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Abstract. We prove that subgroups commensurable with S-arithmetic
Chevalley groups are bounded.

1. Introduction

A group G is called bounded if every conjugation invariant norm on G
has finite diameter. Examples of bounded groups include SLn(Z) for
n ≥ 3, Diff0(M), where M is a manifold of dimension different from
2 and 4, the commutator subgroup of Thompson’s group F and many
others. A finite index subgroup of a bounded group does not have to
be bounded. The simplest example is the infinite cyclic subgroup of
the infinite dihedral group. The purpose of this note is to prove the
following result.

Theorem. Let G be a Chevalley group over the ring of S-integers in a
number field k constructed from a root system whose irreducible com-
ponents all have rank at least 2. If H is commensurable with G then it
is bounded.

The above theorem generalises the main result of the paper [7]. The
proof is similar with an additional ingredient being an explicit form
of bounded generation of a finite index subgroup of a boundedly gen-
erated group. We also correct a couple of mistakes from the original
proof. First, the reduction to rank two sublattices in the proof of [7,
Theorem 1.1] needs an extra argument if α is not contained in a rank
two root subsystem isomorphic to A2. This is done in Lemma 1 of the
current paper. Second, the same proof in [7] erroneously assumed that
(OS,+) is always a finitely generated abelian group. Lemma 2 of the
current paper fixes the resulting gap in the proof.
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Motivation and context. The study of general conjugation-invariant
norms have several sources [5]. In finite groups there is a well stud-
ied notion of a covering number [6]. Moreover, generation by conjugacy
classes of finite simple groups has been extensively investigated [10, 11].
In symplectic geometry, there is a natural conjugation-invariant norm,
called the Hofer norm [14], on the Hamiltonian transformations of a
symplectic manifold. General conjugation-invariant norms can be used
in understanding Hamiltonian group actions on symplectic manifolds.
For example, in [9] it is shown that certain bounded groups don’t admit
Hamiltonian actions on symplectic manifolds. In differential topology
diffeomorphisms of manifolds have fragmentation property [2]. That is,
they can be expressed as composition of diffeomorphisms supported in
balls, for example. Investigation how complicated such decompositions
are can be done in the framework of conjugation invariant norms [4].

Acknowledgement. The work was partially funded by a Leverhulme
Trust Research Project Grant RPG-2017-159 and the Polish National
Science Centre grant 2017/27/B/ST1/01467.

2. Definitions and known facts

2.1. Norm. A conjugation invariant norm of a group G is a nonneg-
ative function ν : G→ R such that the following conditions

(1) ν(g) = 1 if and only if g = 1G,

(2) ν (g−1) = ν(g),

(3) ν(gh) ≤ ν(g) + ν(h),

(4) ν (h−1gh) = ν(g)

hold for every g, h ∈ G.

2.2. Bounded group. A group G is called bounded if the diameter

diam(G, ν) = sup{ν(g) | g ∈ G} <∞
for every conjugation invariant norm ν. If G is generated by finitely
many conjugacy classes then its boundedness is equivalent to the bound-
edness of any conjugation invariant word norm [7, Section 2.C].

2.3. Arithmetic group. Let k be a number field (i.e. a finite exten-
sion of Q) and let Vk denote the set of equivalence classes of valuations
of k. Let S ⊂ Vk be a finite set containing the set of all Archimedean
valuations S∞. The ring of S-integers is defined by

OS = {x ∈ k | v(x) ≥ 0 for all v /∈ S}.
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In case S is precisely the set S∞, we write O instead of OS∞ . Let
G be a connected algebraic group defined over k with a fixed k-
embedding G → GLr(k). A subgroup of G that is commensurable
with G(OS) = G ∩GLr(OS) is called an S-arithmetic group [12, page
61]. More generally, an S-arithmetic group can be defined over any
global field.

2.4. Chevalley group [1]. Let g be a semi-simple complex Lie algebra
over C with Cartan subalgebra h. Let Φ be a root system of g with
respect to h with simple roots {α1, . . . , αk} ⊂ Φ. Let

{Hαi
(1 ≤ i ≤ k);Xα(α ∈ Φ)}

be a Chevalley basis of the algebra g, and let gZ be its linear envelope
over Z. Let ϕ : g → gl(r,C) be a faithful representation. There is
a lattice L ⊂ Cr which is invariant with respect to all operators of
the form ϕ(Xα)m/m!, where m ∈ N. If k is an arbitrary field then
homomorphisms xα : (k,+) → GL(L ⊗ k) of the additive group of k
into GL(L⊗ k) are defined and given by the formulas

xα(t) =
∞∑
m=0

tm
ϕ(Xα)m

m!
.

