
Modeling a Conversational Agent using BDI Framework
Alexandre Yukio Ichida

Pontifical Catholic University of Rio Grande do Sul
alexandre.ichida@edu.pucrs.br

Felipe Meneguzzi
University of Aberdeen

Pontifical Catholic University of Rio Grande do Sul
felipe.meneguzzi@abdn.ac.uk

ABSTRACT
Building conversational agents to help humans in domain-specific
tasks is challenging since the agent needs to understand the natural
language and act over it while accessing domain expert knowledge.
Modern natural language processing techniques led to an expansion
of conversational agents, with recent pretrained language models
achieving increasingly accurate language recognition results using
ever-larger open datasets. However, the black-box nature of such
pretrained language models obscures the agent’s reasoning and its
motivations when responding, leading to unexplained dialogues.
We develop a belief-desire-intention (BDI) agent as a task-oriented
dialogue system to introduce mental attitudes similar to humans de-
scribing their behavior during a dialogue. We compare the resulting
model with a pipeline dialogue model by leveraging existing compo-
nents from dialogue systems and developing the agent’s intention
selection as a dialogue policy. We show that combining traditional
agent modelling approaches, such as BDI, with more recent learning
techniques can result in efficient and scrutable dialogue systems.

CCS CONCEPTS
• Computing methodologies → Reasoning about belief and
knowledge;

KEYWORDS
belief-desire-intention, task-oriented dialogue systems, autonomous
agent, machine learning

ACM Reference Format:
Alexandre Yukio Ichida and Felipe Meneguzzi. 2023. Modeling a Conversa-
tional Agent using BDI Framework. In The 38th ACM/SIGAPP Symposium
on Applied Computing (SAC ’23), March 27-March 31, 2023, Tallinn, Esto-
nia. ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/
3555776.3577657

1 INTRODUCTION
Research and development of conversational agents has seen a
renaissance in recent years as a result of advances on natural lan-
guage processing [14]. Natural language is an essential interface
between agents and humans in artificial intelligence applications
related to human-computer interaction. Conversational assistants

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’23, March 27-March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577657

are autonomous agents that interact in natural language to assist in
a wide range of tasks, such as domain-specific information retrieval.
Task-oriented conversational agents focus on helping humans to
achieve their goals in single or multi-domains, which differ from
open-domain conversational agents regarding the domain covered
in conversation with a human. Key to task-oriented agents is their
goal-driven behavior[23], which leads the agent to make decisions
by examining the dialogue state in a multi-turn conversation. Book-
ing systems (i.e., restaurants, hotels) constitute a typical commercial
application that involves a task-oriented agent, where the goal is
to help a user book services given user-defined criteria.

Traditional approaches to artificial intelligence often model de-
cision-making by borrowing terminology from folk psychology,
which describes human mental attitudes to implement rational
agents. The belief-desire-intention (BDI) model [1, 3] introduces a
conceptual framework to implement autonomous agents composed
of beliefs, desires, and intentions. The BDI architecture encodes the
agent’s behavior as plan rules to instruct it on achieving particular
(implicit) goals given specific context conditions. [10]. Specifically,
plans represent a sequence of actions the agent should perform
given a set of conditions entailed by the agent’s belief base, which
are manually developed by humans in a structure named Plan Li-
brary. Such terminology is useful in developing and debugging
autonomous agents in a variety of domains [13] since this architec-
ture describes information about the agent beliefs.

In this paper we develop a BDI-style agent for task-oriented
dialogues that seamlessly blends a symbolic practical reasoning
mechanism with machine learning techniques for planning and
natural language understanding. Our contributions are as follows.
First, we develop a specialized BDI agent architecture for task-
oriented dialogues that aims to help humans to achieve their goal
in domain-specific tasks (Section 3). This allows us to represent
knowledge in a logic-based format within the agent’s belief base,
and take advantage of the classical BDI reasoning cycle. This facili-
tates describing the agent reasoning during a dialogue. Second, we
include a learnable dialogue policy in the agent architecture as an
intention structure to reduce human effort in agent development.
Third, we apply different learning paradigms and combine them
to show how a BDI model can be optimized without predefined
plan-rules. We show experimentally that the BDI dialogue agent
can learn how to respond by using supervised learning with an
annotated dataset and reinforcement learning by using a simulated
environment.

2 BACKGROUND
Task-oriented dialogue systems are conversational agents that focus
on achieving predefined user goals. Zhang et al. [23] divide exist-
ing approaches to task-oriented agent development into two types
according to their architecture: pipeline methods and end-to-end

https://doi.org/10.1145/3555776.3577657
https://doi.org/10.1145/3555776.3577657
https://doi.org/10.1145/3555776.3577657

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Alexandre Yukio Ichida and Felipe Meneguzzi

methods. End-to-end methods use a single model that receives the
user’s natural language utterance and directly outputs the agent
response, often relying on novel neural network techniques by
leveraging large annotated corpora. By contrast, a pipeline task-
oriented dialogue system comprises different parts organized in the
following components: natural language understanding (NLU) to
identify the user intention; dialogue state tracking (DST) to main-
tain the state of conversations; dialogue policy to select a dialogue
act to be performed; and natural language generation (NLG) to
translate the action selected into an understandable answer.

The BDI model is a framework to develop autonomous ratio-
nal agents bound with mental attitudes in its architecture [16].
Inspired by Bratman’s philosophical work [1], the BDI framework
introduces a practical reasoning approach that consists of three
basic components: beliefs, desires, and intentions. Beliefs represent
the information about the environment according to the agent’s
perceptions, which describe its current state. During the agent exe-
cution, the agent observes events from the environment and might
include new beliefs or update the existing ones in a Belief Base data
structure, which stores all agent beliefs. Desires represent states
of affairs that the agent aims to achieve to satisfy its design goals.
The intention component is a structure that consists of a set of
instantiated plans adopted by the agent to achieve a subset of its
desires.

