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Abstract
Lack of global data inventories obstructs scientific modeling of and response to landslide hazards which are oftentimes

deadly and costly. To remedy this limitation, new approaches suggest solutions based on citizen science that requires active

participation. In contrast, as a non-traditional data source, social media has been increasingly used in many disaster

response and management studies in recent years. Inspired by this trend, we propose to capitalize on social media data to

mine landslide-related information automatically with the help of artificial intelligence techniques. Specifically, we

develop a state-of-the-art computer vision model to detect landslides in social media image streams in real-time. To that

end, we first create a large landslide image dataset labeled by experts with a data-centric perspective, and then, conduct

extensive model training experiments. The experimental results indicate that the proposed model can be deployed in an

online fashion to support global landslide susceptibility maps and emergency response.
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1 Introduction

Landslides1 occur all around the world and cause thousands

of deaths and billions of dollars in infrastructural damage

worldwide every year [1]. However, landslide events are

often under-reported and insufficiently documented due to

their complex natural phenomena governed by various

intrinsic and external conditioning and triggering factors

such as earthquakes and tropical storms, which are usually

more conspicuous, and hence, more widely reported [2].

Due to this oversight and lack of global data inventories to

study landslides, Froude and Petley assert that any attempt

to quantify global landslide hazards and the associated

impacts is destined to be an underestimation [3].

Existing landslide detection and mapping solutions

typically rely on data from ground sensors or satellites.

While sensor-based approaches can achieve high accuracy

at sub-catchment levels by monitoring land characteristics

such as rainfall, altitude, soil type, and slope [4, 5], their

global-scale deployment is impractical. Satellite-based

approaches can provide more scalable solutions by
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analyzing Synthetic Aperture Radar (SAR) or optical

imagery [6, 7]. However, their deployment can still prove

costly and time-consuming. Furthermore, satellite data are

susceptible to noise such as clouds.

Using Volunteered Geographical Information (VGI) as

an alternative approach, NASA launched a website2 in

2018 to allow citizens to report about the regional land-

slides they see in-person or online [8]. Subsequent studies

developed other means such as mobile apps to collect cit-

izen-provided data [9, 10]. However, these studies assume

active participation of volunteers to collect landslide data

and still require time consuming work by specialists

directly engaging with the volunteers and interpreting the

received data [11].

To alleviate the need for opt-in participation and manual

processing, we develop a state-of-the-art AI model that can

automatically detect landslides from social media images

in real-time. To achieve this goal, we first create a large

image dataset comprising 11,737 images from various data

sources annotated by domain experts following a data-

centric AI approach described by Whang et al. [12]. We

then exploit this dataset in a comprehensive experimenta-

tion searching for the optimal landslide model configura-

tion (as in [13, 14]). This exploration reveals interesting

insights about the model training process. The optimal

landslide model achieves an accuracy of 90.6% on the

validation set, 87.0% on the held-out test set, and a striking

97.7% when applied on the real-time Twitter image stream

in the wild.

Based on this model, we envision a system that can

harvest global landslide data and facilitate further research

for building global landslide susceptibility maps as sug-

gested in [15, 16].

We make the following contributions:

• We collected the largest dataset of ground-level land-

slide images to date.

• We followed a data-centric AI approach to iteratively

improve the quality of the dataset.

• We conducted the most comprehensive experiments to

date for training deep learning models for landslide

recognition.

• We built a prototype system and deployed our landslide

detection model in the real-world to assess its perfor-

mance in the wild.

• The prototype system offers global scalability by

leveraging social media data as a form of passive

(i.e., opportunistic) crowdsourcing.

The rest of the paper is organized as follows. Section 2

reviews the relevant literature, Sect. 3 introduces the

dataset, Sect. 4 describes the model training experiments,

Sect. 5 summarizes the experimental results and findings,

Sect. 7 provides a discussion on existing limitations and

future work, and finally, Sect. 8 concludes the paper.