The subgroupG(Φ,k) ⊂ GL(L⊗k) generated by {xα(t) : α ∈ Φ, t ∈ k},
is called the adjoint Chevalley group associated with the root system
Φ, the representation ϕ and the field k. We will follow the custom to
call those groups Chevalley group, for short. We make a remark about
other Chevalley groups at the end of the paper.

2.5. Chevalley’s commutator formula. The root elements of the
Chevalley group G(Φ,k) satisfy the following relations:

xα(s)xα(t) = xα(s+ t)

[xα(s), xβ(t)] =
∏
i,j>0

xiα+jβ(Ci,jt
isj)

where the product is taken in the increasing order of i + j > 0 and
Ci,j ∈ {±1,±2,±3} [8, Lemma 32.5, Propositions 33.3–5].

2.6. Semisimple elements of Chevalley groups. Besides the root
elements one also has semisimple elements of G(Φ,k) which are defined
as follows. Let α ∈ Φ be a root, 0 6= t ∈ k and set

hα(t) := xα(t)x−α(−t−1)xα(t)xα(−1)x−α(1)xα(−1).
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They are related to the root elements as follows. Let α, β ∈ Φ be roots
and let 〈β, α〉 := 2 (β,α)

(α,α)
be a corresponding Cartan integer. Then the

following equation holds

hα(t)xβ(u)hα(t)−1 = xβ(t〈β,α〉u).

where u, t ∈ k and t 6= 0 [15, Lemma 20(c)].

2.7. S-arithmetic Chevalley groups. Let G(Φ,k) be a Chevalley
group over a number field k. We consider the S-arithmetic group
G(Φ,OS) over the ring of S-integersOS ⊂ k. LetE(Φ,OS) ⊂ G(Φ,OS)
be the subgroup generated by the root elements xα(t), where α ∈ Φ and
t ∈ OS. This subgroup is called the elementary S-arithmetic Cheval-
ley Group (or the elementary subgroup of G(Φ,OS)). It is known that
E(Φ,OS) = G(Φ,OS) holds in the case of the rings of S-algebraic in-
tegers OS if all irreducible components of Φ have rank at least 2 [13,
Corollaire 4.6],[3, Theorem 3.6].

2.8. Tavgen′s theorem. Let Φ be an irreducible root system of rank
at least 2. If G = E(Φ,OS) is an elementary S-arithmetic Chevalley
group then there exists a numberm ∈ N and roots α1, . . . , αm ∈ Φ such
that every element g ∈ G can be written as g = xα1(t1) · · ·xαm(tm),
for some t1, . . . , tm ∈ OS [16, Theorem A]. We say that G has bounded
generation with respect to root elements.

3. Proof

First note that if H contains a finite index bounded subgroup H ′,
then H itself is bounded, because for any conjugation-invariant norm
ν defined on H one has for a given finite set of representatives T of left
cosets of H ′ in H that

diam(H, ν) ≤ diam(H ′, ν) + max{ν(t)|t ∈ T} <∞.

This implies that it suffices to prove the statement for finite index sub-
groups of G = E(Φ,OS). Next observe that each finite index subgroup
H of G contains a normal subgroup H ′ of finite index. Thus it suffices
to consider only the case H of finite index and normal in G.

Lemma 1. Let G = E(Φ,O) be the elementary arithmetic Chevalley
group of rank at least 2 constructed from the irreducible root system
Φ and let H be a finite index normal subgroup of G. Further let α
be a root and ν a conjugation-invariant norm on H. Then the group
{xα(a)|a ∈ O} ∩H is bounded with respect to ν.
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Proof. Let ξ0 = 1, ξ1, . . . , ξr ∈ O be a basis of O over Z, i.e. O splits as
a direct product

⊕r
i=0 Zξi. Let p ∈ N be the smallest positive integer

such that the elements xδ(pξl) ∈ H for all δ ∈ Φ and 0 ≤ l ≤ r.
Now for a ∈ O observe that there are integers m0, . . . ,mr such that
a = m0 + m1ξ1 + · · · + mrξr. Now using division with remainder we
can find integers nl and rl with 0 ≤ rl < p such that ml = pnl + rl for
0 ≤ l ≤ r. But then we get

xα(a) = (xα(pξ0)
n0 · · ·xα(pξr)

nr)xα(r0ξ0 + · · ·+ rrξr).