Since task-oriented agents interact with a user in a multi-turn
conversation, it is necessary to track the dialogue state in order to
answer consistently throughout the dialogue session. Pipeline task-
oriented agents rely on the 𝑑𝑠𝑡 component to represent the state,
while BDI agents use their belief base to store each agent’s beliefs
in an environment. Considering that the 𝑑𝑠𝑡 tracks the dialogue
state by storing all observations about user utterances, we assume
that there is a correspondence between the 𝑑𝑠𝑡 component and
the belief base. A BDI agent interacts with the environment acting
over by selecting an intention or plans to execute given a context
entailed by its belief base. Similarly, a task-oriented agent relies on
the actual dialogue state managed by the 𝑑𝑠𝑡 component to choose
its next dialogue act. We can represent the dialogue acts as a plan
since a task-oriented agent might execute multiple dialogues acts
in a single answer analogous to a sequence of steps.

3 A BDI CONVERSATIONAL AGENT
In a BDI dialogue system, beliefs encode knowledge obtained during
a conversation with a human, and the agent desire is to achieve
the user goals by providing useful responses. Intentions represent
which response the agent should commit to providing to a human
given its current beliefs. This mental state representation allows
us to inspect it during a conversation to explain why an agent has
chosen a particular action, as recent research shows [4].

Traditional BDI agents often require a designer to build a plan
library comprising either pre-determined plans or a set of complex
planning rules. Such requirement creates two major problems to
practical applications in the real world. First, they incur a substantial
labor cost to agent development. Second, such agents have no
mechanism to adapt its plan selection in cases where changes occur
in the target environment. To minimize the human intervention and
limitations of traditional BDI agents [10], we develop an intention

selection as a dialogue policy that selects the agent response as
a stochastic transition. In turn, our agent learns this policy via
reinforcement learning, obviating the need for human fine-tuning
of the plan selection criteria.

3.1 BDI Reasoning Cycle
The agent reasoning process starts with receiving the user utter-
ance written in natural language. Similar to a pipeline task-oriented
dialogue system, the agent extracts the user intention and parame-
ters in the user utterance using an NLU component to formulate
perceptions in a logical representation, which the agent can then in-
clude in its belief base. The agent then maps the formulated beliefs
and executes an optimized dialogue policy to select which dialogue
act should be triggered. Finally, the agent outputs an answer in
natural language to the user expressing the dialogue acts predicted
by the policy. We summarize the reasoning process in Figure 1.

Agent Reasoning Cycle

Belief Base

Current Observation

Past Observations

Last action performed

N
L
U

Plan/Intention
Selection

KB Results
Slot Filling

Domain
KB NLG

User: I would like information on a place to eat
chinese food
Agent: Can you inform the restaurant area?
User: I want a restaurant in central area

restaurant_inform(food)

restaurant_inform(area)

restaurant_request(food)

Plan Steps:
1. restaurant_inform(choice)
2. restaurant_recommend(name)

Available
Dialogue

Acts

1....(choice=3)
2. ...(name=Yu Garden)

kb_results(3)
[{name: Yu Garden}, ...]

Agent: I found 3 restaurants in the central area that servers chinese food.
I would recommend Yu Garden.

Slot values from KB Results

N
L
U

Updating Belief Base

Figure 1: Diagram illustrating the agent architecture and its
components given an example of the reasoning cycle in a
dialogue session with a user.

In the agent reasoning process, both NLU and NLG are off-
the-shelf components employed in existing dialogue systems with
pipeline architecture. Notice that we do not assume any specific
implementation of these components within the agent architecture,
therefore, the agent is compatible with any existing NLU and NLG
components. Indeed, Section 4 details the implementations we use
in our experiments.

Within the reasoning cycle, the agent’s belief base contains two
key pieces of information during a dialogue, (translated) perceptions
about user utterances and domain knowledge. The agent translates
perceptions collected throughout a dialogue into beliefs that de-
scribe the user’s intent and elements mentioned in an utterance.

SIG Proceedings Paper in LaTeX Format SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

The domain knowledge includes information and entities created
by human experts (e.g., restaurants, hotels) that the agent should
use to provide a response. The agent query the domain knowledge
base (KB) about specific information from domain knowledge dur-
ing the dialogue to satisfy the user goal given its perceptions and
information stored in its Belief Base. The agent responds by taking
into account the information retrieved from the knowledge base,
which may lead to different directions in the dialogue flow. For
example, when an entity required by the user is not in its domain
knowledge, the agent should report that it could not follow the
expected dialogue progression. On the other hand, if the entity
exists, the agent can follow the direction to the original user goal.

Given the belief base built during dialogue, the agent adopts
an intention to respond to the user through plan execution. Note
that such plans consider a finite set of dialogue acts that follow the
domain ontology, which keeps the agent response given the current
domain under control. Consequently, the agent’s internal state
generates an event to update the belief base to include new beliefs
or update existing ones considering the dialogue acts executed by
the selected plan. In our agent instantiation, instead of manually
creating plans for each available context, we applymachine learning
methods to select single or multiple actions to learn the adopted
plan. We detail the action selection process in Section 3.4.

Figure 1 illustrates the reasoning cycle of the agent in a dialogue
related to a restaurant booking domain, given the underlined user
utterance. First, the 𝑛𝑙𝑢 component recognizes the intention inform
and slot place from the domain restaurant to formulate the agent
perceived belief. Second, the agent queries the domain knowledge
base to represent the knowledge base results following its beliefs.
Third, given an optimal dialogue policy, the agent selects its recom-
mended action and informs the number of choices available. Finally,
the 𝑛𝑙𝑔 component translates the symbolic representation of each
dialogue act in the selected plan into a natural language utterance.

3.2 Belief Base Representation
We include an NLU component in our BDI agent to formulate its
beliefs from user natural language utterances given the utterance
perceived during a dialogue. Such information describes the user’s
natural language utterance as a structured semantic representation,
which consists of a set of finite symbols. Similar to traditional BDI
agents, working with a structured semantic representation allows
representing the agent’s observation with a logical language.