2 Related work

The literature on landslide detection and mapping

approaches mainly uses four types of data sources:

(i) physical sensors, (ii) remote sensing, (iii) volunteers,

and (iv) social networks. Sensor-based approaches rely on

land characteristics such as rainfall, altitude, soil type, and

slope to detect landslides and develop models to predict

future events [4, 5]. While these approaches can be highly

accurate at sub-catchment levels, their large-scale deploy-

ment is extremely costly.

Earth observation data obtained using high-resolution

satellite imagery has been widely used for landslide

detection, mapping, and monitoring [6, 7]. Remote sensing

techniques either use Synthetic Aperture Radar (SAR) or

optical imagery to identify landslides following various

approaches from image classification [17, 18] and seg-

mentation [19, 20] to object detection [21, 22]. While

remote sensing through satellites can be useful to monitor

landslides globally, their deployment can prove costly and

time-consuming. Moreover, satellite data are susceptible to

noise such as clouds.

A few studies demonstrate the use of Volunteered

Geographical Information (VGI) as an alternative method

to detect landslides [9, 23–25]. These studies assume active

participation of volunteers to collect landslide data where

the volunteers opt in to use a mobile app to provide

information such as photos, time of occurrence, damage

description and other observations about a landslide event.

In order to validate landslide photos collected by the vol-

unteers, Can et al. present an image classification model

based on Convolutional Neural Networks (CNN) trained on

a relatively small in-house dataset [24]. On the contrary,

our work aims to capitalize on massive social media data

without any active participation requirement and with

better scalability. In addition, we construct a much larger

dataset to train deep learning models and perform more

extensive experimental evaluations.

Social media data have been used in many humanitarian

contexts ranging from general social analytics [26] and

geospatial sentiment analysis [27] to incident detection

[28] and rapid damage assessment [29], including multi-

modal approaches [30]. However, its use for landslide

detection has not been explored extensively. To the best of

our knowledge, no prior work has explored the use of

social media imagery to detect landslides. The most rele-

vant studies by Musaev et al. combine social media text

data and physical sensors to detect landslides [31, 32].2 https://gpm.nasa.gov/landslides/index.html.
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Specifically, they use textual messages collected through a

set of landslide-related keywords on Twitter, Instagram,

and YouTube in combination with sensor data about seis-

mic activity and rainfall to train a machine learning clas-

sifier that can identify landslide incidents. In this study, we

focus on analyzing social media images which can provide

more detailed information about the impact of the landslide

event. To that end, our work is orthogonal to prior art.

Finally, this paper is different from and complementary

to our previous papers [15, 16] in the following ways. In

[15], we present a narrative from a practitioner perspective

that predominantly highlights existing limitations and

challenges in landslide research and proposes a high-level

methodology including data collection, processing, and

annotation for an AI-based solution without going into

technical details of the machine learning aspects of the

problem. In [16], we focus on the system engineering

aspects where we present building blocks of an online

system that can ingest social media data, eliminate dupli-

cate and irrelevant content as well as identify and geolocate

landslide reports. We also provide proper latency and

throughput benchmark results for each system component.

The landslide detection model is covered very briefly in

this context. In this paper, on the other hand, we elaborate

on all the technical details about the machine learning

model development aspects of the problem through an

extensive experimentation in search for the optimal model

selection and training configuration. To ensure the paper is

self-contained, we recapitulate the most relevant parts of

our prior works here very briefly.

3 Dataset

To train models that can detect landslides in images, we

curated a large image dataset from multiple sources with

diverse characteristics. We collected some images from the

Web using Google Image search with keywords such as

landslide, landslip, earth slip, mudslide, rockslide, rock fall

and some images from Twitter using similar landslide-re-

lated hashtags. We obtained additional images from land-

slide specialists captured during field trips. The images

obtained from social media or the Web are usually noisy

and can include duplicates. Similarly, the images captured

during field trips are not always useful for model training.

