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Abstract. Research has shown that cooperative action struggles to
emerge in the noisy variant of the donation game, a simple model
of noisy multi-agent systems where indirect reciprocity is required
to maximise utility. Such noise can arise when agents may have an
incorrect view of the reputation of their interaction partners, or when
the actions themselves may fail. Concepts such as generosity, as well
as the use of higher-order norms, have been investigated as mech-
anisms to facilitate cooperation in such environments, but often are
not effective or require additional assumptions or infrastructure in
the system to operate. In this paper, we demonstrate both analyti-
cally and empirically that a simple form of generosity when com-
bined with fine grained reputation can help cooperation emerge. We
also show that the use of individual forgiveness strategies rather than
the presence of global generosity can support cooperation in such
environments.

1 Introduction

Reputation, in the form of indirect reciprocity, is an effective mech-
anism for supporting cooperation in human societies, and acts as an
incentive for individuals to engage in potentially costly cooperative
actions towards others [5, 11, 24, 26]. In order to analyse the circum-
stances in which indirect reciprocity is effective, it is often studied
in abstracted settings such as the donation game [12, 13, 16]. In this
setting, pairs of individuals are selected, one as a potential donor and
the other as a recipient [12]. The donor may choose to cooperate (by
donating), based on their own strategy and the recipient’s reputation,
in which case the donor incurs a cost, the recipient receives a benefit,
and the donor’s reputation is increased. Agents are selected randomly
to interact, and at the end of each generation offspring are produced
using selection and/or mutation. Agents with higher fitness, as deter-
mined by the benefits they received less any costs of donating, are
more likely to be chosen to produce the next generation.

An oft-investigated strategy for deciding whether or not to donate
within the game is based on a simple reputation measure referred
to as image scoring. Here, donation increases an agent’s image and
defection (non-donation) decreases it, and agents choose whether to
donate or not based on the recipient’s image score. Nowak and Sig-
mund demonstrated that in such settings the population goes through

cycles of establishing cooperation, only to be undermined by defec-
tors [12]. The basic donation game assumes that actions always suc-
ceed and that observations of interactions (to update image scores)
are perfect. In this paper, we consider a noisy setting in which ac-
tions may fail and where observations are imperfect, i.e., we consider
action noise and perception noise.

Image scoring has been shown to be unstable, and higher order
norms governing donation (known as the leading eight) have been
proposed in the literature [14] and shown to support cooperation.
However, such work makes multiple limiting assumptions; if repu-
tation is not publicly known, or noise is present in the system, such
higher order norms are no longer effective [23].

Another potential approach to mitigate the impact of unreliable or
non-public image scores, as suggested by Schmid et al., is the use
of generosity, which either judges an agent as having a higher im-
age score than they do, or allows a donor to donate when it normally
would not. While an empirical evaluation of generosity has shown it
to be of only limited efficacy [23], this evaluation also assumed bi-
nary reputation. We hypothesise that this has insufficient nuance to
enable image scoring to be effective. Generosity is also an ‘aligned’
mechanism, in the sense that there is a fixed probability of being gen-
erous throughout the lifetime of a system and no other information,
such as the image score of a potential recipient, is considered.

In this paper, we (1) consider the impact of nuanced reputation on
generosity and (2) propose two forms of forgiveness, namely action
and assessment forgiveness. These are ‘non-aligned’ mechanisms in
which individuals have their own strategies and serve as ‘higher or-
der’ norms which consider others’ image scores. In evaluating gen-
erosity and forgiveness we relax some of the assumptions made in
previous work. Specifically, we include both action noise and per-
ception noise, meaning that an attempted cooperative act might fail
and observations are imperfect. We also assume that reputation is nu-
anced, as in the work of Nowak and Sigmund [12] rather than being
binary in the case of generosity and the leading eight [14, 21, 23]".

The contributions of this paper are as follows. We (i) investigate
the impact of action and perception noise on image scoring, (ii) ex-
plore the impact of nuanced reputation on action and assessment gen-
erosity, (iii) present a theoretical analysis of the impact of generosity
on cooperative behaviour, and (iv) propose and evaluate action and
assessment forgiveness in a ‘non-aligned’ setting where forgiveness
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strategies evolve alongside donation strategies.

The remainder of this paper is structured as follows. The next sec-
tion situates our work within existing research. Section 3 details our
experimental setting, while Section 4 provides an empirical evalua-
tion of generosity in the presence of nuanced reputation scores. Sec-
tion 5 provides an analytical analysis of generosity in this context. In
Section 6 we introduce the notion of forgiveness in the context of the
donation game and evaluate its effectiveness. Section 7 discusses our
results, considers future work, and concludes.

