end, then it does:

(A) It updates every tuple (·, ·, 𝑃∗, ·, 0) ∈ 𝐿pend such

that 𝑃∗ ∈ P \ Pcorr as (·, ·, 𝑃∗, ·, 1) (to guarantee

the broadcast of messages from always honest

parties).

(B) It sorts 𝐿pend lexicographically according to the

second coordinate (messages).

(ii) If Cl = 𝑡end + Δ − 𝛼 , it sends

(sid, Broadcast, ⟨(tag, 𝑀)⟩(tag,𝑀,·,·,1) ∈𝐿pend)
to S.

(b) If Cl = 𝑡end + Δ, it sends

(sid, Broadcast, ⟨𝑀⟩(·,𝑀,·,·,1) ∈𝐿pend) to 𝑃 .
(3) It returns (sid𝐶 ,Advance_Clock) to 𝑃 with destina-

tion identity Gclock.

Figure 7: The functionalityF Φ,Δ,𝛼
SBC interactingwith the parties

in P and the simulatorS, parameterized by time span Φ, delay
Δ, and simulator advantage 𝛼 .

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC ’23, June 19–23, 2023, Orlando, FL, USA

The SBC protocol ΠSBC (FUBC, F
leak,delay
TLE , FRO,Φ,Δ, P).

Every party 𝑃 maintains a list 𝐿𝑃pend of messages under pending

encryption and a list 𝐿𝑃rec of received ciphertexts both initialized

as empty, and four variables 𝑡𝑃awake, 𝑡
𝑃
end, 𝜏

𝑃
rel, first

𝑃
, all initialized

to ⊥. All parties understand a special message ‘Wake_Up’ that is
not in the broadcast message space.

■Upon receiving (sid, Broadcast, 𝑀) from Z, the party 𝑃 does:

(1) If 𝑡𝑃awake = ⊥, she sets first𝑃 ← 𝑀 and sends

(sid, Broadcast, Wake_Up) to FUBC.
(2) If 𝑡𝑃awake ≠ ⊥, she does:

(a) She reads the time Cl from Gclock.
(b) If Cl ≥ 𝑡𝑃end − delay, she ignores the message

a
.

(c) She chooses a randomness 𝜌
$← {0, 1}𝜆 .

(d) She adds (𝜌,𝑀) in 𝐿𝑃pend.

(e) She sends (sid, Enc, 𝜌, 𝜏𝑃rel) to F
leak,delay
TLE .

■ Upon receiving (sid, Broadcast, Wake_Up) from FUBC, if

𝑡𝑃awake = ⊥, the party 𝑃 does:

(1) She reads the time Cl from Gclock.
(2) She sets 𝑡𝑃awake ← Cl, 𝑡𝑃end ← 𝑡𝑃awake + Φ, and 𝜏

𝑃
rel ← 𝑡𝑃end + Δ

(i.e., all parties agree on the start and end of the broadcast

period, as well as the time-lock decryption time).

(3) If first𝑃 ≠ ⊥, she parses the (unique) pair in 𝐿𝑃pend that con-

tains first𝑃 as (𝜌, first𝑃) . Then, she sends (sid, Enc, 𝜌, 𝜏𝑃rel)
to Fleak,delayTLE (this check is true only if 𝑃 broadcasts her first

message when acting as the first sender in the session).

■ Upon receiving (sid, Broadcast, (𝑐∗, 𝜏∗, 𝑦∗)) from FUBC, if
𝜏∗ = 𝜏𝑃rel and for every (𝑐′, 𝑦′) ∈ 𝐿𝑃rec : 𝑐′ ≠ 𝑐∗ ∧ 𝑦′ ≠ 𝑦∗,

then the party 𝑃 adds (𝑐∗, 𝑦∗) to 𝐿𝑃rec.
■Upon receiving (sid𝐶 ,Advance_Clock) byZ, the party 𝑃 does:

(1) She reads the time Cl from Gclock. If this is not the first time

she has received a (sid𝐶 ,Advance_Clock) command during

round Cl, she ignores the message.

(2) If 𝑡𝑃awake ≤ Cl < 𝑡𝑃end, she sends (sid, Retrieve) to F
leak,delay
TLE

to obtain the encryptions of messages that she requested

delay rounds earlier. Upon receiving (sid, Encrypted,𝑇)
from Fleak,delayTLE , she does:

(a) She parses𝑇 as a list of tuples of the form (𝜌, 𝑐, 𝜏𝑃rel) .
(b) For every (𝜌, 𝑐, 𝜏𝑃rel) ∈ 𝑇 such that there is a pair (𝜌,𝑀) ∈

𝐿𝑃pend, she does:

(i) She queries FRO on 𝜌 and receives a response 𝜂.