Therefore, the collected data is manually labeled by three

landslide experts, who are also co-authors of this study,

following a data-centric AI [12] approach that suggests

focusing on the data pipeline which typically involves

(i) curating a dataset for labeling based on model perfor-

mance after every iterative cycle to address the model’s

specific weaknesses and (ii) significantly increasing per-

formance with a relatively small amount of training data, as

elaborated in [15]. Since the AI task at hand is ‘‘given an

image, recognize landslides’’ (i.e., no other external

information or expert knowledge is available to the AI

model), the experts were instructed to keep this computer-

vision perspective in mind and label only the most evident

cases as ‘‘landslide’’ images (i.e., the images where the

landslide is the main theme exhibiting substantial visual

cues for the model to learn from). On the other hand, since

our ultimate goal is to develop a system that will contin-

uously monitor the noisy social media streams to detect

landslide events in real-time, we retained negative (i.e.,

not-landslide) images that illustrate completely irrelevant

cases (e.g., cartoons, advertisements, selfies) as well as

difficult scenarios such as post-disaster images from

earthquakes and floods in addition to other natural scenes

without landslides in the final dataset. The complete dataset

creation process includes several rounds of model training,

error analysis, expert discussions, and label updates. The

final dataset contains 11,737 images. Some example ima-

ges are shown in Fig. 1. The distribution of images across

data sources is summarized in Table 1 and the data splits

are presented in Table 2. As suggested by Table 2, only

about 23% of the images are categorized as ‘‘landslide.’’

Our dataset is currently the largest dataset for landslide

recognition from ground-level images. To assess the

quality of the final labels, we measured the inter-annotator

agreement using two statistical measures: Fleiss’ Kappa

[33] and percentage agreement (observer agreement).

Despite the inherent difficulty of the task, the experts

achieved an overall Fleiss’ Kappa of 0.58, which indicates

an almost substantial inter-annotator agreement. They also

achieved a percentage agreement of 76%, which is only

slightly below the 80% mark set as a rule-of-thumb by

Bayerl and Paul [34].

4 Landslide model

Many computer vision tasks have greatly benefited from

the recent advances in deep learning. The features learned

in deep convolutional neural networks (CNNs) are proven

to be transferable and quite effective when used in other

visual recognition tasks [35–37], particularly when training

samples are limited. Considering we also have limited

training examples for data-hungry deep CNNs, we follow a

transfer learning approach to adapt the features and

parameters of the network from the broad domain (i.e.,

large-scale image classification) to the specific one (i.e.,

landslide classification). However, it is often overlooked

how complex the transfer learning setup can become with

all different possible configurations and hyperparameters to

tune for optimal performance. To this end, [13, 14] present

exemplary studies on empirical analysis of the impact of
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different training strategies on the performance of ResNet

architecture where they explore training recipes with dif-

ferent loss functions, data augmentation, regularization,

and optimization techniques, among others. Inspired by

these studies, we conduct extensive experiments where we

train several different deep CNN architectures using dif-

ferent optimizers, learning rates, weight decays, and class

balancing strategies.

CNN Architecture The CNN architecture (arch) plays a

significant role on the performance of the resulting model

depending on the available data size and problem charac-

teristics. Therefore, we explored a representative sample of

well-known CNN architectures including VGG16 [38],

ResNet18, ResNet50, ResNet101 [39], DenseNet [40],

InceptionNet [41], and EfficientNet [42], among others.

Optimizer An optimizer (opt) is an algorithm or method

that changes the attributes of a neural network (e.g.,

weights and learning rate) in order to reduce the opti-

mization loss and to increase the desired performance

metric (e.g., accuracy). In this study, we experimented with

the most popular optimizers, i.e., Stochastic Gradient

Descent (SGD) and Adam [43].