The belief base stores all information perceived and collected
from the domain knowledge base to describe the dialogue state,
which has a similar role to the DST component in the task-oriented
pipeline agent architecture. In our agent implementation, the belief
base comprises the following dialogue elements: the observation
perceived in the current turn, past observations, the actions trig-
gered from the plan executed in the previous turn, and knowledge
base results. The agent stores all observations perceived from past
dialogue turns and unifies them with the current one in its belief
base to track the dialogue state. While the agent executes the se-
lected plan, the beliefs are updated to prepare the belief base for the
next dialogue turn, which results in an update of the past observa-
tions to consider the current one and overwriting the last dialogue
acts performed with the plan selected.

As illustrated in Figure 1, the agent queries the knowledge base
by using as criteria the current and past observations perceived
throughout the dialogue, which results in a new belief to represent
how many results the agent retrieves. The agent uses the number of
results to discern whether an entity stored in the domain knowledge
base corresponds to the information mentioned by the user. We did
not apply any approaches that prioritize or explore in-depth entity
details retrieved from the knowledge base. Hence, for simplicity, the
agent selects a random element in cases where the knowledge base
query results in more than a single entity. In this paper, we describe
the beliefs using a first-order logic language encoding the symbolic
representation above. We encode the user intent as a predicate since
it describes the user dialogue act and its argument encodes the slot
information. In order to distinguish the context of user intent, we
include the utterance domain in the predicate term. Given that, we
formalize the representation of agent beliefs as follows:

Definition 3.1 (Belief Representation). Given a set of symbols 𝐷
representing available conversation domains, 𝐼 user intents, and 𝑆
for slots defined by an ontology, the belief representation is a unary
predicate symbol 𝑑_𝑖 (𝑠) where 𝑑 ∈ 𝐷 , 𝑖 ∈ 𝐼 , 𝑠 ∈ 𝑆 .

The symbolic representation of beliefs uses the delexicalized
form of each slot retrieved by the NLU component. The delexical-
ized form does not include the slot value retrieved and uses solely
the slot type to reduce symbol diversity and, consequently, reduce
the belief vocabulary size. However, in order to fulfil the agent
response with slot values retrieved from the knowledge base in
the slot filling step, we store all slot values retrieved in the agent’s
internal state. For example, if the user informs its intention to
book a restaurant in a central area, we use the intention inform
and slot area to describe the belief as 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡_𝑖𝑛𝑓 𝑜𝑟𝑚(𝑎𝑟𝑒𝑎).
The symbolic representation of dialogue acts performed by the
agent in selected plans shares the same symbol schema of per-
ceived beliefs. Given the same symbol represented as a dialogue
act 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡_𝑖𝑛𝑓 𝑜𝑟𝑚(𝑎𝑟𝑒𝑎), this example can represent the act
that results in a message informing the restaurant area for the user.

3.3 Dialogue Policy as Intention Selection
The role of the dialogue policy in pipeline agent architectures is to
specify the agent’s response to a human throughout the dialogue
with a human. The dialogue policy describes how the agent should
respond to a human with a probability distribution to represent
the likelihood to select a specific action. By contrast, traditional
BDI agents use plans and actions that are explicitly programmed
by humans. The agent then selects these plans to be adopted as
intentions through an intention selection process. Pipeline agents
learn dialogue policies through supervision or experience acquired
in a simulated environment. In our agent, we develop an intention
selection mechanism similar to a dialogue policy. We formalize the
dialogue policy component using the following definition:

Definition 3.2 (Intention Selection). The Intention Selection policy
𝜋 is a neural network function 𝑓 : R |𝐵𝑒𝑙 | → R𝑎 that maps the belief
base and results into a plan of actions to be performed by the agent.

Specifically, the agent uses a simple multi-layer perceptron as a
function 𝑓 that receives the dialogue state in a vector representation
and generates another vector indicating the actions selected by the

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Alexandre Yukio Ichida and Felipe Meneguzzi

policy. Note that using a symbolic representation of user actions
grounded by an ontology allows formulating a fixed-size vocabulary
with all unique beliefs. Given a vocabulary 𝑣 that contains all beliefs
supported by the agent, the policy input representation is a binary
vector with size |𝑣 | mapping each position to a single belief mapped
to 1 if a specific belief is present in the belief base and 0 otherwise.

The output of 𝑓 is a numerical vector representing the agent’s
probability of adopting each action, given the belief base on the
current dialogue turn. The probability distribution provided by
the dialogue policy consists of a multi-discrete action space where
it represents a single discrete space for each available dialogue
act. In this paper, we use the symbolic dialogue act representation
similar to the symbolic belief representation, in which we generate a
symbol for all available actions handled by the agent. Multi-discrete
action space is amenable to represent plans since it allows the agent
to execute multiple dialogue acts in the same turn (e.g., inform the
name and the area of a specific restaurant as a sequence of steps).
Regarding the execution step order of selected plans, we use the
sequence index of the probability distribution vector generated by
the dialogue policy. Figure 2 illustrates the inputs and outputs of
the dialogue policy neural network.

restaurant_inform(name)

restaurant_inform(area)

...

...

restaurant_recommend(name)

restaurant_inform(area)

restaurant_inform(choice)

restaurant_nooffer(name)

Policy
Neural Network

Action
Selection

Belief Input
Vector

Figure 2: Process of action selection illustrated in Figure 1 by
using the policy neural network.

3.4 Dialogue Policy Training
We combine two learning paradigms to enhance the agent plan
selection given its beliefs. Similar to the work from Goecks et al. [6],
we develop an actor-critic [8] approach to optimize the dialogue
policy using a supervised learning method and a reinforcement
learning method. Specifically, we develop the dialogue policy opti-
mization in the following steps: First, we train the dialogue policy
using an annotated dataset example of conversations between a
user and a simulated human. Second, we optimize the dialogue
policy using a reinforcement learning algorithm given a simulated
environment where the agent interacts and receives rewards for
performed actions.