(ii) She computes 𝑦 ← 𝑀 ⊕ 𝜂.
(iii) She sends (sid, Broadcast, (𝑐, 𝜏𝑃rel, 𝑦)) to FUBC.

(3) If Cl = 𝜏𝑃rel, then for every (𝑐∗, 𝑦∗) ∈ 𝐿𝑃rec, she does:
(a) She sends (sid,Dec, 𝑐∗, 𝜏𝑃rel) to Fleak,delayTLE . Upon re-

ceiving (sid,Dec, 𝑐∗, 𝜏𝑃rel, 𝜌
∗) from Fleak,delayTLE , if 𝜌∗ ∉

{⊥,More_Time, Invalid_Time}, she queries FRO on 𝜌∗

and receives a response 𝜂∗.
(b) She computes𝑀∗ ← 𝑦∗ ⊕ 𝜂∗.
(c) She sends (sid, Broadcast, 𝑀∗) to Z.

(4) She sends (sid𝐶 ,Advance_Clock) to FUBC. Upon re-

ceiving (sid𝐶 ,Advance_Clock) from FUBC, she forwards

(sid𝐶 ,Advance_Clock) to Gclock and completes her round.

a
The reason is that due to TLE ciphertext generation time (delay rounds),

if Cl ≥ 𝑡𝑃end − delay, then the message would not be ready for broadcast

before 𝑡𝑃end .

Figure 8: The protocol ΠSBC with the parties in P.

The SBC protocol. Our SBC protocol (cf. Figure 8) is over FUBC
and deploys F leak,delay

TLE to achieve simultaneity, and FRO for equivo-

cation. In the beginning, the first sender notifies via FUBC the other

parties of the start of the broadcast period via a special ‘Wake_Up’
message. By the properties of UBC, all honest parties agree on the

time frame of the broadcast period that lasts Φ rounds. During the

broadcast period, in order to broadcast a message 𝑀 , the sender

chooses a randomness 𝜌 and interacts with F leak,delay
TLE to obtain a

TLE ciphertext 𝑐 of 𝜌 (after delay rounds). By default, 𝑐 is set to be

decrypted Δ rounds after the end of the broadcast period. Then, she

makes an RO query for 𝜌 , receives a response 𝜂 and broadcasts 𝑐

and𝑀 ⊕ 𝜂 via FUBC. Any recipient of 𝑐, 𝑀 ⊕ 𝜂 can retrieve the mes-

sage Δ rounds after the end of the broadcast period by (i) obtaining

𝜌 via a decryption request of 𝑐 to F leak,delay
TLE , (ii) obtaining 𝜂 as a

RO response to query 𝜌 , and (iii) computing𝑀 ← (𝑀 ⊕ 𝜂) ⊕ 𝜂.
Theorem 2. Let leak(·), delay be the leakage and delay param-

eters of FTLE. Let Φ,Δ be positive integers such that Φ > delay and
Δ > max

Cl∗
{leak(Cl∗)−Cl∗}. The protocolΠSBC in Figure 8 UC-realizes

F Φ,Δ,𝛼
SBC in the (FUBC, F

leak,delay
TLE , FRO,Gclock)-hybrid model against

an adaptive adversary corrupting 𝑡 < 𝑛 parties, where the simulator

advantage is 𝛼 = max

Cl∗
{leak(Cl∗) − Cl∗} + 1.

Corollary 1. There exists a protocol that UC-realises F Φ,Δ,𝛼
SBC

in the (Fcert,W𝑞 (F ∗RO), FRO, Gclock)-hybrid model, where Φ > 3,

Δ > 2, and 𝛼 = 3.

6 APPLICATIONS OF SBC
6.1 Distributed random string generation
The delayed uniform random string (DURS) functionality.
The DURS functionality is along the lines of the common reference

string (CRS) functionality in [5]. The functionality draws a single

random string 𝑟 uniformly at random, and delivers 𝑟 upon request.

The delivery of 𝑟 is delayed, in the sense that the party who made

an early request has to wait until Δ time has elapsed since the

first request was made. Besides, the simulator has an advantage

𝛼 , i.e., it can obtain 𝑟 (on behalf of some corrupted party) when

Δ − 𝛼 time has elapsed since the first request was made. The DURS

functionality is presented in detail the full version.