Now observe that for the second factor there are only finitely many
possibilities and thus it suffices to show that the cyclic subgroup gen-
erated by xα(pξl) for 0 ≤ l ≤ r is bounded with respect to ν. Using
the same division with remainder trick for these subgroups again, it
actually suffices to find a non-zero multiple v of p such that the cyclic
subgroup generated by xα(vξl) for 0 ≤ l ≤ r is bounded with respect
to ν. In the following let ξ be one of the ξl.

Now there exists a subsystem Ψ ⊂ Φ isomorphic to one of A2, B2 or
G2 such that α ∈ Ψ. Moreover, if α ∈ A2 there exist β, γ ∈ A2 such
that α = β + γ and that no other positive combination of β and γ is
a root. The same holds if α ∈ B2 or α ∈ G2 is a long root. It then
follows from (2.5) that

xα(pξ)Cpn = [xβ(pξ), xγ(pn)]

for some fixed C ∈ {±1,±2,±3} and any n ∈ Z. In particular, we
have that

ν(xα(Cp2ξ)n) ≤ 2ν(xβ(pξ))

which implies that ν(xα(pξ)n) is bounded independently of n if α is
either a root contained in A2 or a long root in B2 or G2. Note in
particular that this implies already that the set {xα(pa)n|n ∈ Z} is
bounded with respect to ν for all a ∈ O if α is a long root in G2 or B2.

If α ∈ B2 is a short root then there exist β, γ ∈ B2 such that α = β+γ
and β + 2γ is a long root and no other positive combination of β and
γ is a root. Applying (2.5) again, we get that

[xβ(pξ), xγ(pn)] = xα(p2ξCn)xβ+2γ(p
3ξC ′n2),

xα(pξ)Cpn = [xβ(pξ), xγ(pn)]xβ+2γ(−p2ξ)C
′pn2

for some fixed C,C ′ ∈ {±1,±2,±3} and any n ∈ Z. This implies that

ν(xα(p2Cξ)n) ≤ 2ν(xβ(pξ)) + ν(xβ+2γ(pξ)
−C′p2n2

).

However note that β + 2γ is a long root and hence we already know
that ν(xβ+2γ(pξ)

−C′p2n) is bounded independently from n.



6 ŚWIATOSŁAW R. GAL, JAREK KĘDRA, AND ALEXANDER A. TROST

Now if α ∈ G2 is a short root, then there are β, γ ∈ G2 such that
β + γ = α and further β + 2γ and 2β + γ are both long roots and no
other positive combination of β and γ are roots. Applying (2.5) again,
we get for any n ∈ Z that

[xβ(pξ), xγ(pn)] = xα(p2ξCn)xβ+2γ(p
3ξC ′n2)x2β+γ(p

3ξ2C ′′n),

xα(pξ)Cpn = [xβ(pξ), xγ(pn)]xβ+2γ(−p3ξC ′n2)x2β+γ(−p3ξ2C ′′n)

for some fixed C,C ′, C ′′ ∈ {±1,±2,±3}, which implies that

ν(xα(p2Cξ)n) ≤ 2ν(xβ(pξ))+ν(xβ+2γ(pξ)
−C′p2n2

)+ν(x2β+γ(pξ
2)−p

2C′′n).

Now the terms ν(xβ+2γ(pξ)
−C′p2n2

) and ν(x2β+γ(pξ
2)−p

2C′′n) are bounded
independently of n as β + 2γ and 2β + γ are long roots in G2. This
concludes the proof. �

Lemma 2. Let G = E(Φ,OS) be an S-arithmetic Chevalley group of
rank at least 2 constructed from the irreducible root system Φ and H
a finite index normal subgroup of G. Further let ν be a conjugation-
invariant norm on H. Then the set

{yxα(a)y−1|a ∈ OS, y ∈ G,α ∈ Φ} ∩H
is bounded with respect to ν.

Proof. We start with the observation that there exists an element u ∈
O∗ such that OS = O[u−1]. Indeed, let pi ⊆ O be the ideal correspond-
ing to a non-archimedean valuation vi ∈ S. Let U =

∏
i pi. Since the

class number of O is finite, there exists n ∈ N and u ∈ O such that
Un = (u). Then for any x ∈ OS we have that ukx ∈ O for some k ∈ N
which implies the claim.