3.4.1 Supervised Training. The supervised training of dialogue poli-
cies uses a dialogue dataset that contains the respective annotated
dialogue acts. The dialogue policy must predict multiple actions
and, hence, we apply supervised learning similar to a classification
task considering each dialogue act as a mutually non-exclusive
class. Inspired by the Behavioral Cloning approach [11], we use
each dialogue in the dataset as trajectories, iterating over turns
and collecting each annotated dialogue state-action (𝑠, 𝑎). In our
architecture, the agent belief base represents the state 𝑠 , whereas
𝑎 is the expected action to be performed given its current beliefs.

Thus, the supervised training optimizes the dialogue policy 𝜋𝑏𝑐
𝜃

by
minimizing a loss function 𝐿𝑏𝑐 (𝑎, 𝜋𝑏𝑐𝜃 (𝑠)). Since each action space
is an independent distribution and each output is a value between
0 and 1, in this step, we use a binary cross-entropy loss function:

𝐿𝑏𝑐 = 𝑎 · log𝜎 (𝜋𝑏𝑐
𝜃
(𝑠)) + (1 − 𝑎) · log(1 − 𝜎 (𝜋𝑏𝑐

𝜃
(𝑠))) (1)

3.4.2 Simulated Environment Training. In the second step of the pol-
icy optimization, we reuse the policy network parameters learned
from the previous step as a starting point of the simulated environ-
ment training. This simulated environment is amenable to applying
reinforcement learning approaches. Specifically, given the policy
𝜋𝑏𝑐
𝜃

with parameters 𝜃 pretrained with the supervised training
method, we then apply Proximal Policy Optimization (PPO) [19] as
a second optimization step to generate a policy 𝜋𝑏𝑐+𝑝𝑝𝑜

𝜃
. Schulman

et al. [19] argue that traditional Policy Gradient methods can gen-
erate large policy updates that degrade the policy performance. In
our case, such large updates can lead to information loss of policy
𝜋
𝑏𝑐+𝑝𝑝𝑜
𝜃

by erasing the learning parameters from 𝜋𝑏𝑐
𝜃
.

In our work, we apply a PPO algorithm based on a clipped surro-
gate objective by using a generalized advantage estimation. Specifi-
cally, given a dialogue turn 𝑡 , we compute the probability ratio 𝑟𝑡 (𝜃)
between the new and the old policies considering the update step
and optimize the surrogate objective 𝐿𝐶𝐿𝐼𝑃 following the equations:

𝑟𝑡 (𝜃) =
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃𝑛𝑒𝑤 (𝑎𝑡 |𝑠𝑡)

(2)

𝐿𝐶𝐿𝐼𝑃 (𝜃) = E𝑡 [𝑚𝑖𝑛(𝑟𝑡 (𝜃)𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)] (3)

where 𝜖 is a hyperparameter that defines the bounds of the clipping
operation over the ratio 𝑟𝑡 (𝜃) [19]. Clipping the policy update
restricts the probability ratio between 𝜋𝜃𝑜𝑙𝑑 and 𝜋𝜃𝑛𝑒𝑤 into the
interval [1−𝜖 and 1+𝜖], which minimizes the problem of traditional
Policy Gradient stated before.

𝐴 represents the result of Generalized Advantage Estimation
(GAE) [18], in which we use a Value Function 𝑉 (𝑠) as follows:

𝐴 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ... + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1 (4)

where 𝛿𝑡 = 𝑅𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡) (5)

where 𝛾 is a hyperparameter that represents a discount factor and
𝑅𝑡 is the immediate reward. We represent the value function 𝑉w as
a neural network with learnable parametersw with an architecture
similar to the policy network, except that𝑉w predicts a single value
instead of action probabilities. Although both models do not share
the same parameters, we optimize the value network and policy
network in the same step. We minimize the loss function 𝐿 by
computing the simple subtraction between 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑣𝑡 as stated
in line 9 of Algorithm 1. We summarize our implementation of PPO
update step considering a complete dialog in Algorithm 1.

4 EXPERIMENTS AND RESULTS
4.1 Implementation
We conduct our experiments using the Convlab components and
evaluation methods [24]. Convlab is a standardized task-dialogue
system platform that provides a wide variety of configurations and

SIG Proceedings Paper in LaTeX Format SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

Algorithm 1 PPO update step of Dialog Policy
Require: dialog states 𝑠 , dialog actions 𝑎, immediate rewards 𝑅, number

of dialogue turns 𝑇 , pretrained dialogue policy network 𝜋𝑏𝑐
𝜃

, value
function𝑉w, discount factor 𝛾

1: 𝜋𝜃 ← 𝜋𝑏𝑐
𝜃

2: 𝜋𝜃𝑜𝑙𝑑 ← 𝜋𝜃
3: for 𝑡 ← (𝑇 − 1), ..., 0 do
4: 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑅𝑡 + 𝛾 ∗𝑉w (𝑠𝑡+1)
5: �̂�𝑡 ← Compute GAE (Equation 4-5)
6: end for
7: for 𝑡 ← 0, ...,𝑇 do
8: 𝑣𝑡 ← 𝑉w (𝑠𝑡)
9: Minimize 𝐿 (𝑣𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑣𝑡) to optimize𝑉w
10: Compute ratio between 𝜋𝜃𝑜𝑙𝑑 and 𝜋𝜃 (Eq. 2) selecting the action 𝑎𝑡
11: Optimizes 𝜋𝜃 using 𝐿𝐶𝐿𝐼𝑃 (𝜃) using �̂�𝑡 (Eq. 3)
12: end for

settings to develop pipeline agents. We integrate off-the-shelf imple-
mentations and pretrained models for NLU and NLG components
provided by the Convlab platform.