The DURS protocol. As a first application, we propose a proto-
col that employs SBC to realize the DURS functionality described

above. The idea is simple: each party contributes its randomness

by broadcasting it via SBC to other parties. After SBC is finalized

(with delay Δ), all parties agree on the XOR of the received random

strings as the generated URS. In addition, the parties agree on the

beginning of the URS generation period via a special ‘Wake_Up’
message broadcast in RBC manner by the first activated party.

Theorem 3. Let Δ,Φ, 𝛼 be non-negative integers such that Δ >

Φ > 0 and Δ − Φ ≥ 𝛼 . The protocol ΠDURS in Figure 9 UC-realizes

F Δ,𝛼
DURS in the (F Φ,Δ−Φ,𝛼

SBC , FRBC,Gclock)-hybrid model against an

adaptive adversary corrupting 𝑡 < 𝑛 parties.

6.2 Self-tallying e-voting
The concept of self-tallying elections was introduced by Kiayias

and Yung in [21]. In this paradigm, the post-ballot-casting (tally)

PODC ’23, June 19–23, 2023, Orlando, FL, USA Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas Zacharias

The DURS protocol ΠDURS (F Φ,Δ−Φ,𝛼
SBC , FRBC, P).

Each party 𝑃 maintains a variable urs𝑃 initialized to ⊥
and two flags 𝑓 𝑃wait, 𝑓

𝑃
awake, initialized to 0.

■Upon receiving (sid,URS) fromZ, the party 𝑃 does:

(1) If urs𝑃 ≠ ⊥, it returns (sid,URS, urs𝑃) toZ. Else,

(a) If 𝑓 𝑃wait = 0, she sets 𝑓 𝑃wait ← 1.

(b) If 𝑓 𝑃awake = 0, she sends (sid, Broadcast, Wake_Up)
to F 𝑃

RBC.

■ Upon receiving (sid, Broadcast, Wake_Up, 𝑃∗) from

F 𝑃∗
RBC, if 𝑃

∗ ∈ P and 𝑓 𝑃awake = 0, the party 𝑃 does:

(1) She sets 𝑓 𝑃awake ← 1.

(2) She chooses a randomness 𝜌
$← {0, 1}𝜆 .

(3) She sends (sid, Broadcast, 𝜌) to F Φ,Δ−Φ,𝛼
SBC .

■ Upon receiving (sid𝐶 ,Advance_Clock) from Z, the

party 𝑃 does:

(1) If 𝑓 𝑃awake = 0, she sends (sid𝐶 ,Advance_Clock) to
F 𝑃
RBC.

(a) If F 𝑃
RBC responds with

(sid, Broadcast, Wake_Up, 𝑃), she executes

steps 1-3 from the Broadcast interface above.

(b) She sends (sid𝐶 ,Advance_Clock) to Gclock.
Otherwise, she sends (sid𝐶 ,Advance_Clock) to

F Φ,Δ−Φ,𝛼
SBC . Upon receiving the token from F Φ,Δ−Φ,𝛼

SBC ,

she sends (sid𝐶 ,Advance_Clock) to Gclock.
■ Upon receiving (sid, Broadcast, ⟨𝜌1, . . . 𝜌𝑘 ⟩) from

F Φ,Δ−Φ,𝛼
SBC , if urs𝑃 = ⊥, the party 𝑃 does:

(1) She sets urs𝑃 ←
⊕

𝑖∈[𝑘]:𝜌𝑖 ∈{0,1}𝜆 𝜌𝑖 .

(2) If 𝑓 𝑃wait = 1, she sends (sid,URS, urs𝑃) toZ.

Figure 9: The DURS protocol ΠDURS with parties in P.

phase can be performed by any party, removing the need for tallier

designation. It was further improved by Groth in [16], and later

studied in the UC framework by Szepieniec and Preneel in [24].

To ensure fairness, i.e. to prevent intermediary results from being

leaked before the end of the casting phase, all these previous works

introduce a trusted control voter that casts a dummy ballot last,

contradicting self-tallying in some sense. In this section, we deploy

our SBC channel to solve the fairness challenge in self-tallying

elections, lifting the need for this trusted control voter.

