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ABSTRACT 

Wave energy is critical to the move to a low carbon 
economy. Unfortunately, like other renewables, it 
may be sensitive to changes in climate resulting from 
rising carbon emissions. Changes in wind patterns are 
forecast and these will alter wave regimes. Evidence 
indicates that wave heights have been changing over 
recent decades, although there is no proven link to 
global warming. Changes in wave climate will impact 
on wave energy conversion: resource restrictions may 
lower energy exports with consequent negative 
economic impacts. Alternatively, increased storm 
activity will increase survival risks for installations. 
Here, we outline evidence of recent wave climate 
change and projections of the future. Methodologies 
for inferring future change are compared and a simple 
case study is presented. 

INTRODUCTION 

Wave energy has a key role to play in meeting long-
term renewable energy targets. This is particularly 
true of the Atlantic coast of Europe which possesses 
vast wave energy resources with some of the most 
favourable sites located off the Scottish west coast. 

While wave energy is being developed in order to 
limit or avoid climate change, its reliance on the 
natural environment means that it may be vulnerable 
to changes in climate that result from rising carbon 
emissions. It shares this risk with other renewable 
sources like hydropower (Harrison and Whittington, 
2002) and wind (Breslow and Sailor, 2002). Indeed, 
there is evidence that global wave heights have been 
changing over recent decades and while it has been 
suggested that this may be caused by global warming 
(Grevemeyer), there is no conclusive proof as yet.   

Given the prospects for wave energy, there is a need 
to quantify the potential for climate change to alter 
wave energy resources and the ability of wave energy 
devices to extract energy on a commercial basis. 

EVIDENCE OF CHANGE 

Trends of increasing wave height in the Northeast 
Atlantic were identified in the late 1980s and early 
1990s (Carter and Draper, 1988; Bacon and Carter, 
1991). These suggested increases in mean wave 
height of some 2% per year and are in line with other 
sources that indicate changes of 30-50% over 30 
years. Early studies were unable to link trends in 
local wind speed that with the larger waves (Bacon 
and Carter, 1991). However, additional work found a 
link between broader climate conditions in the form 
of a North-South North Atlantic atmospheric pressure 
gradient and the wave hight increases (Bacon and 
Carter, 1993).  

More recent work (Woolf et al, 2002) based on 
satellite altimeter measurements is overcoming the 
problems associated with earlier in-situ data from 
buoys and weather ships (e.g., poor spatial coverage 
and changes in observational practice). The study 
suggests wave heights in the northeast Atlantic have 
increased by 0.6 m (15%) over the period between 
1967 and 1991.  

Evidence from wave measurement is backed up those 
indicating changes in storm activity. More locally, 
storm frequency in the far Northeast Atlantic has 
increased since 1958, although the frequency appears 
to be lower since the early 1990s (Weisse et al, in 
press). The changes in storm activity are mirrored by 
growth in extreme wave heights between 1958 and 
1997: e.g., northwest of Ireland, winter extreme wave 
heights have grown by 0.5–1% per year (Wang and 
Swail, 2002).  

To date, there has been no investigation into the 
impacts of changes in wave climate on wave energy 
conversion. 

IMPLICATIONS 

Changes in wind patterns are a widely anticipated 
consequence of climate change. Offshore winds will 
also change, particularly given historical long term 
trends in European wind speeds, with, e.g. UK winter 



speeds have increased by 15-20% over the past 40 
years (Watson et al., 2001). With wave energy 
proportional to the fifth-power of wind speed (Jeffrey 
et al., 1974), a 5% change in wind speed would 
produce a 25% change in wave power. As such, even 
relatively small changes in wind patterns will have 
potentially significant consequences for wave energy 
availability.  

Wave energy converters (WECs) are designed to 
capture energy within specific bands of wave height, 
period and direction. Although much research has 
focussed on developing ‘tuneable’ devices, changes 
in the resource will inevitably alter energy capture. 
Where the climate alters in such a way as to restrict 
the resource there may be reductions in energy 
production and consequent economic impacts, 
particularly where this coincides with high price 
periods. In cases where the wave resource increases it 
may bring revenue benefits although there is a 
likelihood that increased storm activity will pose an 
enhanced risk to the survivability of installations; 
installations will need to be designed with this in 
mind. The potential for climate to change in such a 
way as to enhance seasonal differences in wave 
activity may be of particular concern.  