Learning rate Learning rate (lr) controls how quickly

the model is adapted to the problem. Using a too large

learning rate can cause the model to converge too quickly

to a sub-optimal solution whereas a too small learning rate

can cause the process to get stuck. Since learning rate is

one of the most important hyperparameters and setting it

correctly is critical for real-world applications, we per-

formed a grid search over a large range of values (i.e.,

f10�2; 10�3; 10�4; 10�5; 10�6g).
Weight decay Weight decay (wd) controls the regular-

ization of the model weights, which in turn, helps to avoid

overfitting of a deep neural network on the training data

and improve the performance of the model on the unseen

data (i.e., better generalization ability). In light of this, we

experimented with a large range of weight decay values

(i.e., f10�2; 10�3; 10�4; 10�5g).
Class balancing An imbalanced dataset can bias the

prediction model toward the dominant class (i.e., not-

landslide) and lead to poor performance on the minority

class (i.e., landslide), which is not ideal for our application.

The approaches to tackle this problem range from gener-

ating synthetic data to using specialized algorithms and

loss functions. Here, we explored one of the basic

approaches, i.e., data resampling, where we oversampled

images from the landslide class (i.e., sampling with

replacement) to create a balanced training set.

Other training details We ran all our experiments on

Nvidia Tesla P100 GPUs with 16GB memory using

PyTorch library.3 We adjusted the batch size according to

each CNN architecture in order to maximize GPU memory

3 https://pytorch.org/.

LANDSLIDE NOT-LANDSLIDE

Twitter Google Field Twitter Google Field

Fig. 1 Example images from the dataset

Table 1 Distribution of images across data sources

Training Validation Test Total

Google 4398 628 1258 6284

Twitter 807 115 231 1153

Field 3010 430 860 4300

Total 8215 1173 2349 11,737

Table 2 Data splits (70:10:20)

Training Validation Test Total

Landslide 1883 271 536 2690

Not-landslide 6332 902 1813 9047

Total 8215 1173 2349 11,737
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utilization. We used a fixed step size of 50 epochs in the

learning rate scheduler of the SGD optimizer and a fixed

patience of 50 epochs in the ‘ReduceLROnPlateau’

scheduler of the Adam optimizer, both with a factor of 0.1.

All of the models were initialized using the weights pre-

trained on ImageNet [44] and trained for a total of 200

epochs. Consequently, we trained a total of 560 CNN

models in our quest for the best model configuration.

5 Results

Due to limited space, Table 3 presents results only for the

top performing 10 model configurations on the validation

set ranked based on Matthew Correlation Coefficient

(MCC), which is regarded as a balanced measure for

imbalanced classification problems [45] and defined by

Eq. 1.

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p ;

ð1Þ

where TP is the number of true positives, TN the number of

true negatives, FP the number of false positives, and FN the

number of false negatives. Besides MCC, we also compute

common performance metrics such as Accuracy, Precision,

Recall, and F1-score as defined by Eqs. 2–5, respectively.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; ð2Þ

Precision ¼ TP

TPþ FP
; ð3Þ

Recall ¼ TP

TPþ FN
; ð4Þ

F1 ¼ 2TP

2TPþ FPþ FN
: ð5Þ

The top-performing model configuration (i.e., arch:

ResNet50, opt: Adam, lr: 10�4, wd: 10�3, no class bal-

ancing) achieves MCC=0.730, F1=0.789, and Accu-

racy=0.906, all deemed plausible by the specialists.

Nevertheless, we investigate the full table of results and

identify the following insights:

• When everything but the optimizer is kept fixed, the

models trained with the Adam optimizer outperforms

the models trained with the SGD optimizer (179 vs.

100). This confirms the general sentiment that the

adaptive and stable nature of the Adam optimizer

necessitates less effort to achieve convergence and

attain superior training outcomes than the SGD

optimizer.

• Despite the fact that top-performing model is trained

without a class balancing strategy, the overall trend

indicates that, while everything else is the same, the

models trained with class balancing yield better

performance than those trained without class balancing

(173 vs. 103). This is inline with the general under-

standing that class balancing can prevent the models

from becoming biased toward the majority class, and

hence, generate higher accuracy models.