The voting system (VS) functionality. The ideal voting system
functionality, F Φ,Δ,𝛼

𝑉𝑆
is presented in Figure ??. It is simply the

adaptation of Preneel and Szepieniec’s functionality to the global

clock model and adaptive corruption [24]. The VS functionality

only differs from the SBC functionality in that the individually

broadcast ballots are not forwarded to the voters (and simulator),

but instead the result (tally) of the election is sent to them. Voters

submit their votes to the functionality during the casting period

The self-tallying protocol ΠSTVS (F Φ,Δ,𝛼
SBC , FRBC, FPKG, FSKG,V)

■ Initiate by invoking FPKG followed by FSKG.
■All authorities 𝐴 𝑗 choose random values 𝑥𝑖, 𝑗 ← Z𝑛2 for

all voters𝑉𝑖 such that
∑
𝑖 𝑥𝑖, 𝑗 = 0. They send these values to

FRBC but encrypted with that voter’s public key. Also,they

publish𝑤𝑥𝑖,𝑗
for each 𝑥𝑖, 𝑗 .

■The scrutineers check that

∑
𝑖 𝑥𝑖, 𝑗 = 0 for all 𝑗 by calcu-

lating

∏
𝑖 𝑤

𝑥𝑖,𝑗 ?

= 1. Also, the scrutineers calculate every

voter’s verification key𝑤𝑖 = 𝑤
∑

𝑗 𝑥𝑖,𝑗 =
∏

𝑗 𝑤
𝑥𝑖,𝑗

.

■All voters𝑉𝑖 read their messages from the authorities and

determine their own secret exponent 𝑥𝑖 =
∑

𝑗 𝑥𝑖, 𝑗 .

■ In order to vote, the voters select a public random seed

𝑟 , for example by querying the random oracle. Next, each

voter encrypts his vote using 𝑟𝑥𝑖 for randomizer. This en-

cryption is posted to FBB F Φ,Δ,𝛼
SBC along with a proof that

the ballot encrypts an allowable vote and that the correct

secret exponent was used, and with a signature on the

previous two objects.

■ Upon receiving (sid, Broadcast, ⟨𝑏1, . . . , 𝑏𝑘 ⟩) from

F Φ,Δ,𝛼
SBC , voters combine all votes and calculate tally 𝑟𝑒𝑠 .

Figure 10: The protocol ΠSTVS with voters V. Variant of [24]:
instead of posting to the bulletin board FBB, ballots are posted
via FSBC, removing the need for the trusted control voter.

that lasts Φ amount of time from the opening of the election. The

functionality does not allow the adversary to read the honestly

cast votes or to falsify them. The functionality releases the result

of the election when it moves to the tally phase after Φ + Δ time

has elapsed from the opening of the election. The simulator has

an advantage 𝛼 , i.e., it can obtain the election result (on behalf of

some corrupted party) when Φ + Δ − 𝛼 time has elapsed since the

opening of the election, (yet after the end of the casting period).

The VS functionality is presented in detail in the full version.

The self-tallying VS (STVS) protocol. We deploy an SBC in-

stead of the BB used in the original protocol of Preneel and Szepi-

eniec [24] to ensure fairness, removing the need for the control

dummy party. The protocol assumes a public-key generation mech-

anism formalised by an ideal functionality FSKG for the authorities

public key and corresponding private key shares, and a voters’ key

generation functionality FPKG for eligibility. The UC-security of

ΠSTVS is similar to the original one [24].

Theorem 4. Let Δ,Φ, 𝛼 be non-negative integers such that Δ >

Φ > 0 and Δ ≥ 𝛼 . The protocolΠSTVS in Figure 10 UC-realizes F Φ,Δ,𝛼
VS

in the (F Φ,Δ,𝛼
SBC , FRBC, FPKG, FSKG,Gclock)-hybrid model against an

adaptive adversary corrupting 𝑡 < 𝑛 parties.

ACKNOWLEDGMENTS
Zacharias was supported by Input Output (https://iohk.io) through

their funding of the Edinburgh Blockchain Technology Lab.

https://iohk.io

Universally Composable Simultaneous Broadcast against a Dishonest Majority and Applications PODC ’23, June 19–23, 2023, Orlando, FL, USA

REFERENCES
[1] Myrto Arapinis, Ábel Kocsis, Nikolaos Lamprou, Liam Medley, and Thomas

Zacharias. 2023. Universally Composable Simultaneous Broadcast against a Dis-

honest Majority and Applications. Technical Report 2305.06468. arXiv. https:

//doi.org/10.48550/arXiv.2305.06468 Full version of this paper.