2 Related Work

Indirect reciprocity through reputation has been shown to be a po-
tential mechanism to support cooperation in populations of self-
interested individuals, without requiring repeated encounters be-
tween individuals. Nowak and Sigmund describe how a simple image
scoring reputation measure is able to support cooperation in a (noise
free) donation game in which random pairs of agents are selected
from a population A, one as a potential donor and the other as a re-
cipient [12]. The donor may choose, at cost ¢, to cooperate with the
recipient, in which case the recipient receives a benefit b (such that
b > ¢ > 0). A donor’s strategy is a threshold on the recipient’s im-
age score, such that a donor ¢ with strategy k;, will cooperate with a
recipient j if k; < s;;, where s;; is ¢’s perceived image score of j.
If a donor is observed to cooperate, the observer’s image score of the
donor is incremented, while it is decremented if they do not cooper-
ate. The image score of a recipient is unchanged by an interaction.

Nowak and Sigmund experiment with a population of |A| = n
agents, such that for any agents i,j € A, sj; € [-5,+5] and k; €
[—5, 46], with k; initialised at random and s;; initialised to 0. Each
generation m donor-recipient pairs are randomly chosen, meaning
that an agent will be involved in 2m/n interactions on average per
generation. At the end of each generation agents produce offspring
proportionally to their fitness, as determined by the benefits received
less any costs of donating, with a small probability p,, of mutation
causing an offspring to use a random strategy. In this setting, the
population goes through cycles in which cooperative behaviour is
established, only to be undermined by defectors, before becoming
the dominant strategy again [12].

The effectiveness of image scoring is dependant on the ability of
a donor to estimate a recipient’s image score. After an interaction,
other agents in the system observe the interaction with probability ¢
and update their own perception of the donor’s image score. Each
such observer o keeps track of the image score s;, of a donor i,
meaning that in the case of partial observation (i.e., ¢ < 1) different
observers may associate different image scores with a given donor.
In Nowak and Sigmund’s experiments, cooperation emerges in this
setting provided that the probability of the donor knowing the image
score of the recipient exceeds the cost-to-benefit ratio of the cooper-
ative act [12]. However, Nowak and Sigmund’s formulation assumes
there is no noise, meaning that observers always perceive interactions
perfectly, implying that image scores are accurate (if potentially in-
complete), and that donation actions always succeed. In this paper,
we relax the assumption of a noise-free setting, and consider two
types of noise, namely perception noise and action noise.

The updating of reputation (i.e., an image score) by an observer,
and its use in subsequently determining when the observer should co-
operate can be viewed as a social norm. Such a social norm has two
components, namely an assessment rule that defines how a donor’s
reputation is affected by its actions, and an action rule that specifies
the circumstances under which a donor should cooperate with a given

recipient [23]. The assessment rule for image scoring is that a donor’s
reputation is incremented for a cooperative action and decremented
for defection (bounded to be in [—5, +5]). The action rule is that a
donor ¢ should cooperate with recipients who have sufficient reputa-
tion and defect otherwise, i.e., they should cooperate with recipient
j if ki < sj;. In the image scoring social norm, reputation assess-
ment depends only on the donor’s actions, and so it is considered to
be a ‘first-order’ norm. Image scoring has been shown to be unsta-
ble [12, 14, 23], as a result of the norm requiring individuals to defect
against those with a reputation lower than their strategy, resulting in
their own reputation being damaged. A potential solution to this lack
of stability is for social norms to distinguish between justified and
unjustified acts of defection [3, 18, 23].

Ohtsuki and Iwasa explore ‘second order’ and ‘third order’ norms,
which consider the reputation of the donor and recipient, in addition
to the donor’s action [14]. Using a simplified setting where reputa-
tion is binary and publicly known (with all agents associating the
same score with an individual) and there is no noise, Ohtsuki and
Iwasa identified eight norms (the ‘leading eight’) which are able
support cooperation. For interactions with a recipient of good rep-
utation, each of these norms gives good reputation for cooperation
and bad reputation for defection. However, they differ in how they
assess interactions with bad recipients, for example norms such as
‘stern judging’ penalise cooperative behaviour towards a bad indi-
vidual [17]. The leading eight show that consideration of second or
third order norms is a potential solution to the instability of image
scoring [4, 15, 17, 19, 20]. However, the assumptions of binary public
reputation and a lack of noise are unrealistic, and it has been shown
that if reputation is not public, i.e., in partially observable settings
(where ¢ < 1) the leading eight are no longer effective [7, 23]. In
such circumstances, therefore, or in the presence of perception noise,
alternative mechanisms are needed [9, 23].