A further issue is sea level rise, which is expected to 
be between 20-80 cm by 2050 (Hulme et al, 2002). 
While WECs moored in deeper water might 
experience limited impacts, shoreline based devices 
could be affected by raised water levels, albeit the 
effects may be tempered by the existing tidal range.  

ASSESSMENT METHODOLOGIES 

In assessing the impact of changes in climate on wave 
energy, there are several distinct stages:  
• Projection of future greenhouse emissions, 
• Resultant changes in climate variables, 
• Translation into wave climate effect, 
• Impact on energy production and economics. 

General Circulation Models (GCMs) are complex 
atmosphere and oceans models, akin to weather 
forecasting models, that are driven with scenarios of 
greenhouse gas concentrations. A range of emissions 
scenarios are used to attempt to capture the 
uncertainty inherent in future energy use, economic 
activity and other socio-economic trends. The work 
of the IPCC has created a range of standardised 
scenarios to allow comparison between different 
models and consequent climate impacts.  

The third aspect of the assessment process involves 
the translation of climate information into projections 
of wave climate. Approaches include: 
• Climate proxy models 
• Wind-wave models 

The climate proxy approach involves finding 
relationships between important climate variables and 

the wave climate. Woolf et al. (2002) used satellite 
altimeter measurements to estimate the wave climate 
of the North Atlantic before identifying correlations 
between wave heights and the North Atlantic 
Oscillation (NAO), a measure of the pressure 
anomaly between Iceland and the Azores. Projections 
of the NAO from GCMs could then be used to infer 
future wave heights. To date this has been used to 
explore the vulnerability of Western Isles ferry 
services to a changing climate (Woolf et al., 2004). 
An alternative approach (Wang et al., 2004) 
correlated sea level pressure data with significant 
wave height data from a wave hindcast. Pressure data 
from several GCMs was then used to estimate trends 
in mean and extreme wave heights. The projections 
showed the trend in wave heights in the northeast 
Atlantic and North Sea to be sensitive to changes in 
greenhouse gas emissions. Under one scenario, mean 
winter wave heights would increase by up to 11%. 

Third-generation wind-wave models (e.g. WAM) 
have also been used for projecting future wave 
climate. The approach has been to create a detailed 
historical wave climate based on measured and 
estimated wind speed datasets like those provided by 
NCEP/NOAA. The wind data is perturbed according 
to GCM data, the wind-wave model run again and the 
two climates compared. A notable example of this 
approach was the WASA Group study (WASA, 
1998) which used GCM to infer future climate; 
unfortunately their results were inconclusive. 

The two broad methods of translating climate data 
into wave information have advantages and 
disadvantages. While the regression approaches are 
fairly computationally intensive, they are much less 
so than hindcasting with wind-wave models (i.e. not 
parallel computing). However, their applicability has 
tended be on a seasonal basis with detailed wave 
height distributions generated by statistical models. 
The wind-wave models offer several advantages of 
which the main one is detailed time-series 
information that may be gained, as well as more 
ready availability of wave period information. 
Essentially, the choice between the approaches is a 
trade-off between speed (important given that several 
GCM scenarios may be required) and a more detailed 
temporal description of the wave climate. 

While the methods described above offer the most 
scientific approaches to exploring climate impacts on 
wave energy a simpler approach was saught for initial 
investigations to quantify the extent of the potential 
changes. As such, was a sensitivity study was carried 
out.  

SENSITIVITY STUDY 

As a first attempt at indicating the degree to which 
wave energy conversion is influenced by climate 
change, its sensitivity to changes in mean wind speed 



was assessed. The work is described in detail by 
Harrison and Wallace (2005) and briefly here. 

The assessment was carried out by combining the 
Rayleigh wind spectrum with the Pierson-Moskowitz 
wave spectrum to provide a link between wind 
climate and wave energy potential. The appraisal 
methodology, as adapted from the standard approach 
detailed by Thorpe (1999), is shown in Figure 1.  