[2] Myrto Arapinis, Nikolaos Lamprou, and Thomas Zacharias. 2021. Astrolabous:

A Universally Composable Time-Lock Encryption Scheme. In Advances in Cryp-

tology - ASIACRYPT 2021 - 27th International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Singapore, December 6-10, 2021,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13091), Mehdi Tibouchi

and Huaxiong Wang (Eds.). Springer, 398–426. https://doi.org/10.1007/978-3-

030-92075-3_14

[3] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.

Bitcoin as a Transaction Ledger: A Composable Treatment. In Advances in Cryp-

tology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in Com-

puter Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,

324–356. https://doi.org/10.1007/978-3-319-63688-7_11

[4] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. 2021. TARDIS: A Foundation of Time-Lock Puzzles in UC. In Advances

in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October

17-21, 2021, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 12698),

Anne Canteaut and François-Xavier Standaert (Eds.). Springer, 429–459. https:

//doi.org/10.1007/978-3-030-77883-5_15

[5] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE Computer

Society, 136–145. https://doi.org/10.1109/SFCS.2001.959888

[6] Ran Canetti. 2004. Universally Composable Signature, Certification, and Au-

thentication. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17

2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society, 219.

https://doi.org/10.1109/CSFW.2004.24

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In Theory of Cryptography, 4th Theory of

Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24,

2007, Proceedings (Lecture Notes in Computer Science, Vol. 4392), Salil P. Vadhan

(Ed.). Springer, 61–85. https://doi.org/10.1007/978-3-540-70936-7_4

[8] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults

(Extended Abstract). In 26th Annual Symposium on Foundations of Computer Sci-

ence, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer Society, 383–395.

https://doi.org/10.1109/SFCS.1985.64

[9] Benny Chor and Michael O. Rabin. 1987. Achieving Independence in Logarithmic

Number of Rounds. In Proceedings of the Sixth Annual ACM Symposium on Princi-

ples of Distributed Computing, Vancouver, British Columbia, Canada, August 10-12,

1987, Fred B. Schneider (Ed.). ACM, 260–268. https://doi.org/10.1145/41840.41862

[10] Ran Cohen, Juan Garay, and Vassilis Zikas. 2021. Completeness Theorems for

Adaptively Secure Broadcast. Cryptology ePrint Archive, Paper 2021/775. https:

//eprint.iacr.org/2021/775 https://eprint.iacr.org/2021/775.

[11] Danny Dolev and H. Raymond Strong. 1982. Polynomial Algorithms for Multiple

Processor Agreement. In Proceedings of the 14th Annual ACM Symposium on

Theory of Computing, May 5-7, 1982, San Francisco, California, USA, Harry R.

Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber

(Eds.). ACM, 401–407. https://doi.org/10.1145/800070.802215

[12] Sebastian Faust, Emilia Käsper, and Stefan Lucks. 2008. Efficient Simultaneous

Broadcast. In Public Key Cryptography - PKC 2008, 11th International Workshop

on Practice and Theory in Public-Key Cryptography, Barcelona, Spain, March 9-12,

2008. Proceedings (Lecture Notes in Computer Science, Vol. 4939), Ronald Cramer

(Ed.). Springer, 180–196. https://doi.org/10.1007/978-3-540-78440-1_11

[13] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. 2011.

Adaptively secure broadcast, revisited. In Proceedings of the 30th Annual ACM

Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA,

USA, June 6-8, 2011, Cyril Gavoille and Pierre Fraigniaud (Eds.). ACM, 179–186.

https://doi.org/10.1145/1993806.1993832

[14] Juan A. Garay, Aggelos Kiayias, Rafail M. Ostrovsky, Giorgos Panagiotakos, and

Vassilis Zikas. 2020. Resource-Restricted Cryptography: Revisiting MPC Bounds

in the Proof-of-Work Era. In Advances in Cryptology - EUROCRYPT 2020 - 39th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II (Lecture Notes

in Computer Science, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer,

129–158. https://doi.org/10.1007/978-3-030-45724-2_5

[15] Rosario Gennaro. 2000. A Protocol to Achieve Independence in Constant Rounds.

IEEE Trans. Parallel Distributed Syst. 11, 7 (2000), 636–647. https://doi.org/10.