Schmid er al. propose two types of generosity, assessment gen-
erosity and action generosity [23], as potential methods to mitigate
the impact of unreliable or non-public image scores. Assessment
generosity is where an agent sometimes assigns a good reputation
to individuals who would normally be regarded as bad. Action gen-
erosity is where an agent sometimes cooperates with an individ-
ual with whom they would usually defect. Similarly to Ohtsuki and
Iwasa, Schmid et al. use a simplified version of the donation game,
in which reputation is binary (i.e., ‘good’ or ‘bad’). However, un-
like Ohtsuki and Iwasa, they consider partial observations (¢ < 1)
which are subject to perception noise, such that an observation may
be perceived incorrectly with some probability e, (meaning that co-
operation might be perceived as defection and vice versa). Through
empirical experiments, Schmid et al. show that assessment generos-
ity is not effective and reduces cooperation (by increasing noise and
allowing defectors to proliferate) but that small amounts of action
generosity can be helpful. However, it is important to note that these
experiments assumed binary reputation and that the probability of
generosity is uniform across all agents and interactions, i.e., it is an
‘aligned’ setting where agents are not more or less generous towards
others with good or bad reputations. In this paper, we (i) consider
the impact of nuanced reputation (s;; € [—5, +5]) on generosity in
the presence of perception and action noise, and (ii) analyse a ‘non-
aligned’ analogue of generosity, in the form of forgiveness, in which
individuals have their own forgiveness strategies which evolve and
consider the reputation of the recipient when determining whether to
cooperate.
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Figure 1. The impact of (a) action, (b) perception and (c) action and perception noise on Nowak and Sigmund’s base model (using their setting of n = 100,
m = 300 and p,, = 0.001 [12]), with negative payoffs allowed, i.e., without the additional payoff of 0.1 for each interaction. Results are averaged over 100
runs of g = 10° generations, and show the average payoff for different probabilities, g, of onlookers observing interactions.

3 Action and perception noise in the Donation
Game

The donation game presented by Nowak and Sigmund is a noise-
free environment, in which agents perceive other’s actions perfectly
and actions are always successful (i.e., a donation always succeeds).
Since many real-world environments contain noise, we consider the
impact of different types of noise on the effectiveness of using image
scoring to facilitate cooperation. We consider the following two types
of noise, which might occur in an interaction.

e Action noise: with some small probability e, the donation action
of donor % towards recipient j fails, such that although k; < sj;
the recipient does not receive benefit b. For simplicity, we assume
that in this case the donor does not incur the cost ¢ and that (in
the absence of perception noise) observers perceive the actual in-
teraction outcome, i.e., they perceive no donation rather than the
‘intended’ donation. Thus, we interpret a failed donation action as
being equivalent to the donor choosing not to donate. We also as-
sume that action noise is only associated with the donation action,
and therefore a decision to not donate (i.e., where k; > s;;) is
unaffected by action noise.

e Perception noise: with some small probability e,, an observer o of
an interaction, in which a donor ¢ is paired with recipient j, incor-
rectly perceives the donor’s action such that donation is perceived
as not donating and vice-versa. Thus, with probability e, the im-
age score S;, of the donor ¢ as seen by the observer o is decre-
mented for donation and incremented for non-donation (bounded
such that s;, € [—5, +5]).

While the impact of perception noise has previously been consid-
ered in the context of generosity (with binary image scores) [23], to
the best of our knowledge the impact of action noise on image scor-
ing has not been investigated. In order to understand the impact of
noise in the donation game, we performed experiments by adding
small amounts of action and perception noise, both individually and
in combination, to the base model presented by Nowak and Sigmund.
We varied the level of noise (e, and ep,) between 0.0 and 0.2 in in-
crements of 0.025, such that either a single type of noise was present
or both types of noise had equal probabilities (i.e., e, = ep). For
other parameters we adopted the values used by Nowak and Sig-
mund, namely b = 1 and ¢ = 0.1 for the benefit and cost of donation,
with population size n = 100 and m = 300 interactions. In their ex-
periments, to avoid negative payoffs, a value of 0.1 is added to each
interaction by Nowak and Sigmund [12]. This means that agents are
artificially rewarded purely for being selected to interact (since they

receive a reward of 0.1, even if there is no donation), and does not
reflect that donation has a cost (i.e., a negative reward). Therefore, in
our instantiation of the donation game we do not add these artificial
rewards, and we allow rewards to be negative.