Since there are only finitely many elements in Φ, it suffices to show the
boundedness of the set

{yxα(a)y−1|a ∈ OS, y ∈ G} ∩H
for a given root α. Since OS = O[u−1], for each element a ∈ OS there
exists k ∈ N and b ∈ O such that a = u−kb. Thus one gets by 〈α, α〉 =
2 and (2.6) that hα(u−k)xα(ukb)hα(uk) = xα(u−kb) holds. But H is
normal and so it suffices to show boundedness for the set

{yxα(a)y−1|a ∈ O, y ∈ G} ∩H.
Let T ⊂ G be a finite set of representatives of right cosets of H in G.
Thus each y ∈ G can be written as y = ht for some h ∈ H and t ∈ T .
Next observe that if yxα(a)y−1 ∈ H for a ∈ O then

ν(yxα(a)y−1) = ν(h(txα(a)t−1)h−1) = ν(txα(a)t−1).
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Since the set T is finite, it suffices to show that {txα(a)t−1|a ∈ O}∩H
is bounded with respect to ν for any given t ∈ T. As H is normal, the
function

νt : H ∩ E(Φ,O)→ R≥0, x 7→ ν(txt−1)

defines a conjugation invariant norm on the finite index, normal sub-
group H ∩ E(Φ,O) of E(Φ,O). Thus Lemma 1 yields that

{txα(a)t−1|a ∈ O} ∩H
is indeed bounded with respect to ν. �

Proof of Theorem. We first prove the special case for G constructed
from an irreducible root system Φ.

For each α ∈ Φ let Eα := {xα(a)|a ∈ OS} be given. Now H ∩ Eα has
finite index in Eα, so let Tα be a finite set of representatives of right
cosets of H ∩ Eα in Eα. Now let h ∈ H be given. By [16, Theorem A]
there is an m ∈ N, α1, . . . , αm ∈ Φ (independent from h) and ei ∈ Eαi

for i = 1, . . . ,m (dependent on h) such that h = e1 · · · em. Now for
each i ≤ m let hi ∈ Eαi

∩H and ti ∈ Tαi
be given such that ei = hiti.

Now note that

h = e1 · · · em =
m∏
i=1

hiti

=

(
m∏
i=1

(t1 · · · ti−1)hi (t1 · · · ti−1)−1
)
· (t1 · · · tm)

Now by Lemma 2 all of the elements (t1 · · · ti−1)hi (t1 · · · ti−1)−1 are
bounded independently from h and thus as m is also independent of h,
the element

m∏
i=1

(t1 · · · ti−1)hi(t1 · · · ti−1)−1

is also bounded independently from h. Furthermore Φ is finite, all the
sets Tα are finite, and thus there are only finitely many possibilities for
the product t1 · · · tm (independently of h) and hence h has a bound not
depending on itself. This finishes the proof for the irreducible case.

We now proceed with the general case. If Φ1, . . . ,Φm are the irre-
ducible components of Φ, then G decomposes as the direct product∏m

i=1G(Φi,OS). Set Gi := G(Φi,OS) for i = 1, . . . ,m. But now con-
sider the subgroups Hi := H ∩ Gi for 1 ≤ i ≤ m and H ′ :=

∏m
i=1Hi.

Observe that the Hi have finite index in the Gi and thus H ′ has finite
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index in H. Hence it suffices to show the statement in the case that H
is a product of finite index subgroups in the corresponding G(Φi,OS).
But then applying [7, Proposition 3.9] inductively on the series of short
exact sequences given by the direct product decomposition of H ′, it suf-
fices to show the statement for G = G(Φ,OS) and H of finite index in
G. Thus we are done. �

Remark.

(1) The assumption on the components of Φ to have rank at least
2 is necessary. Namely the group SL2(Z) is known to be un-
bounded.

(2) Theorem 1 is proven for adjoint Chevalley groups, but is equally
valid for other types of Chevalley groups like the simply con-
nected ones. Without going into too much details, a possible
proof strategy could be as follows: Any other type G′(Φ,OS)
of Chevalley groups arise from a finite central extension π :
G′(Φ,OS) → G(Φ,OS) of the adjoint type. Hence given a bi-
invariant norm ν on G′(Φ,OS), one can define

π∗ν(A) := max{ν(X) | X ∈ π−1(A)}

for A ∈ G(Φ,OS) to obtain a bi-invariant norm π∗ν onG(Φ,OS)
with the property that π∗ν(π(X)) ≥ ν(X) holds for all X ∈
G′(Φ,OS). But G(Φ,OS) is bounded and so π∗ν has bounded
diameter and so ν has bounded diameter, too. The finite index
cases work similarly.

(3) Theorem 1 is stated for arithmetic Chevalley groups arising
from rings of S-integers OS in number fields. But the theorem
is also valid for arithmetic Chevalley groups arising from rings of
S-algebraic integers in global function fields. The proofs work
essentially the same barring some complications that arise in
the case that the global function field K has characteristic 2
and the fact that Tavgen’s Theorem 2.8 has to be replaced by
[17, Theorem 1.3].
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