• ResNet50 architecture tops the rankings among all

CNN architectures by achieving the best average

ranking as well as the highest mean MCC according

to Table 4. Between the ResNet architectures, given

that the training dataset is relatively small, ResNet18

offers inadequate capacity for the problem at hand

whereas ResNet101 offers potentially more-than-

enough capacity which increases the risk of overfitting

and hurts the performance. However, the overall

differences between architectures do not seem signif-

icant except for InceptionNet which yields a signifi-

cantly poorer performance than others. This is

potentially because the InceptionNet architecture gen-

erally requires more data to overcome possible overfit-

ting and more computational resources.

• The impact of the learning rate on model performance

shows opposite trends for different optimizers. As per

Table 5, smaller learning rates (e.g.,

f10�6; 10�5; 10�4g) seem to work better with the Adam

optimizer whereas larger learning rates (e.g.,

f10�2; 10�3g) seem to work better with the SGD

optimizer. This is because when the SGD optimizer is

initialized with a very small learning rate, the training

progress becomes very slow and tends to stagnate at a

sub-optimal local minimum due to the scheduled

learning rate updates at regular intervals. In contrast,

the Adam optimizer typically operates better with a

smaller learning rate since it ensures a more stable adap-

tation during training.

• As expected, the value of the weight decay also impacts

the overall performance significantly (in particular, for

the Adam optimizer). A large weight decay (e.g., 10�2)

hurts the overall performance which tends to improve as

the weight decay takes on smaller values (see Table 6).

This implies that larger weight decay values cause

excessive regularization of the weights, which in turn,

reduces the model’s ability to learn properly.

To illustrate the effectiveness of the transfer learning

approach, we created t-SNE [46] visualizations of the

feature embeddings before and after the training of the

best-performing model. As shown in Fig. 2, the original

ResNet50 model pretrained on ImageNet can distinguish

landslide from not-landslide images neither in the training
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(Fig. 2a) nor in the validation set (Fig. 2b). However, after

finetuning the model on the target landslide dataset, the

resulting feature embeddings show almost perfect separa-

tion of the classes in the training set (Fig. 2c) and a rea-

sonably well separation in the validation set (Fig. 2d).

When applied on the held-out test set, the best-per-

forming model achieves MCC=0.619, F1=0.701, and

Accuracy=0.870 as opposed to MCC=0.730, F1=0.789, and

Accuracy=0.906 achieved on the validation set (Table 7).

Although the difference in accuracy is relatively small, the

difference in MCC and F1 are considerably large due to

significant drops in precision and recall of the model on the

test set. This phenomenon can be explained by the more-

than-twice increase in the false positive (128 vs. 45) and

false negative (178 vs. 65) predictions of the model on the

test set, potentially as a result of model overfitting to the

validation set (Table 8).