Figure 1 shows the impact on the average payoff of (a) action
noise, (b) perception noise, and (c) the combination of action and per-
ception noise on the base model with negative payoffs allowed?, for
full observation (¢ = 1.0) and partial observation (¢ € {0.8,0.9}).
It is clear that while cooperation is still achieved in the presence of
a small amount of noise, indicated by the positive average payoff,
an increase in noise has a significant negative impact on cooperation
(i.e., there are fewer donations, and so a lower average payoff). Per-
ception noise has a greater individual impact than action noise, sug-
gesting that the ability to observe behaviour to build reputation plays
a fundamental role in achieving cooperation. This supports previous
arguments that effective social norms require that reputation is pub-
licly known [7, 23]. As is expected, when both types of noise are
present the impact is the largest. Full observation (¢ = 1) yields the
highest average payoft, with lower levels of observation resulting in
lower payoff.

4 Generosity with nuanced reputation

Schmid et al. suggested assessment generosity and action generos-
ity as potential methods to mitigate the impact of unreliable or non-
public image scores [23]. They consider modified versions of the
leading eight [14], which allow for generosity. In cases where the
original leading eight norm would result in cooperation, the mod-
ified version also results in cooperation. Similarly, the assessment
rule assigns a good reputation where the original version would do
s0. Assessment generosity is incorporated by assigning a good repu-
tation with probability gi in cases where the original would assign a
bad reputation. Action generosity is included by the modified version
cooperating with probability g2 in cases where the original would
defect. Thus, generosity may cause cooperation when the original
leading eight norms would defect (i.e., agents may be generous), but
never causes agents to defect when the original would cooperate and
never assigns a bad reputation if the original would assign good.

In the restricted setting of binary reputation, Schmid ez al. found
assessment generosity to be ineffective and reduce cooperation,
while small amounts of action generosity could be helpful [23]. Since
previous work points to the importance of reputation in supporting

2 Note that we obtained similar results where negative payoffs are prevented,
but they are omitted due to space constraints.
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Figure 3. The effect of different probabilities of action generosity, g2, for different levels of action and perception noise (eq = ep). Results are averaged over
100 runs of g = 10° generations, and show the average payoff for different probabilities, g, of onlookers observing interactions.

cooperation, we investigate replacing the binary reputation in Schmid
et al.’s evaluation of generosity with more nuanced image scores
(sji € [—5,+5]). We also consider the impact of action noise.

Figures 2 and 3 show the impact of assessment and action gen-
erosity respectively on the average payoff, where image scores are
in the range [—5, +5]. We consider the same generosity probabilities
as Schmid et al., namely g1, g2 € {0.01,0.02,0.03,0.04,0.05}, in
the presence of equal amounts of action and perception noise (i.e.,
eq = ep). Our results differ significantly from those of Schmid et
al.’s binary reputation case, with both assessment and action increas-
ing average payoff, although we also see that action generosity is
more effective than assessment generosity. We hypothesise that the
increase in the reputation space, combined with the corresponding
increase in strategy space, enables generosity to mitigate the impact
of unreliable and partially observed image scores. As the probabil-
ity of observation ¢ increases, we see a corresponding increase in
average payoff, suggesting that the increase in reliable reputation in-
formation from increased observation is supporting cooperation. For
assessment generosity the probability of being generous, g1, has lit-
tle effect, with negligible difference between the average payoff for
g1 = 0.01 and g1 = 0.05. Conversely, for action generosity the
probability of being generous, g2, has a small effect, with slightly
higher average payoff for go = 0.05 compared to lower probabili-
ties.

An interesting characteristic of the results in Figures 2 and 3 is
the increase in average payoff for a small amount of noise. As the
level of noise increases the improvement in payoff rapidly reduces,
as is expected, broadly at the same rate as the decrease in the base
model without generosity. An exception to this is in the case of full

observation ¢ = 1 where the decrease in payoft as noise increases is
at a lower rate than in the base case. One possibility for this behaviour
is that the small level of noise provides addition mitigation from the
impact of unreliable and partially observed image scores, given the
larger reputation and strategy space.