We use the MultiWOZ task-oriented dialogue corpus [21], which
contains ten thousand annotated dialogues involving multiple do-
mains. The dialogues cover the following domains: restaurant, ho-
tel, attractions, taxi, train, policy, and hospital. The corpus also
includes a predefined ontology with intent and slot taxonomies and
a knowledge base with examples for each domain. For the belief
vocabulary, we use a single vocabulary to represent all domains
contained in MultiWOZ domain ontologies for input beliefs and
available actions.

The policy neural network is a two-layer 100-dimensional net-
work, which we optimize in both training steps using the RMSprop
optimizer. In the PPO step, the value model uses the same neural
network specification of the policy except for its output layer, which
predicts a single value to estimate the state value. Since hyperpa-
rameter tuning is out of the scope of this work, we use the same
hyperparameters used in Schulman et al. work [19]. We use 1e-3 as
supervised learning rate and a smaller learning rate (1e-4) in PPO
in order to preserve the knowledge transferred between steps.

In cases where the agent should execute the same dialogue acts
multiple times in the same dialogue turn (e.g. the same dialogue act
and slot for the same domain), we include the number of times that
the agent executes the action as a suffix in the symbolic representa-
tion. For instance, the dialogue act restaurant_inform(name)-3
should be triggered when the agent recommends three different
restaurant names in the same response. This representation ap-
proach is the same used by the other Convlab provided models, and
hence, we use it to make a fair comparison in our experiments. In
order to deal with a tractable number of available combinations of
domain/dialogue act/slots/occurrences, we use a limited subset of
dialogue acts by selecting the 276 most frequent actions in anno-
tated dialogues, which is the same number used by other Convlab
provided models.

In order to carry out experiments in a dialogue environment
to train the PPO algorithm, we use the user simulator provided
by Convlab that simulates multi-turn dialogues using MultiWOZ
settings. The simulator is an agenda-based user simulator [17]
that uses a stack-like structure with complex predefined dialogue

Table 1: Performance on MultiWOZ domain separated into
three groups: an agent with explicitly programmed rules, our
approach, and an end-to-end model.

NLU DST Policy Comp
rate

Succ
rate

Inform
P/R/F1

Turn
(s/all)

BERT RuleDST RulePolicy 90.5 81.3 79.7/92.6/83.5 11.6/12.3
MILU RuleDST RulePolicy 93.3 81.8 80.4/94.7/84.8 11.3/12.1
BERT BeliefBase BeliefPPO 77.5 72.6 70.0/86.4/74.4 13.7/17.3
MILU BeliefBase BeliefPPO 72.4 65.2 66.5/81.7/70.5 13.5/18.1

DAMD 39.5 34.3 60.4/59.8/56.3 15.8/29.8

heuristics to mimic the user behavior. The user’s stack contains
randomly initialized user goals, which contain all slots required to
conduct its actions through heuristics during an interaction with
an agent. We limit dialogues to 40 utterances/turns to avoid endless
dialogues in which the agent fails to provide useful answers. Since
most interactions in the ConvLab simulator end within 10 turns,
we capped the dialogs to 4 times this number of turns.

4.2 Metrics
In this section, we detail all ConvLab metrics used in our exper-
iments in order to measure the agent results in a simulated en-
vironment. [24]. We use dialogue metrics that track single turns
to measure how well the agent could respond to the user utter-
ance(inform precision/recall/F1). We also include metrics that track
the entire dialogue since errors in a specific turn can be propagated
to the following turns, which affects the overall results (complete/-
success rate).

The inform precision/recall/F1 measures the number of requests
in which the agent replies as expected in a single turn. The complete
rate measures whether the agent achieves all simulator goals at the
end of the dialogue. The success rate measures whether the agent
fulfills all user requests with the correct expected information,
and the agent performs the booking operation expected by the
simulator. Finally, we include the average number of turns of the
entire simulated dialogues (both in successful dialogues, and over all
dialogues) to measure the agent time efficiency. Note that complete
rate and success ratemay lead to different values since the simulated
user may not necessarily have a booking operation as a goal.

4.3 MultiWOZ Task Completion Results
In this experiment, we compare our approach with other pipeline
configurations to evaluate the effectiveness of ourmodel to solve the
user task. We also include end-to-end methods to compare our BDI
agent with a black-box model. We conduct our experiments using
metrics similar to Takanobu et al [20], which compares different
task-oriented dialogue with mixed architecture types.

As the NLU role, we use a pretrained BERT-based [5] and the
MILU (Multi-Intent Language Understanding) recurrent neural net-
work [7], with both implementations provided by Convlab and
optimized using the MultiWOZ corpus. The RuleDST is the default
DST component for all Convlab implementations that includes Mul-
tiWOZ specific details in the dialogue state (i.e. informable slots,
booking slots). Similar to the RuleDST, we develop a BeliefBase
dialogue state tracker that represents all agent observations into

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Alexandre Yukio Ichida and Felipe Meneguzzi

a logical representation. For all agent settings, we use the Tem-
plateNLG to generate a natural language response, which relies on
fixed phrases templates and fill values contained in the dialogue
state on it. To compare with pipeline agents, we include the end-to-
end Domain Aware Multi-Decoder (DAMD) neural network [22],
which relies on an encoder network that receives the dialogue states
to decode into a natural language response directly. DAMD uses
a supervised learning method, jointly with a data augmentation
technique applied in the MultiWOZ corpus. Table 1 shows metrics
collected from 1000 simulated dialogues between the agent and a
simulated user for different pipeline configurations.1

In this comparison, we also include a dialogue policy with explic-
itly programmed rules (RulePolicy), which outperforms machine
learning techniques in all metrics including end-to-end approaches.
Such results highlight the benefit of using explicitly programmed
rules, even if it requires extensive human effort to anticipate each
task-oriented dialogue situation. We show the difference of using a
more suitable NLU component by using two different implementa-
tions. While our approach results are better using the BERT NLU
component, the RulePolicy could achieve better results using the
MILU component. Such differences in results convey the importance
of using the best possible NLU component implementation since
errors in understanding propagate to the subsequent components.
The results of all pipeline architecture-based agents outperform the
end-to-end approach in turn metrics (inform p/r/f1), and by a large
margin in multi-turn metrics (complete/success rate).