To have a better understanding of the inner workings of

the model, we investigated class activation maps [47],

which highlight the discriminative image regions that the

CNN model pays attention to decide whether an image

belongs to landslide or not-landslide class. Figure 3

demonstrates example visualizations for all four cases, i.e.,

true positives, true negatives, false positives, and false

negatives. The visualizations for the true positive predic-

tions indicate that the model successfully localizes the

landslide regions (e.g., rockfalls, earth slip, etc.) in the

images. Similarly for the true negative predictions, the

model focuses on areas that do not show any landslide

cues, successfully avoiding tricky conditions such as

muddy roads, wet surfaces, and natural rocky areas on a

beach. However, in both false positive and false negative

predictions, we observe that the errors occur mainly

because the model fails to localize its attention on a par-

ticular region in the image, or is tricked by the image

regions that are reminiscent of landslide scenes. This

analysis suggests that there is room for improvement where

Table 3 Top-10 configurations

based on MCC on the validation

set

Opt Arch CB LR WD Acc Prec Rec F1 MCC

Adam ResNet50 7 10�4 10�3 0.906 0.821 0.760 0.789 0.730

SGD ResNet101 7 10�3 10�5 0.905 0.835 0.731 0.780 0.722

SGD ResNet101 4 10�2 10�5 0.904 0.821 0.745 0.781 0.721

SGD ResNet50 7 10�3 10�3 0.905 0.838 0.727 0.779 0.721

SGD DenseNet 7 10�2 10�4 0.902 0.800 0.768 0.783 0.720

Adam ResNet50 7 10�4 10�2 0.903 0.834 0.723 0.775 0.716

SGD ResNet50 4 10�2 10�5 0.903 0.834 0.723 0.775 0.716

SGD EfficientNet 7 10�2 10�3 0.897 0.768 0.793 0.780 0.713

Adam ResNet101 7 10�4 10�3 0.902 0.845 0.705 0.769 0.712

Adam ResNet101 4 10�4 10�5 0.899 0.802 0.745 0.772 0.708

Table 4 Performance comparison of CNN architectures

Architecture Mean(MCC) Std(MCC) Avg. Rank

ResNet50 0.5384 0.2059 2.7625

ResNet101 0.5350 0.1975 2.9875

VGG16 0.5267 0.2026 3.2125

DenseNet 0.5219 0.1993 3.6125

EfficientNet 0.4951 0.2267 4.0625

ResNet18 0.4956 0.2065 4.7000

InceptionNet 0.3516 0.1758 6.6625

Table 5 Effect of the learning rate on overall performance

Learning rate Adam SGD

(mean) (std) (mean) (std)

10�6 0.5812 0.0660 0.0947 0.1239

10�5 0.6077 0.0708 0.3335 0.1825

10�4 0.6495 0.0725 0.5597 0.0904

10�3 0.5438 0.1223 0.6287 0.0710

10�2 0.3178 0.2026 0.6325 0.0822

Table 6 Effect of the weight decay on overall performance

Weight decay Adam SGD

(mean) (std) (mean) (std)

10�5 0.5772 0.1270 0.4586 0.2369

10�4 0.5685 0.1284 0.4594 0.2368

10�3 0.5462 0.1409 0.4555 0.2441

10�2 0.4681 0.2263 0.4258 0.2415
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we can train more robust models by enriching the training

set with additional hard negative and hard positive images.

For instance, we can add more images of forest areas

without any landslides to reduce false positives and more

images of small-scale landslides to reduce false negatives.

6 Real-world deployment

We have developed a proof-of-concept system as presented

in [16]. In a nutshell, the system (i) collects live tweets

from the Twitter Streaming API4 that match landslide-re-

lated keywords in multiple languages, (ii) extracts image

URLs from the tweets (if any) and downloads images, (iii)

runs the downloaded images through filtering models to

eliminate duplicate and irrelevant content, (iv) runs the

remaining images through the landslide model to tag each

4 https://developer.twitter.com/en/docs/tutorials/consuming-stream

ing-data.

Fig. 2 Feature embeddings before/after model finetuning

Table 7 Performance comparison of the best model on the validation

and test sets

Set Accuracy Precision Recall F1-score MCC

Validation 0.906 0.821 0.760 0.789 0.730

Test 0.870 0.737 0.668 0.701 0.619

Table 8 Confusion matrices for the validation and test sets

Prediction

Ground Truth Landslide Not-landslide

Validation (10%) Landslide 206 65

Not-landslide 45 857

Test (20%) Landslide 358 178

Not-landslide 128 1685
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image as landslide or not-landslide, and finally, (v) displays

the results on a dashboard for specialists’ examination. The

system has collected almost 4.5 million images since its

deployment in February 2020. However, only about 30,000

images have been labeled as landslide, which corresponds

to less than 1% of the total volume. This indicates the

difficulty of the task even though a carefully curated set of

landslide-related keywords has been used to collect data

from Twitter. To validate the performance of the landslide

model in the wild, the specialists reviewed a random subset

of the collected images (N=3,600) and assigned ground

truth labels. We then re-computed performance scores for

the real-world evaluation of the model (Table 9). Satis-

factorily, the model achieves a comparable performance to

our experiments, and more importantly, generalizes well to

a challenging real-world scenario.