5 Analysing Generosity

We now turn to a formal analysis of a simplified form of generosity.
This simplification assumes that all agents are aware of, and agree
on, a reputation value for each agent in the system and only action
generosity (i.e.,q = 1,e, = 0, g1 = 0). To mitigate against this sim-
plification, we introduce a third type of noise in our analysis, namely
reputation noise, denoted e,.. Here, with likelihood e, a donor will
ignore a potential recipient’s true image score, and instead view the
recipient’s image score as a random value, drawn uniformly from all
possible image scores.

Our analysis builds on the approach introduced by [27], taking into
account the wider range of image scores and strategies available to
the agents, noise present in the system, and the possibility of (action)
generosity. The goal of our analysis, following work such as [22], is
to compute the cooperation index for a system, a value which indi-
cates the likelihood that agents will play a cooperative action.

We begin by considering a donor agent following strategy kq, and
a recipient agent with image score 7,. Given reputation noise e,, ac-
tion noise e, and action generosity g2, and denoting the total number
of possible image scores in the system by | R|, the likelihood that the
donor will successfully undertake a donation action is computed as
follows.
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As is commonly done [19, 22, 27], we assume that changes in
strategy happen over significantly longer timescales than changes in
reputation, meaning that the latter are stationary when the former oc-
curs. Now consider a system with only two strategies, denoted s; and
s2. Assume that there are n agents in our system, with n,, follow-
ing s1, and ng, = n — n,, following strategy s». We let the tuple
pair (I, 1) = ((i1,... IllR‘), (i3,... ifR‘)) where the value of i;
encodes the number of agents following strategy s1 which have an
image score indexed by j°. If we select agents for interaction at ran-
dom, the likelihood of an agent with image ¢} acting as a donor, and
z?, acting as a recipient is computed as follows (note that 22, = iZJ’-/ if
a#borj+#j, and %2’-, = i% — 1 otherwise).
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Given a tuple pair, the values pppr and (1 — pp)pr give us the
probability of transitioning to a new tuple pair for which the image
score of the donor is incremented or decremented to reflect donation
or non-donation. We can thus construct a transition matrix whose
entries describe the likelihood of transitioning between tuple pairs
(I1, I2) and (I, I3). This matrix is ergodic, and its fixed point cap-
tures the stationary distribution of image scores for the pair of strate-
gies under consideration. Furthermore, using Pp, Pr, the computed
likelihood of a tuple pair and the payoffs for donating and receiving
a donation, we can compute the expected payoffs of each strategy. If
ns,; players play strategy ¢ (leaving the other strategy implicit), we
denote this expected payoff as m; (ns, ).

Over the longer term, agents can change strategies. In this
timescale, we model strategy change as a Fermi process. That is, a
random player is chosen from the population and, with likelihood i,
chooses a new strategy at random from the set of available strategies,
while with likelihood 1 — p, they select another player from the pop-
ulation and choose whether to adopt this latter player’s strategy with
probability

1
14 e—#(mj—mi)

Here 7; is the payoff of the agent choosing whether to change strat-
egy, and 7; is the payoff of the observed agent.

Given a population of n agents where all but one follow a single
strategy, the fixation probability determines the likelihood that this
single strategy will take over the population [25]. In the case where
strategies propagate following the Fermi process, the fixation proba-
bility for new strategy ¢ and old strategy j is computed according to
the following formula.

1
14 Z?—ll Héﬁzlefu(ﬂi(k)*ﬂj(k))

Pij

Using these fixation probabilities we can construct a transition ma-
trix A such that

Aij = {1 — €2 i T 1=]

€pij otherwise

3 Thus, 37, f = ns;, and 3242 = ns,.

Here, € is a small constant chosen to ensure that A;; is positive. Fur-
thermore, A is ergodic, and thus has a unique stationary distribution.
This stationary distribution reflects the frequency with which the sys-
tem is in a state where only one strategy exists under the assumption
that mutations are rare [6]. We can therefore use this distribution to
compute how often donation will occur by multiplying it with the
likelihood of donation of a single strategy based on the image distri-
bution determined by the image fixedpoints of the strategy playing
against itself. The result of this analysis is a value referred to as the
cooperation index [19].

We ran our analysis on small systems with different parameters.
Across all of our evaluations, as in other portions of this work, we
set the cost of donating to 0.1, and the benefit of receiving a dona-
tion to to 1. We note that the number of tuples grows very quickly
with the number of possible image scores and number of agents in
the system, meaning that we had to restrict ourselves to very small
systems. Figure 4 summarises our results.