4.4 MultiWOZ Domain Results
In this section, we detail the experiments stratified by each Multi-
WOZ domain to evaluate the agent performance given a specific
context. This experiment uses the dialogue policy isolated from
NLU components to avoid invalid beliefs. Similar to the previous
Section, we simulated the agent through 1000 simulated dialogue
sessions, with results shown in Table 2.

Although we achieve perfect metrics in the hospital and po-
lice domains, the number of dialogues in such domains is small
compared to others, so these results might not necessarily be repre-
sentative of performance in such domains. Since our agent achieves
perfect metrics for the taxi (176 dialogues), hospital (48 dialogues),
and police domains (32 dialogues), we did not include their results
in Table 2. We observe that the conversations related to the hotel
domain contain loops in 18% of simulated dialogues. The dialogue
loop occurs when the simulated user keeps repeating the same
specific request until it reaches the turn limit, which means the
agent could not deal with such user dialogue actions related to the
hotel domain. Zhu et al [24] argue that the hotel domain is more
prone to dialogue loops using the Convlab simulated environment.

4.5 Dialogue Policy Training
We evaluate the improvement of transfer learning instead of using
a single machine learning technique by using a simulated user to
collect the effectiveness and rewards obtained of each policy. In
this experiment, we compare only the policy isolated from the NLU
component since it might generate errors in intent slot recognitions
as stated before. The simulator sends a set of intent and slots and
1Results extracted in September 14, 2022 from https://github.com/thu-coai/ConvLab-2

Table 2: Dialogue policy results stratified per MultiWOZ do-
main with the respective number of domain dialogues over
1000 simulated dialogues.

Domain Dialogues
Succ.
Rate

Inform
P/R/F1

Turn
(succ/all)

attraction 303 99.7 70.5/97.6/79.6 4.2/5.7
restaurant 463 98.9 63.4/82.6/69.1 9.2/9.2

hotel 394 75.1 38.1/74.3/47.6 9.6/10.6
train 348 98.2 90.7/90.7/90.7 6.2/6.2

the policy should answer correctly during the dialogue in order to
achieve the user’s goal. Besides the metrics mentioned before, we
measure the average reward gained by the agent by following a
specific dialogue policy instance.

Table 3: Results obtained from dialogue policies optimized
from different methods.

Policy Compl.
Rate

Succ.
Rate

Inform
P/R/F1

𝑅

(avg)
𝜋
𝑏𝑐+𝑝𝑝𝑜
𝜃

96.4 95.2 71.1/97.5/79.6 21.9
𝜋𝑏𝑐
𝜃

95.3 85.3 69.7/96.0/78.2 20.4
𝜋
𝑝𝑝𝑜

𝜃
12.8 7.2 26.7/82.1/36.8 -31.1

Initializing the weights of 𝜋𝜃 by using supervising learning be-
fore applying the PPO algorithms outperforms by a large difference
when compared with PPO trained from scratch and slightly outper-
forms the Behavioral cloning approach. The supervised learning
step optimizes the dialogue by predicting the action based on a
state of a separated annotated trajectory (i.e. MultiWOZ annotated
dataset), which does not consider multi-turn dynamics. The success
rate difference between 𝜋

𝑏𝑐+𝑝𝑝𝑜
𝜃

and 𝜋𝑏𝑐
𝜃

highlights the difference
of both learning approaches since the second learning step rewards
the agent only in episodes in which the agent achieves all goals.
By contrast, the reinforcement learning step optimizes by using
a reward function that gives a positive reward only whether the
agent could achieve all simulated user objectives throughout the
dialogue, as described in Section 4.1.

To enable a fair comparison, we train the 𝜋𝑝𝑝𝑜
𝜃

policy using a
higher learning rate (the same used in 𝜋𝑏𝑐

𝜃
policy training) than the

policy 𝜋
𝑏𝑐+𝑝𝑝𝑜
𝜃

, to compensate for the pre-training included in the

supervised learning phase of 𝜋𝑏𝑐+𝑝𝑝𝑜
𝜃

. Since policy 𝜋𝑏𝑐
𝜃

outperforms
policy 𝜋𝑝𝑝𝑜

𝜃
by a substantial margin, we do not execute PPO before

supervised learning. In this experiment, the results of 𝜋𝑏𝑐+𝑝𝑝𝑜
𝜃

are
better than the results in Table 1 due to the absence of the NLU
component, of which outputs are error-prone.

The results of PPO trained from scratch (𝜋𝑝𝑝𝑜
𝜃

) show that our
reward function might not be suitable since it yields spare rewards,
making exploration challenging. Such reward sparsity [9] leads
to the agent sometimes iterating over 40 dialogue turns and not
receiving any positive reward in a simulated conversation. The re-
ward sparsity problem worsens not only by the increased dialogue
horizon but also by the high action dimensionality generated by

https://github.com/thu-coai/ConvLab-2

SIG Proceedings Paper in LaTeX Format SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

the agent dialogue policy. Similar to recent works [6, 12], we note
that including annotated trajectories helps deal with this explo-
ration problem by using a supervised step as the initial step. Results
from Table 3 show that using the MultiWOZ annotated datasets to
shape our policy substantially improves performance compared to
training the policy from scratch.

4.6 Scrutinising The Task-Oriented BDI Agent
In this experiment, we examine the agent’s mental state during
failed dialogues to understand its beliefs during plan selection, and
describe how a human can integrate programmed plans to assist the
agent. Since learning methods can induce blind spots in our agent
that might be simple for humans to deal with, we show that our
agent is amenable to being scrutable and being partially improved
by a human expert. Specifically, given the plan selected by the
agent, we scrutinise the agent’s beliefs in a specific dialogue turn
describing the resulting response. In this experiment, we include a
natural language justification of each answer based on its belief at
the dialogue turn using a controllable sentence with each symbol
filled.