7 Discussion

Our experimental results and analytical findings suggest

that CNN-based image classification models, when tuned

optimally, can be useful for the challenging task of rec-

ognizing landslides from images. More importantly,

instead of depending on citizen science projects (i.e., active

crowdsourcing), we can scale up the solution much more

efficiently by relying on passive crowdsourcing and

leveraging the information shared in online social media

platforms. This ability paves the way for an AI-based

automated system that can monitor landslide events around

the world, and eventually, reduce human effort and oper-

ational cost. Hence, we believe the contributions of the

current study will advance the state of art in global land-

slide data and research. However, we also acknowledge

that there are some limitations of the current study. Below

we elaborate on the implications of our experimental

findings, existing limitations, and our future work in more

detail.

On the technical side, it is important to note that our

comprehensive experimentation focused exclusively on a

selection of CNN architectures. However, transformer-

based models, e.g. Vision Transformer (ViT) [48], have

recently become more popular and shown to outperform

their CNN counterparts in various computer vision tasks.

Therefore, it is expected that transformer-based image

classification models can lead to better landslide detection

performances. Besides, we did not explore thoroughly the

effect of stronger data augmentation (e.g., RandAugment

[49] and CutMix [50]) and regularization (e.g., label

smoothing [41] and dropout [51]) in our current setup to

keep the computational workload at a manageable level.

Hence, it might be possible to improve the model perfor-

mance further via stronger data augmentation and regu-

larization techniques, as well. We suggest running an

extended experimentation to evaluate state-of-the-art

vision transformer models as future work. Another poten-

tial extension of our work can be around multimodal

TRUE POSITIVES FALSE NEGATIVES

FALSE POSITIVES TRUE NEGATIVES

Fig. 3 Class activation maps of the model predictions on the test set

Table 9 Evaluation of the real-world performance

TP FP FN TN TOTAL Accuracy Precision Recall F1-score MCC

123 39 43 3395 3600 0.977 0.759 0.741 0.750 0.738
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modeling of social media text and images together for

landslide detection as suggested in [52].

On the application side, despite the fact that social

media platforms provide quick access to situational infor-

mation during time-critical events, we note that a large

portion of this data contains irrelevant and redundant

information. Therefore, tasking a single model (i.e., land-

slide model) to sift through all the noise in the social media

data alone might not be a plausible system realization.

Instead, it is advisable to support the landslide model with

other image classification models for filtering out duplicate

and irrelevant content, as implemented in [16]. Similarly,

current study does not evaluate the authenticity and

veracity of the landslide images collected from social

media. We believe this requires further investigation

through other automatic or manual processes. It is impor-

tant to reiterate that this work is not intended to be used in

isolation during a disaster scenario. As well as the inherent

noise within the data content itself, there are inaccuracies

that could, in the worst case, hinder rescue operations if not

combined with other data sources.

8 Conclusion

In this study, we developed a model that can automatically

detect landslides in social media image streams. For this

purpose, we first created a large image collection from

multiple sources with different characteristics to ensure

data diversity. Then, the collected images were assessed by

three experts to attain high quality labels through an iter-

ative process of data re-labeling and model retraining as

per data-centric AI principles. The collected dataset is

currently the largest dataset for landslide recognition from

ground-level images. At the heart of this study lied an

extensive search for the optimal landslide model configu-

ration with various CNN architectures, network optimizers,

learning rates, weight decays, and class balancing strate-

gies. We provided several insights about the impact of each

optimization dimension on the overall performance. These

insights validated common practices and expectations

shared by the community through controlled experiments

in one place. The best-performing model achieved plausi-

ble performance not only under an experimental setup but

also in the wild during a real-world deployment. This

underlines the feasibility of our ultimate goal—building a

system that leverages social media data as a form of pas-

sive (i.e., opportunistic) crowdsourcing to detect landslide

reports in real-time and at scale. We believe such a system

can contribute to harvesting of global landslide data and

facilitate further landslide research. More importantly, it

can support global landslide susceptibility maps to provide

situational awareness and improve emergency response and

decision making.
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