1109/71.877748

[16] Jens Groth. 2004. EfficientMaximal Privacy in BoardroomVoting andAnonymous

Broadcast. In Financial Cryptography, 8th International Conference, FC 2004, Key

West, FL, USA, February 9-12, 2004. Revised Papers (Lecture Notes in Computer

Science, Vol. 3110), Ari Juels (Ed.). Springer, 90–104. https://doi.org/10.1007/978-

3-540-27809-2_10

[17] Alejandro Hevia. 2006. Universally Composable Simultaneous Broadcast. In

Security and Cryptography for Networks, 5th International Conference, SCN 2006,

Maiori, Italy, September 6-8, 2006, Proceedings (Lecture Notes in Computer Science,

Vol. 4116), Roberto De Prisco and Moti Yung (Eds.). Springer, 18–33. https:

//doi.org/10.1007/11832072_2

[18] Alejandro Hevia and Daniele Micciancio. 2005. Simultaneous broadcast revis-

ited. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Princi-

ples of Distributed Computing, PODC 2005, Las Vegas, NV, USA, July 17-20, 2005,

Marcos Kawazoe Aguilera and James Aspnes (Eds.). ACM, 324–333. https:

//doi.org/10.1145/1073814.1073878

[19] Martin Hirt and Vassilis Zikas. 2010. Adaptively Secure Broadcast. In Advances in

Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30

- June 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6110), Henri

Gilbert (Ed.). Springer, 466–485. https://doi.org/10.1007/978-3-642-13190-5_24

[20] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Universally

Composable Synchronous Computation. In Theory of Cryptography - 10th Theory

of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 7785), Amit Sahai (Ed.). Springer, 477–498.

https://doi.org/10.1007/978-3-642-36594-2_27

[21] Aggelos Kiayias and Moti Yung. 2002. Self-tallying Elections and Perfect Ballot

Secrecy. In Public Key Cryptography, 5th International Workshop on Practice and

Theory in Public Key Cryptosystems, PKC 2002, Paris, France, February 12-14, 2002,

Proceedings (Lecture Notes in Computer Science, Vol. 2274), David Naccache and

Pascal Paillier (Eds.). Springer, 141–158. https://doi.org/10.1007/3-540-45664-

3_10

[22] Jesper Buus Nielsen. 2002. Separating Random Oracle Proofs from Complexity

Theoretic Proofs: The Non-committing Encryption Case. In Advances in Cryptol-

ogy - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 18-22, 2002, Proceedings (Lecture Notes in Computer

Science, Vol. 2442), Moti Yung (Ed.). Springer, 111–126. https://doi.org/10.1007/3-

540-45708-9_8

[23] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching

Agreement in the Presence of Faults. J. ACM 27, 2 (1980), 228–234. https:

//doi.org/10.1145/322186.322188

[24] Alan Szepieniec and Bart Preneel. 2015. New Techniques for Electronic Voting.

IACR Cryptol. ePrint Arch. (2015), 809. http://eprint.iacr.org/2015/809

https://doi.org/10.48550/arXiv.2305.06468
https://doi.org/10.48550/arXiv.2305.06468
https://doi.org/10.1007/978-3-030-92075-3_14
https://doi.org/10.1007/978-3-030-92075-3_14
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.24
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1145/41840.41862
https://eprint.iacr.org/2021/775
https://eprint.iacr.org/2021/775
https://eprint.iacr.org/2021/775
https://doi.org/10.1145/800070.802215
https://doi.org/10.1007/978-3-540-78440-1_11
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1007/978-3-030-45724-2_5
https://doi.org/10.1109/71.877748
https://doi.org/10.1109/71.877748
https://doi.org/10.1007/978-3-540-27809-2_10
https://doi.org/10.1007/978-3-540-27809-2_10
https://doi.org/10.1007/11832072_2
https://doi.org/10.1007/11832072_2
https://doi.org/10.1145/1073814.1073878
https://doi.org/10.1145/1073814.1073878
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
http://eprint.iacr.org/2015/809

	Abstract
	1 Introduction
	2 Background
	2.1 Network model
	2.2 The UC framework
	2.3 Hybrid functionalities
	2.4 Time-lock encryption

	3 UC (un)fair broadcast against dishonest majorities
	3.1 Unfair broadcast definition and realization
	3.2 Fair broadcast definition and realization

	4 UC time-lock encryption against adaptive adversaries
	5 Simultaneous Broadcast
	6 Applications of SBC
	6.1 Distributed random string generation
	6.2 Self-tallying e-voting

	Acknowledgments
	References