Table 4 shows an example of a dialogue with a correct answer
and then with an incorrect answer. In this dialogue, the agent
informs the number of hotels retrieved in the knowledge base and
correctly informs the slot requested by the user. However, the agent
could not inform the requested information properly due to an
incorrect dialogue act predicted by the dialogue policy in the third
turn. The justification of its beliefs for the wrong answer sounds
unreasonable since the dialogue policy maps the belief base state
with an incoherent intention (i.e., did not inform the hotel name as
expected by the user).

To deal with such problems during the evaluation of the agent’s
mental state, we introduce a manually engineered plan to illustrate
a study case where humans can explicitly improve the learned
dialogue policy in this experiment. Since the rule-based policy
outperforms all learnable dialogue policies in Table 1, these results
show that the agent’s dialogue policy is amenable to having blind
spots when trained with the ConvLab simulated user. In Listing 1,
we illustrate a simple plan written in the AgentSpeak language to
support the agent in dealing with this limitation reproduced from
the learned dialogue policy. Specifically, we use a interpreter 2 of the
AgentSpeak language in this experiment due to its wide use as agent-
oriented programming language used to develop BDI agents [3].
In this case, we define the AgentSpeak plan[15] with the belief
inform addition as the triggering event and the expected dialogue
act (i.e., inform the requested slot) as the body when existing at
least a single hotel in the knowledge base to avoid informing an
inexistent name. We describe the alternative third turn response in
Table 4 using a manually developed AgentSpeak plan comparing
with the response generated by the learned policy.

Listing 1: AgentSpeak plan included in our agent to deal with
the third turn in the example described in Table 4
+Hote l _Reques t (Name) : Ho t e l _ R e s u l t s (N) & N>0

<− Hote l_ In fo rm (Name)

2https://github.com/niklasf/python-agentspeak

Table 4: Dialogue with the agent’s belief base and a justifica-
tion written in natural language regarding its response. The
last turn contains the learned policy response (LP) and the
AgentSpeak plan response (A).

User: I want a hotel in east area for 4 people

Beliefs: Current beliefs: Hotel_Inform(Area), Hotel_Inform(People)
KB beliefs: Hotel_results(4)

Response: There are 4 of those. One is a hotel. Others are guest-
houses. What price range are you looking for?

Justification: Because the user the area and people, the domain knowledge
base has 4 Hotels that satisfies the user preferences.

User: What is the phone of this hotel?

Beliefs:
Current beliefs: Hotel_Request(Phone)
KB belief: Hotel_results(4)
Past beliefs: Hotel_Inform(Area), Hotel_Inform(People)

Response: The hotel phone number is 01223315702.
Justification: Because the user request the phone, and the user has already

informed the area and people, the database has 4 hotels that
satisfies the user preferences.

User: What is the name of this hotel?

Beliefs:

Current beliefs: Hotel_Request(Name)
KB belief: Hotel_results(4)
Past beliefs: Hotel_Inform(Area), Hotel_Inform(People),
Hotel_Request(Phone)

Response:
(LP)

What price range are you looking for? Ho-
tel_Request(Price)

Response:
(A)

The name is Express by holiday inn cambridge. Ho-
tel_Inform(Name)

Justification: Because the user request the hotel name, and the user has
already informed the area and people, and the user has al-
ready requested the name the domain knowledge base has 4
Hotels that satisfies the user preferences.

4.7 Discussion
Recent end-to-end models achieve state-of-the-art results in re-
sponse generation by using large annotated datasets and leveraging
novel neural networks techniques. However, the use of a single
black-box model obscures the agent’s reasoning and its decision-
making process is not scrutable. Our results show that a modular
task-oriented agent brings more visibility to its decision-making
process, and achieves better results in simulated multi-turn dia-
logues.

Our experiment shows how a human can scrutinize the agent’s
behavior through its explicit representation of beliefs. We formulate
the justification in a natural language sentence by exploring its
beliefs to help humans understand the agent’s behavior during a di-
alogue. Furthermore, given an unexpected response and scrutinized
beliefs, we show how humans can correct the agent by introduc-
ing plans in our experiments. Our experiments corroborate that
explicitly programmed plans can handle specific instances of error
not covered in an annotated dataset or an episode in a simulated
environment. Although we introduce manually developed plans in
our agent, we need to integrate programmed and learned plans to
select one of them dynamically in future work.

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia Alexandre Yukio Ichida and Felipe Meneguzzi

5 RELATEDWORK
Recent work on autonomous agents explore reasoning techniques
to improve the communication between agents (humans or sys-
tems) regarding the explanation[4] and scrutiny[2]. Dennis and
Oren [4] introduce an approach to explaining the behavior of a BDI
agent using a formal dialogue with a simple BDI language named
SimpleBDI. Although this approach does not handle dialogues in
natural language, it deals with the formal dialogue between two
participants with BDI mental attitudes and represents it via traces,
which reveal each agent’s motivation. In our work, we deal with
natural language dialogues between a user and an agent, in which
only the latter participant has its mental state explicitly represented.
Caminada et al.[2] introduce an approach to demonstrate a justifi-
cation to a human for actions executed by an autonomous agent
by leveraging automated planning techniques. Such argument is
relevant nowadays since recent works on task-oriented dialogue
systems [22] often rely on pre-trained language models since they
have significant performance on unseen data. This work formulates
the justification by analyzing the facts contained in a knowledge
base that supports each precondition of executed action in a recur-
sive way. To evaluate the scrutiny of our agent, we apply the same
idea to understand the agent’s motivations to perform a specific
action by exploring its beliefs perceived in dialogue with a human.