Figure 4(a) considers the effect of increasing noise on the cooper-
ation index under different generosity levels. Unsurprisingly, we see
that cooperation decreases with increasing noise, but that generosity
slightly mitigates this effect, as noted by Schmid er al. [23]. We note
that for different numbers of agents and possible image scores our re-
sults show a significant uptick in cooperation in the presence of gen-
erosity at low noise levels, similar to the effects shown in Figure 3.
However, as per Figure 4(a), this effect was not present in some sys-
tem configurations. Figure 4(b) demonstrates that cooperation tends
to rise with an increasing number of agents, and the effect of gen-
erosity decreases. This contrasts with the empirical results of Figure
3, and we hypothesise that this is possibly due to the low number
of agents we evaluated against and more likely due to fewer possi-
ble image scores. This conclusion is supported by Figure 4(c) which
both shows that cooperation increases when the possible number of
image scores increases, and that increasing action generosity contin-
ues to affect the system. We believe that the irregularity of scores
here (e.g., when go = 0.01 and 0.05 for 5 agents) arises due to the
low number of agents we evaluated against. Building on the ideas of
[22], as future work we intend to perform a simulation-based anal-
ysis of the evolutionary dynamics for a larger number of agents and
image scores than is possible with a purely formal analysis.

6 Forgiveness

Schmid er al. note that a limitation of generosity is the assumption of
an ‘aligned’ setting, where all agents use the same fixed probabilities
for assessment (g1) and action (g2) generosity [23]. This is unrealis-
tic in a population of autonomous agents, in which we might expect
individuals to make their own decisions about when to be generous.
In this section, we propose assessment and action forgiveness which
take a similar form to generosity, but in a ‘non-aligned’ manner, with
each individual agent ¢ having its own forgiveness strategy f;. We
assume that forgiveness strategies evolve in the population alongside
donation strategies, such that when offspring are produced at the end
of a generation (proportionally to their fitness in terms of payoff) an
offspring inherits its parent’s donation and forgiveness strategies, k;
and f; (subject to the usual probability of mutation, p,,). Given the
effectiveness of the leading eight in a restricted setting (with binary
publicly known reputation and no noise), we hypothesise that a de-
cision to forgive should depend on the potential beneficiary’s image
score, i.e., forgiveness should be a higher order norm.

In the donation game introduced by Nowak and Sigmund, the im-
age score, s;, for a donor ¢ perceived by an observer o is incremented



°
®
.
1
’

92=0
—8- g2=0.01
® g2=0.05

°
®

°
®

92=0
—8- g2=0.01
» g2=0.05

°
S
¢
1
°
S
\

°
S
°
=

Cooperation index
.
Cooperation index
\
\

°
°

0.0 0.0

°
>
N

Cooperation index
°
=
~
~

°

0.00 0.05 0.10 0.15 0.20 2 3
Action and reputation noise

(@ (b)

Num. agents

6 7 2 3 4 5 6 7 8
Poss. image scores

©

Figure 4. Results of the formal analysis of generosity showing the cooperation index for (a) different levels of action and reputation noise (e, = e,-) for a
system of 6 agents and 5 possible image scores; (b) changes in the number of agents under constant noise (e, = e, = 0.025) with 5 possible image scores; (c)
changes in the number of possible reputation scores in a system with 4 agents under constant noise (e, = e, = 0.025).

— f=0.001 fi=1.0
fi=05 v fj=1.355

fi=1.67

0.8

0.6

0.4

Probability of forgiving

0.2

0.0 R sl

-0.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
Recipient's image score

Figure 5. Probability of forgiving against the beneficiary’s image score for
different forgiveness strategies.

when ¢ is paired with recipient j if ¢ donates (i.e., if k; < s;;), and
is decremented otherwise (bounded such that s;, € [—5, +5]). Thus,
in any future pairings where ¢ takes the role of recipient, any previ-
ous choices not to donate reduce its chances of receiving a donation
(since they reduce its reputation, i.e., its image score)*. In the absence
of noise, an agent’s image score is a direct result of its donation be-
haviour and, as shown by Nowak and Sigmund, this form of indirect
reciprocity is able to support cooperation. However, as seen in Fig-
ure 1, the presence of noise causes a breakdown in cooperation and
a reduction in the average reward received.