 

 
 

Figure 1 Wave energy appraisal methodology using 
wind speed (after Harrison and Wallace, 2005) 

 

The main premise is that according to the Pierson-
Moskowitz spectrum a particular wind speed defines 
a particular sea state in terms of wave height and 
period. The Rayleigh wind speed distribution 
provides the probability of a particular wind speed 
occurring given a specified mean wind speed. Each 
incremental wind speed therefore relates to a specific 
sea state and the probability of its occurrence given 
by the Rayleigh distribution. As such this provides a 
probability distribution for a range of sea states, 
albeit with these falling along a curve in the wave 
height/period domain rather than a true scatter 
diagram (Figure 2). By changing the mean wind 
speed, the proportion of time for which a given sea 
state occurs also changes. This approach is not 
dissimilar from that used by Ertekin and Yu (1994). 
By combining the sea state distribution with device 
specific power output and efficiency data, estimates 

of energy production and financial performance may 
be gained.  

 

 
Figure 2 Scatter diagram and Pierson-Moskowitz 

spectrum (after Harrison and Wallace, 2005) 

 

Using this approach, a hypothetical WEC installation 
was modelled assuming a mean wind speed of 10 m/s 
which is approximately that of the northeast Atlantic. 
The Pelamis power matrix provided a convenient 
means of converting the sea state distribution into 
estimates of power output. Together with some fairly 
simple cost and revenue estimates for the device, this 
allowed financial performance to be assessed. By 
varying mean wind speed by ±20% of the initial 
amount, the effect on a range of resource, production 
and financial indicators could be explored. The 
results for  wind speed changes of ±10% are shown in 
Table 1. 
 

Table 1 
Indicators with changes in mean wind speed (after 

Harrison and Wallace, 2005) 
 

INDICATOR CHANGE IN WIND 
SPEED (%) 

 -10 0 +10 
Mean RMS wave height (m) 2.19 2.70 3.27 
Mean wave period (s) 5.63 6.25 6.88 
Mean wave power (kW/m) 49.5 83.73 134.4 
Production (GWh/yr) 1.61 2.04 2.45 
Load factor (%) 24.5 31.0 37.3 
Internal Rate of Return (%) 6.18 9.36 12.16 

 

The results indicate that changes in wind speed have 
a significant impact on the available wave resource 

 



 
Figure 3 Financial sensitivity to wind speed and key 

parameters (after Harrison and Wallace, 2005) 

 

The authors believe that this study is the first to 
address how global warming-induced changes in 
wind climate will influence the production and 
economics of wave energy devices. A deliberately 
simple approach has been taken in order to get a 
quantitative appreciation of the potential changes. As 
a result, several important aspects are not considered: 

1. Swell and monthly variations in wave 
climate, 

2. Survivability in extreme waves, and 

3. Sensitivity of alternative WECs. 

The Pierson-Moskowitz spectrum takes into account 
only wind generated waves and ignores swell. Swell 
waves are larger, longer wavelength waves produced 
by distant extra-tropical cyclones (storms). The 
intensity and frequency of these storms are of major 
importance to the wave energy resource of Western 
Europe and the Pacific Northwest, particularly in the 
winter months. In the North Atlantic and Pacific the 
storm tracks tend to move in a northeasterly direction 
and, as the storm rotates anti-clockwise, the southern 
part of the system continuously feeds energy into the 
waves. With the storm effectively moving with the 
waves, very large energetic waves are produced. 
When the storms weaken, the waves continue to 
travel (with minimal energy loss) in a north-easterly 
direction, arriving as swell a few days later. By 
ignoring swell, the PM spectrum tends to 
underestimate wave energy which explains the lower 
than expected device performance. Furthermore, the 
PM spectrum is only validated for wind speeds of up 
to 20 m/s as few higher speed spectra were available 
in the original study [16]. Given the very low 
probabilities attached to the higher wind speeds the 
approach is believed to be acceptable.  

Despite its limitations, this study has been a useful 
start in defining the extent to which wave energy 

conversion may be vulnerable to changing climate. 
More sophisticated approaches relating climate to 
wave conditions and driven by current and future 
climate as projected by GCMs will be necessary for 
detailed examination and the application of a range of 
analyses including scenario and risk analysis to this 
issue. 
 

CONCLUSION 

This paper has shown how to prepare a paper for 
submission to the 6th European Wave and Tidal 
Energy Conference, Glasgow 2005 . Good luck with 
your paper. Hope to see you in August. 
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