6 CONCLUSION AND FUTUREWORK
This paper develops a specialisation of the BDI architecture for task-
oriented dialogue systems. The resulting architecture incorporates
an agent’s mental state, facilitating scrutability and the introduction
of situation-specific responses. We describe the similarities between
the pipeline tasks-oriented dialogue systems and the BDI mental
attitudes and how we can build modular agents. Instead of relying
only on programmed rules explicitly like traditional BDI agents, we
explore different learning techniques and combine them to show
their effectiveness in a BDI agent.

Our work opens many possible avenues for further research on
BDI agents for human interaction applications. As future work,
we plan to integrate explicitly programmed rules to complement
the dialogue policy in order to reduce the potential blind spots
in a dialogue. We need to improve the plan selection to alternate
between learned and programmed plans in a more sophisticated
way to cover all AgentSpeak language details. Considering that our
agent is compatible with beliefs represented with logical expres-
sions, as an important future work, we want to explore complex
existing model checking approaches to improve the interpretability
to our agent. Finally, we plan to integrate our agent with more for-
mal approaches to explain the BDI agent’s behavior in a dialogue
context [4].

REFERENCES
[1] Michael E. Bratman. 1987. Intention, Plans and Practical Reason. Harvard Univer-

sity Press.
[2] Martin W. Caminada, Roman Kutlak, Nir Oren, and Wamberto Weber Vasconce-

los. 2014. Scrutable Plan Enactment via Argumentation and Natural Language
Generation. In Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS ’14). Richland, SC, 1625–1626.

[3] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. 2020. BDI Agent Archi-
tectures: A Survey. In Proceedings of the Twenty-Ninth IJCAI. 4914–4921.

[4] Louise A. Dennis and Nir Oren. 2021. Explaining BDI Agent Behaviour through
Dialogue. In Proceedings of the 20th International Conference on Autonomous

Agents and MultiAgent Systems (AAMAS ’21). International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC, 429–437.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. In n
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[6] Vinicius G. Goecks, Gregory M. Gremillion, Vernon J. Lawhern, John Valasek, and
Nicholas R. Waytowich. 2020. Integrating Behavior Cloning and Reinforcement
Learning for Improved Performance in Dense and Sparse Reward Environments.
In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS ’20). Richland, SC, 465–473.

[7] Dilek Hakkani-Tür, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng Gao, Li Deng, and
Ye-YiWang. 2016. Multi-domain joint semantic frame parsing using bi-directional
rnn-lstm.. In Proceedings of the 17th Annual Conference of the International Speech
Communication Association. 715–719.

[8] Vijay Konda and John Tsitsiklis. 1999. Actor-Critic Algorithms. In Advances
in Neural Information Processing Systems, S. Solla, T. Leen, and K. Müller (Eds.),
Vol. 12. MIT Press.

[9] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. 2022. Exploration
in deep reinforcement learning: A survey. Information Fusion (2022).

[10] Felipe Meneguzzi and Lavindra de Silva. 2015. Planning in BDI agents: a survey
of the integration of planning algorithms and agent reasoning. The Knowledge
Engineering Review 30, 1 (2015), 1–44.

[11] D. Michie. 1990. Cognitive models from subcognitive skills. , 71-99 pages.
[12] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter

Abbeel. 2018. Overcoming exploration in reinforcement learning with demon-
strations. In 2018 IEEE international conference on robotics and automation (ICRA).
IEEE, 6292–6299.

[13] Lin Padgham and Michael Winikoff. 2005. Developing intelligent agent systems: A
practical guide. Vol. 13. John Wiley & Sons, Inc.

[14] Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel,
Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, et al.
2018. Conversational AI: The science behind the Alexa prize. arXiv preprint
arXiv:1801.03604 (2018).

[15] Anand S Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical computable
language. In European workshop on modelling autonomous agents in a multi-agent
world. Springer, 42–55.

[16] Anand S Rao and Michael P Georgeff. 1995. BDI agents: from theory to practice..
In Proceedings of the First International Conference onMulti-Agent Systems (ICMAS-
95), Vol. 95. 312–319.

[17] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young.
2007. Agenda-Based User Simulation for Bootstrapping a POMDP Dialogue
System. In Human Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Linguistics; Companion
Volume, Short Papers. Association for Computational Linguistics, Rochester, New
York, 149–152.

[18] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2015. High-dimensional continuous control using generalized advantage estima-
tion. arXiv preprint arXiv:1506.02438 (2015).

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[20] Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng, Jianfeng Gao, and Minlie
Huang. 2020. Is Your Goal-Oriented Dialog Model Performing Really Well?
Empirical Analysis of System-wise Evaluation. In Proceedings of the 21th Annual
Meeting of the Special Interest Group on Discourse and Dialogue. 297–310.

[21] Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang,
and Jindong Chen. 2020. MultiWOZ 2.2: A Dialogue Dataset with Additional
Annotation Corrections and State Tracking Baselines. In Proceedings of the 2nd
Workshop on Natural Language Processing for Conversational AI, ACL 2020. 109–
117.

[22] Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020. Task-Oriented Dialog Systems that
Consider Multiple Appropriate Responses under the Same Context. In 34th AAAI
Conference on Artificial Intelligence.

[23] Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu. 2020.
Recent advances and challenges in task-oriented dialog systems. Science China
Technological Sciences 63, 10 (2020), 2011–2027.

[24] Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jinchao Li, Baolin
Peng, Jianfeng Gao, Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-2: An
Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue Systems.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics.

	Abstract
	1 Introduction
	2 Background
	3 A BDI Conversational Agent
	3.1 BDI Reasoning Cycle
	3.2 Belief Base Representation
	3.3 Dialogue Policy as Intention Selection
	3.4 Dialogue Policy Training

	4 Experiments and Results
	4.1 Implementation
	4.2 Metrics
	4.3 MultiWOZ Task Completion Results
	4.4 MultiWOZ Domain Results
	4.5 Dialogue Policy Training
	4.6 Scrutinising The Task-Oriented BDI Agent
	4.7 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