In human interactions, reputation is fundamental to establishing
cooperation. However, in addition to reputation such environments
typically also include a form of forgiveness, such that agents who
do not cooperate are given a second chance [1]. Previous research
on norm emergence in artificial environments has also suggested for-
giveness to be important [8]. In Axelrod’s seminal study of norm
emergence, strategies which included an element of forgiveness were
shown to be more effective [2]. We therefore investigate whether for-
giveness is able to mitigate the impact of noise on cooperation in
the context of a simple reputation mechanism, in the form of image
scoring. Our hypothesis is that where a failure (or perceived failure)
to donate is a result of noise, forgiveness will reduce (but not avoid)
the fall in cooperation that results from using image score alone to
determine whether to donate.

In this paper, we consider two kinds of forgiveness, as follows.

e Assessment forgiveness: when observing a non-donation an ob-

4 Note that since image scoring is a first order social norm, this is the case
even where an agent does not cooperate with another who has a bad repu-
tation [14].

server may forgive the donor and not decrement its image score.
e Action forgiveness: donor ¢ may forgive recipient j by donating
when j’s image score is lower than ¢’s strategy, i.e., k; £ sji.

Assessment and action forgiveness are analogues of assessment
and action generosity, with two key differences (in addition to our
focus on nuanced reputation scores of s; € [—5,+5] for agent 7).
First, each agent, ¢, has its own individual strategy for forgiveness,
fi, which evolves alongside donation strategies in the population.
Second, as a way of approximating a recipient’s intention, a donor
considers the reputation of the recipient, such that those with a high
reputation are assumed to be more likely to have good intentions, and
those with a low reputation are more likely to have bad intentions.
Previous work has shown that intention recognition can be an effec-
tive means of supporting forgiveness [1]. Thus, we use reputation as
a proxy for intention, and an agent’s forgiveness strategy determines
the extent to which a recipient’s reputation impacts on the probability
of forgiveness. Past work on forgiveness suggested that apology is a
prerequisite for forgiveness, as it gives an indication of intention, and
that such apology should be costly as an indication of sincerity [10].
Here, we are interested in whether forgiveness can be effective in
cases where there is no mechanism for apology. Our hypothesis is
that using reputation as an approximation of a recipient’s intention
may enable an improvement in cooperation in noisy environments
without the need for a formal mechanism for costly apology.

Assessment forgiveness defines the decision of an observer o re-
garding whether to forgive a donor ¢ for an observed non-donation
as a function of both the observer’s forgiveness strategy f, and their
image score of the donor s;,. Specifically, the probability py of ob-
server o forgiving donor 4, i.e., not decrementing the image score s;,
for a non-donation, is defined as:

pf = e(sio_snlam)/.fo

where Sy,q2 1S the maximum possible image score (in our setting, and
that of Nowak and Sigmund, $,,q. = 5). Thus, an observer is more
likely to forgive if it has a high forgiveness strategy and the (defect-
ing) donor has a high image score. We assume that each agent ¢ has
a forgiveness strategy f; € JF. In this paper we consider the set of
possible forgiveness strategies 7 = {0.001,0.5,1.0,1.355,1.67}
as representative values, with 0.001 corresponding to the probability
of forgiving tending to O unless the defector has an image score of
5, and 1.67 meaning that the probability of forgiving is increasingly
positive as the defector’s image score becomes more positive. The
values of 1.355 and 1.67 are selected such that in the initial case of
all agents having a image score of 0, the probability of forgiving py



action forgiveness
~e- assessment forgiveness
91=0.05 (assessment generosity)
®  g2=0.05 (action generosity)
baseline

action forgiveness
~e- assessment forgiveness
91=0.05 (assessment generosity)
® 92=0.05 (action generosity)
baseline

action forgiveness
8- assessment forgiveness
91=0.05 (assessment generosity)
~ ~® g2=0.05 (action generosity)
baseline

i

n

n
’

Average payoff
.
Average payoff
’

°
°

°
o
o
o

0.0 0.0

Average payoff
n
’
[
’

°
’

’
']
1
°
@
’

0.00 0.05 0.10 0.15 0.20 0.00 0.05
Action and perception noise

(a)qg=10.8

0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Action and perception noise

(b) g =0.9

Action and perception noise

©g=10

Figure 6. The effect of different probabilities of assessment and action forgiveness for different levels of action and perception noise (eq = ep). Results are
averaged over 100 runs of g = 10 generations, and show the average payoff for different probabilities, g, of onlookers observing interactions. The best
performing results for action and assessment generosity are also shown (i.e., the highest probability of generosity, g1 = g2 = 0.05).

will be approximately 0.25 and 0.5 respectively, meaning that py is
in a similar range to the probability of assessment and action gen-
erosity, g1 and g2 considered by Schmid et al.. The impact of an
agent’s forgiveness strategy, f;, on the probability of it forgiving can
be seen in Figure 5, which shows the probability of forgiving for the
possible image score values of the beneficiary.

Action forgiveness is defined similarly, affecting whether a donor
will donate even if reputational information suggests it should not.

An agent’s forgiveness strategy f;, along with the donation strat-
egy k;, is propagated to subsequent generations as described in Sec-
tion 2, such that with a small chance of mutation, p., an offspring 7’
will use random strategies for both k;» and f;/.

Figure 6 shows the impact of assessment and action forgiveness
on average payoff, where image scores are in [—5, +5], for different
probabilities g, of observing interactions. The set of possible forgive-
ness strategies is F = {0.001,0.5,1.0,1.355,1.67}, as illustrated
in Figure 5. For comparison, assessment and action generosity (with
the best performing probabilities of g1 = g2 = 0.05) are also shown.

Our results show that assessment forgiveness has limited effect
which is highly dependent on the level of observation. For a low level
of observation (¢ = 0.8) there is negligible difference between the
average payoff in the baseline case of Nowak and Sigmund’s model,
and assessment forgiveness. As observation levels increase (¢ = 0.9
and ¢ = 1), assessment forgiveness is more effective, but gives sig-
nificantly lower average payoff than action forgiveness or generos-
ity. A possible reason for this is that assessment forgiveness causes
image scores to become less accurate (i.e., by not reflecting each de-
fection), which in turn may reduce cooperation. Since forgiveness is
dependent on individuals’ forgiveness strategies, which are updated
each generation, assessment forgiveness has a lower average payoff
than assessment generosity where the probability of not reducing the
image score of a defector is fixed throughout the entire simulation.

Action forgiveness has a much greater positive impact on the aver-
age payoff than assessment forgiveness, again with a greater increase
for higher levels of observation. The results in Figure 6 demonstrate
that in a ‘non-aligned’ setting, with nuanced (i.e., non-binary) rep-
utation, action forgiveness is moderately effective at mitigating the
impact of unreliable non-public image scores and action and percep-
tion noise. Interestingly, the average payoff from action forgiveness
is below both assessment and action generosity. Our hypothesis is
that this is because action forgiveness enables a donor to cooperate
with a recipient who is generally good, i.e., although the recipient’s
image score might be below the donor’s strategy it is sufficiently
positive that there is a chance of forgiving. However, since all for-

giveness strategies result in a very small forgiveness probabilities for
negative image scores, ‘known bad’ recipients are not forgiven. This
is similar to the ‘stern judging’ norm which allows for justified defec-
tion, and has been previously shown to be effective [17]. In contrast,
action generosity has a fixed probability of donating when the donor
should defect and is not able to discriminate whether generosity is
appropriate given the recipient’s image score.

7 Discussion, Future Work and Conclusions

This paper makes several contributions to the investigation of reci-
procity. First, we examine the effect of generosity in settings where
agents have more than just “good” and “bad” reputation. Second, we
provide an analytical analysis of cooperation in such settings. Finally,
we introduce the notion of forgiveness and investigate its effects.

Our results — in contrast to the work of Schmid et al. — demon-
strate that generosity has a positive effect on payoffs across the sys-
tem, reflecting increased cooperative behaviour in the context of nu-
anced reputation values. Curiously, we note an improvement in co-
operation in the presence of slight noise and generosity in contrast to
the no-noise case, a result we are unable to fully explain, though we
note that this result is somewhat supported by our analytical analy-
sis. Turning to this analysis, which considers only a small number of
agents and up to 8 different reputation values, we observed that coop-
eration increases as both the number of agents and reputation values
increase, with the latter highlighting the utility of nuance in reputa-
tion. Turning to forgiveness we were surprised to discover that the
use of this individualised strategy did not lead to an improvement in
comparison to the use of global generosity. Since forgiveness could
converge to a universal value (and therefore mirror generosity), we
intend to investigate why this occurs in more detail as part of our
future work. We are also pursuing several other directions of work.
First, we intend to use a hybrid simulation/analytical approach, as de-
scribed in [22], to investigate the behaviour of forgiveness and gen-
erosity in larger system with nuanced reputation and different types
of noise. We are also investigating whether more complex strategies
and strategy-learning mechanisms can improve cooperation in the
system. Finally, we are examining the effects of reputation noise in
conjunction with forgiveness strategies.
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